Package evaluation of BifurcationKit on Julia 1.10.8 (92f03a4775*) started at 2025-02-25T11:16:12.060 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 4.97s ################################################################################ # Installation # Installing BifurcationKit... Resolving package versions... Updating `~/.julia/environments/v1.10/Project.toml` [0f109fa4] + BifurcationKit v0.4.9 Updating `~/.julia/environments/v1.10/Manifest.toml` [47edcb42] + ADTypes v1.13.0 [7d9f7c33] + Accessors v0.1.41 [79e6a3ab] + Adapt v4.2.0 [ec485272] + ArnoldiMethod v0.4.0 ⌅ [7d9fca2a] + Arpack v0.5.3 [4fba245c] + ArrayInterface v7.18.0 [4c555306] + ArrayLayouts v1.11.1 [0f109fa4] + BifurcationKit v0.4.9 [8e7c35d0] + BlockArrays v1.4.0 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.16.0 [a33af91c] + CompositionsBase v0.1.2 [187b0558] + ConstructionBase v1.5.8 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.18.20 [e2d170a0] + DataValueInterfaces v1.0.0 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [ffbed154] + DocStringExtensions v0.9.3 [4e289a0a] + EnumX v1.0.4 [e2ba6199] + ExprTools v0.1.10 [55351af7] + ExproniconLite v0.10.14 [442a2c76] + FastGaussQuadrature v1.0.2 [1a297f60] + FillArrays v1.13.0 [f6369f11] + ForwardDiff v0.10.38 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [46192b85] + GPUArraysCore v0.2.0 [3587e190] + InverseFunctions v0.1.17 [92d709cd] + IrrationalConstants v0.2.4 [42fd0dbc] + IterativeSolvers v0.9.4 [82899510] + IteratorInterfaceExtensions v1.0.0 [692b3bcd] + JLLWrappers v1.7.0 [ae98c720] + Jieko v0.2.1 [ba0b0d4f] + Krylov v0.9.10 ⌅ [0b1a1467] + KrylovKit v0.8.3 [7a12625a] + LinearMaps v3.11.4 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.15 [2e0e35c7] + Moshi v0.3.5 [77ba4419] + NaNMath v1.1.2 [bac558e1] + OrderedCollections v1.8.0 [65ce6f38] + PackageExtensionCompat v1.0.2 [d96e819e] + Parameters v0.12.3 [d236fae5] + PreallocationTools v0.4.25 [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.30.0 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.0 [7e49a35a] + RuntimeGeneratedFunctions v0.5.13 [0bca4576] + SciMLBase v2.75.0 [c0aeaf25] + SciMLOperators v0.3.12 [53ae85a6] + SciMLStructures v1.6.1 [276daf66] + SpecialFunctions v2.5.0 [90137ffa] + StaticArrays v1.9.12 [1e83bf80] + StaticArraysCore v1.4.3 ⌅ [09ab397b] + StructArrays v0.6.21 [2efcf032] + SymbolicIndexingInterface v0.3.38 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.0 [3a884ed6] + UnPack v1.0.2 ⌅ [409d34a3] + VectorInterface v0.4.9 ⌅ [68821587] + Arpack_jll v3.5.1+1 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [0dad84c5] + ArgTools v1.1.1 [56f22d72] + Artifacts [2a0f44e3] + Base64 [ade2ca70] + Dates [8ba89e20] + Distributed [f43a241f] + Downloads v1.6.0 [7b1f6079] + FileWatching [b77e0a4c] + InteractiveUtils [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 [8f399da3] + Libdl [37e2e46d] + LinearAlgebra [56ddb016] + Logging [d6f4376e] + Markdown [ca575930] + NetworkOptions v1.2.0 [44cfe95a] + Pkg v1.10.0 [de0858da] + Printf [3fa0cd96] + REPL [9a3f8284] + Random [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization [6462fe0b] + Sockets [2f01184e] + SparseArrays v1.10.0 [10745b16] + Statistics v1.10.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs [4ec0a83e] + Unicode [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] + LibCURL_jll v8.4.0+0 [e37daf67] + LibGit2_jll v1.6.4+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.2+1 [14a3606d] + MozillaCACerts_jll v2023.1.10 [4536629a] + OpenBLAS_jll v0.3.23+4 [05823500] + OpenLibm_jll v0.8.1+4 [bea87d4a] + SuiteSparse_jll v7.2.1+1 [83775a58] + Zlib_jll v1.2.13+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 [8e850ede] + nghttp2_jll v1.52.0+1 [3f19e933] + p7zip_jll v17.4.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 7.96s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 1001.42s ################################################################################ # Testing # Testing BifurcationKit Status `/tmp/jl_NiYzoH/Project.toml` [c29ec348] AbstractDifferentiation v0.6.2 [7d9f7c33] Accessors v0.1.41 [ec485272] ArnoldiMethod v0.4.0 ⌅ [7d9fca2a] Arpack v0.5.3 [0f109fa4] BifurcationKit v0.4.9 [8e7c35d0] BlockArrays v1.4.0 [b0b7db55] ComponentArrays v0.15.24 [864edb3b] DataStructures v0.18.20 [ffbed154] DocStringExtensions v0.9.3 [442a2c76] FastGaussQuadrature v1.0.2 [f6369f11] ForwardDiff v0.10.38 [42fd0dbc] IterativeSolvers v0.9.4 [ba0b0d4f] Krylov v0.9.10 ⌅ [0b1a1467] KrylovKit v0.8.3 [7a12625a] LinearMaps v3.11.4 [1dea7af3] OrdinaryDiffEq v6.91.0 [d96e819e] Parameters v0.12.3 [d236fae5] PreallocationTools v0.4.25 [731186ca] RecursiveArrayTools v3.30.0 [189a3867] Reexport v1.2.2 [0bca4576] SciMLBase v2.75.0 [1ed8b502] SciMLSensitivity v7.74.0 ⌅ [09ab397b] StructArrays v0.6.21 ⌃ [e88e6eb3] Zygote v0.6.75 [ade2ca70] Dates [37e2e46d] LinearAlgebra [de0858da] Printf [9a3f8284] Random [2f01184e] SparseArrays v1.10.0 [8dfed614] Test Status `/tmp/jl_NiYzoH/Manifest.toml` [47edcb42] ADTypes v1.13.0 [c29ec348] AbstractDifferentiation v0.6.2 [621f4979] AbstractFFTs v1.5.0 [7d9f7c33] Accessors v0.1.41 [79e6a3ab] Adapt v4.2.0 [66dad0bd] AliasTables v1.1.3 [ec485272] ArnoldiMethod v0.4.0 ⌅ [7d9fca2a] Arpack v0.5.3 [4fba245c] ArrayInterface v7.18.0 [4c555306] ArrayLayouts v1.11.1 [a9b6321e] Atomix v1.1.0 [0f109fa4] BifurcationKit v0.4.9 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 [8e7c35d0] BlockArrays v1.4.0 [70df07ce] BracketingNonlinearSolve v1.1.0 [fa961155] CEnum v0.5.0 [2a0fbf3d] CPUSummary v0.2.6 [7057c7e9] Cassette v0.3.14 [082447d4] ChainRules v1.72.2 [d360d2e6] ChainRulesCore v1.25.1 [fb6a15b2] CloseOpenIntervals v0.1.13 [38540f10] CommonSolve v0.2.4 [bbf7d656] CommonSubexpressions v0.3.1 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.16.0 [b0b7db55] ComponentArrays v0.15.24 [a33af91c] CompositionsBase v0.1.2 [2569d6c7] ConcreteStructs v0.2.3 [187b0558] ConstructionBase v1.5.8 [adafc99b] CpuId v0.3.1 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.18.20 [e2d170a0] DataValueInterfaces v1.0.0 [2b5f629d] DiffEqBase v6.164.1 [459566f4] DiffEqCallbacks v4.3.0 [77a26b50] DiffEqNoiseProcess v5.24.1 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [a0c0ee7d] DifferentiationInterface v0.6.42 [31c24e10] Distributions v0.25.117 [ffbed154] DocStringExtensions v0.9.3 [4e289a0a] EnumX v1.0.4 [7da242da] Enzyme v0.13.30 [f151be2c] EnzymeCore v0.8.8 [d4d017d3] ExponentialUtilities v1.27.0 [e2ba6199] ExprTools v0.1.10 [55351af7] ExproniconLite v0.10.14 [7034ab61] FastBroadcast v0.3.5 [9aa1b823] FastClosures v0.3.2 [442a2c76] FastGaussQuadrature v1.0.2 [a4df4552] FastPower v1.1.1 [1a297f60] FillArrays v1.13.0 [6a86dc24] FiniteDiff v2.27.0 [f6369f11] ForwardDiff v0.10.38 [f62d2435] FunctionProperties v0.1.2 [069b7b12] FunctionWrappers v1.1.3 [77dc65aa] FunctionWrappersWrappers v0.1.3 [d9f16b24] Functors v0.5.2 [0c68f7d7] GPUArrays v11.2.2 [46192b85] GPUArraysCore v0.2.0 [61eb1bfa] GPUCompiler v1.2.0 [c145ed77] GenericSchur v0.5.4 [86223c79] Graphs v1.12.0 [076d061b] HashArrayMappedTries v0.2.0 [34004b35] HypergeometricFunctions v0.3.27 [7869d1d1] IRTools v0.4.14 [615f187c] IfElse v0.1.1 [d25df0c9] Inflate v0.1.5 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.4 [42fd0dbc] IterativeSolvers v0.9.4 [82899510] IteratorInterfaceExtensions v1.0.0 [692b3bcd] JLLWrappers v1.7.0 [ae98c720] Jieko v0.2.1 [63c18a36] KernelAbstractions v0.9.34 [ba0b0d4f] Krylov v0.9.10 ⌅ [0b1a1467] KrylovKit v0.8.3 [929cbde3] LLVM v9.2.0 [10f19ff3] LayoutPointers v0.1.17 [5078a376] LazyArrays v2.6.0 [87fe0de2] LineSearch v0.1.4 [d3d80556] LineSearches v7.3.0 [7a12625a] LinearMaps v3.11.4 [7ed4a6bd] LinearSolve v3.3.1 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.15 [d125e4d3] ManualMemory v0.1.8 [bb5d69b7] MaybeInplace v0.1.4 [e1d29d7a] Missings v1.2.0 [2e0e35c7] Moshi v0.3.5 [46d2c3a1] MuladdMacro v0.2.4 [d41bc354] NLSolversBase v7.8.3 [872c559c] NNlib v0.9.27 [77ba4419] NaNMath v1.1.2 [8913a72c] NonlinearSolve v4.4.0 [be0214bd] NonlinearSolveBase v1.5.0 [5959db7a] NonlinearSolveFirstOrder v1.3.0 [9a2c21bd] NonlinearSolveQuasiNewton v1.2.0 [26075421] NonlinearSolveSpectralMethods v1.1.0 [d8793406] ObjectFile v0.4.3 [429524aa] Optim v1.11.0 [3bd65402] Optimisers v0.4.5 [bac558e1] OrderedCollections v1.8.0 [1dea7af3] OrdinaryDiffEq v6.91.0 [89bda076] OrdinaryDiffEqAdamsBashforthMoulton v1.2.0 [6ad6398a] OrdinaryDiffEqBDF v1.2.0 [bbf590c4] OrdinaryDiffEqCore v1.18.1 [50262376] OrdinaryDiffEqDefault v1.3.0 [4302a76b] OrdinaryDiffEqDifferentiation v1.4.0 [9286f039] OrdinaryDiffEqExplicitRK v1.1.0 [e0540318] OrdinaryDiffEqExponentialRK v1.3.0 [becaefa8] OrdinaryDiffEqExtrapolation v1.4.0 [5960d6e9] OrdinaryDiffEqFIRK v1.7.0 [101fe9f7] OrdinaryDiffEqFeagin v1.1.0 [d3585ca7] OrdinaryDiffEqFunctionMap v1.1.1 [d28bc4f8] OrdinaryDiffEqHighOrderRK v1.1.0 [9f002381] OrdinaryDiffEqIMEXMultistep v1.2.0 [521117fe] OrdinaryDiffEqLinear v1.1.0 [1344f307] OrdinaryDiffEqLowOrderRK v1.2.0 [b0944070] OrdinaryDiffEqLowStorageRK v1.2.1 [127b3ac7] OrdinaryDiffEqNonlinearSolve v1.5.0 [c9986a66] OrdinaryDiffEqNordsieck v1.1.0 [5dd0a6cf] OrdinaryDiffEqPDIRK v1.2.0 [5b33eab2] OrdinaryDiffEqPRK v1.1.0 [04162be5] OrdinaryDiffEqQPRK v1.1.0 [af6ede74] OrdinaryDiffEqRKN v1.1.0 [43230ef6] OrdinaryDiffEqRosenbrock v1.6.0 [2d112036] OrdinaryDiffEqSDIRK v1.2.0 [669c94d9] OrdinaryDiffEqSSPRK v1.2.0 [e3e12d00] OrdinaryDiffEqStabilizedIRK v1.2.0 [358294b1] OrdinaryDiffEqStabilizedRK v1.1.0 [fa646aed] OrdinaryDiffEqSymplecticRK v1.3.0 [b1df2697] OrdinaryDiffEqTsit5 v1.1.0 [79d7bb75] OrdinaryDiffEqVerner v1.1.1 [90014a1f] PDMats v0.11.32 [65ce6f38] PackageExtensionCompat v1.0.2 [d96e819e] Parameters v0.12.3 [e409e4f3] PoissonRandom v0.4.4 [f517fe37] Polyester v0.7.16 [1d0040c9] PolyesterWeave v0.2.2 [85a6dd25] PositiveFactorizations v0.2.4 [d236fae5] PreallocationTools v0.4.25 [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [74087812] Random123 v1.7.0 [e6cf234a] RandomNumbers v1.6.0 [c1ae055f] RealDot v0.1.0 [3cdcf5f2] RecipesBase v1.3.4 [731186ca] RecursiveArrayTools v3.30.0 [189a3867] Reexport v1.2.2 [ae029012] Requires v1.3.0 [ae5879a3] ResettableStacks v1.1.1 [37e2e3b7] ReverseDiff v1.15.3 [79098fc4] Rmath v0.8.0 [7e49a35a] RuntimeGeneratedFunctions v0.5.13 [94e857df] SIMDTypes v0.1.0 [0bca4576] SciMLBase v2.75.0 [19f34311] SciMLJacobianOperators v0.1.1 [c0aeaf25] SciMLOperators v0.3.12 [1ed8b502] SciMLSensitivity v7.74.0 [53ae85a6] SciMLStructures v1.6.1 [7e506255] ScopedValues v1.3.0 [6c6a2e73] Scratch v1.2.1 [efcf1570] Setfield v1.1.1 [727e6d20] SimpleNonlinearSolve v2.1.0 [699a6c99] SimpleTraits v0.9.4 [ce78b400] SimpleUnPack v1.1.0 [a2af1166] SortingAlgorithms v1.2.1 [47a9eef4] SparseDiffTools v2.23.1 [dc90abb0] SparseInverseSubset v0.1.2 [0a514795] SparseMatrixColorings v0.4.13 [276daf66] SpecialFunctions v2.5.0 [aedffcd0] Static v1.1.1 [0d7ed370] StaticArrayInterface v1.8.0 [90137ffa] StaticArrays v1.9.12 [1e83bf80] StaticArraysCore v1.4.3 [82ae8749] StatsAPI v1.7.0 [2913bbd2] StatsBase v0.34.4 [4c63d2b9] StatsFuns v1.3.2 [7792a7ef] StrideArraysCore v0.5.7 ⌅ [09ab397b] StructArrays v0.6.21 [53d494c1] StructIO v0.3.1 [2efcf032] SymbolicIndexingInterface v0.3.38 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.0 [8290d209] ThreadingUtilities v0.5.2 [a759f4b9] TimerOutputs v0.5.27 [9f7883ad] Tracker v0.2.37 [781d530d] TruncatedStacktraces v1.4.0 [3a884ed6] UnPack v1.0.2 [013be700] UnsafeAtomics v0.3.0 ⌅ [409d34a3] VectorInterface v0.4.9 [19fa3120] VertexSafeGraphs v0.2.0 ⌃ [e88e6eb3] Zygote v0.6.75 [700de1a5] ZygoteRules v0.2.7 ⌅ [68821587] Arpack_jll v3.5.1+1 [7cc45869] Enzyme_jll v0.0.172+0 [1d5cc7b8] IntelOpenMP_jll v2025.0.4+0 [dad2f222] LLVMExtra_jll v0.0.35+0 [856f044c] MKL_jll v2025.0.1+1 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [1317d2d5] oneTBB_jll v2022.0.0+0 [0dad84c5] ArgTools v1.1.1 [56f22d72] Artifacts [2a0f44e3] Base64 [ade2ca70] Dates [8ba89e20] Distributed [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching [9fa8497b] Future [b77e0a4c] InteractiveUtils [4af54fe1] LazyArtifacts [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 [8f399da3] Libdl [37e2e46d] LinearAlgebra [56ddb016] Logging [d6f4376e] Markdown [a63ad114] Mmap [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.10.0 [de0858da] Printf [3fa0cd96] REPL [9a3f8284] Random [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization [1a1011a3] SharedArrays [6462fe0b] Sockets [2f01184e] SparseArrays v1.10.0 [10745b16] Statistics v1.10.