Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.87 (8bcaa34afa*) started at 2025-11-15T09:56:20.624 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.39s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.16.0+0 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.11.4 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.97s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Error: Failed to use TestEnv.jl; test dependencies will not be precompiled │ exception = │ UndefVarError: `project_rel_path` not defined in `TestEnv` │ Suggestion: this global was defined as `Pkg.Operations.project_rel_path` but not assigned a value. │ Stacktrace: │ [1] get_test_dir(ctx::Pkg.Types.Context, pkgspec::PackageSpec) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:75 │ [2] test_dir_has_project_file │ @ ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:52 [inlined] │ [3] maybe_gen_project_override! │ @ ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:83 [inlined] │ [4] activate(pkg::String; allow_reresolve::Bool) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/activate_set.jl:12 │ [5] activate(pkg::String) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/activate_set.jl:9 │ [6] top-level scope │ @ /PkgEval.jl/scripts/precompile.jl:24 │ [7] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [8] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:344 │ [9] _start() │ @ Base ./client.jl:577 └ @ Main /PkgEval.jl/scripts/precompile.jl:26 Precompiling package dependencies... Precompiling packages... 2000.8 ms ✓ Measurements 3573.5 ms ✓ StatsBase 7886.4 ms ✓ RayTraceHeatTransfer 3 dependencies successfully precompiled in 14 seconds. 56 already precompiled. Precompilation completed after 24.85s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_XoIAPD/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.15 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_XoIAPD/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.11.4 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:02:53 Bin 1 progress: 70%|███████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001336376156726195 Iteration 10: d = 1.3642115534159365e-5 Iteration 20: d = 1.5931587862075945e-7 Iteration 30: d = 2.209113606628115e-9 Iteration 40: d = 3.3576996085551756e-11 Iteration 50: d = 5.387892663586371e-13 Iteration 60: d = 8.928895960555542e-15 Converged after 64 iterations. d = 1.710110499350927e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 67%|██████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013369623296832177 Iteration 10: d = 1.2979335200023526e-5 Iteration 20: d = 1.3298998413044103e-7 Iteration 30: d = 1.7121620722825734e-9 Iteration 40: d = 2.5943334627481343e-11 Iteration 50: d = 4.31773034683774e-13 Iteration 60: d = 7.545548876202217e-15 Converged after 64 iterations. d = 1.5151393180074112e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 68%|██████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001464404726488454 Iteration 10: d = 1.6671878230634595e-5 Iteration 20: d = 2.3101081215697951e-7 Iteration 30: d = 3.6900041442622943e-9 Iteration 40: d = 6.225815909519155e-11 Iteration 50: d = 1.0780136252411074e-12 Iteration 60: d = 1.8899435517651647e-14 Converged after 66 iterations. d = 1.6831103230760412e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 68%|██████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001343896918013495 Iteration 10: d = 1.4382162046397268e-5 Iteration 20: d = 1.7967794834494636e-7 Iteration 30: d = 2.656123026511693e-9 Iteration 40: d = 4.220138740316103e-11 Iteration 50: d = 6.955718983740773e-13 Iteration 60: d = 1.1680854794246551e-14 Converged after 65 iterations. d = 1.5374932585680028e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 68%|██████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013425464071822376 Iteration 10: d = 1.1564510689366709e-5 Iteration 20: d = 1.4525422671420842e-7 Iteration 30: d = 2.1771964871411155e-9 Iteration 40: d = 3.344011429601694e-11 Iteration 50: d = 5.153091546269618e-13 Iteration 60: d = 7.902174005373665e-15 Converged after 63 iterations. d = 2.215436616665626e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010742987629202233 Iteration 10: d = 7.132520583013461e-6 Iteration 20: d = 7.625563549985813e-8 Iteration 30: d = 1.1266814665408802e-9 Iteration 40: d = 1.7397732950365456e-11 Iteration 50: d = 2.7035225518639805e-13 Iteration 60: d = 4.218417200456052e-15 Converged after 62 iterations. d = 1.8721172373746526e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 86%|████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013123726960347056 Iteration 10: d = 1.0276242610849944e-5 Iteration 20: d = 1.219448688215676e-7 Iteration 30: d = 1.829543435943635e-9 Iteration 40: d = 2.8114677036176688e-11 Iteration 50: d = 4.330505919084514e-13 Iteration 60: d = 6.6683382098123104e-15 Converged after 63 iterations. d = 1.938497646979596e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 86%|████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012920404141515498 Iteration 10: d = 1.4085778529782859e-5 Iteration 20: d = 1.9005159331283292e-7 Iteration 30: d = 2.8439595262607527e-9 Iteration 40: d = 4.332861872336073e-11 Iteration 50: d = 6.640483740367654e-13 Iteration 60: d = 1.018591873995408e-14 Converged after 64 iterations. d = 1.877096556356117e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 86%|████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012831904113373331 Iteration 10: d = 1.1481745075039677e-5 Iteration 20: d = 1.465828368817346e-7 Iteration 30: d = 2.1940832386487317e-9 Iteration 40: d = 3.352360631195163e-11 Iteration 50: d = 5.14675618143085e-13 Iteration 60: d = 7.922781508730695e-15 Converged after 64 iterations. d = 1.5400418926823493e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011389535921461414 Iteration 10: d = 6.199111105004051e-6 Iteration 20: d = 4.5678464296527735e-8 Iteration 30: d = 5.716310582066049e-10 Iteration 40: d = 8.33441318548618e-12 Iteration 50: d = 1.257767113956967e-13 Converged after 60 iterations. d = 1.907365570156493e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.004639465645473182 Iteration 10: d = 2.7924690406515882e-5 Iteration 20: d = 2.011094005332017e-7 Iteration 30: d = 2.1489288397996884e-9 Iteration 40: d = 2.725488315860825e-11 Iteration 50: d = 3.6638465270707327e-13 Iteration 60: d = 5.014102143113258e-15 Converged after 62 iterations. d = 2.187598784745278e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0030561595722242542 Iteration 10: d = 1.8311552769278035e-5 Iteration 20: d = 1.854370569758046e-7 Iteration 30: d = 2.676543881358556e-9 Iteration 40: d = 4.083230610972688e-11 Iteration 50: d = 6.300178393214391e-13 Iteration 60: d = 9.733204588852153e-15 Converged after 64 iterations. d = 1.8578526640629337e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0023187079409651336 Iteration 10: d = 2.7845257646666387e-5 Iteration 20: d = 3.7838770142902125e-7 Iteration 30: d = 5.6954076860319874e-9 Iteration 40: d = 8.909091674921081e-11 Iteration 50: d = 1.419847271182213e-12 Iteration 60: d = 2.284851825963421e-14 Converged after 66 iterations. d = 1.9096469121328838e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0021141433036107925 Iteration 10: d = 2.4599968800304956e-5 Iteration 20: d = 3.5405909138846897e-7 Iteration 30: d = 6.0313407398095995e-9 Iteration 40: d = 1.0867285363237269e-10 Iteration 50: d = 1.99597381703111e-12 Iteration 60: d = 3.690347205131644e-14 Converged after 68 iterations. d = 1.5287604653683098e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 88%|█████████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013425464071822376 Iteration 10: d = 1.1564510689366709e-5 Iteration 20: d = 1.4525422671420842e-7 Iteration 30: d = 2.1771964871411155e-9 Iteration 40: d = 3.344011429601694e-11 Iteration 50: d = 5.153091546269618e-13 Iteration 60: d = 7.902174005373665e-15 Converged after 63 iterations. d = 2.215436616665626e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015673625939422718 Iteration 10: d = 2.3958027240196755e-5 Iteration 20: d = 3.2523840001629303e-7 Iteration 30: d = 4.567742746346868e-9 Iteration 40: d = 6.437477686973356e-11 Iteration 50: d = 9.078564113321357e-13 Iteration 60: d = 1.280392524818769e-14 Converged after 65 iterations. d = 1.5404598808155658e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:01 Bin 1 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012776655607734542 Iteration 10: d = 1.0633115596158776e-5 Iteration 20: d = 1.1916625273292989e-7 Iteration 30: d = 1.5727464025163375e-9 Iteration 40: d = 2.1502784151502063e-11 Iteration 50: d = 2.9742358610854247e-13 Iteration 60: d = 4.1090087427151065e-15 Converged after 62 iterations. d = 1.752909738343855e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.902262572641 Iteration 2: convergence error = 4817.1774487637285 Iteration 3: convergence error = 1097.3599684294272 Iteration 4: convergence error = 321.34083576448506 Iteration 5: convergence error = 95.4263258358726 Iteration 6: convergence error = 28.47854617140206 Iteration 7: convergence error = 8.521841560214853 Iteration 8: convergence error = 2.5561792577109372 Iteration 9: convergence error = 0.7649380033985835 Iteration 10: convergence error = 0.22859698440856846 Iteration 11: convergence error = 0.06826184829060367 Iteration 12: convergence error = 0.020374840256408788 Iteration 13: convergence error = 0.006079969820348197 Iteration 14: convergence error = 0.001814037986605399 Iteration 15: convergence error = 0.0005411972820184019 Iteration 16: convergence error = 0.00016145231279551808 Iteration 17: convergence error = 4.816382988792611e-5 Iteration 18: convergence error = 1.4367816220328677e-5 Iteration 19: convergence error = 4.286043349566171e-6 Iteration 20: convergence error = 1.2785665148840053e-6 Iteration 21: convergence error = 3.8139501157274935e-7 Iteration 22: convergence error = 1.1363886187609751e-7 Iteration 23: convergence error = 3.298805495433044e-8 Iteration 24: convergence error = 9.524001143290661e-9 Iteration 25: convergence error = 2.7380337996874005e-9 Iteration 26: convergence error = 7.82847564551048e-10 Iteration 27: convergence error = 2.2509993868879974e-10 Iteration 28: convergence error = 6.411937647499144e-11 Iteration 29: convergence error = 1.8417267710901797e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015673625939422718 Iteration 10: d = 2.3958027240196755e-5 Iteration 20: d = 3.2523840001629303e-7 Iteration 30: d = 4.567742746346868e-9 Iteration 40: d = 6.437477686973356e-11 Iteration 50: d = 9.078564113321357e-13 Iteration 60: d = 1.280392524818769e-14 Converged after 65 iterations. d = 1.5404598808155658e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8652.064788459144 Iteration 2: convergence error = 4827.255715472587 Iteration 3: convergence error = 1093.007901600345 Iteration 4: convergence error = 318.5963884891207 Iteration 5: convergence error = 94.40179492706284 Iteration 6: convergence error = 28.136070438431943 Iteration 7: convergence error = 8.460643549828092 Iteration 8: convergence error = 2.5362131291551577 Iteration 9: convergence error = 0.7584801339048681 Iteration 10: convergence error = 0.22652207328792429 Iteration 11: convergence error = 0.0675987442598398 Iteration 12: convergence error = 0.020163876982906004 Iteration 13: convergence error = 0.006013114112192852 Iteration 14: convergence error = 0.0017929236946656602 Iteration 15: convergence error = 0.0005345494439552567 Iteration 16: convergence error = 0.00015936500903990236 Iteration 17: convergence error = 4.751009669234918e-5 Iteration 18: convergence error = 1.4163536889100214e-5 Iteration 19: convergence error = 4.222341885906644e-6 Iteration 20: convergence error = 1.2587313449330395e-6 Iteration 21: convergence error = 3.752411430468783e-7 Iteration 22: convergence error = 1.117275587603217e-7 Iteration 23: convergence error = 3.2397792892879806e-8 Iteration 24: convergence error = 9.342329576611519e-9 Iteration 25: convergence error = 2.683691491256468e-9 Iteration 26: convergence error = 7.753442332614213e-10 Iteration 27: convergence error = 2.241904439870268e-10 Iteration 28: convergence error = 6.343725544866174e-11 Iteration 29: convergence error = 1.9099388737231493e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 9:11:08 Bin 1 ray tracing: 14%|████ | ETA: 0:00:28 Bin 1 ray tracing: 27%|████████ | ETA: 0:00:15 Bin 1 ray tracing: 40%|████████████ | ETA: 0:00:09 Bin 1 ray tracing: 53%|████████████████ | ETA: 0:00:06 Bin 1 ray tracing: 66%|███████████████████▉ | ETA: 0:00:04 Bin 1 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:02 Bin 1 ray tracing: 92%|███████████████████████████▊ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 13%|████ | ETA: 0:00:07 Bin 2 ray tracing: 27%|████████▏ | ETA: 0:00:05 Bin 2 ray tracing: 41%|████████████▎ | ETA: 0:00:04 Bin 2 ray tracing: 54%|████████████████▎ | ETA: 0:00:04 Bin 2 ray tracing: 68%|████████████████████▎ | ETA: 0:00:02 Bin 2 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:01 Bin 2 ray tracing: 96%|████████████████████████████▋ | ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 13%|███▉ | ETA: 0:00:07 Bin 3 ray tracing: 27%|████████ | ETA: 0:00:06 Bin 3 ray tracing: 40%|████████████ | ETA: 0:00:05 Bin 3 ray tracing: 53%|████████████████ | ETA: 0:00:04 Bin 3 ray tracing: 67%|████████████████████▏ | ETA: 0:00:03 Bin 3 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:01 Bin 3 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 14%|████▏ | ETA: 0:00:06 Bin 4 ray tracing: 28%|████████▍ | ETA: 0:00:05 Bin 4 ray tracing: 42%|████████████▌ | ETA: 0:00:04 Bin 4 ray tracing: 55%|████████████████▋ | ETA: 0:00:03 Bin 4 ray tracing: 69%|████████████████████▉ | ETA: 0:00:02 Bin 4 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:01 Bin 4 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 14%|████▏ | ETA: 0:00:06 Bin 5 ray tracing: 28%|████████▎ | ETA: 0:00:05 Bin 5 ray tracing: 42%|████████████▌ | ETA: 0:00:04 Bin 5 ray tracing: 55%|████████████████▌ | ETA: 0:00:03 Bin 5 ray tracing: 68%|████████████████████▍ | ETA: 0:00:02 Bin 5 ray tracing: 80%|████████████████████████▏ | ETA: 0:00:01 Bin 5 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 14%|████▎ | ETA: 0:00:06 Bin 6 ray tracing: 29%|████████▊ | ETA: 0:00:05 Bin 6 ray tracing: 44%|█████████████▏ | ETA: 0:00:04 Bin 6 ray tracing: 58%|█████████████████▍ | ETA: 0:00:03 Bin 6 ray tracing: 71%|█████████████████████▌ | ETA: 0:00:02 Bin 6 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:01 Bin 6 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 14%|████▎ | ETA: 0:00:06 Bin 7 ray tracing: 28%|████████▌ | ETA: 0:00:05 Bin 7 ray tracing: 43%|████████████▊ | ETA: 0:00:04 Bin 7 ray tracing: 57%|█████████████████ | ETA: 0:00:03 Bin 7 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:02 Bin 7 ray tracing: 86%|█████████████████████████▋ | ETA: 0:00:01 Bin 7 ray tracing: 99%|██████████████████████████████| ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 14%|████▏ | ETA: 0:00:06 Bin 8 ray tracing: 28%|████████▍ | ETA: 0:00:05 Bin 8 ray tracing: 42%|████████████▋ | ETA: 0:00:04 Bin 8 ray tracing: 56%|████████████████▉ | ETA: 0:00:03 Bin 8 ray tracing: 69%|████████████████████▊ | ETA: 0:00:02 Bin 8 ray tracing: 83%|█████████████████████████ | ETA: 0:00:01 Bin 8 ray tracing: 97%|█████████████████████████████▎| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 10%|███ | ETA: 0:00:09 Bin 9 ray tracing: 20%|██████ | ETA: 0:00:08 Bin 9 ray tracing: 30%|█████████▏ | ETA: 0:00:07 Bin 9 ray tracing: 41%|████████████▎ | ETA: 0:00:06 Bin 9 ray tracing: 50%|███████████████ | ETA: 0:00:05 Bin 9 ray tracing: 59%|█████████████████▋ | ETA: 0:00:04 Bin 9 ray tracing: 68%|████████████████████▍ | ETA: 0:00:03 Bin 9 ray tracing: 78%|███████████████████████▎ | ETA: 0:00:02 Bin 9 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:01 Bin 9 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 10%|██▉ | ETA: 0:00:10 Bin 10 ray tracing: 19%|█████▋ | ETA: 0:00:09 Bin 10 ray tracing: 28%|████████▏ | ETA: 0:00:08 Bin 10 ray tracing: 37%|██████████▊ | ETA: 0:00:07 Bin 10 ray tracing: 46%|█████████████▎ | ETA: 0:00:06 Bin 10 ray tracing: 55%|███████████████▉ | ETA: 0:00:05 Bin 10 ray tracing: 65%|██████████████████▉ | ETA: 0:00:04 Bin 10 ray tracing: 75%|█████████████████████▊ | ETA: 0:00:03 Bin 10 ray tracing: 84%|████████████████████████▍ | ETA: 0:00:02 Bin 10 ray tracing: 93%|███████████████████████████ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 22%|███████▍ | ETA: 0:00:04 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 27%|████████▊ | ETA: 0:00:03 Bin 2 progress: 64%|█████████████████████▎ | ETA: 0:00:01 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 3 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 33%|███████████ | ETA: 0:00:02 Bin 4 progress: 64%|█████████████████████▎ | ETA: 0:00:01 Bin 4 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 5 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 6 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 7 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 31%|██████████▎ | ETA: 0:00:02 Bin 8 progress: 64%|█████████████████████▎ | ETA: 0:00:01 Bin 8 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 33%|███████████ | ETA: 0:00:02 Bin 9 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 33%|██████████▋ | ETA: 0:00:02 Bin 10 progress: 69%|██████████████████████ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:02 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015673625939422718 Iteration 10: d = 2.3958027240196755e-5 Iteration 20: d = 3.2523840001629303e-7 Iteration 30: d = 4.567742746346868e-9 Iteration 40: d = 6.437477686973356e-11 Iteration 50: d = 9.078564113321357e-13 Iteration 60: d = 1.280392524818769e-14 Converged after 65 iterations. d = 1.5404598808155658e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012809098169079124 Iteration 10: d = 1.0480315446973648e-5 Iteration 20: d = 1.1640443281777937e-7 Iteration 30: d = 1.534724268289741e-9 Iteration 40: d = 2.0999202597882683e-11 Iteration 50: d = 2.9086347673430923e-13 Iteration 60: d = 4.0697355904530765e-15 Converged after 62 iterations. d = 1.7087498437666231e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00150732475026184 Iteration 10: d = 1.738223017533778e-5 Iteration 20: d = 2.16010476767464e-7 Iteration 30: d = 2.89285851855577e-9 Iteration 40: d = 3.9414455701240396e-11 Iteration 50: d = 5.413432460518643e-13 Iteration 60: d = 7.462060331980876e-15 Converged after 63 iterations. d = 2.0567638266182223e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012437684260133458 Iteration 10: d = 9.446004884324344e-6 Iteration 20: d = 9.861987328419985e-8 Iteration 30: d = 1.2371537553313802e-9 Iteration 40: d = 1.612151741645613e-11 Iteration 50: d = 2.1205634531072355e-13 Iteration 60: d = 2.750245366371878e-15 Converged after 61 iterations. d = 1.834953322387098e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016620851009522565 Iteration 10: d = 1.441365960961652e-5 Iteration 20: d = 1.3248471239371357e-7 Iteration 30: d = 1.6127691694991722e-9 Iteration 40: d = 2.1318382056296485e-11 Iteration 50: d = 2.881454511593015e-13 Iteration 60: d = 3.936771288487198e-15 Converged after 62 iterations. d = 1.6895906982839851e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013930103690487357 Iteration 10: d = 9.728398352643642e-6 Iteration 20: d = 9.374195922317083e-8 Iteration 30: d = 1.2293366520804502e-9 Iteration 40: d = 1.712796801405909e-11 Iteration 50: d = 2.4148225708070647e-13 Iteration 60: d = 3.420020736089675e-15 Converged after 62 iterations. d = 1.4657480749036558e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014823678020887995 Iteration 10: d = 2.05553063548139e-5 Iteration 20: d = 2.721576280018772e-7 Iteration 30: d = 3.795546266637341e-9 Iteration 40: d = 5.3771113069152533e-11 Iteration 50: d = 7.664449207916921e-13 Iteration 60: d = 1.0923413506449176e-14 Converged after 64 iterations. d = 2.0237225557136923e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00171653157272442 Iteration 10: d = 2.2474333088900783e-5 Iteration 20: d = 2.9200297290657084e-7 Iteration 30: d = 4.073714070577595e-9 Iteration 40: d = 5.757795378291901e-11 Iteration 50: d = 8.172902257368515e-13 Iteration 60: d = 1.1648069088249671e-14 Converged after 64 iterations. d = 2.092444728953623e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001575142753088076 Iteration 10: d = 1.460110218808183e-5 Iteration 20: d = 1.590858792150565e-7 Iteration 30: d = 2.154070100330631e-9 Iteration 40: d = 3.044623245374998e-11 Iteration 50: d = 4.327619642522767e-13 Iteration 60: d = 6.128538166654242e-15 Converged after 63 iterations. d = 1.7423438234775972e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012723314947942555 Iteration 10: d = 9.56495476498282e-6 Iteration 20: d = 9.551605910517234e-8 Iteration 30: d = 1.3036294099939283e-9 Iteration 40: d = 1.8457987739219375e-11 Iteration 50: d = 2.6105907683462725e-13 Iteration 60: d = 3.6770998192909306e-15 Converged after 62 iterations. d = 1.5738636334155968e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8652.952732030379 Iteration 2: convergence error = 4815.605440733869 Iteration 3: convergence error = 1099.2944028092631 Iteration 4: convergence error = 314.72463072389496 Iteration 5: convergence error = 93.89568650132787 Iteration 6: convergence error = 28.468745059331468 Iteration 7: convergence error = 8.58185234931625 Iteration 8: convergence error = 2.5774149403014235 Iteration 9: convergence error = 0.7723499603607706 Iteration 10: convergence error = 0.23113937529501527 Iteration 11: convergence error = 0.06912019827200311 Iteration 12: convergence error = 0.020660810568642773 Iteration 13: convergence error = 0.006174211253437534 Iteration 14: convergence error = 0.0018448172738771973 Iteration 15: convergence error = 0.0005511747347100027 Iteration 16: convergence error = 0.00016466619445054675 Iteration 17: convergence error = 4.9193478389497614e-5 Iteration 18: convergence error = 1.4696148127768538e-5 Iteration 19: convergence error = 4.390310323287849e-6 Iteration 20: convergence error = 1.3115538877173094e-6 Iteration 21: convergence error = 3.918082711606985e-7 Iteration 22: convergence error = 1.1692350199155044e-7 Iteration 23: convergence error = 3.405057213967666e-8 Iteration 24: convergence error = 9.843688530963846e-9 Iteration 25: convergence error = 2.8351223591016605e-9 Iteration 26: convergence error = 8.119513950077817e-10 Iteration 27: convergence error = 2.319211489520967e-10 Iteration 28: convergence error = 6.684786058031023e-11 Iteration 29: convergence error = 2.000888343900442e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.2814255174296 K, F = -7454.958319252837, relative_change = 0.03271857448257035 Iter 2: T = 936.6362354589027 K, F = -6319.430357194685, relative_change = 0.03168177249153093 Iter 3: T = 908.0331774291878 K, F = -5355.358579519129, relative_change = 0.030538064775703207 Iter 5: T = 856.8158382763863 K, F = -3842.308172976379, relative_change = 0.027934967468699733 Iter 10: T = 761.5126257626572 K, F = -1663.8590671339477, relative_change = 0.02002464713442274 Iter 15: T = 705.6657564104144 K, F = -712.4279456955902, relative_change = 0.012012264641947924 Iter 20: T = 676.9232735860684 K, F = -301.96336104270165, relative_change = 0.006156426553360436 Iter 25: T = 663.5136155649989 K, F = -127.12385526321812, relative_change = 0.0028453179728832154 Iter 30: T = 657.6087602805984 K, F = -53.32459704258488, relative_change = 0.0012449241900846693 Iter 35: T = 655.0823013999099 K, F = -22.33003848002894, relative_change = 0.0005309231963856369 Iter 40: T = 654.015323387047 K, F = -9.343855121871416, relative_change = 0.00022388915363448795 Iter 45: T = 653.5672523505365 K, F = -3.908621742786132, relative_change = 9.39607879721431e-5 Iter 50: T = 653.3795380559224 K, F = -1.6347919099545156, relative_change = 3.9353128407521575e-5 Iter 55: T = 653.3009765645863 K, F = -0.6837174520386017, relative_change = 1.6468045108732317e-5 Iter 60: T = 653.2681112052874 K, F = -0.28594369502573147, relative_change = 6.888900672629406e-6 Iter 65: T = 653.2543647686242 K, F = -0.11958592380166616, relative_change = 2.8813297927073063e-6 Iter 70: T = 653.2486155383397 K, F = -0.05001241115201843, relative_change = 1.205060628047091e-6 Iter 75: T = 653.2462110879965 K, F = -0.02091581379121582, relative_change = 5.039802085221874e-7 Iter 80: T = 653.2452055087768 K, F = -0.008747247691996973, relative_change = 2.1077219701120755e-7 Iter 85: T = 653.244784961899 K, F = -0.0036582042487383615, relative_change = 8.814773939016035e-8 Iter 90: T = 653.2446090838856 K, F = -0.0015299048440714502, relative_change = 3.686448792483423e-8 Iter 95: T = 653.2445355295499 K, F = -0.0006398245013501946, relative_change = 1.541717796369791e-8 Iter 100: T = 653.2445047682395 K, F = -0.0002675822508171888, relative_change = 6.44764946788554e-9 Iter 105: T = 653.2444919034906 K, F = -0.00011190609411421137, relative_change = 2.696484290782814e-9 Iter 110: T = 653.2444865232986 K, F = -4.680046455646236e-5, relative_change = 1.1277019667715058e-9 Iter 115: T = 653.2444842732382 K, F = -1.957251321016429e-5, relative_change = 4.71618438254922e-10 Iter 120: T = 653.244483332236 K, F = -8.185459632881198e-6, relative_change = 1.972364853446222e-10 Iter 125: T = 653.2444829386976 K, F = -3.423256647649975e-6, relative_change = 8.248664605704395e-11 Iter 130: T = 653.2444827741152 K, F = -1.4316472642383893e-6, relative_change = 3.44969114093417e-11 Iter 135: T = 653.2444827052848 K, F = -5.987321915479349e-7, relative_change = 1.442702535467023e-11 Iter 140: T = 653.244482676499 K, F = -2.5039610390686917e-7, relative_change = 6.033533842891289e-12 Iter 145: T = 653.2444826644606 K, F = -1.0471892103458558e-7, relative_change = 2.5233026562732217e-12 Iter 150: T = 653.2444826594259 K, F = -4.379437779089557e-8, relative_change = 1.0552674599956745e-12 Iter 155: T = 653.2444826573204 K, F = -1.8315409411329142e-8, relative_change = 4.4132732427103494e-13 Converged in 159 iterations to T = 653.2444826565604 K Iter 1: T = 970.4630603768363 K, F = -6730.019790020933, relative_change = 0.029536939623163623 Iter 2: T = 943.0927135736566 K, F = -5699.985835270858, relative_change = 0.02820338858910471 Iter 3: T = 917.8434761672737 K, F = -4825.844567433752, relative_change = 0.026772805094322196 Iter 5: T = 873.4886152897608 K, F = -3455.035346779411, relative_change = 0.023666992650906018 Iter 10: T = 794.8885045215517 K, F = -1486.8180257077586, relative_change = 0.015361896552391978 Iter 15: T = 752.1633680155878 K, F = -632.7849197547346, relative_change = 0.008388114796353147 Iter 20: T = 731.459781286239 K, F = -267.0695701267163, relative_change = 0.004028394516609332 Iter 25: T = 722.1505949526281 K, F = -112.17079176871931, relative_change = 0.0017968914003360108 Iter 30: T = 718.1275762889345 K, F = -46.99968407729989, relative_change = 0.0007730732969767329 Iter 35: T = 716.4210169190582 K, F = -19.67168651608221, relative_change = 0.0003272461855949977 Iter 40: T = 715.7029920524225 K, F = -8.229736145669529, relative_change = 0.0001375593491935549 Iter 45: T = 715.401941443936 K, F = -3.442266110648629, relative_change = 5.7652507592125934e-5 Iter 50: T = 715.2759042439031 K, F = -1.439683033381216, relative_change = 2.4132643533169247e-5 Iter 55: T = 715.2231704580129 K, F = -0.6021077321949179, relative_change = 1.0096355952604466e-5 Iter 60: T = 715.2011124413813 