Package evaluation of IterativeLQR on Julia 1.11.4 (8561cc3d68*) started at 2025-03-31T11:59:06.185 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.33s ################################################################################ # Installation # Installing IterativeLQR... Resolving package versions... Updating `~/.julia/environments/v1.11/Project.toml` [605048dd] + IterativeLQR v0.2.3 Updating `~/.julia/environments/v1.11/Manifest.toml` ⌅ [47edcb42] + ADTypes v0.2.7 ⌅ [c3fe647b] + AbstractAlgebra v0.27.10 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 ⌅ [79e6a3ab] + Adapt v3.7.2 [66dad0bd] + AliasTables v1.1.3 [dce04be8] + ArgCheck v2.5.0 ⌃ [4fba245c] + ArrayInterface v7.7.1 [30b0a656] + ArrayInterfaceCore v0.1.29 ⌅ [15f4f7f2] + AutoHashEquals v0.2.0 [198e06fe] + BangBang v0.4.4 [9718e550] + Baselet v0.1.1 [e2ed5e7c] + Bijections v0.1.9 [d360d2e6] + ChainRulesCore v1.25.1 [861a8166] + Combinatorics v1.0.2 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.16.0 [b152e2b5] + CompositeTypes v0.1.4 [a33af91c] + CompositionsBase v0.1.2 ⌅ [187b0558] + ConstructionBase v1.5.6 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [244e2a9f] + DefineSingletons v0.1.2 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [31c24e10] + Distributions v0.25.118 [ffbed154] + DocStringExtensions v0.9.4 ⌅ [5b8099bc] + DomainSets v0.5.14 ⌅ [7c1d4256] + DynamicPolynomials v0.4.6 [4e289a0a] + EnumX v1.0.5 [e2ba6199] + ExprTools v0.1.10 [5789e2e9] + FileIO v1.17.0 [1a297f60] + FillArrays v1.13.0 [59287772] + Formatting v0.4.3 ⌅ [f6369f11] + ForwardDiff v0.10.38 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 ⌅ [46192b85] + GPUArraysCore v0.1.5 ⌅ [0b43b601] + Groebner v0.2.11 ⌅ [d5909c97] + GroupsCore v0.4.2 [34004b35] + HypergeometricFunctions v0.3.28 [615f187c] + IfElse v0.1.1 [22cec73e] + InitialValues v0.3.1 [18e54dd8] + IntegerMathUtils v0.1.2 [8197267c] + IntervalSets v0.7.10 [3587e190] + InverseFunctions v0.1.17 [92d709cd] + IrrationalConstants v0.2.4 [605048dd] + IterativeLQR v0.2.3 [82899510] + IteratorInterfaceExtensions v1.0.0 ⌅ [033835bb] + JLD2 v0.4.54 [692b3bcd] + JLLWrappers v1.7.0 [b964fa9f] + LaTeXStrings v1.4.0 ⌃ [2ee39098] + LabelledArrays v1.15.1 ⌅ [984bce1d] + LambertW v0.4.6 ⌅ [23fbe1c1] + Latexify v0.15.21 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.15 ⌅ [e9d8d322] + Metatheory v1.3.5 [128add7d] + MicroCollections v0.2.0 [e1d29d7a] + Missings v1.2.0 ⌅ [102ac46a] + MultivariatePolynomials v0.4.7 [d8a4904e] + MutableArithmetics v1.6.4 [77ba4419] + NaNMath v1.1.2 [bac558e1] + OrderedCollections v1.8.0 [90014a1f] + PDMats v0.11.33 [d96e819e] + Parameters v0.12.3 ⌃ [d236fae5] + PreallocationTools v0.4.24 ⌅ [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [27ebfcd6] + Primes v0.5.7 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [fb686558] + RandomExtensions v0.4.4 [3cdcf5f2] + RecipesBase v1.3.4 ⌅ [731186ca] + RecursiveArrayTools v2.38.10 [189a3867] + Reexport v1.2.2 [42d2dcc6] + Referenceables v0.1.3 [ae029012] + Requires v1.3.1 [79098fc4] + Rmath v0.8.0 [7e49a35a] + RuntimeGeneratedFunctions v0.5.13 ⌅ [0bca4576] + SciMLBase v1.98.1 [c0aeaf25] + SciMLOperators v0.3.13 [6c6a2e73] + Scratch v1.2.1 [efcf1570] + Setfield v1.1.2 [66db9d55] + SnoopPrecompile v1.0.3 [a2af1166] + SortingAlgorithms v1.2.1 [276daf66] + SpecialFunctions v2.5.0 [171d559e] + SplittablesBase v0.1.15 [90137ffa] + StaticArrays v1.9.13 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.0 [2913bbd2] + StatsBase v0.34.4 [4c63d2b9] + StatsFuns v1.3.2 ⌅ [2efcf032] + SymbolicIndexingInterface v0.2.2 ⌅ [d1185830] + SymbolicUtils v0.19.11 ⌅ [0c5d862f] + Symbolics v4.14.0 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.0 ⌅ [8ea1fca8] + TermInterface v0.2.3 [ac1d9e8a] + ThreadsX v0.1.12 [a759f4b9] + TimerOutputs v0.5.28 [3bb67fe8] + TranscodingStreams v0.11.3 [28d57a85] + Transducers v0.4.84 [a2a6695c] + TreeViews v0.3.0 [781d530d] + TruncatedStacktraces v1.4.0 [3a884ed6] + UnPack v1.0.2 [700de1a5] + ZygoteRules v0.2.7 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.6.0 [7b1f6079] + FileWatching v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.2.0 [44cfe95a] + Pkg v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.11.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] + LibCURL_jll v8.6.0+0 [e37daf67] + LibGit2_jll v1.7.2+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.6+0 [14a3606d] + MozillaCACerts_jll v2023.12.12 [4536629a] + OpenBLAS_jll v0.3.27+1 [05823500] + OpenLibm_jll v0.8.1+4 [bea87d4a] + SuiteSparse_jll v7.7.0+0 [83775a58] + Zlib_jll v1.2.13+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 [8e850ede] + nghttp2_jll v1.59.0+0 [3f19e933] + p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 6.55s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 213.8s ################################################################################ # Testing # Testing IterativeLQR Status `/tmp/jl_YUy4yV/Project.toml` [6e4b80f9] BenchmarkTools v1.6.0 ⌅ [f6369f11] ForwardDiff v0.10.38 [605048dd] IterativeLQR v0.2.3 ⌅ [0c5d862f] Symbolics v4.14.0 [37e2e46d] LinearAlgebra v1.11.0 [2f01184e] SparseArrays v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_YUy4yV/Manifest.toml` ⌅ [47edcb42] ADTypes v0.2.7 ⌅ [c3fe647b] AbstractAlgebra v0.27.10 [1520ce14] AbstractTrees v0.4.5 [7d9f7c33] Accessors v0.1.42 ⌅ [79e6a3ab] Adapt v3.7.2 [66dad0bd] AliasTables v1.1.3 [dce04be8] ArgCheck v2.5.0 ⌃ [4fba245c] ArrayInterface v7.7.1 [30b0a656] ArrayInterfaceCore v0.1.29 ⌅ [15f4f7f2] AutoHashEquals v0.2.0 [198e06fe] BangBang v0.4.4 [9718e550] Baselet v0.1.1 [6e4b80f9] BenchmarkTools v1.6.0 [e2ed5e7c] Bijections v0.1.9 [d360d2e6] ChainRulesCore v1.25.1 [861a8166] Combinatorics v1.0.2 [38540f10] CommonSolve v0.2.4 [bbf7d656] CommonSubexpressions v0.3.1 [34da2185] Compat v4.16.0 [b152e2b5] CompositeTypes v0.1.4 [a33af91c] CompositionsBase v0.1.2 ⌅ [187b0558] ConstructionBase v1.5.6 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [31c24e10] Distributions v0.25.118 [ffbed154] DocStringExtensions v0.9.4 ⌅ [5b8099bc] DomainSets v0.5.14 ⌅ [7c1d4256] DynamicPolynomials v0.4.6 [4e289a0a] EnumX v1.0.5 [e2ba6199] ExprTools v0.1.10 [5789e2e9] FileIO v1.17.0 [1a297f60] FillArrays v1.13.0 [59287772] Formatting v0.4.3 ⌅ [f6369f11] ForwardDiff v0.10.38 [069b7b12] FunctionWrappers v1.1.3 [77dc65aa] FunctionWrappersWrappers v0.1.3 ⌅ [46192b85] GPUArraysCore v0.1.5 ⌅ [0b43b601] Groebner v0.2.11 ⌅ [d5909c97] GroupsCore v0.4.2 [34004b35] HypergeometricFunctions v0.3.28 [615f187c] IfElse v0.1.1 [22cec73e] InitialValues v0.3.1 [18e54dd8] IntegerMathUtils v0.1.2 [8197267c] IntervalSets v0.7.10 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.4 [605048dd] IterativeLQR v0.2.3 [82899510] IteratorInterfaceExtensions v1.0.0 ⌅ [033835bb] JLD2 v0.4.54 [692b3bcd] JLLWrappers v1.7.0 [682c06a0] JSON v0.21.4 [b964fa9f] LaTeXStrings v1.4.0 ⌃ [2ee39098] LabelledArrays v1.15.1 ⌅ [984bce1d] LambertW v0.4.6 ⌅ [23fbe1c1] Latexify v0.15.21 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.15 ⌅ [e9d8d322] Metatheory v1.3.5 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 ⌅ [102ac46a] MultivariatePolynomials v0.4.7 [d8a4904e] MutableArithmetics v1.6.4 [77ba4419] NaNMath v1.1.2 [bac558e1] OrderedCollections v1.8.0 [90014a1f] PDMats v0.11.33 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.1 ⌃ [d236fae5] PreallocationTools v0.4.24 ⌅ [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [27ebfcd6] Primes v0.5.7 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [fb686558] RandomExtensions v0.4.4 [3cdcf5f2] RecipesBase v1.3.4 ⌅ [731186ca] RecursiveArrayTools v2.38.10 [189a3867] Reexport v1.2.2 [42d2dcc6] Referenceables v0.1.3 [ae029012] Requires v1.3.1 [79098fc4] Rmath v0.8.0 [7e49a35a] RuntimeGeneratedFunctions v0.5.13 ⌅ [0bca4576] SciMLBase v1.98.1 [c0aeaf25] SciMLOperators v0.3.13 [6c6a2e73] Scratch v1.2.1 [efcf1570] Setfield v1.1.2 [66db9d55] SnoopPrecompile v1.0.3 [a2af1166] SortingAlgorithms v1.2.1 [276daf66] SpecialFunctions v2.5.0 [171d559e] SplittablesBase v0.1.15 [90137ffa] StaticArrays v1.9.13 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.0 [2913bbd2] StatsBase v0.34.4 [4c63d2b9] StatsFuns v1.3.2 ⌅ [2efcf032] SymbolicIndexingInterface v0.2.2 ⌅ [d1185830] SymbolicUtils v0.19.11 ⌅ [0c5d862f] Symbolics v4.14.0 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.0 ⌅ [8ea1fca8] TermInterface v0.2.3 [ac1d9e8a] ThreadsX v0.1.12 [a759f4b9] TimerOutputs v0.5.28 [3bb67fe8] TranscodingStreams v0.11.3 [28d57a85] Transducers v0.4.84 [a2a6695c] TreeViews v0.3.0 [781d530d] TruncatedStacktraces v1.4.0 [3a884ed6] UnPack v1.0.2 [700de1a5] ZygoteRules v0.2.7 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.11.0 [de0858da] Printf v1.11.0 [9abbd945] Profile v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.6.0+0 [e37daf67] LibGit2_jll v1.7.2+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.6+0 [14a3606d] MozillaCACerts_jll v2023.12.12 [4536629a] OpenBLAS_jll v0.3.27+1 [05823500] OpenLibm_jll v0.8.1+4 [bea87d4a] SuiteSparse_jll v7.7.0+0 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.59.0+0 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... Precompiling Symbolics... 