Package evaluation to test RayTraceHeatTransfer on Julia 1.11.7 (58327cce5e*) started at 2025-10-28T19:35:29.403 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.48s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.11/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.11/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.1 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 ⌅ [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.5.0 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.6.0 [7b1f6079] + FileWatching v1.11.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.2.0 [44cfe95a] + Pkg v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.11.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] + LibCURL_jll v8.6.0+0 [e37daf67] + LibGit2_jll v1.7.2+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.6+0 [14a3606d] + MozillaCACerts_jll v2023.12.12 [4536629a] + OpenBLAS_jll v0.3.27+1 [bea87d4a] + SuiteSparse_jll v7.7.0+0 [83775a58] + Zlib_jll v1.2.13+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 [8e850ede] + nghttp2_jll v1.59.0+0 [3f19e933] + p7zip_jll v17.4.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.27s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 30.57s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_W0uqq7/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.15 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.11.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_W0uqq7/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.1 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 ⌅ [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.5.0 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.11.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.6.0+0 [e37daf67] LibGit2_jll v1.7.2+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.6+0 [14a3606d] MozillaCACerts_jll v2023.12.12 [4536629a] OpenBLAS_jll v0.3.27+1 [bea87d4a] SuiteSparse_jll v7.7.0+0 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.59.0+0 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:04:17 Bin 1 progress: 85%|████████████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:07 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011050301981372797 Iteration 10: d = 1.0412771781869509e-5 Iteration 20: d = 1.5548794998052094e-7 Iteration 30: d = 2.673196098056448e-9 Iteration 40: d = 4.672457123361833e-11 Iteration 50: d = 8.165903670274943e-13 Iteration 60: d = 1.4237636626265424e-14 Converged after 65 iterations. d = 1.8705629985379394e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 35%|███████████▋ | ETA: 0:00:02 Bin 1 progress: 76%|█████████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011263025719765935 Iteration 10: d = 1.1873689454938327e-5 Iteration 20: d = 1.754453388575226e-7 Iteration 30: d = 2.9036950835649017e-9 Iteration 40: d = 4.933283163576331e-11 Iteration 50: d = 8.470266925230712e-13 Iteration 60: d = 1.4649742899309022e-14 Converged after 65 iterations. d = 1.9260559778763438e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 34%|███████████▎ | ETA: 0:00:02 Bin 1 progress: 72%|███████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011036981644964848 Iteration 10: d = 9.644185643271051e-6 Iteration 20: d = 1.1001496959792724e-7 Iteration 30: d = 1.483563399717194e-9 Iteration 40: d = 2.223074856021628e-11 Iteration 50: d = 3.607135167846369e-13 Iteration 60: d = 6.165066340426822e-15 Converged after 63 iterations. d = 1.8049714077854974e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 33%|███████████ | ETA: 0:00:02 Bin 1 progress: 72%|███████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011571126166031705 Iteration 10: d = 1.0719866932959989e-5 Iteration 20: d = 1.252609522161177e-7 Iteration 30: d = 1.875357180859875e-9 Iteration 40: d = 3.1839105077234407e-11 Iteration 50: d = 5.700129083015242e-13 Iteration 60: d = 1.046589331633932e-14 Converged after 64 iterations. d = 2.1100651620454087e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 32%|██████████▊ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012946947975303095 Iteration 10: d = 1.5098055879339216e-5 Iteration 20: d = 2.1247152892141767e-7 Iteration 30: d = 3.2141056183051666e-9 Iteration 40: d = 4.934586299127267e-11 Iteration 50: d = 7.626747208552233e-13 Iteration 60: d = 1.1854763835895589e-14 Converged after 64 iterations. d = 2.2088316867701322e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 