Package evaluation of Chevie on Julia 1.10.8 (92f03a4775*) started at 2025-02-25T07:04:00.361 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 5.02s ################################################################################ # Installation # Installing Chevie... Resolving package versions... Updating `~/.julia/environments/v1.10/Project.toml` [367f69f0] + Chevie v0.1.8 Updating `~/.julia/environments/v1.10/Manifest.toml` [36d08e8a] + AbstractPermutations v0.3.1 [367f69f0] + Chevie v0.1.8 [a6b051d1] + Combinat v0.1.2 [05fb067e] + CycPols v0.1.4 [c380f8b6] + CyclotomicNumbers v0.1.9 [bbb6641c] + FiniteFields v0.1.1 [580d1d9c] + FinitePosets v0.1.5 [2304d612] + GenLinearAlgebra v0.1.2 [a98d1166] + GenericDecMats v0.1.2 [e70aea02] + GroupPresentations v0.1.1 [d5909c97] + GroupsCore v0.5.2 [18e54dd8] + IntegerMathUtils v0.1.2 [682c06a0] + JSON v0.21.4 [10b2801c] + LaurentPolynomials v0.1.3 [f23b31af] + MatInt v0.1.2 [4249f315] + ModuleElts v0.1.4 [bac558e1] + OrderedCollections v1.8.0 [69de0a69] + Parsers v2.8.1 [0b63354f] + PermGroups v0.2.17 [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [27ebfcd6] + Primes v0.5.6 [f53aee1f] + PuiseuxPolynomials v0.1.5 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.0 [87930f55] + SignedPerms v0.1.2 [b01ca8d2] + UsingMerge v0.0.7 [0dad84c5] + ArgTools v1.1.1 [56f22d72] + Artifacts [2a0f44e3] + Base64 [ade2ca70] + Dates [f43a241f] + Downloads v1.6.0 [7b1f6079] + FileWatching [b77e0a4c] + InteractiveUtils [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 [8f399da3] + Libdl [37e2e46d] + LinearAlgebra [56ddb016] + Logging [d6f4376e] + Markdown [a63ad114] + Mmap [ca575930] + NetworkOptions v1.2.0 [44cfe95a] + Pkg v1.10.0 [de0858da] + Printf [3fa0cd96] + REPL [9a3f8284] + Random [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization [6462fe0b] + Sockets [2f01184e] + SparseArrays v1.10.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs [4ec0a83e] + Unicode [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] + LibCURL_jll v8.4.0+0 [e37daf67] + LibGit2_jll v1.6.4+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.2+1 [14a3606d] + MozillaCACerts_jll v2023.1.10 [4536629a] + OpenBLAS_jll v0.3.23+4 [bea87d4a] + SuiteSparse_jll v7.2.1+1 [83775a58] + Zlib_jll v1.2.13+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 [8e850ede] + nghttp2_jll v1.52.0+1 [3f19e933] + p7zip_jll v17.4.0+2 Installation completed after 4.92s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 128.38s ################################################################################ # Testing # Testing Chevie Status `/tmp/jl_dnrLwc/Project.toml` [367f69f0] Chevie v0.1.8 [a6b051d1] Combinat v0.1.2 [05fb067e] CycPols v0.1.4 [c380f8b6] CyclotomicNumbers v0.1.9 [bbb6641c] FiniteFields v0.1.1 [580d1d9c] FinitePosets v0.1.5 [2304d612] GenLinearAlgebra v0.1.2 [a98d1166] GenericDecMats v0.1.2 [e70aea02] GroupPresentations v0.1.1 [10b2801c] LaurentPolynomials v0.1.3 [f23b31af] MatInt v0.1.2 [4249f315] ModuleElts v0.1.4 [bac558e1] OrderedCollections v1.8.0 [0b63354f] PermGroups v0.2.17 [27ebfcd6] Primes v0.5.6 [f53aee1f] PuiseuxPolynomials v0.1.5 [189a3867] Reexport v1.2.2 [87930f55] SignedPerms v0.1.2 [b01ca8d2] UsingMerge v0.0.7 [37e2e46d] LinearAlgebra [2f01184e] SparseArrays v1.10.0 [8dfed614] Test Status `/tmp/jl_dnrLwc/Manifest.toml` [36d08e8a] AbstractPermutations v0.3.1 [367f69f0] Chevie v0.1.8 [a6b051d1] Combinat v0.1.2 [05fb067e] CycPols v0.1.4 [c380f8b6] CyclotomicNumbers v0.1.9 [bbb6641c] FiniteFields v0.1.1 [580d1d9c] FinitePosets v0.1.5 [2304d612] GenLinearAlgebra v0.1.2 [a98d1166] GenericDecMats v0.1.2 [e70aea02] GroupPresentations v0.1.1 [d5909c97] GroupsCore v0.5.2 [18e54dd8] IntegerMathUtils v0.1.2 [682c06a0] JSON v0.21.4 [10b2801c] LaurentPolynomials v0.1.3 [f23b31af] MatInt v0.1.2 [4249f315] ModuleElts v0.1.4 [bac558e1] OrderedCollections v1.8.0 [69de0a69] Parsers v2.8.1 [0b63354f] PermGroups v0.2.17 [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [27ebfcd6] Primes v0.5.6 [f53aee1f] PuiseuxPolynomials v0.1.5 [189a3867] Reexport v1.2.2 [ae029012] Requires v1.3.0 [87930f55] SignedPerms v0.1.2 [b01ca8d2] UsingMerge v0.0.7 [0dad84c5] ArgTools v1.1.1 [56f22d72] Artifacts [2a0f44e3] Base64 [ade2ca70] Dates [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching [b77e0a4c] InteractiveUtils [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 [8f399da3] Libdl [37e2e46d] LinearAlgebra [56ddb016] Logging [d6f4376e] Markdown [a63ad114] Mmap [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.10.0 [de0858da] Printf [3fa0cd96] REPL [9a3f8284] Random [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization [6462fe0b] Sockets [2f01184e] SparseArrays v1.10.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test [cf7118a7] UUIDs [4ec0a83e] Unicode [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.4.0+0 [e37daf67] LibGit2_jll v1.6.4+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.2+1 [14a3606d] MozillaCACerts_jll v2023.1.10 [4536629a] OpenBLAS_jll v0.3.23+4 [bea87d4a] SuiteSparse_jll v7.2.1+1 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.52.0+1 [3f19e933] p7zip_jll v17.4.0+2 Testing Running tests... Algebras.jl G=symmetric_group(5) Algebras.jl Algebras.pprimesections(G,2) Algebras.jl Algebras.pprimesections(G,3) Algebras.jl W=coxgroup(:B,4) Algebras.jl A=SolomonAlgebra(W) Algebras.jl X=A.xbasis; X(1,2,3)*X(2,4) Algebras.jl W.solomon_subsets Algebras.jl W.solomon_conjugacy Algebras.jl Algebras.injection(A)(X(1,2,3)) Chars.jl W=coxgroup(:A,3) Chars.jl CharTable(W) Chars.jl W=coxgroup(:G,2) Chars.jl