2728.4 ms ? DomainSets 14964.5 ms ? SciMLBase Info Given Symbolics was explicitly requested, output will be shown live  WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/kyCuf/src/IntervalSets.jl:296 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. 5687.3 ms ? Symbolics WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/kyCuf/src/IntervalSets.jl:296 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. Precompiling DomainSets... Info Given DomainSets was explicitly requested, output will be shown live  WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/kyCuf/src/IntervalSets.jl:296 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. 2878.1 ms ? DomainSets WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/kyCuf/src/IntervalSets.jl:296 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/kyCuf/src/IntervalSets.jl:296 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. WARNING: Wrapping `Vararg` directly in UnionAll is deprecated (wrap the tuple instead). You may need to write `f(x::Vararg{T})` rather than `f(x::Vararg{<:T})` or `f(x::Vararg{T}) where T` instead of `f(x::Vararg{T} where T)`. Precompiling IntervalSetsRecipesBaseExt... 1148.2 ms ✓ IntervalSets → IntervalSetsRecipesBaseExt 1 dependency successfully precompiled in 1 seconds. 9 already precompiled. Precompiling ArrayInterfaceCore... 1785.6 ms ✓ ArrayInterfaceCore 1 dependency successfully precompiled in 2 seconds. 10 already precompiled. Precompiling SciMLBase... Info Given SciMLBase was explicitly requested, output will be shown live  WARNING: Method definition islinear(Any) in module SciMLOperators at /home/pkgeval/.julia/packages/SciMLOperators/2UPBq/src/interface.jl:311 overwritten in module SciMLBase at /home/pkgeval/.julia/packages/SciMLBase/szsYq/src/operators/operators.jl:7. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. 5521.0 ms ? SciMLBase WARNING: Method definition islinear(Any) in module SciMLOperators at /home/pkgeval/.julia/packages/SciMLOperators/2UPBq/src/interface.jl:311 overwritten in module SciMLBase at /home/pkgeval/.julia/packages/SciMLBase/szsYq/src/operators/operators.jl:7. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. WARNING: Method definition islinear(Any) in module SciMLOperators at /home/pkgeval/.julia/packages/SciMLOperators/2UPBq/src/interface.jl:311 overwritten in module SciMLBase at /home/pkgeval/.julia/packages/SciMLBase/szsYq/src/operators/operators.jl:7. WARNING: Method definition isconstant(Any) in module SciMLOperators at /home/pkgeval/.julia/packages/SciMLOperators/2UPBq/src/interface.jl:254 overwritten in module SciMLBase at /home/pkgeval/.julia/packages/SciMLBase/szsYq/src/operators/operators.jl:8. Precompiling Groebner... 3995.9 ms ✓ Groebner 1 dependency successfully precompiled in 4 seconds. 28 already precompiled. WARNING: Code.get_symbolify is deprecated, use get_rewrites instead. likely near /home/pkgeval/.julia/packages/Symbolics/UrqtQ/src/build_function.jl:130 Precompiling Distributions... 1657.2 ms ✓ PDMats 4605.0 ms ✓ StatsBase 2256.4 ms ✓ HypergeometricFunctions 1172.7 ms ✓ FillArrays → FillArraysPDMatsExt 3316.5 ms ✓ StatsFuns 9290.8 ms ✓ Distributions 6 dependencies successfully precompiled in 23 seconds. 40 already precompiled. Precompiling StatsFunsInverseFunctionsExt... 1424.0 ms ✓ StatsFuns → StatsFunsInverseFunctionsExt 1 dependency successfully precompiled in 2 seconds. 21 already precompiled. Precompiling StatsFunsChainRulesCoreExt... 3973.3 ms ✓ StatsFuns → StatsFunsChainRulesCoreExt 1 dependency successfully precompiled in 4 seconds. 24 already precompiled. Precompiling DistributionsTestExt... 3008.2 ms ✓ Distributions → DistributionsTestExt 1 dependency successfully precompiled in 3 seconds. 48 already precompiled. Precompiling DistributionsChainRulesCoreExt... 3231.7 ms ✓ Distributions → DistributionsChainRulesCoreExt 1 dependency successfully precompiled in 4 seconds. 51 already precompiled. Precompiling Latexify... 5273.2 ms ✓ Latexify 1 dependency successfully precompiled in 5 seconds. 12 already precompiled. Precompiling IterativeLQR... 2773.4 ms ? DomainSets 54870.9 ms ✓ JLD2 5774.7 ms ? SciMLBase 3363.5 ms ? Symbolics Info Given IterativeLQR was explicitly requested, output will be shown live  ┌ Warning: Module Symbolics with build ID ffffffff-ffff-ffff-0023-ea642197a337 is missing from the cache. │ This may mean Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] does not support precompilation but is imported by a module that does. └ @ Base loading.jl:2541 1747.2 ms ? IterativeLQR 1 dependency successfully precompiled in 70 seconds. 180 already precompiled. 3 dependencies precompiled but different versions are currently loaded. Restart julia to access the new versions. Otherwise, loading dependents of these packages may trigger further precompilation to work with the unexpected versions. 4 dependencies failed but may be precompilable after restarting julia 4 dependencies had output during precompilation: ┌ SciMLBase │ WARNING: Method definition islinear(Any) in module SciMLOperators at /home/pkgeval/.julia/packages/SciMLOperators/2UPBq/src/interface.jl:311 overwritten in module SciMLBase at /home/pkgeval/.julia/packages/SciMLBase/szsYq/src/operators/operators.jl:7. │ ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. └ ┌ IterativeLQR │ [Output was shown above] └ ┌ DomainSets │ WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/kyCuf/src/IntervalSets.jl:296 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. │ ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. └ ┌ Symbolics │ ┌ Warning: Module DomainSets with build ID ffffffff-ffff-ffff-0023-ea661371a258 is missing from the cache. │ │ This may mean DomainSets [5b8099bc-c8ec-5219-889f-1d9e522a28bf] does not support precompilation but is imported by a module that does. │ └ @ Base loading.jl:2541 └ ┌ Warning: Module Symbolics with build ID ffffffff-ffff-ffff-0023-ea642197a337 is missing from the cache. │ This may mean Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] does not support precompilation but is imported by a module that does. └ @ Base loading.jl:2541 Test Summary: | Pass Total Time Objective | 7 7 39.9s Test Summary: | Pass Total Time Dynamics | 4 4 23.1s Test Summary: | Pass Total Time Constraints | 12 12 18.6s ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University al iter: 1 ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University iter: 1 cost: 9.619098867195122 gradient_norm: 3.277909558162364 max_violation: 3.1127923355891896 step_size: 1.0 iter: 2 cost: 6.115454508100999 gradient_norm: 1.299048526514734 max_violation: 3.1089313479791465 step_size: 1.0 iter: 3 cost: 5.430456545923732 gradient_norm: 0.808037607232619 max_violation: 3.1082623418772384 step_size: 1.0 iter: 4 cost: 5.189955981648629 gradient_norm: 0.590605459539415 max_violation: 3.107934679272376 step_size: 1.0 iter: 5 cost: 5.078555536289493 gradient_norm: 0.46675677813055355 max_violation: 3.107738730601735 step_size: 1.0 iter: 6 cost: 5.0180211655833356 gradient_norm: 0.38636599779513925 max_violation: 3.107608737929444 step_size: 1.0 iter: 7 cost: 4.981513412484121 gradient_norm: 0.3298255051476538 max_violation: 3.1075164416254744 step_size: 