34%|███████████▏ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011539728936448767 Iteration 10: d = 1.6034404576272138e-5 Iteration 20: d = 2.4010278160810106e-7 Iteration 30: d = 3.716124937513469e-9 Iteration 40: d = 5.762495344798168e-11 Iteration 50: d = 8.941510436641678e-13 Iteration 60: d = 1.3849728688538173e-14 Converged after 65 iterations. d = 1.7109603806319859e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 34%|███████████▏ | ETA: 0:00:02 Bin 1 progress: 74%|████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013377066524303696 Iteration 10: d = 1.6467353882950996e-5 Iteration 20: d = 2.2716800300492314e-7 Iteration 30: d = 3.3803357160079233e-9 Iteration 40: d = 5.139967999899976e-11 Iteration 50: d = 7.884055773458001e-13 Iteration 60: d = 1.2149374884409385e-14 Converged after 65 iterations. d = 1.4636235513191934e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 32%|██████████▊ | ETA: 0:00:02 Bin 1 progress: 77%|█████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013285654830149866 Iteration 10: d = 1.81576639711686e-5 Iteration 20: d = 2.503371582789318e-7 Iteration 30: d = 3.734001033573263e-9 Iteration 40: d = 5.7221300470512506e-11 Iteration 50: d = 8.874002541841879e-13 Iteration 60: d = 1.3826899425296369e-14 Converged after 65 iterations. d = 1.74669871455397e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 31%|██████████▎ | ETA: 0:00:02 Bin 1 progress: 68%|██████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010937893817627442 Iteration 10: d = 1.2163120207481746e-5 Iteration 20: d = 1.5519646813442494e-7 Iteration 30: d = 2.2498917586742954e-9 Iteration 40: d = 3.400482373357453e-11 Iteration 50: d = 5.233941148583888e-13 Iteration 60: d = 8.156415207972544e-15 Converged after 64 iterations. d = 1.5201653491219994e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:02 Bin 1 progress: 83%|███████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012674596908405806 Iteration 10: d = 1.3173708302997474e-5 Iteration 20: d = 1.6878581802236483e-7 Iteration 30: d = 2.4710713495593264e-9 Iteration 40: d = 3.764715111666864e-11 Iteration 50: d = 5.844040950285734e-13 Iteration 60: d = 9.117222640657182e-15 Converged after 64 iterations. d = 1.7463866608008385e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.004946684245693981 Iteration 10: d = 4.779057588795261e-5 Iteration 20: d = 6.311295217331169e-7 Iteration 30: d = 8.950382146530789e-9 Iteration 40: d = 1.2802282994033043e-10 Iteration 50: d = 1.837753919563961e-12 Iteration 60: d = 2.6468689941801252e-14 Converged after 66 iterations. d = 2.073026976471442e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0033183167914484562 Iteration 10: d = 3.4758643934692055e-5 Iteration 20: d = 4.5341400867878967e-7 Iteration 30: d = 6.6332610289204695e-9 Iteration 40: d = 1.0067746700822568e-10 Iteration 50: d = 1.5542046041135662e-12 Iteration 60: d = 2.4181300430727707e-14 Converged after 66 iterations. d = 2.016626804567953e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0022530985883809835 Iteration 10: d = 2.1209105222402988e-5 Iteration 20: d = 3.1525423175549496e-7 Iteration 30: d = 5.14565405070832e-9 Iteration 40: d = 8.551012706909624e-11 Iteration 50: d = 1.432283889664343e-12 Iteration 60: d = 2.4115835610549545e-14 Converged after 66 iterations. d = 2.0655299260853427e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0022369947107087895 Iteration 10: d = 1.682575613072429e-5 Iteration 20: d = 2.5090494149988103e-7 Iteration 30: d = 4.346696483236321e-9 Iteration 40: d = 7.608763664330904e-11 Iteration 50: d = 1.3337952331918944e-12 Iteration 60: d = 2.338152548026149e-14 Converged after 66 iterations. d = 2.0730286614715324e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 51%|████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012946947975303095 Iteration 10: d = 1.5098055879339216e-5 Iteration 20: d = 2.1247152892141767e-7 Iteration 30: d = 3.2141056183051666e-9 Iteration 40: d = 4.934586299127267e-11 Iteration 50: d = 7.626747208552233e-13 Iteration 60: d = 1.1854763835895589e-14 Converged after 64 iterations. d = 2.2088316867701322e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015333279019193434 Iteration 10: d = 1.1708552284024867e-5 Iteration 20: d = 1.171728846838347e-7 Iteration 30: d = 1.4692026585438427e-9 Iteration 40: d = 1.9610308244304072e-11 Iteration 50: d = 2.6868280442836545e-13 Iteration 60: d = 3.70933877143075e-15 