ct=CharTable(W) Chars.jl ct.charnames Chars.jl ct.classnames Chars.jl m=cartan(:A,3) Chars.jl schur_functor(m,[2,2]) Chars.jl fakedegree(coxgroup(:A,2),[[2,1]],Pol(:q)) Chars.jl fakedegrees(coxgroup(:A,2),Pol(:q)) Chars.jl charinfo(coxgroup(:G,2)).charparams Chars.jl charinfo(coxgroup(:G,2)) Chars.jl charinfo(complex_reflection_group(24)) Chars.jl W=coxgroup(:D,4) Chars.jl detPerm(W) Chars.jl W=complex_reflection_group(4) Chars.jl conjPerm(W) Chars.jl classinfo(coxgroup(:A,2)) Chars.jl W=spets(coxgroup(:D,4),Perm(1,2,4)) Chars.jl CharTable(W) Chars.jl WF=rootdatum("3D4") Chars.jl on_chars(Group(WF),WF.phi) Chars.jl representation(complex_reflection_group(24),3) Chars.jl representations(coxgroup(:B,2)) Chars.jl W=coxgroup(:H,3) Chars.jl g=Wgraph(W,3) Chars.jl WGraphToRepresentation(3,g,Pol(:x)) Chars.jl W=coxgroup(:G,2) Chars.jl charnames(W;limit=true) Chars.jl charnames(W;TeX=true) Chars.jl charnames(W;spaltenstein=true,limit=true) Chars.jl charnames(W;spaltenstein=true,TeX=true) Chars.jl g=coxgroup(:G,2) Chars.jl u=reflection_subgroup(g,[1,6]) Chars.jl t=induction_table(u,g) Chars.jl W=coxgroup(:D,4) Chars.jl H=reflection_subgroup(W,[1,3]) Chars.jl j_induction_table(H,W) Chars.jl W=coxgroup(:D,4) Chars.jl H=reflection_subgroup(W,[1,3]) Chars.jl J_induction_table(H,W) Chars.jl W=complex_reflection_group(4);@Mvp x,y Chars.jl discriminant(W)(x,y) ComplexR.jl G=complex_reflection_group(4) ComplexR.jl degrees(G) ComplexR.jl length(G) ComplexR.jl W*coxgroup(:A,2) ComplexR.jl complex_reflection_group(1,1,3) ComplexR.jl crg(4) ComplexR.jl W=complex_reflection_group(30) ComplexR.jl degrees(W) ComplexR.jl length(W) ComplexR.jl W=coxgroup(:E,6) ComplexR.jl WF=spets(W) ComplexR.jl phi=W(6,5,4,2,3,1,4,3,5,4,2,6,5,4,3,1); ComplexR.jl HF=subspets(WF,2:5,phi) ComplexR.jl diagram(HF) ComplexR.jl degrees(HF) ComplexR.jl W=complex_reflection_group(4) ComplexR.jl codegrees(W) ComplexR.jl W=coxgroup(:B,2) ComplexR.jl hyperplane_orbits(W) ComplexR.jl W=crg(8); ComplexR.jl r=reflections(W)[7] ComplexR.jl r.rootno ComplexR.jl r.eigen ComplexR.jl r.W ComplexR.jl r==Reflection(W,1,-1) ComplexR.jl Reflection(W,1) ComplexR.jl root(r) ComplexR.jl coroot(r) ComplexR.jl Matrix(r) ComplexR.jl hyperplane(r) ComplexR.jl hyperplane(r)*Matrix(r)==hyperplane(r) ComplexR.jl isdistinguished(r) ComplexR.jl exponent(r) ComplexR.jl Perm(r) ComplexR.jl hyperplane_orbit(r) ComplexR.jl position_class(r) ComplexR.jl simple_rep(r) ComplexR.jl word(r) ComplexR.jl W=crg(4) ComplexR.jl reflections(W) Cosets.jl W=complex_reflection_group(14) Cosets.jl R=reflection_subgroup(W,[2,4]) Cosets.jl RF=spets(R,W(1)) Cosets.jl degrees(RF) Cosets.jl W=coxgroup(:B,2) Cosets.jl W=coxgroup(:Bsym,2) Cosets.jl WF=spets(W,Perm(1,2)) Cosets.jl CharTable(WF) Cosets.jl W=coxgroup(:Bsym,2) Cosets.jl WF=spets(W,Perm(1,2)) Cosets.jl subspets(WF,Int[],W(1)) Cosets.jl W=coxgroup(:B,2) Cosets.jl twistings(W,[1]) Cosets.jl twistings(W,[2]) Cosets.jl W=coxgroup(:B,2) Cosets.jl twistings(W,[2,4]) Cosets.jl W=coxgroup(:E,6) Cosets.jl WF=spets(W,Perm(1,6)*Perm(3,5)) Cosets.jl twistings(W,2:5) Cosets.jl twistings(WF,2:5) Cosets.jl W=coxgroup(:D,4) Cosets.jl graph_automorphisms(refltype(W*W)) Cosets.jl twistings(coxgroup(:A,3)*coxgroup(:A,3)) Cosets.jl twistings(coxgroup(:D,4)) Cosets.jl W=rootdatum(:so,8) Cosets.jl twistings(W) Cosets.jl W=rootdatum(:gl,3) Cosets.jl gu3=spets(W,-reflrep(W,W())) Cosets.jl F4=coxgroup(:F,4);D4=reflection_subgroup(F4,[1,2,16,48]) Cosets.jl spets(D4,[1 0 0 0;0 1 2 0;0 0 0 1;0 0 -1 -1]) Cosets.jl W=coxgroup(:A,3) Cosets.jl spets(W,Perm(1,3)) Cosets.jl torus([0 -1;1 -1]) Cosets.jl W=coxgroup(:A,3) Cosets.jl twistings(W,Int[]) Cosets.jl torus(W,2) Cosets.jl WF=spets(W,Perm(1,3)) Cosets.jl twistings(WF,Int[]) Cosets.jl torus(WF,2) Cosets.jl W=coxgroup(:D,4) Cosets.jl WF=spets(W,Perm(1,2,4)) Cosets.jl u=unichar(W,2) Cosets.jl F=Frobenius(WF);F(u) Cosets.jl F(u,-1) Cosets.jl F(1) Cosets.jl WF=spets(coxgroup(:F,4)) Cosets.jl w=transporting_elt(Group(WF),[1,2,9,16],[1,9,16,2],ontuples); Cosets.jl LF=subspets(WF,[1,2,9,16],w) Cosets.jl diagram(LF) Cosets.jl spets("3G422") ##### Warning: cartantypes for crg(4,2,2)=Cyc{Rational{Int64}}[-E(3,2)] exec="(ζ₃²(-1-√-1)/2)₄‚₂‚₂" manl="₄‚₂‚₂" Cosets.jl: Test Failed at /home/pkgeval/.julia/packages/Chevie/YtT4p/test/runtests.jl:166 Expression: mytest("Cosets.jl", "spets(\"3G422\")", "³G₄‚₂‚₂") Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:672 [inlined] [2] macro expansion @ ~/.julia/packages/Chevie/YtT4p/test/runtests.jl:166 [inlined] [3] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [4] macro expansion @ ~/.julia/packages/Chevie/YtT4p/test/runtests.jl:117 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [6] top-level scope @ ~/.julia/packages/Chevie/YtT4p/test/runtests.jl:16 Cosets.jl spets("2G5") Cosets.jl spets("3G333") Cosets.jl spets("3pG333") Cosets.jl spets("4G333") CoxGroups.jl W=coxsym(4) CoxGroups.jl p=W(1,3,2,1,3) CoxGroups.jl word(W,p) CoxGroups.jl word(W,longest(W)) CoxGroups.jl w0=longest(W) CoxGroups.jl length(W,w0) CoxGroups.jl map(w->word(W,w),refls(W,1:nref(W))) CoxGroups.jl [length(elements(W,i)) for i in 0:nref(W)] CoxGroups.jl W=coxsym(3) CoxGroups.jl firstleftdescent(W,Perm(2,3)) CoxGroups.jl W=coxsym(3) CoxGroups.jl leftdescents(W,Perm(1,3)) CoxGroups.jl W=coxgroup(:A,3) CoxGroups.jl w=perm"(1,11)(3,10)(4,9)(5,7)(6,12)" CoxGroups.jl w in W CoxGroups.jl word(W,w) CoxGroups.jl W=coxsym(4) CoxGroups.jl p=W(1,2,3,1,2,3) CoxGroups.jl length(W,p) CoxGroups.jl word(W,p) CoxGroups.jl W=coxgroup(:G,2) CoxGroups.jl H=reflection_subgroup(W,[2,6]) CoxGroups.jl word.