1.0 iter: 8 cost: 4.957815163986774 gradient_norm: 0.28783177385503217 max_violation: 3.1074476564537195 step_size: 1.0 iter: 9 cost: 4.941566041298826 gradient_norm: 0.25538301867622637 max_violation: 3.1073944919851644 step_size: 1.0 iter: 10 cost: 4.92994220439367 gradient_norm: 0.22954322296381785 max_violation: 3.10735221757493 step_size: 1.0 iter: 11 cost: 4.921341323108031 gradient_norm: 0.20847250231807213 max_violation: 3.1073178288008423 step_size: 1.0 iter: 12 cost: 4.914799298149802 gradient_norm: 0.19095791851513327 max_violation: 3.1072893281276497 step_size: 1.0 iter: 13 cost: 4.9097078354578985 gradient_norm: 0.1761667740875973 max_violation: 3.107265336933291 step_size: 1.0 iter: 14 cost: 4.905667760182178 gradient_norm: 0.16350812379537705 max_violation: 3.1072448737420197 step_size: 1.0 iter: 15 cost: 4.902408324796721 gradient_norm: 0.15255080975582958 max_violation: 3.107227221245916 step_size: 1.0 iter: 16 cost: 4.899740637641245 gradient_norm: 0.1429727804003716 max_violation: 3.107211843296007 step_size: 1.0 iter: 17 cost: 4.8975296664345365 gradient_norm: 0.13452857721375538 max_violation: 3.1071983312794873 step_size: 1.0 iter: 18 cost: 4.895676808113507 gradient_norm: 0.12702780990492357 max_violation: 3.107186368440313 step_size: 1.0 iter: 19 cost: 4.894108701482196 gradient_norm: 0.1203205132687798 max_violation: 3.107175705518634 step_size: 1.0 iter: 20 cost: 4.892769852173661 gradient_norm: 0.11428694596438477 max_violation: 3.107166143736449 step_size: 1.0 iter: 21 cost: 4.891617654387377 gradient_norm: 0.10883033326831687 max_violation: 3.1071575226724386 step_size: 1.0 iter: 22 cost: 4.890618958845113 gradient_norm: 0.10387160715575178 max_violation: 3.107149711464244 step_size: 1.0 al iter: 2 iter: 1 cost: 56.24027713299401 gradient_norm: 6.606464424725289 max_violation: 2.9377788499211426 step_size: 1.0 iter: 2 cost: 55.780347327043074 gradient_norm: 3.1232611618182275 max_violation: 2.940620616018431 step_size: 1.0 iter: 3 cost: 55.695976480990836 gradient_norm: 2.043626629285397 max_violation: 2.941400994978499 step_size: 1.0 iter: 4 cost: 55.66643457089012 gradient_norm: 1.5183642078094506 max_violation: 2.941750734911337 step_size: 1.0 iter: 5 cost: 55.65274496608173 gradient_norm: 1.2078426917480098 max_violation: 2.9419445394346604 step_size: 1.0 iter: 6 cost: 55.64529988559412 gradient_norm: 1.0027599470712305 max_violation: 2.94206576621274 step_size: 1.0 iter: 7 cost: 55.64080587500799 gradient_norm: 0.8572184673238814 max_violation: 2.9421478181111578 step_size: 1.0 iter: 8 cost: 55.637886225813 gradient_norm: 0.7485795111229496 max_violation: 2.942206530346345 step_size: 1.0 iter: 9 cost: 55.63588273956378 gradient_norm: 0.6643885871361697 max_violation: 2.9422503166713976 step_size: 1.0 iter: 10 cost: 55.63444849080554 gradient_norm: 0.5972282471651029 max_violation: 2.9422840341112426 step_size: 1.0 iter: 11 cost: 55.633386514517014 gradient_norm: 0.5424057315660775 max_violation: 2.9423106694631436 step_size: 1.0 iter: 12 cost: 55.632578234992565 gradient_norm: 0.4968072213501129 max_violation: 2.942332153377503 step_size: 1.0 al iter: 3 iter: 1 cost: 477.8320406459363 gradient_norm: 138.40383908240395 max_violation: 2.268896655897987 step_size: 1.0 iter: 2 cost: 404.0516376658309 gradient_norm: 156.1107183952337 max_violation: 1.7674164607231238 step_size: 1.0 iter: 3 cost: 343.0483432426731 gradient_norm: 110.26082037001565 max_violation: 1.552775605575064 step_size: 1.0 iter: 4 cost: 311.61121643997205 gradient_norm: 90.0940090978284 max_violation: 1.3960961730461374 step_size: 1.0 iter: 5 cost: 295.6137460647481 gradient_norm: 81.30368335843283 max_violation: 1.3030052342677432 step_size: 1.0 iter: 6 cost: 280.20639043258825 gradient_norm: 74.28617568444876 max_violation: 1.2024290868777476 step_size: 1.0 iter: 7 cost: 267.764663727923 gradient_norm: 67.27458750882755 max_violation: 1.1133466914091796 step_size: 1.0 iter: 8 cost: 258.1429557426831 gradient_norm: 71.2228335677407 max_violation: 1.0425954584733637 step_size: 1.0 iter: 9 cost: 250.70734773671404 gradient_norm: 74.22159619175854 max_violation: 0.987944894658968 step_size: 1.0 iter: 10 cost: 244.68419659203627 gradient_norm: 77.17865551068796 max_violation: 0.9442767766437208 step_size: 1.0 iter: 11 cost: 239.77961311902982 gradient_norm: 76.98616353621617 max_violation: 0.9077458623488726 step_size: 1.0 iter: 12 cost: 236.12004624419487 gradient_norm: 72.40759634926742 max_violation: 0.8771883258528841 step_size: 1.0 iter: 13 cost: 233.35299644777797 gradient_norm: 66.31788031872681 max_violation: 0.8520854271338205 step_size: 1.0 iter: 14 cost: 231.1143451095398 gradient_norm: 60.46697572826754 max_violation: 0.8313366161863986 step_size: 1.0 iter: 15 cost: 229.25220407534025 gradient_norm: 55.2626242063697 max_violation: 0.8139096107145445 step_size: 1.0 iter: 16 cost: 227.68550470671423 gradient_norm: 64.7598769370911 max_violation: 0.7990396722245388 step_size: 1.0 iter: 17 cost: 226.35536525970275 gradient_norm: 74.92122021701428 max_violation: 0.7861770655396016 step_size: 1.0 iter: 18 cost: 225.21544554689822 gradient_norm: 82.01276703494229 max_violation: 0.774920916069366 step_size: 1.0 iter: 19 cost: 224.22909905575685 gradient_norm: 86.82318949355712 max_violation: 0.7649723816695264 step_size: 1.0 iter: 20 cost: 223.36750928024134 gradient_norm: 89.9475253869063 max_violation: 0.7561038656584165 step_size: 1.0 iter: 21 cost: 222.6081050587225 gradient_norm: 91.8252179043663 max_violation: 0.7481387399719428 step_size: 1.0 iter: 22 cost: 221.93322410267047 gradient_norm: 92.77947710760658 max_violation: 0.740937716301493 step_size: 1.0 iter: 23 cost: 221.3290193895623 gradient_norm: 93.04876419813068 max_violation: 0.7343894479511106 step_size: 1.0 iter: 24 cost: 220.78458131001395 gradient_norm: 92.81007295645242 max_violation: 0.7284038717493346 step_size: 1.0 iter: 25 cost: 220.2912433858256 gradient_norm: 92.19566810592349 max_violation: 0.7229073674389714 step_size: 1.0 iter: 26 cost: 219.84204261161807 gradient_norm: 91.30502807318318 max_violation: 0.7178391600614122 step_size: 1.0 iter: 27 cost: 219.4313086187682 gradient_norm: 90.2133880645905 max_violation: 0.7131486025881109 step_size: 1.0 iter: 28 cost: 219.05435731282023 gradient_norm: 88.977900079645 max_violation: 0.7087931020622538 step_size: 1.0 iter: 29 cost: 218.70726595725057 gradient_norm: 87.64212059971759 max_violation: 0.7047365265411938 step_size: 1.0 iter: 30 cost: 218.38670915639392 gradient_norm: 86.23931456855257 max_violation: 0.7009479749973448 step_size: 1.0 iter: 31 cost: 218.08983880581977 gradient_norm: 84.79491122249277 max_violation: 0.6974008219182037 step_size: 1.0 iter: 32 cost: 217.81419506333714 gradient_norm: 83.32834442163764 max_violation: 0.6940719697766835 step_size: 1.0 iter: 33 cost: 217.557639011309 gradient_norm: 81.85444120691946 max_violation: 0.6909412589384951 step_size: 1.0 iter: 34 cost: 217.31830055797303 gradient_norm: 80.38447562617618 max_violation: 0.6879909972425282 step_size: 1.0 iter: 35 cost: 217.0945372166259 gradient_norm: 78.92697265966545 max_violation: 0.685205581147986 step_size: 1.0 iter: 36 cost: 216.88490083385156 gradient_norm: 77.48832440333058 max_violation: 0.6825711875668317 step_size: 1.0 iter: 37 cost: 216.68811028439006 gradient_norm: 76.0732644387866 max_violation: 0.6800755208237521 step_size: 1.0 iter: 38 cost: 216.5030287649199 gradient_norm: 74.6852345509043 max_violation: 0.6777076030751514 step_size: 1.0 iter: 39 cost: 216.32864471766322 gradient_norm: 73.32666934071324 max_violation: 0.6754575993546612 step_size: 1.0 iter: 40 cost: 216.1640556761847 gradient_norm: 71.99921793335291 max_violation: 0.6733166704873539 step_size: 1.0 iter: 41 cost: 216.00845450103245 gradient_norm: 70.70391727690001 max_violation: 0.6712768486439593 step_size: 1.0 iter: 42 cost: 215.86111759378306 gradient_norm: 69.44132802645527 max_violation: 0.6693309314441613 step_size: 1.0 iter: 43 cost: 215.72139476420372 gradient_norm: 68.21164138913166 max_violation: 0.6674723913743601 step_size: 1.0 iter: 44 cost: 215.58870048863128 gradient_norm: 67.01476333919247 max_violation: 0.6656952979370669 