Converged after 62 iterations. d = 1.6013362208073561e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 56%|██████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001542251326310441 Iteration 10: d = 1.2164185524198891e-5 Iteration 20: d = 1.1320191501715409e-7 Iteration 30: d = 1.372816198907654e-9 Iteration 40: d = 1.8331720675549095e-11 Iteration 50: d = 2.517922212822574e-13 Iteration 60: d = 3.4836466847222006e-15 Converged after 62 iterations. d = 1.5072997474642322e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.642709252694 Iteration 2: convergence error = 4834.235775871271 Iteration 3: convergence error = 1098.0958882584307 Iteration 4: convergence error = 319.7262912930339 Iteration 5: convergence error = 94.7238126984173 Iteration 6: convergence error = 28.22766701723708 Iteration 7: convergence error = 8.455630173462168 Iteration 8: convergence error = 2.5341646370127364 Iteration 9: convergence error = 0.7577157902439922 Iteration 10: convergence error = 0.2262498538566433 Iteration 11: convergence error = 0.06750454825987617 Iteration 12: convergence error = 0.020131928937871635 Iteration 13: convergence error = 0.006002439559551931 Iteration 14: convergence error = 0.0017893987453589943 Iteration 15: convergence error = 0.000533396446826373 Iteration 16: convergence error = 0.0001589908333698986 Iteration 17: convergence error = 4.738946836368996e-5 Iteration 18: convergence error = 1.4124868812359637e-5 Iteration 19: convergence error = 4.210006409266498e-6 Iteration 20: convergence error = 1.2548141512525035e-6 Iteration 21: convergence error = 3.7399831853690557e-7 Iteration 22: convergence error = 1.1133874977531377e-7 Iteration 23: convergence error = 3.226659828214906e-8 Iteration 24: convergence error = 9.302539183408953e-9 Iteration 25: convergence error = 2.6773250283440575e-9 Iteration 26: convergence error = 7.696598913753405e-10 Iteration 27: convergence error = 2.1714186004828662e-10 Iteration 28: convergence error = 6.252776074688882e-11 Iteration 29: convergence error = 1.887201506178826e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 56%|██████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015333279019193434 Iteration 10: d = 1.1708552284024867e-5 Iteration 20: d = 1.171728846838347e-7 Iteration 30: d = 1.4692026585438427e-9 Iteration 40: d = 1.9610308244304072e-11 Iteration 50: d = 2.6868280442836545e-13 Iteration 60: d = 3.70933877143075e-15 Converged after 62 iterations. d = 1.6013362208073561e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.791774887914 Iteration 2: convergence error = 4828.97666403637 Iteration 3: convergence error = 1106.460050849897 Iteration 4: convergence error = 320.94207402102484 Iteration 5: convergence error = 95.24092237509285 Iteration 6: convergence error = 28.4151802169672 Iteration 7: convergence error = 8.534227011229177 Iteration 8: convergence error = 2.5600132184831637 Iteration 9: convergence error = 0.766106637816165 Iteration 10: convergence error = 0.228949441539271 Iteration 11: convergence error = 0.06836739875279818 Iteration 12: convergence error = 0.020406301668344895 Iteration 13: convergence error = 0.006089318450904102 Iteration 14: convergence error = 0.0018168101667015435 Iteration 15: convergence error = 0.0005420181937552115 Iteration 16: convergence error = 0.00016169517380149045 Iteration 17: convergence error = 4.823563790523622e-5 Iteration 18: convergence error = 1.4389041098183952e-5 Iteration 19: convergence error = 4.29231158705079e-6 Iteration 20: convergence error = 1.2804055131709902e-6 Iteration 21: convergence error = 3.819548055616906e-7 Iteration 22: convergence error = 1.1379961506463587e-7 Iteration 23: convergence error = 3.3032847568392754e-8 Iteration 24: convergence error = 9.536051948089153e-9 Iteration 25: convergence error = 2.7430360205471516e-9 Iteration 26: convergence error = 7.860307960072532e-10 Iteration 27: convergence error = 2.2873791749589145e-10 Iteration 28: convergence error = 6.59383658785373e-11 Iteration 29: convergence error = 2.0463630789890885e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 12:21:55 Bin 1 ray tracing: 12%|███▋ | ETA: 0:00:40 Bin 1 ray tracing: 24%|███████▎ | ETA: 0:00:20 Bin 1 ray tracing: 37%|███████████ | ETA: 0:00:13 Bin 1 ray tracing: 49%|██████████████▊ | ETA: 0:00:09 Bin 1 ray tracing: 61%|██████████████████▌ | ETA: 0:00:06 Bin 1 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:04 Bin 