K, F = -0.25181128507356654, relative_change = 4.223080965251121e-6 Iter 65: T = 715.1918867949854 K, F = -0.10531094859947587, relative_change = 1.7662591125643525e-6 Iter 70: T = 715.1880283934673 K, F = -0.04404237717034931, relative_change = 7.386909830934316e-7 Iter 75: T = 715.1864147418316 K, F = -0.018419062235958017, relative_change = 3.089329465430323e-7 Iter 80: T = 715.1857398895914 K, F = -0.007703074267296661, relative_change = 1.292000695592219e-7 Iter 85: T = 715.1854576576509 K, F = -0.003221518083406427, relative_change = 5.403312080946076e-8 Iter 90: T = 715.1853396247649 K, F = -0.0013472774098516327, relative_change = 2.259731541706038e-8 Iter 95: T = 715.1852902619818 K, F = -0.0005634475161466757, relative_change = 9.450470507649604e-9 Iter 100: T = 715.1852696178728 K, F = -0.00023564048293567286, relative_change = 3.952300217189342e-9 Iter 105: T = 715.1852609842592 K, F = -9.854766470007714e-5, relative_change = 1.6528992562376167e-9 Iter 110: T = 715.1852573735789 K, F = -4.121381168276095e-5, relative_change = 6.912622488004818e-10 Iter 115: T = 715.1852558635492 K, F = -1.723610925741248e-5, relative_change = 2.890941477904277e-10 Iter 120: T = 715.1852552320366 K, F = -7.2083471696071655e-6, relative_change = 1.2090263293265233e-10 Iter 125: T = 715.1852549679306 K, F = -3.014616831276129e-6, relative_change = 5.0562924377719644e-11 Iter 130: T = 715.1852548574783 K, F = -1.2607486217230957e-6, relative_change = 2.1146016503658817e-11 Iter 135: T = 715.1852548112859 K, F = -5.272604347572596e-7, relative_change = 8.843521750825871e-12 Iter 140: T = 715.1852547919676 K, F = -2.2050675485552063e-7, relative_change = 3.698468829578273e-12 Iter 145: T = 715.1852547838885 K, F = -9.22181944140732e-8, relative_change = 1.5467377305618356e-12 Iter 150: T = 715.1852547805097 K, F = -3.8566837057274483e-8, relative_change = 6.468656473407938e-13 Iter 155: T = 715.1852547790967 K, F = -1.613033973058009e-8, relative_change = 2.705475337853424e-13 Converged in 157 iterations to T = 715.1852547787976 K Iter 1: T = 974.4883420919233 K, F = -5812.855522206954, relative_change = 0.025511657908076676 Iter 2: T = 951.165376644146 K, F = -4917.783241759169, relative_change = 0.023933549987586386 Iter 3: T = 929.9557618951212 K, F = -4158.733970469182, relative_change = 0.02229855634974382 Iter 5: T = 893.5206419397945 K, F = -2969.980712519049, relative_change = 0.018942787542879615 Iter 10: T = 832.1989906893501 K, F = -1269.8528826734569, relative_change = 0.011110913422320658 Iter 15: T = 801.1039236403338 K, F = -537.6505351268597, relative_change = 0.005601335959070386 Iter 20: T = 786.73449275356 K, F = -226.2065309327028, relative_change = 0.0025646681264422416 Iter 25: T = 780.4385506586189 K, F = -94.85827569900269, relative_change = 0.00111705935908988 Iter 30: T = 777.751011432365 K, F = -39.71720716094099, relative_change = 0.0004754301823018989 Iter 35: T = 776.6171605844976 K, F = -16.618436671218667, relative_change = 0.0002003135279552283 Iter 40: T = 776.1412134791261 K, F = -6.95147650673546, relative_change = 8.403572782097191e-5 Iter 45: T = 775.941857346096 K, F = -2.907444386117258, relative_change = 3.519081826106637e-5 Iter 50: T = 775.8584299706093 K, F = -1.2159724194382489, relative_change = 1.4725294252367366e-5 Iter 55: T = 775.8235301446764 K, F = -0.5085419663118551, relative_change = 6.159707165415188e-6 Iter 60: T = 775.8089329581048 K, F = -0.21267968431949913, relative_change = 2.576310361342123e-6 Iter 65: T = 775.8028279495088 K, F = -0.0889454219118806, relative_change = 1.0774870131454047e-6 Iter 70: T = 775.8002747111319 K, F = -0.03719807929813501, relative_change = 4.506255020841928e-7 Iter 75: T = 775.7992069074526 K, F = -0.015556688279722897, relative_change = 1.8845828976721602e-7 Iter 80: T = 775.7987603376454 K, F = -0.006505994095891143, relative_change = 7.881573885637406e-8 Iter 85: T = 775.7985735765468 K, F = -0.00272088465189102, relative_change = 3.296172373038594e-8 Iter 90: T = 775.7984954707772 K, F = -0.0011379064928569438, relative_change = 1.378499356878444e-8 Iter 95: T = 775.7984628060035 K, F = -0.0004758860921740826, relative_change = 5.76505018327467e-9 Iter 100: T = 775.7984491452036 K, F = -0.00019902125016657557, relative_change = 2.4110130760508863e-9 Iter 105: T = 775.7984434320936 K, F = -8.323306526936136e-5, relative_change = 1.0083145171305097e-9 Iter 110: T = 775.7984410428027 K, F = -3.480906151320795e-5, relative_change = 4.21689174278728e-10 Iter 115: T = 775.7984400435727 K, F = -1.4557565503725556e-5, relative_change = 1.7635545307910758e-10 Iter 120: T = 775.7984396256827 K, F = -6.088147316396508e-6, relative_change = 7.375395157070154e-11 Iter 125: T = 775.7984394509161 K, F = -2.5461356045752837e-6, relative_change = 3.084477962087976e-11 Iter 130: T = 775.7984393778268 K, F = -1.0648245627464803e-6, relative_change = 1.2899658183377197e-11 Iter 135: T = 775.7984393472599 K, F = -4.4532305121247617e-7, relative_change = 5.394799616643374e-12 Iter 140: T = 775.7984393344764 K, F = -1.8623797592987046e-7, relative_change = 2.2561521540243583e-12 Iter 145: T = 775.7984393291302 K, F = -7.788799927244128e-8, relative_change = 9.435625385184776e-13 Iter 150: T = 775.7984393268944 K, F = -3.257362413133791e-8, relative_change = 3.94608306306933e-13 Converged in 154 iterations to T = 775.7984393260873 K Iter 1: T = 970.3655855214765 K, F = -6752.229528537192, relative_change = 0.029634414478523434 Iter 2: T = 942.895909754621 K, F = -5718.948137529298, relative_change = 0.028308584080806234 Iter 3: T = 917.5460835395844 K, F = -4842.037823642634, relative_change = 0.026885073901353147 Iter 5: T = 872.9893000427966 K, F = -3466.8477885408342, relative_change = 0.0237902623667606 Iter 10: T = 793.9224580085075 K, F = -1492.162244434923, relative_change = 0.015484561057382726 Iter 15: T = 750.8581171938733 K, F = -635.1572388273507, relative_change = 0.008475270612771488 Iter 20: T = 729.9595337674257 K, F = -268.0976003692411, relative_change = 0.004076456470764112 Iter 25: T = 720.5547466247031 K, F = -112.60845598908728, relative_change = 0.001819767032808734 Iter 30: T = 716.4887376435182 K, F = -47.184209780153054, relative_change = 0.0007832007997064492 Iter 35: T = 714.7636224975976 K, F = -19.749129160565353, relative_change = 0.00033158606119676703 Iter 40: T = 714.0377324345222 K, F = -8.262171992518201, relative_change = 0.00013939309994331388 Iter 45: T = 713.7333738393182 K, F = -3.4558397009529345, relative_change = 5.8422723119776945e-5 Iter 50: T = 713.6059499115029 K, F = -1.4453611679765115, relative_change = 2.4455340141235804e-5 Iter 55: T = 713.5526356026643 K, F = -0.604482658078686, relative_change = 1.0231413747025147e-5 Iter 60: T = 713.5303347033893 K, F = -0.2528045533245497, relative_change = 4.279581640986261e-6 Iter 65: T = 713.5210074628947 K, F = -0.10572635327058877, relative_change = 1.789891500534729e-6 Iter 70: T = 713.5171065704187 K, F = -0.04421610577014812, relative_change = 7.485748776240677e-7 Iter 75: T = 713.5154751480162 K, F = -0.018491717858792556, relative_change = 3.1306660509545786e-7 Iter 80: T = 713.5147928637344 K, F = -0.0077334597584546305, relative_change = 1.3092883166943459e-7 Iter 85: T = 713.5145075236088 K, F = -0.003234225666593038, relative_change = 5.4756112706394e-8 Iter 90: T = 713.5143881908398 K, F = -0.0013525918744847765, relative_change = 2.289967977958228e-8 Iter 95: T = 713.5143382844295 K, F = -0.0005656700887379795, relative_change = 9.57692298106453e-9 Iter 100: T = 713.514317412969 K, F = -0.0002365699882308503, relative_change = 4.005184148072667e-9 Iter 105: T = 713.5143086842743 K, F = -9.893639363245388e-5, relative_change = 1.675015928637116e-9 Iter 110: T = 713.5143050338299 K, F = -4.137638140111477e-5, relative_change = 7.005116829091827e-10 Iter 115: T = 713.5143035071704 K, F = -1.7304095720427348e-5, relative_change = 2.9296233569368054e-10 Iter 120: T = 713.5143028687032 K, F = -7.236779961838913e-6, relative_change = 1.2252035609414665e-10 Iter 125: T = 713.5143026016887 K, F = -3.0265080661617816e-6, relative_change = 5.123948062591172e-11 Iter 130: T = 713.51430249002 K, F = -1.2657225939571859e-6, relative_change = 2.1428975889505302e-11 Iter 135: T = 713.5143024433188 K, F = -5.2934091521184e-7, relative_change = 8.961863971689313e-12 Iter 140: T = 713.5143024237877 K, F = -2.213767569259062e-7, relative_change = 3.7479596330245776e-12 Iter 145: T = 713.5143024156197 K, F = -9.258184852090068e-8, relative_change = 1.56743208205088e-12 Iter 150: T = 713.5143024122037 K, F = -3.8720023520788516e-8, relative_change = 6.555389426247062e-13 Iter 155: T = 713.514302410775 K, F = -1.619347533843296e-8, relative_change = 2.7415927821369826e-13 Converged in 157 iterations to T = 713.5143024104727 K Iter 1: T = 969.2292642750106 K, F = -7011.141405465023, relative_change = 0.03077073572498942 Iter 2: T = 940.5970011860078 K, F = -5940.074884811203, relative_change = 0.029541269691665636 Iter 3: T = 914.0645922723709 K, F = -5030.948339835223, relative_change = 0.02820805178007367 Iter 5: T = 867.1160633606032 K, F = -3604.7929657416335, relative_change = 0.025261040161093803 Iter 10: T = 782.4115464406373 K, F = -1554.8170277049621, relative_change = 0.017000198517405352 Iter 15: T = 735.1325025196886 K, F = -663.1023689707154, relative_change = 0.009586683034100062 Iter 20: T = 711.7574048295015 K, F = -280.2526256869777, relative_change = 0.004702274812634587 Iter 25: T = 701.1225036810225 K, F = -117.79436009712744, relative_change = 0.0021209465919971525 Iter 30: T = 696.4997048736528 K, F = -49.37294783017612, relative_change = 0.0009172298145794576 Iter 35: T = 694.533550225886 K, F = -20.668137912504903, relative_change = 0.00038915110915823574 Iter 40: T = 693.7053597660213 K, F = -8.647164112165068, relative_change = 0.00016373993533673356 Iter 45: T = 693.3579516069908 K, F = -3.616962948900647, relative_change = 6.865310727285491e-5 Iter 50: T = 693.2124768945956 K, F = -1.5127650099666339, relative_change = 2.8742291544862237e-5 Iter 55: T = 693.1516052948671 K, F = -0.6326752837235242, relative_change = 1.202575487973504e-5 Iter 60: T = 693.126142403621 K, F = -0.2645956645337817, relative_change = 5.03025682289976e-6 Iter 65: T = 693.1154925278536 K, F = -0.11065764499378772, relative_change = 2.103878369212338e-6 Iter 70: T = 693.1110384493434 K, F = -0.04627844978486073, relative_change = 8.798959025835756e-7 Iter 75: T = 693.1091756702092 K, F = -0.019354218064279394, relative_change = 3.679880194896249e-7 Iter 80: T = 693.108396628428 K, F = -0.008094168223603537, relative_change = 1.5389786678933583e-7 Iter 85: T = 693.1080708229243 K, F = -0.0033850783574412846, relative_change = 6.43620801602983e-8 Iter 90: T = 693.1079345670096 K, F = -0.0014156802893987575, relative_change = 2.69170175482964e-8 Iter 95: T = 693.1078775831305 K, F = -0.0005920544205892941, relative_change = 1.1257022921003208e-8 Iter 100: T = 693.1078537517867 K, F = -0.00024760423144232213, relative_change = 4.707822233967746e-9 Iter 105: T = 693.1078437852334 K, F = -0.00010355104830683803, relative_change = 1.9688676486069428e-9 Iter 110: T = 693.1078396171015 K, F = -4.330628527748903e-5, relative_change = 8.234039915540765e-10 Iter 115: T = 693.1078378739389 K, F = -1.811120440620151e-5, relative_change = 3.4435736251519135e-10 Iter 120: T = 693.1078371449274 K, F = -7.57432090459087e-6, relative_change = 1.4401434184669747e-10 Iter 125: T = 693.1078368400463 K, F = -3.167671990156329e-6, relative_change = 6.0228527883929e-11 Iter 130: T = 693.1078367125414 K, F = -1.3247592430820632e-6, relative_change = 2.51883084262794e-11 Iter 135: T = 693.1078366592172 K, F = -5.540303906759192e-7, relative_change = 1.0534056233887577e-11 Iter 140: T = 693.1078366369164 K, F = -2.3170258822702294e-7, relative_change = 4.40547691132414e-12 Iter 145: T = 693.10783662759 K, F = -9.69018765228924e-8, relative_change = 1.8424437248610168e-12 Iter 150: T = 693.1078366236895 K, F = -4.052558644218607e-8, relative_change = 7.705331941748272e-13 Iter 155: T = 693.1078366220584 K, F = -1.6947201975092696e-8, relative_change = 3.2222560650589403e-13 Converged in 158 iterations to T = 693.1078366215808 K Iter 1: T = 963.582096737195 K, F = -8297.853900799431, relative_change = 0.036417903262805 Iter 2: T = 929.0432019201047 K, F = -7040.968421078925, relative_change = 0.03584426789792288 Iter 3: T = 896.3498575632694 K, F = -5973.541475203541, relative_change = 0.03519033806960342 Iter 5: T = 836.3811811681072 K, F = -4297.2505459950535, relative_change = 0.03361242349219115 Iter 10: T = 716.8179605695997 K, F = -1877.8081410881073, relative_change = 0.02787338325063609 Iter 15: T = 637.3180024913504 K, F = -813.0814687282076, relative_change = 0.01995021637605472 Iter 20: T = 590.7881637920063 K, F = -348.1084214140975, relative_change = 0.011948758499301505 Iter 25: T = 566.8660913465807 K, F = -147.53478556353167, relative_change = 0.006116664221688606 Iter 30: T = 555.7130463826494 K, F = -62.10804147972982, relative_change = 0.0028250282704633963 Iter 35: T = 550.8036605762323 K, F = -26.05186666468838, relative_change = 0.001235639052439787 Iter 40: T = 548.7034810749809 K, F = -10.90928936375203, relative_change = 0.0005268854985477614 Iter 45: T = 547.8165961522935 K, F = -4.56489972555609, relative_change = 0.0002221723223319506 Iter 50: T = 547.4441659913467 K, F = -1.9095366944437846, relative_change = 9.323776246163256e-5 Iter 55: T = 547.288142682607 K, F = -0.7986684267897375, relative_change = 3.904986465529356e-5 Iter 60: T = 547.222844753584 K, F = -0.3340262239478885, relative_change = 1.6341061150812748e-5 Iter 65: T = 547.1955281281924 K, F = -0.13969612702768291, relative_change = 6.835767242482317e-6 Iter 70: T = 547.1841025452211 K, F = -0.05842300342624879, relative_change = 2.8591039937532184e-6 Iter 75: T = 547.179323977358 K, F = -0.024433270298765408, relative_change = 1.1957647000698094e-6 Iter 80: T = 547.177325479023 K, F = -0.010218298120843766, relative_change = 5.000923946275674e-7 Iter 85: T = 547.1764896754238 K, F = -0.004273416524277679, relative_change = 2.0914624127425848e-7 Iter 90: T = 547.1761401310254 K, F = -0.001787194213727611, relative_change = 8.746774083468417e-8 Iter 95: T = 547.1759939471472 K, F = -0.0007474260312505532, relative_change = 3.658010363093239e-8 Iter 100: T = 547.1759328112621 K, F = -0.0003125825042803454, relative_change = 1.529824491516338e-8 Iter 105: T = 547.1759072434977 K, F = -0.00013072573860622994, relative_change = 6.397910258634605e-9 Iter 110: T = 547.175896550752 K, F = -5.467106559284285e-5, relative_change = 2.675682751370516e-9 Iter 115: T = 547.1758920789179 K, F = -2.2864092837054928e-5, relative_change = 1.1190025390351264e-9 Iter 120: T = 547.1758902087432 K, F = -9.562036639959581e-6, relative_change = 4.679802312222067e-10 Iter 125: T = 547.1758894266139 K, F = -3.998957967460415e-6, relative_change = 1.9571492533030925e-10 Iter 130: T = 547.1758890995181 K, F = -1.6724118013511369e-6, relative_change = 8.185031061038373e-11 Iter 135: T = 547.1758889627226 K, F = -6.994219119149658e-7, relative_change = 3.4230744341696224e-11 Iter 140: T = 547.1758889055131 K, F = -2.925065149816941e-7, relative_change = 1.4315702106313528e-11 Iter 145: T = 547.1758888815876 K, F = -1.2232965629355164e-7, relative_change = 5.9869945759682015e-12 Iter 150: T = 547.1758888715817 K, F = -5.116058429677217e-8, relative_change = 2.5038747757108747e-12 Iter 155: T = 547.175888867397 K, F = -2.139602389705786e-8, relative_change = 1.0471531018397862e-12 Iter 160: T = 547.1758888656469 K, F = -8.948260854513279e-9, relative_change = 4.3794114061100306e-13 Converged in 164 iterations to T = 547.1758888650153 K Iter 1: T = 966.9711236770598 K, F = -7525.660888754355, relative_change = 0.03302887632294019 Iter 2: T = 936.0029061095058 K, F = -6379.899737809075, relative_change = 0.032026000372992004 Iter 3: T = 907.0648012669059 K, F = -5407.107831531301, relative_change = 0.03091668268732325 Iter 5: T = 855.146803942212 K, F = -3880.271767311093, relative_change = 0.028379833525870164 Iter 10: T = 758.0332167758197 K, F = -1681.438732954619, relative_change = 0.020564869807152948 Iter 15: T = 700.6298176024038 K, F = -720.4789694600519, relative_change = 0.012477480266306313 Iter 20: T = 670.8597118361779 K, F = -305.5467966253436, relative_change = 0.00645010938795611 Iter 25: T = 656.9005566269343 K, F = -128.67464635516168, relative_change = 0.0029959328984459047 Iter 30: T = 650.7372629832116 K, F = -53.983832782270404, relative_change = 0.0013140237006756868 Iter 35: T = 648.0969189225987 K, F = -22.60774361151907, relative_change = 0.0005610058541747001 Iter 40: T = 646.9812293486893 K, F = -9.460356337479492, relative_change = 0.00023668663784514013 Iter 45: T = 646.5125916863042 K, F = -3.95740802067584, relative_change = 9.935144450294161e-5 Iter 50: T = 646.3162416945956 K, F = -1.6552061831393188, relative_change = 4.161436946039577e-5 Iter 55: T = 646.2340625894561 K, F = -0.6922569204170941, relative_change = 1.7414917126651942e-5 Iter 60: T = 646.1996832383736 K, F = -0.2895153485399743, relative_change = 7.285102981781563e-6 Iter 65: T = 646.1853034462736 K, F = -0.12107969247233813, relative_change = 3.0470629272447937e-6 Iter 70: T = 646.1792893066391 K, F = -0.050637133634911013, relative_change = 1.2743786066068563e-6 Iter 75: T = 646.1767740623498 K, F = -0.021177082045682805, relative_change = 5.329709348847114e-7 Iter 80: T = 646.1757221467828 K, F = -0.00885651352028366, relative_change = 2.2289666088360357e-7 Iter 85: T = 646.1752822213172 K, F = -0.0037039005803649605, relative_change = 9.321836925490626e-8 Iter 90: T = 646.1750982389165 K, F = -0.0015490156059024818, relative_change = 3.8985091889325925e-8 Iter 95: T = 646.1750212952238 K, F = -0.0006478168513870952, relative_change = 1.630404090201925e-8 Iter 100: T = 646.1749891164429 K, F = -0.00027092474916923237, relative_change = 6.818546367925331e-9 Iter 105: T = 646.1749756588908 K, F = -0.00011330396655001573, relative_change = 2.851597827678858e-9 Iter 110: T = 646.1749700307815 K, F = -4.7385072987848886e-5, relative_change = 1.1925723424712369e-9 Iter 115: T = 646.1749676770389 K, F = -1.9817002772537506e-5, relative_change = 4.987479882772536e-10 Iter 120: T = 646.1749666926756 K, F = -8.287707985055182e-6, relative_change = 2.0858238566142105e-10 Iter 125: T = 646.1749662810031 K, F = -3.466018292652695e-6, relative_change = 8.723164084981557e-11 Iter 130: T = 646.1749661088368 K, F = -1.4495297138150676e-6, relative_change = 3.648130069742833e-11 Iter 135: T = 646.1749660368348 K, F = -6.06211505438381e-7, relative_change = 1.5256937486065387e-11 Iter 140: T = 646.1749660067227 K, F = -2.535243905921192e-7, relative_change = 6.3806208635347925e-12 Iter 145: T = 646.1749659941295 K, F = -1.0602755706745626e-7, relative_change = 2.66846768161816e-12 Iter 150: T = 646.1749659888628 K, F = -4.434227501848298e-8, relative_change = 1.1159922108321056e-12 Iter 155: T = 646.1749659866601 K, F = -1.8543598157005903e-8, relative_change = 4.666993539625343e-13 Converged in 160 iterations to T = 646.174965985739 K Iter 1: T = 965.1886055617421 K, F = -7931.809336941974, relative_change = 0.03481139443825793 Iter 2: T = 932.3521151076134 K, F = -6727.45451623824, relative_change = 0.03402080201207694 Iter 3: T = 901.4610761425884 K, F = -5704.748577325464, relative_change = 0.03313237398668798 Iter 5: T = 845.4022951408916 K, F = -4099.043575884681, relative_change = 0.03104336038550606 Iter 10: T = 737.141212828289 K, F = -1783.6632862188746, relative_change = 0.024049710853951866 Iter 15: T = 669.4657659942924 K, F = -767.9869118999713, relative_change = 0.01574458643952828 Iter 20: T = 632.4507896926716 K, F = -327.00981171611573, relative_change = 0.008661272032682297 Iter 25: T = 614.4317757114063 K, F = -138.05908376821122, relative_change = 0.00417948714439867 Iter 30: T = 606.308234686957 K, F = -57.995148346071424, relative_change = 0.001868921872729285 Iter 35: T = 602.7930470862095 K, F = -24.301883523090446, relative_change = 0.000804986644210603 Iter 40: T = 601.3010401467029 K, F = -10.17187685713969, relative_change = 0.0003409263269691879 Iter 45: T = 600.6731291418956 K, F = -4.255509809014572, relative_change = 0.00014334050625246434 Iter 50: T = 600.4098330658071 K, F = -1.7799702104716018, relative_change = 6.008086456919974e-5 Iter 55: T = 600.2995971580374 K, F = -0.7444512680661477, relative_change = 2.5150075755237354e-5 Iter 60: T = 600.2534737441442 K, F = -0.31134654472006057, relative_change = 1.0522184992263584e-5 Iter 65: T = 600.2341806284866 K, F = -0.13021026632227167, relative_change = 4.401224949563124e-6 Iter 70: T = 600.2261113604543 K, F = -0.054455737334716314, relative_change = 1.8407710612031795e-6 Iter 75: T = 600.2227365813296 K, F = -0.022774083227248942, relative_change = 7.698545203435401e-7 Iter 80: T = 600.2213251883051 K, F = -0.009524401198057308, relative_change = 3.21966216166047e-7 Iter 85: T = 600.2207349233727 K, F = -0.003983219656631232, relative_change = 1.3465079208593344e-7 Iter 90: T = 600.2204880669141 K, F = -0.0016658302617992282, relative_change = 5.6312687416757434e-8 Iter 95: T = 600.2203848284877 K, F = -0.0006966701505475847, relative_change = 2.3550659059365063e-8 Iter 100: T = 600.220341652926 K, F = -0.00029135578409883456, relative_change = 9.849170487323828e-9 Iter 105: T = 600.2203235963873 K, F = -0.00012184847014989897, relative_change = 4.119041369720212e-9 Iter 110: T = 600.2203160449264 K, F = -5.0958484841490126e-5, relative_change = 1.7226323770397865e-9 Iter 115: T = 600.2203128868153 K, F = -2.1311447759519986e-5, relative_change = 7.204254786218661e-10 Iter 120: T = 600.2203115660554 K, F = -8.912701682906032e-6, relative_change = 3.0129053246139046e-10 Iter 125: T = 600.2203110136979 K, F = -3.727398147523875e-6, relative_change = 1.2600329478515933e-10 Iter 130: T = 600.2203107826954 K, F = -1.5588421694023857e-6, relative_change = 5.269607430725616e-11 Iter 135: T = 600.2203106860874 K, F = -6.519257174097959e-7, relative_change = 2.2038104144265866e-11 Iter 140: T = 600.2203106456848 K, F = -2.726436660327458e-7, relative_change = 9.216616782817814e-12 Iter 145: T = 600.220310628788 K, F = -1.1402252098058341e-7, relative_change = 3.854488519470945e-12 Iter 150: T = 600.2203106217214 K, F = -4.768572436919527e-8, relative_change = 1.6119980119131118e-12 Iter 155: T = 600.2203106187662 K, F = -1.994286374928933e-8, relative_change = 6.741610228580147e-13 Iter 160: T = 600.2203106175302 K, F = -8.340718504751266e-9, relative_change = 2.819548581025323e-13 Converged in 162 iterations to T = 600.2203106172688 K Iter 1: T = 980.0104704364701 K, F = -4554.633326001828, relative_change = 0.019989529563529923 Iter 2: T = 962.0703137510258 K, F = -3847.450034232928, relative_change = 0.01830608674767963 Iter 3: T = 946.059568431801 K, F = -3248.5539352781484, relative_change = 0.016641970020673663 Iter 5: T = 919.3060321801248 K, F = -2312.739645269244, relative_change = 0.01346105286126297 Iter 10: T = 876.7776121133743 K, F = -981.980027815622, relative_change = 0.00708782841154243 Iter 15: T = 856.6177558110506 K, F = -413.8369244783187, relative_change = 0.0033281965546923947 Iter 20: T = 847.6641164675261 K, F = -173.68223777497437, relative_change = 0.001467659849868906 Iter 25: T = 843.8176900011734 K, F = -72.74771319791664, relative_change = 0.0006281289560179777 Iter 30: T = 842.1903624364144 K, F = -30.44388844243896, relative_change = 0.00026528526416757007 Iter 35: T = 841.5064543123361 K, F = -12.735511781918952, relative_change = 0.00011140580588532037 Iter 40: T = 841.2198463949994 K, F = -5.326759879796933, relative_change = 4.667224383017697e-5 Iter 45: T = 841.0998800784038 K, F = -2.2278226259233493, relative_change = 1.953309387189068e-5 Iter 50: T = 841.0496906083649 K, F = -0.9317209338383909, relative_change = 8.171460102599864e-6 Iter 55: T = 841.0286976006944 K, F = -0.3896601290683126, relative_change = 3.4178373708763784e-6 Iter 60: T = 841.0199175192572 K, F = -0.1629610980120746, relative_change = 1.4294565315376336e-6 Iter 65: T = 841.0162454872772 K, F = -0.06815237852871703, relative_change = 5.978291081626335e-7 Iter 70: T = 841.0147097826723 K, F = -0.028502156303156667, relative_change = 2.500216015295525e-7 Iter 75: T = 841.0140675296971 K, F = -0.011919945246666064, relative_change = 1.0456242697239494e-7 Iter 80: T = 841.0137989313133 K, F = -0.004985063995343486, relative_change = 4.3729326923300196e-8 Iter 85: T = 841.0136866001707 K, F = -0.0020848133899704635, relative_change = 1.8288139202864827e-8 Iter 90: T = 841.0136396219295 K, F = -0.000871893875020735, relative_change = 7.648320407984542e-9 Iter 95: T = 841.0136199750652 K, F = -0.00036463643411299707, relative_change = 3.1986193166627797e-9 Iter 100: T = 841.0136117585115 K, F = -0.00015249531189498455, relative_change = 1.3377008641612944e-9 Iter 105: T = 841.0136083222504 K, F = -6.377536124291261e-5, relative_change = 5.594424933224113e-10 Iter 110: T = 841.013606885165 K, F = -2.6671615515949654e-5, relative_change = 2.3396551451498606e-10 Iter 115: T = 841.0136062841588 K, F = -1.115438982224326e-5, relative_change = 9.784718744093166e-11 Iter 120: T = 841.0136060328107 K, F = -4.664898661133066e-6, relative_change = 4.092085910680107e-11 Iter 125: T = 841.013605927694 K, F = -1.950915621051763e-6, relative_change = 1.7113585761461095e-11 Iter 130: T = 841.0136058837329 K, F = -8.158960622672851e-7, relative_change = 7.157104636845903e-12 Iter 135: T = 841.0136058653479 K, F = -3.412199032215568e-7, relative_change = 2.9932079154774293e-12 Iter 140: T = 841.0136058576591 K, F = -1.4270141490690946e-7, relative_change = 1.2517880716660342e-12 Iter 145: T = 841.0136058544434 K, F = -5.967861693711995e-8, relative_change = 5.235055368267141e-13 Converged in 150 iterations to T = 841.0136058530986 K Iter 1: T = 976.4462659150993 K, F = -5366.740716629946, relative_change = 0.023553734084900742 Iter 2: T = 955.0540045612028 K, F = -4537.9220914056095, relative_change = 0.021908283231385217 Iter 3: T = 935.7314996021288 K, F = -3835.3649830414142, relative_change = 0.020231845389676786 Iter 5: T = 902.8744854010532 K, F = -2735.9081601267494, relative_change = 0.01687922184634247 Iter 10: T = 848.7677284964933 K, F = -1166.6369716759057, relative_change = 0.009495646591722716 Iter 15: T = 822.0574141377127 K, F = -493.0138056080878, relative_change = 0.004650119597328061 Iter 20: T = 809.916091337141 K, F = -207.20926325897724, relative_change = 0.002095614321785755 Iter 25: T = 804.6408692981498 K, F = -86.84844931387158, relative_change = 0.0009059079198423389 Iter 30: T = 802.3976898333233 K, F = -36.35542452359497, relative_change = 0.0003842791728683017 Iter 35: T = 801.4528943627304 K, F = -15.210355735640821, relative_change = 0.0001616777079316375 Iter 40: T = 801.0565879240903 K, F = -6.362221737692248, relative_change = 6.778627671399009e-5 Iter 45: T = 800.8906400508266 K, F = -2.6609445338138373, relative_change = 2.837900186640099e-5 Iter 50: T = 800.8212022444241 K, F = -1.1128715917610328, relative_change = 1.187368767017605e-5 Iter 55: T = 800.7921561479429 K, F = -0.46542193061616965, relative_change = 4.9666368426729995e-6 Iter 60: T = 800.7800076078026 K, F = -0.19464601383228286, relative_change = 2.0772675943626787e-6 Iter 65: T = 800.7749267480617 K, F = -0.08140346317200531, relative_change = 8.687662346550996e-7 Iter 70: T = 800.7728018377022 K, F = -0.03404393117302851, relative_change = 3.633333327921682e-7 Iter 75: T = 800.7719131688424 K, F = -0.01423758395411967, relative_change = 1.5195119905886918e-7 Iter 80: T = 800.7715415158681 K, F = -0.005954328581018409, relative_change = 6.354795657299291e-8 Iter 85: T = 800.7713860859731 K, F = -0.0024901714856685464, relative_change = 2.6576540666428244e-8 Iter 90: T = 800.7713210833028 K, F = -0.0010414194817205402, relative_change = 1.111463128672206e-8 Iter 95: T = 800.7712938984043 K, F = -0.0004355340710604505, relative_change = 4.648272362926099e-9 Iter 100: T = 800.771282529354 K, F = -0.00018214554943574157, relative_change = 1.943963140802708e-9 Iter 105: T = 800.7712777746814 K, F = -7.617544309357349e-5, relative_change = 8.129886140689032e-10 Iter 110: T = 800.7712757862204 K, F = -3.185747988421195e-5, relative_change = 3.400015500164927e-10 Iter 115: T = 800.7712749546222 K, F = -1.3323176989321617e-5, relative_change = 1.4219269277971596e-10 Iter 120: T = 800.771274606838 K, F = -5.57191186079109e-6, relative_change = 5.946668378649272e-11 Iter 125: T = 800.7712744613905 K, F = -2.330239235126541e-6, relative_change = 2.4869668315663598e-11 Iter 130: T = 800.7712744005626 K, F = -9.745348588108271e-7, relative_change = 1.0400802777714291e-11 Iter 135: T = 800.7712743751237 K, F = -4.0756175723188903e-7, relative_change = 4.34973610130407e-12 Iter 140: T = 800.7712743644848 K, F = -1.704481543685077e-7, relative_change = 1.819121832086937e-12 Iter 145: T = 800.7712743600355 K, F = -7.128428725078351e-8, relative_change = 7.607873708373005e-13 Iter 150: T = 800.7712743581748 K, F = -2.9811878743402076e-8, relative_change = 3.181697078540253e-13 Converged in 153 iterations to T = 800.77127435763 K Iter 1: T = 980.7508537719996 K, F = -4385.936278715072, relative_change = 0.019249146228000478 Iter 2: T = 963.5177955925149 K, F = -3704.1870314735875, relative_change = 0.01757129052012121 Iter 3: T = 948.1757091848473 K, F = -3126.953698797406, relative_change = 0.01592299226630576 Iter 5: T = 922.6283535682109 K, F = -2225.29296242805, relative_change = 0.012800755937502736 Iter 10: T = 882.2887624810043 K, F = -944.0911551773971, relative_change = 0.006657231889046841 Iter 15: T = 863.3063351679244 K, F = -397.6767443102991, relative_change = 0.0031030762162147806 Iter 20: T = 854.90916731078 K, F = -166.85954698103956, relative_change = 0.0013633883508987817 Iter 25: T = 851.3086062336599 K, F = -69.88230402608474, relative_change = 0.0005825379904805326 Iter 30: T = 849.786570462309 K, F = -29.243361070106122, relative_change = 0.00024585419749450745 Iter 35: T = 849.147141672569 K, F = -12.233050721690752, relative_change = 0.0001032144261744932 Iter 40: T = 848.8792143976164 K, F = -5.1165567448560125, relative_change = 4.323502870751073e-5 Iter 45: T = 848.7670744155818 K, F = -2.1399012577305023, relative_change = 1.8093593772205538e-5 Iter 50: T = 848.7201604429827 K, F = -0.8949490831188804, relative_change = 7.569090879124292e-6 Iter 55: T = 848.7005377130253 K, F = -0.37428133721518986, relative_change = 3.1658575719949533e-6 Iter 60: T = 848.692330772554 K, F = -0.15652943979529255, relative_change = 1.3240647593031183e-6 Iter 65: T = 848.6888984479962 K, F = -0.06546257109143094, relative_change = 5.537511192842103e-7 Iter 70: T = 848.6874629941764 K, F = -0.027377244757865515, relative_change = 2.315873294120865e-7 Iter 75: T = 848.6868626676752 K, F = -0.01144949346389601, relative_change = 9.685293637872699e-8 Iter 80: T = 848.6866116035133 K, F = -0.004788315383428943, relative_change = 4.0505115783045185e-8 Iter 85: T = 848.6865066054039 K, F = -0.0020025307615623156, relative_change = 1.6939733839855957e-8 Iter 90: T = 848.6864626939268 K, F = -0.0008374822961214612, relative_change = 7.084400878694995e-9 Iter 95: T = 848.6864443296204 K, F = -0.00035024510187064983, relative_change = 2.9627813920154555e-9 Iter 100: T = 848.6864366494475 K, F = -0.00014647668457024032, relative_change = 1.2390706159485142e-9 Iter 105: T = 848.6864334375074 K, F = -6.125829624559209e-5, relative_change = 5.181941170462295e-10 Iter 110: T = 848.6864320942358 K, F = -2.5618951129180445e-5, relative_change = 2.1671497044021589e-10 Iter 115: T = 848.6864315324635 K, F = -1.0714151892132762e-5, relative_change = 9.063279391125116e-11 Iter 120: T = 848.6864312975237 K, F = -4.480786404359449e-6, relative_change = 3.790371793964548e-11 Iter 125: T = 848.6864311992689 K, F = -1.8739176648185918e-6, relative_change = 1.585178141485409e-11 Iter 130: T = 848.6864311581777 K, F = -7.836937652161424e-7, relative_change = 6.629395996678846e-12 Iter 135: T = 848.6864311409929 K, F = -3.2775180525135283e-7, relative_change = 2.7725070713658238e-12 Iter 140: T = 848.686431133806 K, F = -1.3706983836847542e-7, relative_change = 1.159496576598407e-12 Iter 145: T = 848.6864311308003 K, F = -5.7324978985917596e-8, relative_change = 4.849215383926126e-13 Converged in 150 iterations to T = 848.6864311295433 K Iter 1: T = 967.3178965123365 K, F = -7446.648368370451, relative_change = 0.03268210348766355 Iter 2: T = 936.7106304406735 K, F = -6312.323800099762, relative_change = 0.03164137268835549 Iter 3: T = 908.146857183734 K, F = -5349.277533064611, relative_change = 0.030493700326110092 Iter 5: T = 857.0114875425004 K, F = -3837.8484695301295, relative_change = 0.027883033112103554 Iter 10: T = 761.9187087368742 K, F = -1661.7968170973172, relative_change = 0.019962308290874094 Iter 15: T = 706.2508986703706 K, F = -711.485488118121, relative_change = 0.01195923938432081 Iter 20: T = 677.6255383003662 K, F = -301.54472318048056, relative_change = 0.006123266617705993 Iter 25: T = 664.2781204018896 K, F = -126.942920484089, relative_change = 0.002828405138058444 Iter 30: T = 658.4024398248062 K, F = -53.2477347420889, relative_change = 0.0012371858099514724 Iter 35: T = 655.8888169364305 K, F = -22.297670169073275, relative_change = 0.0005275583629658407 Iter 40: T = 654.8273253659211 K, F = -9.330278020768624, relative_change = 0.00022245846799665093 Iter 45: T = 654.3815700806646 K, F = -3.9029365010845884, relative_change = 9.335827729238938e-5 Iter 50: T = 654.1948280213584 K, F = -1.6324130192482968, relative_change = 3.9100414377463185e-5 Iter 55: T = 654.1166737913258 K, F = -0.6827223515932661, relative_change = 1.6362227789101062e-5 Iter 60: T = 654.0839788693906 K, F = -0.2855274936291477, relative_change = 6.844623961604458e-6 Iter 65: T = 654.0703037319435 K, F = -0.11941185667052595, relative_change = 2.8628087806689223e-6 Iter 70: T = 654.0645843233898 K, F = -0.04993961302058697, relative_change = 1.197314226380465e-6 Iter 75: T = 654.0621923454711 K, F = -0.02088536853645817, relative_change = 5.007404495563976e-7 Iter 80: T = 654.0611919824768 K, F = -0.008734515086404715, relative_change = 2.0941726990158348e-7 Iter 85: T = 654.0607736171057 K, F = -0.003652879314465729, relative_change = 8.758108897616726e-8 Iter 90: T = 654.0605986514279 K, F = -0.0015276778917646117, relative_change = 3.662750730340822e-8 Iter 95: T = 654.0605254786424 K, F = -0.0006388931626924443, relative_change = 1.531806971423006e-8 Iter 100: T = 654.0604948769009 K, F = -0.0002671927536249119, relative_change = 6.406201189614585e-9 Iter 105: T = 654.0604820788857 K, F = -0.00011174320209572652, relative_change = 2.679150131032078e-9 Iter 110: T = 654.0604767266026 K, F = -4.6732341251520815e-5, relative_change = 1.1204526156153899e-9 Iter 115: T = 654.0604744882139 K, F = -1.9544023696582702e-5, relative_change = 4.685866841001456e-10 Iter 120: T = 654.060473552093 K, F = -8.173544215728246e-6, relative_change = 1.9596855115163536e-10 Iter 125: T = 654.060473160596 K, F = -3.4182735249022045e-6, relative_change = 8.195638199828232e-11 Iter 130: T = 654.0604729968672 K, F = -1.4295623664284385e-6, relative_change = 3.4275127101294374e-11 Iter 135: T = 654.0604729283939 K, F = -5.978598068834273e-7, relative_change = 1.4334261562224931e-11 Iter 140: T = 654.0604728997575 K, F = -2.500308854958e-7, relative_change = 5.994729986552546e-12 Iter 145: T = 654.0604728877815 K, F = -1.0456617999254902e-7, relative_change = 2.507074330406112e-12 Iter 150: T = 654.0604728827731 K, F = -4.373087580944457e-8, relative_change = 1.0484896378527504e-12 Iter 155: T = 654.0604728806785 K, F = -1.829000806363723e-8, relative_change = 4.3852046354666474e-13 Converged in 159 iterations to T = 654.0604728799225 K Iter 1: T = 973.5267518011509 K, F = -6031.954784667956, relative_change = 0.02647324819884908 Iter 2: T = 949.2465228037619 K, F = -5104.489376262718, relative_change = 0.024940484637394324 Iter 3: T = 927.0917939547481 K, F = -4317.815994184112, relative_change = 0.023339278382159264 Iter 5: T = 888.8361729060047 K, F = -3085.377064558188, relative_change = 0.020009629371373173 Iter 10: T = 823.7100754543325 K, F = -1321.0655372108777, relative_change = 0.011999632874288667 Iter 15: T = 790.1985586166063 K, F = -559.9269429290273, relative_change = 0.006148568755550127 Iter 20: T = 774.5659625703988 K, F = -235.72221069148446, relative_change = 0.0028413192161191553 Iter 25: T = 767.6827239125759 K, F = -98.87789983720708, relative_change = 0.0012430962972742657 Iter 30: T = 764.7377472349804 K, F = -41.40571742633219, relative_change = 0.0005301286954620272 Iter 35: T = 763.494037684334 K, F = -17.325931363311778, relative_change = 0.00022355139674734502 Iter 40: T = 762.9717524423395 K, F = -7.247596211952027, relative_change = 9.381855668045208e-5 Iter 45: T = 762.7529475017764 K, F = -3.031326830104674, relative_change = 3.929347333345265e-5 Iter 50: T = 762.6613741661904 K, F = -1.2677888357402067, relative_change = 1.6443066420929068e-5 Iter 55: T = 762.6230654582021 K, F = -0.530213488062967, relative_change = 6.878448993830536e-6 Iter 60: T = 762.6070422611122 K, F = -0.22174319706494505, relative_change = 2.8769578494997232e-6 Iter 65: T = 762.6003408122194 K, F = -0.09273593028625449, relative_change = 1.20323206712098e-6 Iter 70: T = 762.5975381239003 K, F = -0.03878332200706269, relative_change = 5.032154541604042e-7 Iter 75: T = 762.596365995267 K, F = -0.01621965690559135, relative_change = 2.1045236260982145e-7 Iter 80: T = 762.5958757951668 K, F = -0.006783255701637625, relative_change = 8.801397994836538e-8 Iter 85: T = 762.5956707872971 K, F = -0.0028368388007760093, relative_change = 3.680854797321045e-8 Iter 90: T = 762.5955850504994 K, F = -0.0011863999106804801, relative_change = 1.5393783175741157e-8 Iter 95: T = 762.5955491943364 K, F = -0.0004961666197123016, relative_change = 6.4378655156561984e-9 Iter 100: T = 762.5955341988591 K, F = -0.00020750280683001776, relative_change = 2.6923925078559874e-9 Iter 105: T = 762.5955279275712 K, F = -8.678015457674881e-5, relative_change = 1.1259907792605302e-9 Iter 110: T = 762.5955253048435 K, F = -3.629249647196797e-5, relative_change = 4.709027916837423e-10 Iter 115: T = 762.5955242079875 K, F = -1.5177956298906281e-5, relative_change = 1.9693718363175503e-10 Iter 120: T = 762.5955237492692 K, F = -6.347602284129117e-6, relative_change = 8.236147842388744e-11 Iter 125: T = 762.5955235574278 K, F = -2.65464320881037e-6, relative_change = 3.444455557243969e-11 Iter 130: T = 762.5955234771973 K, F = -1.1102036886478928e-6, relative_change = 1.4405127040274375e-11 Iter 135: T = 762.595523443644 K, F = -4.6429928524105435e-7, relative_change = 6.024381163922001e-12 Iter 140: T = 762.5955234296116 K, F = -1.941750867873182e-7, relative_change = 2.5194627100052445e-12 Iter 145: T = 762.5955234237431 K, F = -8.120645389464443e-8, relative_change = 1.053670868863366e-12 Iter 150: T = 762.5955234212888 K, F = -3.396125047849807e-8, relative_change = 4.406543887058434e-13 Converged in 154 iterations to T = 762.5955234204029 K Iter 1: T = 970.0232322371078 K, F = -6830.235050042654, relative_change = 0.029976767762892167 Iter 2: T = 942.2041923697632 K, F = -5785.555694577174, relative_change = 0.028678735666141906 Iter 3: T = 916.5000113420979 K, F = -4898.926744710652, relative_change = 0.027280902840196415 Iter 5: T = 871.2300112096491 K, F = -3508.361403013466, relative_change = 0.024226789055497504 Iter 10: T = 790.5033006010372 K, F = -1510.969640410589, relative_change = 0.0159242599268953 Iter 15: T = 746.2208359170216 K, F = -643.5194666651709, relative_change = 0.008791058501920225 Iter 20: T = 724.6167956057678 K, F = -271.7258546943714, relative_change = 0.004251816834293563 Iter 25: T = 714.86463615114 K, F = -114.15421932274404, relative_change = 0.001903537603756903 Iter 30: T = 710.642080986478 K, F = -47.83615132504366, relative_change = 0.0008203507463917609 Iter 35: T = 708.8493302392686 K, F = -20.022781217276687, relative_change = 0.0003475175362137011 Iter 40: T = 708.094759493877 K, F = -8.376795175424883, relative_change = 0.00014612684564034773 Iter 45: T = 707.7783360576238 K, F = -3.503807974906647, relative_change = 6.125142215294482e-5 Iter 50: T = 707.645854094445 K, F = -1.4654275989779433, relative_change = 2.5640544502156757e-5 Iter 55: T = 707.5904222838028 K, F = -0.612875647012059, relative_change = 1.0727467453846355e-5 Iter 60: T = 707.567235439785 K, F = -0.25631477090238425, relative_change = 4.487104985753252e-6 Iter 65: T = 707.5575376200854 K, F = -0.10719439781271278, relative_change = 1.876692097297381e-6 Iter 70: T = 707.5534817353212 K, F = -0.04483006471190054, relative_change = 7.848779976667827e-7 Iter 75: T = 707.5517854912566 K, F = -0.018748483724922327, relative_change = 3.2824936615651567e-7 Iter 80: T = 707.5510760974256 K, F = -0.007840842467106035, relative_change = 1.3727850708348458e-7 Iter 85: T = 707.5507794197005 K, F = -0.0032791344247540266, relative_change = 5.741163387885105e-8 Iter 90: T = 707.5506553454011 K, F = -0.001371373257298747, relative_change = 2.401025236990659e-8 Iter 95: T = 707.5506034560244 K, F = -0.0005735246901807933, relative_change = 1.0041378075945863e-8 Iter 100: T = 707.5505817552632 K, F = -0.00023985487624322843, relative_change = 4.1994248698437195e-9 Iter 105: T = 707.5505726797451 K, F = -0.00010031017406852971, relative_change = 1.7562497456993012e-9 Iter 110: T = 707.5505688842549 K, F = -4.1950912502253246e-5, relative_change = 7.344846320901591e-10 Iter 115: T = 707.5505672969356 K, F = -1.7544373419609016e-5, relative_change = 3.071702622272949e-10 Iter 120: T = 707.5505666330997 K, F = -7.337266716644919e-6, relative_change = 1.284622766255084e-10 Iter 125: T = 707.5505663554756 K, F = -3.068532325789519e-6, relative_change = 5.372445413658628e-11 Iter 130: T = 707.5505662393698 K, F = -1.2832959452868664e-6, relative_change = 2.2468192246388367e-11 Iter 135: T = 707.550566190813 K, F = -5.366886288715733e-7, relative_change = 9.396447747040557e-12 Iter 140: T = 707.5505661705059 K, F = -2.24448680530287e-7, relative_change = 3.929690672257393e-12 Iter 145: T = 707.5505661620134 K, F = -9.386760513319103e-8, relative_change = 1.6434520865465518e-12 Iter 150: T = 707.5505661584617 K, F = -3.9257975981144e-8, relative_change = 6.873361949503287e-13 Iter 155: T = 707.5505661569763 K, F = -1.6417347037389618e-8, relative_change = 2.874380698941575e-13 Converged in 157 iterations to T = 707.550566156662 K Iter 1: T = 973.5584593627817 K, F = -6024.730186588703, relative_change = 0.02644154063721829 Iter 2: T = 949.3098907824689 K, F = -5098.331383067392, relative_change = 0.02490715205349264 Iter 3: T = 927.186521732308 K, F = -4312.567596627009, relative_change = 0.023304686135657626 Iter 5: T = 888.9916174871693 K, F = -3081.5672985740994, relative_change = 0.019973864474613013 Iter 10: T = 823.9939261629056 K, F = -1319.371061999456, relative_change = 0.011969212514389883 Iter 15: T = 790.5652073241899 K, F = -559.1883463461049, relative_change = 0.006129545611924188 Iter 20: T = 774.9763252771849 K, F = -235.40627898159158, relative_change = 0.002831616857547343 Iter 25: T = 768.1135188992142 K, F = -98.74434927699559, relative_change = 0.0012386570723151356 Iter 30: T = 765.1775208386508 K, F = -41.34959901645856, relative_change = 0.0005281984215684302 Iter 35: T = 763.9376470069241 K, F = -17.30241411591764, relative_change = 0.00022273066952332925 Iter 40: T = 763.4169804179162 K, F = -7.2377525463049395, relative_change = 9.347292061323213e-5 Iter 45: T = 763.198854984147 K, F = -3.0272086022877644, relative_change = 3.914850153520234e-5 Iter 50: T = 763.1075662775027 K, F = -1.2660662826507396, relative_change = 1.6382363320463402e-5 Iter 55: T = 763.0693766837906 K, F = -0.5294930500937286, relative_change = 6.853049243583792e-6 Iter 60: T = 763.0534033155516 K, F = -0.22144189330710629, relative_change = 2.8663330975933043e-6 Iter 65: T = 763.0467227081007 K, F = -0.09260992005846114, relative_change = 1.1987882713494032e-6 Iter 70: T = 763.0439287363448 K, F = -0.0387306227777966, relative_change = 5.013569361108465e-7 Iter 75: T = 763.0427602531566 K, F = -0.016197617417955668, relative_change = 2.096750960287744e-7 Iter 80: T = 763.0422715776381 K, F = -0.0067740385191447094, relative_change = 8.768891567880738e-8 Iter 85: T = 763.0420672073687 K, F = -0.0028329840645040516, relative_change = 3.667260185225939e-8 Iter 90: T = 763.0419817372235 K, F = -0.0011847878130634149, relative_change = 1.5336928810996484e-8 Iter 95: T = 763.0419459925779 K, F = -0.000495492420567567, relative_change = 6.414088321795882e-9 Iter 100: T = 763.0419310437385 K, F = -0.0002072208488994587, relative_change = 2.6824486021686396e-9 Iter 105: T = 763.041924791955 K, F = -8.666223447117982e-5, relative_change = 1.1218320937353428e-9 Iter 110: T = 763.0419221773845 K, F = -3.624318248030001e-5, relative_change = 4.691636004648445e-10 Iter 115: T = 763.0419210839399 K, F = -1.5157332870163742e-5, relative_change = 1.962098365725629e-10 Iter 120: T = 763.0419206266482 K, F = -6.338977119213496e-6, relative_change = 8.205729060653835e-11 Iter 125: T = 763.0419204354034 K, F = -2.651037108503118e-6, relative_change = 3.4317354139265325e-11 Iter 130: T = 763.0419203554226 K, F = -1.1086958540129643e-6, relative_change = 1.4351933494951847e-11 Iter 135: T = 763.0419203219736 K, F = -4.636706781857569e-7, relative_change = 6.0021607496624485e-12 Iter 140: T = 763.0419203079848 K, F = -1.9391278505143106e-7, relative_change = 2.5101775077714546e-12 Iter 145: T = 763.0419203021345 K, F = -8.10957063723805e-8, relative_change = 1.0497740933700054e-12 Iter 150: T = 763.0419202996878 K, F = -3.391525016382957e-8, relative_change = 4.390288041787181e-13 Converged in 154 iterations to T = 763.0419202988048 K Iter 1: T = 964.3220925280676 K, F = -8129.245155931388, relative_change = 0.03567790747193239 Iter 2: T = 930.5695688782253 K, F = -6896.523929005915, relative_change = 0.03500129667397407 Iter 3: T = 898.7114612126688 K, F = -5849.665053029421, relative_change = 0.034235062837870825 Iter 5: T = 840.5655146425763 K, F = -4205.827159010878, relative_change = 0.03240823642205362 Iter 10: T = 726.3717189609531 K, F = -1834.1863537766617, relative_change = 0.02601925690142762 Iter 15: T = 652.6866162515823 K, F = -791.9964550470573, relative_change = 0.01782052113550665 Iter 20: T = 611.0115271886865 K, F = -338.1302257042951, relative_change = 0.010215904803119106 Iter 25: T = 590.1902681776654 K, F = -143.01180539801973, relative_change = 0.005067490129912329 Iter 30: T = 580.6570165194772 K, F = -60.1340901727892, relative_change = 0.0022995905103637823 Iter 35: T = 576.499801655157 K, F = -25.2097099275576, relative_change = 0.0009973384672084863 Iter 40: T = 574.7290849798886 K, F = -10.553989025007347, relative_change = 0.000423673439051017 Iter 45: T = 573.9827444966547 K, F = -4.415751455898409, relative_change = 0.00017836198199711154 Iter 50: T = 573.6695862630314 K, F = -1.8470624660549255, relative_change = 7.480092752919143e-5 Iter 55: T = 573.5384385827099 K, F = -0.7725236209555315, relative_change = 3.131913740040976e-5 Iter 60: T = 573.4835592916655 K, F = -0.3230891153226231, relative_change = 1.3104431455052421e-5 Iter 65: T = 573.4606025552737 K, F = -0.13512156567365471, relative_change = 5.481548882409649e-6 Iter 70: T = 573.451000800823 K, F = -0.056509774171602495, relative_change = 2.2926450047814053e-6 Iter 75: T = 573.4469850622106 K, F = -0.023633118696166494, relative_change = 9.588457705195127e-7 Iter 80: T = 573.4453056025892 K, F = -0.009883662317473674, relative_change = 4.0100674279014516e-7 Iter 85: T = 573.4446032273106 K, F = -0.004133467337121888, relative_change = 1.6770685660296087e-7 Iter 90: T = 573.4443094846702 K, F = -0.0017286657046111653, relative_change = 7.013719349997628e-8 Iter 95: T = 573.4441866378306 K, F = -0.0007229486948590047, relative_change = 2.9332243985500698e-8 Iter 100: T = 573.4441352617874 K, F = -0.0003023457867741275, relative_change = 1.226710032324933e-8 Iter 105: T = 573.4441137757078 K, F = -0.00012644462105609877, relative_change = 5.130248861981469e-9 Iter 110: T = 573.4441047899717 K, F = -5.2880649980435734e-5, relative_change = 2.1455314773848785e-9 Iter 115: T = 573.4441010320295 K, F = -2.2115319462945315e-5, relative_change = 8.972869194708476e-10 Iter 120: T = 573.4440994604131 K, F = -9.248890379176533e-6, relative_change = 3.7525609698038235e-10 Iter 125: T = 573.4440988031444 K, F = -3.867996405948482e-6, relative_change = 1.5693658188650116e-10 Iter 130: T = 573.4440985282667 K, F = -1.6176421411273623e-6, relative_change = 6.563274684873751e-11 Iter 135: T = 573.4440984133097 K, F = -6.765177900658337e-7, relative_change = 2.7448419998190186e-11 Iter 140: T = 573.4440983652333 K, F = -2.829283477501221e-7, relative_change = 1.1479278498771429e-11 Iter 145: T = 573.4440983451271 K, F = -1.1832392027288918e-7, relative_change = 4.8007675614932054e-12 Iter 150: T = 573.4440983367185 K, F = -4.9484726649673405e-8, relative_change = 2.0077484751840712e-12 Iter 155: T = 573.444098333202 K, F = -2.0695376801160847e-8, relative_change = 8.396754722172009e-13 Iter 160: T = 573.4440983317313 K, F = -8.655714645033896e-9, relative_change = 3.5118912556485757e-13 Converged in 163 iterations to T = 573.4440983313007 K Iter 1: T = 963.5710817892018 K, F = -8300.363667177617, relative_change = 0.03642891821079826 Iter 2: T = 929.0204531949429 K, F = -7043.118919116868, relative_change = 0.03585685503357344 Iter 3: T = 896.3146103799098 K, F = -5975.386223227169, relative_change = 0.03520465314036543 Iter 5: T = 836.318515480586 K, F = -4298.613023974648, relative_change = 0.03363062461808668 Iter 10: T = 716.6731215395629 K, F = -1878.460937082387, relative_change = 0.02790229763694797 Iter 15: T = 637.0811777989156 K, F = -813.3998166241369, relative_change = 0.01998488720620606 Iter 20: T = 590.4715635601774 K, F = -348.2608923485269, relative_change = 0.011978217179855545 Iter 25: T = 566.4968667708978 K, F = -147.60461832626896, relative_change = 0.0061350713492650385 Iter 30: T = 555.3157555529641 K, F = -62.138713746899455, relative_change = 0.0028344121346601018 Iter 35: T = 550.3931939222202 K, F = -26.064994698746787, relative_change = 0.0012399315895641556 Iter 40: T = 548.2872137901894 K, F = -10.914836096490568, relative_change = 0.000528751801333545 Iter 45: T = 547.3978488700301 K, F = -4.567229613209537, relative_change = 0.00022296581542515518 Iter 50: T = 547.0243718210459 K, F = -1.9105128847265505, relative_change = 9.357192316656213e-5 Iter 55: T = 546.8679089709449 K, F = -0.7990769983815237, relative_change = 3.919002220317378e-5 Iter 60: T = 546.8024269181417 K, F = -0.33419714906624365, relative_change = 1.6399748221203433e-5 Iter 65: T = 546.7750332370009 K, F = -0.13976761968796153, relative_change = 6.8603234002200045e-6 Iter 70: T = 546.7635754191199 K, F = -0.05845290421445698, relative_change = 2.8693758639088903e-6 Iter 75: T = 546.7587833686098 K, F = -0.024445775464002728, relative_change = 1.2000609022886796e-6 Iter 80: T = 546.7567792313869 K, F = -0.010223527982878067, relative_change = 5.018891847930948e-7 Iter 85: T = 546.7559410694878 K, F = -0.004275603724759741, relative_change = 2.0989769213984076e-7 Iter 90: T = 546.7555905388115 K, F = -0.0017881089284734475, relative_change = 8.778200860223635e-8 Iter 95: T = 546.7554439424584 K, F = -0.0007478085762999964, relative_change = 3.6711534530128555e-8 Iter 100: T = 546.7553826340712 K, F = -0.000312742488877249, relative_change = 1.5353210931907527e-8 Iter 105: T = 546.7553569941643 K, F = -0.00013079264569160198, relative_change = 6.420897695025853e-9 Iter 110: T = 546.7553462712478 K, F = -5.4699046721284894e-5, relative_change = 2.6852963631755726e-9 Iter 115: T = 546.7553417867958 K, F = -2.2875794770782498e-5, relative_change = 1.1230230613415196e-9 Iter 120: T = 546.7553399113444 K, F = -9.566930681409458e-6, relative_change = 4.696616692266053e-10 Iter 125: T = 546.7553391270083 K, F = -4.0010047567262674e-6, relative_change = 1.9641812489691908e-10 Iter 130: T = 546.7553387989896 K, F = -1.6732683337516985e-6, relative_change = 8.214442358537552e-11 Iter 135: T = 546.7553386618082 K, F = -6.997811290154754e-7, relative_change = 3.435379513737538e-11 Iter 140: T = 546.7553386044374 K, F = -2.92657446526734e-7, relative_change = 1.4367197901684118e-11 Iter 145: T = 546.7553385804441 K, F = -1.223931979377202e-7, relative_change = 6.008551355271822e-12 Iter 150: T = 546.7553385704099 K, F = -5.118652382507527e-8, relative_change = 2.512859066597655e-12 Iter 155: T = 546.7553385662134 K, F = -2.140633570402173e-8, relative_change = 1.0508841143867338e-12 Iter 160: T = 546.7553385644584 K, F = -8.952834806841281e-9, relative_change = 4.3951435721968464e-13 Converged in 164 iterations to T = 546.7553385638249 K Iter 1: T = 969.3376367751147 K, F = -6986.44862822744, relative_change = 0.030662363224885306 Iter 2: T = 940.8166216973331 K, F = -5918.979999780384, relative_change = 0.02942319992099768 Iter 3: T = 914.3977941319233 K, F = -5012.920838584996, relative_change = 0.02808074066309267 Iter 5: T = 867.6804182894808 K, F = -3591.617672433386, relative_change = 0.025118036548853785 Iter 10: T = 783.5297659320498 K, F = -1548.8126527867655, relative_change = 0.016848489938030595 Iter 15: T = 736.6746884348864 K, F = -660.4131190398209, relative_change = 0.009472482408762984 Iter 20: T = 713.5533182899708 K, F = -279.07900521929713, relative_change = 0.004636845454146552 Iter 25: T = 703.0458351194106 K, F = -117.29266346890189, relative_change = 0.002089167451248732 Iter 30: T = 698.4810274286122 K, F = -49.16100273957808, relative_change = 0.0009030268108835739 Iter 35: T = 696.5400404294143 K, F = -20.579108371660574, relative_change = 0.00038303945264172716 Iter 40: T = 695.7225430310555 K, F = -8.609860923331457, relative_change = 0.00016115296073186095 Iter 45: T = 695.3796367455603 K, F = -3.601349960239874, relative_change = 6.756570790965182e-5 Iter 50: T = 695.2360500450512 K, F = -1.5062333034487156, relative_change = 2.8286561562959406e-5 Iter 55: T = 695.175968960206 K, F = -0.6299432662246092, relative_change = 1.1834993706646035e-5 Iter 60: T = 695.1508368338796 K, F = -0.26345303571107564, relative_change = 4.950448555747158e-6 Iter 65: T = 695.1403253163301 K, F = -0.11017977234442405, relative_change = 2.0704964079749986e-6 Iter 70: T = 695.1359291058436 K, F = -0.04607859570149708, relative_change = 8.659342596963729e-7 Iter 75: T = 695.1340905286764 K, F = -0.019270636342328062, relative_change = 3.6214893483842984e-7 Iter 80: T = 695.1333216085989 K, F = -0.008059213287620715, relative_change = 1.514558640857454e-7 Iter 85: T = 695.1330000361389 K, F = -0.003370459772955803, relative_change = 6.334080057094592e-8 Iter 90: T = 695.1328655505384 K, F = -0.0014095666209904545, relative_change = 2.648990537978066e-8 