step_size: 1.0 iter: 45 cost: 215.4625063457164 gradient_norm: 65.85038113027957 max_violation: 0.6639942504509588 step_size: 1.0 iter: 46 cost: 215.34233445301257 gradient_norm: 64.71801590761791 max_violation: 0.6623643198112914 step_size: 1.0 iter: 47 cost: 215.22775175751596 gradient_norm: 63.61706436906907 max_violation: 0.6608009978275269 step_size: 1.0 iter: 48 cost: 215.1183650571379 gradient_norm: 62.54683177051148 max_violation: 0.6593001529988354 step_size: 1.0 iter: 49 cost: 215.0138166495793 gradient_norm: 61.50655806988517 max_violation: 0.6578579917832759 step_size: 1.0 iter: 50 cost: 214.9137805211203 gradient_norm: 60.49543861795575 max_violation: 0.6564710245738374 step_size: 1.0 iter: 51 cost: 214.81795900115674 gradient_norm: 59.5126405043817 max_violation: 0.655136035722411 step_size: 1.0 iter: 52 cost: 214.72607981941698 gradient_norm: 58.55731543558057 max_violation: 0.653850057057241 step_size: 1.0 iter: 53 cost: 214.6378935120939 gradient_norm: 57.62860983910137 max_violation: 0.6526103444253555 step_size: 1.0 iter: 54 cost: 214.55317113094526 gradient_norm: 56.72567274707145 max_violation: 0.6514143568624808 step_size: 1.0 iter: 55 cost: 214.47170221601817 gradient_norm: 55.84766189956082 max_violation: 0.6502597380519859 step_size: 1.0 iter: 56 cost: 214.39329299821543 gradient_norm: 54.993748420310105 max_violation: 0.6491442997835573 step_size: 1.0 iter: 57 cost: 214.31776480265862 gradient_norm: 54.16312034741247 max_violation: 0.6480660071636071 step_size: 1.0 iter: 58 cost: 214.24495262781053 gradient_norm: 53.35498524606681 max_violation: 0.6470229653641173 step_size: 1.0 iter: 59 cost: 214.17470387873337 gradient_norm: 52.56857208610321 max_violation: 0.6460134077258517 step_size: 1.0 iter: 60 cost: 214.10687723577877 gradient_norm: 51.80313253177906 max_violation: 0.6450356850567687 step_size: 1.0 iter: 61 cost: 214.04134164249353 gradient_norm: 51.057941762813854 max_violation: 0.6440882559875303 step_size: 1.0 iter: 62 cost: 213.97797539864905 gradient_norm: 50.332298922891226 max_violation: 0.6431696782639702 step_size: 1.0 iter: 63 cost: 213.91666534614697 gradient_norm: 49.625527273645226 max_violation: 0.6422786008718244 step_size: 1.0 iter: 64 cost: 213.85730613711 gradient_norm: 48.93697411711934 max_violation: 0.6414137569021778 step_size: 1.0 iter: 65 cost: 213.79979957482743 gradient_norm: 48.266010537678696 max_violation: 0.6405739570774553 step_size: 1.0 iter: 66 cost: 213.74405401939444 gradient_norm: 47.612031005009754 max_violation: 0.6397580838675667 step_size: 1.0 iter: 67 cost: 213.68998385088923 gradient_norm: 46.974452871405866 max_violation: 0.6389650861342884 step_size: 1.0 iter: 68 cost: 213.63750898380354 gradient_norm: 46.35271579059377 max_violation: 0.6381939742492513 step_size: 1.0 iter: 69 cost: 213.58655442720678 gradient_norm: 45.746281079856935 max_violation: 0.6374438156373343 step_size: 1.0 iter: 70 cost: 213.53704988577644 gradient_norm: 45.15463104308564 max_violation: 0.6367137307027564 step_size: 1.0 iter: 71 cost: 213.48892939740026 gradient_norm: 44.577268268861026 max_violation: 0.6360028891000149 step_size: 1.0 iter: 72 cost: 213.44213100355745 gradient_norm: 44.013714914867364 max_violation: 0.6353105063160358 step_size: 1.0 iter: 73 cost: 213.39659644912217 gradient_norm: 43.463511987669385 max_violation: 0.6346358405336225 step_size: 1.0 iter: 74 cost: 213.35227090860897 gradient_norm: 42.92621862480903 max_violation: 0.6339781897495129 step_size: 1.0 iter: 75 cost: 213.3091027362201 gradient_norm: 42.401411385006206 max_violation: 0.6333368891232203 step_size: 1.0 iter: 76 cost: 213.26704323734583 gradient_norm: 41.88868355048887 max_violation: 0.6327113085353768 step_size: 1.0 iter: 77 cost: 213.22604645942062 gradient_norm: 41.387644445030915 max_violation: 0.6321008503364611 step_size: 1.0 iter: 78 cost: 213.18606900027513 gradient_norm: 40.8979187698311 max_violation: 0.6315049472688354 step_size: 1.0 iter: 79 cost: 213.14706983231477 gradient_norm: 40.41914595935401 max_violation: 0.6309230605466594 step_size: 1.0 iter: 80 cost: 213.10901014103584 gradient_norm: 39.950979557991175 max_violation: 0.6303546780798945 step_size: 1.0 iter: 81 cost: 213.07185317654626 gradient_norm: 39.493086618605204 max_violation: 0.6297993128298991 step_size: 1.0 iter: 82 cost: 213.03556411689482 gradient_norm: 39.04514712330066 max_violation: 0.6292565012853739 step_size: 1.0 iter: 83 cost: 213.00010994213753 gradient_norm: 38.60685342652001 max_violation: 0.62872580204851 step_size: 1.0 iter: 84 cost: 212.9654593181719 gradient_norm: 38.17790972045002 max_violation: 0.6282067945221139 step_size: 1.0 iter: 85 cost: 212.93158248947617 gradient_norm: 37.75803152239011 max_violation: 0.627699077689436 step_size: 1.0 iter: 86 cost: 212.89845117997032 gradient_norm: 37.346945183910094 max_violation: 0.6272022689791044 step_size: 1.0 iter: 87 cost: 212.86603850128978 gradient_norm: 36.94438742097886 max_violation: 0.6267160032083301 step_size: 1.0 iter: 88 cost: 212.83431886784243 gradient_norm: 36.55010486479891 max_violation: 0.6262399315981777 step_size: 1.0 iter: 89 cost: 212.80326791806291 gradient_norm: 36.163853632508214 max_violation: 0.6257737208551797 step_size: 1.0 iter: 90 cost: 212.77286244135342 gradient_norm: 35.78539891713982 max_violation: 0.6253170523141742 step_size: 1.0 iter: 91 cost: 212.74308031023256 gradient_norm: 35.41451459626536 max_violation: 0.6248696211376492 step_size: 1.0 iter: 92 cost: 212.71390041726346 gradient_norm: 35.050982858309865 max_violation: 0.6244311355672605 step_size: 1.0 iter: 93 cost: 212.6853026163778 gradient_norm: 34.694593846206445 max_violation: 0.6240013162236449 step_size: 1.0 iter: 94 cost: 212.65726766823622 gradient_norm: 34.34514531735322 max_violation: 0.6235798954508875 step_size: 1.0 iter: 95 cost: 212.62977718930867 gradient_norm: 34.00244231939449 max_violation: 0.6231666167023708 step_size: 1.0 iter: 96 cost: 212.6028136043769 gradient_norm: 33.6662968809358 max_violation: 0.6227612339649973 step_size: 1.0 iter: 97 cost: 212.57636010219824 gradient_norm: 33.3365277167569 max_violation: 0.6223635112189907 step_size: 1.0 iter: 98 cost: 212.5504005940808 gradient_norm: 33.01295994659276 max_violation: 0.6219732219307499 step_size: 1.0 iter: 99 cost: 212.52491967515473 gradient_norm: 32.69542482712942 max_violation: 0.621590148576431 step_size: 1.0 iter: 100 cost: 212.49990258812733 gradient_norm: 32.383759496330704 max_violation: 0.6212140821940553 step_size: 1.0 al iter: 4 iter: 1 cost: 448.03113239680454 gradient_norm: 249.19677453812247 max_violation: 0.3679734705627755 step_size: 1.0 iter: 2 cost: 418.3463646217919 gradient_norm: 480.60959244220516 max_violation: 0.35365311678291933 step_size: 0.125 iter: 3 cost: 393.4314195886785 gradient_norm: 1600.6259729782503 max_violation: 0.34082025359746115 step_size: 0.25 iter: 4 cost: 380.9456956922223 gradient_norm: 3678.937646095037 max_violation: 0.34027838940705823 step_size: 0.5 iter: 5 cost: 356.3593217334444 gradient_norm: 4639.613747001568 max_violation: 0.30583655700791246 step_size: 1.0 iter: 6 cost: 329.09706211390017 gradient_norm: 3794.4941406800663 max_violation: 0.2766747629616275 step_size: 1.0 iter: 7 cost: 313.22358821387184 gradient_norm: 3201.105490085595 max_violation: 0.2563702824140872 step_size: 1.0 iter: 8 cost: 302.7765356687158 gradient_norm: 2760.7104267528102 max_violation: 0.2404698111078205 step_size: 1.0 iter: 9 cost: 295.43731244842246 gradient_norm: 2423.5744269444076 max_violation: 0.23193727510461004 step_size: 1.0 iter: 10 cost: 290.0464731746831 gradient_norm: 2158.4843999197474 max_violation: 0.22962133632878778 step_size: 1.0 iter: 11 cost: 285.9515911449078 gradient_norm: 1945.1108127802731 max_violation: 0.22783184384045896 step_size: 1.0 iter: 12 cost: 282.756334057999 gradient_norm: 1769.891365781975 max_violation: 0.22636471249626133 step_size: 1.0 iter: 13 cost: 280.2067232360718 gradient_norm: 1623.53087111894 max_violation: 0.22511530360678078 step_size: 1.0 iter: 14 cost: 278.1332850106298 gradient_norm: 1499.4853376033461 max_violation: 0.22402393326090486 step_size: 1.0 iter: 15 cost: 276.41919052490675 