1 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 1 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 12%|███▋ | ETA: 0:00:07 Bin 2 ray tracing: 24%|███████▎ | ETA: 0:00:06 Bin 2 ray tracing: 36%|██████████▉ | ETA: 0:00:05 Bin 2 ray tracing: 47%|██████████████▎ | ETA: 0:00:05 Bin 2 ray tracing: 55%|████████████████▋ | ETA: 0:00:04 Bin 2 ray tracing: 63%|███████████████████ | ETA: 0:00:04 Bin 2 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:03 Bin 2 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:02 Bin 2 ray tracing: 87%|██████████████████████████ | ETA: 0:00:01 Bin 2 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 3 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 3 ray tracing: 25%|███████▌ | ETA: 0:00:09 Bin 3 ray tracing: 33%|█████████▉ | ETA: 0:00:08 Bin 3 ray tracing: 41%|████████████▎ | ETA: 0:00:07 Bin 3 ray tracing: 49%|██████████████▊ | ETA: 0:00:06 Bin 3 ray tracing: 57%|█████████████████▏ | ETA: 0:00:05 Bin 3 ray tracing: 65%|███████████████████▌ | ETA: 0:00:04 Bin 3 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:03 Bin 3 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:02 Bin 3 ray tracing: 90%|██████████████████████████▉ | ETA: 0:00:01 Bin 3 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 10%|██▉ | ETA: 0:00:09 Bin 4 ray tracing: 20%|██████▏ | ETA: 0:00:08 Bin 4 ray tracing: 31%|█████████▎ | ETA: 0:00:07 Bin 4 ray tracing: 39%|███████████▊ | ETA: 0:00:07 Bin 4 ray tracing: 48%|██████████████▎ | ETA: 0:00:06 Bin 4 ray tracing: 56%|████████████████▉ | ETA: 0:00:05 Bin 4 ray tracing: 65%|███████████████████▍ | ETA: 0:00:04 Bin 4 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:03 Bin 4 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:02 Bin 4 ray tracing: 90%|██████████████████████████▉ | ETA: 0:00:01 Bin 4 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 4 Energy per ray: 0.00018533358351859177 Processing spectral bin 5/10 Bin 5 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 5 ray tracing: 16%|████▊ | ETA: 0:00:11 Bin 5 ray tracing: 24%|███████▎ | ETA: 0:00:09 Bin 5 ray tracing: 33%|█████████▉ | ETA: 0:00:08 Bin 5 ray tracing: 41%|████████████▍ | ETA: 0:00:07 Bin 5 ray tracing: 49%|██████████████▊ | ETA: 0:00:06 Bin 5 ray tracing: 57%|█████████████████▎ | ETA: 0:00:05 Bin 5 ray tracing: 66%|███████████████████▋ | ETA: 0:00:04 Bin 5 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:03 Bin 5 ray tracing: 82%|████████████████████████▊ | ETA: 0:00:02 Bin 5 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 6 ray tracing: 19%|█████▊ | ETA: 0:00:08 Bin 6 ray tracing: 29%|████████▊ | ETA: 0:00:08 Bin 6 ray tracing: 38%|███████████▎ | ETA: 0:00:07 Bin 6 ray tracing: 46%|█████████████▉ | ETA: 0:00:06 Bin 6 ray tracing: 55%|████████████████▍ | ETA: 0:00:05 Bin 6 ray tracing: 63%|██████████████████▉ | ETA: 0:00:04 Bin 6 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:03 Bin 6 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:02 Bin 6 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:01 Bin 6 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 7 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 7 ray tracing: 25%|███████▌ | ETA: 0:00:09 Bin 7 ray tracing: 33%|██████████ | ETA: 0:00:08 Bin 7 ray tracing: 42%|████████████▌ | ETA: 0:00:07 Bin 7 ray tracing: 50%|███████████████ | ETA: 0:00:06 Bin 7 ray tracing: 58%|█████████████████▍ | ETA: 0:00:05 Bin 7 ray tracing: 66%|███████████████████▊ | ETA: 0:00:04 Bin 7 ray tracing: 74%|██████████████████████▎ | ETA: 0:00:03 Bin 7 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:02 Bin 7 ray tracing: 90%|███████████████████████████▏ | ETA: 0:00:01 Bin 7 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 8 ray tracing: 16%|████▊ | ETA: 0:00:11 Bin 8 ray tracing: 24%|███████▏ | ETA: 0:00:10 Bin 8 ray tracing: 31%|█████████▍ | ETA: 0:00:09 Bin 8 ray tracing: 39%|███████████▊ | ETA: 0:00:08 Bin 8 ray tracing: 47%|██████████████▏ | ETA: 0:00:07 Bin 8 ray tracing: 55%|████████████████▌ | ETA: 0:00:06 Bin 8 ray tracing: 63%|██████████████████▉ | ETA: 0:00:05 Bin 8 ray tracing: 71%|█████████████████████▏ | ETA: 0:00:04 Bin 8 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:03 Bin 8 ray tracing: 88%|██████████████████████████▎ | ETA: 0:00:02 Bin 8 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 9 ray tracing: 16%|████▊ | ETA: 0:00:11 Bin 9 ray tracing: 24%|███████▏ | ETA: 0:00:10 Bin 9 ray tracing: 32%|█████████▌ | ETA: 0:00:09 