(Ref(W),unique(reduced.(Ref(H),elements(W)))) CoxGroups.jl W=coxgroup(:G,2) CoxGroups.jl H=reflection_subgroup(W,[2,6]) CoxGroups.jl [word(W,w) for S in reduced(H,W) for w in S] CoxGroups.jl W=coxgroup(:H,3) CoxGroups.jl w=W(1,2,1,3); CoxGroups.jl b=filter(x->bruhatless(W,x,w),elements(W)); CoxGroups.jl word.(Ref(W),b) CoxGroups.jl W=coxsym(3) CoxGroups.jl bruhatless(W,Perm(1,3)) CoxGroups.jl W=coxsym(3) CoxGroups.jl bruhatPoset(W) CoxGroups.jl p=Poset((x,y)->bruhatless(W,x,y),elements(W)) CoxGroups.jl p.show_element=(io,x,n)->join(io,word(W,x.elements[n])); CoxGroups.jl p CoxGroups.jl W=coxsym(4) CoxGroups.jl bruhatPoset(W,W(1,3)) CoxGroups.jl W=coxgroup(:A,3) CoxGroups.jl words(W,longest(W)) CoxGroups.jl W=coxgroup(:A,3) CoxGroups.jl inversions(W,W(1,2,1)) CoxGroups.jl CoxGroups.standard_parabolic_class(coxgroup(:E,8),[7,8]) CoxGroups.jl C=cartan(:H,3) CoxGroups.jl coxmat(C) CoxGroups.jl W=coxsym(4) CoxGroups.jl coxmat(W) CoxGroups.jl W=complex_reflection_group(29) CoxGroups.jl braid_relations(W) CoxGroups.jl longest(coxsym(4)) CoxGroups.jl longest(coxsym(4)) CoxGroups.jl W=coxsym(3) CoxGroups.jl gens(W) CoxGroups.jl e=elements(W) CoxGroups.jl length.(Ref(W),e) CoxGroups.jl W=coxsym(3) CoxGroups.jl isleftdescent(W,Perm(1,2),1) CoxGroups.jl W=coxsym(3) CoxGroups.jl isrightdescent(W,Perm(1,2),1) CoxGroups.jl elements(coxhyp(2)) CoxGroups.jl W=coxgroup([2 -2;-2 2]) CoxGroups.jl gens(W) Diagrams.jl diagram(coxgroup(:E,8)) Diagrams.jl diagram(crg(33)) Eigenspaces.jl W=coxgroup(:E,8) Eigenspaces.jl relative_degrees(W,4) Eigenspaces.jl regular_eigenvalues(coxgroup(:G,2)) Eigenspaces.jl W=complex_reflection_group(6) Eigenspaces.jl L=twistings(W,[2])[4] Eigenspaces.jl regular_eigenvalues(L) Eigenspaces.jl W=coxgroup(:E,8) Eigenspaces.jl position_regular_class(W,30) Eigenspaces.jl W=complex_reflection_group(6) Eigenspaces.jl L=twistings(W,[2])[4] Eigenspaces.jl position_regular_class(L,7//12) Eigenspaces.jl W=coxgroup(:A,3) Eigenspaces.jl w=W(1:3...) Eigenspaces.jl p=eigenspace_projector(W,w,1//4) Eigenspaces.jl GenLinearAlgebra.rank(p) Eigenspaces.jl W=coxgroup(:A,3) Eigenspaces.jl split_levis(W,4) Eigenspaces.jl W=spets(coxgroup(:D,4),Perm(1,2,4)) Eigenspaces.jl split_levis(W,3) Eigenspaces.jl W=coxgroup(:E,8) Eigenspaces.jl split_levis(W,4,2) Eigenspaces.jl split_levis(complex_reflection_group(5)) FFfac.jl @Pol q FFfac.jl f=q^3*(q^4-1)^2*Z(3)^0 FFfac.jl factor(f) FFfac.jl factor(f,GF(9)) Fact.jl factor(Pol(:q)^24-1) Fact.jl Fact.LogInt(1024,2) Fact.jl Fact.LogInt(1,10) Families.jl W=coxgroup(:G,2) Families.jl uc=UnipotentCharacters(W); Families.jl uc.families Families.jl uc.families[1] Families.jl charnames(uc)[uc.families[1].charNumbers] Families.jl Family("C2") Families.jl Family("C2",4:7;signs=[1,-1,1,-1]) Families.jl f=UnipotentCharacters(complex_reflection_group(3,1,1)).families[2] Families.jl galois(f,-1) Families.jl f=UnipotentCharacters(complex_reflection_group(3,1,1)).families[2] Families.jl invpermute(f,Perm(1,2,3)) Families.jl Families.ndrinfeld_double(complex_reflection_group(5)) Families.jl family_imprimitive([[0,1],[1],[0]]) Families.jl FamiliesClassical(symbols(2,3)) Families.jl W=complex_reflection_group(4) Families.jl uc=UnipotentCharacters(W);f=uc.families[4]; Families.jl A=Zbasedring(fourier(f),1) Families.jl b=basis(A) Families.jl b*permutedims(b) Families.jl CharTable(A) Format.jl s="E_6[\\zeta_3]:\\phi_{1,6}" Format.jl fromTeX(rio(),s) Format.jl fromTeX(stdout,s) Format.jl ordinal(201) Format.jl ordinal(202) Format.jl ordinal(203) Format.jl ordinal(204) Format.jl joindigits([1,9,3,5]) Format.jl joindigits([1,10,3,5]) Format.jl joindigits([1,10,3,5],"[]";sep="-") Garside.jl W=coxgroup(:A,4) Garside.jl B=BraidMonoid(W) Garside.jl w=B(1,2,3,4) Garside.jl w^3 Garside.jl word(α(w^3)) Garside.jl w^4 Garside.jl inv(w) Garside.jl xrepr(w^-1,greedy=true,limit=true) Garside.jl repr(w) Garside.jl repr(w^3) Garside.jl repr(w^-1) Garside.jl b=B(2,1,4,1,4) Garside.jl c=B(1,4,1,4,3) Garside.jl d=conjugating_elt(b,c) Garside.jl b^d Garside.jl centralizer_gens(b) Garside.jl C=conjcat(b;ss=Val(:ss)) Garside.jl C.obj Garside.jl word(W,preferred_prefix(b)) Garside.jl b^B(preferred_prefix(b)) Garside.jl b1=b^B(preferred_prefix(b)) Garside.jl C=conjcat(b) Garside.jl C.obj Garside.jl W=coxgroup(:A,3) Garside.jl B=BraidMonoid(W) Garside.jl Pi=B(B.δ)^2 Garside.jl root(Pi,2) Garside.jl root(Pi,3) Garside.jl root(Pi,4) Garside.jl B=BraidMonoid(coxgroup(:A,3)) Garside.jl word(B,B.δ) Garside.jl W=coxgroup(:A,3) Garside.jl B=BraidMonoid(W) Garside.jl map(x->B.(x),left_divisors(B,W(1,3,2))) Garside.jl B=DualBraidMonoid(W) Garside.jl map(x->B.(x),left_divisors(B,W(1,3,2))) Garside.jl M=BraidMonoid(coxgroup(:A,2)) Garside.jl elements(M,4) Garside.jl B=DualBraidMonoid(coxsym(4)) Garside.jl left_divisors(B(1,5,4,3)) Garside.jl left_divisors(B(1,5,4,3),1) Garside.jl W=coxgroup(:E,8);B=BraidMonoid(W) Garside.jl w=B(2,3,4,2,3,4,5,4,2,3,4,5,6,5,4,2,3,4,5,6,7,6,5,4,2,3,4,5,6,7,8) Garside.jl Brieskorn_normal_form(w) Garside.jl Brieskorn_normal_form(w^2) Garside.jl B=BraidMonoid(coxgroup(:A,3)) Garside.jl b=B( 2, 1, -3, 1, 1) Garside.jl fraction(b) Garside.jl W=coxgroup(:A,3) Garside.jl b=BraidMonoid(W)(2,1,2,1,1) Garside.jl α(b) Garside.jl W=coxgroup(:A,4);B=BraidMonoid(W) Garside.jl w0=B(longest(W)) Garside.jl α(w0,[1,2,3]) Garside.jl B=BraidMonoid(coxgroup(:A,3)) Garside.jl b=B(2,1,2,1,1)*inv(B(2,2)) Garside.jl word(b) Garside.jl W=coxgroup(:A,3) Garside.jl B=BraidMonoid(W) Garside.jl leftgcdc(B(2,1,2)^2,B(3,2)^2) Garside.jl W=coxgroup(:A,3) Garside.jl B=BraidMonoid(W) Garside.jl rightgcdc(B(2,1,2)^2,B(3,2)^2) Garside.jl B=BraidMonoid(coxgroup(:A,3)) Garside.jl leftlcmc(B(2,1,2)^2,B(3,2)^2) Garside.jl B=BraidMonoid(coxgroup(:A,3)) Garside.jl rightlcmc(B(2,1,2)^2,B(3,2)^2) Garside.jl W=coxsym(4) Garside.jl b=BraidMonoid(W)(2,1,2,1,1) Garside.jl p=image(b) Garside.jl word(W,p) Garside.jl W=coxgroup(:A,2) Garside.jl pi=BraidMonoid(W)(longest(W))^2 Garside.jl words(pi) Garside.jl W=coxgroup(:A,3) Garside.jl B=DualBraidMonoid(W) Garside.jl B(2,1,2,1,1) Garside.jl B(-1,-2,-3,1,1) Garside.jl W=crg(4) Garside.jl B=DualBraidMonoid(W) Garside.jl left_divisors(B(B.