Package evaluation of ClusteredLowRankSolver on Julia 1.13.0-DEV.1273 (63530984ac*) started at 2025-10-06T17:11:32.075 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 10.9s ################################################################################ # Installation # Installing ClusteredLowRankSolver... Resolving package versions... Installed HashArrayMappedTries ─── v0.2.0 Installed Combinatorics ────────── v1.0.3 Installed FillArrays ───────────── v1.14.0 Installed PrecompileTools ──────── v1.3.3 Installed FLINT_jll ────────────── v301.300.102+0 Installed IrrationalConstants ──── v0.2.4 Installed MacroTools ───────────── v0.5.16 Installed GenericLinearAlgebra ─── v0.3.18 Installed OpenBLAS32_jll ───────── v0.3.29+0 Installed OpenSpecFun_jll ──────── v0.5.6+0 Installed PackageExtensionCompat ─ v1.0.2 Installed LogExpFunctions ──────── v0.3.29 Installed ScopedValues ─────────── v1.5.0 Installed KrylovKit ────────────── v0.9.5 Installed ClusteredLowRankSolver ─ v1.1.0 Installed RowEchelon ───────────── v0.2.1 Installed JLLWrappers ──────────── v1.7.1 Installed Preferences ──────────── v1.5.0 Installed SpecialFunctions ─────── v2.6.1 Installed Arblib ───────────────── v1.6.0 Installed VectorInterface ──────── v0.5.0 Installed BlockDiagonals ───────── v0.2.0 Installed RandomExtensions ─────── v0.4.4 Installed IterTools ────────────── v1.10.0 Installed DocStringExtensions ──── v0.9.5 Installed AbstractAlgebra ──────── v0.46.5 Installed Nemo ─────────────────── v0.51.1 Installing 3 artifacts Installed artifact OpenSpecFun 194.9 KiB Installed artifact OpenBLAS32 10.0 MiB Installed artifact FLINT 22.7 MiB Updating `~/.julia/environments/v1.13/Project.toml` [cadeb640] + ClusteredLowRankSolver v1.1.0 Updating `~/.julia/environments/v1.13/Manifest.toml` ⌅ [c3fe647b] + AbstractAlgebra v0.46.5 [fb37089c] + Arblib v1.6.0 [0a1fb500] + BlockDiagonals v0.2.0 [cadeb640] + ClusteredLowRankSolver v1.1.0 [861a8166] + Combinatorics v1.0.3 [ffbed154] + DocStringExtensions v0.9.5 [1a297f60] + FillArrays v1.14.0 [14197337] + GenericLinearAlgebra v0.3.18 [076d061b] + HashArrayMappedTries v0.2.0 [92d709cd] + IrrationalConstants v0.2.4 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 ⌅ [0b1a1467] + KrylovKit v0.9.5 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.16 ⌅ [2edaba10] + Nemo v0.51.1 [65ce6f38] + PackageExtensionCompat v1.0.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [fb686558] + RandomExtensions v0.4.4 [af85af4c] + RowEchelon v0.2.1 [7e506255] + ScopedValues v1.5.0 [276daf66] + SpecialFunctions v2.6.1 [409d34a3] + VectorInterface v0.5.0 [e134572f] + FLINT_jll v301.300.102+0 [656ef2d0] + OpenBLAS32_jll v0.3.29+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [56f22d72] + Artifacts v1.11.0 [ade2ca70] + Dates v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [2f01184e] + SparseArrays v1.13.0 [fa267f1f] + TOML v1.0.3 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [781609d7] + GMP_jll v6.3.0+2 [3a97d323] + MPFR_jll v4.2.2+0 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.7+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.15.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 10.78s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling packages... 5222.8 ms ✓ TestEnv 1 dependency successfully precompiled in 6 seconds. 27 already precompiled. Precompiling package dependencies... Precompilation completed after 225.42s ################################################################################ # Testing # Testing ClusteredLowRankSolver Status `/tmp/jl_bjyrKF/Project.toml` ⌅ [c3fe647b] AbstractAlgebra v0.46.5 [cadeb640] ClusteredLowRankSolver v1.1.0 ⌅ [2edaba10] Nemo v0.51.1 [1fd47b50] QuadGK v2.11.2 [276daf66] SpecialFunctions v2.6.1 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_bjyrKF/Manifest.toml` ⌅ [c3fe647b] AbstractAlgebra v0.46.5 [fb37089c] Arblib v1.6.0 [0a1fb500] BlockDiagonals v0.2.0 [cadeb640] ClusteredLowRankSolver v1.1.0 [861a8166] Combinatorics v1.0.3 [864edb3b] DataStructures v0.19.1 [ffbed154] DocStringExtensions v0.9.5 [1a297f60] FillArrays v1.14.0 [14197337] GenericLinearAlgebra v0.3.18 [076d061b] HashArrayMappedTries v0.2.0 [92d709cd] IrrationalConstants v0.2.4 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 ⌅ [0b1a1467] KrylovKit v0.9.5 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 ⌅ [2edaba10] Nemo v0.51.1 [bac558e1] OrderedCollections v1.8.1 [65ce6f38] PackageExtensionCompat v1.0.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [1fd47b50] QuadGK v2.11.2 [fb686558] RandomExtensions v0.4.4 [af85af4c] RowEchelon v0.2.1 [7e506255] ScopedValues v1.5.0 [276daf66] SpecialFunctions v2.6.1 [409d34a3] VectorInterface v0.5.0 [e134572f] FLINT_jll v301.300.102+0 [656ef2d0] OpenBLAS32_jll v0.3.29+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [8dfed614] Test v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [781609d7] GMP_jll v6.3.0+2 [3a97d323] MPFR_jll v4.2.2+0 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [8e850b90] libblastrampoline_jll v5.15.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 25.5 1.000e+20 0.000e+00 0.000e+00 0.00e+00 1.00e+10 1.00e+00 1.95e+10 7.42e-01 7.10e-01 3.00e-01 2 28.3 3.995e+19 1.999e+11 -2.907e+09 1.03e+00 2.58e+09 2.58e-01 5.65e+09 7.46e-01 7.17e-01 3.00e-01 3 28.3 1.576e+19 3.079e+11 -4.779e+09 1.03e+00 6.53e+08 6.53e-02 1.60e+09 7.32e-01 7.31e-01 3.00e-01 4 28.3 6.100e+18 4.277e+11 -6.725e+09 1.03e+00 1.75e+08 1.75e-02 4.31e+08 7.20e-01 7.22e-01 3.00e-01 5 28.3 2.433e+18 5.963e+11 -9.362e+09 1.03e+00 4.92e+07 4.92e-03 1.20e+08 7.11e-01 7.14e-01 3.00e-01 6 28.3 9.953e+17 8.401e+11 -1.309e+10 1.03e+00 1.42e+07 1.42e-03 3.42e+07 7.07e-01 7.10e-01 3.00e-01 7 28.3 4.128e+17 1.191e+12 -1.842e+10 1.03e+00 4.16e+06 4.16e-04 9.93e+06 7.05e-01 7.07e-01 3.00e-01 8 28.3 1.725e+17 1.693e+12 -2.598e+10 1.03e+00 1.23e+06 1.23e-04 2.91e+06 7.04e-01 7.06e-01 3.00e-01 9 28.3 7.238e+16 2.410e+12 -3.671e+10 1.03e+00 3.64e+05 3.64e-05 8.56e+05 7.03e-01 7.05e-01 3.00e-01 10 28.3 3.044e+16 3.431e+12 -5.194e+10 1.03e+00 1.08e+05 1.08e-05 2.53e+05 7.03e-01 7.04e-01 3.00e-01 11 28.4 1.281e+16 4.886e+12 -7.353e+10 1.03e+00 3.20e+04 3.20e-06 7.48e+04 7.03e-01 7.04e-01 3.00e-01 12 28.4 5.398e+15 6.956e+12 -1.042e+11 1.03e+00 9.51e+03 9.51e-07 2.21e+04 7.03e-01 7.04e-01 3.00e-01 13 28.4 2.275e+15 9.899e+12 -1.476e+11 1.03e+00 2.82e+03 2.82e-07 6.55e+03 7.03e-01 7.04e-01 3.00e-01 14 28.4 9.587e+14 1.407e+13 -2.094e+11 1.03e+00 8.38e+02 8.38e-08 1.94e+03 7.04e-01 7.05e-01 3.00e-01 15 28.4 4.036e+14 1.993e+13 -2.971e+11 1.03e+00 2.48e+02 2.48e-08 5.71e+02 7.06e-01 7.09e-01 3.00e-01 16 28.4 1.692e+14 2.789e+13 -4.222e+11 1.03e+00 7.31e+01 7.31e-09 1.66e+02 7.12e-01 7.22e-01 3.00e-01 17 28.4 7.003e+13 3.756e+13 -6.021e+11 1.03e+00 2.10e+01 2.10e-09 4.62e+01 7.31e-01 7.65e-01 3.00e-01 18 28.4 2.773e+13 4.485e+13 -8.676e+11 1.04e+00 5.66e+00 5.66e-10 1.08e+01 7.79e-01 9.17e-01 3.00e-01 19 28.4 9.540e+12 3.941e+13 -1.292e+12 1.07e+00 1.25e+00 1.25e-10 8.99e-01 9.22e-01 1.00e+00 3.00e-01 20 28.4 2.995e+12 1.720e+13 -1.811e+12 1.24e+00 9.79e-02 9.79e-12 3.63e-52 1.00e+00 1.00e+00 3.00e-01 21 28.4 8.988e+11 4.388e+12 -1.903e+12 2.53e+00 5.23e-65 1.90e-65 8.55e-52 1.00e+00 1.00e+00 3.00e-01 22 28.4 2.696e+11 1.339e+12 -5.487e+11 2.39e+00 1.29e-65 0.00e+00 2.87e-52 8.90e-01 8.90e-01 1.00e-01 23 28.5 5.361e+10 2.688e+11 -1.065e+11 2.31e+00 3.26e-66 8.90e-67 6.27e-53 8.70e-01 8.70e-01 1.00e-01 24 28.5 1.161e+10 5.819e+10 -2.310e+10 2.32e+00 1.10e-66 2.97e-67 7.65e-54 8.52e-01 8.52e-01 1.00e-01 25 28.5 2.713e+09 1.355e+10 -5.443e+09 2.34e+00 9.57e-68 0.00e+00 1.08e-54 8.36e-01 8.36e-01 1.00e-01 26 28.5 6.711e+08 3.370e+09 -1.328e+09 2.30e+00 9.01e-68 1.39e-68 1.74e-55 8.30e-01 8.30e-01 1.00e-01 27 28.5 1.696e+08 8.422e+08 -3.452e+08 2.39e+00 7.68e-69 1.16e-69 2.94e-56 8.10e-01 8.10e-01 1.00e-01 28 28.5 4.599e+07 2.340e+08 -8.791e+07 2.20e+00 4.04e-69 8.69e-70 5.60e-57 8.18e-01 8.18e-01 1.00e-01 29 28.5 1.213e+07 5.873e+07 -2.619e+07 2.61e+00 4.35e-70 3.62e-70 1.02e-57 7.63e-01 7.63e-01 1.00e-01 30 28.5 3.798e+06 2.001e+07 -6.576e+06 1.98e+00 2.54e-70 1.45e-70 2.42e-58 8.24e-01 8.24e-01 1.00e-01 31 28.5 9.800e+05 4.616e+06 -2.245e+06 2.89e+00 5.43e-71 9.06e-72 4.24e-59 7.75e-01 7.75e-01 1.00e-01 32 28.5 2.963e+05 1.559e+06 -5.151e+05 1.99e+00 1.54e-71 2.26e-72 9.54e-60 8.39e-01 8.39e-01 1.00e-01 33 28.5 7.263e+04 3.436e+05 -1.649e+05 2.85e+00 5.01e-72 1.70e-72 1.54e-60 7.97e-01 7.97e-01 1.00e-01 34 28.5 2.051e+04 1.063e+05 -3.733e+04 2.08e+00 9.55e-73 0.00e+00 3.12e-61 8.41e-01 8.41e-01 1.00e-01 35 28.5 4.988e+03 2.366e+04 -1.125e+04 2.81e+00 3.58e-73 1.77e-73 4.96e-62 8.01e-01 8.01e-01 1.00e-01 36 28.5 1.393e+03 7.141e+03 -2.612e+03 2.15e+00 7.96e-74 9.73e-74 9.88e-63 8.38e-01 8.38e-01 1.00e-01 37 28.5 3.422e+02 1.603e+03 -7.929e+02 2.96e+00 1.87e-74 2.21e-74 1.60e-63 7.97e-01 7.97e-01 1.00e-01 38 28.5 9.665e+01 4.860e+02 -1.905e+02 2.29e+00 4.49e-75 4.97e-75 3.24e-64 8.39e-01 8.39e-01 1.00e-01 39 28.5 2.366e+01 1.051e+02 -6.048e+01 3.71e+00 1.11e-75 7.60e-76 5.22e-65 8.03e-01 8.03e-01 1.00e-01 40 28.5 6.562e+00 2.998e+01 -1.595e+01 3.28e+00 5.53e-76 3.80e-76 1.03e-65 8.57e-01 8.57e-01 1.00e-01 41 28.5 1.499e+00 4.629e+00 -5.866e+00 8.49e+00 1.73e-76 1.73e-77 1.47e-66 8.75e-01 8.75e-01 1.00e-01 42 28.5 3.183e-01 -4.666e-01 -2.695e+00 7.05e-01 1.73e-77 0.00e+00 1.83e-67 9.64e-01 9.64e-01 1.00e-01 43 28.5 4.224e-02 -1.900e+00 -2.195e+00 7.22e-02 1.73e-77 2.59e-77 6.65e-69 9.83e-01 9.83e-01 1.00e-01 44 28.5 4.861e-03 -2.089e+00 -2.123e+00 8.08e-03 8.64e-78 0.00e+00 1.11e-70 9.97e-01 9.97e-01 1.00e-01 45 28.5 5.004e-04 -2.110e+00 -2.114e+00 8.29e-04 4.32e-78 1.73e-77 3.66e-73 9.99e-01 9.99e-01 1.00e-01 46 28.5 5.050e-05 -2.113e+00 -2.113e+00 8.37e-05 8.64e-78 8.64e-78 3.45e-75 1.00e+00 1.00e+00 1.00e-01 47 28.6 5.060e-06 -2.113e+00 -2.113e+00 8.38e-06 1.73e-77 4.32e-77 2.21e-75 1.00e+00 1.00e+00 1.00e-01 48 28.6 5.062e-07 -2.113e+00 -2.113e+00 8.39e-07 8.64e-78 3.45e-77 8.71e-75 1.00e+00 1.00e+00 1.00e-01 49 28.6 5.063e-08 -2.113e+00 -2.113e+00 8.39e-08 8.64e-78 3.45e-77 1.88e-74 1.00e+00 1.00e+00 1.00e-01 50 28.6 5.064e-09 -2.113e+00 -2.113e+00 8.39e-09 8.64e-78 3.45e-77 1.82e-74 1.00e+00 1.00e+00 1.00e-01 51 28.6 5.064e-10 -2.113e+00 -2.113e+00 8.39e-10 8.64e-78 2.59e-77 7.30e-74 1.00e+00 1.00e+00 1.00e-01 52 28.6 5.065e-11 -2.113e+00 -2.113e+00 8.39e-11 8.64e-78 2.59e-77 6.67e-74 1.00e+00 1.00e+00 1.00e-01 53 28.6 5.065e-12 -2.113e+00 -2.113e+00 8.39e-12 8.64e-78 4.32e-77 2.39e-73 1.00e+00 1.00e+00 1.00e-01 54 28.6 5.066e-13 -2.113e+00 -2.113e+00 8.39e-13 8.64e-78 4.32e-77 3.44e-73 1.00e+00 1.00e+00 1.00e-01 55 28.6 5.066e-14 -2.113e+00 -2.113e+00 8.39e-14 1.73e-77 8.64e-78 1.62e-72 1.00e+00 1.00e+00 1.00e-01 56 28.6 5.067e-15 -2.113e+00 -2.113e+00 8.39e-15 2.59e-77 2.59e-77 2.43e-72 