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test [cf7118a7] UUIDs [4ec0a83e] Unicode [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.4.0+0 [e37daf67] LibGit2_jll v1.6.4+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.2+1 [14a3606d] MozillaCACerts_jll v2023.1.10 [4536629a] OpenBLAS_jll v0.3.23+4 [05823500] OpenLibm_jll v0.8.1+4 [bea87d4a] SuiteSparse_jll v7.2.1+1 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.52.0+1 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... --> There are 1 threads Problem wrap of ┌─ Bifurcation Problem with uType Vector{Float64} ├─ Inplace: false ├─ Symmetric: false └─ Parameter: pProblem wrap for curve of PD of periodic orbits. Based on the formulation: ┌─ Bifurcation Problem with uType Vector{Float64} ├─ Inplace: false ├─ Symmetric: false └─ Parameter: p0.4704714950269434 0.09102327798178311 │ 1 │ │ 1 │ GMRES: system of size 100 pass k ‖rₖ‖ hₖ₊₁.ₖ timer 0 0 5.6e+00 ✗ ✗ ✗ ✗ 0.82s 1 2 1.0e+00 3.6e-01 1.63s 1 4 9.0e-02 3.3e-01 2.12s 1 6 7.2e-03 2.9e-01 2.12s 1 8 4.8e-04 2.2e-01 2.12s 1 10 2.7e-05 2.6e-01 2.12s 1 12 1.8e-06 2.4e-01 2.12s 1 14 1.1e-07 2.5e-01 2.12s 1 16 7.3e-09 2.8e-01 2.12s 0.120732 seconds (89.02 k allocations: 5.983 MiB, 16.55% gc time, 99.93% compilation time) 0.093748 seconds (26.35 k allocations: 1.715 MiB, 99.09% compilation time) 0.000006 seconds (12 allocations: 2.781 KiB) ┌ Warning: Shift-Invert strategy not implemented for maps └ @ BifurcationKit ~/.julia/packages/BifurcationKit/3l0Yy/src/EigSolver.jl:183 ┌ Warning: The zero eigenvalue is not that small λ = 0.0004456099444045391, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/3l0Yy/src/NormalForms.jl:82 ┌─ Deflated Problem with uType Vector{Float64} ├─ Symmetric: false ├─ jacobian: nothing ├─ Parameter p └─ deflation operator: ┌─ Deflation operator with 1 root(s) ├─ eltype = Float64 ├─ power = 2 ├─ α = 1.0 ├─ dist = dot └─ autodiff = false WARNING: Method definition F4def(Any, Any) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/3l0Yy/test/test_newton.jl:64 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/3l0Yy/test/test_newton.jl:153. | 1 │ 1.0000e+00 │ ( 1, 1) | │ 1 │ │ ( 1, 1) │ 2.917178 seconds (1.55 M allocations: 105.217 MiB, 1.19% gc time, 99.94% compilation time) 3.337770 seconds (1.38 M allocations: 93.168 MiB, 1.32% gc time, 99.95% compilation time) ┌─ Bifurcation Problem with uType Vector{Float64} ├─ Inplace: false ├─ Symmetric: false └─ Parameter: p 3.344555 seconds (1.15 M allocations: 77.112 MiB, 2.05% gc time, 99.95% compilation time) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ────────────────── AutoSwitch ────────────────── ━━━━━━━━━━━━━━━━━━ INITIAL GUESS ━━━━━━━━━━━━━━━━━━ ──▶ convergence of initial guess = OK ──▶ parameter = -1.5, initial step ━━━━━━━━━━━━━━━━━━ INITIAL TANGENT ━━━━━━━━━━━━━━━━━━ ──▶ convergence of the initial guess = OK ──▶ parameter = -1.4999333333333333, initial step (bis) Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 0 Step size = 1.0000e-02 Parameter p = -1.5000e+00 ⟶ -1.4859e+00 [guess] Parameter p = -1.4859e+00 ⟶ -1.4859e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 1 Step size = 1.3200e-02 Parameter p = -1.4859e+00 ⟶ -1.4672e+00 [guess] Parameter p = -1.4672e+00 ⟶ -1.4672e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 2 Step size = 1.7424e-02 Parameter p = -1.4672e+00 ⟶ -1.4425e+00 [guess] Parameter p = -1.4425e+00 ⟶ -1.4425e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 3 Step size = 2.3000e-02 Parameter p = -1.4425e+00 ⟶ -1.4100e+00 [guess] Parameter p = -1.4100e+00 ⟶ -1.4100e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 4 Step size = 3.0360e-02 Parameter p = -1.4100e+00 ⟶ -1.3671e+00 [guess] Parameter p = -1.3671e+00 ⟶ -1.3671e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 5 Step size = 4.0075e-02 Parameter p = -1.3671e+00 ⟶ -1.3104e+00 [guess] Parameter p = -1.3104e+00 ⟶ -1.3104e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 6 Step size = 4.7288e-02 Parameter p = -1.3104e+00 ⟶ -1.2435e+00 [guess] Parameter p = -1.2435e+00 ⟶ -1.2435e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 7 Step size = 5.1000e-02 Parameter p = -1.2435e+00 ⟶ -1.1714e+00 [guess] Parameter p = -1.1714e+00 ⟶ -1.1714e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 8 Step size = 5.1000e-02 Parameter p = -1.1714e+00 ⟶ -1.0993e+00 [guess] Parameter p = -1.0993e+00 ⟶ -1.0993e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 9 Step size = 5.1000e-02 Parameter p = -1.0993e+00 ⟶ -1.0272e+00 [guess] Parameter p = -1.0272e+00 ⟶ -1.0272e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 10 Step size = 5.1000e-02 Parameter p = -1.0272e+00 ⟶ -9.5505e-01 [guess] Parameter p = -9.5505e-01 ⟶ -9.5505e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 11 Step size = 5.1000e-02 Parameter p = -9.5505e-01 ⟶ -8.8293e-01 [guess] Parameter p = -8.8293e-01 ⟶ -8.8293e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 12 Step size = 5.1000e-02 Parameter p = -8.8293e-01 ⟶ -8.1081e-01 [guess] Parameter p = -8.1081e-01 ⟶ -8.1081e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 13 Step size = 5.1000e-02 Parameter p = -8.1081e-01 ⟶ -7.3870e-01 [guess] Parameter p = -7.3870e-01 ⟶ -7.3870e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 14 Step size = 5.1000e-02 Parameter p = -7.3870e-01 ⟶ -6.6658e-01 [guess] Parameter p = -6.6658e-01 ⟶ -6.6658e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 15 Step size = 5.1000e-02 Parameter p = -6.6658e-01 ⟶ -5.9448e-01 [guess] Parameter p = -5.9448e-01 ⟶ -5.9448e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 16 Step size = 5.1000e-02 Parameter p = -5.9448e-01 ⟶ -5.2238e-01 [guess] Parameter p = -5.2238e-01 ⟶ -5.2238e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 17 Step size = 5.1000e-02 Parameter p = -5.2238e-01 ⟶ -4.5030e-01 [guess] Parameter p = -4.5030e-01 ⟶ -4.5030e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 18 Step size = 5.1000e-02 Parameter p = -4.5030e-01 ⟶ -3.7827e-01 [guess] Parameter p = -3.7827e-01 ⟶ -3.7827e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 19 Step size = 5.1000e-02 Parameter p = -3.7827e-01 ⟶ -3.0632e-01 [guess] Parameter p = -3.0632e-01 ⟶ -3.0632e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 20 Step size = 5.1000e-02 Parameter p = -3.0632e-01 ⟶ -2.3460e-01 [guess] Parameter p = -2.3460e-01 ⟶ -2.3460e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 21 Step size = 5.1000e-02 Parameter p = -2.3460e-01 ⟶ -1.6366e-01 [guess] Parameter p = -1.6366e-01 ⟶ -1.6366e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 22 Step size = 5.1000e-02 Parameter p = -1.6366e-01 ⟶ -9.6358e-02 [guess] Parameter p = -9.6358e-02 ⟶ -9.6358e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 23 Step size = 5.1000e-02 Parameter p = -9.6358e-02 ⟶ -5.1902e-02 [guess] Parameter p = -9.6358e-02 ⟶ -6.6989e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 24 Step size = 5.1000e-02 Parameter p = -6.6989e-02 ⟶ -5.2693e-02 [guess] Parameter p = -6.6989e-02 ⟶ -6.0828e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 25 Step size = 5.1000e-02 Parameter p = -6.0828e-02 ⟶ -6.1182e-02 [guess] Parameter p = -6.0828e-02 ⟶ -6.5523e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 26 Step size = 5.1000e-02 Parameter p = -6.5523e-02 ⟶ -7.3919e-02 [guess] Parameter p = -6.5523e-02 ⟶ -7.6829e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 27 Step size = 5.1000e-02 Parameter p = -7.6829e-02 ⟶ -9.0753e-02 [guess] Parameter p = -7.6829e-02 ⟶ -9.3007e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 28 Step size = 5.1000e-02 Parameter p = -9.3007e-02 ⟶ -1.1128e-01 [guess] Parameter p = -9.3007e-02 ⟶ -1.1317e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 29 Step size = 5.1000e-02 Parameter p = -1.1317e-01 ⟶ -1.3511e-01 [guess] Parameter p = -1.1317e-01 ⟶ -1.3677e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 30 Step size = 5.1000e-02 Parameter p = -1.3677e-01 ⟶ -1.6194e-01 [guess] Parameter p = -1.3677e-01 ⟶ -1.6342e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 31 Step size = 5.1000e-02 Parameter p = -1.6342e-01 ⟶ -1.9149e-01 [guess] Parameter p = -1.6342e-01 ⟶ -1.9283e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 32 Step size = 5.1000e-02 Parameter p = -1.9283e-01 ⟶ -2.2352e-01 [guess] Parameter p = -1.9283e-01 ⟶ -2.2474e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 33 Step size = 5.1000e-02 Parameter p = -2.2474e-01 ⟶ -2.5782e-01 [guess] Parameter p = -2.2474e-01 ⟶ -2.5894e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 34 Step size = 5.1000e-02 Parameter p = -2.5894e-01 ⟶ -2.9422e-01 [guess] Parameter p = -2.5894e-01 ⟶ -2.9525e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 35 Step size = 5.1000e-02 Parameter p = -2.9525e-01 ⟶ -3.3254e-01 [guess] Parameter p = -2.9525e-01 ⟶ -3.3349e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 36 Step size = 5.1000e-02 Parameter p = -3.3349e-01 ⟶ -3.7264e-01 [guess] Parameter p = -3.3349e-01 ⟶ -3.7351e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 37 Step size = 5.1000e-02 Parameter p = -3.7351e-01 ⟶ -4.1437e-01 [guess] Parameter p = -3.7351e-01 ⟶ -4.1517e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 38 Step size = 5.1000e-02 Parameter p = -4.1517e-01 ⟶ -4.5761e-01 [guess] Parameter p = -4.1517e-01 ⟶ -4.5835e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 39 Step size = 5.1000e-02 Parameter p = -4.5835e-01 ⟶ -5.0224e-01 [guess] Parameter p = -4.5835e-01 ⟶ -5.0293e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 40 Step size = 5.1000e-02 Parameter p = -5.0293e-01 ⟶ -5.4817e-01 [guess] Parameter p = -5.0293e-01 ⟶ -5.4881e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 41 Step size = 5.1000e-02 Parameter p = -5.4881e-01 ⟶ -5.9530e-01 [guess] Parameter p = -5.9530e-01 ⟶ -5.9530e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 42 Step size = 5.1000e-02 Parameter p = -5.9530e-01 ⟶ -6.4294e-01 [guess] Parameter p = -6.4294e-01 ⟶ -6.4294e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 43 Step size = 5.1000e-02 Parameter p = -6.4294e-01 ⟶ -6.9164e-01 [guess] Parameter p = -6.9164e-01 ⟶ -6.9164e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 44 Step size = 5.1000e-02 Parameter p = -6.9164e-01 ⟶ -7.4133e-01 [guess] Parameter p = -7.4133e-01 ⟶ -7.4133e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 45 Step size = 5.1000e-02 Parameter p = -7.4133e-01 ⟶ -7.9194e-01 [guess] Parameter p = -7.9194e-01 ⟶ -7.9194e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 46 Step size = 5.1000e-02 Parameter p = -7.9194e-01 ⟶ -8.4343e-01 [guess] Parameter p = -8.4343e-01 ⟶ -8.4343e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 47 Step size = 5.1000e-02 Parameter p = -8.4343e-01 ⟶ -8.9571e-01 [guess] Parameter p = -8.9571e-01 ⟶ -8.9571e-01 Predictor: Bordered 4.568802 seconds (1.64 M allocations: 111.831 MiB, 0.64% gc time, 99.86% compilation time) 3.438369 seconds (1.20 M allocations: 80.262 MiB, 1.13% gc time, 99.95% compilation time) ┌ Warning: Assignment to `br0` in soft scope is ambiguous because a global variable by the same name exists: `br0` will be treated as a new local. Disambiguate by using `local br0` to suppress this warning or `global br0` to assign to the existing global variable. └ @ ~/.julia/packages/BifurcationKit/3l0Yy/test/simple_continuation.jl:159 ┌─ Curve type: EquilibriumCont ├─ Number of points: 89 ├─ Type of vectors: Vector{Float64} ├─ Parameter p starts at -1.5, ends at -3.0 ├─ Algo: PALC └─ Special points: - # 1, bp at p ≈ -0.06090827 ∈ (-0.06090827, -0.06089831), |δp|=1e-05, [converged], δ = ( 1, 0), step = 30 - # 2, endpoint at p ≈ -3.00000000, step = 88 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ────────────────── Multiple ────────────────── ━━━━━━━━━━━━━━━━━━ INITIAL GUESS ━━━━━━━━━━━━━━━━━━ ──▶ convergence of initial guess = OK ──▶ parameter = -1.5, initial step ━━━━━━━━━━━━━━━━━━ INITIAL TANGENT ━━━━━━━━━━━━━━━━━━ ──▶ convergence of the initial guess = OK ──▶ parameter = -1.4999, initial step (bis) Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 0 Step size = 1.5000e-02 Parameter p = -1.5000e+00 ⟶ -1.4788e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.195, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.5000e+00 ⟶ -1.4788e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 dsnew = 0.0225 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 1 Step size = 2.2500e-02 Parameter p = -1.4788e+00 ⟶ -1.4470e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.2925, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.4788e+00 ⟶ -1.4470e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 dsnew = 0.03375 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 2 Step size = 3.3750e-02 Parameter p = -1.4470e+00 ⟶ -1.3992e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.4470e+00 ⟶ -1.3992e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 3 Step size = 3.3750e-02 Parameter p = -1.3992e+00 ⟶ -1.3515e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3992e+00 ⟶ -1.3515e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 4 Step size = 3.3750e-02 Parameter p = -1.3515e+00 ⟶ -1.3038e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3515e+00 ⟶ -1.3038e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 5 Step size = 3.3750e-02 Parameter p = -1.3038e+00 ⟶ -1.2561e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3038e+00 ⟶ -1.2561e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 6 Step size = 3.3750e-02 Parameter p = -1.2561e+00 ⟶ -1.2083e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.2561e+00 ⟶ -1.2083e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 7 Step size = 3.3750e-02 Parameter p = -1.2083e+00 ⟶ -1.1606e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.2083e+00 ⟶ -1.1606e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 8 Step size = 3.3750e-02 Parameter p = -1.1606e+00 ⟶ -1.1129e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1606e+00 ⟶ -1.1129e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 9 Step size = 3.3750e-02 Parameter p = -1.1129e+00 ⟶ -1.0651e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1129e+00 ⟶ -1.0651e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 10 Step size = 3.3750e-02 Parameter p = -1.0651e+00 ⟶ -1.0174e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0651e+00 ⟶ -1.0174e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 11 Step size = 3.3750e-02 Parameter p = -1.0174e+00 ⟶ -9.6968e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0174e+00 ⟶ -9.6968e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 12 Step size = 3.3750e-02 Parameter p = -9.6968e-01 ⟶ -9.2196e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.6968e-01 ⟶ -9.2196e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 13 Step size = 3.3750e-02 Parameter p = -9.2196e-01 ⟶ -8.7423e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.2196e-01 ⟶ -8.7423e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 14 Step size = 3.3750e-02 Parameter p = -8.7423e-01 ⟶ -8.2650e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.7423e-01 ⟶ -8.2651e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 15 Step size = 3.3750e-02 Parameter p = -8.2651e-01 ⟶ -7.7878e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.2651e-01 ⟶ -7.7878e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 16 Step size = 3.3750e-02 Parameter p = -7.7878e-01 ⟶ -7.3106e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -7.7878e-01 ⟶ -7.3106e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 17 Step size = 3.3750e-02 Parameter p = -7.3106e-01 ⟶ -6.8334e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -7.3106e-01 ⟶ -6.8334e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 18 Step size = 3.3750e-02 Parameter p = -6.8334e-01 ⟶ -6.3562e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.8334e-01 ⟶ -6.3562e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 19 Step size = 3.3750e-02 Parameter p = -6.3562e-01 ⟶ -5.8790e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.3562e-01 ⟶ -5.8791e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 20 Step size = 3.3750e-02 Parameter p = -5.8791e-01 ⟶ -5.4020e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -5.8791e-01 ⟶ -5.4020e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 21 Step size = 3.3750e-02 Parameter p = -5.4020e-01 ⟶ -4.9250e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -5.4020e-01 ⟶ -4.9250e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 22 Step size = 3.3750e-02 Parameter p = -4.9250e-01 ⟶ -4.4481e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -4.9250e-01 ⟶ -4.4482e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 23 Step size = 3.3750e-02 Parameter p = -4.4482e-01 ⟶ -3.9714e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -4.4482e-01 ⟶ -3.9717e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 24 Step size = 3.3750e-02 Parameter p = -3.9717e-01 ⟶ -3.4951e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.9717e-01 ⟶ -3.4956e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 25 Step size = 3.3750e-02 Parameter p = -3.4956e-01 ⟶ -3.0195e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.4956e-01 ⟶ -3.0203e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 26 Step size = 3.3750e-02 Parameter p = -3.0203e-01 ⟶ -2.5451e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.0203e-01 ⟶ -2.5467e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 27 Step size = 3.3750e-02 Parameter p = -2.5467e-01 ⟶ -2.0735e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.5467e-01 ⟶ -2.0771e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 28 Step size = 3.3750e-02 Parameter p = -2.0771e-01 ⟶ -1.6083e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.0771e-01 ⟶ -1.6179e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 29 Step size = 3.3750e-02 Parameter p = -1.6179e-01 ⟶ -1.1613e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor ├─ i = 13, s(i) = 0.43875000000000003, converged = [ NO] └─ i = 12, s(i) = 0.405, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.6179e-01 ⟶ -1.1904e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 30 Step size = 3.3750e-02 Parameter p = -1.1904e-01 ⟶ -7.7200e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor ├─ i = 13, s(i) = 0.43875000000000003, converged = [ NO] ├─ i = 12, s(i) = 0.405, converged = [ NO] └─ i = 11, s(i) = 0.37125, converged = [YES] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -1.1904e-01 ⟶ -8.5672e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 31 Step size = 3.3750e-02 Parameter p = -8.5672e-02 ⟶ -5.4366e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor ├─ i = 13, s(i) = 0.43875000000000003, converged = [ NO] ├─ i = 12, s(i) = 0.405, converged = [ NO] └─ i = 11, s(i) = 0.37125, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.5672e-02 ⟶ -6.7992e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 32 Step size = 3.3750e-02 Parameter p = -6.7992e-02 ⟶ -5.1454e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.7992e-02 ⟶ -6.1556e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 33 Step size = 3.3750e-02 Parameter p = -6.1556e-02 ⟶ -5.5277e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.1556e-02 ⟶ -6.1281e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ──▶ Bifurcation detected before p = -0.06128105033038877 Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.21937500000000001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.10968750000000001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.054843750000000004, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.027421875000000002, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.013710937500000001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.0068554687500000005, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.0034277343750000002, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.0017138671875000001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.0008569335937500001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.00042846679687500003, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.00021423339843750001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.00010711669921875001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -5.3558349609375004e-5, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -2.6779174804687502e-5, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -1.3389587402343751e-5, converged = [YES] Predictor: Secant Predictor: Secant Predictor: Secant ──> bp Bifurcation point at p ≈ -0.06496312614383985, δn_unstable = 1, δn_imag = 0 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 34 Step size = 3.3750e-02 Parameter p = -6.4963e-02 ⟶ -7.0224e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.4963e-02 ⟶ -7.1568e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 35 Step size = 3.3750e-02 Parameter p = -7.1568e-02 ⟶ -7.8170e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -7.1568e-02 ⟶ -8.0535e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 36 Step size = 3.3750e-02 Parameter p = -8.0535e-02 ⟶ -8.9491e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.0535e-02 ⟶ -9.1503e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 37 Step size = 3.3750e-02 Parameter p = -9.1503e-02 ⟶ -1.0246e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.1503e-02 ⟶ -1.0423e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 38 Step size = 3.3750e-02 Parameter p = -1.0423e-01 ⟶ -1.1695e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0423e-01 ⟶ -1.1855e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 39 Step size = 3.3750e-02 Parameter p = -1.1855e-01 ⟶ -1.3287e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1855e-01 ⟶ -1.3433e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 40 Step size = 3.3750e-02 Parameter p = -1.3433e-01 ⟶ -1.5010e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3433e-01 ⟶ -1.5146e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 41 Step size = 3.3750e-02 Parameter p = -1.5146e-01 ⟶ -1.6858e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.5146e-01 ⟶ -1.6985e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 42 Step size = 3.3750e-02 Parameter p = -1.6985e-01 ⟶ -1.8823e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.6985e-01 ⟶ -1.8941e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 43 Step size = 3.3750e-02 Parameter p = -1.8941e-01 ⟶ -2.0897e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.8941e-01 ⟶ -2.1009e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 44 Step size = 3.3750e-02 Parameter p = -2.1009e-01 ⟶ -2.3075e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.1009e-01 ⟶ -2.3180e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 45 Step size = 3.3750e-02 Parameter p = -2.3180e-01 ⟶ -2.5351e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.3180e-01 ⟶ -2.5450e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 