Iter 95: T = 695.1328093070266 K, F = -0.0005894976099897198, relative_change = 1.1078399341497398e-8 Iter 100: T = 695.1327857853136 K, F = -0.0002465349437619224, relative_change = 4.6331197147477354e-9 Iter 105: T = 695.1327759482514 K, F = -0.0001031038581819077, relative_change = 1.9376261348795934e-9 Iter 110: T = 695.1327718342743 K, F = -4.311926485811579e-5, relative_change = 8.103384134536687e-10 Iter 115: T = 695.13277011376 K, F = -1.803299145675119e-5, relative_change = 3.388932048626209e-10 Iter 120: T = 695.1327693942204 K, F = -7.5416131134486974e-6, relative_change = 1.4172919987101973e-10 Iter 125: T = 695.1327690933002 K, F = -3.1539921983014807e-6, relative_change = 5.927283524911752e-11 Iter 130: T = 695.1327689674519 K, F = -1.3190372392113403e-6, relative_change = 2.4788608252334693e-11 Iter 135: T = 695.1327689148205 K, F = -5.516364779412086e-7, relative_change = 1.0366879833117963e-11 Iter 140: T = 695.1327688928095 K, F = -2.3070131527358484e-7, relative_change = 4.335559573707106e-12 Iter 145: T = 695.1327688836043 K, F = -9.648250787197554e-8, relative_change = 1.8131914862727444e-12 Iter 150: T = 695.1327688797545 K, F = -4.0348940522072496e-8, relative_change = 7.582758476153436e-13 Iter 155: T = 695.1327688781446 K, F = -1.6875633113144772e-8, relative_change = 3.171430237692704e-13 Converged in 158 iterations to T = 695.1327688776732 K Iter 1: T = 966.5628230791654 K, F = -7618.692568378759, relative_change = 0.0334371769208347 Iter 2: T = 935.1685679541368 K, F = -6459.481407542805, relative_change = 0.032480304823866823 Iter 3: T = 905.7873979305385 K, F = -5475.229358393343, relative_change = 0.03141804700287927 Iter 5: T = 852.9385186730022 K, F = -3930.278747735628, relative_change = 0.028973483742486275 Iter 10: T = 753.3868950490349 K, F = -1704.6640745995826, relative_change = 0.021303569908304412 Iter 15: T = 693.840593345214 K, F = -731.1645065795027, relative_change = 0.01313059617657715 Iter 20: T = 662.6271453936798 K, F = -310.3240022327197, relative_change = 0.006870922974578944 Iter 25: T = 647.8856488225914 K, F = -130.74816501964094, relative_change = 0.00321436238650634 Iter 30: T = 641.351681466284 K, F = -54.86664008415207, relative_change = 0.0014148343579575178 Iter 35: T = 638.547421021868 K, F = -22.979894802529696, relative_change = 0.000605012203719511 Iter 40: T = 637.361511575545 K, F = -9.616527760872062, relative_change = 0.0002554291742842454 Iter 45: T = 636.863206520761 K, F = -4.022815373525184, relative_change = 0.00010725021365137485 Iter 50: T = 636.6543960261927 K, F = -1.6825769624116527, relative_change = 4.492838579095753e-5 Iter 55: T = 636.5669964276896 K, F = -0.7037066253002802, relative_change = 1.88027488369851e-5 Iter 60: T = 636.5304321628148 K, F = -0.2943042627702437, relative_change = 7.865838416905457e-6 Iter 65: T = 636.5151383263715 K, F = -0.12308256299140591, relative_change = 3.2899907618094303e-6 Iter 70: T = 636.5087418722079 K, F = -0.05147477364350789, relative_change = 1.3759839596466067e-6 Iter 75: T = 636.5060667306229 K, F = -0.021527395836593133, relative_change = 5.754652616600566e-7 Iter 80: T = 636.5049479425594 K, F = -0.009003019408642343, relative_change = 2.406686027140669e-7 Iter 85: T = 636.504480049948 K, F = -0.0037651711760132156, relative_change = 1.006508612451725e-7 Iter 90: T = 636.5042843713059 K, F = -0.0015746397151429892, relative_change = 4.2093458184268417e-8 Iter 95: T = 636.5042025360973 K, F = -0.0006585331633637836, relative_change = 1.7603998474317532e-8 Iter 100: T = 636.5041683116245 K, F = -0.00027540643804901954, relative_change = 7.362204405324018e-9 Iter 105: T = 636.5041539985393 K, F = -0.00011517826264284547, relative_change = 3.0789621673976383e-9 Iter 110: T = 636.5041480126359 K, F = -4.81689253096218e-5, relative_change = 1.2876588160813423e-9 Iter 115: T = 636.5041455092594 K, F = -2.014481910439514e-5, relative_change = 5.38514285654589e-10 Iter 120: T = 636.5041444623175 K, F = -8.424804053108748e-6, relative_change = 2.2521311055001794e-10 Iter 125: T = 636.504144024474 K, F = -3.5233543865809125e-6, relative_change = 9.41868319510524e-11 Iter 130: T = 636.5041438413625 K, F = -1.473508735527762e-6, relative_change = 3.939005408318509e-11 Iter 135: T = 636.5041437647832 K, F = -6.162386613772775e-7, relative_change = 1.6473383311847605e-11 Iter 140: T = 636.5041437327567 K, F = -2.577185008734162e-7, relative_change = 6.8893691982437034e-12 Iter 145: T = 636.5041437193629 K, F = -1.0778063480598732e-7, relative_change = 2.881207919328338e-12 Iter 150: T = 636.5041437137616 K, F = -4.5075937149530176e-8, relative_change = 1.2049766391299784e-12 Iter 155: T = 636.5041437114189 K, F = -1.885136746704319e-8, relative_change = 5.039375518358295e-13 Converged in 160 iterations to T = 636.5041437104392 K Iter 1: T = 966.460029821974 K, F = -7642.114109811427, relative_change = 0.033539970178026006 Iter 2: T = 934.9583380210278 K, F = -6479.519475246754, relative_change = 0.032594924599984705 Iter 3: T = 905.4652256908196 K, F = -5492.384741886746, relative_change = 0.031544841230716825 Iter 5: T = 852.3803694022399 K, F = -3942.878138564453, relative_change = 0.02912444609114396 Iter 10: T = 752.2046409522474 K, F = -1710.528419191845, relative_change = 0.021494748298321414 Iter 15: T = 692.1009111939215 K, F = -733.8718396103583, relative_change = 0.013302910814480717 Iter 20: T = 660.5064261988991 K, F = -311.5384850197669, relative_change = 0.006983642244979879 Iter 25: T = 645.5562909084704 K, F = -131.27651034717107, relative_change = 0.0032734009108684576 Iter 30: T = 638.9229200212692 K, F = -55.09185660366526, relative_change = 0.0014422046101730808 Iter 35: T = 636.0745856344629 K, F = -23.074889090860648, relative_change = 0.0006169842676280547 Iter 40: T = 634.8697732451152 K, F = -9.656401444996872, relative_change = 0.00026053261879308546 Iter 45: T = 634.3634778095472 K, F = -4.039516927206274, relative_change = 0.00010940178753069317 Iter 50: T = 634.151310587163 K, F = -1.6895663101846807, relative_change = 4.583124403893757e-5 Iter 55: T = 634.0625045171195 K, F = -0.7066304533807819, relative_change = 1.918086938467366e-5 Iter 60: T = 634.0253515848491 K, F = -0.2955271825541419, relative_change = 8.024066566588584e-6 Iter 65: T = 634.0098114794023 K, F = -0.1235940271400856, relative_change = 3.3561800487173126e-6 Iter 70: T = 634.0033120183805 K, F = -0.0516886783429904, relative_change = 1.4036679764481692e-6 Iter 75: T = 634.0005937956099 K, F = -0.021616854084804793, relative_change = 5.870435494932018e-7 Iter 80: T = 633.999456990045 K, F = -0.00904043204896332, relative_change = 2.455108687024434e-7 Iter 85: T = 633.9989815622231 K, F = -0.003780817610464615, relative_change = 1.0267597001027214e-7 Iter 90: T = 633.9987827322528 K, F = -0.0015811832458611508, relative_change = 4.294038556346162e-8 Iter 95: T = 633.9986995791187 K, F = -0.0006612697466319983, relative_change = 1.795819408481201e-8 Iter 100: T = 633.9986648034734 K, F = -0.00027655090987233066, relative_change = 7.51033331868341e-9 Iter 105: T = 633.9986502598812 K, F = -0.00011565689431558557, relative_change = 3.1409114588745086e-9 Iter 110: T = 633.9986441775769 K, F = -4.8369094587552564e-5, relative_change = 1.313566746569932e-9 Iter 115: T = 633.9986416338846 K, F = -2.0228533409993865e-5, relative_change = 5.493493221940336e-10 Iter 120: T = 633.9986405700821 K, F = -8.45981467567647e-6, relative_change = 2.2974446050548388e-10 Iter 125: T = 633.9986401251871 K, F = -3.537995465652255e-6, relative_change = 9.608187571529204e-11 Iter 130: T = 633.9986399391267 K, F = -1.4796328336452724e-6, relative_change = 4.018261176572698e-11 Iter 135: T = 633.998639861314 K, F = -6.187999345153017e-7, relative_change = 1.6804843051878526e-11 Iter 140: T = 633.9986398287718 K, F = -2.5878940967949404e-7, relative_change = 7.027982990368944e-12 Iter 145: T = 633.9986398151623 K, F = -1.0822869039861516e-7, relative_change = 2.9391828522316134e-12 Iter 150: T = 633.9986398094707 K, F = -4.526269337112865e-8, relative_change = 1.2292057837708733e-12 Iter 155: T = 633.9986398070903 K, F = -1.892919537782589e-8, relative_change = 5.140630110140568e-13 Converged in 160 iterations to T = 633.9986398060948 K Iter 1: T = 976.3366382229342 K, F = -5391.719490572622, relative_change = 0.023663361777065843 Iter 2: T = 954.8369220725401 K, F = -4559.180655269008, relative_change = 0.022020802363339035 Iter 3: T = 935.4100536701138 K, F = -3853.4518407100013, relative_change = 0.02034574486317403 Iter 5: T = 902.3571025386124 K, F = -2748.9833508983543, relative_change = 0.016991081197653447 Iter 10: T = 847.8638671980149 K, F = -1172.3806427873164, relative_change = 0.009579887502223935 Iter 15: T = 820.9249115002893 K, F = -495.48955927878376, relative_change = 0.004698398496910588 Iter 20: T = 808.6693579351519 K, F = -208.26081457931286, relative_change = 0.00211906723050697 Iter 25: T = 803.3422620116197 K, F = -87.29136737441827, relative_change = 0.0009163904858335346 Iter 30: T = 801.0765909443772 K, F = -36.541235312153205, relative_change = 0.0003887900480000801 Iter 35: T = 800.1222431847591 K, F = -15.288167053648705, relative_change = 0.000163587122428907 Iter 40: T = 799.7219158171669 K, F = -6.394781535793545, relative_change = 6.858887778440919e-5 Iter 45: T = 799.5542817497872 K, F = -2.6745646207036557, relative_change = 2.8715373494543167e-5 Iter 50: T = 799.4841379506464 K, F = -1.1185682336220377, relative_change = 1.2014487522590783e-5 Iter 55: T = 799.4547964583566 K, F = -0.46780443208167843, relative_change = 5.025542945105523e-6 Iter 60: T = 799.4425243554477 K, F = -0.19564242150679834, relative_change = 2.1019066657275734e-6 Iter 65: T = 799.4373918159579 K, F = -0.08182017575563438, relative_change = 8.790712595800315e-7 Iter 70: T = 799.435245291754 K, F = -0.034218205875065744, relative_change = 3.676431346466381e-7 Iter 75: T = 799.4343475835941 K, F = -0.014310467809910965, relative_change = 1.5375363022000317e-7 Iter 80: T = 799.4339721502532 K, F = -0.005984809494716581, relative_change = 6.430175838744428e-8 Iter 85: T = 799.4338151393599 K, F = -0.002502918972483892, relative_change = 2.6891790235719965e-8 Iter 90: T = 799.4337494754966 K, F = -0.0010467506362630274, relative_change = 1.1246472561619343e-8 Iter 95: T = 799.433722014079 K, F = -0.00043776362240610656, relative_change = 4.7034099646388535e-9 Iter 100: T = 799.4337105293852 K, F = -0.0001830779740774613, relative_change = 1.9670223435832267e-9 Iter 105: T = 799.4337057263489 K, F = -7.656539472167267e-5, relative_change = 8.22632253988593e-10 Iter 110: T = 799.4337037176617 K, F = -3.202056305029455e-5, relative_change = 3.440346434172924e-10 Iter 115: T = 799.4337028776048 K, F = -1.3391382449268185e-5, relative_change = 1.438794034199976e-10 Iter 120: T = 799.4337025262829 K, F = -5.600435771691004e-6, relative_change = 6.01720817444787e-11 Iter 125: T = 799.433702379356 K, F = -2.3421688367664117e-6, relative_change = 2.5164680138104922e-11 Iter 130: T = 799.4337023179093 K, F = -9.795219572117375e-7, relative_change = 1.0524158789737557e-11 Iter 135: T = 799.4337022922115 K, F = -4.096469287118154e-7, relative_change = 4.401319740114158e-12 Iter 140: T = 799.4337022814644 K, F = -1.713175677986456e-7, relative_change = 1.8406665354477472e-12 Iter 145: T = 799.4337022769699 K, F = -7.164692805705641e-8, relative_change = 7.697873869000185e-13 Iter 150: T = 799.4337022750902 K, F = -2.9963353131989834e-8, relative_change = 3.2193161571598557e-13 Converged in 153 iterations to T = 799.4337022745399 K Iter 1: T = 965.183091021539 K, F = -7933.06583017293, relative_change = 0.03481690897846103 Iter 2: T = 932.3407871410303 K, F = -6728.530242280076, relative_change = 0.034027019522014965 Iter 3: T = 901.4436307368135 K, F = -5705.670361069899, relative_change = 0.03313933792273656 Iter 5: T = 845.3717242965665 K, F = -4099.72224149517, relative_change = 0.031051896859693208 Iter 10: T = 737.0740210852083 K, F = -1783.9830105422577, relative_change = 0.024061618583231373 Iter 15: T = 669.3627181017431 K, F = -768.1376166081468, relative_change = 0.015756604520659485 Iter 20: T = 632.3209264550673 K, F = -327.0789404071238, relative_change = 0.008669918187096061 Iter 25: T = 614.2862399150357 K, F = -138.08964142937103, relative_change = 0.004184293749683122 Iter 30: T = 606.1549489655187 K, F = -58.00828850276821, relative_change = 0.0018712193312439291 Iter 35: T = 602.6362622914879 K, F = -24.307448906438374, relative_change = 0.0008060057742248551 Iter 40: T = 601.1427423739882 K, F = -10.174217187799751, relative_change = 0.0003413634238621839 Iter 45: T = 600.5141895785476 K, F = -4.256490850086007, relative_change = 0.0001435252628228091 Iter 50: T = 600.2506234879359 K, F = -1.7803808968632373, relative_change = 6.015847837217228e-5 Iter 55: T = 600.1402743731859 K, F = -0.7446230928025519, relative_change = 2.5182595659314517e-5 Iter 60: T = 600.0941035650112 K, F = -0.31141841627441724, relative_change = 1.0535795875318315e-5 Iter 65: T = 600.0747906197829 K, F = -0.13024032603331603, relative_change = 4.406919051319078e-6 Iter 70: T = 600.0667130572621 K, F = -0.054468309044395424, relative_change = 1.8431527293820287e-6 Iter 75: T = 600.0633348090165 K, F = -0.02277934093292272, relative_change = 7.708506195946569e-7 Iter 80: T = 600.0619219651176 K, F = -0.009526600046238176, relative_change = 3.2238280681133386e-7 Iter 85: T = 600.061331093404 K, F = -0.003984139243422391, relative_change = 1.3482501702436588e-7 Iter 90: T = 600.0610839831809 K, F = -0.0016662148455787729, relative_change = 5.6385550714727435e-8 Iter 95: T = 600.0609806386267 K, F = -0.0006968309879699652, relative_change = 2.358113140852799e-8 Iter 100: T = 600.0609374186811 K, F = -0.00029142304751922365, relative_change = 9.861914372609075e-9 Iter 105: T = 600.0609193435803 K, F = -0.00012187659923462713, relative_change = 4.124370972981101e-9 Iter 110: T = 600.0609117843568 K, F = -5.097024895150959e-5, relative_change = 1.7248612874783024e-9 Iter 115: T = 600.0609086229991 K, F = -2.1316367089463384e-5, relative_change = 7.213576166657432e-10 Iter 120: T = 600.0609073008817 K, F = -8.91475963915589e-6, relative_change = 3.0168038516681777e-10 Iter 125: T = 600.0609067479563 K, F = -3.7282589052112236e-6, relative_change = 1.2616633908106636e-10 Iter 130: T = 600.0609065167164 K, F = -1.5592032122091481e-6, relative_change = 5.2764297365136605e-11 Iter 135: T = 600.060906420009 K, F = -6.520774243901073e-7, relative_change = 2.2066659998258364e-11 Iter 140: T = 600.0609063795649 K, F = -2.7270720065475373e-7, relative_change = 9.22856221174153e-12 Iter 145: T = 600.0609063626506 K, F = -1.1404897221067856e-7, relative_change = 3.859480178175221e-12 Iter 150: T = 600.0609063555769 K, F = -4.769656763992103e-8, relative_change = 1.6140781790084763e-12 Iter 155: T = 600.0609063526185 K, F = -1.9947264173758583e-8, relative_change = 6.750264312015027e-13 Iter 160: T = 600.0609063513813 K, F = -8.341736634775998e-9, relative_change = 2.822889726431063e-13 Converged in 162 iterations to T = 600.0609063511195 K Iter 1: T = 964.6112185862871 K, F = -8063.3675085361965, relative_change = 0.03538878141371292 Iter 2: T = 931.1649166760754 K, F = -6840.102696088121, relative_change = 0.03467334949642183 Iter 3: T = 899.6307941077334 K, F = -5801.294676233362, relative_change = 0.03386523912531788 Iter 5: T = 842.1868425503496 K, F = -4170.164909401869, relative_change = 0.03194750590628754 Iter 10: T = 730.0134038478598 K, F = -1817.2638608639325, relative_change = 0.025339334112548986 Iter 15: T = 658.421405579398 K, F = -783.9090404488333, relative_change = 0.017083301243911986 Iter 20: T = 618.4082810153476 K, F = -334.35885438223403, relative_change = 0.009649392656326755 Iter 25: T = 598.6049725642814 K, F = -141.32316882816218, relative_change = 0.004738281647870099 Iter 30: T = 589.5895090730106 K, F = -59.40256448292735, relative_change = 0.0021384576226789365 Iter 35: T = 585.6694267349433 K, F = -24.898764207683804, relative_change = 0.0009250608853601756 Iter 40: T = 584.0019125789394 K, F = -10.423021466556095, relative_change = 0.00039252181698964874 Iter 45: T = 583.2994732394475 K, F = -4.360813370240214, relative_change = 0.00016516687783052201 Iter 50: T = 583.0048072731397 K, F = -1.824057397367573, relative_change = 6.925293348644856e-5 Iter 55: T = 582.8814166224311 K, F = -0.7628974794440806, relative_change = 2.8993684579338636e-5 Iter 60: T = 582.829785511656 K, F = -0.31906244617550533, relative_change = 1.2130984864870408e-5 Iter 65: T = 582.8081879208787 K, F = -0.13343740670508747, relative_change = 5.0742817891975295e-6 Iter 70: T = 582.7991547029875 K, F = -0.05580541116197463, relative_change = 2.1222930281285623e-6 Iter 75: T = 582.7953767551332 K, F = -0.023338540843182265, relative_change = 8.875976388141636e-7 Iter 80: T = 582.7937967462913 K, F = -0.009760465496492399, relative_change = 3.712090660429553e-7 Iter 85: T = 582.7931359631889 K, F = -0.004081944808204896, relative_change = 1.5524496242801338e-7 Iter 90: T = 582.7928596150108 K, F = -0.0017071183417907143, relative_change = 6.492545430597227e-8 Iter 95: T = 582.7927440427637 K, F = -0.0007139373259108517, relative_change = 2.7152627828314563e-8 Iter 100: T = 582.7926957090455 K, F = -0.00029857712394643077, relative_change = 1.135555801805211e-8 Iter 105: T = 582.7926754953031 K, F = -0.00012486852045073826, relative_change = 4.749030816593426e-9 Iter 110: T = 582.7926670416739 K, F = -5.22215071981913e-5, relative_change = 1.986101566709203e-9 Iter 115: T = 582.7926635062651 K, F = -2.1839657846411953e-5, relative_change = 8.306114136705826e-10 Iter 120: T = 582.7926620277149 K, F = -9.133606339029043e-6, relative_change = 3.473716400759006e-10 Iter 125: T = 582.7926614093675 K, F = -3.819783270131438e-6, relative_change = 1.452749699001893e-10 Iter 130: T = 582.7926611507673 K, F = -1.5974795876116943e-6, relative_change = 6.075575054517044e-11 Iter 135: T = 582.7926610426175 K, F = -6.680848143036933e-7, relative_change = 2.5408771837514674e-11 Iter 140: T = 582.7926609973881 K, F = -2.7940161850814604e-7, relative_change = 1.0626273530446907e-11 Iter 145: T = 582.7926609784726 K, F = -1.1684884365648074e-7, relative_change = 4.44402498894564e-12 Iter 150: T = 582.7926609705619 K, F = -4.8867691337939334e-8, relative_change = 1.858548486028379e-12 Iter 155: T = 582.7926609672535 K, F = -2.0437325054523114e-8, relative_change = 7.772775529113434e-13 Iter 160: T = 582.7926609658699 K, F = -8.547332619457393e-9, relative_change = 3.250743316320592e-13 Converged in 163 iterations to T = 582.7926609654647 K Iter 1: T = 964.2796506240296 K, F = -8138.915584139119, relative_change = 0.03572034937597039 Iter 2: T = 930.4821271810047 K, F = -6904.80693011846, relative_change = 0.035049503970298525 Iter 3: T = 898.5763497245703 K, F = -5856.766929130162, relative_change = 0.03428951134515222 Iter 5: T = 840.3268784072942 K, F = -4211.06488675887, relative_change = 0.032476324536239484 Iter 10: T = 725.8329418285416 K, F = -1836.676073722114, relative_change = 0.026121084931290096 Iter 15: T = 651.832617726593 K, F = -793.1904415642323, relative_change = 0.017932878255061548 Iter 20: T = 609.9034700495765 K, F = -338.6894318906823, relative_change = 0.010303695343082947 Iter 25: T = 588.92471423261 K, F = -143.26307092439473, relative_change = 0.005119098408895847 Iter 30: T = 579.3107523884804 K, F = -60.24316540066483, relative_change = 0.002325009919239337 Iter 35: T = 575.1164335674306 K, F = -25.2561212238448, relative_change = 0.0010087746356153113 Iter 40: T = 573.3295406054301 K, F = -10.57354600037312, relative_change = 0.00042860893048530504 Iter 45: T = 572.5763136719358 K, F = -4.42395680819518, relative_change = 0.00018045372290743998 Iter 50: T = 572.260253750639 K, F = -1.8504987067415386, relative_change = 7.568062773139857e-5 Iter 55: T = 572.1278887206834 K, F = -0.7739615172369625, relative_change = 3.168790246014749e-5 Iter 60: T = 572.0724996471484 K, F = -0.32369060429652285, relative_change = 1.3258804900132279e-5 Iter 65: T = 572.0493295958472 K, F = -0.13537314067715783, relative_change = 5.546136225741718e-6 Iter 70: T = 572.0396386099394 K, F = -0.0566149902399834, relative_change = 2.319660844470024e-6 Iter 75: T = 572.0355855500594 K, F = -0.023677122081070645, relative_change = 9.701449292208423e-7 Iter 80: T = 572.0338904816074 K, F = -0.009902065193352821, relative_change = 4.0573232792852296e-7 Iter 85: T = 572.0331815784191 K, F = -0.004141163663198277, relative_change = 1.6968317758596099e-7 Iter 90: T = 572.0328851057095 K, F = -0.001731884404732431, relative_change = 7.096371890319378e-8 Iter 95: T = 572.0327611171191 K, F = -0.0007242947940759303, relative_change = 2.9677907526125528e-8 Iter 100: T = 572.0327092635814 K, F = -0.0003029087416051013, relative_change = 1.2411661074162564e-8 Iter 105: T = 572.0326875778077 K, F = -0.0001266800549751257, relative_change = 5.1907058959586376e-9 Iter 110: T = 572.0326785085573 K, F = -5.297911194040994e-5, relative_change = 2.1708153625526415e-9 Iter 115: T = 572.0326747156882 K, F = -2.215649692022259e-5, relative_change = 9.078609220021743e-10 Iter 120: T = 572.0326731294651 K, F = -9.266111324290893e-6, relative_change = 3.7967827276997147e-10 Iter 125: T = 572.0326724660877 K, F = -3.875198166580773e-6, relative_change = 1.5878597862245653e-10 Iter 130: T = 572.0326721886554 K, F = -1.6206544944386003e-6, relative_change = 6.64062067126664e-11 Iter 135: T = 572.0326720726299 K, F = -6.777772123545134e-7, relative_change = 2.777187479913937e-11 Iter 140: T = 572.0326720241065 K, F = -2.834541614205044e-7, relative_change = 1.161451483164782e-11 Iter 145: T = 572.0326720038136 K, F = -1.1854359727170305e-7, relative_change = 4.857315772122662e-12 Iter 150: T = 572.0326719953268 K, F = -4.957667348870487e-8, relative_change = 2.0314007978949126e-12 Iter 155: T = 572.0326719917775 K, F = -2.073395116708454e-8, relative_change = 8.495722278577218e-13 Iter 160: T = 572.0326719902931 K, F = -8.67082144972997e-9, relative_change = 3.5528631456357605e-13 Converged in 163 iterations to T = 572.0326719898585 K Iter 1: T = 979.9699953096283 K, F = -4563.855622154499, relative_change = 0.020030004690371642 Iter 2: T = 961.9910846686842 K, F = -3855.2835676438413, relative_change = 0.018346388896594373 Iter 3: T = 945.9435978904025 K, F = -3255.2044769789613, relative_change = 0.01668153378345337 Iter 5: T = 919.1235354482195 K, F = -2317.524596464483, relative_change = 0.013497617284006808 Iter 10: T = 876.4734844218447 K, F = -984.0557139346427, relative_change = 0.007111980922942288 Iter 15: T = 856.247661852121 K, F = -414.72297936040707, relative_change = 0.003340921366144475 Iter 20: T = 847.2627035234178 K, F = -174.05649281503727, relative_change = 0.0014735764748106056 Iter 25: T = 843.4024091289718 K, F = -72.90492732430413, relative_change = 0.0006307204204325253 Iter 30: T = 841.7691368476708 K, F = -30.509763028961395, relative_change = 0.0002663905928451511 Iter 35: T = 841.0827163954037 K, F = -12.763083620933399, relative_change = 0.00011187191890061096 Iter 40: T = 840.7950531520247 K, F = -5.338294675140556, relative_change = 4.68678576533867e-5 Iter 45: T = 840.6746446692587 K, F = -2.2326473028963676, relative_change = 1.961502126233134e-5 Iter 50: T = 840.6242701369505 K, F = -0.9337387917901392, relative_change = 8.205744024321774e-6 Iter 55: T = 840.6031997089761 K, F = -0.3905040424311167, relative_change = 3.4321789757587175e-6 Iter 60: T = 840.5943872450598 K, F = -0.16331403634427444, relative_change = 1.4354550021819904e-6 Iter 65: T = 840.5907016695736 K, F = -0.0682999821995125, relative_change = 6.003378522148231e-7 Iter 70: T = 840.5891603007784 K, F = -0.028563886033778685, relative_change = 2.5107080784014985e-7 Iter 75: T = 840.5885156789477 K, F = -0.01194576137660941, relative_change = 1.0500122100464426e-7 Iter 80: T = 840.5882460898763 K, F = -0.004995860613795644, relative_change = 4.3912836437175977e-8 Iter 85: T = 840.5881333444155 K, F = -0.002089328668544388, relative_change = 1.836488520598903e-8 Iter 90: T = 840.5880861929013 K, F = -0.0008737822167883547, relative_change = 7.680416505895288e-9 Iter 95: T = 840.5880664735722 K, F = -0.00036542616170187614, relative_change = 3.2120422956461054e-9 Iter 100: T = 840.5880582267127 K, F = -0.00015282558496965137, relative_change = 1.3433145109902554e-9 Iter 105: T = 840.5880547777776 K, F = -6.39134862820967e-5, relative_change = 5.617901954376031e-10 Iter 110: T = 840.5880533353917 K, F = -2.6729382614165687e-5, relative_change = 2.349473652422034e-10 Iter 115: T = 840.5880527321686 K, F = -1.1178545692214215e-5, relative_change = 9.825778262484897e-11 Iter 120: T = 840.5880524798936 K, F = -4.675001488596564e-6, relative_change = 4.109257978108008e-11 Iter 125: T = 840.5880523743891 K, F = -1.955141404996752e-6, relative_change = 1.7185407194437746e-11 Iter 130: T = 840.5880523302659 K, F = -8.176627859235452e-7, relative_change = 7.187136383810442e-12 Iter 135: T = 840.5880523118132 K, F = -3.419577669916407e-7, relative_change = 3.0057587937711026e-12 Iter 140: T = 840.5880523040959 K, F = -1.4301219253276543e-7, relative_change = 1.2570562707854622e-12 Iter 145: T = 840.5880523008685 K, F = -5.981024031598281e-8, relative_change = 5.257232709759382e-13 Converged in 150 iterations to T = 840.5880522995187 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 7%|██ | ETA: 0:00:14 Bin 1 ray tracing: 14%|████▎ | ETA: 0:00:12 Bin 1 ray tracing: 21%|██████▍ | ETA: 0:00:11 Bin 1 ray tracing: 28%|████████▌ | ETA: 0:00:10 Bin 1 ray tracing: 35%|██████████▋ | ETA: 0:00:09 Bin 1 ray tracing: 43%|████████████▉ | ETA: 0:00:08 Bin 1 ray tracing: 51%|███████████████▎ | ETA: 0:00:07 Bin 1 ray tracing: 59%|█████████████████▋ | ETA: 0:00:06 Bin 1 ray tracing: 67%|████████████████████ | ETA: 0:00:05 Bin 1 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:04 Bin 1 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:03 Bin 1 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:02 Bin 1 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 7%|██▏ | ETA: 0:00:14 Bin 2 ray tracing: 14%|████▎ | ETA: 0:00:12 Bin 2 ray tracing: 22%|██████▌ | ETA: 0:00:11 Bin 2 ray tracing: 30%|████████▉ | ETA: 0:00:10 Bin 2 ray tracing: 37%|███████████▎ | ETA: 0:00:08 Bin 2 ray tracing: 45%|█████████████▋ | ETA: 0:00:07 Bin 2 ray tracing: 52%|███████████████▊ | ETA: 0:00:06 Bin 2 ray tracing: 60%|█████████████████▉ | ETA: 0:00:06 Bin 2 ray tracing: 67%|████████████████████ | ETA: 0:00:05 Bin 2 ray tracing: 73%|██████████████████████ | ETA: 0:00:04 Bin 2 ray tracing: 80%|████████████████████████ | ETA: 0:00:03 Bin 2 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 2 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 7%|██ | ETA: 0:00:14 Bin 3 ray tracing: 14%|████▏ | ETA: 0:00:13 Bin 3 ray tracing: 21%|██████▎ | ETA: 0:00:12 Bin 3 ray tracing: 28%|████████▌ | ETA: 0:00:10 Bin 3 ray tracing: 36%|██████████▊ | ETA: 0:00:09 Bin 3 ray tracing: 43%|█████████████ | ETA: 0:00:08 Bin 3 ray tracing: 50%|███████████████▏ | ETA: 0:00:07 Bin 3 ray tracing: 57%|█████████████████▎ | ETA: 0:00:06 Bin 3 ray tracing: 64%|███████████████████▎ | ETA: 0:00:05 Bin 3 ray tracing: 71%|█████████████████████▏ | ETA: 0:00:04 Bin 3 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:03 Bin 3 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:02 Bin 3 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 3 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 4 