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 28.630396 seconds (5.51 M allocations: 305.722 MiB, 1.03% gc time, 98.77% compilation time: <1% of which was recompilation) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:-2.112913881423601867359697274628283156026458577506028828284357015329332787703328 Dual objective:-2.11291388142360541433622824828076435117077250193231757381528977665207436480688 Duality gap:8.393566255014213322143961500422410772610636934965643038765443072407624431555918e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.3 1.000e+20 0.000e+00 0.000e+00 0.00e+00 1.00e+10 1.00e+00 2.10e+11 7.15e-01 8.46e-01 3.00e-01 2 0.3 4.213e+19 -7.841e+09 2.996e+11 1.05e+00 2.85e+09 2.85e-01 3.23e+10 7.79e-01 1.00e+00 3.00e-01 3 0.4 1.478e+19 1.359e+09 5.379e+11 9.95e-01 6.29e+08 6.29e-02 1.10e-65 8.20e-01 1.00e+00 3.00e-01 4 0.4 4.264e+18 4.397e+08 8.578e+11 9.99e-01 1.13e+08 1.13e-02 7.83e-65 8.92e-01 1.00e+00 3.00e-01 5 0.5 7.344e+17 4.931e+07 1.370e+12 1.00e+00 1.22e+07 1.22e-03 1.71e-64 8.98e-01 1.00e+00 3.00e-01 6 0.5 1.198e+17 4.867e+06 2.189e+12 1.00e+00 1.24e+06 1.24e-04 2.59e-64 8.95e-01 1.00e+00 3.00e-01 7 0.6 2.010e+16 5.242e+05 3.499e+12 1.00e+00 1.30e+05 1.30e-05 3.32e-64 8.99e-01 1.00e+00 3.00e-01 8 0.6 3.262e+15 5.203e+04 5.596e+12 1.00e+00 1.32e+04 1.32e-06 7.60e-64 8.97e-01 1.00e+00 3.00e-01 9 0.6 5.394e+14 5.483e+03 8.950e+12 1.00e+00 1.37e+03 1.37e-07 9.64e-64 8.99e-01 1.00e+00 3.00e-01 10 0.7 8.742e+13 5.525e+02 1.430e+13 1.00e+00 1.38e+02 1.38e-08 1.53e-63 8.99e-01 1.00e+00 3.00e-01 11 0.7 1.453e+13 6.378e+01 2.266e+13 1.00e+00 1.40e+01 1.40e-09 3.04e-63 8.96e-01 1.00e+00 3.00e-01 12 0.8 2.995e+12 1.385e+01 3.308e+13 1.00e+00 1.45e+00 1.45e-10 9.29e-63 8.80e-01 1.00e+00 3.00e-01 13 0.8 1.001e+12 9.125e+00 2.897e+13 1.00e+00 1.74e-01 1.74e-11 7.00e-63 8.85e-01 1.00e+00 3.00e-01 14 0.9 3.229e+11 8.728e+00 1.226e+13 1.00e+00 2.01e-02 2.01e-12 6.08e-63 8.77e-01 1.00e+00 3.00e-01 15 0.9 9.802e+10 8.791e+00 3.989e+12 1.00e+00 2.47e-03 2.47e-13 7.04e-64 1.00e+00 1.00e+00 3.00e-01 16 0.9 2.964e+10 8.979e+00 1.245e+12 1.00e+00 5.18e-77 1.73e-77 2.45e-64 1.00e+00 1.00e+00 3.00e-01 17 1.0 8.892e+09 9.036e+00 3.735e+11 1.00e+00 3.45e-77 1.73e-77 9.59e-66 9.97e-01 9.97e-01 1.00e-01 18 1.0 9.112e+08 9.041e+00 3.827e+10 1.00e+00 5.18e-77 3.45e-77 1.60e-65 1.00e+00 1.00e+00 1.00e-01 19 1.1 9.117e+07 9.046e+00 3.829e+09 1.00e+00 3.45e-77 3.45e-77 1.48e-66 1.00e+00 1.00e+00 1.00e-01 20 1.1 9.118e+06 9.050e+00 3.830e+08 1.00e+00 5.18e-77 1.73e-77 4.20e-68 1.00e+00 1.00e+00 1.00e-01 21 1.1 9.119e+05 9.054e+00 3.830e+07 1.00e+00 6.91e-77 3.45e-77 1.75e-69 1.00e+00 1.00e+00 1.00e-01 22 1.2 9.120e+04 9.058e+00 3.830e+06 1.00e+00 6.91e-77 3.45e-77 2.54e-70 1.00e+00 1.00e+00 1.00e-01 23 1.2 9.121e+03 9.061e+00 3.831e+05 1.00e+00 5.18e-77 1.73e-77 3.17e-71 1.00e+00 1.00e+00 1.00e-01 24 1.3 9.123e+02 9.064e+00 3.833e+04 1.00e+00 3.45e-77 3.45e-77 3.53e-72 1.00e+00 1.00e+00 1.00e-01 25 1.3 9.154e+01 9.069e+00 3.854e+03 9.95e-01 3.45e-77 2.59e-77 2.83e-73 9.96e-01 9.96e-01 1.00e-01 26 1.4 9.453e+00 9.090e+00 4.061e+02 9.56e-01 3.45e-77 1.73e-77 3.54e-74 9.67e-01 9.67e-01 1.00e-01 27 1.4 1.226e+00 9.266e+00 6.078e+01 7.35e-01 5.18e-77 1.73e-77 1.11e-74 8.41e-01 8.41e-01 1.00e-01 28 1.4 2.985e-01 1.028e+01 2.281e+01 3.79e-01 6.91e-77 1.73e-77 4.42e-75 7.57e-01 7.57e-01 1.00e-01 29 1.5 9.522e-02 1.184e+01 1.584e+01 1.45e-01 5.18e-77 1.73e-77 4.23e-75 5.18e-01 5.18e-01 1.00e-01 30 1.5 5.085e-02 1.263e+01 1.477e+01 7.79e-02 6.91e-77 1.73e-77 7.80e-75 6.13e-01 6.13e-01 1.00e-01 31 1.6 2.282e-02 1.280e+01 1.376e+01 3.61e-02 7.35e-77 1.73e-77 5.65e-75 8.46e-01 8.46e-01 1.00e-01 32 1.6 5.436e-03 1.307e+01 1.330e+01 8.66e-03 4.32e-77 1.73e-77 1.12e-74 8.46e-01 8.46e-01 1.00e-01 33 1.7 1.296e-03 1.314e+01 1.319e+01 2.07e-03 4.36e-77 1.73e-77 4.39e-74 8.17e-01 8.17e-01 1.00e-01 34 1.7 3.428e-04 1.315e+01 1.317e+01 5.47e-04 5.38e-77 1.73e-77 4.25e-73 8.07e-01 8.07e-01 1.00e-01 35 1.7 9.373e-05 1.316e+01 1.316e+01 1.50e-04 3.45e-77 8.64e-78 1.28e-72 7.58e-01 7.58e-01 1.00e-01 36 1.8 2.978e-05 1.316e+01 1.316e+01 4.75e-05 3.70e-77 3.45e-77 1.08e-72 8.83e-01 8.83e-01 1.00e-01 37 1.8 6.117e-06 1.316e+01 1.316e+01 9.76e-06 6.91e-77 2.59e-77 2.43e-72 8.72e-01 8.72e-01 1.00e-01 38 1.9 1.315e-06 1.316e+01 1.316e+01 2.10e-06 3.52e-77 2.59e-77 7.43e-73 9.01e-01 9.01e-01 1.00e-01 39 1.9 2.487e-07 1.316e+01 1.316e+01 3.97e-07 7.09e-77 2.59e-77 4.85e-72 9.70e-01 9.70e-01 1.00e-01 40 1.9 3.167e-08 1.316e+01 1.316e+01 5.05e-08 1.04e-76 1.73e-77 7.23e-72 9.98e-01 9.98e-01 1.00e-01 41 2.0 3.234e-09 1.316e+01 1.316e+01 5.16e-09 1.04e-76 3.45e-77 8.92e-72 9.98e-01 9.98e-01 1.00e-01 42 2.0 3.294e-10 1.316e+01 1.316e+01 5.26e-10 6.91e-77 3.45e-77 1.52e-71 1.00e+00 1.00e+00 1.00e-01 43 2.1 3.303e-11 1.316e+01 1.316e+01 5.27e-11 4.05e-77 2.59e-77 9.70e-72 1.00e+00 1.00e+00 1.00e-01 44 2.1 3.303e-12 1.316e+01 1.316e+01 5.27e-12 5.47e-77 1.73e-77 1.35e-71 1.00e+00 1.00e+00 1.00e-01 45 2.1 3.304e-13 1.316e+01 1.316e+01 5.27e-13 9.63e-77 2.59e-77 1.21e-71 1.00e+00 1.00e+00 1.00e-01 46 2.2 3.304e-14 1.316e+01 1.316e+01 5.27e-14 7.12e-77 1.73e-77 9.79e-72 1.00e+00 1.00e+00 1.00e-01 47 2.2 3.304e-15 1.316e+01 1.316e+01 5.27e-15 6.05e-77 3.45e-77 9.37e-72 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 2.233117 seconds (6.54 M allocations: 401.662 MiB, 14.97% gc time, 8.46% compilation time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:13.15831434739029877938251532845435319947678654220404490047366292598429300811717 Dual objective:13.15831434739031265895694972770832380199762439386433018801351818145904805596475 Duality gap:5.27407009285805521214366098276356179567194166908845934415856718751251409462853e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.1 1.000e+20 1.585e-02 1.585e-02 0.00e+00 1.00e+10 3.02e+20 8.43e+10 7.03e-01 7.57e-01 3.00e-01 2 0.2 4.190e+19 -2.320e+10 -2.620e+08 9.78e-01 2.97e+09 8.99e+19 2.04e+10 7.89e-01 7.78e-01 3.00e-01 3 0.3 1.306e+19 -4.643e+10 -1.742e+09 9.28e-01 6.28e+08 1.90e+19 4.53e+09 8.17e-01 7.43e-01 3.00e-01 4 0.4 3.686e+18 -7.438e+10 -1.494e+09 9.61e-01 1.15e+08 3.48e+18 1.17e+09 8.25e-01 8.15e-01 3.00e-01 5 0.5 9.725e+17 -1.038e+11 1.515e+08 1.00e+00 2.01e+07 6.09e+17 2.16e+08 7.94e-01 7.63e-01 3.00e-01 6 0.6 3.020e+17 -1.438e+11 3.329e+09 1.05e+00 4.16e+06 1.26e+17 5.11e+07 7.09e-01 7.99e-01 3.00e-01 7 0.7 1.203e+17 -1.906e+11 1.626e+10 1.19e+00 1.21e+06 3.65e+16 1.03e+07 7.49e-01 8.14e-01 3.00e-01 8 0.8 4.286e+16 -2.882e+11 3.009e+10 1.23e+00 3.03e+05 9.15e+15 1.92e+06 7.63e-01 8.17e-01 3.00e-01 9 0.9 1.468e+16 -4.788e+11 5.004e+10 1.23e+00 7.18e+04 2.17e+15 3.51e+05 7.82e-01 6.89e-01 3.00e-01 10 1.0 4.729e+15 -8.435e+11 8.455e+10 1.22e+00 1.57e+04 4.74e+14 1.09e+05 6.46e-01 6.36e-01 3.00e-01 11 1.1 2.321e+15 -1.155e+12 1.377e+11 1.27e+00 5.54e+03 1.67e+14 3.98e+04 6.72e-01 6.11e-01 3.00e-01 12 1.2 1.063e+15 -1.592e+12 1.951e+11 1.28e+00 1.81e+03 5.49e+13 1.55e+04 5.62e-01 9.01e-01 3.00e-01 13 1.3 6.779e+14 -2.021e+12 2.787e+11 1.32e+00 7.94e+02 2.40e+13 1.53e+03 8.24e-01 9.11e-01 3.00e-01 14 1.4 1.835e+14 -5.984e+12 4.300e+11 1.15e+00 1.40e+02 4.23e+12 1.36e+02 8.55e-01 1.00e+00 3.00e-01 15 1.5 4.247e+13 -1.546e+13 6.864e+11 1.09e+00 2.03e+01 6.13e+11 4.16e-48 8.97e-01 1.00e+00 3.00e-01 16 1.6 7.181e+12 -1.302e+13 1.093e+12 1.18e+00 2.08e+00 6.30e+10 8.56e-48 8.89e-01 1.00e+00 3.00e-01 17 1.7 1.329e+12 -3.359e+12 1.724e+12 3.11e+00 2.31e-01 6.99e+09 2.17e-48 8.33e-01 1.00e+00 3.00e-01 18 1.8 3.857e+11 -8.933e+11 2.306e+12 2.26e+00 3.86e-02 1.17e+09 1.03e-47 7.07e-01 1.00e+00 3.00e-01 19 1.9 1.766e+11 -3.434e+11 1.375e+12 1.67e+00 1.13e-02 3.42e+08 1.46e-47 8.44e-01 8.41e-01 3.00e-01 20 2.0 4.903e+10 -9.837e+10 7.115e+11 1.32e+00 1.77e-03 5.34e+07 1.99e-47 8.56e-01 1.00e+00 3.00e-01 21 2.1 1.622e+10 -2.672e+10 4.770e+11 1.12e+00 2.54e-04 7.67e+06 1.89e-47 7.71e-01 1.00e+00 3.00e-01 22 2.2 5.589e+09 -9.867e+09 1.839e+11 1.11e+00 5.81e-05 1.76e+06 1.87e-48 8.65e-01 8.10e-01 3.00e-01 23 2.3 2.102e+09 -2.786e+09 8.647e+10 1.07e+00 7.86e-06 2.38e+05 2.02e-48 7.54e-01 1.00e+00 3.00e-01 24 2.4 6.491e+08 -1.160e+09 2.539e+10 1.10e+00 1.93e-06 5.84e+04 4.53e-49 9.04e-01 9.19e-01 3.00e-01 25 2.5 2.210e+08 -2.876e+08 9.863e+09 1.06e+00 1.86e-07 5.62e+03 2.55e-48 9.41e-01 1.00e+00 3.00e-01 26 2.6 6.517e+07 -7.947e+07 3.067e+09 1.05e+00 1.11e-08 3.34e+02 1.04e-47 1.00e+00 1.00e+00 3.00e-01 27 2.7 1.954e+07 -1.955e+07 9.380e+08 1.04e+00 1.58e-63 2.20e-43 5.80e-47 1.00e+00 1.00e+00 3.00e-01 28 2.7 5.862e+06 -5.862e+06 2.814e+08 1.04e+00 1.56e-63 2.07e-43 5.63e-48 1.00e+00 1.00e+00 1.00e-01 29 2.8 5.873e+05 -5.873e+05 2.819e+07 1.04e+00 1.60e-63 2.94e-43 1.15e-49 1.00e+00 1.00e+00 1.00e-01 30 2.9 5.874e+04 -5.874e+04 2.819e+06 1.04e+00 1.15e-63 1.17e-43 1.28e-50 1.00e+00 1.00e+00 1.00e-01 31 3.0 5.874e+03 -5.874e+03 2.820e+05 1.04e+00 1.25e-63 9.50e-43 2.35e-51 1.00e+00 1.00e+00 1.00e-01 32 3.1 5.875e+02 -5.874e+02 2.820e+04 1.04e+00 1.99e-63 1.14e-43 1.12e-52 1.00e+00 1.00e+00 1.00e-01 33 3.2 5.876e+01 -5.866e+01 2.821e+03 1.04e+00 1.50e-63 3.65e-43 1.78e-53 1.00e+00 1.00e+00 1.00e-01 34 3.3 5.883e+00 -5.788e+00 2.825e+02 1.04e+00 1.01e-63 3.36e-43 1.38e-54 9.99e-01 9.99e-01 1.00e-01 35 3.4 5.954e-01 -4.995e-01 2.868e+01 1.04e+00 1.93e-63 4.46e-43 2.66e-55 9.88e-01 9.88e-01 1.00e-01 36 3.5 6.616e-02 3.259e-02 3.274e+00 9.80e-01 1.34e-63 1.80e-43 1.38e-55 9.22e-01 9.22e-01 1.00e-01 37 3.6 1.126e-02 1.068e-01 6.584e-01 5.52e-01 1.06e-63 3.45e-43 2.29e-55 8.48e-01 8.48e-01 1.00e-01 38 3.7 2.667e-03 1.882e-01 3.188e-01 1.31e-01 1.79e-63 1.74e-43 6.53e-56 8.38e-01 8.38e-01 1.00e-01 39 3.8 6.553e-04 2.394e-01 2.715e-01 3.21e-02 1.52e-63 7.10e-43 1.07e-56 8.06e-01 8.06e-01 1.00e-01 40 3.9 1.798e-04 2.495e-01 2.583e-01 8.81e-03 1.66e-63 9.84e-43 1.06e-56 8.23e-01 8.23e-01 1.00e-01 41 4.0 4.661e-05 2.526e-01 2.549e-01 2.28e-03 2.00e-63 3.38e-43 4.14e-56 7.89e-01 7.89e-01 1.00e-01 42 4.1 1.350e-05 2.534e-01 2.540e-01 6.61e-04 1.59e-63 1.02e-42 1.86e-55 7.75e-01 7.75e-01 1.00e-01 43 4.2 4.080e-06 2.536e-01 2.538e-01 2.00e-04 1.90e-63 1.19e-42 4.51e-55 7.61e-01 7.61e-01 1.00e-01 44 4.3 1.286e-06 2.537e-01 2.538e-01 6.30e-05 2.21e-63 1.08e-42 1.17e-55 9.61e-01 9.61e-01 1.00e-01 45 4.4 1.739e-07 2.537e-01 2.537e-01 8.52e-06 1.32e-63 9.15e-43 3.51e-55 9.60e-01 9.60e-01 1.00e-01 46 4.5 2.369e-08 2.537e-01 2.537e-01 1.16e-06 2.24e-63 6.78e-43 1.58e-54 9.77e-01 9.77e-01 1.00e-01 47 4.6 2.854e-09 2.537e-01 2.537e-01 1.40e-07 1.48e-63 1.02e-42 1.45e-54 9.93e-01 9.93e-01 1.00e-01 48 4.7 3.031e-10 2.537e-01 2.537e-01 1.49e-08 1.48e-63 8.68e-43 1.28e-54 9.99e-01 9.99e-01 1.00e-01 49 4.8 3.050e-11 2.537e-01 2.537e-01 1.49e-09 1.63e-63 1.61e-43 2.32e-54 1.00e+00 1.00e+00 1.00e-01 50 4.9 3.050e-12 2.537e-01 2.537e-01 1.49e-10 1.70e-63 2.41e-42 5.51e-55 1.00e+00 1.00e+00 1.00e-01 51 5.0 3.051e-13 2.537e-01 2.537e-01 