Bin 9 ray tracing: 40%|████████████ | ETA: 0:00:08 Bin 9 ray tracing: 48%|██████████████▍ | ETA: 0:00:07 Bin 9 ray tracing: 56%|████████████████▉ | ETA: 0:00:05 Bin 9 ray tracing: 64%|███████████████████▍ | ETA: 0:00:04 Bin 9 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:04 Bin 9 ray tracing: 80%|████████████████████████ | ETA: 0:00:03 Bin 9 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:01 Bin 9 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 10 ray tracing: 17%|████▉ | ETA: 0:00:10 Bin 10 ray tracing: 25%|███████▎ | ETA: 0:00:09 Bin 10 ray tracing: 33%|█████████▋ | ETA: 0:00:08 Bin 10 ray tracing: 42%|████████████▏ | ETA: 0:00:07 Bin 10 ray tracing: 51%|██████████████▋ | ETA: 0:00:06 Bin 10 ray tracing: 60%|█████████████████▍ | ETA: 0:00:05 Bin 10 ray tracing: 72%|████████████████████▉ | ETA: 0:00:03 Bin 10 ray tracing: 84%|████████████████████████▎ | ETA: 0:00:02 Bin 10 ray tracing: 92%|██████████████████████████▋ | ETA: 0:00:01 Bin 10 ray tracing: 99%|████████████████████████████▉| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 20%|██████▋ | ETA: 0:00:04 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:03 Bin 1 progress: 64%|█████████████████████▎ | ETA: 0:00:02 Bin 1 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 22%|███████▍ | ETA: 0:00:04 Bin 2 progress: 42%|█████████████▉ | ETA: 0:00:03 Bin 2 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 2 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 27%|████████▊ | ETA: 0:00:03 Bin 3 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 3 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 3 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 20%|██████▋ | ETA: 0:00:04 Bin 4 progress: 40%|█████████████▎ | ETA: 0:00:03 Bin 4 progress: 62%|████████████████████▌ | ETA: 0:00:02 Bin 4 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 22%|███████▍ | ETA: 0:00:04 Bin 5 progress: 42%|█████████████▉ | ETA: 0:00:03 Bin 5 progress: 64%|█████████████████████▎ | ETA: 0:00:02 Bin 5 progress: 87%|████████████████████████████▋ | ETA: 0:00:01 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 20%|██████▋ | ETA: 0:00:04 Bin 6 progress: 40%|█████████████▎ | ETA: 0:00:03 Bin 6 progress: 62%|████████████████████▌ | ETA: 0:00:02 Bin 6 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 22%|███████▍ | ETA: 0:00:04 Bin 7 progress: 42%|█████████████▉ | ETA: 0:00:03 Bin 7 progress: 64%|█████████████████████▎ | ETA: 0:00:02 Bin 7 progress: 87%|████████████████████████████▋ | ETA: 0:00:01 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 20%|██████▋ | ETA: 0:00:04 Bin 8 progress: 40%|█████████████▎ | ETA: 0:00:03 Bin 8 progress: 62%|████████████████████▌ | ETA: 0:00:02 Bin 8 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 24%|████████▏ | ETA: 0:00:03 Bin 9 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 9 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 27%|████████▌ | ETA: 0:00:03 Bin 10 progress: 51%|████████████████▍ | ETA: 0:00:02 Bin 10 progress: 78%|████████████████████████▉ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:04 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015333279019193434 Iteration 10: d = 1.1708552284024867e-5 Iteration 20: d = 1.171728846838347e-7 Iteration 30: d = 1.4692026585438427e-9 Iteration 40: d = 1.9610308244304072e-11 Iteration 50: d = 2.6868280442836545e-13 Iteration 60: d = 3.70933877143075e-15 Converged after 62 iterations. d = 1.6013362208073561e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015455289097327366 Iteration 10: d = 1.2228039214741477e-5 Iteration 20: d = 1.1499328052657892e-7 Iteration 30: d = 1.3922512561638925e-9 Iteration 40: d = 1.8461040189150447e-11 Iteration 50: d = 2.5172610247380025e-13 Iteration 60: d = 3.4852743552795127e-15 Converged after 62 iterations. d = 1.4211261233917007e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001221109116001113 Iteration 10: d = 8.422839706233529e-6 Iteration 20: d = 9.305165176825291e-8 Iteration 30: d = 1.2920708672240774e-9 Iteration 40: d = 1.837880062016074e-11 Iteration 50: d = 2.6225393143785625e-13 Iteration 60: d = 3.747241577120082e-15 Converged after 62 iterations. d = 1.5630656330837592e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014201590763050491 Iteration 10: d = 1.5889679951160836e-5 Iteration 20: d = 2.1060254315760759e-7 Iteration 30: d = 2.9922573430158363e-9 Iteration 40: d = 4.269991371568509e-11 Iteration 50: d = 6.089114613667206e-13 