gradient_norm: 1393.0311537430423 max_violation: 0.22305343556241874 step_size: 1.0 iter: 16 cost: 274.9816762741782 gradient_norm: 1300.6808404432331 max_violation: 0.22217897010818177 step_size: 1.0 iter: 17 cost: 273.76072260355164 gradient_norm: 1219.8070686766823 max_violation: 0.2213829719409457 step_size: 1.0 iter: 18 cost: 272.71190410939306 gradient_norm: 1148.3945940374629 max_violation: 0.22065245258368416 step_size: 1.0 iter: 19 cost: 271.8017365864146 gradient_norm: 1084.872670581937 max_violation: 0.21997745926212975 step_size: 1.0 iter: 20 cost: 271.00456886906807 gradient_norm: 1027.999324626944 max_violation: 0.21935014337489678 step_size: 1.0 iter: 21 cost: 270.3004585101493 gradient_norm: 976.7798173497863 max_violation: 0.2187641685432169 step_size: 1.0 iter: 22 cost: 269.67368989191976 gradient_norm: 930.4081316062799 max_violation: 0.21821431786736456 step_size: 1.0 iter: 23 cost: 269.1117212327594 gradient_norm: 888.2242726920152 max_violation: 0.21769622346071138 step_size: 1.0 iter: 24 cost: 268.6044236507824 gradient_norm: 849.6826296097572 max_violation: 0.21720617413280596 step_size: 1.0 iter: 25 cost: 268.1435226873247 gradient_norm: 814.3282024999318 max_violation: 0.21674097487736033 step_size: 1.0 iter: 26 cost: 267.7221825000626 gradient_norm: 781.7785112651532 max_violation: 0.2162978419021675 step_size: 1.0 iter: 27 cost: 267.3346921739692 gradient_norm: 751.709666312338 max_violation: 0.21587432290671016 step_size: 1.0 iter: 28 cost: 266.97622630122413 gradient_norm: 723.8455294489995 max_violation: 0.21546823601100318 step_size: 1.0 iter: 29 cost: 266.6426605814598 gradient_norm: 697.9491982078232 max_violation: 0.21507762314782752 step_size: 1.0 iter: 30 cost: 266.3304291917108 gradient_norm: 673.8162585230328 max_violation: 0.21470071538400592 step_size: 1.0 iter: 31 cost: 266.0364150066322 gradient_norm: 651.2693994955104 max_violation: 0.21433590881507225 step_size: 1.0 iter: 32 cost: 265.75786697539974 gradient_norm: 630.1540897560636 max_violation: 0.21398175049190415 step_size: 1.0 iter: 33 cost: 265.4923413528767 gradient_norm: 610.3350903823628 max_violation: 0.2136369342572091 step_size: 1.0 iter: 34 cost: 265.23766503834497 gradient_norm: 591.6936324826015 max_violation: 0.21330030623843932 step_size: 1.0 iter: 35 cost: 264.9919197385486 gradient_norm: 574.1251235834673 max_violation: 0.2129708788336382 step_size: 1.0 iter: 36 cost: 264.7534446429184 gradient_norm: 557.5372695797249 max_violation: 0.21264785019396726 step_size: 1.0 iter: 37 cost: 264.5208525774091 gradient_norm: 541.8485123956633 max_violation: 0.21233062369182454 step_size: 1.0 iter: 38 cost: 264.2930507706239 gradient_norm: 526.9866935720745 max_violation: 0.212018819615432 step_size: 1.0 iter: 39 cost: 264.0692542445766 gradient_norm: 512.8878681948594 max_violation: 0.2117122709751511 step_size: 1.0 iter: 40 cost: 263.8489800530751 gradient_norm: 499.49521740016394 max_violation: 0.21141099830388077 step_size: 1.0 iter: 41 cost: 263.63201576473887 gradient_norm: 486.7580396446686 max_violation: 0.21111516451453305 step_size: 1.0 iter: 42 cost: 263.41836435257045 gradient_norm: 474.63083074331644 max_violation: 0.21082501767862238 step_size: 1.0 iter: 43 cost: 263.2081757512787 gradient_norm: 463.0724777084668 max_violation: 0.21054083339785956 step_size: 1.0 iter: 44 cost: 263.0016786229265 gradient_norm: 452.04558678690915 max_violation: 0.21026286733341593 step_size: 1.0 iter: 45 cost: 262.79912343344904 gradient_norm: 441.5159485474186 max_violation: 0.20999132365238582 step_size: 1.0 iter: 46 cost: 262.60074229682414 gradient_norm: 431.45212464299885 max_violation: 0.20972633969285948 step_size: 1.0 iter: 47 cost: 262.40672558281165 gradient_norm: 421.8251304733376 max_violation: 0.20946798347678142 step_size: 1.0 iter: 48 cost: 262.2172119780965 gradient_norm: 412.6081867551329 max_violation: 0.20921625945105005 step_size: 1.0 iter: 49 cost: 262.03228767908865 gradient_norm: 403.7765176255987 max_violation: 0.208971118320334 step_size: 1.0 iter: 50 cost: 261.8519908511361 gradient_norm: 395.30717943053185 max_violation: 0.20873246803751222 step_size: 1.0 iter: 51 cost: 261.6763185178128 gradient_norm: 387.1789101527411 max_violation: 0.20850018422781158 step_size: 1.0 iter: 52 cost: 261.5052340768907 gradient_norm: 379.3719936534372 max_violation: 0.20827411923312633 step_size: 1.0 iter: 53 cost: 261.3386744405753 gradient_norm: 371.86813554157277 max_violation: 0.2080541095350723 step_size: 1.0 iter: 54 cost: 261.17655633261916 gradient_norm: 364.65034895852295 max_violation: 0.20783998162263595 step_size: 1.0 iter: 55 cost: 261.01878159440156 gradient_norm: 357.7028493216415 max_violation: 0.20763155650557774 step_size: 1.0 iter: 56 cost: 260.8652415230462 gradient_norm: 351.01095739770557 max_violation: 0.2074286531124585 step_size: 1.0 iter: 57 cost: 260.71582034372324 gradient_norm: 344.56101019931856 max_violation: 0.20723109080124225 step_size: 1.0 iter: 58 cost: 260.5703979451465 gradient_norm: 338.34027923238125 max_violation: 0.2070386911796982 step_size: 1.0 iter: 59 cost: 260.42885200702995 gradient_norm: 332.33689561579814 max_violation: 0.20685127939721593 step_size: 1.0 iter: 60 cost: 260.2910596356803 gradient_norm: 326.53978158892426 max_violation: 0.2066686850362216 step_size: 1.0 iter: 61 cost: 260.1568986069284 gradient_norm: 320.93858792454483 max_violation: 0.2064907427028655 step_size: 1.0 iter: 62 cost: 260.0262482985018 gradient_norm: 315.52363677486306 max_violation: 0.20631729239344443 step_size: 1.0 iter: 63 cost: 259.8989903783002 gradient_norm: 310.28586949085457 max_violation: 0.20614817969471044 step_size: 1.0 iter: 64 cost: 259.77500930179104 gradient_norm: 305.2167989863513 max_violation: 0.20598325586211974 step_size: 1.0 iter: 65 cost: 259.65419266072905 gradient_norm: 300.30846623864744 max_violation: 0.20582237780919987 step_size: 1.0 iter: 66 cost: 259.53643141648837 gradient_norm: 295.5534005527587 max_violation: 0.2056654080330329 step_size: 1.0 iter: 67 cost: 259.4216200442124 gradient_norm: 290.94458324482054 max_violation: 0.205512214494584 step_size: 1.0 iter: 68 cost: 259.30965660832965 gradient_norm: 286.47541442510027 max_violation: 0.20536267046794876 step_size: 1.0 iter: 69 cost: 259.20044278557407 gradient_norm: 282.13968259665955 max_violation: 0.20521665436903724 step_size: 1.0 iter: 70 cost: 259.0938838481318 gradient_norm: 277.9315368079681 max_violation: 0.205074049571488 step_size: 1.0 iter: 71 cost: 258.9898886168203 gradient_norm: 273.8454611208236 max_violation: 0.20493474421569458 step_size: 1.0 iter: 72 cost: 258.8883693920376 gradient_norm: 269.87625118170644 max_violation: 0.20479863101517237 step_size: 1.0 iter: 73 cost: 258.789241868551 gradient_norm: 266.01899270406966 max_violation: 0.20466560706342696 step_size: 1.0 iter: 74 cost: 258.69242503886596 gradient_norm: 262.2690416844406 max_violation: 0.20453557364361963 step_size: 1.0 iter: 75 cost: 258.59784108885316 gradient_norm: 258.62200619752565 max_violation: 0.20440843604259085 step_size: 1.0 iter: 76 cost: 258.50541528852375 gradient_norm: 255.07372962835186 max_violation: 0.2042841033703855 step_size: 1.0 iter: 77 cost: 258.4150758801752 gradient_norm: 251.62027521091952 max_violation: 0.20416248838600737 step_size: 1.0 iter: 78 cost: 258.32675396562394 gradient_norm: 248.2579117604461 max_violation: 0.2040435073298661 step_size: 1.0 iter: 79 cost: 258.24038339384674 gradient_norm: 244.9831004954435 max_violation: 0.20392707976315672 step_size: 1.0 iter: 80 cost: 258.15590065001675 gradient_norm: 241.79248284910167 max_violation: 0.20381312841426258 step_size: 1.0 iter: 81 cost: 258.0732447466933 gradient_norm: 238.6828691945504 max_violation: 0.20370157903215125 step_size: 1.0 iter: 82 cost: 257.99235711770666 gradient_norm: 235.65122839750586 max_violation: 0.2035923602466836 step_size: 1.0 iter: 83 cost: 257.913181515132 gradient_norm: 232.69467813201453 max_violation: 0.2034854034356206 step_size: 1.0 iter: 84 cost: 257.83566390962255 gradient_norm: 229.81047589436463 max_violation: 0.20338064259815702 step_size: 1.0 iter: 85 cost: 257.7597523942695 gradient_norm: 226.99601065503632 