δ)) Garside.jl W=coxgroup(:E,8);M=DualBraidMonoid(W) Garside.jl s4=left_divisors(M,M.δ,4); Garside.jl s=M(s4[findfirst(x->x*δad(M,x,8)==M.δ,s4)]) Garside.jl "the right-lcms of the `δⁱ`-orbits on `leftdescents(b)`" function satoms(b,i) M=b.M ld=M.atoms[leftdescents(b)] di=Perm(ld,δad.(Ref(M),ld,i)) if isnothing(di) error(b," is not δ^\$i-stable") end map(o->M(rightlcm(M,ld[o]...)),orbits(di,eachindex(ld))) end Garside.jl Category(x->satoms(x,15),s;action=(o,m)->inv(m)*o*δad(m,8)) Garside.jl W=coxsym(4);M=BraidMonoid(W) Garside.jl endomorphisms(conjcat(M(1,1,2,2,3)),1) Garside.jl W=coxgroup(:A,4) Garside.jl w=BraidMonoid(W)(4,3,3,2,1) Garside.jl C=conjcat(w) Garside.jl C.obj Garside.jl conjcat(w;ss=Val(:ss)).obj Garside.jl W=coxgroup(:D,4) Garside.jl B=BraidMonoid(W) Garside.jl b=B(2,3,1,2,4,3) Garside.jl b1=B(1,4,3,2,2,2) Garside.jl conjugating_elt(b,b1) Garside.jl c=conjugating_elt(b,b1;ss=Val(:cyc)) Garside.jl b^c Garside.jl WF=spets(W,Perm(1,2,4)) Garside.jl F=Frobenius(WF); Garside.jl c=B(3,4,3,1,2,3) Garside.jl conjugating_elt(b,c,F) Garside.jl ^(b,B(1,2,4,3,1,2),F) Garside.jl W=coxgroup(:D,4) Garside.jl B=BraidMonoid(W) Garside.jl w=B(4,4,4) Garside.jl cc=centralizer_gens(w) Garside.jl shrink(cc) #I total length 41 maximal length 11 #I 8:<11÷5>..<10÷5><9÷4>.. eliminated #I 7:<11÷5>...<10÷5><9÷4>... #I 6:<6÷1>..<5÷1> eliminated #I 5:<6÷1>...<5÷1> eliminated #I 4:<4÷0>... #I 3:<1÷0>.. #I 2:<1÷0>. #I total length 16 maximal length 9 #I 5:<9÷4>.... #I 4:<4÷0>. #I 3:<1÷0>. #I 2:<1÷0>. Garside.jl centralizer_gens(w;ss=Val(:cyc)) Garside.jl F=Frobenius(spets(W,Perm(1,2,4))); Garside.jl centralizer_gens(w,F) Garside.jl M=DualBraidMonoid(coxgroup(:A,3)) Garside.jl p=Presentation(M) Garside.jl B=BraidMonoid(coxsym(3)) Garside.jl b=[B(1)^3,B(2)^3,B(-2,-1,-1,2,2,2,2,1,1,2),B(1,1,1,2)] Garside.jl shrink(b) #I total length 20 maximal length 10 #I 4:<10÷3>..<6÷1>. #I 3:<4÷0>..<1÷0> #I 2:<3÷0>. #I total length 13 maximal length 6 #I 4:<6÷1>.<4÷0>..<1÷0> #I 3:<3÷0>...<2÷0> #I 2:<3÷0>.<2÷0> #I total length 6 maximal length 2 #I 4:<2÷0>.. eliminated #I 3:<2÷0>. eliminated #I 2:<1÷0>. #I total length 2 maximal length 1 #I 2:<1÷0>. Gt.jl W=coxgroup(:G,2) Gt.jl closed_subsystems(W) Gt.jl t=ClassTypes(rootdatum(:sl,3)) HeckeAlgebras.jl W=coxgroup(:A,2) HeckeAlgebras.jl H=hecke(W,0) HeckeAlgebras.jl T=Tbasis(H); HeckeAlgebras.jl b=T.(elements(W)) HeckeAlgebras.jl b*permutedims(b) HeckeAlgebras.jl H=hecke(W,Pol(:q)) HeckeAlgebras.jl T=Tbasis(H); HeckeAlgebras.jl h=T(1,2)^2 HeckeAlgebras.jl length(h) HeckeAlgebras.jl h[W(2,1)] HeckeAlgebras.jl collect(h) HeckeAlgebras.jl collect(values(h)) HeckeAlgebras.jl collect(keys(h)) HeckeAlgebras.jl h[W(2,1)]=Pol(3) HeckeAlgebras.jl h HeckeAlgebras.jl W=coxgroup(:B,2) HeckeAlgebras.jl @Pol q HeckeAlgebras.jl H=hecke(W,q) HeckeAlgebras.jl H.para HeckeAlgebras.jl H=hecke(W,q^2,rootpara=-q) HeckeAlgebras.jl H=hecke(W,q^2) HeckeAlgebras.jl rootpara(H) HeckeAlgebras.jl H HeckeAlgebras.jl H=hecke(W,[q^2,q^4],rootpara=[q,q^2]) HeckeAlgebras.jl H.para,rootpara(H) HeckeAlgebras.jl H=hecke(W,9,rootpara=3) HeckeAlgebras.jl H.para,rootpara(H) HeckeAlgebras.jl @Mvp x,y,z,t HeckeAlgebras.jl H=hecke(W,[[x,y]]) HeckeAlgebras.jl rootpara(H);H HeckeAlgebras.jl H=hecke(W,[[x,y],[z,t]]) HeckeAlgebras.jl rootpara(H);H HeckeAlgebras.jl hecke(coxgroup(:F,4),(q,q^2)).para HeckeAlgebras.jl hecke(complex_reflection_group(3,1,2),q).para HeckeAlgebras.jl H=hecke(crg(4),Pol()) HeckeAlgebras.jl CharTable(H) HeckeAlgebras.jl W=crg(24) HeckeAlgebras.jl H=hecke(W,Pol(:q)) HeckeAlgebras.jl representation(H,3) HeckeAlgebras.jl H=hecke(coxgroup(:D,5),Pol()) HeckeAlgebras.jl representation(H,7) HeckeAlgebras.jl H=hecke(coxgroup(:F,4)) HeckeAlgebras.jl isrepresentation(H,reflrep(H)) HeckeAlgebras.jl isrepresentation(H,Tbasis(H).(1:4)) HeckeAlgebras.jl W=coxgroup(:B,2);H=hecke(W,Pol(:q)) HeckeAlgebras.jl reflrep(H) HeckeAlgebras.jl H=hecke(coxgroup(:H,3)) HeckeAlgebras.jl reflrep(H) HeckeAlgebras.jl W=coxgroup(:H,3) HeckeAlgebras.jl H=hecke(W,Pol(:q)^2) HeckeAlgebras.jl g=Wgraph(W,3) HeckeAlgebras.jl WGraphToRepresentation(H,g) HeckeAlgebras.jl H=hecke(coxgroup(:H,3),Pol(:q)) HeckeAlgebras.jl central_monomials(H) HeckeAlgebras.jl H=hecke(coxgroup(:A,2),Pol(:q)) HeckeAlgebras.jl T=Tbasis(H);T(longest(H.W))^2 HeckeAlgebras.jl W=crg(3,1,1) HeckeAlgebras.jl H=hecke(crg(3,1,1),Pol(:q)) HeckeAlgebras.jl T=Tbasis(H);T(1)^3 HeckeAlgebras.jl W=coxgroup(:G,2);H=hecke(W,Pol(:q)) HeckeAlgebras.jl T=Tbasis(H);h=T(1,2)*T(2,1) HeckeAlgebras.jl alt(h) HeckeAlgebras.jl W=coxsym(4) HeckeAlgebras.jl H=hecke(W,Pol(:q)) HeckeAlgebras.jl h=Tbasis(H,longest(W)) HeckeAlgebras.jl p=class_polynomials(h) HeckeAlgebras.jl W=coxgroup(:B,2) HeckeAlgebras.jl H=hecke(W,q^2;rootpara=q) HeckeAlgebras.jl char_values(Cpbasis(H)(1,2,1)) HeckeAlgebras.jl W=crg(4) HeckeAlgebras.jl H=hecke(W,Pol(:q)) HeckeAlgebras.jl char_values(H,[2,1,2]) HeckeAlgebras.jl H=hecke(complex_reflection_group(4),Pol(:q)) HeckeAlgebras.jl s=schur_elements(H) HeckeAlgebras.jl CycPol.