1.49e-11 1.73e-63 4.10e-43 2.03e-54 1.00e+00 1.00e+00 1.00e-01 52 5.1 3.051e-14 2.537e-01 2.537e-01 1.50e-12 1.20e-63 8.81e-43 1.73e-54 1.00e+00 1.00e+00 1.00e-01 53 5.2 3.051e-15 2.537e-01 2.537e-01 1.50e-13 1.15e-63 9.89e-43 1.29e-54 1.00e+00 1.00e+00 1.00e-01 54 5.3 3.052e-16 2.537e-01 2.537e-01 1.50e-14 1.15e-63 5.00e-43 1.80e-54 1.00e+00 1.00e+00 1.00e-01 55 5.4 3.052e-17 2.537e-01 2.537e-01 1.50e-15 1.78e-63 2.29e-43 1.05e-54 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 5.380327 seconds (9.60 M allocations: 518.125 MiB, 8.76% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:0.2537404272210647350177945165446147051829109290422250039626551829410065889731725 Dual objective:0.2537404272210648845782154735975641670096145030592659392596589028655541630319278 Duality gap:1.495604209570529494618267035740170409352970037199245475740587552590909941215709e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.5 1.000e+20 0.000e+00 0.000e+00 0.00e+00 1.00e+10 1.00e+00 8.43e+10 6.32e-01 5.24e-01 3.00e-01 2 1.2 5.118e+19 7.190e+07 1.164e+10 9.88e-01 3.68e+09 3.68e-01 4.01e+10 6.36e-01 6.99e-01 3.00e-01 3 1.8 2.570e+19 6.028e+07 2.506e+10 9.95e-01 1.34e+09 1.34e-01 1.21e+10 7.82e-01 7.56e-01 3.00e-01 4 2.5 8.263e+18 1.502e+07 4.098e+10 9.99e-01 2.93e+08 2.93e-02 2.94e+09 8.07e-01 8.00e-01 3.00e-01 5 3.2 2.367e+18 3.547e+06 6.396e+10 1.00e+00 5.64e+07 5.64e-03 5.87e+08 8.04e-01 7.46e-01 3.00e-01 6 3.8 7.008e+17 8.038e+05 9.568e+10 1.00e+00 1.11e+07 1.11e-03 1.49e+08 8.14e-01 7.81e-01 3.00e-01 7 4.5 1.972e+17 1.837e+05 1.446e+11 1.00e+00 2.06e+06 2.06e-04 3.27e+07 7.79e-01 7.96e-01 3.00e-01 8 5.1 6.361e+16 4.687e+04 2.206e+11 1.00e+00 4.56e+05 4.56e-05 6.67e+06 7.28e-01 7.70e-01 3.00e-01 9 5.8 2.470e+16 1.204e+04 3.288e+11 1.00e+00 1.24e+05 1.24e-05 1.54e+06 7.29e-01 7.91e-01 3.00e-01 10 6.4 9.586e+15 3.109e+03 5.041e+11 1.00e+00 3.37e+04 3.37e-06 3.21e+05 7.58e-01 7.85e-01 3.00e-01 11 7.0 3.375e+15 7.627e+02 8.164e+11 1.00e+00 8.17e+03 8.17e-07 6.90e+04 6.24e-01 7.24e-01 3.00e-01 12 7.7 1.763e+15 3.251e+02 1.508e+12 1.00e+00 3.07e+03 3.07e-07 1.91e+04 5.66e-01 4.74e-01 3.00e-01 13 8.4 1.006e+15 3.029e+02 2.709e+12 1.00e+00 1.33e+03 1.33e-07 1.00e+04 6.70e-01 6.86e-01 3.00e-01 14 8.8 4.647e+14 3.925e+02 4.272e+12 1.00e+00 4.40e+02 4.40e-08 3.14e+03 5.67e-01 6.23e-01 3.00e-01 15 9.4 2.709e+14 6.587e+02 6.050e+12 1.00e+00 1.91e+02 1.91e-08 1.18e+03 4.25e-01 9.14e-01 3.00e-01 16 10.0 2.367e+14 6.300e+01 9.859e+12 1.00e+00 1.10e+02 1.10e-08 1.01e+02 7.83e-01 1.00e+00 3.00e-01 17 10.7 8.205e+13 7.894e+01 1.584e+13 1.00e+00 2.37e+01 2.37e-09 1.53e-58 8.13e-01 1.00e+00 3.00e-01 18 11.3 2.463e+13 1.886e+01 2.504e+13 1.00e+00 4.43e+00 4.43e-10 2.41e-57 8.84e-01 1.00e+00 3.00e-01 19 11.9 4.808e+12 2.447e+00 3.732e+13 1.00e+00 5.16e-01 5.16e-11 3.83e-57 8.88e-01 1.00e+00 3.00e-01 20 12.6 1.084e+12 3.495e-01 3.941e+13 1.00e+00 5.77e-02 5.77e-12 3.18e-57 8.56e-01 1.00e+00 3.00e-01 21 13.3 3.431e+11 1.295e-01 2.400e+13 1.00e+00 8.33e-03 8.33e-13 2.27e-57 8.25e-01 1.00e+00 3.00e-01 22 13.9 1.158e+11 9.545e-02 1.061e+13 1.00e+00 1.46e-03 1.46e-13 2.22e-58 8.40e-01 8.07e-01 3.00e-01 23 14.6 4.557e+10 8.306e-02 4.818e+12 1.00e+00 2.34e-04 2.34e-14 4.99e-59 7.20e-01 1.00e+00 3.00e-01 24 15.2 1.417e+10 8.217e-02 1.436e+12 1.00e+00 6.54e-05 6.54e-15 2.30e-60 8.96e-01 8.18e-01 3.00e-01 25 15.9 5.688e+09 7.650e-02 6.445e+11 1.00e+00 6.79e-06 6.79e-16 9.63e-59 9.34e-01 1.00e+00 3.00e-01 26 16.5 1.690e+09 7.658e-02 1.988e+11 1.00e+00 4.49e-07 4.49e-17 3.80e-59 1.00e+00 1.00e+00 3.00e-01 27 17.2 5.061e+08 7.648e-02 6.022e+10 1.00e+00 2.24e-74 4.07e-51 7.16e-59 1.00e+00 1.00e+00 3.00e-01 28 17.9 1.518e+08 7.648e-02 1.807e+10 1.00e+00 2.46e-74 3.80e-51 1.72e-58 1.00e+00 1.00e+00 1.00e-01 29 18.5 1.524e+07 7.648e-02 1.814e+09 1.00e+00 2.76e-74 2.93e-51 9.04e-60 1.00e+00 1.00e+00 1.00e-01 30 19.1 1.524e+06 7.649e-02 1.814e+08 1.00e+00 3.28e-74 3.91e-51 3.86e-61 1.00e+00 1.00e+00 1.00e-01 31 19.8 1.525e+05 7.649e-02 1.814e+07 1.00e+00 2.90e-74 2.28e-51 7.26e-62 1.00e+00 1.00e+00 1.00e-01 32 20.4 1.525e+04 7.649e-02 1.814e+06 1.00e+00 2.79e-74 2.70e-51 3.04e-63 1.00e+00 1.00e+00 1.00e-01 33 21.1 1.525e+03 7.649e-02 1.815e+05 1.00e+00 2.49e-74 4.89e-51 2.16e-64 1.00e+00 1.00e+00 1.00e-01 34 21.7 1.525e+02 7.649e-02 1.815e+04 1.00e+00 3.99e-74 5.42e-51 4.86e-65 1.00e+00 1.00e+00 1.00e-01 35 22.4 1.529e+01 7.653e-02 1.820e+03 1.00e+00 2.55e-74 3.58e-51 4.38e-66 9.97e-01 9.97e-01 1.00e-01 36 23.0 1.564e+00 7.692e-02 1.862e+02 9.99e-01 2.07e-74 3.31e-51 4.33e-67 9.76e-01 9.76e-01 1.00e-01 37 23.6 1.897e-01 8.062e-02 2.266e+01 9.93e-01 2.33e-74 4.99e-51 5.27e-68 8.77e-01 8.77e-01 1.00e-01 38 24.3 3.990e-02 1.073e-01 4.856e+00 9.57e-01 2.90e-74 6.18e-51 1.38e-68 9.21e-01 9.21e-01 1.00e-01 39 24.9 6.811e-03 1.612e-01 9.717e-01 7.15e-01 2.51e-74 2.64e-51 1.82e-68 8.71e-01 8.71e-01 1.00e-01 40 25.6 1.473e-03 2.059e-01 3.812e-01 1.75e-01 3.60e-74 9.05e-51 6.82e-69 8.63e-01 8.63e-01 1.00e-01 41 26.2 3.291e-04 2.437e-01 2.829e-01 3.92e-02 4.62e-74 3.71e-51 1.26e-69 8.93e-01 8.93e-01 1.00e-01 42 26.9 6.458e-05 2.517e-01 2.594e-01 7.69e-03 4.22e-74 4.69e-51 8.66e-70 8.48e-01 8.48e-01 1.00e-01 43 27.5 1.529e-05 2.532e-01 2.550e-01 1.82e-03 5.19e-74 5.59e-51 6.50e-68 8.38e-01 8.38e-01 1.00e-01 44 28.2 3.758e-06 2.536e-01 2.540e-01 4.47e-04 5.06e-74 8.02e-51 2.62e-67 8.60e-01 8.60e-01 1.00e-01 45 28.8 8.506e-07 2.537e-01 2.538e-01 1.01e-04 2.77e-74 6.24e-51 1.03e-66 9.32e-01 9.32e-01 1.00e-01 46 29.5 1.372e-07 2.537e-01 2.538e-01 1.63e-05 3.42e-74 1.03e-50 2.02e-66 9.60e-01 9.60e-01 1.00e-01 47 30.1 1.861e-08 2.537e-01 2.537e-01 2.21e-06 5.92e-74 4.00e-51 4.12e-67 9.53e-01 9.53e-01 1.00e-01 48 30.7 2.646e-09 2.537e-01 2.537e-01 3.15e-07 4.87e-74 7.36e-51 1.36e-66 9.65e-01 9.65e-01 1.00e-01 49 31.4 3.469e-10 2.537e-01 2.537e-01 4.13e-08 7.37e-74 6.44e-51 2.76e-66 9.73e-01 9.73e-01 1.00e-01 50 32.0 4.314e-11 2.537e-01 2.537e-01 5.13e-09 3.37e-74 3.77e-51 9.65e-66 9.75e-01 9.75e-01 1.00e-01 51 32.7 5.269e-12 2.537e-01 2.537e-01 6.27e-10 4.43e-74 3.50e-51 5.99e-65 9.79e-01 9.79e-01 1.00e-01 52 33.3 6.243e-13 2.537e-01 2.537e-01 7.43e-11 4.98e-74 4.87e-51 4.92e-64 9.96e-01 9.96e-01 1.00e-01 53 34.0 6.487e-14 2.537e-01 2.537e-01 7.72e-12 6.16e-74 4.26e-51 1.06e-63 1.00e+00 1.00e+00 1.00e-01 54 34.6 6.490e-15 2.537e-01 2.537e-01 7.72e-13 5.23e-74 4.11e-51 6.90e-63 1.00e+00 1.00e+00 1.00e-01 55 35.3 6.492e-16 2.537e-01 2.537e-01 7.73e-14 3.61e-74 5.12e-51 1.56e-61 1.00e+00 1.00e+00 1.00e-01 56 35.9 6.493e-17 2.537e-01 2.537e-01 7.73e-15 4.12e-74 4.91e-51 4.32e-60 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 35.915006 seconds (60.80 M allocations: 3.579 GiB, 5.04% gc time, 0.60% compilation time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:0.25374042722106457027407875773669625494007169505581512683214338557550881216311110954689661836 Dual objective:0.25374042722106534303867667056210731356740836299541229415366085571235788621712091699542365341 Duality gap:7.7276459791282541105862733666793959716732151747013684907405400980744852703505795129367216608e-16 [ Info: Creating the univariate constraint [ Info: Constructing trivariate constraint iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.3 1.000e+06 1.000e+00 5.001e+03 1.00e+00 1.00e+03 0.00e+00 3.99e+06 6.53e-01 5.28e-01 3.00e-01 2 0.6 5.015e+05 5.164e+02 3.088e+03 7.13e-01 3.47e+02 0.00e+00 1.88e+06 4.22e-01 6.07e-01 3.00e-01 3 0.8 3.499e+05 6.688e+02 8.065e+03 8.47e-01 2.00e+02 0.00e+00 7.40e+05 5.84e-01 4.21e-01 3.00e-01 4 1.1 2.030e+05 5.414e+02 1.758e+04 9.40e-01 8.32e+01 0.00e+00 4.29e+05 4.22e-01 9.53e-01 3.00e-01 5 1.3 1.588e+05 3.876e+02 6.630e+04 9.88e-01 4.81e+01 0.00e+00 2.00e+04 7.78e-01 1.00e+00 3.00e-01 6 1.6 5.705e+04 1.104e+02 1.123e+05 9.98e-01 1.07e+01 0.00e+00 5.41e-67 8.24e-01 1.00e+00 3.00e-01 7 1.8 1.728e+04 2.822e+01 1.690e+05 1.00e+00 1.88e+00 0.00e+00 2.25e-67 8.75e-01 1.00e+00 3.00e-01 8 2.1 4.993e+03 1.126e+01 1.883e+05 1.00e+00 2.35e-01 0.00e+00 2.12e-66 8.48e-01 9.86e-01 3.00e-01 9 2.3 1.681e+03 9.036e+00 9.790e+04 1.00e+00 3.57e-02 0.00e+00 1.20e-66 8.19e-01 1.00e+00 3.00e-01 10 2.5 5.450e+02 8.700e+00 3.672e+04 1.00e+00 6.44e-03 0.00e+00 1.13e-66 8.33e-01 1.00e+00 3.00e-01 11 2.8 1.723e+02 8.588e+00 1.271e+04 9.99e-01 1.08e-03 0.00e+00 4.82e-67 1.00e+00 1.00e+00 3.00e-01 12 3.0 5.146e+01 8.519e+00 4.074e+03 9.96e-01 2.17e-73 0.00e+00 1.70e-67 1.00e+00 1.00e+00 3.00e-01 13 3.2 1.544e+01 8.502e+00 1.228e+03 9.86e-01 1.81e-73 0.00e+00 9.70e-69 9.92e-01 9.92e-01 1.00e-01 14 3.5 1.654e+00 8.507e+00 1.392e+02 8.85e-01 2.74e-73 0.00e+00 1.84e-69 9.78e-01 9.78e-01 1.00e-01 15 3.7 1.981e-01 8.562e+00 2.421e+01 4.77e-01 2.81e-73 0.00e+00 1.37e-69 8.60e-01 8.60e-01 1.00e-01 16 4.0 4.484e-02 8.877e+00 1.242e+01 1.66e-01 1.34e-73 0.00e+00 1.06e-69 8.02e-01 8.02e-01 1.00e-01 17 4.2 1.245e-02 9.486e+00 1.047e+01 4.93e-02 1.84e-73 0.00e+00 1.04e-69 7.62e-01 7.62e-01 1.00e-01 18 4.4 3.917e-03 9.841e+00 1.015e+01 1.55e-02 3.38e-73 0.00e+00 4.32e-70 7.52e-01 7.52e-01 1.00e-01 19 4.7 1.267e-03 9.941e+00 1.004e+01 5.01e-03 1.68e-73 0.00e+00 4.26e-70 8.14e-01 8.14e-01 1.00e-01 20 4.9 3.392e-04 9.983e+00 1.001e+01 1.34e-03 1.05e-73 0.00e+00 2.20e-70 7.89e-01 7.89e-01 1.00e-01 21 5.2 9.835e-05 9.995e+00 1.000e+01 3.89e-04 2.27e-73 0.00e+00 9.72e-71 9.42e-01 9.42e-01 1.00e-01 22 5.4 1.496e-05 9.999e+00 1.000e+01 5.91e-05 2.89e-73 0.00e+00 1.47e-70 9.79e-01 9.79e-01 1.00e-01 23 5.6 1.780e-06 1.000e+01 1.000e+01 7.03e-06 6.78e-73 0.00e+00 7.93e-71 9.89e-01 9.89e-01 1.00e-01 24 5.9 1.951e-07 1.000e+01 1.000e+01 7.71e-07 3.34e-73 0.00e+00 1.84e-70 9.97e-01 9.97e-01 1.00e-01 25 6.1 2.009e-08 1.000e+01 1.000e+01 7.94e-08 4.62e-73 0.00e+00 1.18e-70 1.00e+00 1.00e+00 1.00e-01 26 6.3 2.016e-09 1.000e+01 1.000e+01 7.96e-09 2.06e-73 0.00e+00 4.67e-70 1.00e+00 1.00e+00 1.00e-01 27 6.6 2.017e-10 1.000e+01 1.000e+01 7.97e-10 1.93e-73 0.00e+00 5.23e-70 1.00e+00 1.00e+00 1.00e-01 28 6.8 2.017e-11 1.000e+01 1.000e+01 7.97e-11 1.80e-73 0.00e+00 1.20e-70 1.00e+00 1.00e+00 1.00e-01 29 7.0 2.017e-12 1.000e+01 1.000e+01 7.97e-12 5.51e-73 0.00e+00 3.24e-70 1.00e+00 1.00e+00 1.00e-01 30 7.3 2.018e-13 1.000e+01 1.000e+01 7.97e-13 5.25e-73 0.00e+00 2.81e-70 1.00e+00 1.00e+00 1.00e-01 31 7.5 2.018e-14 1.000e+01 1.000e+01 7.97e-14 4.14e-73 0.00e+00 2.01e-70 1.00e+00 1.00e+00 1.00e-01 32 7.8 2.018e-15 1.000e+01 1.000e+01 7.97e-15 5.34e-73 0.00e+00 1.12e-70 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 7.779201 seconds (14.52 M allocations: 875.064 MiB, 8.84% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:9.999999999999988697811582854914558981664133668768836318925293240430915306239117 Dual objective:10.0000000000000046419702427791554505739798324309705050994144471340092929968061 Duality gap:7.972079329962123100585539894415996793376784875332540007486508186681505335872011e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.0 1.000e+20 0.000e+00 1.000e+10 1.00e+00 1.00e+10 0.00e+00 2.00e+10 1.00e+00 9.00e-01 3.00e-01 2 0.1 1.600e+19 1.600e+10 1.000e+09 8.82e-01 0.00e+00 0.00e+00 2.00e+09 1.00e+00 9.00e-01 3.00e-01 3 0.1 2.560e+18 2.560e+10 1.000e+08 9.92e-01 0.00e+00 0.00e+00 2.00e+08 1.00e+00 9.00e-01 3.00e-01 4 0.1 4.096e+17 4.096e+10 1.000e+07 1.00e+00 0.00e+00 0.00e+00 2.00e+07 1.00e+00 9.00e-01 3.00e-01 5 0.1 6.554e+16 6.554e+10 1.000e+06 1.00e+00 0.00e+00 0.00e+00 2.00e+06 1.00e+00 9.00e-01 3.00e-01 6 0.1 1.049e+16 1.049e+11 1.000e+05 1.00e+00 0.00e+00 0.00e+00 2.00e+05 1.00e+00 9.00e-01 3.00e-01 7 0.1 1.678e+15 1.678e+11 1.000e+04 1.00e+00 0.00e+00 0.00e+00 2.00e+04 1.00e+00 9.00e-01 3.00e-01 8 0.1 2.684e+14 2.684e+11 1.000e+03 1.00e+00 0.00e+00 0.00e+00 2.00e+03 1.00e+00 9.00e-01 3.00e-01 9 0.1 4.292e+13 4.292e+11 1.000e+02 1.00e+00 0.00e+00 0.00e+00 1.99e+02 1.00e+00 9.05e-01 3.00e-01 10 0.1 6.817e+12 6.817e+11 1.000e+01 1.00e+00 0.00e+00 0.00e+00 1.90e+01 1.00e+00 9.47e-01 3.00e-01 11 0.1 1.014e+12 1.014e+12 1.000e+00 1.