max_violation: 0.2032780142347259 step_size: 1.0 iter: 86 cost: 257.68539709209733 gradient_norm: 224.24879510181378 max_violation: 0.20317745723283442 step_size: 1.0 iter: 87 cost: 257.61255006722 gradient_norm: 221.566458422455 max_violation: 0.20307891275863987 step_size: 1.0 iter: 88 cost: 257.54116523965865 gradient_norm: 218.94673958367804 max_violation: 0.20298232415403783 step_size: 1.0 iter: 89 cost: 257.4711983037802 gradient_norm: 216.38748106955387 max_violation: 0.20288763683896827 step_size: 1.0 iter: 90 cost: 257.40260665028535 gradient_norm: 213.8866230421167 max_violation: 0.20279479821868218 step_size: 1.0 iter: 91 cost: 257.3353492916621 gradient_norm: 211.44219789154832 max_violation: 0.2027037575957369 step_size: 1.0 iter: 92 cost: 257.2693867909983 gradient_norm: 209.05232514525858 max_violation: 0.2026144660864344 step_size: 1.0 iter: 93 cost: 257.20468119405274 gradient_norm: 206.71520671072903 max_violation: 0.20252687654151513 step_size: 1.0 iter: 94 cost: 257.14119596445505 gradient_norm: 204.42912242442597 max_violation: 0.2024409434708354 step_size: 1.0 iter: 95 cost: 257.0788959219204 gradient_norm: 202.19242588694217 max_violation: 0.20235662297183143 step_size: 1.0 iter: 96 cost: 257.01774718336225 gradient_norm: 200.00354056029067 max_violation: 0.20227387266159225 step_size: 1.0 iter: 97 cost: 256.9577171067585 gradient_norm: 197.86095611050976 max_violation: 0.20219265161227495 step_size: 1.0 iter: 98 cost: 256.89877423767786 gradient_norm: 195.76322497734904 max_violation: 0.2021129202897618 step_size: 1.0 iter: 99 cost: 256.8408882583274 gradient_norm: 193.70895915375522 max_violation: 0.20203464049531483 step_size: 1.0 iter: 100 cost: 256.78402993900454 gradient_norm: 191.69682716145647 max_violation: 0.20195777531010206 step_size: 1.0 al iter: 5 iter: 1 cost: 573.4332967259595 gradient_norm: 28652.786885195696 max_violation: 0.15208492078249308 step_size: 0.5 iter: 2 cost: 532.7223081608843 gradient_norm: 25676.031243102276 max_violation: 0.14791292730188244 step_size: 0.25 iter: 3 cost: 438.84603493641345 gradient_norm: 19525.37572019974 max_violation: 0.1353224591387652 step_size: 1.0 iter: 4 cost: 367.337910591841 gradient_norm: 14332.856937760485 max_violation: 0.10219205508020768 step_size: 1.0 iter: 5 cost: 334.01128704325475 gradient_norm: 11269.260135134764 max_violation: 0.08320400068181708 step_size: 1.0 iter: 6 cost: 314.65949477865394 gradient_norm: 9264.244630976578 max_violation: 0.06967452813189046 step_size: 1.0 iter: 7 cost: 302.6396010243582 gradient_norm: 7860.538788046261 max_violation: 0.05984462739955376 step_size: 1.0 iter: 8 cost: 294.66994347855507 gradient_norm: 6824.295177459101 max_violation: 0.05241002252224414 step_size: 1.0 iter: 9 cost: 289.1105550551943 gradient_norm: 6028.386057595077 max_violation: 0.04660038189616261 step_size: 1.0 iter: 10 cost: 285.07357060646825 gradient_norm: 5398.095072664812 max_violation: 0.04193960174836758 step_size: 1.0 iter: 11 cost: 282.0453791525399 gradient_norm: 4886.709798414751 max_violation: 0.03811954805057405 step_size: 1.0 iter: 12 cost: 279.7123308250549 gradient_norm: 4463.549210904313 max_violation: 0.03493261819785465 step_size: 1.0 iter: 13 cost: 277.8741235779197 gradient_norm: 4107.6383320432915 max_violation: 0.032234073010749764 step_size: 1.0 iter: 14 cost: 276.39795932258266 gradient_norm: 3804.1550903401253 max_violation: 0.0299200188882891 step_size: 1.0 iter: 15 cost: 275.1929523132824 gradient_norm: 3542.330196769898 max_violation: 0.027913996752281456 step_size: 1.0 iter: 16 cost: 274.1951816114531 gradient_norm: 3314.1516437543255 max_violation: 0.026158511418887254 step_size: 1.0 iter: 17 cost: 273.3586147229922 gradient_norm: 3113.5359906038293 max_violation: 0.02460950846061727 step_size: 1.0 iter: 18 cost: 272.64940761911396 gradient_norm: 2935.7814311814127 max_violation: 0.02323267089640052 step_size: 1.0 iter: 19 cost: 272.0422182147639 gradient_norm: 2777.196906467795 max_violation: 0.0220008741299057 step_size: 1.0 iter: 20 cost: 271.51775940542484 gradient_norm: 2634.8445450706226 max_violation: 0.020892398223019804 step_size: 1.0 iter: 21 cost: 271.0611370214347 gradient_norm: 2506.3570044934686 max_violation: 0.01988964741533983 step_size: 1.0 iter: 22 cost: 270.66069743299937 gradient_norm: 2389.805484799954 max_violation: 0.018978216783637758 step_size: 1.0 iter: 23 cost: 270.30721359364566 gradient_norm: 2283.602744936561 max_violation: 0.01814620112049614 step_size: 1.0 iter: 24 cost: 269.99330042399214 gradient_norm: 2186.4307540795676 max_violation: 0.017383675811234456 step_size: 1.0 iter: 25 cost: 269.7129884824706 gradient_norm: 2097.1859765343843 max_violation: 0.016682301805087674 step_size: 1.0 iter: 26 cost: 269.4614087217283 gradient_norm: 2014.9374735125264 max_violation: 0.01603502142723301 step_size: 1.0 iter: 27 cost: 269.23455640306145 gradient_norm: 1938.8944519117229 max_violation: 0.015435821578503872 step_size: 1.0 iter: 28 cost: 269.02911221258 gradient_norm: 1868.380865908443 max_violation: 0.014879547538556692 step_size: 1.0 iter: 29 cost: 268.84230524898237 gradient_norm: 1802.815346195126 max_violation: 0.014361755198447734 step_size: 1.0 iter: 30 cost: 268.6718070283658 gradient_norm: 1741.6951975684601 max_violation: 0.013878592782549548 step_size: 1.0 iter: 31 cost: 268.51564872035055 gradient_norm: 1684.5835345616251 max_violation: 0.01342670541899238 step_size: 1.0 iter: 32 cost: 268.37215596334005 gradient_norm: 1631.0988601496294 max_violation: 0.013003157572378576 step_size: 1.0 iter: 33 cost: 268.2398971096965 gradient_norm: 1580.9065630566276 max_violation: 0.012605369558331136 step_size: 1.0 iter: 34 cost: 268.1176418228916 gradient_norm: 1533.711933981904 max_violation: 0.012231065246317119 step_size: 1.0 iter: 35 cost: 268.00432772108536 gradient_norm: 1489.2543934352045 max_violation: 0.011878228717033368 step_size: 1.0 iter: 36 cost: 267.8990333242679 gradient_norm: 1447.3026929468444 max_violation: 0.011545068136150083 step_size: 1.0 iter: 37 cost: 267.8009559761473 gradient_norm: 1407.650903424225 max_violation: 0.011229985480909699 step_size: 1.0 iter: 38 cost: 267.70939371946343 gradient_norm: 1370.1150441214877 max_violation: 0.010931551043161014 step_size: 1.0 iter: 39 cost: 267.62373033367817 gradient_norm: 1334.5302359692166 max_violation: 0.010648481852213676 step_size: 1.0 iter: 40 cost: 267.543422918038 gradient_norm: 1300.7482865658856 max_violation: 0.010379623332461896 step_size: 1.0 iter: 41 cost: 267.4679915354095 gradient_norm: 1268.635632383713 max_violation: 0.010123933644069827 step_size: 1.0 iter: 42 cost: 267.39701053383305 gradient_norm: 1238.071578016861 max_violation: 0.009880470259689855 step_size: 1.0 iter: 43 cost: 267.3301012412003 gradient_norm: 1208.9467836756733 max_violation: 0.009648378413767977 step_size: 1.0 iter: 44 cost: 267.2669257893711 gradient_norm: 1181.161961014214 max_violation: 0.009426881126450959 step_size: 1.0 iter: 45 cost: 267.2071818717881 gradient_norm: 1154.626744603331 max_violation: 0.009215270557577315 step_size: 1.0 iter: 46 cost: 267.1505982760954 gradient_norm: 1129.2587120396934 max_violation: 0.00901290048819714 step_size: 1.0 iter: 47 cost: 267.0969310630461 gradient_norm: 1104.9825303664452 max_violation: 0.008819179761924145 step_size: 1.0 iter: 48 cost: 267.045960286542 gradient_norm: 1081.729210209148 max_violation: 0.008633566546144777 step_size: 1.0 iter: 49 cost: 266.9974871686038 gradient_norm: 1059.435452102471 max_violation: 0.008455563296015378 step_size: 1.0 iter: 50 cost: 266.9513316582202 gradient_norm: 1038.0430719814074 max_violation: 0.008284712322827348 step_size: 1.0 iter: 51 cost: 266.9073303153299 gradient_norm: 1017.4984948808943 max_violation: 0.008120591883877815 step_size: 1.0 iter: 52 cost: 266.8653344711238 gradient_norm: 997.7523075789518 max_violation: 0.007962812723578683 step_size: 1.0 iter: 53 cost: 266.8252086239919 gradient_norm: 978.7588623454009 max_violation: 0.007811015006366828 step_size: 1.0 iter: 54 cost: 266.78682903703145 gradient_norm: 960.4759250837312 max_violation: 0.007664865590332304 step_size: 1.0 iter: 55 cost: 266.7500825085585 gradient_norm: 