46 Step size = 3.3750e-02 Parameter p = -2.5450e-01 ⟶ -2.7720e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.5450e-01 ⟶ -2.7814e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 47 Step size = 3.3750e-02 Parameter p = -2.7814e-01 ⟶ -3.0176e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.7814e-01 ⟶ -3.0265e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 48 Step size = 3.3750e-02 Parameter p = -3.0265e-01 ⟶ -3.2716e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.0265e-01 ⟶ -3.2799e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ┌ Error: --> Decrease ds └ @ BifurcationKit ~/.julia/packages/BifurcationKit/3l0Yy/src/continuation/Multiple.jl:137 ┌ Error: --> Decrease ds └ @ BifurcationKit ~/.julia/packages/BifurcationKit/3l0Yy/src/continuation/Multiple.jl:137 ┌ Warning: Assignment to `brbd` in soft scope is ambiguous because a global variable by the same name exists: `brbd` will be treated as a new local. Disambiguate by using `local brbd` to suppress this warning or `global brbd` to assign to the existing global variable. └ @ ~/.julia/packages/BifurcationKit/3l0Yy/test/simple_continuation.jl:317 ┌ Error: Initial continuation parameter p = -3.2 must be within bounds [p_min, p_max] = [-3.0, -2.0] └ @ BifurcationKit ~/.julia/packages/BifurcationKit/3l0Yy/src/Continuation.jl:345 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ────────────────── PALC ────────────────── ━━━━━━━━━━━━━━━━━━ INITIAL GUESS ━━━━━━━━━━━━━━━━━━ ──▶ convergence of initial guess = OK ──▶ parameter = -1.5, initial step ━━━━━━━━━━━━━━━━━━ INITIAL TANGENT ━━━━━━━━━━━━━━━━━━ ──▶ convergence of the initial guess = OK ──▶ parameter = -1.4999933333333333, initial step (bis) Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 0 Step size = 1.0000e-03 Parameter p = -1.5000e+00 ⟶ -1.4986e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.5000e+00 ⟶ -1.4986e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 1 Step size = 1.4608e-03 Parameter p = -1.4986e+00 ⟶ -1.4965e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4986e+00 ⟶ -1.4965e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 2 Step size = 2.1339e-03 Parameter p = -1.4965e+00 ⟶ -1.4935e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4965e+00 ⟶ -1.4935e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 3 Step size = 3.1173e-03 Parameter p = -1.4935e+00 ⟶ -1.4891e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4935e+00 ⟶ -1.4891e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 4 Step size = 4.5537e-03 Parameter p = -1.4891e+00 ⟶ -1.4827e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4891e+00 ⟶ -1.4827e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 5 Step size = 6.6520e-03 Parameter p = -1.4827e+00 ⟶ -1.4732e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4827e+00 ⟶ -1.4732e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 6 Step size = 9.7173e-03 Parameter p = -1.4732e+00 ⟶ -1.4595e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4732e+00 ⟶ -1.4595e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 7 Step size = 1.4195e-02 Parameter p = -1.4595e+00 ⟶ -1.4394e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4595e+00 ⟶ -1.4394e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 8 Step size = 2.0736e-02 Parameter p = -1.4394e+00 ⟶ -1.4101e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4394e+00 ⟶ -1.4101e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 9 Step size = 3.0291e-02 Parameter p = -1.4101e+00 ⟶ -1.3673e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4101e+00 ⟶ -1.3673e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 10 Step size = 4.4249e-02 Parameter p = -1.3673e+00 ⟶ -1.3047e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3673e+00 ⟶ -1.3047e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 11 Step size = 5.1000e-02 Parameter p = -1.3047e+00 ⟶ -1.2326e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3047e+00 ⟶ -1.2326e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 12 Step size = 5.1000e-02 Parameter p = -1.2326e+00 ⟶ -1.1604e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.2326e+00 ⟶ -1.1604e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 13 Step size = 5.1000e-02 Parameter p = -1.1604e+00 ⟶ -1.0883e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1604e+00 ⟶ -1.0883e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 14 Step size = 5.1000e-02 Parameter p = -1.0883e+00 ⟶ -1.0162e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0883e+00 ⟶ -1.0162e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 15 Step size = 5.1000e-02 Parameter p = -1.0162e+00 ⟶ -9.4408e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0162e+00 ⟶ -9.4408e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 16 Step size = 5.1000e-02 Parameter p = -9.4408e-01 ⟶ -8.7196e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.4408e-01 ⟶ -8.7196e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 17 Step size = 5.1000e-02 Parameter p = -8.7196e-01 ⟶ -7.9984e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.7196e-01 ⟶ -7.9984e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 18 Step size = 5.1000e-02 Parameter p = -7.9984e-01 ⟶ -7.2772e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -7.9984e-01 ⟶ -7.2773e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 19 Step size = 5.1000e-02 Parameter p = -7.2773e-01 ⟶ -6.5561e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -7.2773e-01 ⟶ -6.5562e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 20 Step size = 5.1000e-02 Parameter p = -6.5562e-01 ⟶ -5.8351e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.5562e-01 ⟶ -5.8352e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 21 Step size = 5.1000e-02 Parameter p = -5.8352e-01 ⟶ -5.1142e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -5.8352e-01 ⟶ -5.1143e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 22 Step size = 5.1000e-02 Parameter p = -5.1143e-01 ⟶ -4.3934e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -5.1143e-01 ⟶ -4.3937e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 23 Step size = 5.1000e-02 Parameter p = -4.3937e-01 ⟶ -3.6732e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -4.3937e-01 ⟶ -3.6737e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 24 Step size = 5.1000e-02 Parameter p = -3.6737e-01 ⟶ -2.9539e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.6737e-01 ⟶ -2.9552e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 25 Step size = 5.1000e-02 Parameter p = -2.9552e-01 ⟶ -2.2370e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -2.9552e-01 ⟶ -2.2410e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 26 Step size = 5.1000e-02 Parameter p = -2.2410e-01 ⟶ -1.5279e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -2.2410e-01 ⟶ -1.5429e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 27 Step size = 5.1000e-02 Parameter p = -1.5429e-01 ⟶ -8.5126e-02 [guess] ──▶ Step Converged in 4 Nonlinear Iteration(s) Parameter p = -1.5429e-01 ⟶ -9.3033e-02 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 28 Step size = 5.1000e-02 Parameter p = -9.3033e-02 ⟶ -3.5896e-02 [guess] ──▶ Step Converged in 4 Nonlinear Iteration(s) Parameter p = -9.3033e-02 ⟶ -6.4183e-02 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 29 Step size = 5.1000e-02 Parameter p = -6.4183e-02 ⟶ -3.9912e-02 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -6.4183e-02 ⟶ -6.1291e-02 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ──▶ Bifurcation detected before p = -0.0612908522750683 ┌─── Entering [Locate-Bifurcation], state.n_unstable = (2, 0) ├─── [Bisection] initial ds = 0.051 ├─── [Bisection] state.ds = -0.051 ├─── 0 - [Bisection] (n1, n_current, n2) = (0, 2, 2), ds = -0.0255 p = -0.0612908522750683, #reverse = 0 ├─── bifurcation ∈ (-0.06418257359763878, -0.0612908522750683), precision = 2.892E-03 ├─── 2 Eigenvalues closest to ℜ = 0: 2-element Vector{ComplexF64}: 0.011015084493654244 + 0.0im 0.011015084493654355 + 0.0im Predictor: Secant ├─── 1 - [Bisection] (n1, n_current, n2) = (0, 0, 2), ds = 0.01275 p = -0.06102065204612017, #reverse = 1 ├─── bifurcation ∈ (-0.0612908522750683, -0.06102065204612017), precision = -2.702E-04 ├─── 2 Eigenvalues closest to ℜ = 0: 2-element Vector{ComplexF64}: -0.00682553599602289 + 0.0im -0.0068255359960178105 + 0.0im Predictor: Secant ├─── 2 - [Bisection] (n1, n_current, n2) = (0, 2, 2), ds = -0.006375 p = -0.06083954839238358, #reverse = 2 ├─── bifurcation ∈ (-0.06102065204612017, -0.06083954839238358), precision = 1.811E-04 ├─── 2 Eigenvalues closest to ℜ = 0: 2-element Vector{ComplexF64}: 0.0020769073856158893 + 0.0im 0.002076907385616472 + 0.0im ────> Found at p = -0.06083954839238358, δn = 2, δim = 0 from p = -0.0612908522750683 ────> Found at p = -0.06083954839238358 ∈ (-0.06102065204612017, -0.06083954839238358), δn = 2, δim = 0 from p = -0.0612908522750683 ──────────────────────────────────────── ┌─── Stopping reason: ├───── isnothing(next) = false ├───── |ds| < dsmin_bisection = false ├───── step >= max_bisection_steps = false ├───── n_inversion >= n_inversion = true └───── biflocated = false ────> Leaving [Loc-Bif] ──> nd Bifurcation point at p ≈ -0.06083954839238358, δn_unstable = 2, δn_imag = 0 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 30 Step size = 5.1000e-02 Parameter p = -6.0840e-02 ⟶ -6.0115e-02 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.0840e-02 ⟶ -6.5737e-02 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 31 Step size = 5.1000e-02 Parameter p = -6.5737e-02 ⟶ -7.0620e-02 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -6.5737e-02 ⟶ -7.7229e-02 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 32 Step size = 5.1000e-02 Parameter p = -7.7229e-02 ⟶ -8.8673e-02 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -7.7229e-02 ⟶ -9.3566e-02 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 33 Step size = 5.1000e-02 Parameter p = -9.3566e-02 ⟶ -1.0986e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -9.3566e-02 ⟶ -1.1387e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 34 Step size = 5.1000e-02 Parameter p = -1.1387e-01 ⟶ -1.3414e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -1.1387e-01 ⟶ -1.3759e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 35 Step size = 5.1000e-02 Parameter p = -1.3759e-01 ⟶ -1.6129e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -1.3759e-01 ⟶ -1.6436e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 36 Step size = 5.1000e-02 Parameter p = -1.6436e-01 ⟶ -1.9110e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -1.6436e-01 ⟶ -1.9387e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 37 Step size = 5.1000e-02 Parameter p = -1.9387e-01 ⟶ -2.2336e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -1.9387e-01 ⟶ -2.2589e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 38 Step size = 5.1000e-02 Parameter p = -2.2589e-01 ⟶ -2.5787e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -2.2589e-01 ⟶ -2.6018e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 39 Step size = 5.1000e-02 Parameter p = -2.6018e-01 ⟶ -2.9446e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -2.6018e-01 ⟶ -2.9658e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 40 Step size = 5.1000e-02 Parameter p = -2.9658e-01 ⟶ -3.3295e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -2.9658e-01 ⟶ -3.3490e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 41 Step size = 5.1000e-02 Parameter p = -3.3490e-01 ⟶ -3.7320e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -3.3490e-01 ⟶ -3.7499e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 42 Step size = 5.1000e-02 Parameter p = -3.7499e-01 ⟶ -4.1507e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -3.7499e-01 ⟶ -4.1672e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 