Iteration 60: d = 8.686757925309534e-15 Converged after 64 iterations. d = 1.5817056235040598e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015167108437441005 Iteration 10: d = 1.5420948604159183e-5 Iteration 20: d = 1.758092583780568e-7 Iteration 30: d = 2.2786080765782354e-9 Iteration 40: d = 3.077810058344337e-11 Iteration 50: d = 4.2454022872773013e-13 Iteration 60: d = 5.917308170375708e-15 Converged after 63 iterations. d = 1.6349652009417679e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012039784635326392 Iteration 10: d = 1.4815216669655431e-5 Iteration 20: d = 1.7784155079027708e-7 Iteration 30: d = 2.3338680335263847e-9 Iteration 40: d = 3.140910400135969e-11 Iteration 50: d = 4.266701851740491e-13 Iteration 60: d = 5.829916321531902e-15 Converged after 63 iterations. d = 1.5935996395651743e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013372271080124487 Iteration 10: d = 1.5035365619639837e-5 Iteration 20: d = 1.7532011786818176e-7 Iteration 30: d = 2.3230166871043567e-9 Iteration 40: d = 3.1698965728802576e-11 Iteration 50: d = 4.370878560480849e-13 Iteration 60: d = 6.020136844644253e-15 Converged after 63 iterations. d = 1.6599463744736013e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017805188452084588 Iteration 10: d = 2.2328024555521665e-5 Iteration 20: d = 2.6004436333789514e-7 Iteration 30: d = 3.2932279483547688e-9 Iteration 40: d = 4.258954810977921e-11 Iteration 50: d = 5.551454351972973e-13 Iteration 60: d = 7.276099025659568e-15 Converged after 63 iterations. d = 2.002768480381246e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015062371555184194 Iteration 10: d = 1.071182444795795e-5 Iteration 20: d = 7.895148264636758e-8 Iteration 30: d = 8.431426031410103e-10 Iteration 40: d = 1.0730503125332228e-11 Iteration 50: d = 1.4525230251404634e-13 Converged after 60 iterations. d = 1.9877074998088454e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017489835163284056 Iteration 10: d = 2.263886547141159e-5 Iteration 20: d = 2.40160376105588e-7 Iteration 30: d = 2.7549706903065048e-9 Iteration 40: d = 3.3427425549293403e-11 Iteration 50: d = 4.211999863406193e-13 Iteration 60: d = 5.414259644133135e-15 Converged after 63 iterations. d = 1.5036255576630997e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.370530815475 Iteration 2: convergence error = 4811.151281244574 Iteration 3: convergence error = 1104.2598633973523 Iteration 4: convergence error = 321.7922757418942 Iteration 5: convergence error = 95.96739792933272 Iteration 6: convergence error = 28.8259137131829 Iteration 7: convergence error = 8.737214868489218 Iteration 8: convergence error = 2.6372628875940336 Iteration 9: convergence error = 0.7940860637149854 Iteration 10: convergence error = 0.23876555630295115 Iteration 11: convergence error = 0.07173485431940207 Iteration 12: convergence error = 0.02154235195325782 Iteration 13: convergence error = 0.0064676249123749585 Iteration 14: convergence error = 0.0019414804041844036 Iteration 15: convergence error = 0.0005827532659168355 Iteration 16: convergence error = 0.00017491028302174527 Iteration 17: convergence error = 5.2496919579425594e-5 Iteration 18: convergence error = 1.5755972299302812e-5 Iteration 19: convergence error = 4.728812655230286e-6 Iteration 20: convergence error = 1.4192432900017593e-6 Iteration 21: convergence error = 4.259511570126051e-7 Iteration 22: convergence error = 1.27715566122788e-7 Iteration 23: convergence error = 3.738796294783242e-8 Iteration 24: convergence error = 1.085209078155458e-8 Iteration 25: convergence error = 3.134346115984954e-9 Iteration 26: convergence error = 9.085852070711553e-10 Iteration 27: convergence error = 2.6057023205794394e-10 Iteration 28: convergence error = 7.548806024715304e-11 Iteration 29: convergence error = 2.091837814077735e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 979.9268138663051 K, F = -4573.694555091869, relative_change = 0.02007318613369494 Iter 2: T = 961.9065467670905 K, F = -3863.641069714616, relative_change = 0.018389400967726986 Iter 3: T = 945.8198403444792 K, F = -3262.3000331625976, relative_change = 0.01672377267487967 Iter 5: T = 918.9287358038223 K, F = -2322.6299964906852, relative_change = 0.013536680625522646 Iter 10: T = 876.148691439381 K, F = -986.2706959879836, relative_change = 0.007137820235745483 Iter 15: T = 855.8523039783812 K, F = -415.6685834556815, relative_change = 0.003354546441253511 