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e+00 3.00e-01 12 0.1 3.549e+11 7.098e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 3.00e-01 13 0.1 1.065e+11 2.130e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 14 0.1 1.065e+10 2.130e+10 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 15 0.1 1.065e+09 2.130e+09 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 16 0.1 1.065e+08 2.130e+08 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 17 0.1 1.065e+07 2.130e+07 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 18 0.1 1.065e+06 2.130e+06 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 19 0.1 1.065e+05 2.130e+05 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 20 0.1 1.065e+04 2.130e+04 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 21 0.1 1.065e+03 2.131e+03 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 22 0.1 1.067e+02 2.140e+02 5.003e-01 9.95e-01 0.00e+00 0.00e+00 4.91e-91 9.98e-01 9.98e-01 1.00e-01 23 0.2 1.090e+01 2.230e+01 5.026e-01 9.56e-01 0.00e+00 0.00e+00 0.00e+00 9.78e-01 9.78e-01 1.00e-01 24 0.2 1.302e+00 3.130e+00 5.247e-01 7.13e-01 0.00e+00 0.00e+00 1.47e-90 8.86e-01 8.86e-01 1.00e-01 25 0.2 2.642e-01 1.213e+00 6.845e-01 2.78e-01 0.00e+00 0.00e+00 4.91e-91 9.25e-01 9.25e-01 1.00e-01 26 0.2 4.423e-02 1.057e+00 9.685e-01 4.37e-02 9.82e-91 0.00e+00 9.82e-91 9.82e-01 9.82e-01 1.00e-01 27 0.2 5.135e-03 1.006e+00 9.954e-01 5.13e-03 4.91e-91 0.00e+00 9.82e-91 9.90e-01 9.90e-01 1.00e-01 28 0.2 5.586e-04 1.001e+00 9.995e-01 5.59e-04 4.91e-91 0.00e+00 1.47e-90 9.98e-01 9.98e-01 1.00e-01 29 0.2 5.683e-05 1.000e+00 9.999e-01 5.68e-05 9.82e-91 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 30 0.2 5.691e-06 1.000e+00 1.000e+00 5.69e-06 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 31 0.2 5.692e-07 1.000e+00 1.000e+00 5.69e-07 4.91e-91 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 32 0.2 5.692e-08 1.000e+00 1.000e+00 5.69e-08 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 33 0.2 5.692e-09 1.000e+00 1.000e+00 5.69e-09 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 34 0.2 5.692e-10 1.000e+00 1.000e+00 5.69e-10 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 35 0.2 5.692e-11 1.000e+00 1.000e+00 5.69e-11 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 36 0.2 5.692e-12 1.000e+00 1.000e+00 5.69e-12 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 37 0.2 5.692e-13 1.000e+00 1.000e+00 5.69e-13 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 38 0.2 5.692e-14 1.000e+00 1.000e+00 5.69e-14 4.91e-91 0.00e+00 2.45e-90 1.00e+00 1.00e+00 1.00e-01 39 0.2 5.692e-15 1.000e+00 1.000e+00 5.69e-15 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.230233 seconds (38.95 k allocations: 3.276 MiB, 75.58% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:1.0000000000000005691723278366416861879595763094229654106229723826343406620015981991860279668 Dual objective:0.9999999999999994308276721633712720975914346046825898890655777243547660499609509826264801335 Duality gap:5.691723278366352070451840708486824389848583387797514538933756972301949865323277923806982379e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.0 1.000e+20 0.000e+00 1.000e+10 1.00e+00 1.00e+10 0.00e+00 1.00e+10 1.00e+00 9.00e-01 3.00e-01 2 0.0 1.600e+19 1.600e+10 1.000e+09 8.82e-01 0.00e+00 8.43e-81 1.00e+09 1.00e+00 9.00e-01 3.00e-01 3 0.0 2.560e+18 2.560e+10 1.000e+08 9.92e-01 0.00e+00 0.00e+00 1.00e+08 1.00e+00 9.00e-01 3.00e-01 4 0.1 4.096e+17 4.096e+10 1.000e+07 1.00e+00 0.00e+00 0.00e+00 1.00e+07 1.00e+00 9.00e-01 3.00e-01 5 0.1 6.554e+16 6.554e+10 1.000e+06 1.00e+00 0.00e+00 3.37e-80 1.00e+06 1.00e+00 9.00e-01 3.00e-01 6 0.1 1.049e+16 1.049e+11 1.000e+05 1.00e+00 0.00e+00 0.00e+00 1.00e+05 1.00e+00 9.00e-01 3.00e-01 7 0.1 1.678e+15 1.678e+11 1.000e+04 1.00e+00 0.00e+00 0.00e+00 1.00e+04 1.00e+00 9.00e-01 3.00e-01 8 0.1 2.684e+14 2.684e+11 1.000e+03 1.00e+00 0.00e+00 0.00e+00 1.00e+03 1.00e+00 9.00e-01 3.00e-01 9 0.1 4.292e+13 4.292e+11 1.000e+02 1.00e+00 0.00e+00 2.70e-79 9.95e+01 1.00e+00 9.05e-01 3.00e-01 10 0.1 6.817e+12 6.817e+11 1.000e+01 1.00e+00 0.00e+00 0.00e+00 9.50e+00 1.00e+00 9.47e-01 3.00e-01 11 0.1 1.014e+12 1.014e+12 1.000e+00 1.00e+00 0.00e+00 0.00e+00 5.00e-01 1.00e+00 1.00e+00 3.00e-01 12 0.1 3.549e+11 7.098e+11 5.000e-01 1.00e+00 0.00e+00 5.40e-79 0.00e+00 1.00e+00 1.00e+00 3.00e-01 13 0.1 1.065e+11 2.130e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 14 0.1 1.065e+10 2.130e+10 5.000e-01 1.00e+00 0.00e+00 1.35e-79 2.45e-91 1.00e+00 1.00e+00 1.00e-01 15 0.1 1.065e+09 2.130e+09 5.000e-01 1.00e+00 0.00e+00 1.69e-80 1.23e-90 1.00e+00 1.00e+00 1.00e-01 16 0.1 1.065e+08 2.130e+08 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 17 0.1 1.065e+07 2.130e+07 5.000e-01 1.00e+00 0.00e+00 2.64e-82 1.23e-90 1.00e+00 1.00e+00 1.00e-01 18 0.1 1.065e+06 2.130e+06 5.000e-01 1.00e+00 0.00e+00 1.65e-83 9.82e-91 1.00e+00 1.00e+00 1.00e-01 19 0.1 1.065e+05 2.130e+05 5.000e-01 1.00e+00 0.00e+00 1.03e-84 7.36e-91 1.00e+00 1.00e+00 1.00e-01 20 0.1 1.065e+04 2.130e+04 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 21 0.1 1.065e+03 2.131e+03 5.000e-01 1.00e+00 0.00e+00 1.61e-86 4.91e-91 1.00e+00 1.00e+00 1.00e-01 22 0.1 1.067e+02 2.140e+02 5.003e-01 9.95e-01 0.00e+00 0.00e+00 7.36e-91 9.98e-01 9.98e-01 1.00e-01 23 0.1 1.090e+01 2.230e+01 5.026e-01 9.56e-01 0.00e+00 1.10e-88 9.82e-91 9.78e-01 9.78e-01 1.00e-01 24 0.1 1.302e+00 3.130e+00 5.247e-01 7.13e-01 0.00e+00 1.77e-89 4.91e-91 8.86e-01 8.86e-01 1.00e-01 25 0.1 2.642e-01 1.213e+00 6.845e-01 2.78e-01 9.82e-91 9.82e-91 1.47e-90 9.25e-01 9.25e-01 1.00e-01 26 0.2 4.423e-02 1.057e+00 9.685e-01 4.37e-02 4.91e-91 9.82e-91 1.47e-90 9.82e-01 9.82e-01 1.00e-01 27 0.2 5.135e-03 1.006e+00 9.954e-01 5.13e-03 4.91e-91 9.82e-91 4.91e-91 9.90e-01 9.90e-01 1.00e-01 28 0.2 5.586e-04 1.001e+00 9.995e-01 5.59e-04 4.91e-91 9.82e-91 2.45e-90 9.98e-01 9.98e-01 1.00e-01 29 0.2 5.683e-05 1.000e+00 9.999e-01 5.68e-05 9.82e-91 1.96e-90 4.91e-91 1.00e+00 1.00e+00 1.00e-01 30 0.2 5.691e-06 1.000e+00 1.000e+00 5.69e-06 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 31 0.2 5.692e-07 1.000e+00 1.000e+00 5.69e-07 4.91e-91 9.82e-91 1.47e-90 1.00e+00 1.00e+00 1.00e-01 32 0.2 5.692e-08 1.000e+00 1.000e+00 5.69e-08 0.00e+00 1.96e-90 1.47e-90 1.00e+00 1.00e+00 1.00e-01 33 0.2 5.692e-09 1.000e+00 1.000e+00 5.69e-09 4.91e-91 1.96e-90 1.47e-90 1.00e+00 1.00e+00 1.00e-01 34 0.2 5.692e-10 1.000e+00 1.000e+00 5.69e-10 0.00e+00 9.82e-91 1.96e-90 1.00e+00 1.00e+00 1.00e-01 35 0.2 5.692e-11 1.000e+00 1.000e+00 5.69e-11 0.00e+00 1.96e-90 1.47e-90 1.00e+00 1.00e+00 1.00e-01 36 0.2 5.692e-12 1.000e+00 1.000e+00 5.69e-12 0.00e+00 9.82e-91 4.91e-91 1.00e+00 1.00e+00 1.00e-01 37 0.2 5.692e-13 1.000e+00 1.000e+00 5.69e-13 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 38 0.2 5.692e-14 1.000e+00 1.000e+00 5.69e-14 4.91e-91 1.96e-90 1.96e-90 1.00e+00 1.00e+00 1.00e-01 39 0.2 5.692e-15 1.000e+00 1.000e+00 5.69e-15 4.91e-91 9.82e-91 1.58e-91 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.214671 seconds (42.80 k allocations: 3.462 MiB, 73.53% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:1.0000000000000005691723278366416861879595763094229654106229723826343406620015981991860279658 Dual objective:0.99999999999999943082767216337127209759143460468258988906557772435476604996095098262648013301 Duality gap:5.6917232783663520704518407084868243898485833877975145389337569723019498653208233770743335244e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.9 1.000e+20 1.000e+00 7.000e+10 1.00e+00 1.00e+10 0.00e+00 7.05e+10 6.66e-01 6.95e-01 3.00e-01 2 0.9 4.559e+19 1.338e+10 7.193e+10 6.86e-01 3.34e+09 0.00e+00 2.15e+10 7.05e-01 7.53e-01 3.00e-01 3 0.9 1.822e+19 2.640e+10 9.901e+10 5.79e-01 9.85e+08 0.00e+00 5.31e+09 6.16e-01 7.88e-01 3.00e-01 4 0.9 8.970e+18 3.260e+10 1.789e+11 6.92e-01 3.78e+08 0.00e+00 1.12e+09 7.73e-01 1.00e+00 3.00e-01 5 0.9 3.189e+18 1.238e+10 3.561e+11 9.33e-01 8.58e+07 0.00e+00 2.35e-142 8.40e-01 1.00e+00 3.00e-01 6 1.0 8.172e+17 2.052e+09 5.731e+11 9.93e-01 1.37e+07 0.00e+00 1.91e-141 8.95e-01 1.00e+00 3.00e-01 7 1.0 1.367e+17 2.121e+08 9.202e+11 1.00e+00 1.44e+06 0.00e+00 9.07e-142 8.90e-01 1.00e+00 3.00e-01 8 1.0 2.412e+16 2.361e+07 1.476e+12 1.00e+00 1.58e+05 0.00e+00 1.48e-141 8.97e-01 1.00e+00 3.00e-01 9 1.0 3.957e+15 2.403e+06 2.364e+12 1.00e+00 1.62e+04 0.00e+00 1.41e-141 8.94e-01 1.00e+00 3.00e-01 10 1.0 6.738e+14 2.573e+05 3.785e+12 1.00e+00 1.73e+03 0.00e+00 4.90e-141 8.99e-01 1.00e+00 3.00e-01 11 1.0 1.095e+14 2.604e+04 6.056e+12 1.00e+00 1.75e+02 0.00e+00 5.26e-141 8.99e-01 1.00e+00 3.00e-01 12 1.1 1.816e+13 2.738e+03 9.636e+12 1.00e+00 1.76e+01 0.00e+00 6.48e-140 9.13e-01 1.00e+00 3.00e-01 13 1.1 3.342e+12 3.449e+02 1.456e+13 1.00e+00 1.53e+00 0.00e+00 4.38e-140 1.00e+00 1.00e+00 3.00e-01 14 1.1 1.007e+12 1.188e+02 1.410e+13 1.00e+00 2.86e-152 0.00e+00 4.02e-140 1.00e+00 1.00e+00 3.00e-01 15 1.1 3.022e+11 1.198e+02 4.231e+12 1.00e+00 9.55e-153 0.00e+00 8.71e-142 9.99e-01 9.99e-01 1.00e-01 16 1.1 3.062e+10 1.199e+02 4.287e+11 1.00e+00 9.55e-153 0.00e+00 5.98e-142 1.00e+00 1.00e+00 1.00e-01 17 1.1 3.063e+09 1.200e+02 4.288e+10 1.00e+00 9.55e-153 0.00e+00 4.33e-143 1.00e+00 1.00e+00 1.00e-01 18 1.1 3.063e+08 1.201e+02 4.288e+09 1.00e+00 9.55e-153 0.00e+00 1.70e-144 1.00e+00 1.00e+00 1.00e-01 19 1.2 3.063e+07 1.202e+02 4.289e+08 1.00e+00 4.77e-153 0.00e+00 1.02e-144 1.00e+00 1.00e+00 1.00e-01 20 1.2 3.064e+06 1.202e+02 4.289e+07 1.00e+00 9.55e-153 0.00e+00 1.52e-146 1.00e+00 1.00e+00 1.00e-01 21 1.2 3.064e+05 1.203e+02 4.290e+06 1.00e+00 9.55e-153 0.00e+00 7.47e-147 1.00e+00 1.00e+00 1.00e-01 22 1.2 3.065e+04 1.203e+02 4.293e+05 9.99e-01 9.55e-153 0.00e+00 2.57e-148 1.00e+00 1.00e+00 1.00e-01 23 1.2 3.075e+03 