43 Step size = 5.1000e-02 Parameter p = -4.1672e-01 ⟶ -4.5844e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -4.1672e-01 ⟶ -4.5997e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 44 Step size = 5.1000e-02 Parameter p = -4.5997e-01 ⟶ -5.0320e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -4.5997e-01 ⟶ -5.0461e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 45 Step size = 5.1000e-02 Parameter p = -5.0461e-01 ⟶ -5.4924e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -5.0461e-01 ⟶ -5.5054e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 46 Step size = 5.1000e-02 Parameter p = -5.5054e-01 ⟶ -5.9646e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -5.5054e-01 ⟶ -5.9767e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 47 Step size = 5.1000e-02 Parameter p = -5.9767e-01 ⟶ -6.4480e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -5.9767e-01 ⟶ -6.4592e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 48 Step size = 5.1000e-02 Parameter p = -6.4592e-01 ⟶ -6.9415e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -6.4592e-01 ⟶ -6.9520e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 49 Step size = 5.1000e-02 Parameter p = -6.9520e-01 ⟶ -7.4447e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -6.9520e-01 ⟶ -7.4544e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 50 Step size = 5.1000e-02 Parameter p = -7.4544e-01 ⟶ -7.9567e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -7.4544e-01 ⟶ -7.9657e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 51 Step size = 5.1000e-02 Parameter p = -7.9657e-01 ⟶ -8.4770e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -7.9657e-01 ⟶ -8.4855e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 52 Step size = 5.1000e-02 Parameter p = -8.4855e-01 ⟶ -9.0051e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.4855e-01 ⟶ -9.0130e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 53 Step size = 5.1000e-02 Parameter p = -9.0130e-01 ⟶ -9.5405e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.0130e-01 ⟶ -9.5478e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 54 Step size = 5.1000e-02 Parameter p = -9.5478e-01 ⟶ -1.0083e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.5478e-01 ⟶ -1.0090e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 55 Step size = 5.1000e-02 Parameter p = -1.0090e+00 ⟶ -1.0631e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0090e+00 ⟶ -1.0638e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 56 Step size = 5.1000e-02 Parameter p = -1.0638e+00 ⟶ -1.1186e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0638e+00 ⟶ -1.1192e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 57 Step size = 5.1000e-02 Parameter p = -1.1192e+00 ⟶ -1.1746e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1192e+00 ⟶ -1.1752e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 58 Step size = 5.1000e-02 Parameter p = -1.1752e+00 ⟶ -1.2311e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1752e+00 ⟶ -1.2317e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 59 Step size = 5.1000e-02 Parameter p = -1.2317e+00 ⟶ -1.2882e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.2317e+00 ⟶ -1.2887e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 60 Step size = 5.1000e-02 Parameter p = -1.2887e+00 ⟶ -1.3457e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.2887e+00 ⟶ -1.3462e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 61 Step size = 5.1000e-02 Parameter p = -1.3462e+00 ⟶ -1.4037e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3462e+00 ⟶ -1.4041e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 62 Step size = 5.1000e-02 Parameter p = -1.4041e+00 ⟶ -1.4621e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.4041e+00 ⟶ -1.4625e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 63 Step size = 5.1000e-02 Parameter p = -1.4625e+00 ⟶ -1.5209e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.4625e+00 ⟶ -1.5213e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 64 Step size = 5.1000e-02 Parameter p = -1.5213e+00 ⟶ -1.5801e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.5213e+00 ⟶ -1.5804e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 65 Step size = 5.1000e-02 Parameter p = -1.5804e+00 ⟶ -1.6396e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.5804e+00 ⟶ -1.6400e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 66 Step size = 5.1000e-02 Parameter p = -1.6400e+00 ⟶ -1.6995e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.6400e+00 ⟶ -1.6998e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 67 Step size = 5.1000e-02 Parameter p = -1.6998e+00 ⟶ -1.7597e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.6998e+00 ⟶ -1.7600e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 68 Step size = 5.1000e-02 Parameter p = -1.7600e+00 ⟶ -1.8202e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.7600e+00 ⟶ -1.8205e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 69 Step size = 5.1000e-02 Parameter p = -1.8205e+00 ⟶ -1.8810e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.8205e+00 ⟶ -1.8813e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 70 Step size = 5.1000e-02 Parameter p = -1.8813e+00 ⟶ -1.9421e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.8813e+00 ⟶ -1.9424e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 71 Step size = 5.1000e-02 Parameter p = -1.9424e+00 ⟶ -2.0035e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.9424e+00 ⟶ -2.0038e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 72 Step size = 5.1000e-02 Parameter p = -2.0038e+00 ⟶ -2.0651e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.0038e+00 ⟶ -2.0654e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 73 Step size = 5.1000e-02 Parameter p = -2.0654e+00 ⟶ -2.1270e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.0654e+00 ⟶ -2.1273e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 74 Step size = 5.1000e-02 Parameter p = -2.1273e+00 ⟶ -2.1891e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.1273e+00 ⟶ -2.1894e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 75 Step size = 5.1000e-02 Parameter p = -2.1894e+00 ⟶ -2.2515e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.1894e+00 ⟶ -2.2517e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 76 Step size = 5.1000e-02 Parameter p = -2.2517e+00 ⟶ -2.3140e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.2517e+00 ⟶ -2.3143e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 77 Step size = 5.1000e-02 Parameter p = -2.3143e+00 ⟶ -2.3768e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.3143e+00 ⟶ -2.3770e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 78 Step size = 5.1000e-02 Parameter p = -2.3770e+00 ⟶ -2.4398e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.3770e+00 ⟶ -2.4400e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 79 Step size = 5.1000e-02 Parameter p = -2.4400e+00 ⟶ -2.5029e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.4400e+00 ⟶ -2.5031e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 80 Step size = 5.1000e-02 Parameter p = -2.5031e+00 ⟶ -2.5663e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.5031e+00 ⟶ -2.5665e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 81 Step size = 5.1000e-02 Parameter p = -2.5665e+00 ⟶ -2.6298e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.5665e+00 ⟶ -2.6300e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 82 Step size = 5.1000e-02 Parameter p = -2.6300e+00 ⟶ -2.6935e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.6300e+00 ⟶ -2.6937e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 83 Step size = 5.1000e-02 Parameter p = -2.6937e+00 ⟶ -2.7574e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.6937e+00 ⟶ -2.7575e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 84 Step size = 5.1000e-02 Parameter p = -2.7575e+00 ⟶ -2.8214e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.7575e+00 ⟶ -2.8215e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 85 Step size = 5.1000e-02 Parameter p = -2.8215e+00 ⟶ -2.8856e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.8215e+00 ⟶ -2.8857e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 86 Step size = 5.1000e-02 Parameter p = -2.8857e+00 ⟶ -2.9499e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.8857e+00 ⟶ -2.9500e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 87 Step size = 5.1000e-02 Parameter p = -2.9500e+00 ⟶ -3.0000e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -3.0000e+00 ⟶ -3.0000e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ┌─ Entry in detect_loop, rtol = 0.001 ├─ bp type = nd, ||δx|| = 0.24416479616388265, |δp| = 1.3891604516076164 └─ Loop detected = false ┌─ Continuation algorithm: deflated continuation ├─ max_branches: 100 ├─ seek every: 1 ├─ deflated newton iterations: 5 ├─ jacobian (def. newton): BifurcationKit.DeflatedProblemCustomLS{Nothing}(nothing) └─ deflation operator: ┌─ Deflation operator with 1 root(s) ├─ eltype = Float64 ├─ power = 2 ├─ α = 0.001 ├─ dist = dot └─ autodiff = false Deflated continuation result, # branches = 3 Branch #1: ┌─ Curve type: EquilibriumCont ├─ Number of points: 801 ├─ Type of vectors: Vector{Float64} ├─ Parameter p starts at 0.5, ends at -0.30000000000000066 ├─ Algo: PALC Branch #2: ┌─ Curve type: EquilibriumCont ├─ Number of points: 236 ├─ Type of vectors: Vector{Float64} ├─ Parameter p starts at -0.06500000000000049, ends at -0.30000000000000066 ├─ Algo: PALC Branch #3: ┌─ Curve type: EquilibriumCont ├─ Number of points: 234 ├─ Type of vectors: Vector{Float64} ├─ Parameter p starts at -0.06700000000000049, ends at -0.30000000000000066 ├─ Algo: PALC WARNING: Method definition Ftb(Any, Any) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/3l0Yy/test/test_bif_detection.jl:52 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/3l0Yy/test/test_bif_detection.jl:113. ┌─ Curve type: EquilibriumCont ├─ Number of points: 134 ├─ Type of vectors: Vector{Float64} ├─ Parameter p1 starts at -3.0, ends at 4.0 ├─ Algo: PALC └─ Special points: - # 1, bp at p1 ≈ -1.13286415 ∈ (-1.13286415, -1.13286415), |δp|=6e-10, [converged], δ = ( 1, 0), step = 36 - # 2, bp at p1 ≈ -2.32505847 ∈ (-2.32505847, -2.32505842), |δp|=5e-08, [converged], δ = (-1, 0), step = 49 - # 3, hopf at p1 ≈ -0.95381648 ∈ (-0.95385638, -0.95381648), |δp|=4e-05, [converged], δ = ( 2, 2), step = 63 - # 4, hopf at p1 ≈ +0.95387028 ∈ (+0.95385033, +0.95387028), |δp|=2e-05, [converged], δ = (-2, -2), step = 83 - # 5, bp at p1 ≈ +2.32505862 ∈ (+2.32505862, +2.32505862), |δp|=9e-11, [converged], δ = ( 1, 0), step = 97 - # 6, bp at p1 ≈ +1.13286415 ∈ (+1.13286415, +1.13286415), |δp|=5e-09, [converged], δ = (-1, 0), step = 110 - # 7, endpoint at p1 ≈ +4.00000000, step = 133 WARNING: Method definition F0_simple(Any, Any) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/3l0Yy/test/simple_continuation.jl:10 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/3l0Yy/test/plots-utils.jl:8. ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153358385557538, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/3l0Yy/src/NormalForms.jl:82 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153358385557538, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/3l0Yy/src/NormalForms.jl:82 Transcritical bifurcation point at μ ≈ 0.0005310637271224761 Normal form (aδμ + b1⋅x⋅δμ + b2⋅x²/2 + b3⋅x³/6) ┌─ a = 7.187319746485116e-14 ├─ b1 = 3.2300000000172466 ├─ b2 = -2.239999999999969 └─ b3 = 1.4040000000000001 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153358385557538, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/3l0Yy/src/NormalForms.jl:82 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153358385557538, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/3l0Yy/src/NormalForms.jl:82 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153358385557538, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/3l0Yy/src/NormalForms.jl:82 ──> For μ = 0.0005310637271224761 ──> There are 1 unstable eigenvalues ──> Eigenvalues for continuation step 1 ┌ Warning: The zero eigenvalue is not that small λ = -1.6659630598410682e-5, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/3l0Yy/src/NormalForms.jl:82 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153358385557538, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/3l0Yy/src/NormalForms.jl:82 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153358385557538, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/3l0Yy/src/NormalForms.jl:82 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153358385557538, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/3l0Yy/src/NormalForms.jl:82 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153358385557538, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/3l0Yy/src/NormalForms.jl:82 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153358385557538, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/3l0Yy/src/NormalForms.jl:82 ┌ Warning: The zero eigenvalue is not that small λ = -1.0360835240788607e-5, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/3l0Yy/src/NormalForms.jl:82 ┌ Warning: The zero eigenvalue is not that small λ = -1.0360835240788607e-5, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/3l0Yy/src/NormalForms.jl:82 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ┌─ Normal form Computation for 1d kernel ├─ analyse bifurcation at p = 0.0005310640141772467 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153367657925067, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/3l0Yy/src/NormalForms.jl:82 ├─ smallest eigenvalue at bifurcation = 0.0017153367657925067 ┌── left eigenvalues = 2-element Vector{ComplexF64}: 0.0017153367657925067 + 0.0im -1.0 + 0.0im ├── right eigenvalue = 0.0017153367657925067 └── left eigenvalue = 0.0017153367657925067 + 0.0im ┌── Normal form: aδμ + b1⋅x⋅δμ + b2⋅x²/2 + b3⋅x³/6 ├─── a = 2.6829124780323384e-12 ├─── b1 = 3.2300000000172466 ├─── b2/2 = -5.830973868649681e-13 └─── b3/6 = -0.234 SuperCritical - Pitchfork bifurcation point at μ ≈ 0.0005310640141772467 Normal form x ─▶ x + a⋅δp + x⋅(b1⋅δp + b3⋅x²/6) ┌─ a = 2.6829124780323384e-12 ├─ b1 = 3.2300000000172466 ├─ b2 = -1.1661947737299363e-12 └─ b3 = -1.4040000000000001 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153367657925067, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/3l0Yy/src/NormalForms.jl:82 ┌─ Curve type: EquilibriumCont from Pitchfork bifurcation point. ├─ Number of points: 20 ├─ Type of vectors: Vector{Float64} ├─ Parameter μ starts at 0.0005310640141772467, ends at 0.006252611589119285 ├─ Algo: PALC └─ Special points: - # 1, bp at μ ≈ +0.00000029 ∈ (+0.00000029, +0.00053106), |δp|=5e-04, [ guess], δ = (-1, 0), step = 1 - # 2, endpoint at μ ≈ +0.00713116, step = 20 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ───▶ Automatic computation of bifurcation diagram ──────────────────────────────────────────────────────────────────────────────── ──▶ New branch, level = 2, dim(Kernel) = 1, code = (0,), from bp #1 at p = 4.531578045579016e-6, type = bp ┌ Warning: The zero eigenvalue is not that small λ = 1.4636997087220223e-5, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/3l0Yy/src/NormalForms.jl:82 ────▶ From Pitchfork - # 1, bp at p ≈ +0.00000453 ∈ (-0.00000410, +0.00000453), |δp|=9e-06, [converged], δ = ( 1, 0), step = 6 ┌ Warning: The zero eigenvalue is not that small λ = 1.4636997087220223e-5, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/3l0Yy/src/NormalForms.jl:82 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.9671624963863654e-17, -1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 -2.34146e-12 2.34146e-12 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 3.97801e-18 -8.91189e-19 -8.91189e-19 6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: 3.4841e-19 9.32786e-20 9.32786e-20 6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 -0.0513304 -0.0513304 0.0273946 [:, :, 2] = -0.0513304 0.0273946 0.0273946 0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0187349 0.00358594 0.00358594 0.0162978 [:, :, 2] = 0.00358594 0.0162978 0.0162978 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──> (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.9671624963863654e-17, -1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 -2.34146e-12 2.34146e-12 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 3.97801e-18 -8.91189e-19 -8.91189e-19 6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: 3.4841e-19 9.32786e-20 9.32786e-20 6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 -0.0513304 -0.0513304 0.0273946 [:, :, 2] = -0.0513304 0.0273946 0.0273946 0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0187349 0.00358594 0.00358594 0.0162978 [:, :, 2] = 0.00358594 0.0162978 0.0162978 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.9671624963863654e-17, 1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 2.34146e-12 -2.34146e-12 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -3.97801e-18 8.91189e-19 8.91189e-19 -6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: -3.4841e-19 -9.32786e-20 -9.32786e-20 -6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 0.0513304 0.0513304 -0.0273946 [:, :, 2] = 0.0513304 -0.0273946 -0.0273946 -0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0187349 -0.00358594 -0.00358594 -0.0162978 [:, :, 2] = -0.00358594 -0.0162978 -0.0162978 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──> (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.9671624963863654e-17, 1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 2.34146e-12 -2.34146e-12 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -3.97801e-18 8.91189e-19 8.91189e-19 -6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: -3.4841e-19 -9.32786e-20 -9.32786e-20 -6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 0.0513304 0.0513304 -0.0273946 [:, :, 2] = 0.0513304 -0.0273946 -0.0273946 -0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0187349 -0.00358594 -0.00358594 -0.0162978 [:, :, 2] = -0.00358594 -0.0162978 -0.0162978 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). [Bifurcation diagram] ┌─ From 0-th bifurcation point. ├─ Children number: 4 └─ Root (recursion level 1) ┌─ Curve type: EquilibriumCont ├─ Number of points: 76 ├─ Type of vectors: Vector{Float64} ├─ Parameter p starts at -0.2, ends at 0.3 ├─ Algo: PALC └─ Special points: - # 1, bp at p ≈ +0.00000281 ∈ (-0.00000065, +0.00000281), |δp|=3e-06, [converged], δ = ( 1, 0), step = 31 - # 2, bp at p ≈ +0.15000005 ∈ (+0.14999995, +0.15000005), |δp|=1e-07, [converged], δ = (-1, 0), step = 53 - # 3, endpoint at p ≈ +0.30000000, step = 75 ──▶ BS from Non simple branch point ──▶ we find 2 (resp. 2) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ Looking for solutions after the bifurcation point... ──▶ Looking for solutions before the bifurcation point... ──▶ we find 2 (resp. 2) roots after (resp. before) the bifurcation point. ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ BS from Non simple branch point ──▶ we find 2 (resp. 4) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ Looking for solutions after the bifurcation point... ──▶ Looking for solutions before the bifurcation point... ──▶ we find 3 (resp. 2) roots after (resp. before) the bifurcation point. ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ BS from Non simple branch point ──▶ we find 4 (resp. 4) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ Looking for solutions after the bifurcation point... ──▶ Looking for solutions before the bifurcation point... ──▶ we find 4 (resp. 4) roots after (resp. before) the bifurcation point. ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ BS from Non simple branch point ──▶ we find 4 (resp. 4) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ Looking for solutions after the bifurcation point... ──▶ Looking for solutions before the bifurcation point... ──▶ we find 4 (resp. 4) roots after (resp. before) the bifurcation point. ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ SuperCritical - Hopf bifurcation point at r ≈ 0.0025304832720493943. Frequency ω ≈ 1.0 Period of the periodic orbit ≈ 6.283185307179586 Normal form z⋅(iω + a⋅δp + b⋅|z|²): ┌─ a = 0.9999999999898201 + 0.0im └─ b = -2.2460000000000004 + 0.2640000000000001im Cusp bifurcation point at (:β1, :β2) ≈ (-0.0025269527889013894, -0.05056768762659297). Normal form: p1 + p2⋅A + c⋅A³ Normal form coefficient: c = 3.0 Bogdanov-Takens bifurcation point at (:β1, :β2) ≈ (-8.382641962974557e-16, 1.0787037903289831e-7). Normal form (B, p1 + p2⋅B + b⋅A⋅B + a⋅A²) Normal form coefficients: a = 1.0000000000000118 b = -1.0 You can call various predictors: - predictor(::BogdanovTakens, ::Val{:HopfCurve}, ds) - predictor(::BogdanovTakens, ::Val{:FoldCurve}, ds) - predictor(::BogdanovTakens, ::Val{:HomoclinicCurve}, ds) - # 1, bt at p ≈ +0.00000011 ∈ (-0.00000032, +0.00000011), |δp|=4e-07, [ guess], δ = ( 0, 0), step = 8 ┌─────────────────────────────────────────────────────┐ │ Newton step residual linear iterations │ ├─────────────┬──────────────────────┬────────────────┤ │ 0 │ 1.0787e-07 │ 0 │ │ 1 │ 1.2441e-21 │ 1 │ └─────────────┴──────────────────────┴────────────────┘ WARNING: Method definition Fsl2!(Any, Any, Any, Any) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/3l0Yy/test/testNF.jl:251 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/3l0Yy/test/testNF.jl:401. WARNING: Method definition Fsl2(Any, Any) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/3l0Yy/test/testNF.jl:264 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/3l0Yy/test/testNF.jl:410. Bautin bifurcation point at (:r, :c3) ≈ (-1.3234889800848443e-23, -1.0787037905138395e-7). ω = 1.0 Second lyapunov coefficient l₂ = 1.199999999609355 Normal form: i⋅ω⋅z + l₂⋅z⋅|z|⁴ ┌ Warning: The bifurcating eigenvalue is not that close to Re = 0. We found 0.012514680780171504 !≈ 0. You can perhaps increase the argument `nev`. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/3l0Yy/src/NormalForms.jl:36 ┌ Warning: Assignment to `br` in soft scope is ambiguous because a global variable by the same name exists: `br` will be treated as a new local. Disambiguate by using `local br` to suppress this warning or `global br` to assign to the existing global variable. └ @ ~/.julia/packages/BifurcationKit/3l0Yy/test/testNF_maps.jl:28 ┌ Warning: Assignment to `prob` in soft scope is ambiguous because a global variable by the same name exists: `prob` will be treated as a new local. Disambiguate by using `local prob` to suppress this warning or `global prob` to assign to the existing global variable. └ @ ~/.julia/packages/BifurcationKit/3l0Yy/test/testNF_maps.jl:30 ┌ Warning: Assignment to `bp` in soft scope is ambiguous because a global variable by the same name exists: `bp` will be treated as a new local. Disambiguate by using `local bp` to suppress this warning or `global bp` to assign to the existing global variable. └ @ ~/.julia/packages/BifurcationKit/3l0Yy/test/testNF_maps.jl:32 ┌ Warning: Assignment to `nf` in soft scope is ambiguous because a global variable by the same name exists: `nf` will be treated as a new local. Disambiguate by using `local nf` to suppress this warning or `global nf` to assign to the existing global variable. └ @ ~/.julia/packages/BifurcationKit/3l0Yy/test/testNF_maps.jl:35 ┌ Warning: Assignment to `pred` in soft scope is ambiguous because a global variable by the same name exists: `pred` will be treated as a new local. Disambiguate by using `local pred` to suppress this warning or `global pred` to assign to the existing global variable. └ @ ~/.julia/packages/BifurcationKit/3l0Yy/test/testNF_maps.jl:44 none - Branch point (Maps) bifurcation point at μ ≈ 0.0005310637271224761 Normal form x ─▶ a⋅δp + x⋅(b1⋅δp + b3⋅x²/6): ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ┌─ Normal form Computation for 1d kernel ├─ analyse bifurcation at p = 0.0005310637271224761 ┌── Normal form: aδμ + b1⋅x⋅δμ + b2⋅x²/2 + b3⋅x³/6 ├─── a = 0.0 ├─── b1 = -0.456 ├─── b2/2 = 0.0 └─── b3/6 = -1.234 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ┌─ Normal form Computation for 1d kernel ├─ analyse bifurcation at p = 0.0005310637271224761 ┌── Normal form: aδμ + b1⋅x⋅δμ + b2⋅x²/2 + b3⋅x³/6 ├─── a = 0.0 ├─── b1 = -0.4559999988718033 ├─── b2/2 = 0.0 └─── b3/6 = -1.234 SubCritical - Pitchfork (Maps) bifurcation point at μ ≈ 0.0005310637271224761 Normal form x ─▶ x + a⋅δp + x⋅(b1⋅δp + b3⋅x²/6) ┌─ a = 0.0 ├─ b1 = -0.4559999988718033 ├─ b2 = 0.0 └─ b3 = -7.404 none - Branch point (Maps) bifurcation point at μ ≈ 0.0005310637271224761 Normal form x ─▶ a⋅δp + x⋅(b1⋅δp + b3⋅x²/6): ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ┌─ Normal form Computation for 1d kernel ├─ analyse bifurcation at p = 0.0005310637271224761 ┌── Normal form: aδμ + b1⋅x⋅δμ + b2⋅x²/2 + b3⋅x³/6 ├─── a = 0.0 ├─── b1 = -0.456 ├─── b2/2 = 0.0 └─── b3/6 = -1.234 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ┌─ Normal form Computation for 1d kernel ├─ analyse bifurcation at p = 0.0005310637271224761 ┌── Normal form: aδμ + b1⋅x⋅δμ + b2⋅x²/2 + b3⋅x³/6 ├─── a = 0.0 ├─── b1 = -0.4559999988718033 ├─── b2/2 = 0.0 └─── b3/6 = -1.234 SubCritical - Pitchfork (Maps) bifurcation point at μ ≈ 0.0005310637271224761 Normal form x ─▶ x + a⋅δp + x⋅(b1⋅δp + b3⋅x²/6) ┌─ a = 0.0 ├─ b1 = -0.4559999988718033 ├─ b2 = 0.0 └─ b3 = -7.404 none - Branch point (Maps) bifurcation point at μ ≈ 0.0005310637271224761 Normal form x ─▶ a⋅δp + x⋅(b1⋅δp + b3⋅x²/6): ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ┌─ Normal form Computation for 1d kernel ├─ analyse bifurcation at p = 0.0005310637271224761 ┌── Normal form: aδμ + b1⋅x⋅δμ + b2⋅x²/2 + b3⋅x³/6 ├─── a = 0.0 ├─── b1 = -0.456 ├─── b2/2 = 0.21 └─── b3/6 = -1.234 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ┌─ Normal form Computation for 1d kernel ├─ analyse bifurcation at p = 0.0005310637271224761 ┌── Normal form: aδμ + b1⋅x⋅δμ + b2⋅x²/2 + b3⋅x³/6 ├─── a = 0.0 ├─── b1 = -0.4559999988718033 ├─── b2/2 = 0.21 └─── b3/6 = -1.234 Transcritical (Maps) bifurcation point at μ ≈ 0.0005310637271224761 Normal form x ─▶ x + (aδμ + b1⋅x⋅δμ + b2⋅x²/2 + b3⋅x³/6) ┌─ a = 0.0 ├─ b1 = -0.4559999988718033 ├─ b2 = 0.42 └─ b3 = -7.404 none - Branch point (Maps) bifurcation point at μ ≈ 0.0005310637271224761 Normal form x ─▶ a⋅δp + x⋅(b1⋅δp + b3⋅x²/6): ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ┌─ Normal form Computation for 1d kernel ├─ analyse bifurcation at p = 0.0005310637271224761 ┌── Normal form: aδμ + b1⋅x⋅δμ + b2⋅x²/2 + b3⋅x³/6 ├─── a = 0.0 ├─── b1 = -0.456 ├─── b2/2 = 0.21 └─── b3/6 = -1.234 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ┌─ Normal form Computation for 1d kernel ├─ analyse bifurcation at p = 0.0005310637271224761 ┌── Normal form: aδμ + b1⋅x⋅δμ + b2⋅x²/2 + b3⋅x³/6 ├─── a = 0.0 ├─── b1 = -0.4559999988718033 ├─── b2/2 = 0.21 └─── b3/6 = -1.234 Transcritical (Maps) bifurcation point at μ ≈ 0.0005310637271224761 Normal form x ─▶ x + (aδμ + b1⋅x⋅δμ + b2⋅x²/2 + b3⋅x³/6) ┌─ a = 0.0 ├─ b1 = -0.4559999988718033 ├─ b2 = 0.42 └─ b3 = -7.404 SubCritical - Period-Doubling bifurcation point at μ ≈ 0.0005310637271224761 ┌─ Normal form: ├ x ─▶ x⋅(a⋅δp - 1 + c⋅x²) ├─ a = 0.4559999988718033 └─ c = -1.234 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Neimark-Sacker normal form computation ┌── left eigenvalues = 2-element Vector{ComplexF64}: 0.0006081951521350171 - 0.09999999999999999im 0.0006081951521350171 + 0.09999999999999999im ├── right eigenvalue = 0.0006081951521350171 - 0.09999999999999999im └── left eigenvalue = 0.0006081951521350171 - 0.09999999999999999im ──▶ a = 1.1230000007839347 - 7.404118984588592e-12im (a = 1.1230000007839347 - 7.404118984588592e-12im, b = -1.123 - 0.4560000000000001im) ──▶ Neimark-Sacker bifurcation point is: SuperCritical SuperCritical - NeimarkSacker bifurcation point at μ ≈ 0.0005417454499622133. Frequency θ ≈ 0.09999999999999999 Period of the periodic orbit ≈ 62.83185307179587 Normal form z ─▶ z⋅eⁱᶿ(1 + a⋅δp + b⋅|z|²) ┌─ a = 1.1230000007839347 - 7.404118984588592e-12im └─ b = -1.123 - 0.4560000000000001im WARNING: Method definition testBranch(Any) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/3l0Yy/test/test_bif_detection.jl:18 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/3l0Yy/test/event.jl:26. ┌ Warning: More than one event in `SetOfEvents` was detected. We take the first in the list to save data in the branch. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/3l0Yy/src/events/EventDetection.jl:387 ┌ Warning: More than one event in `SetOfEvents` was detected. We take the first in the list to save data in the branch. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/3l0Yy/src/events/EventDetection.jl:387 ┌ Warning: More than one event in `SetOfEvents` was detected. We take the first in the list to save data in the branch. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/3l0Yy/src/events/EventDetection.jl:387 ┌ Warning: More than one event in `SetOfEvents` was detected. We take the first in the list to save data in the branch. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/3l0Yy/src/events/EventDetection.jl:387 ┌ Warning: More than one event in `SetOfEvents` was detected. We take the first in the list to save data in the branch. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/3l0Yy/src/events/EventDetection.jl:387 ┌─ Deflation operator with 1 root(s) ├─ eltype = Float64 ├─ power = 2 ├─ α = 1.0 ├─ dist = dot └─ autodiff = false WARNING: Method definition Jac_fold_fdMA(Any) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/3l0Yy/test/testJacobianFoldDeflation.jl:85 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/3l0Yy/test/testJacobianFoldDeflation.jl:125. WARNING: Method definition Jac_fold_MA(Any, Any, BifurcationKit.FoldProblemMinimallyAugmented{Tprob, vectype, T, S, Sa, Sbd, Sbda, Tmass} where Tmass where Sbda<:BifurcationKit.AbstractBorderedLinearSolver where Sbd<:BifurcationKit.AbstractBorderedLinearSolver where Sa<:BifurcationKit.AbstractLinearSolver where S<:BifurcationKit.AbstractLinearSolver where T<:Real where vectype where Tprob<:BifurcationKit.AbstractBifurcationProblem) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/3l0Yy/test/testJacobianFoldDeflation.jl:95 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/3l0Yy/test/testJacobianFoldDeflation.jl:129. 8.654349 seconds (3.04 M allocations: 205.529 MiB, 0.80% gc time, 99.60% compilation time) ┌ Warning: Assignment to `ind` in soft scope is ambiguous because a global variable by the same name exists: `ind` will be treated as a new local. Disambiguate by using `local ind` to suppress this warning or `global ind` to assign to the existing global variable. └ @ ~/.julia/packages/BifurcationKit/3l0Yy/test/codim2.jl:90 WARNING: Method definition Bd2Vec(Any) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/3l0Yy/test/testJacobianFoldDeflation.jl:80 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/3l0Yy/test/testHopfMA.jl:107. WARNING: Method definition Vec2Bd(Any) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/3l0Yy/test/testJacobianFoldDeflation.jl:81 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/3l0Yy/test/testHopfMA.jl:108. 0.292967 seconds (81.69 k allocations: 33.992 MiB, 86.98% compilation time) ┌ Warning: Assignment to `outpo_f` in soft scope is ambiguous because a global variable by the same name exists: `outpo_f` will be treated as a new local. Disambiguate by using `local outpo_f` to suppress this warning or `global outpo_f` to assign to the existing global variable. └ @ timing.jl:269 ┌ Warning: Assignment to `br_pok2` in soft scope is ambiguous because a global variable by the same name exists: `br_pok2` will be treated as a new local. Disambiguate by using `local br_pok2` to suppress this warning or `global br_pok2` to assign to the existing global variable. └ @ timing.jl:269 linalgo = :FullLU ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile ====================================================================================== cmd: /opt/julia/bin/julia 276 running 1 of 1 signal (10): User defined signal 1 _ZNK4llvm10BasicBlock13getTerminatorEv at /opt/julia/bin/../lib/julia/libLLVM-15jl.so (unknown line) _ZN4llvm8childrenINS_7InverseINS1_IPNS_10BasicBlockEEEEEEENS_14iterator_rangeINS_11GraphTraitsIT_E17ChildIteratorTypeEEERKNS9_7NodeRefE at /opt/julia/bin/../lib/julia/libLLVM-15jl.so (unknown line) _ZN4llvm14DomTreeBuilder11SemiNCAInfoINS_17DominatorTreeBaseINS_10BasicBlockELb0EEEE11getChildrenILb0EEENS_11SmallVectorIPS3_Lj8EEES8_PNS5_15BatchUpdateInfoE at /opt/julia/bin/../lib/julia/libLLVM-15jl.so (unknown line) _ZN4llvm14DomTreeBuilder11SemiNCAInfoINS_17DominatorTreeBaseINS_10BasicBlockELb0EEEE17InsertUnreachableERS4_PNS5_15BatchUpdateInfoEPNS_15DomTreeNodeBaseIS3_EEPS3_ at /opt/julia/bin/../lib/julia/libLLVM-15jl.so (unknown line) _ZN4llvm14DomTreeBuilder11SemiNCAInfoINS_17DominatorTreeBaseINS_10BasicBlockELb0EEEE10InsertEdgeERS4_PNS5_15BatchUpdateInfoEPS3_S9_ at /opt/julia/bin/../lib/julia/libLLVM-15jl.so (unknown line) _ZN4llvm14DomTreeBuilder12ApplyUpdatesINS_17DominatorTreeBaseINS_10BasicBlockELb0EEEEEvRT_RNS_9GraphDiffINS5_7NodePtrEXsrS5_15IsPostDominatorEEEPS9_ at /opt/julia/bin/../lib/julia/libLLVM-15jl.so (unknown line) _ZN4llvm22SplitKnownCriticalEdgeEPNS_11InstructionEjRKNS_28CriticalEdgeSplittingOptionsERKNS_5TwineE at /opt/julia/bin/../lib/julia/libLLVM-15jl.so (unknown line) _ZN4llvm7GVNPass18splitCriticalEdgesEPNS_10BasicBlockES2_ at /opt/julia/bin/../lib/julia/libLLVM-15jl.so (unknown line) _ZN4llvm7GVNPass21processFoldableCondBrEPNS_10BranchInstE at /opt/julia/bin/../lib/julia/libLLVM-15jl.so (unknown line) _ZN4llvm7GVNPass18processInstructionEPNS_11InstructionE.part.1169 at /opt/julia/bin/../lib/julia/libLLVM-15jl.so (unknown line) _ZN4llvm7GVNPass12processBlockEPNS_10BasicBlockE at /opt/julia/bin/../lib/julia/libLLVM-15jl.so (unknown line) _ZN4llvm7GVNPass7runImplERNS_8FunctionERNS_15AssumptionCacheERNS_13DominatorTreeERKNS_17TargetLibraryInfoERNS_9AAResultsEPNS_23MemoryDependenceResultsEPNS_8LoopInfoEPNS_25OptimizationRemarkEmitterEPNS_9MemorySSAE at /opt/julia/bin/../lib/julia/libLLVM-15jl.so (unknown line) _ZN4llvm7GVNPass3runERNS_8FunctionERNS_15AnalysisManagerIS1_JEEE at /opt/julia/bin/../lib/julia/libLLVM-15jl.so (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:88 _ZN4llvm11PassManagerINS_8FunctionENS_15AnalysisManagerIS1_JEEEJEE3runERS1_RS3_ at /opt/julia/bin/../lib/julia/libLLVM-15jl.so (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:88 _ZN4llvm27ModuleToFunctionPassAdaptor3runERNS_6ModuleERNS_15AnalysisManagerIS1_JEEE at /opt/julia/bin/../lib/julia/libLLVM-15jl.so (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:88 _ZN4llvm11PassManagerINS_6ModuleENS_15AnalysisManagerIS1_JEEEJEE3runERS1_RS3_ at /opt/julia/bin/../lib/julia/libLLVM-15jl.so (unknown line) run at /source/src/pipeline.cpp:744 operator() at /source/src/jitlayers.cpp:1257 withModuleDo<(anonymous namespace)::OptimizerT::operator()(llvm::orc::ThreadSafeModule, llvm::orc::MaterializationResponsibility&):: > at /source/usr/include/llvm/ExecutionEngine/Orc/ThreadSafeModule.h:136 [inlined] operator() at /source/src/jitlayers.cpp:1222 [inlined] CallImpl<(anonymous namespace)::OptimizerT> at /source/usr/include/llvm/ADT/FunctionExtras.h:222 _ZN4llvm3orc16IRTransformLayer4emitESt10unique_ptrINS0_29MaterializationResponsibilityESt14default_deleteIS3_EENS0_16ThreadSafeModuleE at /opt/julia/bin/../lib/julia/libLLVM-15jl.so (unknown line) emit at /source/src/jitlayers.cpp:724 _ZN4llvm3orc31BasicIRLayerMaterializationUnit11materializeESt10unique_ptrINS0_29MaterializationResponsibilityESt14default_deleteIS3_EE at /opt/julia/bin/../lib/julia/libLLVM-15jl.so (unknown line) _ZN4llvm3orc19MaterializationTask3runEv at /opt/julia/bin/../lib/julia/libLLVM-15jl.so (unknown line) _ZN4llvm6detail18UniqueFunctionBaseIvJSt10unique_ptrINS_3orc4TaskESt14default_deleteIS4_EEEE8CallImplIPFvS7_EEEvPvRS7_ at /opt/julia/bin/../lib/julia/libLLVM-15jl.so (unknown line) _ZN4llvm3orc16ExecutionSession12dispatchTaskESt10unique_ptrINS0_4TaskESt14default_deleteIS3_EE at /opt/julia/bin/../lib/julia/libLLVM-15jl.so (unknown line) _ZN4llvm3orc16ExecutionSession22dispatchOutstandingMUsEv at /opt/julia/bin/../lib/julia/libLLVM-15jl.so (unknown line) _ZN4llvm3orc16ExecutionSession17OL_completeLookupESt10unique_ptrINS0_21InProgressLookupStateESt14default_deleteIS3_EESt10shared_ptrINS0_23AsynchronousSymbolQueryEESt8functionIFvRKNS_8DenseMapIPNS0_8JITDylibENS_8DenseSetINS0_15SymbolStringPtrENS_12DenseMapInfoISF_vEEEENSG_ISD_vEENS_6detail12DenseMapPairISD_SI_EEEEEE at /opt/julia/bin/../lib/julia/libLLVM-15jl.so (unknown line) _ZN4llvm3orc25InProgressFullLookupState8completeESt10unique_ptrINS0_21InProgressLookupStateESt14default_deleteIS3_EE at /opt/julia/bin/../lib/julia/libLLVM-15jl.so (unknown line) _ZN4llvm3orc16ExecutionSession19OL_applyQueryPhase1ESt10unique_ptrINS0_21InProgressLookupStateESt14default_deleteIS3_EENS_5ErrorE at /opt/julia/bin/../lib/julia/libLLVM-15jl.so (unknown line) _ZN4llvm3orc16ExecutionSession6lookupENS0_10LookupKindERKSt6vectorISt4pairIPNS0_8JITDylibENS0_19JITDylibLookupFlagsEESaIS8_EENS0_15SymbolLookupSetENS0_11SymbolStateENS_15unique_functionIFvNS_8ExpectedINS_8DenseMapINS0_15SymbolStringPtrENS_18JITEvaluatedSymbolENS_12DenseMapInfoISI_vEENS_6detail12DenseMapPairISI_SJ_EEEEEEEEESt8functionIFvRKNSH_IS6_NS_8DenseSetISI_SL_EENSK_IS6_vEENSN_IS6_SV_EEEEEE at /opt/julia/bin/../lib/julia/libLLVM-15jl.so (unknown line) _ZN4llvm3orc16ExecutionSession6lookupERKSt6vectorISt4pairIPNS0_8JITDylibENS0_19JITDylibLookupFlagsEESaIS7_EENS0_15SymbolLookupSetENS0_10LookupKindENS0_11SymbolStateESt8functionIFvRKNS_8DenseMapIS5_NS_8DenseSetINS0_15SymbolStringPtrENS_12DenseMapInfoISI_vEEEENSJ_IS5_vEENS_6detail12DenseMapPairIS5_SL_EEEEEE at /opt/julia/bin/../lib/julia/libLLVM-15jl.so (unknown line) addModule at /source/src/jitlayers.cpp:1604 jl_add_to_ee at /source/src/jitlayers.cpp:2015 _jl_compile_codeinst at /source/src/jitlayers.cpp:276 jl_generate_fptr_impl at /source/src/jitlayers.cpp:528 jl_compile_method_internal at /source/src/gf.c:2481 [inlined] jl_compile_method_internal at /source/src/gf.c:2368 _jl_invoke at /source/src/gf.c:2887 [inlined] ijl_apply_generic at /source/src/gf.c:3077 macro expansion at ./timing.jl:279 [inlined] top-level scope at /home/pkgeval/.julia/packages/BifurcationKit/3l0Yy/test/testHopfMA.jl:252 _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_invoke at /source/src/gf.c:2902 jl_toplevel_eval_flex at /source/src/toplevel.c:925 jl_toplevel_eval_flex at /source/src/toplevel.c:877 ijl_toplevel_eval_in at /source/src/toplevel.c:985 eval at ./boot.jl:385 [inlined] include_string at ./loading.jl:2146 _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 _include at ./loading.jl:2206 include at ./client.jl:494 unknown function (ip: 0x7f3e3137e125) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 jl_apply at /source/src/julia.h:1982 [inlined] do_call at /source/src/interpreter.c:126 eval_value at /source/src/interpreter.c:223 eval_stmt_value at /source/src/interpreter.c:174 [inlined] eval_body at /source/src/interpreter.c:635 eval_body at /source/src/interpreter.c:544 eval_body at /source/src/interpreter.c:544 eval_body at /source/src/interpreter.c:544 eval_body at /source/src/interpreter.c:544 jl_interpret_toplevel_thunk at /source/src/interpreter.c:775 jl_toplevel_eval_flex at /source/src/toplevel.c:934 jl_toplevel_eval_flex at /source/src/toplevel.c:877 ijl_toplevel_eval_in at /source/src/toplevel.c:985 eval at ./boot.jl:385 [inlined] include_string at ./loading.jl:2146 _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 _include at ./loading.jl:2206 include at ./client.jl:494 unknown function (ip: 0x7f3e3137e125) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 jl_apply at /source/src/julia.h:1982 [inlined] do_call at /source/src/interpreter.c:126 eval_value at /source/src/interpreter.c:223 eval_stmt_value at /source/src/interpreter.c:174 [inlined] eval_body at /source/src/interpreter.c:635 jl_interpret_toplevel_thunk at /source/src/interpreter.c:775 jl_toplevel_eval_flex at /source/src/toplevel.c:934 jl_toplevel_eval_flex at /source/src/toplevel.c:877 ijl_toplevel_eval_in at /source/src/toplevel.c:985 eval at ./boot.jl:385 [inlined] exec_options at ./client.jl:296 _start at ./client.jl:557 jfptr__start_82985.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 jl_apply at /source/src/julia.h:1982 [inlined] true_main at /source/src/jlapi.c:582 jl_repl_entrypoint at /source/src/jlapi.c:731 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x7f3e321d3249) __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) unknown function (ip: (nil)) ============================================================== Profile collected. A report will print at the next yield point ============================================================== 3.204718 seconds (578.60 k allocations: 59.313 MiB, 98.90% compilation time) 0.529407 seconds (178.47 k allocations: 32.419 MiB, 95.48% compilation time) ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_wait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/epoll.c:236 uv_run at /workspace/srcdir/libuv/src/unix/core.c:400 ijl_task_get_next at /source/src/partr.c:478 poptask at ./task.jl:999 wait at ./task.jl:1008 #wait#645 at ./condition.jl:130 wait at ./condition.jl:125 [inlined] wait at ./process.jl:661 jfptr_wait_74890.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 subprocess_handler at /source/usr/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:2048 #130 at /source/usr/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:1992 withenv at ./env.jl:257 #117 at /source/usr/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:1840 with_temp_env at /source/usr/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:1721 #115 at /source/usr/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:1810 #mktempdir#24 at ./file.jl:766 unknown function (ip: 0x71e5191afcb0) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 mktempdir at ./file.jl:762 mktempdir at ./file.jl:762 [inlined] #sandbox#114 at /source/usr/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:1768 sandbox at /source/usr/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:1759 unknown function (ip: 0x71e5191a8575) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 #test#127 at /source/usr/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:1971 test at /source/usr/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:1915 [inlined] #test#146 at /source/usr/share/julia/stdlib/v1.10/Pkg/src/API.jl:444 test at /source/usr/share/julia/stdlib/v1.10/Pkg/src/API.jl:423 unknown function (ip: 0x71e5191a8060) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 #test#77 at /source/usr/share/julia/stdlib/v1.10/Pkg/src/API.jl:159 unknown function (ip: 0x71e5191a7920) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 test at /source/usr/share/julia/stdlib/v1.10/Pkg/src/API.jl:148 #test#75 at /source/usr/share/julia/stdlib/v1.10/Pkg/src/API.jl:147 [inlined] test at /source/usr/share/julia/stdlib/v1.10/Pkg/src/API.jl:147 [inlined] #test#74 at /source/usr/share/julia/stdlib/v1.10/Pkg/src/API.jl:146 [inlined] test at /source/usr/share/julia/stdlib/v1.10/Pkg/src/API.jl:146 unknown function (ip: 0x71e5191a4019) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 jl_apply at /source/src/julia.h:1982 [inlined] do_call at /source/src/interpreter.c:126 eval_value at /source/src/interpreter.c:223 eval_stmt_value at /source/src/interpreter.c:174 [inlined] eval_body at /source/src/interpreter.c:635 eval_body at /source/src/interpreter.c:544 eval_body at /source/src/interpreter.c:544 jl_interpret_toplevel_thunk at /source/src/interpreter.c:775 jl_toplevel_eval_flex at /source/src/toplevel.c:934 jl_toplevel_eval_flex at /source/src/toplevel.c:877 ijl_toplevel_eval_in at /source/src/toplevel.c:985 eval at ./boot.jl:385 [inlined] include_string at ./loading.jl:2146 _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 _include at ./loading.jl:2206 include at ./Base.jl:495 jfptr_include_46609.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 exec_options at ./client.jl:323 _start at ./client.jl:557 jfptr__start_82985.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 jl_apply at /source/src/julia.h:1982 [inlined] true_main at /source/src/jlapi.c:582 jl_repl_entrypoint at /source/src/jlapi.c:731 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x71e519f9e249) __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) unknown function (ip: (nil)) ============================================================== Profile collected. A report will print at the next yield point ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.10/Profile/src/Profile.jl:1225 Overhead ╎ [+additional indent] Count File:Line; Function ========================================================= Thread 1 Task 0x000071e50ca00010 Total snapshots: 1. Utilization: 0% ╎1 @Base/client.jl:557; _start() ╎ 1 @Base/client.jl:323; exec_options(opts::Base.JLOptions) ╎ 1 @Base/Base.jl:495; include(mod::Module, _path::String) ╎ 1 @Base/loading.jl:2206; _include(mapexpr::Function, mod::Module, _path::S… ╎ 1 @Base/loading.jl:2146; include_string(mapexpr::typeof(identity), mod::M… ╎ 1 @Base/boot.jl:385; eval ╎ ╎ 1 @Pkg/src/API.jl:146; kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(… ╎ ╎ 1 @Pkg/src/API.jl:146; #test#74 ╎ ╎ 1 @Pkg/src/API.jl:147; test ╎ ╎ 1 @Pkg/src/API.jl:147; #test#75 ╎ ╎ 1 @Pkg/src/API.jl:148; kwcall(::@NamedTuple{julia_args::Cmd}, ::typ… ╎ ╎ ╎ 1 @Pkg/src/API.jl:159; test(pkgs::Vector{Pkg.Types.PackageSpec}; i… ╎ ╎ ╎ 1 @Pkg/src/API.jl:423; kwcall(::@NamedTuple{julia_args::Cmd, io::… ╎ ╎ ╎ 1 @Pkg/src/API.jl:444; test(ctx::Pkg.Types.Context, pkgs::Vector… ╎ ╎ ╎ 1 …/src/Operations.jl:1915; test ╎ ╎ ╎ 1 …src/Operations.jl:1971; test(ctx::Pkg.Types.Context, pkgs::… ╎ ╎ ╎ ╎ 1 …src/Operations.jl:1759; kwcall(::@NamedTuple{preferences::… ╎ ╎ ╎ ╎ 1 …src/Operations.jl:1768; sandbox(fn::Function, ctx::Pkg.Ty… ╎ ╎ ╎ ╎ 1 @Base/file.jl:762; mktempdir ╎ ╎ ╎ ╎ 1 @Base/file.jl:762; mktempdir(fn::Function, parent::Strin… ╎ ╎ ╎ ╎ 1 @Base/file.jl:766; mktempdir(fn::Pkg.Operations.var"#11… ╎ ╎ ╎ ╎ ╎ 1 …c/Operations.jl:1810; (::Pkg.Operations.var"#115#120"… ╎ ╎ ╎ ╎ ╎ 1 …c/Operations.jl:1721; with_temp_env(fn::Pkg.Operatio… ╎ ╎ ╎ ╎ ╎ 1 …/Operations.jl:1840; (::Pkg.Operations.var"#117#122… ╎ ╎ ╎ ╎ ╎ 1 @Base/env.jl:257; withenv(::Pkg.Operations.var"#130… ╎ ╎ ╎ ╎ ╎ 1 …Operations.jl:1992; (::Pkg.Operations.var"#130#13… ╎ ╎ ╎ ╎ ╎ ╎ 1 …Operations.jl:2048; subprocess_handler(cmd::Cmd,… ╎ ╎ ╎ ╎ ╎ ╎ 1 …se/process.jl:661; wait(x::Base.Process) ╎ ╎ ╎ ╎ ╎ ╎ 1 …/condition.jl:125; wait ╎ ╎ ╎ ╎ ╎ ╎ 1 …condition.jl:130; wait(c::Base.GenericConditi… ╎ ╎ ╎ ╎ ╎ ╎ 1 …ase/task.jl:1008; wait() ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 …ase/task.jl:999; poptask(W::Base.IntrusiveL… [276] signal (15): Terminated in expression starting at /home/pkgeval/.julia/packages/BifurcationKit/3l0Yy/test/testHopfMA.jl:249 PkgEval terminated after 2726.42s: test duration exceeded the time limit