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 4 ray tracing: 28%|████████▍ | ETA: 0:00:08 Bin 4 ray tracing: 39%|███████████▊ | ETA: 0:00:06 Bin 4 ray tracing: 50%|███████████████▏ | ETA: 0:00:05 Bin 4 ray tracing: 62%|██████████████████▌ | ETA: 0:00:04 Bin 4 ray tracing: 72%|█████████████████████▊ | ETA: 0:00:03 Bin 4 ray tracing: 83%|█████████████████████████ | ETA: 0:00:02 Bin 4 ray tracing: 94%|████████████████████████████▍ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 11%|███▍ | ETA: 0:00:08 Bin 5 ray tracing: 23%|██████▊ | ETA: 0:00:07 Bin 5 ray tracing: 34%|██████████▏ | ETA: 0:00:06 Bin 5 ray tracing: 45%|█████████████▌ | ETA: 0:00:05 Bin 5 ray tracing: 56%|████████████████▉ | ETA: 0:00:04 Bin 5 ray tracing: 67%|████████████████████▏ | ETA: 0:00:03 Bin 5 ray tracing: 78%|███████████████████████▎ | ETA: 0:00:02 Bin 5 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:01 Bin 5 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 10%|███ | ETA: 0:00:09 Bin 6 ray tracing: 21%|██████▍ | ETA: 0:00:07 Bin 6 ray tracing: 32%|█████████▊ | ETA: 0:00:06 Bin 6 ray tracing: 43%|█████████████ | ETA: 0:00:05 Bin 6 ray tracing: 54%|████████████████▎ | ETA: 0:00:04 Bin 6 ray tracing: 65%|███████████████████▋ | ETA: 0:00:03 Bin 6 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:02 Bin 6 ray tracing: 88%|██████████████████████████▎ | ETA: 0:00:01 Bin 6 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 11%|███▎ | ETA: 0:00:08 Bin 7 ray tracing: 22%|██████▌ | ETA: 0:00:07 Bin 7 ray tracing: 33%|█████████▊ | ETA: 0:00:06 Bin 7 ray tracing: 44%|█████████████▏ | ETA: 0:00:05 Bin 7 ray tracing: 55%|████████████████▍ | ETA: 0:00:04 Bin 7 ray tracing: 65%|███████████████████▋ | ETA: 0:00:03 Bin 7 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:02 Bin 7 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:01 Bin 7 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 10%|███▏ | ETA: 0:00:09 Bin 8 ray tracing: 21%|██████▍ | ETA: 0:00:07 Bin 8 ray tracing: 32%|█████████▊ | ETA: 0:00:06 Bin 8 ray tracing: 43%|████████████▉ | ETA: 0:00:05 Bin 8 ray tracing: 54%|████████████████▎ | ETA: 0:00:04 Bin 8 ray tracing: 65%|███████████████████▌ | ETA: 0:00:03 Bin 8 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:02 Bin 8 ray tracing: 87%|██████████████████████████▎ | ETA: 0:00:01 Bin 8 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 11%|███▎ | ETA: 0:00:08 Bin 9 ray tracing: 22%|██████▌ | ETA: 0:00:07 Bin 9 ray tracing: 33%|█████████▊ | ETA: 0:00:06 Bin 9 ray tracing: 44%|█████████████▏ | ETA: 0:00:05 Bin 9 ray tracing: 55%|████████████████▍ | ETA: 0:00:04 Bin 9 ray tracing: 66%|███████████████████▊ | ETA: 0:00:03 Bin 9 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:02 Bin 9 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:01 Bin 9 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 11%|███▏ | ETA: 0:00:08 Bin 10 ray tracing: 22%|██████▍ | ETA: 0:00:07 Bin 10 ray tracing: 33%|█████████▌ | ETA: 0:00:06 Bin 10 ray tracing: 44%|████████████▋ | ETA: 0:00:05 Bin 10 ray tracing: 55%|███████████████▉ | ETA: 0:00:04 Bin 10 ray tracing: 66%|███████████████████ | ETA: 0:00:03 Bin 10 ray tracing: 77%|██████████████████████▎ | ETA: 0:00:02 Bin 10 ray tracing: 88%|█████████████████████████▍ | ETA: 0:00:01 Bin 10 ray tracing: 99%|████████████████████████████▋| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.3423890389407 K, F = -7441.067722885264, relative_change = 0.0326576109610593 Iter 2: T = 936.7605862296869 K, F = -6307.5513842912405, relative_change = 0.03161424864223829 Iter 3: T = 908.2231839821179 K, F = -5345.193881704283, relative_change = 0.030463922871080112 Iter 5: T = 857.1428171054071 K, F = -3834.853774736061, relative_change = 0.027848197328106675 Iter 10: T = 762.1910840508087 K, F = -1660.4123513169748, relative_change = 0.01992057780425219 Iter 15: T = 706.643075615547 K, F = -710.8530113032252, relative_change = 0.011923818716593601 Iter 20: T = 678.0959529730754 K, F = -301.26387406435117, relative_change = 0.006101151378348832 Iter 25: T = 664.7900676012167 K, F = -126.8215647264809, relative_change = 0.0028171359764209017 Iter 30: T = 658.9338441623164 K, F = -53.19618791457058, relative_change = 0.0012320320036423547 Iter 35: T = 656.4287795509955 K, F = -22.275963873851556, relative_change = 0.0005253178209088989 Iter 40: T = 655.3709455851495 K, F = -9.321173381514576, relative_change = 0.0002215059008723206 Iter 45: T = 654.9267340466256 K, F = -3.8991240842554866, relative_change = 9.295713361303314e-5 Iter 50: T = 654.740640093746 K, F = -1.630817786172892, relative_change = 3.893216333663644e-5 Iter 55: T = 654.6627573477017 K, F = -0.6820550597327378, relative_change = 1.6291777575657217e-5 Iter 60: T = 654.6301760403979 K, F = -0.28524839858693674, relative_change = 6.8151458461226655e-6 Iter 65: T = 654.6165484313875 K, F = -0.11929513130838287, relative_change = 2.850478056637875e-6 Iter 70: T = 654.6108489021454 K, F = -0.04989079629597204, relative_change = 1.1921569112649753e-6 Iter 75: T = 654.6084652384036 K, F = -0.020864952662936198, relative_change = 4.985835185058223e-7 Iter 80: T = 654.6074683525693 K, F = -0.008725976900290366, relative_change = 2.085152015322128e-7 Iter 85: T = 654.6070514414007 K, F = -0.003649308539629359, relative_change = 8.720383077286605e-8 Iter 90: T = 654.6068770838899 K, F = -0.001526184551797205, relative_change = 3.6469733022388225e-8 Iter 95: T = 654.6068041654474 K, F = -0.0006382686295575701, relative_change = 1.5252086541051365e-8 Iter 100: T = 654.6067736700753 K, F = -0.00026693156766732784, relative_change = 6.378606256138886e-9 Iter 105: T = 654.606760916545 K, F = -0.00011163396971364259, relative_change = 2.667609567073075e-9 Iter 110: T = 654.6067555828661 K, F = -4.668665891460755e-5, relative_change = 1.1156262123978978e-9 Iter 115: T = 654.6067533522578 K, F = -1.952491709328319e-5, relative_change = 4.665681838015496e-10 Iter 120: T = 654.6067524193908 K, F = -8.165553684547078e-6, relative_change = 1.9512439207706852e-10 Iter 125: T = 654.6067520292546 K, F = -3.414931574963198e-6, relative_change = 8.16033394895469e-11 Iter 130: T = 654.6067518660951 K, F = -1.4281647915947993e-6, relative_change = 3.412748218098152e-11 Iter 135: T = 654.6067517978598 K, F = -5.972758622130314e-7, relative_change = 1.4272527564665547e-11 Iter 140: T = 654.606751769323 K, F = -2.4978712620526977e-7, relative_change = 5.968923022594339e-12 Iter 145: T = 654.6067517573886 K, F = -1.0446348414072659e-7, relative_change = 2.496263538616948e-12 Iter 150: T = 654.6067517523975 K, F = -4.368870520909951e-8, relative_change = 1.043987023445452e-12 Iter 155: T = 654.6067517503101 K, F = -1.827046286484446e-8, relative_change = 4.3659170149900524e-13 Converged in 159 iterations to T = 654.6067517495566 K Iter 1: T = 970.2847224026019 K, F = -6770.654267093459, relative_change = 0.029715277597398056 Iter 2: T = 942.7325976442161 K, F = -5734.679612764555, relative_change = 0.02839591732431046 Iter 3: T = 917.299223238041 K, F = -4855.472812639372, relative_change = 0.026978354699657363 Iter 5: T = 872.5745452539916 K, F = -3476.6496023402024, relative_change = 0.023892865347444267 Iter 10: T = 793.1185551894425 K, F = -1496.5992493801984, relative_change = 0.015587161024419104 Iter 15: T = 749.7702901496247 K, F = -637.1281203380856, relative_change = 0.008548483467822835 Iter 20: T = 728.7080065038914 K, F = -268.95209496249026, relative_change = 0.004116941695789159 Iter 25: T = 719.2228234276047 K, F = -112.97234376394024, relative_change = 0.0018390643601561773 Iter 30: T = 715.1206305990397 K, F = -47.337651201797435, relative_change = 0.0007917498510492839 Iter 35: T = 713.3798914939241 K, F = -19.813530118895763, relative_change = 0.0003352506087752554 Iter 40: T = 712.6473778298238 K, F = -8.289146202873498, relative_change = 0.00014094169460148083 Iter 45: T = 712.340233247168 K, F = -3.467127857741723, relative_change = 5.9073201168173735e-5 Iter 50: T = 712.2116413819201 K, F = -1.4500832768448535, relative_change = 2.4727876466056205e-5 Iter 55: T = 712.1578381357605 K, F = -0.6064577222838107, relative_change = 1.0345479081010035e-5 Iter 60: T = 712.1353326709095 K, F = -0.2536305875903027, relative_change = 4.327300423053024e-6 Iter 65: T = 712.1259198635724 K, F = -0.10607181745951255, relative_change = 1.8098507415365945e-6 Iter 70: T = 712.1219831833838 K, F = -0.04436058420573041, relative_change = 7.569225387190065e-7 Iter 75: T = 712.1203367936712 K, F = -0.018552140672902673, relative_change = 3.165577785320689e-7 Iter 80: T = 712.1196482498009 K, F = -0.007758729337345782, relative_change = 1.3238889641821408e-7 Iter 85: T = 712.1193602918265 K, F = -0.0032447937128837756, relative_change = 5.536673173059598e-8 Iter 90: T = 712.1192398642394 K, F = -0.0013570115591564624, relative_change = 2.3155048392542408e-8 Iter 95: T = 712.1191894999628 K, F = -0.0005675184542426326, relative_change = 9.683721268182476e-9 Iter 100: T = 712.119168437017 K, F = -0.00023734299764532896, relative_change = 4.04984849503119e-9 Iter 105: T = 712.1191596282408 K, F = -9.925967557988802e-5, relative_change = 1.6936950970843945e-9 Iter 110: T = 712.1191559443054 K, F = -4.1511581889475124e-5, relative_change = 7.083235366162399e-10 Iter 115: T = 712.1191544036395 K, F = -1.736063875568128e-5, relative_change = 2.962293559601943e-10 Iter 120: T = 712.1191537593146 K, F = -7.260424199739823e-6, relative_change = 1.238866163981469e-10 Iter 125: T = 712.1191534898503 K, F = -3.036395875288811e-6, relative_change = 5.181085861704978e-11 Iter 130: T = 712.1191533771571 K, F = -1.2698569105129565e-6, relative_change = 2.1667918020664495e-11 Iter 135: T = 712.1191533300274 K, F = -5.310686187476321e-7, relative_change = 9.061770033088891e-12 Iter 140: T = 712.1191533103173 K, F = -2.220987564971466e-7, relative_change = 3.78973222146605e-12 Iter 145: T = 712.1191533020742 K, F = -9.2883738256333e-8, relative_change = 1.5849007949946171e-12 Iter 150: T = 712.1191532986269 K, F = -3.884436849954653e-8, relative_change = 6.628121528389986e-13 Iter 155: T = 712.1191532971852 K, F = -1.624481482664919e-8, relative_change = 2.7718974728477596e-13 Converged in 157 iterations to T = 712.1191532968801 K Iter 1: T = 974.4532772604355 K, F = -5820.84507741672, relative_change = 0.025546722739564494 Iter 2: T = 951.0955098224895 K, F = -4924.589880944046, relative_change = 0.023970125590437437 Iter 3: T = 929.8516453601653 K, F = -4164.531874238202, relative_change = 0.022336205189622985 Iter 5: T = 893.3508891774057 K, F = -2974.1835709880474, relative_change = 0.018981053113356818 Iter 10: T = 831.893688304716 K, F = -1271.7141155248069, relative_change = 0.011142133291387855 Iter 15: T = 800.7138076011224 K, F = -538.458511581957, relative_change = 0.005620264731905106 Iter 20: T = 786.3004779160182 K, F = -226.55122215140983, relative_change = 0.0025741532577022237 Iter 25: T = 779.9842325769827 K, F = -95.00378312934556, relative_change = 0.001121362068051659 Iter 30: T = 777.287815478961 K, F = -39.778311191435506, relative_change = 0.00047729391838878836 Iter 35: T = 776.1501802009172 K, F = -16.644036152234868, relative_change = 0.00020110465379740588 Iter 40: T = 775.6726375719295 K, F = -6.962190479307536, relative_change = 8.43686643670386e-5 Iter 45: T = 775.472611904863 K, F = -2.9119264966187597, relative_change = 3.533042230875846e-5 Iter 50: T = 775.3889041240374 K, F = -1.2178471367659491, relative_change = 1.4783742532886102e-5 Iter 55: T = 775.3538869594706 K, F = -0.509326038407017, relative_change = 6.1841621767211774e-6 Iter 60: T = 775.3392406882684 K, F = -0.2130076001437834, relative_change = 2.5865397064371384e-6 Iter 65: T = 775.333115149757 K, F = -0.08908256153772831, relative_change = 1.0817653915648087e-6 Iter 70: T = 775.3305533251504 K, F = -0.03725543295550382, relative_change = 4.5241483121144337e-7 Iter 75: T = 775.329481930542 K, F = -0.015580674301402309, relative_change = 1.8920661907044638e-7 Iter 80: T = 775.3290338589541 K, F = -0.0065160253436342686, relative_change = 7.912870094939082e-8 Iter 85: T = 775.3288464697907 K, F = -0.002725079840860123, relative_change = 3.309260853899235e-8 Iter 90: T = 775.3287681013568 K, F = -0.0011396609733269614, relative_change = 1.383973124095251e-8 Iter 95: T = 775.3287353267334 K, F = -0.0004766198347206929, relative_change = 5.787942114920756e-9 Iter 100: T = 775.3287216199931 K, F = -0.00019932810806011503, relative_change = 2.420586732639316e-9 Iter 105: T = 775.3287158876703 K, F = -8.336139703013501e-5, relative_change = 1.0123183364971556e-9 Iter 110: T = 775.3287134903444 K, F = -3.4862731328022534e-5, relative_change = 4.233636186607589e-10 Iter 115: T = 775.328712487754 K, F = -1.4580010343157035e-5, relative_change = 1.7705571944194045e-10 Iter 120: T = 775.3287120684588 K, F = -6.09753389024803e-6, relative_change = 7.404680978474068e-11 Iter 125: T = 775.3287118931045 K, F = -2.550061745099086e-6, relative_change = 3.096726325441501e-11 Iter 130: T = 775.3287118197692 K, F = -1.0664640167634687e-6, relative_change = 1.295085189086856e-11 Iter 135: T = 775.3287117890995 K, F = -4.4600789506077376e-7, relative_change = 5.4161997980088545e-12 Iter 140: T = 775.3287117762732 K, F = -1.865263771216874e-7, relative_change = 2.2651261050697785e-12 Iter 145: T = 775.3287117709091 K, F = -7.800744961095063e-8, relative_change = 9.473014660775053e-13 Iter 150: T = 775.3287117686656 K, F = -3.262255354741228e-8, relative_change = 3.9615950729330247e-13 Converged in 154 iterations to T = 775.328711767856 K Iter 1: T = 970.3343610242625 K, F = -6759.344059929576, relative_change = 0.029665638975737478 Iter 2: T = 942.8328535237669 K, F = -5725.022612015214, relative_change = 0.02834229993820448 Iter 3: T = 917.4507769471967 K, F = -4847.225461931427, relative_change = 0.02692107777291234 Iter 5: T = 872.8292039518126 K, F = -3470.632398118557, relative_change = 0.023829844769971433 Iter 10: T = 793.6123074541514 K, F = -1493.8751673087736, relative_change = 0.015524088225407472 Iter 15: T = 750.4386055932663 K, F = -635.9179669450707, relative_change = 0.008503442348807781 Iter 20: T = 729.4770207964235 K, F = -268.4273752667063, relative_change = 0.004092022732952779 Iter 25: T = 720.041307651404 K, F = -112.74887992406623, relative_change = 0.0018271836844363587 Iter 30: T = 715.9613831373196 K, F = -47.24342039687015, relative_change = 0.0007864858839007842 Iter 35: T = 714.2302600054498 K, F = -19.773980045742007, relative_change = 0.0003329940947287078 Iter 40: T = 713.5018230445763 K, F = -8.272580658624534, relative_change = 0.00013998809733524028 Iter 45: T = 713.1963932067883 K, F = -3.460195501837059, relative_change = 5.8672644544199646e-5 Iter 50: T = 713.0685201980593 K, F = -1.4471833024053997, relative_change = 2.45600511939064e-5 Iter 55: T = 713.0150178897281 K, F = -0.6052447816580225, relative_change = 1.0275238620503854e-5 Iter 60: T = 712.9926383338112 K, F = -0.2531232974147579, relative_change = 4.2979155836584346e-6 Iter 65: T = 712.9832781923933 K, F = -0.10585965846324463, relative_change = 1.7975599990975172e-6 Iter 70: T = 712.979363539348 K, F = -0.044271856048004654, relative_change = 7.517821145354139e-7 Iter 75: T = 712.9777263619342 K, F = -0.018515033369260525, relative_change = 3.144079412070542e-7 Iter 80: T = 712.9770416708071 K, F = -0.007743210597909611, relative_change = 1.3148979994412355e-7 Iter 85: T = 712.9767553241047 K, F = -0.003238303587923874, relative_change = 5.499071732083107e-8 Iter 90: T = 712.9766355703722 K, F = -0.001354297310323771, relative_change = 2.2997794399010638e-8 Iter 95: T = 712.9765854879099 K, F = -0.0005663833212647962, relative_change = 9.61795569590149e-9 Iter 100: T = 712.9765645428223 K, F = -0.0002368682708505654, relative_change = 4.022344528724715e-9 Iter 105: T = 712.9765557833358 K, F = -9.906114027913304e-5, relative_change = 1.6821926275212785e-9 Iter 110: T = 712.9765521200139 K, F = -4.142855103184129e-5, relative_change = 7.035130488416202e-10 Iter 115: T = 712.976550587969 K, F = -1.7325916726762536e-5, relative_change = 2.942175944255184e-10 Iter 120: T = 712.9765499472495 K, F = -7.2459054584195215e-6, relative_change = 1.230453150706525e-10 Iter 125: T = 712.9765496792929 K, F = -3.0303248615970446e-6, relative_change = 5.14590316101317e-11 Iter 130: T = 712.9765495672302 K, F = -1.2673178001465502e-6, relative_change = 2.1520777396868562e-11 Iter 135: T = 712.9765495203643 K, F = -5.300066252544866e-7, relative_change = 9.000232304176635e-12 Iter 140: T = 712.9765495007643 K, F = -2.2165483459790636e-7, relative_change = 3.764000123636615e-12 Iter 145: T = 712.9765494925675 K, F = -9.26992280714245e-8, relative_change = 1.5741587887037014e-12 Iter 150: T = 712.9765494891394 K, F = -3.876782439515836e-8, relative_change = 6.583303093412643e-13 Iter 155: T = 712.9765494877057 K, F = -1.6212171383145346e-8, relative_change = 2.7530468805968854e-13 Converged in 157 iterations to T = 712.9765494874024 K Iter 1: T = 969.3091276122906 K, F = -6992.944468096125, relative_change = 0.0306908723877094 Iter 2: T = 940.7588545098251 K, F = -5924.5292381574145, relative_change = 0.029454249721957728 Iter 3: T = 914.3101638985355 K, F = -5017.6630462224075, relative_change = 0.028114208529103384 Iter 5: T = 867.5320426305944 K, F = -3595.083252450836, relative_change = 0.02515559911433077 Iter 10: T = 783.2360292305196 K, F = -1550.391596128809, relative_change = 0.016888245897371992 Iter 15: T = 736.269897026028 K, F = -661.1200563338089, relative_change = 0.009502344109534488 Iter 20: T = 713.0821670722202 K, F = -279.3874346004004, relative_change = 0.004653928934174161 Iter 25: T = 702.5413902577311 K, F = -117.42448829717198, relative_change = 0.0020974583165854796 Iter 30: T = 697.9614369882163 K, F = -49.21668847225289, relative_change = 0.0009067308451093062 Iter 35: T = 696.0138783642358 K, F = -20.602498832502693, relative_change = 0.0003846330622181373 Iter 40: T = 695.1935891216744 K, F = -8.61966132177013, relative_change = 0.0001618274646085464 Iter 45: T = 694.8495074922516 K, F = -3.6054518209334847, relative_change = 6.784921791768686e-5 Iter 50: T = 694.7054278801216 K, F = -1.5079493153717651, relative_change = 2.840537935493805e-5 Iter 55: T = 694.6451404135204 K, F = -0.6306610218458543, relative_change = 1.1884728644608798e-5 Iter 60: T = 694.619921933801 K, F = -0.26375322700000353, relative_change = 4.971255989610813e-6 Iter 65: T = 694.6093742948675 K, F = -0.11030531895468465, relative_change = 2.079199670620702e-6 Iter 70: T = 694.6049629766987 K, F = -0.04613110132506759, relative_change = 8.695743034497623e-7 Iter 75: T = 694.603118081093 K, F = -0.019292594916263117, relative_change = 3.6367128581698057e-7 Iter 80: T = 694.6023465185295 K, F = -0.008068396641945808, relative_change = 1.5209253665024106e-7 Iter 85: T = 694.6020238409436 K, F = -0.0033743003648595282, relative_change = 6.360706591173142e-8 Iter 90: T = 694.6018888931648 K, F = -0.001411172802500027, relative_change = 2.6601260938103406e-8 Iter 95: T = 694.6018324563644 K, F = -0.0005901693355223614, relative_change = 1.1124969626129551e-8 Iter 100: T = 694.6018088538156 K, F = -0.0002468158658098796, relative_change = 4.652595940410843e-9 Iter 105: T = 694.6017989829469 K, F = -0.00010322134174756137, relative_change = 1.9457712999761276e-9 Iter 110: T = 694.6017948548317 K, F = -4.3168397458770436e-5, relative_change = 8.137448108686306e-10 Iter 115: T = 694.6017931284046 K, F = -1.8053539566964538e-5, relative_change = 3.4031780605959237e-10 Iter 120: T = 694.6017924063922 K, F = -7.550205348594297e-6, relative_change = 1.4232496196762737e-10 Iter 125: T = 694.6017921044379 K, F = -3.1575868810751473e-6, relative_change = 5.952201469226416e-11 Iter 130: T = 694.6017919781569 K, F = -1.3205394476800691e-6, relative_change = 2.4892796757440303e-11 Iter 135: T = 694.6017919253449 K, F = -5.522655470713289e-7, relative_change = 1.0410468273788614e-11 Iter 140: T = 694.6017919032582 K, F = -2.309651815357583e-7, relative_change = 4.353803542232016e-12 Iter 145: T = 694.6017918940213 K, F = -9.659219246671569e-8, relative_change = 1.8208087770799367e-12 Iter 150: T = 694.6017918901583 K, F = -4.0395326972308965e-8, relative_change = 7.614711295789949e-13 Iter 155: T = 694.6017918885427 K, F = -1.689402495674841e-8, relative_change = 3.1846040696518914e-13 Converged in 158 iterations to T = 694.6017918880698 K Iter 1: T = 963.578810550279 K, F = -8298.602661614234, relative_change = 0.036421189449721086 Iter 2: T = 929.0364151793166 K, F = -7041.609996900909, relative_change = 0.03584802300834739 Iter 3: T = 896.3393422498986 K, F = -5974.0918326590645, relative_change = 0.03519460851607954 Iter 5: T = 836.3624867398679 K, F = -4297.657021084186, relative_change = 0.033617852734151424 Iter 10: T = 716.7747577573682 K, F = -1878.0028845570307, relative_change = 0.027882005315102206 Iter 15: T = 637.2473745578765 K, F = -813.1764297561621, relative_change = 0.019960550095002052 Iter 20: T = 590.6937612644829 K, F = -348.15389629902154, relative_change = 0.011957534373352686 Iter 25: T = 566.7560116619426 K, F = -147.55561086001836, relative_change = 0.006122145733581971 Iter 30: T = 555.5946076418508 K, F = -62.117187763855185, relative_change = 0.0028278221126490253 Iter 35: T = 550.6812981618511 K, F = -26.05578121249261, relative_change = 0.0012369169266684553 Iter 40: T = 548.5793913790527 K, F = -10.910943272033183, relative_change = 0.0005274410642942884 Iter 45: T = 547.6917679960288 K, F = -4.565594439160825, relative_change = 0.00022240852651513672 Iter 50: T = 547.319026110501 K, F = -1.9098277687541498, relative_change = 9.333723335806382e-5 Iter 55: T = 547.1628719232344 K, F = -0.7987902519420579, relative_change = 3.9091585736481984e-5 Iter 60: T = 547.0975191693399 K, F = -0.33407718923097596, relative_change = 1.6358530665045345e-5 Iter 65: T = 547.0701795997753 K, F = -0.13971744421624022, relative_change = 6.8430769253810266e-6 Iter 70: T = 547.0587444185185 K, F = -0.05843191903628306, relative_change = 2.8621616420346084e-6 Iter 75: T = 547.053961836055 K, F = -0.02443699900160448, relative_change = 1.1970435590654685e-6 Iter 80: T = 547.0519616586819 K, F = -0.0102198575243308, relative_change = 5.006272486671168e-7 Iter 85: T = 547.0511251528742 K, F = -0.004274068688611216, relative_change = 2.0936992713099711e-7 Iter 90: T = 547.0507753148012 K, F = -0.0017874669572983948, relative_change = 8.756128955029604e-8 Iter 95: T = 547.0506290081042 K, F = -0.0007475400956658551, relative_change = 3.6619226913653794e-8 Iter 100: T = 547.0505678208549 K, F = -0.0003126302074673293, relative_change = 1.5314606761402868e-8 Iter 105: T = 547.0505422316093 K, F = -0.00013074568876442205, relative_change = 6.4047529869502456e-9 Iter 110: T = 547.0505315298798 K, F = -5.4679408429764154e-5, relative_change = 2.6785444353179225e-9 Iter 115: T = 547.0505270542886 K, F = -2.2867581821545135e-5, relative_change = 1.1201993251576293e-9 Iter 120: T = 547.0505251825429 K, F = -9.563496204650912e-6, relative_change = 4.684807625357463e-10 Iter 125: T = 547.0505243997565 K, F = -3.9995682663274135e-6, relative_change = 1.9592424819243168e-10 Iter 130: T = 547.0505240723859 K, F = -1.6726675934886082e-6, relative_change = 8.193787925132669e-11 Iter 135: T = 547.0505239354754 K, F = -6.995297433531888e-7, relative_change = 3.426740850065371e-11 Iter 140: T = 547.0505238782179 K, F = -2.9255135278183353e-7, relative_change = 1.433102282418295e-11 Iter 145: T = 547.050523854272 K, F = -1.2234773413832833e-7, relative_change = 5.993368870512102e-12 Iter 150: T = 547.0505238442578 K, F = -5.116777493374691e-8, relative_change = 2.5065225085516637e-12 Iter 155: T = 547.0505238400697 K, F = -2.139933744094158e-8, relative_change = 1.048275424038253e-12 Iter 160: T = 547.0505238383181 K, F = -8.949895269338981e-9, relative_change = 4.3842269811389437e-13 Converged in 164 iterations to T = 547.0505238376859 K Iter 1: T = 966.8927272259953 K, F = -7543.523594703696, relative_change = 0.03310727277400476 Iter 2: T = 935.8427951327889 K, F = -6395.178629907148, relative_change = 0.03211310957140855 Iter 3: T = 906.8198136103186 K, F = -5420.185067294572, relative_change = 0.031012667590556313 Iter 5: T = 854.7238732302576 K, F = -3889.8686851887214, relative_change = 0.028493082777290152 Iter 10: T = 757.1471632561662 K, F = -1685.8898062015996, relative_change = 0.0207041999555028 Iter 15: T = 699.3408853025019 K, F = -722.5224064880118, relative_change = 0.012599147566441754 Iter 20: T = 669.3019836499371 K, F = -306.45843186501145, relative_change = 0.006527740665414372 Iter 25: T = 655.1980752523498 K, F = -129.069777326225, relative_change = 0.0030359954539116558 Iter 30: T = 648.9664407748236 K, F = -54.15193598102852, relative_change = 0.0013324603198456686 Iter 35: T = 646.295926670153 K, F = -22.678583785471865, relative_change = 0.0005690434055564965 Iter 40: T = 645.167322291621 K, F = -9.490079583002421, relative_change = 0.00024010794241737226 Iter 45: T = 644.6932299719493 K, F = -3.969855840526217, relative_change = 0.00010079295838812286 Iter 50: T = 644.4945892992716 K, F = -1.6604150361930634, relative_change = 4.221911170777705e-5 Iter 55: T = 644.4114505377007 K, F = -0.6944358555134428, relative_change = 1.7668158191652612e-5 Iter 60: T = 644.3766695547719 K, F = -0.29042669810494615, relative_change = 7.391069331212237e-6 Iter 65: T = 644.3621217443083 K, F = -0.12146084599574253, relative_change = 3.0913894549760295e-6 Iter 70: T = 644.356037328442 K, F = -0.05079653943386264, relative_change = 1.2929182629397235e-6 Iter 75: T = 644.3534926922282 K, F = -0.021243747952461534, relative_change = 5.407247507308654e-7 Iter 80: T = 644.3524284843337 K, F = -0.008884394084171299, relative_change = 2.261394534794881e-7 Iter 85: T = 644.3519834180219 K, F = -0.0037155605792812962, relative_change = 9.457455330603826e-8 Iter 90: T = 644.3517972856497 K, F = -0.0015538919600469048, relative_change = 3.955226593252875e-8 Iter 95: T = 644.3517194428117 K, F = -0.0006498562009557007, relative_change = 1.6541240139413662e-8 Iter 100: T = 644.3516868879974 K, F = -0.00027177762876234857, relative_change = 6.91774595154462e-9 Iter 105: T = 644.3516732731836 K, F = -0.00011366065132417669, relative_change = 2.8930842955176024e-9 Iter 110: T = 644.3516675793054 K, F = -4.753424172820875e-5, relative_change = 1.2099224527285841e-9 Iter 115: T = 644.3516651980575 K, F = -1.987938722197713e-5, relative_change = 5.06004019314746e-10 Iter 120: T = 644.3516642021913 K, F = -8.313798032233422e-6, relative_change = 2.1161694795025893e-10 Iter 125: T = 644.3516637857081 K, F = -3.4769293880687613e-6, relative_change = 8.850072911961812e-11 Iter 130: T = 644.3516636115298 K, F = -1.454093328800976e-6, relative_change = 3.701206024317825e-11 Iter 135: T = 644.3516635386864 K, F = -6.081187021722556e-7, relative_change = 1.5478873058634252e-11 Iter 140: T = 644.3516635082224 K, F = -2.543222851758564e-7, relative_change = 6.4734440086170585e-12 Iter 145: T = 644.3516634954821 K, F = -1.0636110708839297e-7, relative_change = 2.7072840707606756e-12 Iter 150: T = 644.3516634901539 K, F = -4.4481882122138217e-8, relative_change = 1.1322286332670348e-12 Iter 155: T = 644.3516634879254 K, F = -1.8602226703468006e-8, relative_change = 4.734955607028049e-13 Converged in 160 iterations to T = 644.3516634869936 K Iter 1: T = 965.1837446460282 K, F = -7932.916901211301, relative_change = 0.034816255353971794 Iter 2: T = 932.3421298270939 K, F = -6728.402739033895, relative_change = 0.03402628256133617 