1.204e+02 4.317e+04 9.94e-01 2.39e-153 0.00e+00 8.82e-150 9.97e-01 9.97e-01 1.00e-01 24 1.2 3.167e+02 1.211e+02 4.554e+03 9.48e-01 9.55e-153 0.00e+00 3.15e-150 9.70e-01 9.70e-01 1.00e-01 25 1.2 4.021e+01 1.274e+02 6.904e+02 6.88e-01 9.55e-153 0.00e+00 2.95e-150 8.70e-01 8.70e-01 1.00e-01 26 1.2 8.743e+00 1.689e+02 2.913e+02 2.66e-01 1.91e-152 0.00e+00 1.08e-150 9.15e-01 9.15e-01 1.00e-01 27 1.3 1.547e+00 2.316e+02 2.532e+02 4.47e-02 5.73e-152 0.00e+00 1.49e-150 9.82e-01 9.82e-01 1.00e-01 28 1.3 1.800e-01 2.389e+02 2.414e+02 5.25e-03 1.91e-152 0.00e+00 1.33e-150 9.89e-01 9.89e-01 1.00e-01 29 1.3 1.986e-02 2.399e+02 2.401e+02 5.79e-04 1.91e-152 0.00e+00 9.25e-151 9.97e-01 9.97e-01 1.00e-01 30 1.3 2.030e-03 2.400e+02 2.400e+02 5.92e-05 1.91e-152 0.00e+00 9.70e-151 1.00e+00 1.00e+00 1.00e-01 31 1.3 2.034e-04 2.400e+02 2.400e+02 5.93e-06 1.91e-152 0.00e+00 1.57e-150 1.00e+00 1.00e+00 1.00e-01 32 1.3 2.035e-05 2.400e+02 2.400e+02 5.93e-07 1.91e-152 0.00e+00 1.11e-150 1.00e+00 1.00e+00 1.00e-01 33 1.3 2.035e-06 2.400e+02 2.400e+02 5.94e-08 3.82e-152 0.00e+00 5.54e-151 1.00e+00 1.00e+00 1.00e-01 34 1.4 2.035e-07 2.400e+02 2.400e+02 5.94e-09 1.91e-152 0.00e+00 5.86e-151 1.00e+00 1.00e+00 1.00e-01 35 1.4 2.035e-08 2.400e+02 2.400e+02 5.94e-10 1.91e-152 0.00e+00 1.40e-150 1.00e+00 1.00e+00 1.00e-01 36 1.4 2.036e-09 2.400e+02 2.400e+02 5.94e-11 1.91e-152 0.00e+00 5.92e-151 1.00e+00 1.00e+00 1.00e-01 37 1.4 2.036e-10 2.400e+02 2.400e+02 5.94e-12 1.91e-152 0.00e+00 3.16e-151 1.00e+00 1.00e+00 1.00e-01 38 1.4 2.036e-11 2.400e+02 2.400e+02 5.94e-13 1.91e-152 0.00e+00 1.58e-150 1.00e+00 1.00e+00 1.00e-01 39 1.4 2.036e-12 2.400e+02 2.400e+02 5.94e-14 1.91e-152 0.00e+00 3.01e-151 1.00e+00 1.00e+00 1.00e-01 40 1.4 2.036e-13 2.400e+02 2.400e+02 5.94e-15 3.82e-152 0.00e+00 2.06e-150 1.00e+00 1.00e+00 1.00e-01 41 1.5 2.037e-14 2.400e+02 2.400e+02 5.94e-16 1.91e-152 0.00e+00 2.86e-150 1.00e+00 1.00e+00 1.00e-01 42 1.5 2.037e-15 2.400e+02 2.400e+02 5.94e-17 1.91e-152 0.00e+00 7.39e-150 1.00e+00 1.00e+00 1.00e-01 43 1.5 2.037e-16 2.400e+02 2.400e+02 5.94e-18 1.91e-152 0.00e+00 1.00e-149 1.00e+00 1.00e+00 1.00e-01 44 1.5 2.037e-17 2.400e+02 2.400e+02 5.94e-19 1.91e-152 0.00e+00 1.70e-149 1.00e+00 1.00e+00 1.00e-01 45 1.5 2.037e-18 2.400e+02 2.400e+02 5.94e-20 1.91e-152 0.00e+00 3.65e-149 1.00e+00 1.00e+00 1.00e-01 46 1.5 2.038e-19 2.400e+02 2.400e+02 5.94e-21 1.91e-152 0.00e+00 1.27e-148 1.00e+00 1.00e+00 1.00e-01 47 1.5 2.038e-20 2.400e+02 2.400e+02 5.94e-22 1.91e-152 0.00e+00 1.25e-149 1.00e+00 1.00e+00 1.00e-01 48 1.5 2.038e-21 2.400e+02 2.400e+02 5.94e-23 9.55e-153 0.00e+00 2.80e-148 1.00e+00 1.00e+00 1.00e-01 49 1.6 2.038e-22 2.400e+02 2.400e+02 5.94e-24 1.91e-152 0.00e+00 6.69e-148 1.00e+00 1.00e+00 1.00e-01 50 1.6 2.038e-23 2.400e+02 2.400e+02 5.95e-25 1.91e-152 0.00e+00 1.16e-147 1.00e+00 1.00e+00 1.00e-01 51 1.6 2.039e-24 2.400e+02 2.400e+02 5.95e-26 3.82e-152 0.00e+00 7.99e-147 1.00e+00 1.00e+00 1.00e-01 52 1.6 2.039e-25 2.400e+02 2.400e+02 5.95e-27 1.91e-152 0.00e+00 2.44e-147 1.00e+00 1.00e+00 1.00e-01 53 1.6 2.039e-26 2.400e+02 2.400e+02 5.95e-28 1.91e-152 0.00e+00 1.82e-146 1.00e+00 1.00e+00 1.00e-01 54 1.6 2.039e-27 2.400e+02 2.400e+02 5.95e-29 1.91e-152 0.00e+00 1.56e-146 1.00e+00 1.00e+00 1.00e-01 55 1.6 2.039e-28 2.400e+02 2.400e+02 5.95e-30 1.91e-152 0.00e+00 6.25e-146 1.00e+00 1.00e+00 1.00e-01 56 1.7 2.040e-29 2.400e+02 2.400e+02 5.95e-31 1.91e-152 0.00e+00 7.59e-146 1.00e+00 1.00e+00 1.00e-01 57 1.7 2.040e-30 2.400e+02 2.400e+02 5.95e-32 1.91e-152 0.00e+00 4.21e-146 1.00e+00 1.00e+00 1.00e-01 58 1.7 2.040e-31 2.400e+02 2.400e+02 5.95e-33 1.91e-152 0.00e+00 1.99e-145 1.00e+00 1.00e+00 1.00e-01 59 1.7 2.040e-32 2.400e+02 2.400e+02 5.95e-34 1.91e-152 0.00e+00 7.90e-146 1.00e+00 1.00e+00 1.00e-01 60 1.7 2.040e-33 2.400e+02 2.400e+02 5.95e-35 1.91e-152 0.00e+00 3.21e-145 1.00e+00 1.00e+00 1.00e-01 61 1.7 2.041e-34 2.400e+02 2.400e+02 5.95e-36 1.91e-152 0.00e+00 5.00e-144 1.00e+00 1.00e+00 1.00e-01 62 1.7 2.041e-35 2.400e+02 2.400e+02 5.95e-37 9.55e-153 0.00e+00 4.60e-144 1.00e+00 1.00e+00 1.00e-01 63 1.8 2.041e-36 2.400e+02 2.400e+02 5.95e-38 1.91e-152 0.00e+00 1.01e-143 1.00e+00 1.00e+00 1.00e-01 64 1.8 2.041e-37 2.400e+02 2.400e+02 5.95e-39 1.91e-152 0.00e+00 3.80e-144 1.00e+00 1.00e+00 1.00e-01 65 1.8 2.041e-38 2.400e+02 2.400e+02 5.95e-40 3.82e-152 0.00e+00 5.14e-143 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 1.785727 seconds (1.04 M allocations: 61.062 MiB, 69.74% gc time, 0.67% compilation time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:239.999999999999999999999999999999999999985708200983780549367805596727945973782682191665667847728778968325248014949602805289765588518038214607057742520440526 Dual objective:240.000000000000000000000000000000000000014291799016219450632194403272054026217353047619032816341445522887318668827579839282580194176273958690662046794134548 Duality gap:5.95491625675810443008100136335584425722309499028436846097219886709805289124521497798848171939989747698552854461724359708777689819483214131787046220902434814e-41 ** Starting computation of basis transformations ** Block 0 of size 1 x 1 Block 0 has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block 5 of size 1 x 1 Block 2 of size 1 x 1 Block 4 of size 1 x 1 Block 1 of size 1 x 1 Block 6 of size 1 x 1 Block 3 of size 1 x 1 Block B of size 3 x 3 Block B has 2 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block A of size 4 x 4 Block A has 4 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 ** Finished computation of basis transformations (10.899061233s) ** ** Transforming the problem and the solution ** (6.2965152s) ** Projection the solution into the affine space ** Reducing the system from 7 columns to 7 columns Constructing the linear system... (8.278847714s) Preprocessing to get an integer system... (8.9179e-5s) Finding the pivots of A using RREF mod p... (0.000401166 8.9649e-5 s) Solving the system of size 7 x 7 using the pseudoinverse... 0.847894944s ** Finished projection into affine space (11.945529796s) ** ** Checking feasibility ** The slacks are satisfied (checked or ensured by solving the system) Checking sdp constraints done (0.191230258) [ Info: Creating the univariate constraint [ Info: Constructing trivariate constraint iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.4 1.000e+06 1.000e+00 5.001e+03 1.00e+00 1.00e+03 0.00e+00 3.99e+06 6.53e-01 5.28e-01 3.00e-01 2 0.6 5.015e+05 5.164e+02 3.088e+03 7.13e-01 3.47e+02 0.00e+00 1.88e+06 4.22e-01 6.07e-01 3.00e-01 3 0.9 3.499e+05 6.688e+02 8.065e+03 8.47e-01 2.00e+02 0.00e+00 7.40e+05 5.84e-01 4.21e-01 3.00e-01 4 1.2 2.030e+05 5.414e+02 1.758e+04 9.40e-01 8.32e+01 0.00e+00 4.29e+05 4.22e-01 9.53e-01 3.00e-01 5 1.4 1.588e+05 3.876e+02 6.630e+04 9.88e-01 4.81e+01 0.00e+00 2.00e+04 7.78e-01 1.00e+00 3.00e-01 6 1.7 5.705e+04 1.104e+02 1.123e+05 9.98e-01 1.07e+01 0.00e+00 5.41e-67 8.24e-01 1.00e+00 3.00e-01 7 1.9 1.728e+04 2.822e+01 1.690e+05 1.00e+00 1.88e+00 0.00e+00 2.25e-67 8.75e-01 1.00e+00 3.00e-01 8 2.2 4.993e+03 1.126e+01 1.883e+05 1.00e+00 2.35e-01 0.00e+00 2.12e-66 8.48e-01 9.86e-01 3.00e-01 9 2.4 1.681e+03 9.036e+00 9.790e+04 1.00e+00 3.57e-02 0.00e+00 1.20e-66 8.19e-01 1.00e+00 3.00e-01 10 2.7 5.450e+02 8.700e+00 3.672e+04 1.00e+00 6.44e-03 0.00e+00 1.13e-66 8.33e-01 1.00e+00 3.00e-01 11 3.0 1.723e+02 8.588e+00 1.271e+04 9.99e-01 1.08e-03 0.00e+00 4.82e-67 1.00e+00 1.00e+00 3.00e-01 12 3.2 5.146e+01 8.519e+00 4.074e+03 9.96e-01 2.17e-73 0.00e+00 1.70e-67 1.00e+00 1.00e+00 3.00e-01 13 3.5 1.544e+01 8.502e+00 1.228e+03 9.86e-01 1.81e-73 0.00e+00 9.70e-69 9.92e-01 9.92e-01 1.00e-01 14 3.7 1.654e+00 8.507e+00 1.392e+02 8.85e-01 2.74e-73 0.00e+00 1.84e-69 9.78e-01 9.78e-01 1.00e-01 15 4.0 1.981e-01 8.562e+00 2.421e+01 4.77e-01 2.81e-73 0.00e+00 1.37e-69 8.60e-01 8.60e-01 1.00e-01 16 4.3 4.484e-02 8.877e+00 1.242e+01 1.66e-01 1.34e-73 0.00e+00 1.06e-69 8.02e-01 8.02e-01 1.00e-01 17 4.5 1.245e-02 9.486e+00 1.047e+01 4.93e-02 1.84e-73 0.00e+00 1.04e-69 7.62e-01 7.62e-01 1.00e-01 18 4.8 3.917e-03 9.841e+00 1.015e+01 1.55e-02 3.38e-73 0.00e+00 4.32e-70 7.52e-01 7.52e-01 1.00e-01 19 5.0 1.267e-03 9.941e+00 1.004e+01 5.01e-03 1.68e-73 0.00e+00 4.26e-70 8.14e-01 8.14e-01 1.00e-01 20 5.3 3.392e-04 9.983e+00 1.001e+01 1.34e-03 1.05e-73 0.00e+00 2.20e-70 7.89e-01 7.89e-01 1.00e-01 21 5.6 9.835e-05 9.995e+00 1.000e+01 3.89e-04 2.27e-73 0.00e+00 9.72e-71 9.42e-01 9.42e-01 1.00e-01 22 5.8 1.496e-05 9.999e+00 1.000e+01 5.91e-05 2.89e-73 0.00e+00 1.47e-70 9.79e-01 9.79e-01 1.00e-01 23 6.1 1.780e-06 1.000e+01 1.000e+01 7.03e-06 6.78e-73 0.00e+00 7.93e-71 9.89e-01 9.89e-01 1.00e-01 24 6.4 1.951e-07 1.000e+01 1.000e+01 7.71e-07 3.34e-73 0.00e+00 1.84e-70 9.97e-01 9.97e-01 1.00e-01 25 6.7 2.009e-08 1.000e+01 1.000e+01 7.94e-08 4.62e-73 0.00e+00 1.18e-70 1.00e+00 1.00e+00 1.00e-01 26 6.9 2.016e-09 1.000e+01 1.000e+01 7.96e-09 2.06e-73 0.00e+00 4.67e-70 1.00e+00 1.00e+00 1.00e-01 27 7.2 2.017e-10 1.000e+01 1.000e+01 7.97e-10 1.93e-73 0.00e+00 5.23e-70 1.00e+00 1.00e+00 1.00e-01 28 7.4 2.017e-11 1.000e+01 1.000e+01 7.97e-11 1.80e-73 0.00e+00 1.20e-70 1.00e+00 1.00e+00 1.00e-01 29 7.7 2.017e-12 1.000e+01 1.000e+01 7.97e-12 5.51e-73 0.00e+00 3.24e-70 1.00e+00 1.00e+00 1.00e-01 30 8.0 2.018e-13 1.000e+01 1.000e+01 7.97e-13 5.25e-73 0.00e+00 2.81e-70 1.00e+00 1.00e+00 1.00e-01 31 8.2 2.018e-14 1.000e+01 1.000e+01 7.97e-14 4.14e-73 0.00e+00 2.01e-70 1.00e+00 1.00e+00 1.00e-01 32 8.5 2.018e-15 1.000e+01 1.000e+01 7.97e-15 5.34e-73 0.00e+00 1.12e-70 1.00e+00 1.00e+00 1.00e-01 33 8.7 2.018e-16 1.000e+01 1.000e+01 7.97e-16 2.40e-73 0.00e+00 1.69e-70 1.00e+00 1.00e+00 1.00e-01 34 9.0 2.018e-17 1.000e+01 1.000e+01 7.97e-17 2.50e-73 0.00e+00 1.96e-70 1.00e+00 1.00e+00 1.00e-01 35 9.3 2.019e-18 1.000e+01 1.000e+01 7.97e-18 2.32e-73 0.00e+00 4.18e-70 1.00e+00 1.00e+00 1.00e-01 36 9.5 2.019e-19 1.000e+01 1.000e+01 7.97e-19 1.67e-73 0.00e+00 6.17e-70 1.00e+00 1.00e+00 1.00e-01 37 9.8 2.019e-20 1.000e+01 1.000e+01 7.98e-20 7.29e-73 0.00e+00 2.57e-69 1.00e+00 1.00e+00 1.00e-01 38 10.0 2.019e-21 1.000e+01 1.000e+01 7.98e-21 2.40e-73 0.00e+00 1.54e-69 1.00e+00 1.00e+00 1.00e-01 39 10.3 2.019e-22 1.000e+01 1.000e+01 7.98e-22 2.94e-73 0.00e+00 8.30e-69 1.00e+00 1.00e+00 1.00e-01 40 10.5 2.020e-23 1.000e+01 1.000e+01 7.98e-23 3.31e-73 0.00e+00 2.45e-68 1.00e+00 1.00e+00 1.00e-01 41 10.8 2.020e-24 1.000e+01 1.000e+01 7.98e-24 2.07e-73 0.00e+00 1.19e-68 1.00e+00 1.00e+00 1.00e-01 42 11.1 2.020e-25 1.000e+01 1.000e+01 7.98e-25 3.22e-73 0.00e+00 3.93e-68 1.00e+00 1.00e+00 1.00e-01 43 11.3 2.020e-26 1.000e+01 1.000e+01 7.98e-26 4.11e-73 0.00e+00 4.91e-68 1.00e+00 1.00e+00 1.00e-01 44 11.6 2.020e-27 1.000e+01 1.000e+01 7.98e-27 4.49e-73 0.00e+00 6.62e-68 1.00e+00 1.00e+00 1.00e-01 45 11.8 2.021e-28 1.000e+01 1.000e+01 7.98e-28 4.59e-73 0.00e+00 2.15e-67 1.00e+00 