(s) HeckeAlgebras.jl @Mvp x,y; W=crg(4); H=hecke(W,[[1,x,y]]) HeckeAlgebras.jl p=factorized_schur_element(H,[[2,5]]) HeckeAlgebras.jl q=p(;x=E(3)) HeckeAlgebras.jl q(;y=2//1) HeckeAlgebras.jl HeckeAlgebras.expand(p) HeckeAlgebras.jl W=complex_reflection_group(4) HeckeAlgebras.jl @Mvp x,y; H=hecke(W,[[1,x,y]]) HeckeAlgebras.jl factorized_schur_element(H,[[2,5]]) HeckeAlgebras.jl W=complex_reflection_group(4) HeckeAlgebras.jl @Mvp x,y; H=hecke(W,[[1,x,y]]) HeckeAlgebras.jl factorized_schur_elements(H) HeckeAlgebras.jl WF=rootdatum(:u,3) HeckeAlgebras.jl HF=hecke(WF,Pol(:v)^2;rootpara=Pol()) HeckeAlgebras.jl CharTable(HF) HeckeAlgebras.jl WF=rootdatum("2B2") HeckeAlgebras.jl H=hecke(WF,Pol(:x)^2;rootpara=Pol()) HeckeAlgebras.jl representations(H) KL.jl W=coxgroup(:H,3) KL.jl c=left_cells(W) KL.jl W=coxgroup(:F,4) KL.jl w=longest(W)*gens(W)[1];length(W,w) KL.jl y=W(1:4...);length(W,y) KL.jl cr=KL.critical_pair(W,y,w);length(W,cr) KL.jl Pol(:x);KLPol(W,y,w) KL.jl KLPol(W,cr,w) KL.jl W=coxgroup(:B,3) KL.jl map(i->map(x->KLPol(W,one(W),x),elements(W,i)),1:nref(W)) KL.jl W=coxgroup(:B,2);@Pol v;H=hecke(W,[v^4,v^2]) KL.jl Cp=Cpbasis(H);h=Cp(1)^2 KL.jl k=Tbasis(h) KL.jl Cp(k) KL.jl W=coxgroup(:B,3);H=hecke(W,Pol(:v)^2) KL.jl T=Tbasis(H);C=Cbasis(H);T(C(1)) KL.jl C(T(1)) KL.jl ref=reflrep(H) KL.jl W=coxgroup(:B,3) KL.jl @Pol v;H=hecke(W,v^2,rootpara=v) KL.jl C=Cpbasis(H); Tbasis(C(1,2)) KL.jl c=left_cells(coxgroup(:G,2))[3] KL.jl character(c) KL.jl W=coxgroup(:H,3) KL.jl c=left_cells(W)[3] KL.jl @Mvp q;H=hecke(W,q) KL.jl representation(c,H) KL.jl W=coxgroup(:G,2) KL.jl left_cells(W) KL.jl W=coxgroup(:G,2); KL.jl left_cells(W,1) KL.jl W=coxgroup(:E,8) KL.jl LeftCell(W,W((1:8)...)) KL.jl W=coxgroup(:G,2) KL.jl l=Lusztigaw(W,W(1)) KL.jl sum(l.*map(i->almostchar(W,i),eachindex(l))) KL.jl W=coxgroup(:G,2) KL.jl l=LusztigAw(W,W(1)) KL.jl sum(l.*map(i->almostchar(W,i),eachindex(l))) KL.jl W=coxgroup(:G,2) KL.jl A=AsymptoticAlgebra(W,1) KL.jl b=basis(A) KL.jl b*permutedims(b) KL.jl CharTable(A) Lusztig.jl W=coxgroup(:B,3) Lusztig.jl t=twistings(W,[1,3]) Lusztig.jl lusztig_induction_table(t[2],W) Nf.jl F=NF(E(5)) Nf.jl K=NF(root(5)) Nf.jl conductor(K) Nf.jl E(5)+E(5,-1) in NF(root(5)) Nf.jl elements(galois(F)) Nf.jl NF(root(3),root(5)) Nf.jl Nf.LenstraBase(24,Group([Mod(19,24)]),Group([Mod(19,24)])) Nf.jl Nf.LenstraBase(24,Group([Mod(19,24)]),Group([Mod(19,24),Mod(5,24)])) Nf.jl Nf.LenstraBase(15,Group([Mod(4,15)]),Group(Mod.(prime_residues(15),15))) Nf.jl NF(E(3),root(5)) Nf.jl NF([E(3),root(5)]) Nf.jl F=NF(root(5)) Nf.jl s=Aut(F,3) Nf.jl root(5)^s Nf.jl K=CF(5) Nf.jl F=NF(root(5)) Nf.jl galois(K) Nf.jl elements(galois(K)) Nf.jl elements(galois(F)) PermRoot.jl W=complex_reflection_group(4) PermRoot.jl gens(W) PermRoot.jl length(unique(refls(W))) PermRoot.jl length(refls(W)) PermRoot.jl reflrep(W) PermRoot.jl braid_relations(W) PermRoot.jl diagram(W) PermRoot.jl cartan(W) PermRoot.jl simpleroots(W) PermRoot.jl simplecoroots(W) PermRoot.jl degrees(W) PermRoot.jl fakedegrees(W,Pol(:x)) PermRoot.jl reflectionMatrix([1,0,-E(3,2)]) PermRoot.jl asreflection([-1 0 0;1 1 0;0 0 1]) PermRoot.jl asreflection([-1 0 0;1 1 0;0 0 1],[1,0,0]) PermRoot.jl W=coxgroup(:A,3) PermRoot.jl cartan(W) PermRoot.jl rank(complex_reflection_group(31)) PermRoot.jl W=coxgroup(:D,3) PermRoot.jl t=refltype(W)[1] PermRoot.jl t.indices PermRoot.jl bipartite_decomposition(coxgroup(:E,8)) PermRoot.jl W=coxgroup(:B,3) PermRoot.jl reflchar(W,longest(W)) PermRoot.jl reflchar(coxgroup(:A,3)) PermRoot.jl refleigen(coxgroup(:B,2)) PermRoot.jl W=coxgroup(:A,4) PermRoot.jl reflength(W,longest(W)) PermRoot.jl reflength(W,W(1,2,3,4)) PermRoot.jl W=reflection_subgroup(coxgroup(:A,3),[1,3]) PermRoot.jl semisimplerank(W) PermRoot.jl rank(W) PermRoot.jl W=reflection_subgroup(rootdatum("E7sc"),1:6) PermRoot.jl PermX(W,reflrep(W,longest(W)))==longest(W) PermRoot.jl parabolic_reps(coxgroup(:A,4)) PermRoot.jl parabolic_reps(complex_reflection_group(3,3,3)) # Extending G₃‚₃‚₃₍₁₎=A₁Φ₁² 8 new subgroups*# changing inclusiongens to <2,22> for A₂₍₁₇₎<12 refs> **# changing inclusiongens to <5,8> for A₂₍₁₇₎<12 refs> *# changing inclusiongens to <6,13> for A₂₍₁₄₎<6 refs> *# changing inclusiongens to <9,29> for A₂₍₁₇₎<12 refs> *# changing inclusiongens to <12,38> for A₂₍₁₇₎<12 refs> **# changing inclusiongens to <20,39> for A₂₍₁₄₎<6 refs> # changing inclusiongens to <1,3> for A₂<6 refs> # changing inclusiongens to <1,10> for A₂₍₁₈₎<12 refs> # changing inclusiongens to <1,32> for A₂₍₁₆₎<12 refs> # changing inclusiongens to <1,15> for A₂<12 refs> # 4 to go # candidates for G₃‚₃‚₃₍₁₃₎=A₂Φ₁ to be conjugate:Any[] # new:G₃‚₃‚₃₍₁₃₎=A₂Φ₁ # candidates for G₃‚₃‚₃₍₁‚₁₀₎=A₂Φ₁ to be conjugate:Any[G₃‚₃‚₃₍₁₃₎=A₂Φ₁] # new:G₃‚₃‚₃₍₁‚₁₀₎=A₂Φ₁ # candidates for G₃‚₃‚₃₍₁‚₃₂₎=A₂Φ₁ to be conjugate:Any[G₃‚₃‚₃₍₁₃₎=A₂Φ₁, G₃‚₃‚₃₍₁‚₁₀₎=A₂Φ₁] # new:G₃‚₃‚₃₍₁‚₃₂₎=A₂Φ₁ # candidates for G₃‚₃‚₃₍₁‚₁₅₎=A₂Φ₁ to be conjugate:Any[G₃‚₃‚₃₍₁₃₎=A₂Φ₁, G₃‚₃‚₃₍₁‚₁₀₎=A₂Φ₁, G₃‚₃‚₃₍₁‚₃₂₎=A₂Φ₁] # new:G₃‚₃‚₃₍₁‚₁₅₎=A₂Φ₁ # i=2 found:Any[G₃‚₃‚₃₍₁₃₎=A₂Φ₁, G₃‚₃‚₃₍₁‚₁₀₎=A₂Φ₁, G₃‚₃‚₃₍₁‚₃₂₎=A₂Φ₁, G₃‚₃‚₃₍₁‚₁₅₎=A₂Φ₁] # changing inclusiongens to <1,10> for A₂₍₁₇₎<12 refs> # ****** G₃‚₃‚₃₍₁‚₃₂₎=A₂Φ₁ is not conjugate to a standard parabolic # Extending G₃‚₃‚₃₍₁₎=A₁Φ₁² 8 new subgroups********# 4 to go # candidates for G₃‚₃‚₃₍₁₃₎=A₂Φ₁ to be conjugate:Any[] # new:G₃‚₃‚₃₍₁₃₎=A₂Φ₁ # candidates for G₃‚₃‚₃₍₁‚₁₀₎=A₂Φ₁ to be conjugate:Any[G₃‚₃‚₃₍₁₃₎=A₂Φ₁] # new:G₃‚₃‚₃₍₁‚₁₀₎=A₂Φ₁ # candidates for G₃‚₃‚₃₍₁‚₃₂₎=A₂Φ₁ to be conjugate:Any[G₃‚₃‚₃₍₁₃₎=A₂Φ₁, G₃‚₃‚₃₍₁‚₁₀₎=A₂Φ₁] # new:G₃‚₃‚₃₍₁‚₃₂₎=A₂Φ₁ # candidates for