Iter 20: T = 846.8338264978534 K, F = -174.4559206297163, relative_change = 0.001479914399809283 Iter 25: T = 842.9586863475349 K, F = -73.0727198310464, relative_change = 0.0006334969523523595 Iter 30: T = 841.3190494990076 K, F = -30.580070821027586, relative_change = 0.00026757495753255316 Iter 35: T = 840.6299391580857 K, F = -12.79251111240123, relative_change = 0.00011237137898230398 Iter 40: T = 840.3411459805499 K, F = -5.350605813880207, relative_change = 4.7077469410016096e-5 Iter 45: T = 840.2202640679877 K, F = -2.2377967063399513, relative_change = 1.970281185108771e-5 Iter 50: T = 840.1696913877837 K, F = -0.9358924630488406, relative_change = 8.242481599071576e-6 Iter 55: T = 840.1485380650486 K, F = -0.3914047560851791, relative_change = 3.447547006549262e-6 Iter 60: T = 840.1396909288387 K, F = -0.16369072950472585, relative_change = 1.4418827851772775e-6 Iter 65: T = 840.1359908521607 K, F = -0.06845752046981213, relative_change = 6.030261483493638e-7 Iter 70: T = 840.1344434186498 K, F = -0.02862977054248228, relative_change = 2.5219510648345774e-7 Iter 75: T = 840.1337962604571 K, F = -0.01197331508558408, relative_change = 1.0547141980633945e-7 Iter 80: T = 840.1335256106444 K, F = -0.0050073839068309756, relative_change = 4.4109479829030624e-8 Iter 85: T = 840.1334124215682 K, F = -0.0020941478454223894, relative_change = 1.8447123911375578e-8 Iter 90: T = 840.1333650845287 K, F = -0.000875797655342403, relative_change = 7.714809744177388e-9 Iter 95: T = 840.1333452876105 K, F = -0.00036626903845538017, relative_change = 3.2264259291620357e-9 Iter 100: T = 840.1333370083024 K, F = -0.00015317808517800735, relative_change = 1.3493299107981564e-9 Iter 105: T = 840.1333335457969 K, F = -6.406090443200618e-5, relative_change = 5.643058930959035e-10 Iter 110: T = 840.1333320977357 K, F = -2.679103455083265e-5, relative_change = 2.3599945922224326e-10 Iter 115: T = 840.1333314921391 K, F = -1.1204327799330116e-5, relative_change = 9.869776792862605e-11 Iter 120: T = 840.1333312388715 K, F = -4.685786361147137e-6, relative_change = 4.127660880531238e-11 Iter 125: T = 840.133331132952 K, F = -1.9596513476383137e-6, relative_change = 1.7262366630821567e-11 Iter 130: T = 840.1333310886552 K, F = -8.195499618945945e-7, relative_change = 7.219331099433449e-12 Iter 135: T = 840.1333310701297 K, F = -3.4274685911661606e-7, relative_change = 3.0192217370046694e-12 Iter 140: T = 840.1333310623821 K, F = -1.433406806583548e-7, relative_change = 1.2626732743085586e-12 Iter 145: T = 840.1333310591419 K, F = -5.994516794061155e-8, relative_change = 5.280508027190438e-13 Converged in 150 iterations to T = 840.1333310577869 K Iter 1: T = 964.2560394764683 K, F = -8144.295406570956, relative_change = 0.03574396052353167 Iter 2: T = 930.4334765266184 K, F = -6909.41498273156, relative_change = 0.03507632990114696 Iter 3: T = 898.501167254757 K, F = -5860.717978600805, relative_change = 0.03431981982319387 Iter 5: T = 840.1940503288355 K, F = -4213.979026667554, relative_change = 0.032514253941308836 Iter 10: T = 725.5327395799126 K, F = -1838.0617748096354, relative_change = 0.02617796204412831 Iter 15: T = 651.356143466131 K, F = -793.8554480127509, relative_change = 0.017995861257072154 Iter 20: T = 609.2844880944735 K, F = -339.0011696403521, relative_change = 0.010353077870768251 Iter 25: T = 588.2171658344325 K, F = -143.4032460667144, relative_change = 0.005148198874578136 Iter 30: T = 578.5577462414838 K, F = -60.30404267355556, relative_change = 0.0023393623876167354 Iter 35: T = 574.342512750404 K, F = -25.282030012593616, relative_change = 0.0010152359107772635 Iter 40: T = 572.5464981775115 K, F = -10.584464616105365, relative_change = 0.0004313982009034502 Iter 45: T = 571.7893874265684 K, F = -4.428538031520064, relative_change = 0.0001816360037028735 Iter 50: T = 571.4716908991554 K, F = -1.852417267597671, relative_change = 7.617787182709165e-5 Iter 55: T = 571.3386392411741 K, F = -0.7747643458326388, relative_change = 3.1896348684491254e-5 Iter 60: T = 571.2829626288523 K, F = -0.32402643802607684, relative_change = 1.3346066017698993e-5 Iter 65: T = 571.2596722583436 K, F = -0.13551360456999423, relative_change = 5.582644998163722e-6 Iter 70: T = 571.2499309417707 K, F = -0.05667373640350715, relative_change = 2.334931896678575e-6 Iter 75: T = 571.2458568309526 K, F = -0.02370169086440907, relative_change = 9.765319288345075e-7 Iter 80: T = 571.2441529583874 