942.864362205034 max_violation: 0.007524055598514767 step_size: 1.0 iter: 56 cost: 266.71486529149524 gradient_norm: 925.8878613352695 max_violation: 0.007388298250505465 step_size: 1.0 iter: 57 cost: 266.6810821412728 gradient_norm: 909.5126816621797 max_violation: 0.0072573269223472625 step_size: 1.0 iter: 58 cost: 266.64864547497086 gradient_norm: 893.707430330678 max_violation: 0.007130893407288008 step_size: 1.0 iter: 59 cost: 266.6174746269907 gradient_norm: 878.4428617617164 max_violation: 0.007008766353486573 step_size: 1.0 iter: 60 cost: 266.58749518872025 gradient_norm: 863.6916972030483 max_violation: 0.006890729858030631 step_size: 1.0 iter: 61 cost: 266.55863842145726 gradient_norm: 849.4284621628839 max_violation: 0.006776582199268355 step_size: 1.0 iter: 62 cost: 266.53084073340307 gradient_norm: 835.6293397194312 max_violation: 0.006666134692047243 step_size: 1.0 iter: 63 cost: 266.50404321277193 gradient_norm: 822.2720378870833 max_violation: 0.006559210651854497 step_size: 1.0 iter: 64 cost: 266.4781912102188 gradient_norm: 809.3356695279712 max_violation: 0.006455644456258236 step_size: 1.0 iter: 65 cost: 266.4532339646655 gradient_norm: 796.8006434337408 max_violation: 0.006355280693051801 step_size: 1.0 iter: 66 cost: 266.42912426739963 gradient_norm: 784.6485653715051 max_violation: 0.0062579733857883735 step_size: 1.0 iter: 67 cost: 266.4058181600208 gradient_norm: 772.8621480715569 max_violation: 0.0061635852888412 step_size: 1.0 iter: 68 cost: 266.38327466234324 gradient_norm: 761.4251292080743 max_violation: 0.006071987244645194 step_size: 1.0 iter: 69 cost: 266.3614555268884 gradient_norm: 750.3221965627741 max_violation: 0.005983057596865682 step_size: 1.0 iter: 70 cost: 266.3403250170193 gradient_norm: 739.5389196611794 max_violation: 0.005896681654006031 step_size: 1.0 iter: 71 cost: 266.3198497061085 gradient_norm: 729.0616872049752 max_violation: 0.005812751198187804 step_size: 1.0 iter: 72 cost: 266.29999829550167 gradient_norm: 718.8776497836294 max_violation: 0.005731164035150282 step_size: 1.0 iter: 73 cost: 266.2807414492419 gradient_norm: 708.9746672994758 max_violation: 0.00565182358102212 step_size: 1.0 iter: 74 cost: 266.26205164383043 gradient_norm: 699.3412607113138 max_violation: 0.005574638482855998 step_size: 1.0 iter: 75 cost: 266.24390303143537 gradient_norm: 689.9665676387094 max_violation: 0.005499522269318269 step_size: 1.0 iter: 76 cost: 266.2262713152055 gradient_norm: 680.8403015192325 max_violation: 0.005426393029194898 step_size: 1.0 iter: 77 cost: 266.2091336354463 gradient_norm: 671.9527139538246 max_violation: 0.005355173114830802 step_size: 1.0 iter: 78 cost: 266.1924684655919 gradient_norm: 663.2945599724562 max_violation: 0.005285788868449437 step_size: 1.0 iter: 79 cost: 266.1762555170081 gradient_norm: 654.8570659542233 max_violation: 0.005218170369262198 step_size: 1.0 iter: 80 cost: 266.1604756517729 gradient_norm: 646.6318999798646 max_violation: 0.005152251199661451 step_size: 1.0 iter: 81 cost: 266.1451108026642 gradient_norm: 638.6111443696722 max_violation: 0.00508796822853641 step_size: 1.0 iter: 82 cost: 266.13014389968953 gradient_norm: 630.7872702725823 max_violation: 0.005025261410703252 step_size: 1.0 iter: 83 cost: 266.11555880253024 gradient_norm: 623.1531140830451 max_violation: 0.004964073600673857 step_size: 1.0 iter: 84 cost: 266.1013402383703 gradient_norm: 615.701855562788 max_violation: 0.004904350379830946 step_size: 1.0 iter: 85 cost: 266.08747374461063 gradient_norm: 608.4269975132771 max_violation: 0.004846039895773591 step_size: 1.0 iter: 86 cost: 266.0739456160312 gradient_norm: 601.3223468751372 max_violation: 0.004789092712898957 step_size: 1.0 iter: 87 cost: 266.0607428560122 gradient_norm: 594.3819971388291 max_violation: 0.004733461673288808 step_size: 1.0 iter: 88 cost: 266.0478531314515 gradient_norm: 587.6003119675972 max_violation: 0.004679101767141813 step_size: 1.0 iter: 89 cost: 266.0352647310567 gradient_norm: 580.9719099210703 max_violation: 0.0046259700118687075 step_size: 1.0 iter: 90 cost: 266.0229665267319 gradient_norm: 574.491650208638 max_violation: 0.004574025339297738 step_size: 1.0 iter: 91 cost: 266.010947937783 gradient_norm: 568.1546193903973 max_violation: 0.004523228490351361 step_size: 1.0 iter: 92 cost: 265.9991988977189 gradient_norm: 561.9561189429843 max_violation: 0.004473541916536594 step_size: 1.0 iter: 93 cost: 265.987709823424 gradient_norm: 555.8916536411507 max_violation: 0.004424929687868895 step_size: 1.0 iter: 94 cost: 265.9764715865142 gradient_norm: 549.9569206804134 max_violation: 0.00437735740664591 step_size: 1.0 iter: 95 cost: 265.965475486692 gradient_norm: 544.1477994889449 max_violation: 0.004330792126653105 step_size: 1.0 iter: 96 cost: 265.9547132269479 gradient_norm: 538.4603421812326 max_violation: 0.004285202277445999 step_size: 1.0 iter: 97 cost: 265.94417689045616 gradient_norm: 532.8907646071664 max_violation: 0.0042405575933254225 step_size: 1.0 iter: 98 cost: 265.93385891903984 gradient_norm: 527.4354379543269 max_violation: 0.00419682904669072 step_size: 1.0 iter: 99 cost: 265.92375209306556 gradient_norm: 522.0908808494213 max_violation: 0.004153988785330465 step_size: 1.0 iter: 100 cost: 265.9138495126876 gradient_norm: 516.8537519591034 max_violation: 0.004112010073670569 step_size: 1.0 Test Summary: | Pass Total Time Solve: acrobot | 1 1 6m03.1s ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University al iter: 1 ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University iter: 1 cost: 261.2537798738653 gradient_norm: 885.6763002794513 max_violation: 1.1807656674637883 step_size: 1.0 iter: 2 cost: 69.99469960068207 gradient_norm: 376.08357134305186 max_violation: 0.766429330514935 step_size: 1.0 iter: 3 cost: 34.54977364243712 gradient_norm: 193.82532155965612 max_violation: 0.5197983639867401 step_size: 1.0 iter: 4 cost: 22.539037764763805 gradient_norm: 111.7024513072441 max_violation: 0.4196158004810382 step_size: 1.0 iter: 5 cost: 17.035664625358486 gradient_norm: 69.14467761180012 max_violation: 0.37323467952446965 step_size: 1.0 iter: 6 cost: 14.062954292496705 gradient_norm: 45.607762506571646 max_violation: 0.34188493819304266 step_size: 1.0 iter: 7 cost: 12.272616098482587 gradient_norm: 31.744197515746393 max_violation: 0.3195794259745215 step_size: 1.0 iter: 8 cost: 11.110324366994146 gradient_norm: 28.481409161315987 max_violation: 0.30283107541267995 step_size: 1.0 iter: 9 cost: 10.312569004061332 gradient_norm: 25.725116998667954 max_violation: 0.28976177042682494 step_size: 1.0 iter: 10 cost: 9.740976036112503 gradient_norm: 24.387263942641127 max_violation: 0.27926490324135944 step_size: 1.0 iter: 11 cost: 9.317182750501477 gradient_norm: 23.27948171916522 max_violation: 0.270642534988605 step_size: 1.0 iter: 12 cost: 8.99409364960746 gradient_norm: 22.133658624582665 max_violation: 0.2634309744732146 step_size: 1.0 iter: 13 cost: 8.742010825607291 gradient_norm: 21.003710960323513 max_violation: 0.25730926409585564 step_size: 1.0 iter: 14 cost: 8.541448500865746 gradient_norm: 19.918615937273927 max_violation: 0.2520477436399142 step_size: 1.0 iter: 15 cost: 8.379187541400649 gradient_norm: 18.892634093629162 max_violation: 0.24747750308208794 step_size: 1.0 iter: 16 cost: 8.246001295724474 gradient_norm: 17.931443843477687 max_violation: 0.243471404916475 step_size: 1.0 iter: 17 cost: 8.135289721002943 gradient_norm: 17.035806102872616 max_violation: 0.2399318426078958 step_size: 1.0 iter: 18 cost: 8.042229513640368 gradient_norm: 16.203750801407285 max_violation: 0.23678258854916034 step_size: 1.0 iter: 19 cost: 7.963228813262942 gradient_norm: 15.431879152844623 max_violation: 0.23396321467267356 step_size: 1.0 iter: 20 cost: 7.895567773780683 gradient_norm: 14.71613518888006 max_violation: 0.2314251818556059 step_size: 1.0 iter: 21 cost: 7.837155934003607 gradient_norm: 14.05225742418412 max_violation: 0.2291290411089797 step_size: 1.0 iter: 22 cost: 7.786364917793634 gradient_norm: 13.436037151680694 max_violation: 0.22704239307714413 step_size: 1.0 iter: 23 cost: 7.741910858273423 gradient_norm: 12.86345977297741 max_violation: 