G₃‚₃‚₃₍₁‚₁₅₎=A₂Φ₁ to be conjugate:Any[G₃‚₃‚₃₍₁₃₎=A₂Φ₁, G₃‚₃‚₃₍₁‚₁₀₎=A₂Φ₁, G₃‚₃‚₃₍₁‚₃₂₎=A₂Φ₁] # new:G₃‚₃‚₃₍₁‚₁₅₎=A₂Φ₁ # i=2 found:Any[G₃‚₃‚₃₍₁₃₎=A₂Φ₁, G₃‚₃‚₃₍₁‚₁₀₎=A₂Φ₁, G₃‚₃‚₃₍₁‚₃₂₎=A₂Φ₁, G₃‚₃‚₃₍₁‚₁₅₎=A₂Φ₁] # ****** G₃‚₃‚₃₍₁‚₃₂₎=A₂Φ₁ is not conjugate to a standard parabolic # Extending G₃‚₃‚₃₍₁₎=A₁Φ₁² 8 new subgroups********# 4 to go # candidates for G₃‚₃‚₃₍₁₃₎=A₂Φ₁ to be conjugate:Any[] # new:G₃‚₃‚₃₍₁₃₎=A₂Φ₁ # candidates for G₃‚₃‚₃₍₁‚₁₀₎=A₂Φ₁ to be conjugate:Any[G₃‚₃‚₃₍₁₃₎=A₂Φ₁] # new:G₃‚₃‚₃₍₁‚₁₀₎=A₂Φ₁ # candidates for G₃‚₃‚₃₍₁‚₃₂₎=A₂Φ₁ to be conjugate:Any[G₃‚₃‚₃₍₁₃₎=A₂Φ₁, G₃‚₃‚₃₍₁‚₁₀₎=A₂Φ₁] # new:G₃‚₃‚₃₍₁‚₃₂₎=A₂Φ₁ # candidates for G₃‚₃‚₃₍₁‚₁₅₎=A₂Φ₁ to be conjugate:Any[G₃‚₃‚₃₍₁₃₎=A₂Φ₁, G₃‚₃‚₃₍₁‚₁₀₎=A₂Φ₁, G₃‚₃‚₃₍₁‚₃₂₎=A₂Φ₁] # new:G₃‚₃‚₃₍₁‚₁₅₎=A₂Φ₁ # i=2 found:Any[G₃‚₃‚₃₍₁₃₎=A₂Φ₁, G₃‚₃‚₃₍₁‚₁₀₎=A₂Φ₁, G₃‚₃‚₃₍₁‚₃₂₎=A₂Φ₁, G₃‚₃‚₃₍₁‚₁₅₎=A₂Φ₁] # ****** G₃‚₃‚₃₍₁‚₃₂₎=A₂Φ₁ is not conjugate to a standard parabolic # Extending G₃‚₃‚₃₍₁₎=A₁Φ₁² 8 new subgroups********# 4 to go # candidates for G₃‚₃‚₃₍₁₃₎=A₂Φ₁ to be conjugate:Any[] # new:G₃‚₃‚₃₍₁₃₎=A₂Φ₁ # candidates for G₃‚₃‚₃₍₁‚₁₀₎=A₂Φ₁ to be conjugate:Any[G₃‚₃‚₃₍₁₃₎=A₂Φ₁] # new:G₃‚₃‚₃₍₁‚₁₀₎=A₂Φ₁ # candidates for G₃‚₃‚₃₍₁‚₃₂₎=A₂Φ₁ to be conjugate:Any[G₃‚₃‚₃₍₁₃₎=A₂Φ₁, G₃‚₃‚₃₍₁‚₁₀₎=A₂Φ₁] # new:G₃‚₃‚₃₍₁‚₃₂₎=A₂Φ₁ # candidates for G₃‚₃‚₃₍₁‚₁₅₎=A₂Φ₁ to be conjugate:Any[G₃‚₃‚₃₍₁₃₎=A₂Φ₁, G₃‚₃‚₃₍₁‚₁₀₎=A₂Φ₁, G₃‚₃‚₃₍₁‚₃₂₎=A₂Φ₁] # new:G₃‚₃‚₃₍₁‚₁₅₎=A₂Φ₁ # i=2 found:Any[G₃‚₃‚₃₍₁₃₎=A₂Φ₁, G₃‚₃‚₃₍₁‚₁₀₎=A₂Φ₁, G₃‚₃‚₃₍₁‚₃₂₎=A₂Φ₁, G₃‚₃‚₃₍₁‚₁₅₎=A₂Φ₁] # ****** G₃‚₃‚₃₍₁‚₃₂₎=A₂Φ₁ is not conjugate to a standard parabolic PermRoot.jl parabolic_reps(coxgroup(:A,4),2) PermRoot.jl parabolic_reps(complex_reflection_group(3,3,3),2) # Extending G₃‚₃‚₃₍₁₎=A₁Φ₁² 8 new subgroups*# changing inclusiongens to <2,22> for A₂₍₁₇₎<12 refs> **# changing inclusiongens to <5,8> for A₂₍₁₇₎<12 refs> *# changing inclusiongens to <6,13> for A₂₍₁₄₎<6 refs> *# changing inclusiongens to <9,29> for A₂₍₁₇₎<12 refs> *# changing inclusiongens to <12,38> for A₂₍₁₇₎<12 refs> **# changing inclusiongens to <20,39> for A₂₍₁₄₎<6 refs> # changing inclusiongens to <1,3> for A₂<6 refs> # changing inclusiongens to <1,10> for A₂₍₁₈₎<12 refs> # changing inclusiongens to <1,32> for A₂₍₁₆₎<12 refs> # changing inclusiongens to <1,15> for A₂<12 refs> # 4 to go # candidates for G₃‚₃‚₃₍₁₃₎=A₂Φ₁ to be conjugate:Any[] # new:G₃‚₃‚₃₍₁₃₎=A₂Φ₁ # candidates for G₃‚₃‚₃₍₁‚₁₀₎=A₂Φ₁ to be conjugate:Any[G₃‚₃‚₃₍₁₃₎=A₂Φ₁] # new:G₃‚₃‚₃₍₁‚₁₀₎=A₂Φ₁ # candidates for G₃‚₃‚₃₍₁‚₃₂₎=A₂Φ₁ to be conjugate:Any[G₃‚₃‚₃₍₁₃₎=A₂Φ₁, G₃‚₃‚₃₍₁‚₁₀₎=A₂Φ₁] # new:G₃‚₃‚₃₍₁‚₃₂₎=A₂Φ₁ # candidates for G₃‚₃‚₃₍₁‚₁₅₎=A₂Φ₁ to be conjugate:Any[G₃‚₃‚₃₍₁₃₎=A₂Φ₁, G₃‚₃‚₃₍₁‚₁₀₎=A₂Φ₁, G₃‚₃‚₃₍₁‚₃₂₎=A₂Φ₁] # new:G₃‚₃‚₃₍₁‚₁₅₎=A₂Φ₁ # i=2 found:Any[G₃‚₃‚₃₍₁₃₎=A₂Φ₁, G₃‚₃‚₃₍₁‚₁₀₎=A₂Φ₁, G₃‚₃‚₃₍₁‚₃₂₎=A₂Φ₁, G₃‚₃‚₃₍₁‚₁₅₎=A₂Φ₁] # changing inclusiongens to <1,10> for A₂₍₁₇₎<12 refs> # ****** G₃‚₃‚₃₍₁‚₃₂₎=A₂Φ₁ is not conjugate to a standard parabolic PermRoot.jl W=reflection_subgroup(rootdatum("E7sc"),1:6) PermRoot.jl reflrep(W,longest(W)) PermRoot.jl W=reflection_subgroup(rootdatum("E7sc"),1:6) PermRoot.jl YMatrix(W,longest(W)) PermRoot.jl W=reflection_subgroup(rootdatum("E7sc"),1:6) PermRoot.jl PermY(W,YMatrix(W,longest(W)))==longest(W) PermRoot.jl W=complex_reflection_group(7) PermRoot.jl isparabolic(reflection_subgroup(W,[1,2])) PermRoot.jl isparabolic(reflection_subgroup(W,[1])) PermRoot.jl W=complex_reflection_group(7) PermRoot.jl parabolic_closure(W,[1]) # changing inclusiongens to <1> for A₁<12 refs> PermRoot.jl parabolic_closure(W,[1,2]) # changing inclusiongens to <1,2,3> for G₇<168 refs> PermRoot.jl catalan(coxgroup(:A,7)) PermRoot.jl catalan(complex_reflection_group(7),2) PermRoot.jl catalan(complex_reflection_group(7),2;q=Pol()) PermRoot.jl W=complex_reflection_group(4) PermRoot.jl invariant_form(W) PermRoot.jl PermRoot.generic_order(complex_reflection_group(4),Pol(:q)) PermRoot.jl W=coxgroup(:A,2) PermRoot.jl @Mvp x,y,z PermRoot.jl i=invariants(W); PermRoot.jl map(f->f(x,y),i) PermRoot.jl W=complex_reflection_group(24) PermRoot.jl p=invariants(W)[1](x,y,z) PermRoot.jl map(v->^(v,reflrep(W,1);vars=[:x,:y,:z]),(x,y,z)) PermRoot.jl p^reflrep(W,1)-p Semisimple.jl W=rootdatum([-1 1 0;0 -1 1],[-1 1 0;0 -1 1]) Semisimple.jl reflrep(W,W(1)) Semisimple.jl rootdatum(:gl,3) Semisimple.jl G=rootdatum(:sl,4) Semisimple.jl ss(G,[1//3,1//4,3//4,2//3]) Semisimple.jl SemisimpleElement(G,[E(3),E(4),E(4,3),E(3,2)]) Semisimple.jl L=reflection_subgroup(G,[1,3]) Semisimple.jl C=algebraic_center(L) Semisimple.jl T=torsion_subgroup(C.Z0,3) Semisimple.jl e=sort(elements(T)) Semisimple.jl e[3]^G(2) Semisimple.jl orbit(G,e[3]) Semisimple.jl G=rootdatum(:sl,4) Semisimple.jl s=SemisimpleElement(G,Z(4).^[1,2,1]) Semisimple.jl s^G(2) Semisimple.jl orbit(G,s) Semisimple.jl G=coxgroup(:A,3) Semisimple.jl s=ss(G,[0,1//2,0]) Semisimple.jl centralizer(G,s) Semisimple.jl W=coxgroup(:A,4) Semisimple.jl SubTorus(W,[1 2 3 4;2 3 4 1;3 4 1 1]) Semisimple.jl G=rootdatum(:sl,4) Semisimple.jl L=reflection_subgroup(G,[1,3]) Semisimple.jl C=algebraic_center(L) Semisimple.jl T=torsion_subgroup(C.Z0,3) Semisimple.jl sort(elements(T)) Semisimple.jl weightinfo(coxgroup(:A,2)*coxgroup(:B,2)) Semisimple.jl W=coxgroup(:A,3) Semisimple.jl fundamental_group(W) Semisimple.jl W=rootdatum(:sl,4) Semisimple.jl fundamental_group(W) Semisimple.jl W=affine(coxgroup(:A,4)) Semisimple.jl diagram(W) Semisimple.jl G=coxgroup(:A,3) Semisimple.jl s=ss(G,[0,1//2,0]) Semisimple.jl centralizer(G,s) Semisimple.jl W=coxgroup(:E,6);l=quasi_isolated_reps(W) Semisimple.jl map(s->isisolated(W,s),l) Semisimple.jl W=rootdatum(:E6sc);l=quasi_isolated_reps(W) Semisimple.jl map(s->isisolated(W,s),l) Semisimple.jl Semisimple.quasi_isolated_reps(W,3) Semisimple.jl l=twistings(rootdatum(:sl,4),Int[]) Semisimple.jl structure_rational_points_connected_centre.