Iter 3: T = 901.4456985321139 K, F = -5705.561104060078, relative_change = 0.033138512469354925 Iter 5: T = 845.3753479209428 K, F = -4099.641800372571, relative_change = 0.031050884954422018 Iter 10: T = 737.0819860265472 K, F = -1783.9451132492438, relative_change = 0.02406020679099828 Iter 15: T = 669.3749344749373 K, F = -768.1197526324114, relative_change = 0.015755179319570746 Iter 20: T = 632.3363228945219 K, F = -327.07074574375815, relative_change = 0.008668892648670283 Iter 25: T = 614.3034952469404 K, F = -138.0860189239215, relative_change = 0.004183723552883129 Iter 30: T = 606.1731235780384 K, F = -58.00673074981333, relative_change = 0.0018709467699872097 Iter 35: T = 602.6548519742881 K, F = -24.30678912894792, relative_change = 0.0008058848648316417 Iter 40: T = 601.1615115340189 K, F = -10.173939739816108, relative_change = 0.00034131156603651406 Iter 45: T = 600.5330348717022 K, F = -4.256374546697939, relative_change = 0.00014350334289641603 Iter 50: T = 600.2695008119722 K, F = -1.7803322095455272, relative_change = 6.014927007623232e-5 Iter 55: T = 600.1591651265911 K, F = -0.744602722786393, relative_change = 2.5178737412341732e-5 Iter 60: T = 600.1129999406465 K, F = -0.31140989581904505, relative_change = 1.053418104361109e-5 Iter 65: T = 600.0936893477366 K, F = -0.1302367624206574, relative_change = 4.406243487701973e-6 Iter 70: T = 600.0856127691643 K, F = -0.05446681865355357, relative_change = 1.8428701617973858e-6 Iter 75: T = 600.0822349324495 K, F = -0.022778717626166733, relative_change = 7.707324396820169e-7 Iter 80: T = 600.0808222606631 K, F = -0.00952633936982511, relative_change = 3.223333813495376e-7 Iter 85: T = 600.08023146093 K, F = -0.003984030225678725, relative_change = 1.3480434651481467e-7 Iter 90: T = 600.0799843808103 K, F = -0.0016661692524857497, relative_change = 5.637690600657714e-8 Iter 95: T = 600.0798810488457 K, F = -0.0006968119202159229, relative_change = 2.3577516076213777e-8 Iter 100: T = 600.0798378341651 K, F = -0.0002914150729192433, relative_change = 9.860402388357949e-9 Iter 105: T = 600.0798197612664 K, F = -0.00012187326539203625, relative_change = 4.123738684557902e-9 Iter 110: T = 600.0798122029638 K, F = -5.096885502503534e-5, relative_change = 1.7245968679196086e-9 Iter 115: T = 600.0798090419912 K, F = -2.131578381514565e-5, relative_change = 7.212470224947312e-10 Iter 120: T = 600.0798077200348 K, F = -8.914515307434367e-6, relative_change = 3.016341198458256e-10 Iter 125: T = 600.0798071671768 K, F = -3.7281570222647e-6, relative_change = 1.2614700050518526e-10 Iter 130: T = 600.079806935965 K, F = -1.5591606064013774e-6, relative_change = 5.275620983493299e-11 Iter 135: T = 600.0798068392694 K, F = -6.520593072711911e-7, relative_change = 2.2063267584093283e-11 Iter 140: T = 600.0798067988301 K, F = -2.7269796359918885e-7, relative_change = 9.227087283878452e-12 Iter 145: T = 600.079806781918 K, F = -1.1404632471734288e-7, relative_change = 3.858904477410605e-12 Iter 150: T = 600.0798067748451 K, F = -4.769472072840841e-8, relative_change = 1.6138123857492758e-12 Iter 155: T = 600.0798067718872 K, F = -1.994649800884929e-8, relative_change = 6.749154843166195e-13 Iter 160: T = 600.0798067706501 K, F = -8.341444313053614e-9, relative_change = 2.8224352595640055e-13 Converged in 162 iterations to T = 600.0798067703884 K Iter 1: T = 980.0503582599247 K, F = -4545.544847484585, relative_change = 0.01994964174007534 Iter 2: T = 962.1483832030516 K, F = -3839.730335520821, relative_change = 0.01826638285063026 Iter 3: T = 946.1738271374589 K, F = -3242.0001914055306, relative_change = 0.016603006713384872 Iter 5: T = 919.4857917581103 K, F = -2308.0245764200617, relative_change = 0.013425066902203886 Iter 10: T = 877.0770345188083 K, F = -979.934910156509, relative_change = 0.007064089887666773 Iter 15: T = 856.9820212850092 K, F = -412.96399572848685, relative_change = 0.0033157000228967093 Iter 20: T = 848.0591528346949 K, F = -173.31354478520083, relative_change = 0.0014618517423247066 Iter 25: T = 844.226348440255 K, F = -72.59283905916662, relative_change = 0.0006255854946437204 Iter 30: T = 842.6048595973938 K, F = -30.378994989477235, relative_change = 0.00026420049749559845 Iter 35: T = 841.9234188967557 K, F = -12.708350713322977, relative_change = 0.00011094837944920767 Iter 40: T = 841.6378474233042 K, F = -5.315396952571571, relative_change = 4.6480278272803355e-5 Iter 45: T = 841.5183153580954 K, F = -2.223069840112584, relative_change = 1.9452694941562862e-5 Iter 50: T = 841.4683076371047 K, F = -0.9297331440614143, relative_change = 8.13781587638075e-6 Iter 55: T = 841.4473906635551 K, F = -0.3888287909983553, relative_change = 3.4037633774546796e-6 Iter 60: T = 841.4386423847818 K, F = -0.16261341888778413, relative_change = 1.423569993719137e-6 Iter 65: T = 841.4349836538057 K, F = -0.0680069743342786, relative_change = 5.953671782988784e-7 Iter 70: T = 841.4334535119706 K, F = -0.028441346422551472, relative_change = 2.489919739209484e-7 Iter 75: T = 841.432813585435 K, F = -0.011894513806339768, relative_change = 1.0413182103836355e-7 Iter 80: T = 841.4325459600002 K, F = -0.004974428259775676, relative_change = 4.3549241792500525e-8 Iter 85: T = 841.4324340357572 K, F = -0.0020803654005050465, relative_change = 1.8212825372247313e-8 Iter 90: T = 841.4323872276863 K, F = -0.0008700336703921785, relative_change = 7.616823227302743e-9 Iter 95: T = 841.4323676519892 K, F = -0.00036385847351394496, relative_change = 3.1854468094973877e-9 Iter 100: T = 841.4323594651985 K, F = -0.00015216995692934887, relative_change = 1.3321919414876598e-9 Iter 105: T = 841.4323560413848 K, F = -6.363929445218908e-5, relative_change = 5.571386007097434e-10 Iter 110: T = 841.432354609505 K, F = -2.6614712559602793e-5, relative_change = 2.330020148955621e-10 Iter 115: T = 841.4323540106757 K, F = -1.1130589393948398e-5, relative_change = 9.744421468934322e-11 Iter 120: T = 841.4323537602381 K, F = -4.654944311344167e-6, relative_change = 4.075232473591881e-11 Iter 125: T = 841.4323536555022 K, F = -1.946751954085002e-6, relative_change = 1.7043097092877123e-11 Iter 130: T = 841.4323536117004 K, F = -8.141537417571953e-7, relative_change = 7.1276164606486864e-12 Iter 135: T = 841.432353593382 K, F = -3.404888808677953e-7, relative_change = 2.9808548775502307e-12 Iter 140: T = 841.432353585721 K, F = -1.4239822143657932e-7, relative_change = 1.246644036833961e-12 Iter 145: T = 841.4323535825171 K, F = -5.955320214745541e-8, relative_change = 5.213663737078634e-13 Converged in 150 iterations to T = 841.4323535811772 K Iter 1: T = 976.4427523297262 K, F = -5367.54129039947, relative_change = 0.023557247670273757 Iter 2: T = 955.0470482211696 K, F = -4538.603412401443, relative_change = 0.02191188787822734 Iter 3: T = 935.7212007600355 K, F = -3835.9446346348223, relative_change = 0.020235492583459237 Iter 5: T = 902.8579146693089 K, F = -2736.3271658825824, relative_change = 0.016882800385348205 Iter 10: T = 848.7388016769803 K, F = -1166.8209941888233, relative_change = 0.009498335906195508 Iter 15: T = 822.0211879807587 K, F = -493.0931129339803, relative_change = 0.004651658654616225 Iter 20: T = 809.8762216086049 K, F = -207.24294473133543, relative_change = 0.002096361388969664 Iter 25: T = 804.5993457138532 K, F = -86.8626353662144, relative_change = 0.0009062417096375374 Iter 30: T = 802.3554493139278 K, F = -36.3613756474426, relative_change = 0.0003844227868916375 Iter 35: T = 801.4103493849099 K, F = -15.212847841402303, relative_change = 0.00016173849435281216 Iter 40: T = 801.0139147927927 K, F = -6.363264543766573, relative_change = 6.78118268703351e-5 Iter 45: T = 800.847913178671 K, F = -2.6613807491677584, relative_change = 2.8389709855540107e-5 Iter 50: T = 800.7784528716561 K, F = -1.113054039994384, relative_change = 1.1878169842615406e-5 Iter 55: T = 800.7493973606761 K, F = -0.4654982357527473, relative_change = 4.968512034588635e-6 Iter 60: T = 800.737244882497 K, F = -0.19467792609635381, relative_change = 2.078051943437815e-6 Iter 65: T = 800.7321623756841 K, F = -0.08141680935500817, relative_change = 8.690942800220903e-7 Iter 70: T = 800.7300367764756 K, F = -0.034049512722173714, relative_change = 3.6347052899073634e-7 Iter 75: T = 800.7291478195267 K, F = -0.01423991822906212, relative_change = 1.5200857681358244e-7 Iter 80: T = 800.7287760460692 K, F = -0.005955304802160777, relative_change = 6.357195273795548e-8 Iter 85: T = 800.7286205657867 K, F = -0.0024905797541512342, relative_change = 2.658657618030987e-8 Iter 90: T = 800.7285555420439 K, F = -0.0010415902250999753, relative_change = 1.111882826844761e-8 Iter 95: T = 800.7285283483325 K, F = -0.00043560547914511805, relative_change = 4.650027603817444e-9 Iter 100: T = 800.7285169755966 K, F = -0.00018217541437759444, relative_change = 1.944697216712976e-9 Iter 105: T = 800.7285122193823 K, F = -7.61879321312664e-5, relative_change = 8.132956044546469e-10 Iter 110: T = 800.7285102302768 K, F = -3.186270241450906e-5, relative_change = 3.401299313599335e-10 Iter 115: T = 800.7285093984092 K, F = -1.3325365046279458e-5, relative_change = 1.4224642536573206e-10 Iter 120: T = 800.7285090505121 K, F = -5.572826853650348e-6, relative_change = 5.948915455603995e-11 Iter 125: T = 800.7285089050174 K, F = -2.3306211363038898e-6, relative_change = 2.4879057747557035e-11 Iter 130: T = 800.7285088441698 K, F = -9.74693445399133e-7, relative_change = 1.0404717500108582e-11 Iter 135: T = 800.7285088187226 K, F = -4.076288521170923e-7, relative_change = 4.351381525990319e-12 Iter 140: T = 800.7285088080804 K, F = -1.7047575251449842e-7, relative_change = 1.8198050415595775e-12 Iter 145: T = 800.7285088036297 K, F = -7.129557555440869e-8, relative_change = 7.610703922671e-13 Iter 150: T = 800.7285088017683 K, F = -2.9818104541057266e-8, relative_change = 3.183041351935858e-13 Converged in 153 iterations to T = 800.7285088012233 K Iter 1: T = 980.9218991429074 K, F = -4346.963428247579, relative_change = 0.019078100857092682 Iter 2: T = 963.8517121834027 K, F = -3671.0982188267644, relative_change = 0.0174021876506376 Iter 3: T = 948.6631821297447 K, F = -3098.8756851765606, relative_change = 0.015758160577680126 Iter 5: T = 923.3916177198196 K, F = -2205.112533682805, relative_change = 0.012650485664193158 Iter 10: T = 883.548172453096 K, F = -935.3592655188237, relative_change = 0.0065606877783579536 Iter 15: T = 864.8301190913297 K, F = -393.9559947096675, relative_change = 0.0030530504601670038 Iter 20: T = 856.5572441690585 K, F = -165.28948089131214, relative_change = 0.0013403203064243313 Iter 25: T = 853.0114613648201 K, F = -69.22306216749455, relative_change = 0.000572472198142037 Iter 30: T = 851.512858156835 K, F = -28.967186025450225, relative_change = 0.0002415678580934402 Iter 35: T = 850.8833234382936 K, F = -12.11746738439641, relative_change = 0.00010140814228275115 Iter 40: T = 850.6195506787363 K, F = -5.068203707446403, relative_change = 4.2477205450209715e-5 Iter 45: T = 850.5091511000954 K, F = -2.1196768623352296, relative_change = 1.7776239379914454e-5 Iter 50: T = 850.4629654995086 K, F = -0.8864905481740197, relative_change = 7.436295275277387e-6 Iter 55: T = 850.4436474734988 K, F = -0.3707437979280145, relative_change = 3.1103078776707224e-6 Iter 60: T = 850.4355679796173 K, F = -0.15504998480622878, relative_change = 1.3008309417278294e-6 Iter 65: T = 850.4321889575024 K, F = -0.06484384293393686, relative_change = 5.440340619128489e-7 Iter 70: T = 850.4307757958827 K, F = -0.027118484831410106, relative_change = 2.2752347046763421e-7 Iter 75: T = 850.4301847923301 K, F = -0.011341276895549868, relative_change = 9.515336985275915e-8 Iter 80: T = 850.4299376271515 K, F = -0.004743057906767323, relative_change = 3.9794334617597e-8 Iter 85: T = 850.429834259646 K, F = -0.001983603541258372, relative_change = 1.664247628922796e-8 Iter 90: T = 850.4297910301075 K, F = -0.0008295667033697551, relative_change = 6.9600841324765306e-9 Iter 95: T = 850.4297729509959 K, F = -0.0003469347067330819, relative_change = 2.9107906355744344e-9 Iter 100: T = 850.4297653900951 K, F = -0.00014509223584679987, relative_change = 1.2173274425388e-9 Iter 105: T = 850.429762228036 K, F = -6.0679305030841846e-5, relative_change = 5.091008770029183e-10 Iter 110: T = 850.4297609056251 K, F = -2.5376810212085488e-5, relative_change = 2.1291206983328186e-10 Iter 115: T = 850.4297603525771 K, F = -1.0612885804839323e-5, relative_change = 8.904237655263056e-11 Iter 120: T = 850.4297601212858 K, F = -4.438435797560203e-6, relative_change = 3.723858706955939e-11 Iter 125: T = 850.4297600245569 K, F = -1.8562050032588928e-6, relative_change = 1.557360629351408e-11 Iter 130: T = 850.4297599841037 K, F = -7.762847420433872e-7, relative_change = 6.5130483571365426e-12 Iter 135: T = 850.4297599671859 K, F = -3.246508817333904e-7, relative_change = 2.7238289993321655e-12 Iter 140: T = 850.4297599601107 K, F = -1.357744492391788e-7, relative_change = 1.1391510173823783e-12 Iter 145: T = 850.4297599571516 K, F = -5.678252912311166e-8, relative_change = 4.764068363647888e-13 Converged in 150 iterations to T = 850.4297599559143 K Iter 1: T = 967.3264252351086 K, F = -7444.705090773911, relative_change = 0.032673574764891425 Iter 2: T = 936.7280263726167 K, F = -6310.661955135658, relative_change = 0.03163192699409092 Iter 3: T = 908.1734369745191 K, F = -5347.855521388882, relative_change = 0.030483329839796028 Iter 5: T = 857.0572243353781 K, F = -3836.8056400768137, relative_change = 0.027870898920579715 Iter 10: T = 762.0135850062647 K, F = -1661.3146799628616, relative_change = 0.019947764829517628 Iter 15: T = 706.3875326545361 K, F = -711.2652085310743, relative_change = 0.011946888118916713 Iter 20: T = 677.7894539075877 K, F = -301.44690009279816, relative_change = 0.0061155517621387665 Iter 25: T = 664.456522451244 K, F = -126.90064838981687, relative_change = 0.0028244729646428927 Iter 30: T = 658.5876294746887 K, F = -53.229778796461254, relative_change = 0.0012353872684176944 Iter 35: T = 656.0769923383625 K, F = -22.290108842305308, relative_change = 0.0005267764318229946 Iter 40: T = 655.0167768464438 K, F = -9.327106426374817, relative_change = 0.000222126022136948 Iter 45: T = 654.5715601562712 K, F = -3.901608445104306, relative_change = 9.321827682034104e-5 Iter 50: T = 654.3850442149242 K, F = -1.6318573189699825, relative_change = 3.9041693968098984e-5 Iter 55: T = 654.3069847032046 K, F = -0.6824899000177624, relative_change = 1.6337640289248826e-5 Iter 60: T = 654.2743294204276 K, F = -0.28543027066341686, relative_change = 6.834335934917822e-6 Iter 65: T = 654.260670865246 K, F = -0.11937119530112228, relative_change = 2.858505287947985e-6 Iter 70: T = 654.2549583924153 K, F = -0.0499226076763547, relative_change = 1.195514293883054e-6 Iter 75: T = 654.2525693152426 K, F = -0.02087825665089965, relative_change = 4.999876682349014e-7 Iter 80: T = 654.2515701654 K, F = -0.008731540803303184, relative_change = 2.0910244287210722e-7 Iter 85: T = 654.251152307388 K, F = -0.0036516354330807244, relative_change = 8.744942371309622e-8 Iter 90: T = 654.2509775538946 K, F = -0.0015271576875258153, relative_change = 3.657244321736182e-8 Iter 95: T = 654.2509044698471 K, F = -0.0006386756077547684, relative_change = 1.529504124712372e-8 Iter 100: T = 654.2508739052171 K, F = -0.0002671017706790124, relative_change = 6.396570432276047e-9 Iter 105: T = 654.2508611227222 K, F = -0.0001117051513361278, relative_change = 2.675122418013843e-9 Iter 110: T = 654.2508557769299 K, F = -4.671642928755215e-5, relative_change = 1.1187682093753857e-9 Iter 115: T = 654.2508535412557 K, F = -1.953736837184694e-5, relative_change = 4.678822272641222e-10 Iter 120: T = 654.2508526062701 K, F = -8.170761307435548e-6, relative_change = 1.9567394913260282e-10 Iter 125: T = 654.2508522152478 K, F = -3.41710988738253e-6, relative_change = 8.183318090302574e-11 Iter 130: T = 654.2508520517176 K, F = -1.4290757415769129e-6, relative_change = 3.4223603477187724e-11 Iter 135: T = 654.2508519833274 K, F = -5.976564216858549e-7, relative_change = 1.4312716818620994e-11 Iter 140: T = 654.2508519547258 K, F = -2.4994715169812665e-7, relative_change = 5.985751466586225e-12 Iter 145: T = 654.2508519427643 K, F = -1.0453040538704883e-7, relative_change = 2.5033012905004963e-12 Iter 150: T = 654.2508519377618 K, F = -4.371592793317447e-8, relative_change = 1.0469120291777306e-12 Iter 155: T = 654.2508519356696 K, F = -1.828175877349736e-8, relative_change = 4.3781280827547263e-13 Converged in 159 iterations to T = 654.2508519349146 K Iter 1: T = 973.4775518560284 K, F = -6043.165038965338, relative_change = 0.026522448143971537 Iter 2: T = 949.1481831429661 K, F = -5114.044808853435, relative_change = 0.024992223669334814 Iter 3: T = 926.9447674086852 K, F = -4325.960200819119, relative_change = 0.023392991872731212 Iter 5: T = 888.5948394202767 K, F = -3091.2892326120727, relative_change = 0.020065205512745456 Iter 10: T = 823.2690864557823 K, F = -1323.6956152984997, relative_change = 0.012046992095539241 Iter 15: T = 789.6286536963975 K, F = -561.0735721174881, relative_change = 0.006178226281822905 Iter 20: T = 773.927933161744 K, F = -236.2127382793967, relative_change = 0.0028564577843375803 Iter 25: T = 767.0128369456727 K, F = -99.08526912671189, relative_change = 0.0012500255828936447 Iter 30: T = 764.0538577700091 K, F = -41.49285736748705, relative_change = 0.0005331422447376255 Iter 35: T = 762.8041656581304 K, F = -17.36244912496991, relative_change = 0.0002248328178115453 Iter 40: T = 762.2793556968887 K, F = -7.262881617571941, relative_change = 9.43582242680868e-5 Iter 45: T = 762.0594908654623 K, F = -3.03772169708058, relative_change = 3.9519831831195e-5 Iter 50: T = 761.967473563822 K, F = -1.2704636534839369, relative_change = 1.6537848594535015e-5 Iter 55: T = 761.9289790600167 K, F = -0.5313322002132703, relative_change = 6.9181084074829794e-6 Iter 60: T = 761.9128781392069 K, F = -0.22221106834402882, relative_change = 2.8935474558557127e-6 Iter 65: T = 761.9061441815313 K, F = -0.0929316018291485, relative_change = 1.2101706624568315e-6 Iter 70: T = 761.9033278969871 K, F = -0.03886515456516115, relative_change = 5.061173667093648e-7 Iter 75: T = 761.902150082134 K, F = -0.01625388032748476, relative_change = 2.1166599620478826e-7 Iter 80: T = 761.9016575039684 K, F = -0.006797568357117312, relative_change = 8.852153935014481e-8 Iter 85: T = 761.9014515015598 K, F = -0.0028428245270680774, relative_change = 3.7020815970692096e-8 Iter 90: T = 761.9013653488333 K, F = -0.0011889032127428978, relative_change = 1.548255628270161e-8 Iter 95: T = 761.9013293187239 K, F = -0.0004972135294067925, relative_change = 6.4749914915982825e-9 Iter 100: T = 761.9013142505001 K, F = -0.0002079406380167681, relative_change = 2.70791905100575e-9 Iter 105: T = 761.9013079487886 K, F = -8.696325751378353e-5, relative_change = 1.132484122770177e-9 Iter 110: T = 761.9013053133376 K, F = -3.6369072527575597e-5, relative_change = 4.736183884228668e-10 Iter 115: T = 761.9013042111604 K, F = -1.5209979591923606e-5, relative_change = 1.980728561726767e-10 Iter 120: T = 761.9013037502169 K, F = -6.360995477461273e-6, relative_change = 8.283643895357339e-11 Iter 125: T = 761.9013035574449 K, F = -2.660246131491739e-6, relative_change = 3.464321226434968e-11 Iter 130: T = 761.9013034768253 K, F = -1.1125477239470882e-6, relative_change = 1.4488218408844389e-11 Iter 135: T = 761.9013034431091 K, F = -4.652808258676089e-7, relative_change = 6.059147021686173e-12 Iter 140: T = 761.9013034290086 K, F = -1.9458614730627488e-7, relative_change = 2.5340095904824015e-12 Iter 145: T = 761.9013034231116 K, F = -8.137766616123088e-8, relative_change = 1.059745461667731e-12 Iter 150: T = 761.9013034206454 K, F = -3.403165582671619e-8, relative_change = 4.4317924704921275e-13 Converged in 154 iterations to T = 761.9013034197552 K Iter 1: T = 970.0660714910279 K, F = -6820.474085286333, relative_change = 0.029933928508972175 Iter 2: T = 942.2907906898313 K, F = -5777.220316368367, relative_change = 0.02863235981287848 Iter 3: T = 916.6310416248946 K, F = -4891.806889950342, relative_change = 0.027231242540481287 Iter 5: T = 871.450631800637 K, F = -3503.164536942822, relative_change = 0.024171858941251727 Iter 10: T = 790.9334008516778 K, F = -1508.6130291267068, relative_change = 0.01586847007092506 Iter 15: T = 746.8056915790604 K, F = -642.4704799140652, relative_change = 0.008750696007642916 Iter 20: T = 725.2917304875259 K, F = -271.2703164026781, relative_change = 0.0042292959485113165 Iter 25: T = 715.5840593063637 K, F = -113.96004687127919, relative_change = 0.0018927523094868066 Iter 30: T = 711.3815828979305 K, F = -47.754237248949174, relative_change = 0.0008155622033421391 Iter 35: T = 709.5975129785523 K, F = -19.98839411828771, relative_change = 0.0003454629602840322 Iter 40: T = 708.8466243828415 K, F = -8.362390964786796, relative_change = 0.00014525825092360963 Iter 45: T = 708.5317500739056 K, F = -3.4977798862958975, relative_change = 6.08865111446873e-5 Iter 50: T = 708.3999175968895 K, F = -1.4629058650606592, relative_change = 2.548764356552036e-5 Iter 55: T = 708.3447576938047 K, F = -0.6118209024913315, relative_change = 1.066347148897817e-5 Iter 60: T = 708.3216846146323 K, F = -0.25587364222322484, relative_change = 4.460332186944874e-6 Iter 65: T = 708.3120343814747 K, F = -0.10700990869740568, relative_change = 1.8654938320917386e-6 Iter 70: T = 708.3079983994967 K, F = -0.04475290848716873, relative_change = 7.801944763079725e-7 Iter 75: T = 708.3063104792823 K, F = -0.018716215954002635, relative_change = 3.2629061384646945e-7 Iter 80: T = 708.3056045666315 K, F = -0.007827347681331198, relative_change = 1.3645932515441374e-7 Iter 85: T = 708.3053093447857 K, F = -0.003273490742184748, relative_change = 5.7069040779779106e-8 Iter 90: T = 708.3051858793538 K, F = -0.0013690130015673319, relative_change = 2.386697559508592e-8 Iter 95: T = 708.3051342446129 K, F = -0.0005725376003615779, relative_change = 9.981457927887639e-9 Iter 100: T = 708.3051126503436 K, F = -0.00023944206340764662, relative_change = 4.174365539442257e-9 Iter 105: T = 708.3051036193617 K, F = -0.00010013753159066052, relative_change = 1.7457696467497044e-9 Iter 110: T = 708.305099842497 K, F = -4.187871242256058e-5, relative_change = 7.301017479362652e-10 Iter 115: T = 708.3050982629671 K, F = -1.751417744166872e-5, relative_change = 3.053372694597318e-10 Iter 120: T = 708.3050976023887 K, F = -7.324637075312168e-6, relative_change = 1.2769567407539853e-10 Iter 125: T = 708.305097326127 K, F = -3.0632495535698467e-6, relative_change = 5.3403836027463814e-11 Iter 130: T = 708.3050972105912 K, F = -1.2810890842596123e-6, relative_change = 2.2334148834128383e-11 Iter 135: T = 708.3050971622727 K, F = -5.35766997877829e-7, relative_change = 9.340412015000121e-12 Iter 140: T = 708.3050971420653 K, F = -2.240642010820082e-7, relative_change = 3.906272623158661e-12 Iter 145: T = 708.3050971336144 K, F = -9.370740061687144e-8, relative_change = 1.6336686176113662e-12 Iter 150: T = 708.30509713008 K, F = -3.918947300007858e-8, relative_change = 6.832183131857193e-13 Iter 155: T = 708.3050971286019 K, F = -1.638929569836023e-8, relative_change = 2.8572639804124043e-13 Converged in 157 iterations to T = 708.3050971282892 K Iter 1: T = 973.45789135414 K, F = -6047.644703022593, relative_change = 0.026542108645860017 Iter 2: T = 949.1088818108032 K, F = -5117.863269451682, relative_change = 0.025012904779543974 Iter 3: T = 926.886001558221 K, F = -4329.214788930308, relative_change = 0.02341446874902616 Iter 5: T = 888.4983561251843 K, F = -3093.6519757984993, relative_change = 0.02008744139749749 Iter 10: T = 823.09268000046 K, F = -1324.746877071887, relative_change = 0.012065970506836821 Iter 15: T = 789.4005815690242 K, F = -561.5319625555134, relative_change = 0.006190125343752967 Iter 20: T = 773.6725375031252 K, F = -236.4088586285222, relative_change = 0.002862535852578244 Iter 25: T = 766.7446584294055 K, F = -99.16818316633841, relative_change = 0.001252808611764051 Iter 30: T = 763.7800596357754 K, F = -41.52770009864498, relative_change = 0.0005343527710350488 Iter 35: T = 762.5279663352195 K, F = -17.37705084476503, relative_change = 0.00022534759174717812 Iter 40: T = 762.0021430030746 K, F = -7.26899355542236, relative_change = 9.457502623164066e-5 Iter 45: T = 761.7818527463306 K, F = -3.0402787184779783, relative_change = 3.961076845022031e-5 Iter 50: T = 761.6896572417676 K, F = -1.2715331944286954, relative_change = 1.6575926303704415e-5 Iter 55: T = 761.6510881614288 K, F = -0.531779523728183, relative_change = 6.934041179291873e-6 Iter 60: T = 761.6349560430795 K, F = -0.22239814940463287, relative_change = 2.9002121696443606e-6 Iter 65: T = 761.6282090366906 K, F = -0.09300984224136377, relative_change = 1.2129581769775613e-6 Iter 70: T = 761.6253872947511 K, F = -0.03889787579464765, relative_change = 5.072831825987175e-7 Iter 75: T = 761.6242071975033 K, F = -0.016267564762659448, relative_change = 2.1215356202229045e-7 Iter 80: T = 761.623713664805 K, F = -0.006803291357296515, relative_change = 8.872544656066173e-8 Iter 85: T = 761.6235072631978 K, F = -0.002845217954643653, relative_change = 3.710609263326812e-8 Iter 90: T = 761.6234209435215 K, F = -0.0011899041716999514, relative_change = 1.5518220027165165e-8 Iter 95: T = 761.6233848435917 K, F = -0.000497632143287019, relative_change = 6.489906513923891e-9 Iter 100: T = 761.6233697461681 K, F = -0.00020811570561352077, relative_change = 2.714156670153813e-9 Iter 105: T = 761.623363432245 K, F = -8.703647365759792e-5, relative_change = 1.1350927800102598e-9 Iter 110: T = 761.623360791687 K, F = -3.6399695067856896e-5, relative_change = 4.747093949447881e-10 Iter 115: T = 761.6233596873741 K, F = -1.5222788828039846e-5, relative_change = 1.985291610368411e-10 Iter 120: T = 761.6233592255371 K, F = -6.366353717535134e-6, relative_change = 8.302728759706673e-11 Iter 125: T = 761.6233590323914 K, F = -2.6624839017941326e-6, relative_change = 3.4722986926545195e-11 Iter 130: T = 761.6233589516155 K, F = -1.1134811207513806e-6, relative_change = 1.4521548991254006e-11 Iter 135: T = 761.623358917834 K, F = -4.6567213463077906e-7, relative_change = 6.073098674333646e-12 Iter 140: T = 761.6233589037063 K, F = -1.9474904600080833e-7, relative_change = 2.5398345428967273e-12 Iter 145: T = 761.6233588977979 K, F = -8.144590069036894e-8, relative_change = 1.0621829282671678e-12 Iter 150: T = 761.6233588953269 K, F = -3.4061544251784426e-8, relative_change = 4.4421622830060063e-13 Converged in 154 iterations to T = 761.6233588944349 K Iter 1: T = 964.3323722913173 K, F = -8126.902902096385, relative_change = 0.035667627708682786 Iter 2: T = 930.5907460824537 K, F = -6894.517748490606, relative_change = 0.03498962305775468 Iter 3: T = 898.7441801410378 K, F = -5847.944976913021, relative_change = 0.03422188118190704 Iter 5: T = 840.6232896660937 K, F = -4204.558645547683, relative_change = 0.03239176258658985 Iter 10: T = 726.5020516432833 K, F = -1833.58354167538, relative_change = 0.025994672390917493 Iter 15: T = 652.892984139565 K, F = -791.7075289150606, relative_change = 0.017793471656218418 Iter 20: T = 611.279027315669 K, F = -337.99500292612964, relative_change = 0.010194827654020319 Iter 25: T = 590.4955899653337 K, F = -142.95108178613688, relative_change = 0.005055123636232692 Iter 30: T = 580.9816961316677 K, F = -60.1077389797145, relative_change = 0.0022935059032919247 Iter 35: T = 576.8333747180998 K, F = -25.19849946477101, relative_change = 0.0009946023884089402 Iter 40: T = 575.0665341944834 K, F = -10.54926547969033, relative_change = 0.00042249289704690774 Iter 45: T = 574.3218436256053 K, F = -4.413769704400613, relative_change = 0.00017786169715411788 Iter 50: T = 574.0093805648685 K, F = -1.8462325590668702, relative_change = 7.4590536812751e-5 Iter 55: T = 573.8785245247878 K, F = -0.7721763481032783, relative_change = 3.1230944370352945e-5 Iter 60: T = 573.8237673610619 K, F = -0.3229438473541914, relative_change = 1.3067512108845622e-5 Iter 65: T = 573.8008617277824 K, F = -0.13506080686799202, relative_change = 5.4661024733442766e-6 Iter 70: T = 573.7912813501658 K, F = -0.05648436306254373, relative_change = 2.2861840300922356e-6 Iter 75: T = 573.7872745524585 K, F = -0.02362249128272753, relative_change = 9.561435209629066e-7 Iter 80: T = 573.7855988321803 K, F = -0.00987921777438494, relative_change = 3.998765960475566e-7 Iter 85: T = 573.784898020766 K, F = -0.004131608570765666, relative_change = 1.6723420985179742e-7 Iter 90: T = 573.784604932157 K, F = -0.00172788834656179, relative_change = 6.993952600212663e-8 Iter 95: T = 573.7844823588418 K, F = -0.0007226235940008263, relative_change = 2.9249576886071625e-8 Iter 100: T = 573.78443109719 K, F = -0.00030220982638284877, relative_change = 1.2232527951847111e-8 Iter 105: T = 573.78440965895 K, F = -0.00012638775952455994, relative_change = 5.115790226517277e-9 Iter 110: T = 573.7844006932212 K, F = -5.285687002770656e-5, relative_change = 2.139484711376781e-9 Iter 115: T = 573.7843969436462 K, F = -2.2105374538783362e-5, relative_change = 8.947580950515835e-10 Iter 120: T = 573.7843953755291 K, F = -9.244730932278511e-6, relative_change = 3.741984978062081e-10 Iter 125: T = 573.784394719724 K, F = -3.866257210549673e-6, relative_change = 1.564942948356797e-10 Iter 130: T = 573.7843944454584 K, F = -1.6169151968448148e-6, relative_change = 6.544779365033055e-11 Iter 135: T = 573.7843943307572 K, F = -6.762139830862601e-7, relative_change = 2.7371078803006085e-11 Iter 140: T = 573.7843942827878 K, F = -2.8280045782924645e-7, relative_change = 1.1446899670017605e-11 Iter 145: T = 573.7843942627264 K, F = -1.1827013618459503e-7, relative_change = 4.787214255173397e-12 Iter 150: T = 573.7843942543365 K, F = -4.9462045792481035e-8, relative_change = 2.002072698679534e-12 Iter 155: T = 573.7843942508276 K, F = -2.0684813750726505e-8, relative_change = 8.37258148653074e-13 Iter 160: T = 573.7843942493603 K, F = -8.650098193285771e-9, relative_change = 3.5012958232759294e-13 Converged in 163 iterations to T = 573.7843942489308 K Iter 1: T = 963.596386283486 K, F = -8294.598014084151, relative_change = 0.03640361371651396 Iter 2: T = 929.0727122915479 K, F = -7038.178626784849, relative_change = 0.03582794049808881 Iter 3: T = 896.395579128519 K, F = -5971.148344278233, relative_change = 0.035171771520908286 Iter 5: T = 836.4624597265438 K, F = -4295.48309286018, relative_change = 0.033588823666416925 Iter 10: T = 717.0057402752433 K, F = -1876.9614331054574, relative_change = 0.02783593301978242 Iter 15: T = 637.6248613085693 K, F = -812.6686866379507, relative_change = 0.019905379534370497 Iter 20: T = 591.1981515555282 K, F = -347.91080928013554, relative_change = 0.011910723713092812 Iter 25: T = 567.3440254886325 K, F = -147.44431356612745, relative_change = 0.006092927387514988 Iter 30: T = 556.2271891800825 K, F = -62.0683138475055, relative_change = 0.0028129358992494908 Iter 35: T = 551.3347943209627 K, F = -26.034865002441954, relative_change = 0.001230109454172948 Iter 40: T = 549.2420935262688 K, F = -10.902106398805905, relative_change = 0.0005244817214005306 Iter 45: T = 548.3584057570789 K, F = -4.561882619722088, relative_change = 0.00022115038049370274 Iter 50: T = 547.9873251673083 K, F = -1.9082725829092246, relative_change = 9.280740821584159e-5 Iter 55: T = 547.8318684738172 K, F = -0.7981393519344453, relative_change = 3.886936265216784e-5 Iter 60: T = 547.7668078981804 K, F = -0.3338048869470011, relative_change = 1.6265481341009386e-5 Iter 65: T = 547.7395906048293 K, F = -0.13960354872012548, relative_change = 6.804142800661827e-6 Iter 70: T = 547.7282065756103 K, F = -0.058384283879680976, relative_change = 2.845875463531613e-6 Iter 75: T = 547.7234453881059 K, F = -0.024417076938204413, relative_change = 1.1902318789817208e-6 Iter 80: T = 547.721454158809 K, F = -0.01021152579767412, relative_change = 4.977784167897674e-7 Iter 85: T = 547.720621395272 K, F = -0.004270584245972098, relative_change = 2.0817849305593577e-7 Iter 90: T = 547.7202731222751 K, F = -0.0017860097192711755, relative_change = 8.706301435115514e-8 Iter 95: T = 547.7201274701141 K, F = -0.0007469306614636684, relative_change = 3.641084173650564e-8 Iter 100: T = 547.7200665565999 K, F = -0.00031237533523556515, relative_change = 1.5227457517221877e-8 Iter 105: T = 547.7200410818335 K, F = -0.00013063909756297343, relative_change = 6.368306086713635e-9 Iter 110: T = 547.7200304279809 K, F = -5.463483104428679e-5, relative_change = 2.6633019195366907e-9 Iter 115: T = 547.7200259724121 K, F = -2.2848938887903847e-5, relative_change = 1.1138247157196897e-9 Iter 120: T = 547.72002410904 K, F = -9.555698302687876e-6, relative_change = 4.658147658452733e-10 Iter 125: T = 547.7200233297556 K, F = -3.996307218173678e-6, relative_change = 1.9480930275552286e-10 Iter 130: T = 547.7200230038496 K, F = -1.6713034576010255e-6, relative_change = 8.14715797398752e-11 Iter 135: T = 547.7200228675518 K, F = -6.989596708639745e-7, relative_change = 3.407241717129833e-11 Iter 140: T = 547.7200228105504 K, F = -2.9231294071396796e-7, relative_change = 1.4249475156698051e-11 Iter 145: T = 547.7200227867118 K, F = -1.2224901652091447e-7, relative_change = 5.9593130565883786e-12 Iter 150: T = 547.7200227767422 K, F = -5.112621456748734e-8, relative_change = 2.4922664141043966e-12 Iter 155: T = 547.7200227725727 K, F = -2.1381853509971904e-8, relative_change = 1.0423082527612489e-12 Iter 160: T = 547.7200227708291 K, F = -8.942521945165538e-9, relative_change = 4.359240614822702e-13 Converged in 164 iterations to T = 547.7200227701996 K Iter 1: T = 969.3567874873036 K, F = -6982.085120238175, relative_change = 0.030643212512696433 Iter 2: T = 940.8554231201056 K, F = -5915.2524076775835, relative_change = 0.029402346726304127 Iter 3: T = 914.4566491575647 K, F = -5009.73540251014, relative_change = 0.028058268373472393 Iter 5: T = 867.7800530928347 K, F = -3589.2898666612878, relative_change = 0.025092827065955343 Iter 10: T = 783.7269088114156 K, F = -1547.7522573437716, relative_change = 0.016821845476809566 Iter 15: T = 736.9462413920432 K, F = -659.9384467354545, relative_change = 0.009452494886707574 Iter 20: T = 713.869293927018 K, F = -278.8719449149389, relative_change = 0.004625420842310281 Iter 25: T = 703.384085915214 K, F = -117.20417313640506, relative_change = 0.0020836255208250554 Iter 30: T = 698.8294085592906 K, F = -49.12362425792803, relative_change = 0.0009005514400172503 Iter 35: T = 696.8928165223999 K, F = -20.563408102026994, relative_change = 0.00038197456212073693 Iter 40: T = 696.077186146024 K, F = -8.603282709020402, relative_change = 0.00016070225880767511 Iter 45: T = 695.7350658431702 K, F = -3.59859672399463, relative_change = 6.73762705077753e-5 Iter 50: T = 695.5918087620278 K, F = -1.5050814899818146, relative_change = 2.8207169770093003e-5 Iter 55: T = 695.531865688008 K, F = -0.629461498001881, relative_change = 1.1801761867974078e-5 Iter 60: T = 695.506791307494 K, F = -0.26325154292330166, relative_change = 4.936545484405079e-6 Iter 65: T = 695.4963039448395 K, F = -0.11009550362995008, relative_change = 2.064681081702416e-6 Iter 70: T = 695.4919178370772 K, F = -0.04604335316425168, relative_change = 8.635020640897009e-7 Iter 75: T = 695.4900834851401 K, F = -0.01925589743207612, relative_change = 3.611317342107298e-7 Iter 80: T = 695.4893163321303 K, F = -0.008053049288696434, relative_change = 1.5103045384494927e-7 Iter 85: T = 695.488995498684 K, F = -0.0033678819130664728, relative_change = 6.316288808874708e-8 Iter 90: T = 695.4888613221485 K, F = -0.0014084885300285066, relative_change = 2.6415500130147098e-8 Iter 95: T = 695.4888052078915 K, F = -0.0005890467392145604, relative_change = 1.1047282148114365e-8 Iter 100: T = 695.4887817402343 K, F = -0.0002463463835032931, relative_change = 4.62010611512117e-9 Iter 105: T = 695.4887719257789 K, F = -0.00010302499875713966, relative_change = 1.932183667481545e-9 Iter 110: T = 695.4887678212564 K, F = -4.308628489424482e-5, relative_change = 8.080623082613663e-10 Iter 115: T = 695.4887661046961 K, F = -1.8019198950947057e-5, relative_change = 3.379413125119716e-10 Iter 120: T = 695.48876538681 K, F = -7.535844315009754e-6, relative_change = 1.4133109569123628e-10 Iter 125: T = 695.4887650865815 K, F = -3.1515796570236176e-6, relative_change = 5.910634407794744e-11 Iter 130: T = 695.4887649610224 K, F = -1.3180286567715527e-6, relative_change = 2.4718986615197547e-11 Iter 135: T = 695.488764908512 K, F = -5.512160712317637e-7, relative_change = 1.0337789411296048e-11 Iter 140: T = 695.4887648865515 K, F = -2.3052531694656153e-7, relative_change = 4.323390237150923e-12 Iter 145: T = 695.4887648773674 K, F = -9.640810594291338e-8, relative_change = 1.8080871531287412e-12 Iter 150: T = 695.4887648735265 K, F = -4.0319105942820954e-8, relative_change = 7.561652287405684e-13 Iter 155: T = 695.4887648719201 K, F = -1.686143891177494e-8, relative_change = 3.1622808873389323e-13 Converged in 158 iterations to T = 695.4887648714498 K Iter 1: T = 966.4447524308721 K, F = -7645.5950779065415, relative_change = 0.03355524756912789 Iter 2: T = 934.9270870047335 K, F = -6482.497675137674, relative_change = 0.032611968089084335 Iter 3: T = 905.4173238624703 K, F = -5494.934596309627, relative_change = 0.03156370539739613 Iter 5: T = 852.2973400801798 K, F = -3944.751025711558, relative_change = 0.02914693467454812 Iter 10: T = 752.0284949830577 K, F = -1711.400590597094, relative_change = 0.02152334531169676 Iter 15: T = 691.8412807641382 K, F = -734.2748155932904, relative_change = 0.013328804442278271 Iter 20: T = 660.1895267277933 K, F = -311.71940466034613, relative_change = 0.007000642521152371 Iter 25: T = 645.2079563878266 K, F = -131.35526125064308, relative_change = 0.003282324676607054 Iter 30: T = 638.5595883038201 K, F = -55.125435568865136, relative_change = 0.001446346221378096 Iter 35: T = 635.704600079427 K, F = -23.089054362020445, relative_change = 0.0006187967607218411 Iter 40: T = 634.4969330913489 K, F = -9.662347654601673, relative_change = 0.0002613054144345 Iter 45: T = 633.9894308512311 K, F = -4.042007630585012, relative_change = 0.00010972762228754372 Iter 50: T = 633.7767566283899 K, F = -1.690608643326317, relative_change = 4.5967978347504676e-5 Iter 55: T = 633.6877381200862 K, F = -0.7070664907664077, relative_change = 1.923813517318429e-5 Iter 60: T = 633.6504962726638 K, F = -0.2957095598213418, relative_change = 8.048030144594816e-6 Iter 65: T = 633.6349189694195 K, F = -0.12367030320535671, relative_change = 3.3662044131997387e-6 Iter 70: T = 633.6284039496616 K, F = -0.05172057855408796, relative_change = 1.4078607245077102e-6 Iter 75: T = 633.6256792196615 K, F = -0.021630195248233952, relative_change = 5.88797083629062e-7 Iter 80: T = 633.624539692629 K, F = -0.009046011500724038, relative_change = 2.46244231000469e-7 Iter 85: T = 633.6240631266453 K, F = -0.003783151008122654, relative_change = 1.0298267325360596e-7 Iter 90: T = 633.6238638206801 K, F = -0.001582159100937508, relative_change = 4.306865292549435e-8 Iter 95: T = 633.6237804684788 K, F = -0.000661677860312182, relative_change = 1.8011837081032344e-8 Iter 100: T = 633.6237456095813 K, F = -0.0002767215890228658, relative_change = 7.532767503277926e-9 Iter 105: T = 633.6237310311719 K, F = -0.0001157282736784504, relative_change = 3.150293685962908e-9 Iter 110: T = 633.6237249343068 K, F = -4.8398946694894196e-5, relative_change = 1.3174905173883532e-9 Iter 115: T = 633.6237223845249 K, F = -2.024101728714811e-5, relative_change = 5.509902729317205e-10 Iter 120: T = 633.6237213181755 K, F = -8.465035234939133e-6, relative_change = 2.304307162866057e-10 Iter 125: T = 633.6237208722155 K, F = -3.5401784868605013e-6, relative_change = 9.636886848104424e-11 Iter 130: T = 633.6237206857098 K, F = -1.4805456359789915e-6, relative_change = 4.030263118183109e-11 Iter 135: T = 633.6237206077109 K, F = -6.191821476653203e-7, relative_change = 1.685504934122069e-11 Iter 140: T = 633.6237205750907 K, F = -2.5894897631717484e-7, relative_change = 7.048972245423171e-12 Iter 145: T = 633.6237205614486 K, F = -1.0829568070080953e-7, relative_change = 2.947967813946656e-12 Iter 150: T = 633.6237205557434 K, F = -4.529176650391875e-8, relative_change = 1.2329085429079853e-12 Iter 155: T = 633.6237205533573 K, F = -1.8941404555938846e-8, relative_change = 5.156129092489993e-13 Converged in 160 iterations to T = 633.6237205523594 K Iter 1: T = 966.4724855072777 K, F = -7639.276070066567, relative_change = 0.033527514492722316 Iter 2: T = 934.983815860829 K, F = -6477.091360992978, relative_change = 0.032581030622843905 Iter 3: T = 905.5042763499902 K, F = -5490.305875015188, relative_change = 0.031529465013998545 Iter 5: T = 852.4480488354675 K, F = -3941.351234233489, relative_change = 0.029106121116308847 Iter 10: T = 752.3481692747553 K, F = -1709.8174510029519, relative_change = 0.021471468426540977 Iter 15: T = 692.3123815912081 K, F = -733.543409028774, relative_change = 0.01328185448562536 Iter 20: T = 660.7644648014835 K, F = -311.3910619041469, relative_change = 0.00696982983833747 Iter 25: T = 645.839875965432 K, F = -131.2123483846475, relative_change = 0.003266154306183447 Iter 30: T = 639.2186889843993 K, F = -55.06450022276252, relative_change = 0.0014388422672967367 Iter 35: T = 636.3757594214617 K, F = -23.06334919540283, relative_change = 0.0006155129806345109 Iter 40: T = 635.173265625426 K, F = -9.651557369508842, relative_change = 0.0002599053360776481 Iter 45: T = 634.6679503648882 K, F = -4.037487889992422, relative_change = 0.00010913731135048621 Iter 50: T = 634.4561949266545 K, F = -1.6887171816885256, relative_change = 4.5720259455923905e-5 Iter 55: T = 634.3675613973819 K, F = -0.706275239342854, relative_change = 1.9134388035672188e-5 Iter 60: T = 634.3304806811767 K, F = -0.29537861057950865, relative_change = 8.004615902249831e-6 Iter 65: T = 634.3149707874094 K, F = -0.1235318895519652, relative_change = 3.3480435168105053e-6 Iter 70: T = 634.3084839630328 K, F = -0.051662691133921745, relative_change = 1.4002648261637385e-6 Iter 75: T = 634.3057710253662 K, F = -0.021605985833267616, relative_change = 5.856202492755305e-7 Iter 80: T = 634.3046364301485 K, F = -0.00903588679968731, relative_change = 2.449156166630886e-7 Iter 85: T = 634.3041619267298 K, F = -0.0037789167304072002, relative_change = 1.0242702660447851e-7 Iter 90: T = 634.3039634833575 K, F = -0.0015803882744412356, relative_change = 4.283627412043107e-8 Iter 95: T = 634.3038804919036 K, F = -0.0006609372794988411, relative_change = 1.7914653364083216e-8 Iter 100: T = 634.3038457838749 K, F = -0.0002764118685329442, relative_change = 7.49212407001727e-9 Iter 105: T = 634.3038312685609 K, F = -0.000115598745730916, relative_change = 3.1332961363439065e-9 Iter 110: T = 634.3038251980828 K, F = -4.834477652110314e-5, relative_change = 1.3103819373662023e-9 Iter 115: T = 634.3038226593362 K, F = -2.0218362476953633e-5, relative_change = 5.480173744563673e-10 Iter 120: T = 634.3038215976022 K, F = -8.455561135767287e-6, relative_change = 2.2918742580603298e-10 Iter 125: T = 634.3038211535722 K, F = -3.5362163338104047e-6, relative_change = 9.584891035937428e-11 Iter 130: T = 634.3038209678737 K, F = -1.4788873962112703e-6, relative_change = 4.008514533269429e-11 Iter 135: T = 634.3038208902124 K, F = -6.184885047999522e-7, relative_change = 1.6764090139298806e-11 Iter 140: T = 634.3038208577334 K, F = -2.5865934133451063e-7, relative_change = 7.0109443925122e-12 Iter 145: T = 634.3038208441503 K, F = -1.0817412476882282e-7, relative_change = 2.9320525198408055e-12 Iter 150: T = 634.3038208384697 K, F = -4.523926999677741e-8, relative_change = 1.226207430648841e-12 Iter 155: T = 634.3038208360941 K, F = -1.8920534750055396e-8, relative_change = 5.128398469832494e-13 Converged in 160 iterations to T = 634.3038208351004 K Iter 1: T = 976.3908461501715 K, F = -5379.368162786545, relative_change = 0.023609153849828514 Iter 2: T = 954.9442730708035 K, F = -4548.668714102336, relative_change = 0.02196515172579708 Iter 3: T = 935.5690286151289 K, F = -3844.508095874733, relative_change = 0.0202893980330076 Iter 5: T = 902.6130268560703 K, F = -2742.5175696002716, relative_change = 0.01693571678291683 Iter 10: T = 848.3111416002412 K, F = -1169.5400440825072, relative_change = 0.009538146919070163 Iter 15: T = 821.4854742157637 K, F = -494.2650354003846, relative_change = 0.004674458925579726 Iter 20: T = 809.2865463802067 K, F = -207.74068207283418, relative_change = 0.002107433209232385 Iter 25: T = 803.9851710679884 K, F = -87.07227934339384, relative_change = 0.0009111895353800456 Iter 30: T = 801.7306532008433 K, F = -36.44932346801696, relative_change = 0.0003865517802606618 Iter 35: T = 800.7810424786485 K, F = -15.249677257592674, relative_change = 0.0001626396493211576 Iter 40: T = 800.3827091534164 K, F = -6.378675616817478, relative_change = 6.819061205935191e-5 Iter 45: T = 800.2159113033989 K, F = -2.6678273485337662, relative_change = 2.8548458522815052e-5 Iter 50: T = 800.1461176213945 K, F = -1.115750348385, relative_change = 1.1944619366384905e-5 Iter 55: T = 800.1169226225188 K, F = -0.4666259102503384, relative_change = 4.996312336968019e-6 Iter 60: T = 800.1047117971988 K, F = -0.1951495411048103, relative_change = 2.0896801672205003e-6 Iter 65: T = 800.0996048868791 K, F = -0.0816140457954937, relative_change = 8.739576578924813e-7 Iter 70: T = 800.0974690814764 K, F = -0.03413199960432367, relative_change = 3.6550450694062254e-7 Iter 75: T = 800.0965758561131 K, F = -0.014274415274189156, relative_change = 1.5285922037396376e-7 Iter 80: T = 800.0962022975428 K, F = -0.005969731887329632, relative_change = 6.392770373814567e-8 Iter 85: T = 800.0960460707029 K, F = -0.002496613333849207, relative_change = 2.6735355782693812e-8 Iter 90: T = 800.0959807347404 K, F = -0.0010441135402794455, relative_change = 1.1181049725169429e-8 Iter 95: T = 800.0959534104549 K, F = -0.0004366607563625058, relative_change = 4.6760493331910795e-9 Iter 100: T = 800.0959419831114 K, F = -0.00018261674397201944, relative_change = 1.955579816840657e-9 Iter 105: T = 800.0959372040597 K, F = -7.637250378567106e-5, relative_change = 8.178468631290023e-10 Iter 110: T = 800.0959352054033 K, F = -3.1939893658572416e-5, relative_change = 3.420333346845871e-10 Iter 115: T = 800.0959343695413 K, F = -1.3357645828104836e-5, relative_change = 1.4304243519676165e-10 Iter 120: T = 800.0959340199737 K, F = -5.58632698866024e-6, relative_change = 5.98220545902134e-11 Iter 125: T = 800.0959338737804 K, F = -2.3362684659078425e-6, relative_change = 2.5018295583166296e-11 Iter 130: T = 800.0959338126407 K, F = -9.770566501421385e-7, relative_change = 1.0462963670636738e-11 Iter 135: T = 800.0959337870713 K, F = -4.0861689909466037e-7, relative_change = 4.3757378555933715e-12 Iter 140: T = 800.0959337763778 K, F = -1.708877599426728e-7, relative_change = 1.8299782557770904e-12 Iter 145: T = 800.0959337719058 K, F = -7.146961000792373e-8, relative_change = 7.653434763889742e-13 Iter 150: T = 800.0959337700353 K, F = -2.988814129523121e-8, relative_change = 3.2006182710967124e-13 Converged in 153 iterations to T = 800.0959337694878 K Iter 1: T = 965.1637662705124 K, F = -7937.468993076917, relative_change = 0.034836233729487596 Iter 2: T = 932.3010886028499 K, F = -6732.299962328303, relative_change = 0.034048809969987964 Iter 3: T = 901.3824909669306 K, F = -5708.900640331195, relative_change = 0.0331637472206044 Iter 5: T = 845.2645729727736 K, F = -4102.100599143429, relative_change = 0.031081826356443926 Iter 10: T = 736.8384271044342 K, F = -1785.1036071965632, relative_change = 0.02410340754048905 Iter 15: T = 669.0012465116248 K, F = -768.665936062167, relative_change = 0.0157988300697003 Iter 20: T = 631.8652259894209 K, F = -327.32134349232524, relative_change = 0.008700327990992544 Iter 25: T = 613.7754261976579 K, F = -138.1968137644412, relative_change = 0.00420121074236916 Iter 30: T = 605.6168706293676 K, F = -58.054378830230604, relative_change = 0.0018793081833383637 Iter 35: T = 602.0858714259548 K, F = -24.326971015793152, relative_change = 0.0008095945030685934 Iter 40: T = 600.5870271333916 K, F = -10.182426728026336, relative_change = 0.0003429027131398507 Iter 45: T = 599.956215695455 K, F = -4.2599322336154275, relative_change = 0.00014417592541976054 Iter 50: T = 599.6916993306761 K, F = -1.781821545274776, relative_change = 6.0431816726957065e-5 Iter 55: T = 599.5809517985821 K, F = -0.7452258385274342, relative_change = 2.529712407278862e-5 Iter 60: T = 599.5346141918357 K, F = -0.3116705354113765, relative_change = 1.0583730715880494e-5 Iter 65: T = 599.5152314586858 K, F = -0.1303457729113367, relative_change = 4.426972571900602e-6 Iter 70: T = 599.5071247046386 K, F = -0.054512409524825334, relative_change = 1.8515405055397936e-6 Iter 75: T = 599.5037342472062 K, F = -0.022797784514054564, relative_change = 7.743586896748937e-7 Iter 80: T = 599.5023162971148 K, F = -0.009534313411906026, relative_change = 3.238499588957923e-7 Iter 85: T = 599.5017232899016 K, F = -0.0039873650725772425, relative_change = 1.354386037373754e-7 Iter 90: T = 599.501475286582 K, F = -0.001667563925910276, relative_change = 5.664216104572722e-8 Iter 95: T = 599.5013715685235 K, F = -0.000697395189475869, relative_change = 2.3688449095061248e-8 Iter 100: T = 599.5013281923738 K, F = -0.0002916590039232503, relative_change = 9.906795962678288e-9 Iter 105: T = 599.5013100519467 K, F = -0.00012197528006846481, relative_change = 4.143141030987595e-9 Iter 110: T = 599.5013024654028 K, F = -5.101151954350902e-5, relative_change = 1.732711187779335e-9 Iter 115: T = 599.5012992926194 K, F = -2.1333626650299475e-5, relative_change = 7.246405289446077e-10 Iter 120: T = 599.5012979657234 K, F = -8.92197710222753e-6, relative_change = 3.0305331487680803e-10 Iter 125: T = 599.5012974107998 K, F = -3.7312777658171647e-6, relative_change = 1.2674052933379e-10 Iter 130: T = 599.501297178724 K, F = -1.5604643398559048e-6, relative_change = 5.300438327486216e-11 Iter 135: T = 599.5012970816672 K, F = -6.526050648214543e-7, relative_change = 2.2167074329150437e-11 Iter 140: T = 599.5012970410768 K, F = -2.729262256750964e-7, relative_change = 9.270501041115512e-12 Iter 145: T = 599.5012970241014 K, F = -1.1414054096325899e-7, relative_change = 3.877018419020257e-12 Iter 150: T = 599.5012970170021 K, F = -4.7734361741103015e-8, relative_change = 1.6213958523329407e-12 Iter 155: T = 599.5012970140331 K, F = -1.996241977275659e-8, relative_change = 6.780646779858224e-13 Iter 160: T = 599.5012970127916 K, F = -8.34903640667406e-9, relative_change = 2.835922071113439e-13 Converged in 162 iterations to T = 599.5012970125289 K Iter 1: T = 964.6101942053954 K, F = -8063.600914696813, relative_change = 0.035389805794604635 Iter 2: T = 931.1628083571554 K, F = -6840.3025829228245, relative_change = 0.03467451002401279 Iter 3: T = 899.6275402203695 K, F = -5801.466024220562, relative_change = 0.033866546058066216 Iter 5: T = 842.1811114188714 K, F = -4170.291204502952, relative_change = 0.03194912878586777 Iter 10: T = 730.0005883328643 K, F = -1817.3237013585972, relative_change = 0.025341701541431116 Iter 15: T = 658.4013367580991 K, F = -783.9375546588259, relative_change = 0.017085829548783796 Iter 20: T = 618.3825267176392 K, F = -334.37210290651126, relative_change = 0.009651307721713373 Iter 25: T = 598.5757718576436 K, F = -141.3290835562139, relative_change = 0.004739383495735869 Iter 30: T = 589.5585664879693 K, F = -59.40512237961142, relative_change = 0.0021389940117696373 Iter 35: T = 585.6376890159308 K, F = -24.899850564846925, relative_change = 0.0009253008702527607 Iter 40: T = 583.9698293270981 K, F = -10.423478857815926, relative_change = 0.0003926251330950988 Iter 45: T = 583.2672430978241 K, F = -4.361005204869148, relative_change = 0.0001652106188708185 Iter 50: T = 582.9725152750141 K, F = -1.8241377216942227, relative_change = 6.92713210043857e-5 Iter 55: T = 582.8490986801312 K, F = -0.7629310890338789, relative_change = 2.9001391079821443e-5 Iter 60: T = 582.79745670602 K, F = -0.3190765050850168, relative_change = 1.2134210729334213e-5 Iter 65: T = 582.7758545697584 K, F = -0.1334432868292735, relative_change = 5.075631394365975e-6 Iter 70: T = 582.7668194504877 K, F = -0.05580787039206206, relative_change = 2.1228575384202854e-6 Iter 75: T = 582.7630407073831 K, F = -0.023339569338236, relative_change = 8.878337393639802e-7 Iter 80: T = 582.7614603659456 K, F = -0.009760895628435573, relative_change = 3.7130780885290214e-7 Iter 85: T = 582.7607994437456 K, F = -0.004082124694427647, relative_change = 1.5528625830599877e-7 Iter 90: T = 582.7605230373949 K, F = -0.001707193573206034, relative_change = 6.494272484790737e-8 Iter 95: T = 582.7604074408192 K, F = -0.0007139687888075841, relative_change = 2.715985059763522e-8 Iter 100: T = 582.7603590969264 K, F = -0.00029859028179024527, relative_change = 1.1358578656897634e-8 Iter 105: T = 582.7603388789289 K, F = -0.00012487402268973602, relative_change = 4.750294064160592e-9 Iter 110: T = 582.7603304235203 K, F = -5.222380868824539e-5, relative_change = 1.986629886766628e-9 Iter 115: T = 582.7603268873672 K, F = -2.1840620144653045e-5, relative_change = 8.30832355360542e-10 Iter 120: T = 582.7603254085058 K, F = -9.134008069455746e-6, relative_change = 3.474640133683156e-10 Iter 125: T = 582.7603247900282 K, F = -3.819951588934778e-6, relative_change = 1.453136133204093e-10 Iter 130: T = 582.7603245313735 K, F = -1.5975496787112853e-6, relative_change = 6.077190020821158e-11 Iter 135: T = 582.7603244232009 K, F = -6.681132364017017e-7, relative_change = 2.5415491929505645e-11 Iter 140: T = 582.7603243779619 K, F = -2.7941234448380925e-7, relative_change = 1.0629039812328112e-11 Iter 145: T = 582.7603243590426 K, F = -1.1685418749296517e-7, relative_change = 4.4452145218799636e-12 Iter 150: T = 582.7603243511302 K, F = -4.886952736926631e-8, relative_change = 1.859030792254605e-12 Iter 155: T = 582.7603243478212 K, F = -2.043832847409277e-8, relative_change = 7.774882226602984e-13 Iter 160: T = 582.7603243464373 K, F = -8.547937579983511e-9, relative_change = 3.251694875621521e-13 Converged in 163 iterations to T = 582.7603243460321 K Iter 1: T = 964.2739215724894 K, F = -8140.220953982287, relative_change = 0.035726078427510584 Iter 2: T = 930.4703228505316 K, F = -6905.925031128824, relative_change = 0.03505601257662609 Iter 3: T = 898.558108475043 K, F = -5857.725608674809, relative_change = 0.03429686427582586 Iter 5: T = 840.294653409827 K, F = -4211.771958988233, relative_change = 0.032485524453238775 Iter 10: T = 725.7601312335607 K, F = -1837.0122614345955, relative_change = 0.026134870647370332 Iter 15: T = 651.7170961244044 K, F = -793.3517490864515, relative_change = 0.01794812907281777 Iter 20: T = 609.7534475027834 K, F = -338.7650301309022, relative_change = 0.010315641646606902 Iter 25: T = 588.7532645680695 K, F = -143.29705737442274, relative_change = 0.005126133537506639 