0.22513837563732508 step_size: 1.0 iter: 24 cost: 7.702770335780684 gradient_norm: 12.330775619639935 max_violation: 0.223394526194177 step_size: 1.0 iter: 25 cost: 7.668119333509148 gradient_norm: 11.834528666306948 max_violation: 0.22179191431193956 step_size: 1.0 iter: 26 cost: 7.637288274827675 gradient_norm: 11.37156056170258 max_violation: 0.2203144723692816 step_size: 1.0 iter: 27 cost: 7.609728473089355 gradient_norm: 10.939000679422454 max_violation: 0.21894847327438605 step_size: 1.0 iter: 28 cost: 7.5849867970528555 gradient_norm: 10.534248743252592 max_violation: 0.21768211877573584 step_size: 1.0 iter: 29 cost: 7.562686328832223 gradient_norm: 10.154954010172425 max_violation: 0.21650521190799044 step_size: 1.0 iter: 30 cost: 7.542511446200534 gradient_norm: 9.798993394781991 max_violation: 0.2154088941268837 step_size: 1.0 iter: 31 cost: 7.5241962083383624 gradient_norm: 9.464449922833648 max_violation: 0.21438543266983068 step_size: 1.0 iter: 32 cost: 7.507515233952561 gradient_norm: 9.149592283243631 max_violation: 0.21342804726960818 step_size: 1.0 iter: 33 cost: 7.492276478169418 gradient_norm: 8.852855866270925 max_violation: 0.21253076796176984 step_size: 1.0 iter: 34 cost: 7.478315469141725 gradient_norm: 8.572825443102449 max_violation: 0.2116883176538611 step_size: 1.0 iter: 35 cost: 7.465490676384057 gradient_norm: 8.308219503864 max_violation: 0.21089601456018237 step_size: 1.0 iter: 36 cost: 7.453679763543525 gradient_norm: 8.057876191788143 max_violation: 0.21014969068297518 step_size: 1.0 iter: 37 cost: 7.442776537525081 gradient_norm: 7.820740728824099 max_violation: 0.20944562333843297 step_size: 1.0 iter: 38 cost: 7.432688449752018 gradient_norm: 7.595854208610376 max_violation: 0.2087804773531028 step_size: 1.0 iter: 39 cost: 7.423334538118871 gradient_norm: 7.382343627146472 max_violation: 0.2081512560379437 step_size: 1.0 iter: 40 cost: 7.414643722894794 gradient_norm: 7.179413023837764 max_violation: 0.20755525942109987 step_size: 1.0 iter: 41 cost: 7.406553388595878 gradient_norm: 6.986335612818852 max_violation: 0.20699004851539815 step_size: 1.0 iter: 42 cost: 7.399008198200706 gradient_norm: 6.802446793745567 max_violation: 0.20645341462638545 step_size: 1.0 iter: 43 cost: 7.391959097146254 gradient_norm: 6.627137941422962 max_violation: 0.2059433528896557 step_size: 1.0 iter: 44 cost: 7.385362473123337 gradient_norm: 6.45985088395812 max_violation: 0.20545803937275675 step_size: 1.0 iter: 45 cost: 7.379179444392276 gradient_norm: 6.300072989008616 max_violation: 0.2049958111936343 step_size: 1.0 iter: 46 cost: 7.373375254601611 gradient_norm: 6.147332786703153 max_violation: 0.2045551492013793 step_size: 1.0 iter: 47 cost: 7.367918756251549 gradient_norm: 6.001196066353447 max_violation: 0.2041346628427032 step_size: 1.0 iter: 48 cost: 7.362781968245788 gradient_norm: 5.861262391436014 max_violation: 0.20373307689846154 step_size: 1.0 iter: 49 cost: 7.357939695613454 gradient_norm: 5.727161984084324 max_violation: 0.20334921982621523 step_size: 1.0 iter: 50 cost: 7.353369201599009 gradient_norm: 5.598552936261505 max_violation: 0.2029820134865652 step_size: 1.0 iter: 51 cost: 7.349049924024784 gradient_norm: 5.475118710010506 max_violation: 0.20263046406533292 step_size: 1.0 iter: 52 cost: 7.34496322921335 gradient_norm: 5.35656589373689 max_violation: 0.20229365403219823 step_size: 1.0 iter: 53 cost: 7.341092197882067 gradient_norm: 5.242622185541038 max_violation: 0.2019707350005815 step_size: 1.0 iter: 54 cost: 7.337421438340977 gradient_norm: 5.133034578164165 max_violation: 0.20166092137318348 step_size: 1.0 iter: 55 cost: 7.333936923079356 gradient_norm: 5.0275677230832505 max_violation: 0.2013634846738297 step_size: 1.0 iter: 56 cost: 7.330625845447401 gradient_norm: 4.926002454107622 max_violation: 0.20107774848119497 step_size: 1.0 iter: 57 cost: 7.327476493652688 gradient_norm: 4.828134453115053 max_violation: 0.20080308389097912 step_size: 1.0 iter: 58 cost: 7.324478139716949 gradient_norm: 4.733773042605958 max_violation: 0.2005389054433122 step_size: 1.0 iter: 59 cost: 7.321620941393538 gradient_norm: 4.64274009160189 max_violation: 0.20028466746088736 step_size: 1.0 iter: 60 cost: 7.318895855341548 gradient_norm: 4.554869022929657 max_violation: 0.20003986075024294 step_size: 1.0 iter: 61 cost: 7.316294560101643 gradient_norm: 4.47000391137999 max_violation: 0.19980400962503886 step_size: 1.0 iter: 62 cost: 7.313809387626099 gradient_norm: 4.387998663338512 max_violation: 0.1995766692150367 step_size: 1.0 iter: 63 cost: 7.3114332622926375 gradient_norm: 4.318891416810995 max_violation: 0.19935742302960957 step_size: 1.0 iter: 64 cost: 7.309159646479266 gradient_norm: 4.2614430161156545 max_violation: 0.19914588074805462 step_size: 1.0 iter: 65 cost: 7.306982491904377 gradient_norm: 4.205440961225905 max_violation: 0.19894167621241277 step_size: 1.0 iter: 66 cost: 7.304896196042877 gradient_norm: 4.150833848380019 max_violation: 0.1987444656016777 step_size: 1.0 iter: 67 cost: 7.302895563020863 gradient_norm: 4.09757253229489 max_violation: 0.19855392576839925 step_size: 1.0 iter: 68 cost: 7.300975768469271 gradient_norm: 4.0456100154202375 max_violation: 0.19836975272122537 step_size: 1.0 iter: 69 cost: 7.299132327884227 gradient_norm: 3.994901342440709 max_violation: 0.19819166023870682 step_size: 1.0 iter: 70 cost: 7.297361068098634 gradient_norm: 3.945403499836873 max_violation: 0.1980193786011526 step_size: 1.0 iter: 71 cost: 7.295658101519613 gradient_norm: 3.8970753204244346 max_violation: 0.1978526534292424 step_size: 1.0 iter: 72 cost: 7.294019802828746 gradient_norm: 3.8498773926640872 max_violation: 0.19769124461888232 step_size: 1.0 iter: 73 cost: 7.292442787879104 gradient_norm: 3.803771974568054 max_violation: 0.19753492536320216 step_size: 1.0 iter: 74 cost: 7.290923894554755 gradient_norm: 3.7587229120288264 max_violation: 0.19738348125356087 step_size: 1.0 iter: 75 cost: 7.289460165386733 gradient_norm: 3.714695561357109 max_violation: 0.1972367094521399 step_size: 1.0 iter: 76 cost: 7.28804883174277 gradient_norm: 3.671656715862188 max_violation: 0.19709441792968274 step_size: 1.0 iter: 77 cost: 7.286687299430009 gradient_norm: 3.62957453626189 max_violation: 0.1969564247623623 step_size: 1.0 iter: 78 cost: 7.285373135567649 gradient_norm: 3.588418484737847 max_violation: 0.19682255748258193 step_size: 1.0 iter: 79 cost: 7.284104056602718 gradient_norm: 3.548159262458899 max_violation: 0.19669265247897094 step_size: 1.0 iter: 80 cost: 7.282877917356494 gradient_norm: 3.508768750404913 max_violation: 0.19656655444127047 step_size: 1.0 iter: 81 cost: 7.281692701001064 gradient_norm: 3.470219953278031 max_violation: 0.19644411584615984 step_size: 1.0 iter: 82 cost: 7.28054650987663 gradient_norm: 3.432486946391343 max_violation: 0.19632519648074798 step_size: 1.0 iter: 83 cost: 7.2794375570698175 gradient_norm: 3.3955448253297504 max_violation: 0.19620966300036713 step_size: 1.0 iter: 84 cost: 7.2783641586813435 gradient_norm: 3.3593696582735255 max_violation: 0.19609738851796976 step_size: 1.0 iter: 85 cost: 7.277324726719402 gradient_norm: 3.323938440791899 max_violation: 0.1959882522223797 step_size: 1.0 iter: 86 cost: 7.276317762561029 gradient_norm: 3.2892290530176655 max_violation: 0.19588213902326235 step_size: 1.0 iter: 87 cost: 7.275341850930356 gradient_norm: 3.25522021904111 max_violation: 0.19577893922049228 step_size: 1.0 al iter: 2 iter: 1 cost: 7.269944849743791 gradient_norm: 0.48354130657668726 max_violation: 0.0481756108564424 step_size: 1.0 iter: 2 cost: 7.253994869618226 gradient_norm: 0.13733625988558718 max_violation: 0.0017963190921093108 step_size: 1.0 iter: 3 cost: 7.252163371769252 gradient_norm: 0.12093728810343407 max_violation: 0.001811038634711104 step_size: 1.0 iter: 4 cost: 7.251086984969248 gradient_norm: 0.114766263279237 max_violation: 0.0018202529338060547 step_size: 1.0 iter: 5 cost: 7.250360358028719 gradient_norm: 0.1096676429055452 max_violation: 0.0018264790512261264 step_size: 1.0 Test Summary: | Pass Total Time Solve: car | 3 3 40.4s Testing IterativeLQR tests passed Testing completed after 746.08s PkgEval succeeded after 1014.54s