(l,3) Semisimple.jl W=coxgroup(:A,3) Semisimple.jl fundamental_group(intermediate_group(W,Int[])) Semisimple.jl fundamental_group(intermediate_group(W,Int[2])) Semisimple.jl W=coxgroup(:G,2) Semisimple.jl sscentralizer_reps(W) Semisimple.jl reflection_subgroup.(Ref(W),sscentralizer_reps(W)) Semisimple.jl sscentralizer_reps(W,2) Sscoset.jl WF=rootdatum(:u,6) Sscoset.jl l=quasi_isolated_reps(WF) Sscoset.jl centralizer.(Ref(WF),l) Sscoset.jl isisolated.(Ref(WF),l) Sscoset.jl WF=rootdatum(:u,6) Sscoset.jl s=ss(Group(WF),[1//4,0,0,0,0,3//4]) Sscoset.jl centralizer(WF,s) Sscoset.jl centralizer(WF,one(s)) Sscoset.jl WF=rootdatum("2E6sc") Sscoset.jl quasi_isolated_reps(WF) Sscoset.jl quasi_isolated_reps(WF,2) Sscoset.jl quasi_isolated_reps(WF,3) Sscoset.jl WF=rootdatum(:u,6) Sscoset.jl l=quasi_isolated_reps(WF) Sscoset.jl isisolated.(Ref(WF),l) Symbols.jl d=partition_tuples(3,2) Symbols.jl string_partition_tuple.(d) Symbols.jl shiftβ([2,3],2) Symbols.jl shiftβ([0,1,4,5],-2) Symbols.jl βset([3,3,1]) Symbols.jl partβ([0,4,5]) Symbols.jl symbol_partition_tuple([[2,1],[1]],1) Symbols.jl symbol_partition_tuple([[2,1],[1]],0) Symbols.jl symbol_partition_tuple([[2,1],[1]],-1) Symbols.jl ranksymbol([[1,5,6],[1,2]]) Symbols.jl valuation_gendeg_symbol([[1,5,6],[1,2]]) Symbols.jl degree_gendeg_symbol([[1,5,6],[1,2]]) Symbols.jl defectsymbol([[1,5,6],[1,2]]) Symbols.jl degree_fegsymbol([[1,5,6],[1,2]]) Symbols.jl valuation_fegsymbol([[1,5,6],[1,2]]) Symbols.jl stringsymbol.(rio(),symbols(3,3,0)) Symbols.jl stringsymbol.(symbols(3,2)) Symbols.jl stringsymbol.(symbols(3,3,0)) Symbols.jl fegsymbol([[1,5,6],[1,2]]) Symbols.jl gendeg_symbol([[1,2],[1,5,6]]) Symbols.jl BDSymbols(2,1) Symbols.jl BDSymbols(4,0) Tools.jl valuation.(24,(2,3,5)) Tools.jl abelian_gens([Perm(1,2),Perm(3,4,5),Perm(6,7)]) Tools.jl abelian_invariants(Group(Perm(1,2),Perm(3,4,5),Perm(6,7))) Tools2.jl W=coxsym(5) Tools2.jl blocks(W,2) Tools2.jl blocks(W,3) Tools2.jl blocks(W,7) Tools2.jl @Mvp x,y Tools2.jl factor(x^2-y^2+x+3y-2) Tools2.jl factor(x^2+x+1) Tools2.jl factor(x*y-1) Uch.jl W=coxgroup(:G,2) Uch.jl uc=UnipotentCharacters(W) Uch.jl uc.families[1] Uch.jl W=coxgroup(:G,2) Uch.jl T=spets(reflection_subgroup(W,Int[]),W(1,2)) Uch.jl u=unipotent_character(T,1) Uch.jl T=torus(W,position_class(W,W(1,2))) Uch.jl lusztig_induce(W,u) Uch.jl v=deligne_lusztig_character(W,[1,2]) Uch.jl degree(v) Uch.jl v*v Uch.jl UnipotentCharacters(complex_reflection_group(4)) Uch.jl W=coxgroup(:Bsym,2) Uch.jl WF=spets(W,Perm(1,2)) Uch.jl uc=UnipotentCharacters(WF) Uch.jl uc.families Uch.jl uc.families[3] Uch.jl uc=UnipotentCharacters(coxgroup(:G,2)); Uch.jl charnames(uc;limit=true) Uch.jl charnames(uc;TeX=true) Uch.jl W=coxgroup(:B,2) Uch.jl uc=UnipotentCharacters(W) Uch.jl W=coxgroup(:G,2) Uch.jl uc=UnipotentCharacters(W); Uch.jl degrees(uc) Uch.jl W=coxgroup(:G,2) Uch.jl CycPoldegrees(UnipotentCharacters(W)) Uch.jl W=coxgroup(:G,2) Uch.jl u=unichar(W,7) Uch.jl v=unichar(W,"G2[E3]") Uch.jl w=unichar(W,[1,0,0,-1,0,0,2,0,0,1]) Uch.jl unichar(W,fourier(UnipotentCharacters(W))[3,:]) Uch.jl coefficients(u) Uch.jl w-2u Uch.jl w*w Uch.jl degree(w) Uch.jl W=coxgroup(:G,2) Uch.jl WF=spets(W) Uch.jl T=subspets(WF,Int[],W(1)) Uch.jl u=unichar(T,1) Uch.jl lusztig_induce(WF,u) Uch.jl dlchar(W,W(1)) Uch.jl W=coxgroup(:G,2) Uch.jl WF=spets(W) Uch.jl T=subspets(WF,Int[],W(1)) Uch.jl u=dlchar(W,W(1)) Uch.jl lusztig_restrict(T,u) Uch.jl T=subspets(WF,Int[],W(2)) Uch.jl lusztig_restrict(T,u) Uch.jl dlCharTable(W) Uch.jl W=coxgroup(:G,2) Uch.jl dlchar(W,3) Uch.jl dlchar(W,W(1)) Uch.jl dlchar(W,[1]) Uch.jl dlchar(W,[1,2]) Uch.jl W=coxgroup(:B,2) Uch.jl almostchar(W,3) Uch.jl almostchar(W,1) Uch.jl W=coxgroup(:A,2) Uch.jl H=hecke(W,Pol(:q)) Uch.jl T=Tbasis(H); Uch.jl dllefschetz(T(1,2)) Uch.jl dllefschetz((T(1)+T())*(T(2)+T())) Uch.jl H=hecke(spets(W,Perm(1,2)),Pol(:q)^2) Uch.jl T=Tbasis(H);dllefschetz(T(1)) Uch.jl WF=rootdatum("3D4") Uch.jl on_unipotents(Group(WF),WF.phi) Uch.jl W=coxgroup(:D,4) Uch.jl cuspidal(UnipotentCharacters(W)) Uch.jl cuspidal(UnipotentCharacters(W),6) Uch.jl cuspidal(UnipotentCharacters(complex_reflection_group(4)),3) Uch.jl cuspidal_data(coxgroup(:F,4),1) Uch.jl cuspidal_data(complex_reflection_group(4),3) Ucl.jl UnipotentClasses(rootdatum(:sl,4)) Ucl.jl UnipotentClasses(coxgroup(:A,3)) Ucl.jl UnipotentClasses(coxgroup(:G,2)) Ucl.jl UnipotentClasses(coxgroup(:G,2),3) Ucl.jl uc=UnipotentClasses(coxgroup(:G,2)); Ucl.jl t=ICCTable(uc;q=Pol(:q)) Ucl.jl W=coxgroup(:F,4) Ucl.jl H=reflection_subgroup(W,[1,3]) Ucl.jl induced_linear_form(W,H,[2,2]) Ucl.jl uc=UnipotentClasses(W); Ucl.jl uc.classes[4].dynkin Ucl.jl uc.classes[4] Ucl.jl W=coxgroup(:F,4) Ucl.jl distinguished_parabolics(W) Ucl.jl W=rootdatum(:sl,4) Ucl.jl uc=UnipotentClasses(W); Ucl.jl uc.classes Ucl.jl uc=UnipotentClasses(coxgroup(:A,3));t=ICCTable(uc) Ucl.jl W=coxgroup(:G,2) Ucl.jl XTable(UnipotentClasses(W)) Ucl.jl t=XTable(UnipotentClasses(W);classes=true) Ucl.jl XTable(UnipotentClasses(W,2)) Ucl.jl XTable(UnipotentClasses(rootdatum(:sl,4))) Ucl.jl W=coxgroup(:G,2) Ucl.jl GreenTable(UnipotentClasses(W)) Ucl.jl GreenTable(UnipotentClasses(W);classes=true) Ucl.jl GreenTable(UnipotentClasses(rootdatum(:sl,4))) Ucl.jl W=coxgroup(:G,2) Ucl.jl UnipotentValues(UnipotentClasses(W);classes=true) Ucl.jl UnipotentValues(UnipotentClasses(W,3);classes=true) Ucl.jl W=coxgroup(:G,2) Ucl.jl