1.00e+00 1.00e-01 46 12.1 2.021e-29 1.000e+01 1.000e+01 7.98e-29 3.99e-73 0.00e+00 1.41e-66 1.00e+00 1.00e+00 1.00e-01 47 12.3 2.021e-30 1.000e+01 1.000e+01 7.98e-30 4.55e-73 0.00e+00 1.68e-66 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 12.354971 seconds (21.28 M allocations: 1.252 GiB, 10.94% gc time, 0.17% compilation time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:9.999999999999999999999999999988680845960537105239762720542034640630029096842082 Dual objective:10.00000000000000000000000000000464893826620797463366888265772922163856296418307 Duality gap:7.98404615283543469695308105784995326979608557945816996746307753735272828661533e-31 ** Starting computation of basis transformations ** Block (:trivariatesos, 2, 2) of size 1 x 1 Block (:F, 4) of size 1 x 1 Block (:F, 4) has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block (:trivariatesos, 4, 3) of size 1 x 1 Block (:trivariatesos, 4, 1) of size 2 x 2 Block (:trivariatesos, 1, 2) of size 2 x 2 Block (:F, 3) of size 2 x 2 Block (:F, 3) has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block (:trivariatesos, 3, 3) of size 3 x 3 Block (:trivariatesos, 3, 3) has 1 kernel vectors. The maximum numerator and denominator are 7 and 6 After reduction, the maximum number of the basis transformation matrix is 7 Block (:F, 2) of size 3 x 3 Block (:F, 2) has 1 kernel vectors. The maximum numerator and denominator are 1 and 2 After reduction, the maximum number of the basis transformation matrix is 2 Block (:trivariatesos, 5, 3) of size 3 x 3 Block (:trivariatesos, 5, 3) has 2 kernel vectors. The maximum numerator and denominator are 1 and 2 After reduction, the maximum number of the basis transformation matrix is 2 Block (:trivariatesos, 3, 1) of size 4 x 4 Block (:trivariatesos, 3, 1) has 1 kernel vectors. The maximum numerator and denominator are 49 and 36 After reduction, the maximum number of the basis transformation matrix is 49 Block (:univariatesos, 2) of size 4 x 4 Block (:univariatesos, 2) has 1 kernel vectors. The maximum numerator and denominator are 22 and 27 After reduction, the maximum number of the basis transformation matrix is 27 Block (:trivariatesos, 5, 1) of size 4 x 4 Block (:trivariatesos, 5, 1) has 3 kernel vectors. The maximum numerator and denominator are 1 and 6 After reduction, the maximum number of the basis transformation matrix is 3 Block (:F, 1) of size 4 x 4 Block (:F, 0) of size 5 x 5 Block (:F, 0) has 1 kernel vectors. The maximum numerator and denominator are 23 and 144 After reduction, the maximum number of the basis transformation matrix is 144 Block (:univariatesos, 1) of size 5 x 5 Block (:univariatesos, 1) has 2 kernel vectors. The maximum numerator and denominator are 35 and 81 After reduction, the maximum number of the basis transformation matrix is 81 Block (:trivariatesos, 2, 3) of size 6 x 6 Block (:trivariatesos, 2, 3) has 2 kernel vectors. The maximum numerator and denominator are 13 and 36 After reduction, the maximum number of the basis transformation matrix is 36 Block (:trivariatesos, 2, 1) of size 7 x 7 Block (:trivariatesos, 2, 1) has 2 kernel vectors. The maximum numerator and denominator are 67 and 36 After reduction, the maximum number of the basis transformation matrix is 66 Block (:trivariatesos, 1, 3) of size 11 x 11 Block (:trivariatesos, 1, 3) has 2 kernel vectors. The maximum numerator and denominator are 67 and 72 After reduction, the maximum number of the basis transformation matrix is 72 Block (:trivariatesos, 1, 1) of size 11 x 11 Block (:trivariatesos, 1, 1) has 3 kernel vectors. The maximum numerator and denominator are 49 and 432 After reduction, the maximum number of the basis transformation matrix is 432 ** Finished computation of basis transformations (7.379940043s) ** ** Transforming the problem and the solution ** (1.614138174s) ** Projection the solution into the affine space ** Reducing the system from 161 columns to 161 columns Constructing the linear system... (2.98299312s) Preprocessing to get an integer system... (0.021168472s) Finding the pivots of A using RREF mod p... (0.018801848 0.012923041 s) Solving the system of size 50 x 52 using the pseudoinverse... 0.301670365s ** Finished projection into affine space (4.590967357s) ** ** Checking feasibility ** The slacks are satisfied (checked or ensured by solving the system) Checking sdp constraints done (0.296108765) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.2 1.000e+20 1.000e+00 1.900e+11 1.00e+00 1.00e+10 0.00e+00 2.18e+11 3.69e-01 5.95e-01 3.00e-01 2 0.2 6.494e+19 1.223e+10 1.739e+11 8.69e-01 6.31e+09 0.00e+00 8.84e+10 7.31e-01 6.03e-01 3.00e-01 3 0.3 2.817e+19 3.102e+10 2.208e+11 7.54e-01 1.70e+09 0.00e+00 3.51e+10 6.85e-01 7.10e-01 3.00e-01 4 0.3 1.230e+19 3.546e+10 3.600e+11 8.21e-01 5.34e+08 0.00e+00 1.02e+10 5.57e-01 1.00e+00 3.00e-01 5 0.3 8.216e+18 2.178e+10 8.065e+11 9.47e-01 2.37e+08 0.00e+00 1.18e-78 7.69e-01 1.00e+00 3.00e-01 6 0.4 3.035e+18 5.560e+09 1.290e+12 9.91e-01 5.47e+07 0.00e+00 2.56e-77 8.01e-01 1.00e+00 3.00e-01 7 0.4 9.665e+17 1.150e+09 2.064e+12 9.99e-01 1.09e+07 0.00e+00 4.20e-77 8.65e-01 1.00e+00 3.00e-01 8 0.5 2.092e+17 1.573e+08 3.302e+12 1.00e+00 1.47e+06 0.00e+00 1.29e-76 8.98e-01 1.00e+00 3.00e-01 9 0.6 3.428e+16 1.603e+07 5.284e+12 1.00e+00 1.51e+05 0.00e+00 3.04e-76 8.88e-01 1.00e+00 3.00e-01 10 0.6 6.127e+15 1.797e+06 8.453e+12 1.00e+00 1.68e+04 0.00e+00 5.02e-77 8.99e-01 1.00e+00 3.00e-01 11 0.7 9.935e+14 1.816e+05 1.352e+13 1.00e+00 1.71e+03 0.00e+00 2.58e-76 8.93e-01 1.00e+00 3.00e-01 12 0.7 1.699e+14 1.946e+04 2.163e+13 1.00e+00 1.82e+02 0.00e+00 5.01e-76 9.00e-01 1.00e+00 3.00e-01 13 0.7 2.794e+13 2.009e+03 3.442e+13 1.00e+00 1.82e+01 0.00e+00 3.27e-76 8.98e-01 1.00e+00 3.00e-01 14 0.8 5.597e+12 2.662e+02 5.231e+13 1.00e+00 1.86e+00 0.00e+00 2.76e-75 8.79e-01 1.00e+00 3.00e-01 15 0.8 2.030e+12 9.171e+01 5.562e+13 1.00e+00 2.25e-01 0.00e+00 2.50e-75 7.97e-01 1.00e+00 3.00e-01 16 0.9 7.056e+11 7.350e+01 2.417e+13 1.00e+00 4.58e-02 0.00e+00 1.50e-75 8.24e-01 1.00e+00 3.00e-01 17 0.9 2.136e+11 7.073e+01 7.703e+12 1.00e+00 8.06e-03 0.00e+00 2.88e-76 1.00e+00 1.00e+00 3.00e-01 18 1.0 6.305e+10 6.979e+01 2.396e+12 1.00e+00 3.14e-89 0.00e+00 6.67e-76 1.00e+00 1.00e+00 3.00e-01 19 1.0 1.891e+10 6.985e+01 7.188e+11 1.00e+00 3.14e-89 0.00e+00 5.94e-75 9.94e-01 9.94e-01 1.00e-01 20 1.1 1.996e+09 6.986e+01 7.583e+10 1.00e+00 6.28e-89 0.00e+00 3.72e-76 1.00e+00 1.00e+00 1.00e-01 21 1.1 2.003e+08 6.986e+01 7.613e+09 1.00e+00 6.28e-89 0.00e+00 1.30e-77 1.00e+00 1.00e+00 1.00e-01 22 1.2 2.005e+07 6.987e+01 7.619e+08 1.00e+00 6.28e-89 0.00e+00 1.09e-78 1.00e+00 1.00e+00 1.00e-01 23 1.2 2.005e+06 6.987e+01 7.619e+07 1.00e+00 6.28e-89 0.00e+00 2.81e-80 1.00e+00 1.00e+00 1.00e-01 24 1.3 2.005e+05 6.988e+01 7.620e+06 1.00e+00 6.28e-89 0.00e+00 8.85e-81 1.00e+00 1.00e+00 1.00e-01 25 1.3 2.006e+04 6.988e+01 7.622e+05 1.00e+00 3.14e-89 0.00e+00 8.91e-82 1.00e+00 1.00e+00 1.00e-01 26 1.4 2.008e+03 6.989e+01 7.636e+04 9.98e-01 3.14e-89 0.00e+00 1.26e-82 9.99e-01 9.99e-01 1.00e-01 27 1.5 2.026e+02 6.998e+01 7.769e+03 9.82e-01 6.28e-89 0.00e+00 8.02e-84 9.90e-01 9.90e-01 1.00e-01 28 1.5 2.205e+01 7.086e+01 9.089e+02 8.55e-01 3.14e-89 0.00e+00 1.92e-84 9.26e-01 9.26e-01 1.00e-01 29 1.6 3.667e+00 7.788e+01 2.172e+02 4.72e-01 3.14e-89 0.00e+00 1.01e-83 8.10e-01 8.10e-01 1.00e-01 30 1.6 9.926e-01 1.015e+02 1.392e+02 1.57e-01 6.28e-89 0.00e+00 2.27e-84 6.72e-01 6.72e-01 1.00e-01 31 1.7 3.920e-01 1.120e+02 1.269e+02 6.23e-02 3.14e-89 0.00e+00 2.69e-84 8.04e-01 8.04e-01 1.00e-01 32 1.7 1.082e-01 1.179e+02 1.220e+02 1.71e-02 6.28e-89 0.00e+00 3.52e-84 8.72e-01 8.72e-01 1.00e-01 33 1.8 2.331e-02 1.195e+02 1.204e+02 3.69e-03 6.28e-89 0.00e+00 7.19e-84 9.67e-01 9.67e-01 1.00e-01 34 1.8 3.027e-03 1.199e+02 1.201e+02 4.79e-04 6.28e-89 0.00e+00 3.87e-85 9.83e-01 9.83e-01 1.00e-01 35 1.9 3.478e-04 1.200e+02 1.200e+02 5.51e-05 3.14e-89 0.00e+00 1.73e-84 9.94e-01 9.94e-01 1.00e-01 36 1.9 3.681e-05 1.200e+02 1.200e+02 5.83e-06 6.28e-89 0.00e+00 4.45e-84 9.99e-01 9.99e-01 1.00e-01 37 2.0 3.725e-06 1.200e+02 1.200e+02 5.90e-07 2.51e-88 0.00e+00 2.64e-84 1.00e+00 1.00e+00 1.00e-01 38 2.0 3.731e-07 1.200e+02 1.200e+02 5.91e-08 1.26e-88 0.00e+00 2.28e-84 1.00e+00 1.00e+00 1.00e-01 39 2.1 3.732e-08 1.200e+02 1.200e+02 5.91e-09 6.28e-89 0.00e+00 3.88e-84 1.00e+00 1.00e+00 1.00e-01 40 2.1 3.733e-09 1.200e+02 1.200e+02 5.91e-10 6.28e-89 0.00e+00 5.19e-85 1.00e+00 1.00e+00 1.00e-01 41 2.2 3.733e-10 1.200e+02 1.200e+02 5.91e-11 6.28e-89 0.00e+00 7.69e-85 1.00e+00 1.00e+00 1.00e-01 42 2.3 3.733e-11 1.200e+02 1.200e+02 5.91e-12 6.28e-89 0.00e+00 2.83e-84 1.00e+00 1.00e+00 1.00e-01 43 2.3 3.734e-12 1.200e+02 1.200e+02 5.91e-13 1.26e-88 0.00e+00 2.19e-84 1.00e+00 1.00e+00 1.00e-01 44 2.4 3.734e-13 1.200e+02 1.200e+02 5.91e-14 1.26e-88 0.00e+00 2.34e-84 1.00e+00 1.00e+00 1.00e-01 45 2.4 3.735e-14 1.200e+02 1.200e+02 5.91e-15 6.28e-89 0.00e+00 2.09e-84 1.00e+00 1.00e+00 1.00e-01 46 2.5 3.735e-15 1.200e+02 1.200e+02 5.91e-16 1.26e-88 0.00e+00 3.60e-83 1.00e+00 1.00e+00 1.00e-01 47 2.5 3.735e-16 1.200e+02 1.200e+02 5.91e-17 1.89e-88 0.00e+00 2.52e-83 1.00e+00 1.00e+00 1.00e-01 48 2.6 3.736e-17 1.200e+02 1.200e+02 5.91e-18 6.28e-89 0.00e+00 1.22e-82 1.00e+00 1.00e+00 1.00e-01 49 2.7 3.736e-18 1.200e+02 1.200e+02 5.92e-19 6.28e-89 0.00e+00 2.70e-82 1.00e+00 1.00e+00 1.00e-01 50 2.7 3.736e-19 1.200e+02 1.200e+02 5.92e-20 6.28e-89 0.00e+00 2.80e-82 1.00e+00 1.00e+00 1.00e-01 51 2.8 3.737e-20 1.200e+02 1.200e+02 5.92e-21 6.28e-89 0.00e+00 2.21e-82 1.00e+00 1.00e+00 1.00e-01 52 2.8 3.737e-21 1.200e+02 1.200e+02 5.92e-22 1.26e-88 0.00e+00 1.11e-81 1.00e+00 1.00e+00 1.00e-01 53 2.9 3.737e-22 1.200e+02 1.200e+02 5.92e-23 3.14e-89 0.00e+00 1.01e-81 1.00e+00 1.00e+00 1.00e-01 54 2.9 3.738e-23 1.200e+02 1.200e+02 5.92e-24 6.28e-89 0.00e+00 1.80e-81 1.00e+00 1.00e+00 1.00e-01 55 3.0 3.738e-24 1.200e+02 1.200e+02 5.92e-25 6.28e-89 0.00e+00 6.41e-81 1.00e+00 1.00e+00 1.00e-01 56 3.0 3.739e-25 1.200e+02 1.200e+02 5.92e-26 6.28e-89 0.00e+00 1.31e-80 1.00e+00 1.00e+00 1.00e-01 57 3.1 3.739e-26 1.200e+02 1.200e+02 5.92e-27 6.28e-89 0.00e+00 8.39e-81 1.00e+00 1.00e+00 1.00e-01 58 3.2 3.739e-27 1.200e+02 1.200e+02 5.92e-28 3.14e-89 0.00e+00 4.75e-80 1.00e+00 1.00e+00 1.00e-01 59 3.2 3.740e-28 1.200e+02 1.200e+02 5.92e-29 6.28e-89 0.00e+00 1.44e-79 1.00e+00 1.00e+00 1.00e-01 60 3.3 3.740e-29 1.200e+02 1.200e+02 5.92e-30 6.28e-89 0.00e+00 2.67e-79 1.00e+00 1.00e+00 1.00e-01 61 3.3 3.740e-30 1.200e+02 1.200e+02 5.92e-31 1.26e-88 0.00e+00 2.15e-79 1.00e+00 1.00e+00 1.00e-01 62 3.4 3.741e-31 1.200e+02 1.200e+02 5.92e-32 6.28e-89 0.00e+00 6.15e-79 1.00e+00 1.00e+00 1.00e-01 63 3.4 3.741e-32 1.200e+02 1.200e+02 5.92e-33 6.28e-89 0.00e+00 2.36e-78 1.00e+00 1.00e+00 1.00e-01 64 3.5 3.742e-33 1.200e+02 1.200e+02 5.92e-34 