Iter 30: T = 579.1283097265947 K, F = -60.25792375109845, relative_change = 0.00232847840492669 Iter 35: T = 574.9289342524004 K, F = -25.262401864494276, relative_change = 0.001010335825940389 Iter 40: T = 573.1398361340573 K, F = -10.576192749631975, relative_change = 0.0004292828292920104 Iter 45: T = 572.3856703265787 K, F = -4.425067316130227, relative_change = 0.00018073935718060364 Iter 50: T = 572.069214779647 K, F = -1.8509637717408876, relative_change = 7.580075821830947e-5 Iter 55: T = 571.9366837687185 K, F = -0.774156124934641, relative_change = 3.173826122636936e-5 Iter 60: T = 571.8812251876692 K, F = -0.3237720111784146, relative_change = 1.3279886363269637e-5 Iter 65: T = 571.8580260513273 K, F = -0.13540718944135915, relative_change = 5.554956391796146e-6 Iter 70: T = 571.8483228988785 K, F = -0.05662923043972817, relative_change = 2.3233501812636234e-6 Iter 75: T = 571.8442647503107 K, F = -0.02368307760797292, relative_change = 9.716879655533338e-7 Iter 80: T = 571.8425675536221 K, F = -0.009904555884259286, relative_change = 4.0637766367593384e-7 Iter 85: T = 571.8418577603646 K, F = -0.004142205303106994, relative_change = 1.699530681176594e-7 Iter 90: T = 571.8415609154148 K, F = -0.0017323200306967879, relative_change = 7.107659090918766e-8 Iter 95: T = 571.8414367711487 K, F = -0.0007244769776583726, relative_change = 2.9725112031068592e-8 Iter 100: T = 571.8413848525056 K, F = -0.00030298493429697926, relative_change = 1.2431402634467534e-8 Iter 105: T = 571.841363139504 K, F = -0.00012671191988072872, relative_change = 5.1989620640155765e-9 Iter 110: T = 571.8413540588665 K, F = -5.299243859668845e-5, relative_change = 2.174268206430652e-9 Iter 115: T = 571.8413502612353 K, F = -2.2162070875964002e-5, relative_change = 9.093049667808033e-10 Iter 120: T = 571.8413486730205 K, F = -9.268442808629818e-6, relative_change = 3.8028220552217255e-10 Iter 125: T = 571.8413480088102 K, F = -3.8761738260228995e-6, relative_change = 1.5903857531776038e-10 Iter 130: T = 571.8413477310295 K, F = -1.621062041434751e-6, relative_change = 6.651182576923861e-11 Iter 135: T = 571.8413476148583 K, F = -6.779478092244773e-7, relative_change = 2.7816052352615934e-11 Iter 140: T = 571.841347566274 K, F = -2.835254176436486e-7, relative_change = 1.1632986723099993e-11 Iter 145: T = 571.8413475459556 K, F = -1.18574453533693e-7, relative_change = 4.8650842501299305e-12 Iter 150: T = 571.8413475374582 K, F = -4.958964094914364e-8, relative_change = 2.034652271028947e-12 Iter 155: T = 571.8413475339045 K, F = -2.07394632023572e-8, relative_change = 8.509357014526753e-13 Iter 160: T = 571.8413475324182 K, F = -8.673837370576365e-9, relative_change = 3.558856762729647e-13 Converged in 163 iterations to T = 571.841347531983 K Iter 1: T = 980.196799313876 K, F = -4512.178114040364, relative_change = 0.01980320068612398 Iter 2: T = 962.4349162522776 K, F = -3811.390266931315, relative_change = 0.01812073154496261 Iter 3: T = 946.5930604106271 K, F = -3217.941812410188, relative_change = 0.01646018403336685 Iter 5: T = 920.1449903615365 K, F = -2290.7178780496333, relative_change = 0.013293357257934764 Iter 10: T = 878.1738327789673 K, F = -972.4304387414892, relative_change = 0.006977475019251988 Iter 15: T = 858.3154770251344 K, F = -409.76147331618387, relative_change = 0.0032701891860767193 Iter 20: T = 849.5047885597594 K, F = -171.961066965378, relative_change = 0.0014407191969287865 Iter 25: T = 845.7216190127422 K, F = -72.0247433645705, relative_change = 0.0006163351719736664 Iter 30: T = 844.1213997080243 K, F = -30.140964008381395, relative_change = 0.00026025603633217126 Iter 35: T = 843.4489465213218 K, F = -12.608724142049503, relative_change = 0.0001092852024288666 Iter 40: T = 843.1671500996066 K, F = -5.273718004071407, relative_change = 4.578232529906727e-5 Iter 45: T = 843.0491996845867 K, F = -2.2056367644819894, relative_change = 1.916038263936309e-5 Iter 50: T = 842.9998539332207 K, F = -0.9224419961665238, relative_change = 8.015493799906015e-6 Iter 55: T = 842.9792138916201 K, F = -0.3857794710784602, relative_change = 3.3525939463599993e-6 Iter 60: T = 842.9705814445534 K, F = -0.1613381437992807, relative_change = 1.4021680735874974e-6 Iter 65: T = 842.9669711584844 K, F = -0.06747363677521867, relative_change = 5.86416245626748e-7 Iter 70: T = 842.965461277361 K, F = -0.028218297885350463, relative_change = 2.452485180474516e-7 Iter 75: T = 842.9648298241797 K, F = -0.011801232174973864, relative_change = 1.0256625103551862e-7 Iter 80: T = 842.9645657424172 K, F = -0.004935416755586841, relative_change = 4.289449961463734e-8 Iter 85: T = 842.9644553001829 K, F = -0.0020640503189510717, relative_change = 1.7939003983896872e-8 Iter 90: T = 842.9644091119062 K, F = -0.0008632105091144204, relative_change = 7.50230779724763e-9 Iter 95: T = 842.9643897954146 K, F = -0.0003610049465667675, relative_change = 3.137555083461899e-9 Iter 100: T = 842.9643817170266 K, F = -0.00015097658078899734, relative_change = 1.3121630732695734e-9 Iter 105: T = 842.9643783385483 K, F = -6.314020981723623e-5, relative_change = 5.487622842476447e-10 Iter 110: T = 842.9643769256284 K, F = -2.6405991742528556e-5, relative_change = 2.2949895960184357e-10 Iter 115: T = 842.9643763347283 K, F = -1.1043301974655861e-5, relative_change = 9.597921361648676e-11 Iter 120: T = 842.9643760876069 K, F = -4.618442235315712e-6, relative_change = 4.013966615372871e-11 Iter 125: T = 842.9643759842577 K, F = -1.931487318751479e-6, relative_change = 1.678688446231103e-11 Iter 130: T = 842.9643759410358 K, F = -8.077704221065574e-7, relative_change = 7.020469986854784e-12 Iter 135: T = 842.9643759229599 K, F = -3.3781894726025996e-7, relative_change = 2.9360418697787087e-12 Iter 140: T = 842.9643759154003 K, F = -1.4128042336025715e-7, relative_change = 1.227892164568014e-12 Iter 145: T = 842.9643759122388 K, F = -5.9084180881185944e-8, relative_change = 5.135106551190544e-13 Converged in 150 iterations to T = 842.9643759109166 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 56%|██████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015673625939422718 Iteration 10: d = 2.3958027240196755e-5 Iteration 20: d = 3.2523840001629303e-7 Iteration 30: d = 4.567742746346868e-9 Iteration 40: d = 6.437477686973356e-11 Iteration 50: d = 9.078564113321357e-13 Iteration 60: d = 1.280392524818769e-14 Converged after 65 iterations. d = 1.5404598808155658e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8652.064788459144 Iteration 2: convergence error = 4827.255715472587 Iteration 3: convergence error = 1093.007901600345 Iteration 4: convergence error = 318.5963884891207 Iteration 5: convergence error = 94.40179492706284 Iteration 6: convergence error = 28.136070438431943 Iteration 7: convergence error = 8.460643549828092 Iteration 8: convergence error = 2.5362131291551577 Iteration 9: convergence error = 0.7584801339048681 Iteration 10: convergence error = 0.22652207328792429 Iteration 11: convergence error = 0.0675987442598398 Iteration 12: convergence error = 0.020163876982906004 Iteration 13: convergence error = 0.006013114112192852 Iteration 14: convergence error = 0.0017929236946656602 Iteration 15: convergence error = 0.0005345494439552567 Iteration 16: convergence error = 0.00015936500903990236 Iteration 17: convergence error = 4.751009669234918e-5 Iteration 18: convergence error = 1.4163536889100214e-5 Iteration 19: convergence error = 4.222341885906644e-6 Iteration 20: convergence error = 1.2587313449330395e-6 Iteration 21: convergence error = 3.752411430468783e-7 Iteration 22: convergence error = 1.117275587603217e-7 Iteration 23: convergence error = 3.2397792892879806e-8 Iteration 24: convergence error = 9.342329576611519e-9 Iteration 25: convergence error = 2.683691491256468e-9 Iteration 26: convergence error = 7.753442332614213e-10 Iteration 27: convergence error = 2.241904439870268e-10 Iteration 28: convergence error = 6.343725544866174e-11 Iteration 29: convergence error = 1.9099388737231493e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 62%|████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0019339865567899492 Iteration 10: d = 2.1057186835163997e-5 Iteration 20: d = 2.3602238146542547e-7 Iteration 30: d = 2.938190002903787e-9 Iteration 40: d = 3.7554016484517994e-11 Iteration 50: d = 4.850737001045943e-13 Iteration 60: d = 6.27290053761584e-15 Converged after 63 iterations. d = 1.686749731175757e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12279.984433740336 Iteration 2: convergence error = 8319.277374000989 Iteration 3: convergence error = 1958.5504493995102 Iteration 4: convergence error = 482.5360531171948 Iteration 5: convergence error = 123.04491024826189 Iteration 6: convergence error = 32.852021039381725 Iteration 7: convergence error = 8.948995180234078 Iteration 8: convergence error = 2.451673774218989 Iteration 9: convergence error = 0.672484774454233 Iteration 10: convergence error = 0.18448605970593235 Iteration 11: convergence error = 0.050608341772658605 Iteration 12: convergence error = 0.013882153568374633 Iteration 13: convergence error = 0.00380782762886156 Iteration 14: convergence error = 0.0010444566569276503 Iteration 15: convergence error = 0.00028648383909057884 Iteration 16: convergence error = 7.85793181421468e-5 Iteration 17: convergence error = 2.155340416720719e-5 Iteration 18: convergence error = 5.911844709771685e-6 Iteration 19: convergence error = 1.621546971364296e-6 Iteration 20: convergence error = 4.4477314986579586e-7 Iteration 21: convergence error = 1.228406745212851e-7 Iteration 22: convergence error = 3.3031483326340094e-8 Iteration 23: convergence error = 8.831875675241463e-9 Iteration 24: convergence error = 2.358319761697203e-9 Iteration 25: convergence error = 6.275513442233205e-10 Iteration 26: convergence error = 1.6962076188065112e-10 Iteration 27: convergence error = 4.411049303598702e-11 Iteration 28: convergence error = 1.318767317570746e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 62%|████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0019339865567899492 Iteration 10: d = 2.1057186835163997e-5 Iteration 20: d = 2.3602238146542547e-7 Iteration 30: d = 2.938190002903787e-9 Iteration 40: d = 3.7554016484517994e-11 Iteration 50: d = 4.850737001045943e-13 Iteration 60: d = 6.27290053761584e-15 Converged after 63 iterations. d = 1.686749731175757e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10996.101653784039 Iteration 2: convergence error = 5723.135262396182 Iteration 3: convergence error = 2017.672854559628 Iteration 4: convergence error = 893.9515923843305 Iteration 5: convergence error = 412.1693871801667 Iteration 6: convergence error = 194.5010821531405 Iteration 7: convergence error = 91.85283948884353 Iteration 8: convergence error = 43.39658834205602 Iteration 9: convergence error = 20.503062081725147 Iteration 10: convergence error = 9.68478745292623 Iteration 11: convergence error = 4.57352454585498 Iteration 12: convergence error = 2.159310234933855 Iteration 13: convergence error = 1.0193055665513384 Iteration 14: convergence error = 0.48110511549703006 Iteration 15: convergence error = 0.22705880533567324 Iteration 16: convergence error = 0.10706646311837176 Iteration 17: convergence error = 0.05005113701690789 Iteration 18: convergence error = 0.022866207133120042 Iteration 19: convergence error = 0.010405938085568778 Iteration 20: convergence error = 0.004725045143004536 Iteration 21: convergence error = 0.002142789895515307 Iteration 22: convergence error = 0.0009710343442748126 Iteration 23: convergence error = 0.00043984883222947246 Iteration 24: convergence error = 0.0001991876347346988 Iteration 25: convergence error = 9.018945320349303e-5 Iteration 26: convergence error = 4.0832853756000986e-5 Iteration 27: convergence error = 1.84858554348466e-5 Iteration 28: convergence error = 8.368645467271563e-6 Iteration 29: convergence error = 3.788450158026535e-6 Iteration 30: convergence error = 1.7149923223769292e-6 Iteration 31: convergence error = 7.763487701595295e-7 Iteration 32: convergence error = 3.514451236696914e-7 Iteration 33: convergence error = 1.5909699868643656e-7 Iteration 34: convergence error = 7.20192474545911e-8 Iteration 35: convergence error = 3.259992809034884e-8 Iteration 36: convergence error = 1.475655153626576e-8 Iteration 37: convergence error = 6.6797838371712714e-9 Iteration 38: convergence error = 3.024524630745873e-9 Iteration 39: convergence error = 1.3660610420629382e-9 Iteration 40: convergence error = 6.175469025038183e-10 Iteration 41: convergence error = 2.8194335754960775e-10 Iteration 42: convergence error = 1.318767317570746e-10 Iteration 43: convergence error = 6.048139766789973e-11 Iteration 44: convergence error = 2.9103830456733704e-11 Iteration 45: convergence error = 1.2278178473934531e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 66%|█████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0019339865567899492 Iteration 10: d = 2.1057186835163997e-5 Iteration 20: d = 2.3602238146542547e-7 Iteration 30: d = 2.938190002903787e-9 Iteration 40: d = 3.7554016484517994e-11 Iteration 50: d = 4.850737001045943e-13 Iteration 60: d = 6.27290053761584e-15 Converged after 63 iterations. d = 1.686749731175757e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10827.17351149418 Iteration 2: convergence error = 7341.083407847707 Iteration 3: convergence error = 1732.298959589395 Iteration 4: convergence error = 507.3489996796279 Iteration 5: convergence error = 157.73755958513357 Iteration 6: convergence error = 49.019110452821224 Iteration 7: convergence error = 15.206007285794385 Iteration 8: convergence error = 4.709006360801595 Iteration 9: convergence error = 1.4565839393358146 Iteration 10: convergence error = 0.4502254322687804 Iteration 11: convergence error = 0.1391049094263508 Iteration 12: convergence error = 0.04296855587472237 Iteration 13: convergence error = 0.013270887214730465 Iteration 14: convergence error = 0.0040984125198519905 Iteration 15: convergence error = 0.0012656463854909816 Iteration 16: convergence error = 0.00039083936007955344 Iteration 17: convergence error = 0.00012069187323504593 Iteration 18: convergence error = 3.7269561744324164e-5 Iteration 19: convergence error = 1.150876414612867e-5 Iteration 20: convergence error = 3.553866918082349e-6 Iteration 21: convergence error = 1.097425410989672e-6 Iteration 22: convergence error = 3.387185643077828e-7 Iteration 23: convergence error = 1.0337635103496723e-7 Iteration 24: convergence error = 3.078775989706628e-8 Iteration 25: convergence error = 9.118139132624492e-9 Iteration 26: convergence error = 2.7107489586342126e-9 Iteration 27: convergence error = 7.939888746477664e-10 Iteration 28: convergence error = 2.346496330574155e-10 Iteration 29: convergence error = 7.503331289626658e-11 Iteration 30: convergence error = 2.637534635141492e-11 Iteration 31: convergence error = 7.275957614183426e-12 Converged after 31 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 72%|███████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0019339865567899492 Iteration 10: d = 2.1057186835163997e-5 Iteration 20: d = 2.3602238146542547e-7 Iteration 30: d = 2.938190002903787e-9 Iteration 40: d = 3.7554016484517994e-11 Iteration 50: d = 4.850737001045943e-13 Iteration 60: d = 6.27290053761584e-15 Converged after 63 iterations. d = 1.686749731175757e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.860636390738 Iteration 2: convergence error = 5515.4204851661625 Iteration 3: convergence error = 937.8020715961904 Iteration 4: convergence error = 170.3586632350673 Iteration 5: convergence error = 30.890728125213627 Iteration 6: convergence error = 5.621821479270238 Iteration 7: convergence error = 1.0314836274637855 Iteration 8: convergence error = 0.1887890749944745 Iteration 9: convergence error = 0.034512374458699924 Iteration 10: convergence error = 0.00630546582488023 Iteration 11: convergence error = 0.00115167660123916 Iteration 12: convergence error = 0.00021031872211096925 Iteration 13: convergence error = 3.840527915599523e-5 Iteration 14: convergence error = 7.012736205069814e-6 Iteration 15: convergence error = 1.2804594007320702e-6 Iteration 16: convergence error = 2.3382472136290744e-7 Iteration 17: convergence error = 4.2684860090957955e-8 Iteration 18: convergence error = 7.787093636579812e-9 Iteration 19: convergence error = 1.4338183973450214e-9 Iteration 20: convergence error = 2.587512426543981e-10 Iteration 21: convergence error = 4.501998773775995e-11 Iteration 22: convergence error = 1.0459189070388675e-11 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 75%|████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0019339865567899492 Iteration 10: d = 2.1057186835163997e-5 Iteration 20: d = 2.3602238146542547e-7 Iteration 30: d = 2.938190002903787e-9 Iteration 40: d = 3.7554016484517994e-11 Iteration 50: d = 4.850737001045943e-13 Iteration 60: d = 6.27290053761584e-15 Converged after 63 iterations. d = 1.686749731175757e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.5108061790665 Iteration 2: convergence error = 2713.838298651305 Iteration 3: convergence error = 204.61538142705692 Iteration 4: convergence error = 19.387852891493523 Iteration 5: convergence error = 1.6027281289986615 Iteration 6: convergence error = 0.1305532363426554 Iteration 7: convergence error = 0.010648053871465647 Iteration 8: convergence error = 0.0008704789968679281 Iteration 9: convergence error = 7.127010872760308e-5 Iteration 10: convergence error = 5.840191067270475e-6 Iteration 11: convergence error = 4.787885522598242e-7 Iteration 12: convergence error = 3.9261214214591845e-8 Iteration 13: convergence error = 3.2206702327138508e-9 Iteration 14: convergence error = 2.633822853773614e-10 Iteration 15: convergence error = 2.262368070660159e-11 Iteration 16: convergence error = 3.296918293926865e-12 Converged after 16 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346352 Iteration 2: convergence error = 858.4060420534064 Iteration 3: convergence error = 199.12106737711963 Iteration 4: convergence error = 59.265629268140174 Iteration 5: convergence error = 17.985482911037252 Iteration 6: convergence error = 5.463033078096487 Iteration 7: convergence error = 1.660989611064224 Iteration 8: convergence error = 0.5052487627317532 Iteration 9: convergence error = 0.15371874094239502 Iteration 10: convergence error = 0.04677131697644654 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.004330236512828378 Iteration 13: convergence error = 0.0013175920926187246 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198903971238906 Iteration 16: convergence error = 3.711853855747904e-5 Iteration 17: convergence error = 1.1294342471046548e-5 Iteration 18: convergence error = 3.4366166801191866e-6 Iteration 19: convergence error = 1.045686303768889e-6 Iteration 20: convergence error = 3.1818046863918426e-7 Iteration 21: convergence error = 9.68161657510791e-8 Iteration 22: convergence error = 2.946035237982869e-8 Iteration 23: convergence error = 8.963752406998537e-9 Iteration 24: convergence error = 2.7299620342091657e-9 Iteration 25: convergence error = 8.292317943414673e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.696598913753405e-11 Iteration 28: convergence error = 2.3646862246096134e-11 Iteration 29: convergence error = 9.094947017729282e-12 Converged after 29 iterations Energy conservation errors by band: [1.5428857128674637e-25, 8.401053096241687e-26, 1.1490863489811346e-25, 9.400697635337753e-26, 1.2440020930973268e-25, -3.2610768469290563e-19, 2.7533531010703882e-14, 1.7053025658242404e-12, 5.6701310313655995e-12, 2.6432189770275727e-12, 7.176481631177012e-13, 8.526512829121202e-14, 4.9960036108132044e-15, 2.636779683484747e-16, 2.0166160408230382e-17, 1.0062751413381088e-18, 3.560185356428231e-20, 1.2755125045567687e-21, 4.105530024647957e-23, 5.6284752489113644e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 71%|███████████████████████▌ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015673625939422718 Iteration 10: d = 2.3958027240196755e-5 Iteration 20: d = 3.2523840001629303e-7 Iteration 30: d = 4.567742746346868e-9 Iteration 40: d = 6.437477686973356e-11 Iteration 50: d = 9.078564113321357e-13 Iteration 60: d = 1.280392524818769e-14 Converged after 65 iterations. d = 1.5404598808155658e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.453709046471 Iteration 2: convergence error = 3614.467732097921 Iteration 3: convergence error = 591.8192169537675 Iteration 4: convergence error = 104.30268068166151 Iteration 5: convergence error = 18.539124592728513 Iteration 6: convergence error = 3.266936761546276 Iteration 7: convergence error = 0.573660069205971 Iteration 8: convergence error = 0.10058459313950152 Iteration 9: convergence error = 0.017625792805574747 Iteration 10: convergence error = 0.003087886535695361 Iteration 11: convergence error = 0.0005409191419403214 Iteration 12: convergence error = 9.475168212702556e-5 Iteration 13: convergence error = 1.6597210787949734e-5 Iteration 14: convergence error = 2.907244379457552e-6 Iteration 15: convergence error = 5.092315404908732e-7 Iteration 16: convergence error = 8.920460459194146e-8 Iteration 17: convergence error = 1.56387613969855e-8 Iteration 18: convergence error = 2.7187070372747257e-9 Iteration 19: convergence error = 4.81122697237879e-10 Iteration 20: convergence error = 8.36735125631094e-11 Iteration 21: convergence error = 1.4097167877480388e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.492427513024 Iteration 2: convergence error = 871.304602661783 Iteration 3: convergence error = 207.75299581225158 Iteration 4: convergence error = 62.49550550490892 Iteration 5: convergence error = 18.97931530918413 Iteration 6: convergence error = 5.76621559404623 Iteration 7: convergence error = 1.7533061530655232 Iteration 8: convergence error = 0.5333443698997371 Iteration 9: convergence error = 0.16226812526508638 Iteration 10: convergence error = 0.04937275063014113 Iteration 11: convergence error = 0.015022831428041172 Iteration 12: convergence error = 0.0045710916562029524 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318846916256 Iteration 15: convergence error = 0.0001287742984459328 Iteration 16: convergence error = 3.9183143599075265e-5 Iteration 17: convergence error = 1.1922556950594299e-5 Iteration 18: convergence error = 3.6277691606301232e-6 Iteration 19: convergence error = 1.1038513321182108e-6 Iteration 20: convergence error = 3.3587832604098367e-7 Iteration 21: convergence error = 1.0220117019343888e-7 Iteration 22: convergence error = 3.1099034458748065e-8 Iteration 23: convergence error = 9.464656613999978e-9 Iteration 24: convergence error = 2.880597094190307e-9 Iteration 25: convergence error = 8.786855687503703e-10 Iteration 26: convergence error = 2.6830093702301383e-10 Iteration 27: convergence error = 8.185452315956354e-11 Iteration 28: convergence error = 2.6261659513693303e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [9.81469183839774e-26, 1.2278462217584005e-25, 1.7064639101740927e-25, 1.3045866106183005e-25, 1.2440020930973268e-25, -2.642742795433417e-19, -7.993605777301127e-15, 8.526512829121202e-14, 7.013056801952189e-12, 4.575895218295045e-12, 5.826450433232822e-13, 8.79296635503124e-14, 5.218048215738236e-15, 3.642919299551295e-16, 2.0166160408230382e-17, 8.775261333554552e-19, 3.7613556814011274e-20, 1.2358078351542233e-21, 3.6499344528902346e-23, 4.998575315730623e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729987 Iteration 2: convergence error = 2115.1156110176394 Iteration 3: convergence error = 714.8959934551629 Iteration 4: convergence error = 296.01907471323966 Iteration 5: convergence error = 115.88799395378669 Iteration 6: convergence error = 44.11524923618913 Iteration 7: convergence error = 16.599581025126554 Iteration 8: convergence error = 6.215983404932786 Iteration 9: convergence error = 2.323124567003788 Iteration 10: convergence error = 0.867563639824084 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.12090784413658184 Iteration 13: convergence error = 0.04513241840754745 Iteration 14: convergence error = 0.016846741615154315 Iteration 15: convergence error = 0.0062884074741305085 Iteration 16: convergence error = 0.0023472777563711134 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782211112615 Iteration 19: convergence error = 0.00012207719146317686 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985607473878e-6 Iteration 23: convergence error = 2.3698869426880265e-6 Iteration 24: convergence error = 8.846079708746402e-7 Iteration 25: convergence error = 3.302000095573021e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7174670574604534e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.949427865445614e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.248281478183344e-10 Iteration 34: convergence error = 4.774847184307873e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.9952501103574007e-25, 1.4136387421560532e-25, 1.0339757656912846e-25, 1.6478988765704848e-25, 2.1729646950855903e-25, 9.486769009248164e-20, 5.240252676230739e-14, 2.9274360713316128e-12, 1.2093437362636905e-11, 5.6203930398623925e-12, 2.0961010704922955e-13, 1.84297022087776e-14, 1.582067810090848e-15, 1.723881454251952e-16, 7.101524229780054e-18, 4.641740550953566e-19, 1.4770137017746862e-20, 4.963083675318166e-22, 1.7991178323028352e-23, 9.298117831235686e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238243 Iteration 2: convergence error = 864.8522700482431 Iteration 3: convergence error = 203.43244494690748 Iteration 4: convergence error = 60.87736397590345 Iteration 5: convergence error = 18.481426659698286 Iteration 6: convergence error = 5.6143306186266955 Iteration 7: convergence error = 1.7070587705935623 Iteration 8: convergence error = 0.5192694771476454 Iteration 9: convergence error = 0.1579851928424887 Iteration 10: convergence error = 0.04806952669207476 Iteration 11: convergence error = 0.014626287390910875 Iteration 12: convergence error = 0.004450431969985402 Iteration 13: convergence error = 0.0013541649049102489 Iteration 14: convergence error = 0.0004120419150694943 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.8148852013364376e-5 Iteration 17: convergence error = 1.1607843930505624e-5 Iteration 18: convergence error = 3.532008690854127e-6 Iteration 19: convergence error = 1.0747122587417834e-6 Iteration 20: convergence error = 3.270116621933994e-7 Iteration 21: convergence error = 9.950440471584443e-8 Iteration 22: convergence error = 3.027832917723572e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8029489840264432e-9 Iteration 25: convergence error = 8.546976459911093e-10 Iteration 26: convergence error = 2.609112925711088e-10 Iteration 27: convergence error = 8.003553375601768e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.753886504564434e-12 Converged after 29 iterations Energy conservation errors by band: [1.4621063561728321e-25, 7.674038885990003e-26, 1.32882041762669e-25, 1.3116548043290807e-25, 1.126872025890111e-25, -1.5246593050577406e-19, -3.6637359812630166e-14, 2.5721647034515627e-12, 7.627676268384675e-12, 2.8421709430404007e-12, 4.973799150320701e-13, 7.194245199571014e-14, 4.385380947269368e-15, 4.198030811863873e-16, 2.3310346708438345e-17, 9.84252284709497e-19, 4.1081097941833566e-20, 9.880672416945916e-22, 2.4156258825962636e-23, 4.8210806556121566e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 8m26.7s Testing RayTraceHeatTransfer tests passed Testing completed after 472.39s PkgEval succeeded after 573.98s