special_pieces(UnipotentClasses(W)) Ucl.jl special_pieces(UnipotentClasses(W,3)) Urad.jl W=coxgroup(:E,6) Urad.jl U=UnipotentGroup(W) Urad.jl U(2=>4) Urad.jl U(2)^4 Urad.jl U(2=>4)*U(4=>5) Urad.jl U(2=>4,4=>5) Urad.jl U(4=>5,2=>4) Urad.jl W=coxgroup(:E,8);U=UnipotentGroup(W) Urad.jl u=U(map(i->i=>Z(2)*Mvp(Symbol("x",Char(i+0x2080))),1:8)...) Urad.jl u^32 Urad.jl W=coxgroup(:G,2) Urad.jl U=UnipotentGroup(W);@Mvp x,y Urad.jl u=U(1=>x,3=>y) Urad.jl u^W(2,1) Urad.jl s=SemisimpleElement(W,[E(3),2]) Urad.jl u^s Urad.jl u^U(2) Urad.jl U=UnipotentGroup(coxgroup(:G,2)) Urad.jl U.special Urad.jl U=UnipotentGroup(coxgroup(:G,2)) Urad.jl l=reorder(U,[2=>4,1=>2]) Urad.jl reorder(U,l,6:-1:1) Urad.jl U=UnipotentGroup(coxgroup(:G,2)) Urad.jl U(2) Urad.jl U(1=>2,2=>4) Urad.jl U(2=>4,1=>2) Urad.jl U=UnipotentGroup(coxgroup(:G,2));@Mvp x,y Urad.jl u=U(2=>y,1=>x) Urad.jl abelianpart(u) Urad.jl W=coxgroup(:G,2) Urad.jl U=UnipotentGroup(W);@Mvp x,y Urad.jl u=U(2=>y,1=>x) Urad.jl decompose(W(1),u) Urad.jl decompose(W(2),u) Weyl.jl cartan(:D,4) Weyl.jl cartan(:I,2,5) Weyl.jl W=coxgroup(:D,4) Weyl.jl cartan(W) Weyl.jl W=coxgroup(:A,2)*coxgroup(:B,2) Weyl.jl cartan(W) Weyl.jl W=coxgroup(:D,4) Weyl.jl p=W(1,3,2,1,3) Weyl.jl word(W,p) Weyl.jl cartan([1 3;3 1]) Weyl.jl cartan(:F,4) Weyl.jl cartan(:I,2,5) Weyl.jl cartan(:Bsym,2) Weyl.jl two_tree(cartan(:A,4)) Weyl.jl two_tree(cartan(:E,8)) Weyl.jl W=coxgroup(:A,3) Weyl.jl inversions(W,[2,1,2]) Weyl.jl W=coxgroup(:A,2) Weyl.jl map(N->with_inversions(W,N),combinations(1:nref(W))) Weyl.jl W=coxgroup(:E,6) Weyl.jl R=reflection_subgroup(W,[20,30,19,22]) Weyl.jl p=standard_parabolic(W,R) Weyl.jl p==standard_parabolic(W,[19,1,9,20]) Weyl.jl reflection_subgroup(W,[20,30,19,22].^p) Weyl.jl R=reflection_subgroup(W,[1,2,3,5,6,35]) Weyl.jl standard_parabolic(W,R) Weyl.jl W=coxgroup(:E,8) Weyl.jl badprimes(W) Weyl.jl W=coxgroup(:A,2) Weyl.jl w=longest(W) Weyl.jl describe_involution(W,w) Weyl.jl w==longest(reflection_subgroup(W,[3])) Weyl.jl rootdatum(cartan(:A,3))==coxgroup(:A,3) Weyl.jl rootdatum(:pgl,3) Weyl.jl rootdatum(:gl,3)==rootdatum("gl",3) Weyl.jl rootdatum([1 -1 0;0 1 -1],[1 -1 0;0 1 -1]) Weyl.jl torus(3) Weyl.jl W=coxgroup(:G,2) Weyl.jl highest_short_root(W) Weyl.jl W=coxgroup(:G,2) Weyl.jl diagram(W) Weyl.jl H=reflection_subgroup(W,[2,6]) Weyl.jl diagram(H) Weyl.jl elH=word.(Ref(H),elements(H)) Weyl.jl elW=word.(Ref(W),elements(H)) Weyl.jl map(w->H(w...),elH)==map(w->W(w...),elW) cheviesupport.jl CycPol([3,-5,6,3//7]) cp.jl C=CorranPicantinMonoid(3,3) cp.jl word(C(C.δ)) cp.jl Matrix(C,C.δ) cp.jl b=C(1,2,3,4)^3 cp.jl Matrix(C,b[3]) dSeries.jl W=rootdatum("3D4") dSeries.jl l=cuspidal_data(W,3) dSeries.jl Series(W,l[2]...) # changing gens to <1,13> for G₄₍₁‚₁₃₎<2 refs> # Relative: ζ₃-series R^³D₄_{³D₄₍₎=Φ₃²}(λ==Id) W_G(L,λ)==G₄ dSeries.jl W=complex_reflection_group(4) dSeries.jl l=cuspidal_data(W,3) dSeries.jl Series(W,l[5]...) dSeries.jl cuspidal_data(W,E(3,2)) dSeries.jl ennola(rootdatum("3D4")) dSeries.jl ennola(complex_reflection_group(14)) dSeries.jl W=complex_reflection_group(4) dSeries.jl Series(W,3;proper=true) dSeries.jl s=Series(W,3,1)[1] dSeries.jl s.spets dSeries.jl s.levi dSeries.jl s.cuspidal dSeries.jl s.d dSeries.jl hecke(s) dSeries.jl degree(s) dSeries.jl dSeries.RLG(s) dSeries.jl charnumbers(s) dSeries.jl dSeries.eps(s) dSeries.jl relative_group(s) gendec.jl W=rootdatum(:psu,5) gendec.jl generic_decomposition_matrix(W,10) gendec.jl W=rootdatum(:psu,6) gendec.jl L=reflection_subgroup(W,[1,2,4,5]) gendec.jl InducedDecompositionMatrix(L,W,6) Test Summary: | Pass Fail Total Time Chevie | 932 1 933 30m32.3s Algebras.jl | 9 9 1m03.1s Chars.jl | 43 43 6m45.7s Chevie.jl | None 0.0s ComplexR.jl | 40 40 34.1s Cosets.jl | 53 1 54 1m50.0s CoxGroups.jl | 63 63 14.3s Diagrams.jl | 2 2 1.1s Eigenspaces.jl | 22 22 47.3s FFfac.jl | 4 4 12.9s Fact.jl | 3 3 1m00.6s Families.jl | 20 20 1m14.6s Format.jl | 10 10 0.1s GAPENV.jl | None 0.0s Garside.jl | 118 118 1m46.5s Gt.jl | 3 3 2m31.4s HeckeAlgebras.jl | 93 93 4m11.0s InitChevie.jl | None 0.0s KL.jl | 44 44 1m12.8s Lusztig.jl | 3 3 17.2s Murphy.jl | None 0.0s Nf.jl | 19 19 17.4s PermRoot.jl | 64 64 42.7s Semisimple.jl | 50 50 32.8s Sscoset.jl | 15 15 27.6s Symbols.jl | 22 22 12.6s Tools.jl | 3 3 0.6s Tools2.jl | 8 8 11.9s Uch.jl | 73 73 58.7s Ucl.jl | 35 35 55.0s Urad.jl | 34 34 22.0s Util.jl | None 0.0s Weyl.jl | 46 46 3.5s cheviesupport.jl | 1 1 0.3s cp.jl | 5 5 5.5s dSeries.jl | 22 22 1m42.9s gendec.jl | 5 5 16.0s ERROR: LoadError: Some tests did not pass: 932 passed, 1 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/Chevie/YtT4p/test/runtests.jl:15 Testing failed after 1843.81s ERROR: LoadError: Package Chevie errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.10/Pkg/src/Types.jl:70 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{Pkg.Types.PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:2034 [3] test @ /opt/julia/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:1915 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{Pkg.Types.PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::Base.PipeEndpoint}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.10/Pkg/src/API.jl:444 [5] test(pkgs::Vector{Pkg.Types.PackageSpec}; io::Base.PipeEndpoint, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.10/Pkg/src/API.jl:159 [6] test @ /opt/julia/share/julia/stdlib/v1.10/Pkg/src/API.jl:147 [inlined] [7] #test#74 @ /opt/julia/share/julia/stdlib/v1.10/Pkg/src/API.jl:146 [inlined] [8] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 2005.83s: package has test failures