6.28e-89 0.00e+00 3.27e-78 1.00e+00 1.00e+00 1.00e-01 65 3.5 3.742e-34 1.200e+02 1.200e+02 5.92e-35 1.26e-88 0.00e+00 8.89e-79 1.00e+00 1.00e+00 1.00e-01 66 3.6 3.742e-35 1.200e+02 1.200e+02 5.93e-36 6.28e-89 0.00e+00 1.36e-77 1.00e+00 1.00e+00 1.00e-01 67 3.7 3.743e-36 1.200e+02 1.200e+02 5.93e-37 6.28e-89 0.00e+00 9.99e-78 1.00e+00 1.00e+00 1.00e-01 68 3.7 3.743e-37 1.200e+02 1.200e+02 5.93e-38 6.28e-89 0.00e+00 4.21e-77 1.00e+00 1.00e+00 1.00e-01 69 3.8 3.743e-38 1.200e+02 1.200e+02 5.93e-39 3.14e-89 0.00e+00 1.73e-76 1.00e+00 1.00e+00 1.00e-01 70 3.8 3.744e-39 1.200e+02 1.200e+02 5.93e-40 3.14e-89 0.00e+00 1.54e-76 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 3.832457 seconds (7.94 M allocations: 469.227 MiB, 25.33% gc time, 0.98% compilation time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:119.9999999999999999999999999999999999999917627071459420465498830738291365255687525220985538 Dual objective:120.00000000000000000000000000000000000000599075843931487523644867357880979958641927278708336 Duality gap:5.9283547055720119527356665623638641740278682796076042096053214014331035991058062231162635603e-41 Rounding: Error During Test at /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:69 Test threw exception Expression: begin #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:70 =# (N2, gapprox2) = find_field(primalsol, dualsol) #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:72 =# ginfield = to_field(gapprox, N2, gapprox2) #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:73 =# gapprox3 = generic_embedding(ginfield, gapprox2) #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:74 =# abs(gapprox3 - gapprox) < 1.0e-10 end MethodError: no method matching svd!(::Matrix{BigFloat}; full::Bool, alg::LinearAlgebra.DivideAndConquer, atol::Int64, rtol::Int64) This method does not support all of the given keyword arguments (and may not support any). Closest candidates are: svd!(::StridedMatrix{T}; tol, full, alg) where T got unsupported keyword arguments "atol", "rtol" @ GenericLinearAlgebra ~/.julia/packages/GenericLinearAlgebra/jlOvW/src/svd.jl:635 svd!(!Matched::LinearAlgebra.Bidiagonal{var"#s5131", V} where {var"#s5131"<:Union{Float32, Float64}, V<:AbstractVector{var"#s5131"}}; full) got unsupported keyword arguments "alg", "atol", "rtol" @ LinearAlgebra /opt/julia/share/julia/stdlib/v1.13/LinearAlgebra/src/bidiag.jl:268 svd!(!Matched::LinearAlgebra.Bidiagonal{T, V} where V<:AbstractVector{T}; tol, full, alg) where T<:Real got unsupported keyword arguments "atol", "rtol" @ GenericLinearAlgebra ~/.julia/packages/GenericLinearAlgebra/jlOvW/src/svd.jl:595 ... Stacktrace: [1] kwerr(::@NamedTuple{full::Bool, alg::LinearAlgebra.DivideAndConquer, atol::Int64, rtol::Int64}, ::Function, ::Matrix{BigFloat}) @ Base ./error.jl:175 [2] kwcall(::@NamedTuple{full::Bool, alg::LinearAlgebra.DivideAndConquer, atol::Int64, rtol::Int64}, ::typeof(LinearAlgebra.svd!), A::Matrix{BigFloat}) @ GenericLinearAlgebra ~/.julia/packages/GenericLinearAlgebra/jlOvW/src/svd.jl:635 [3] svd(A::Matrix{BigFloat}; full::Bool, alg::LinearAlgebra.DivideAndConquer, atol::Int64, rtol::Int64) @ LinearAlgebra /opt/julia/share/julia/stdlib/v1.13/LinearAlgebra/src/svd.jl:194 [4] svd(A::Matrix{BigFloat}) @ LinearAlgebra /opt/julia/share/julia/stdlib/v1.13/LinearAlgebra/src/svd.jl:193 [5] select_vals(primalsol::PrimalSolution{BigFloat}, dualsol::DualSolution{BigFloat}, max_d::Int64; valbound::Float64, errbound::Float64, bits::Int64, max_coeff::Int64, sizebound::Int64) @ ClusteredLowRankSolver ~/.julia/packages/ClusteredLowRankSolver/jpKRz/src/find_field.jl:6 [6] select_vals @ ~/.julia/packages/ClusteredLowRankSolver/jpKRz/src/find_field.jl:1 [inlined] [7] #find_field#1003 @ ~/.julia/packages/ClusteredLowRankSolver/jpKRz/src/find_field.jl:96 [inlined] [8] find_field @ ~/.julia/packages/ClusteredLowRankSolver/jpKRz/src/find_field.jl:95 [inlined] [9] find_field(primalsol::PrimalSolution{BigFloat}, dualsol::DualSolution{BigFloat}) @ ClusteredLowRankSolver ~/.julia/packages/ClusteredLowRankSolver/jpKRz/src/find_field.jl:95 [10] top-level scope @ ~/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:7 [11] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] [12] macro expansion @ ~/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:53 [inlined] [13] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] [14] macro expansion @ ~/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:69 [inlined] [15] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:748 [inlined] [16] macro expansion @ ~/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:70 [inlined] ** Starting computation of basis transformations ** Block 14 of size 1 x 1 Block 11 of size 1 x 1 Block 0 of size 1 x 1 Block 0 has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block 8 of size 1 x 1 Block 5 of size 1 x 1 Block 16 of size 1 x 1 Block 2 of size 1 x 1 Block 13 of size 1 x 1 Block 10 of size 1 x 1 Block 7 of size 1 x 1 Block 18 of size 1 x 1 Block 15 of size 1 x 1 Block 4 of size 1 x 1 Block 1 of size 1 x 1 Block 12 of size 1 x 1 Block 12 has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block 9 of size 1 x 1 Block 6 of size 1 x 1 Block 17 of size 1 x 1 Block 3 of size 1 x 1 Block B of size 9 x 9 Block B has 6 kernel vectors. The maximum numerator and denominator are 18 and 2 After reduction, the maximum number of the basis transformation matrix is 10 Block A of size 10 x 10 Block A has 8 kernel vectors. The maximum numerator and denominator are 12 and 1 After reduction, the maximum number of the basis transformation matrix is 1 ** Finished computation of basis transformations (8.807170736s) ** ** Transforming the problem and the solution ** (2.876742677s) ** Projection the solution into the affine space ** Reducing the system from 26 columns to 26 columns Constructing the linear system... (2.175950493s) Computing an approximate solution in the extension field... (0.738895637s) Preprocessing to get an integer system... (0.006622348s) Finding the pivots of A using RREF mod p... (0.003657741 0.003917248 s) Solving the system of size 38 x 40 using the pseudoinverse... 0.024599374s ** Finished projection into affine space (4.976727582s) ** ** Checking feasibility ** The slacks are satisfied (checked or ensured by solving the system) Checking sdp constraints done (0.222644988) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.1 1.000e+20 1.000e+00 7.000e+10 1.00e+00 1.00e+10 0.00e+00 7.05e+10 6.66e-01 6.95e-01 3.00e-01 2 0.2 4.559e+19 1.338e+10 7.193e+10 6.86e-01 3.34e+09 0.00e+00 2.15e+10 7.05e-01 7.53e-01 3.00e-01 3 0.2 1.822e+19 2.640e+10 9.901e+10 5.79e-01 9.85e+08 0.00e+00 5.31e+09 6.16e-01 7.88e-01 3.00e-01 4 0.2 8.970e+18 3.260e+10 1.789e+11 6.92e-01 3.78e+08 0.00e+00 1.12e+09 7.73e-01 1.00e+00 3.00e-01 5 0.2 3.189e+18 1.238e+10 3.561e+11 9.33e-01 8.58e+07 0.00e+00 6.29e-143 8.40e-01 1.00e+00 3.00e-01 6 0.2 8.172e+17 2.052e+09 5.731e+11 9.93e-01 1.37e+07 0.00e+00 3.51e-141 8.95e-01 1.00e+00 3.00e-01 7 0.3 1.367e+17 2.121e+08 9.202e+11 1.00e+00 1.44e+06 0.00e+00 1.74e-141 8.90e-01 1.00e+00 3.00e-01 8 0.3 2.412e+16 2.361e+07 1.476e+12 1.00e+00 1.58e+05 0.00e+00 4.56e-141 8.97e-01 1.00e+00 3.00e-01 9 0.3 3.957e+15 2.403e+06 2.364e+12 1.00e+00 1.62e+04 0.00e+00 1.45e-141 8.94e-01 1.00e+00 3.00e-01 10 0.3 6.738e+14 2.573e+05 3.785e+12 1.00e+00 1.73e+03 0.00e+00 2.08e-141 8.99e-01 1.00e+00 3.00e-01 11 0.3 1.095e+14 2.604e+04 6.056e+12 1.00e+00 1.75e+02 0.00e+00 1.00e-140 8.99e-01 1.00e+00 3.00e-01 12 0.3 1.816e+13 2.738e+03 9.636e+12 1.00e+00 1.76e+01 0.00e+00 1.05e-140 9.13e-01 1.00e+00 3.00e-01 13 0.4 3.342e+12 3.449e+02 1.456e+13 1.00e+00 1.53e+00 0.00e+00 2.80e-140 1.00e+00 1.00e+00 3.00e-01 14 0.4 1.007e+12 1.188e+02 1.410e+13 1.00e+00 3.82e-152 0.00e+00 4.09e-141 1.00e+00 1.00e+00 3.00e-01 15 0.4 3.022e+11 1.198e+02 4.231e+12 1.00e+00 9.55e-153 0.00e+00 2.16e-141 9.99e-01 9.99e-01 1.00e-01 16 0.4 3.062e+10 1.199e+02 4.287e+11 1.00e+00 9.55e-153 0.00e+00 2.36e-142 1.00e+00 1.00e+00 1.00e-01 17 0.4 3.063e+09 1.200e+02 4.288e+10 1.00e+00 9.55e-153 0.00e+00 2.11e-143 1.00e+00 1.00e+00 1.00e-01 18 0.4 3.063e+08 1.201e+02 4.288e+09 1.00e+00 1.91e-152 0.00e+00 2.53e-144 1.00e+00 1.00e+00 1.00e-01 19 0.5 3.063e+07 1.202e+02 4.289e+08 1.00e+00 1.91e-152 0.00e+00 4.69e-145 1.00e+00 1.00e+00 1.00e-01 20 0.5 3.064e+06 1.202e+02 4.289e+07 1.00e+00 9.55e-153 0.00e+00 2.34e-146 1.00e+00 1.00e+00 1.00e-01 21 0.5 3.064e+05 1.203e+02 4.290e+06 1.00e+00 9.55e-153 0.00e+00 1.89e-147 1.00e+00 1.00e+00 1.00e-01 22 0.5 3.065e+04 1.203e+02 4.292e+05 9.99e-01 9.55e-153 0.00e+00 2.69e-148 1.00e+00 1.00e+00 1.00e-01 23 0.5 3.075e+03 1.204e+02 4.317e+04 9.94e-01 1.91e-152 0.00e+00 6.93e-149 9.97e-01 9.97e-01 1.00e-01 24 0.5 3.166e+02 1.211e+02 4.554e+03 9.48e-01 9.55e-153 0.00e+00 6.31e-150 9.70e-01 9.70e-01 1.00e-01 25 0.5 4.021e+01 1.274e+02 6.904e+02 6.88e-01 9.55e-153 0.00e+00 3.56e-150 8.70e-01 8.70e-01 1.00e-01 26 0.6 8.743e+00 1.689e+02 2.913e+02 2.66e-01 9.55e-153 0.00e+00 1.43e-150 9.15e-01 9.15e-01 1.00e-01 27 0.6 1.547e+00 2.316e+02 2.532e+02 4.47e-02 1.91e-152 0.00e+00 8.44e-151 9.82e-01 9.82e-01 1.00e-01 28 0.6 1.800e-01 2.389e+02 2.414e+02 5.25e-03 9.55e-153 0.00e+00 7.95e-152 9.89e-01 9.89e-01 1.00e-01 29 0.6 1.986e-02 2.399e+02 2.401e+02 5.79e-04 1.91e-152 0.00e+00 1.34e-151 9.97e-01 9.97e-01 1.00e-01 30 0.6 2.030e-03 2.400e+02 2.400e+02 5.92e-05 1.91e-152 0.00e+00 4.08e-151 1.00e+00 1.00e+00 1.00e-01 31 0.6 2.034e-04 2.400e+02 2.400e+02 5.93e-06 1.91e-152 0.00e+00 7.01e-151 1.00e+00 1.00e+00 1.00e-01 32 0.7 2.035e-05 2.400e+02 2.400e+02 5.93e-07 1.91e-152 0.00e+00 2.13e-151 1.00e+00 1.00e+00 1.00e-01 33 0.7 2.035e-06 2.400e+02 2.400e+02 5.93e-08 1.91e-152 0.00e+00 7.92e-151 1.00e+00 1.00e+00 1.00e-01 34 0.7 2.035e-07 2.400e+02 2.400e+02 5.94e-09 9.55e-153 0.00e+00 1.19e-150 1.00e+00 1.00e+00 1.00e-01 35 0.7 2.035e-08 2.400e+02 2.400e+02 5.94e-10 1.91e-152 0.00e+00 1.50e-150 1.00e+00 1.00e+00 1.00e-01 36 0.7 2.035e-09 2.400e+02 2.400e+02 5.94e-11 1.91e-152 0.00e+00 1.70e-150 1.00e+00 1.00e+00 1.00e-01 37 0.7 2.036e-10 2.400e+02 2.400e+02 5.94e-12 1.91e-152 0.00e+00 9.86e-151 1.00e+00 1.00e+00 1.00e-01 38 0.7 2.036e-11 2.400e+02 2.400e+02 5.94e-13 9.55e-153 0.00e+00 9.47e-151 1.00e+00 1.00e+00 1.00e-01 39 0.8 2.036e-12 2.400e+02 2.400e+02 5.94e-14 1.91e-152 0.00e+00 1.75e-150 1.00e+00 1.00e+00 1.00e-01 40 0.8 2.036e-13 2.400e+02 2.400e+02 5.94e-15 1.91e-152 0.00e+00 3.88e-150 1.00e+00 1.00e+00 1.00e-01 41 0.8 2.036e-14 2.400e+02 2.400e+02 5.94e-16 9.55e-153 0.00e+00 2.39e-150 1.00e+00 1.00e+00 1.00e-01 42 0.8 2.037e-15 2.400e+02 2.400e+02 5.94e-17 1.91e-152 0.00e+00 5.44e-150 1.00e+00 1.00e+00 1.00e-01 43 0.8 2.037e-16 2.400e+02 2.400e+02 5.94e-18 1.91e-152 0.00e+00 1.68e-149 1.00e+00 1.00e+00 1.00e-01 44 0.8 2.037e-17 2.400e+02 2.400e+02 5.94e-19 1.91e-152 0.00e+00 3.76e-149 1.00e+00 1.00e+00 1.00e-01 45 0.9 2.037e-18 2.400e+02 2.400e+02 5.94e-20 1.91e-152 0.00e+00 1.17e-148 1.00e+00 1.00e+00 1.00e-01 46 0.9 2.037e-19 2.400e+02 2.400e+02 5.94e-21 1.91e-152 0.00e+00 1.75e-148 1.00e+00 1.00e+00 1.00e-01 47 0.9 2.038e-20 2.400e+02 2.400e+02 5.94e-22 1.91e-152 0.00e+00 1.34e-148 1.00e+00 1.00e+00 1.00e-01 48 0.9 2.038e-21 2.400e+02 2.400e+02 5.94e-23 1.91e-152 0.00e+00 1.38e-148 1.00e+00 1.00e+00 1.00e-01 49 0.9 2.038e-22 2.400e+02 2.400e+02 5.94e-24 1.91e-152 0.00e+00 8.16e-148 1.00e+00 1.00e+00 1.00e-01 50 0.9 2.038e-23 2.400e+02 2.400e+02 5.95e-25 1.91e-152 0.00e+00 1.82e-147 1.00e+00 1.00e+00 1.00e-01 51 0.9 2.038e-24 2.400e+02 2.400e+02 5.95e-26 1.91e-152 0.00e+00 3.09e-147 1.00e+00 1.00e+00 1.00e-01 52 1.0 2.039e-25 2.400e+02 2.400e+02 5.95e-27 1.91e-152 0.00e+00 4.31e-147 1.00e+00 1.00e+00 1.00e-01 53 1.0 2.039e-26 2.400e+02 2.400e+02 5.95e-28 1.91e-152 0.00e+00 9.06e-147 1.00e+00 1.00e+00 1.00e-01 54 1.0 2.039e-27 2.400e+02 2.400e+02 5.95e-29 1.91e-152 0.00e+00 4.94e-146 1.00e+00 1.00e+00 1.00e-01 55 1.0 2.039e-28 2.400e+02 2.400e+02 5.95e-30 1.91e-152 0.00e+00 6.20e-146 1.00e+00 1.00e+00 1.00e-01 56 1.0 2.040e-29 2.400e+02 2.400e+02 5.95e-31 3.82e-152 0.00e+00 2.13e-145 1.00e+00 1.00e+00 1.00e-01 57 1.0 2.040e-30 2.400e+02 2.400e+02 5.95e-32 3.82e-152 0.00e+00 1.57e-145 1.00e+00 1.00e+00 1.00e-01 58 1.1 2.040e-31 2.400e+02 2.400e+02 5.95e-33 9.55e-153 0.00e+00 8.23e-145 1.00e+00 1.00e+00 1.00e-01 59 1.1 2.040e-32 2.400e+02 2.400e+02 5.95e-34 4.77e-153 0.00e+00 2.51e-144 1.00e+00 1.00e+00 1.00e-01 60 1.1 2.040e-33 2.400e+02 2.400e+02 5.95e-35 1.91e-152 0.00e+00 1.24e-144 1.00e+00 1.00e+00 1.00e-01 61 1.1 2.041e-34 2.400e+02 2.400e+02 5.95e-36 3.82e-152 0.00e+00 5.87e-144 1.00e+00 1.00e+00 1.00e-01 62 1.1 2.041e-35 2.400e+02 2.400e+02 5.95e-37 1.91e-152 0.00e+00 5.62e-144 1.00e+00 1.00e+00 1.00e-01 63 1.1 2.041e-36 2.400e+02 2.400e+02 5.95e-38 1.91e-152 0.00e+00 6.76e-144 1.00e+00 1.00e+00 1.00e-01 64 1.2 2.041e-37 2.400e+02 2.400e+02 5.95e-39 1.91e-152 0.00e+00 5.54e-144 1.00e+00 1.00e+00 1.00e-01 65 1.2 2.041e-38 2.400e+02 2.400e+02 5.95e-40 1.91e-152 0.00e+00 4.34e-143 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 1.169874 seconds (1.04 M allocations: 60.104 MiB, 56.42% gc time, 1.72% compilation time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:239.999999999999999999999999999999999999985709081187036394589365774550978046266703949715172597217354340046938976020953143178280625396733772292906601591035228 Dual objective:240.000000000000000000000000000000000000014290918812963605410634225449021953733331285229027905272397306512924904803827822439314110120124490645545509542880381 Duality gap:5.95454950540150225443092727042581405554736156538652251146728468041373516309889107561485189664050250433253943111184110518254622684228957628993173675470253265e-41 Rounding: Error During Test at /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:83 Test threw exception Expression: begin #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:84 =# (n, d, costheta) = (8, 3, 1 // 2) #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:85 =# (obj, problem, primalsol, dualsol) = delsarte_exact(n, d, costheta; prec = 512) #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:88 =# (R, x) = polynomial_ring(Nemo.AbstractAlgebra.QQ, :x) #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:89 =# b = [x ^ k for k = 0:2d] #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:92 =# for k = 0:2d #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:93 =# (problem.constraints[1]).matrixcoeff[k] = matrix(R, (problem.constraints[1]).matrixcoeff[k]) #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:94 =# end #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:95 =# all_success = true #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:96 =# for k = Iterators.product([[true, false] for i = 1:7]...) #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:97 =# for s = [2, 100] #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:98 =# settings = RoundingSettings(kernel_lll = k[1], kernel_use_primal = k[2], reduce_kernelvectors = k[3], unimodular_transform = k[4], normalize_transformation = k[5], pseudo = k[6], extracolumns_linindep = k[7], reduce_kernelvectors_cutoff = s, reduce_kernelvectors_stepsize = if s == 2 1 else 100 end) #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:108 =# (success, exactdualsol) = exact_solution(problem, primalsol, dualsol, monomial_bases = [b], settings = settings, verbose = false) #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:109 =# (success, exactdualsol) = exact_solution(problem, primalsol, dualsol, settings = settings, verbose = false) #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:112 =# all_success = all_success && (success && objvalue(problem, exactdualsol) == 240) #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:113 =# end #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:114 =# end #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:115 =# all_success end MethodError: no method matching svd!(::Matrix{BigFloat}; full::Bool, alg::LinearAlgebra.DivideAndConquer, atol::Int64, rtol::Int64) This method does not support all of the given keyword arguments (and may not support any). Closest candidates are: svd!(::StridedMatrix{T}; tol, full, alg) where T got unsupported keyword arguments "atol", "rtol" @ GenericLinearAlgebra ~/.julia/packages/GenericLinearAlgebra/jlOvW/src/svd.jl:635 svd!(!Matched::LinearAlgebra.Bidiagonal{var"#s5131", V} where {var"#s5131"<:Union{Float32, Float64}, V<:AbstractVector{var"#s5131"}}; full) got unsupported keyword arguments "alg", "atol", "rtol" @ LinearAlgebra /opt/julia/share/julia/stdlib/v1.13/LinearAlgebra/src/bidiag.jl:268 svd!(!Matched::LinearAlgebra.Bidiagonal{T, V} where V<:AbstractVector{T}; tol, full, alg) where T<:Real got unsupported keyword arguments "atol", "rtol" @ GenericLinearAlgebra ~/.julia/packages/GenericLinearAlgebra/jlOvW/src/svd.jl:595 ... Stacktrace: [1] kwerr(::@NamedTuple{full::Bool, alg::LinearAlgebra.DivideAndConquer, atol::Int64, rtol::Int64}, ::Function, ::Matrix{BigFloat}) @ Base ./error.jl:175 [2] kwcall(::@NamedTuple{full::Bool, alg::LinearAlgebra.DivideAndConquer, atol::Int64, rtol::Int64}, ::typeof(LinearAlgebra.svd!), A::Matrix{BigFloat}) @ GenericLinearAlgebra ~/.julia/packages/GenericLinearAlgebra/jlOvW/src/svd.jl:635 [3] svd(A::Matrix{BigFloat}; full::Bool, alg::LinearAlgebra.DivideAndConquer, atol::Int64, rtol::Int64) @ LinearAlgebra /opt/julia/share/julia/stdlib/v1.13/LinearAlgebra/src/svd.jl:194 [4] svd(A::Matrix{BigFloat}) @ LinearAlgebra /opt/julia/share/julia/stdlib/v1.13/LinearAlgebra/src/svd.jl:193 [5] detecteigenvectors(block::Matrix{BigFloat}, bits::Int64, errbound::Float64; FF::QQField, g::Int64) @ ClusteredLowRankSolver ~/.julia/packages/ClusteredLowRankSolver/jpKRz/src/rounding.jl:631 [6] kwcall(::@NamedTuple{FF::QQField, g::Int64}, ::typeof(ClusteredLowRankSolver.detecteigenvectors), block::Matrix{BigFloat}, bits::Int64, errbound::Float64) @ ClusteredLowRankSolver ~/.julia/packages/ClusteredLowRankSolver/jpKRz/src/rounding.jl:630 [7] basis_transformations(primalsol::PrimalSolution{BigFloat}, sol::DualSolution{BigFloat}; FF::QQField, g::Int64, settings::RoundingSettings, verbose::Bool) @ ClusteredLowRankSolver ~/.julia/packages/ClusteredLowRankSolver/jpKRz/src/rounding.jl:765 [8] basis_transformations @ ~/.julia/packages/ClusteredLowRankSolver/jpKRz/src/rounding.jl:735 [inlined] [9] macro expansion @ ./timing.jl:461 [inlined] [10] exact_solution(problem::Problem, primalsol::PrimalSolution{BigFloat}, dualsol::DualSolution{BigFloat}; transformed::Bool, FF::QQField, g::Int64, settings::RoundingSettings, monomial_bases::Vector{Vector{AbstractAlgebra.Generic.Poly{Rational{BigInt}}}}, verbose::Bool) @ ClusteredLowRankSolver ~/.julia/packages/ClusteredLowRankSolver/jpKRz/src/rounding.jl:1359 [11] kwcall(::@NamedTuple{monomial_bases::Vector{Vector{AbstractAlgebra.Generic.Poly{Rational{BigInt}}}}, settings::RoundingSettings, verbose::Bool}, ::typeof(exact_solution), problem::Problem, primalsol::PrimalSolution{BigFloat}, dualsol::DualSolution{BigFloat}) @ ClusteredLowRankSolver ~/.julia/packages/ClusteredLowRankSolver/jpKRz/src/rounding.jl:1351 [12] top-level scope @ ~/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:7 [13] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] [14] macro expansion @ ~/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:53 [inlined] [15] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] [16] macro expansion @ ~/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:83 [inlined] [17] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:748 [inlined] [18] macro expansion @ ~/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:108 [inlined] [ Info: Empty constraint found and removed. [ Info: Empty constraint found and removed. [ Info: The coefficient for the PSD variable 1 has an empty decomposition in a constraint, so we remove it from that constraint. [ Info: The matrix variable 1 is not used in any constraint and will be removed. Test Summary: | Pass Error Total Time ClusteredLowRankSolver.jl | 34 2 36 7m18.2s Examples | 5 5 3m53.3s Modelling | 1 1 8.8s Warnings | 2 2 1.2s Rounding | 3 2 5 2m52.5s SampledMPolyElem | 13 13 7.3s LowRankMat(Pol) | 2 2 2.2s SDPA format | 4 4 3.5s Checking | 4 4 9.3s RNG of the outermost testset: Random.Xoshiro(0xb5b68d06c378dedf, 0x8df2d33566f59ce7, 0xf0a4ecb18b219e05, 0xf177a7af7509391d, 0xad0d3beae3425b78) ERROR: LoadError: Some tests did not pass: 34 passed, 0 failed, 2 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:5 Testing failed after 461.33s ERROR: LoadError: Package ClusteredLowRankSolver errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2673 [3] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2522 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:538 [5] kwcall(::@NamedTuple{julia_args::Cmd, io::IOContext{IO}}, ::typeof(Pkg.API.test), ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:515 [6] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:168 [7] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:157 [8] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [9] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [inlined] [10] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkg::String) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:155 [11] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 [12] include(mod::Module, _path::String) @ Base ./Base.jl:309 [13] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [14] _start() @ Base ./client.jl:577 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 737.12s: package tests unexpectedly errored