K, F = -0.009912340227653332, relative_change = 4.0840352844050337e-7 Iter 85: T = 571.2434403731512 K, F = -0.004145460818758162, relative_change = 1.708003197185975e-7 Iter 90: T = 571.2431423605543 K, F = -0.0017336815296908337, relative_change = 7.143092359812744e-8 Iter 95: T = 571.2430177279625 K, F = -0.0007250463739382207, relative_change = 2.987329855633871e-8 Iter 100: T = 571.2429656050955 K, F = -0.0003032230610320874, relative_change = 1.2493375999037665e-8 Iter 105: T = 571.242943806685 K, F = -0.00012681150770327276, relative_change = 5.224880090505055e-9 Iter 110: T = 571.2429346903286 K, F = -5.3034087530934304e-5, relative_change = 2.1851074411967247e-9 Iter 115: T = 571.2429308777592 K, F = -2.217948897770272e-5, relative_change = 9.138380653539388e-10 Iter 120: T = 571.2429292832971 K, F = -9.275726810198393e-6, relative_change = 3.821779827365088e-10 Iter 125: T = 571.2429286164742 K, F = -3.879220190738941e-6, relative_change = 1.5983141652000623e-10 Iter 130: T = 571.2429283376008 K, F = -1.622336151474446e-6, relative_change = 6.684340486355598e-11 Iter 135: T = 571.2429282209725 K, F = -6.784801537818019e-7, relative_change = 2.795470199809675e-11 Iter 140: T = 571.2429281721973 K, F = -2.8374863142444084e-7, relative_change = 1.1690995518217385e-11 Iter 145: T = 571.2429281517988 K, F = -1.1866625848622192e-7, relative_change = 4.889280661539794e-12 Iter 150: T = 571.242928143268 K, F = -4.962801403163297e-8, relative_change = 2.0447707072597482e-12 Iter 155: T = 571.2429281397002 K, F = -2.075475741269983e-8, relative_change = 8.551363745480956e-13 Iter 160: T = 571.2429281382082 K, F = -8.679729379679202e-9, relative_change = 3.5762173299833547e-13 Converged in 163 iterations to T = 571.2429281377714 K Iter 1: T = 963.6208395415384 K, F = -8289.026315975863, relative_change = 0.03637916045846158 Iter 2: T = 929.1232092049488 K, F = -7033.404586301129, relative_change = 0.03580000444262139 Iter 3: T = 896.473810184522 K, F = -5967.053148477391, relative_change = 0.03514001016976524 Iter 5: T = 836.6015051924273 K, F = -4292.458692362326, relative_change = 0.03354847009213333 Iter 10: T = 717.3267731406521 K, F = -1875.5128950447902, relative_change = 0.027772002383901012 Iter 15: T = 638.1490114799441 K, F = -811.9628443784505, relative_change = 0.01982901929655598 Iter 20: T = 591.8978393560221 K, F = -347.57312737349685, relative_change = 0.011846107360476265 Iter 25: T = 568.1591510125071 K, F = -147.2898066767031, relative_change = 0.006052676327953227 Iter 30: T = 557.1037559004452 K, F = -62.00049312541542, relative_change = 0.002792452594833788 Iter 35: T = 552.2401734379788 K, F = -26.005846323434707, relative_change = 0.0012207477634644534 Iter 40: T = 550.1601507395516 K, F = -10.889847488264198, relative_change = 0.0005204130492189069 Iter 45: T = 549.2818821292602 K, F = -4.5567336289758185, relative_change = 0.00021942080064489344 Iter 50: T = 548.9130889224954 K, F = -1.906115285997391, relative_change = 9.207908883902684e-5 Iter 55: T = 548.7585925593909 K, F = -0.7972364539455998, relative_change = 3.856389167778377e-5 Iter 60: T = 548.6939342590468 K, F = -0.33342716315344956, relative_change = 1.6137575484706914e-5 Iter 65: T = 548.6668853165816 K, F = -0.13944555892306107, relative_change = 6.750624030241995e-6 Iter 70: T = 548.655571713766 K, F = -0.05831820695268711, relative_change = 2.823488547298372e-6 Iter 75: T = 548.6508399829328 K, F = -0.0243894421293869, relative_change = 1.180868576239496e-6 Iter 80: T = 548.6488610733812 K, F = -0.010199968476984067, relative_change = 4.938624270955212e-7 Iter 85: T = 548.6480334622163 K, F = -0.00426575081703548, relative_change = 2.0654075411898894e-7 Iter 90: T = 548.6476873440216 K, F = -0.001783988317491686, relative_change = 8.637808791433122e-8 Iter 95: T = 548.647542593028 K, F = -0.0007460852867858525, relative_change = 3.612439656113784e-8 Iter 100: T = 548.6474820563933 K, F = -0.0003120217886713461, relative_change = 1.5107662555911287e-8 Iter 105: T = 548.6474567392427 K, F = -0.0001304912406644987, relative_change = 6.3182064046026045e-9 Iter 110: T = 548.6474461513067 K, F = -5.457299564629037e-5, relative_change = 2.642349636145414e-9 Iter 115: T = 548.6474417233052 K, F = -2.282307850304255e-5, relative_change = 1.1050622158678714e-9 Iter 120: T = 548.647439871462 K, F = -9.544883989826003e-6, relative_change = 4.6215022307733527e-10 Iter 125: T = 548.647439096999 K, F = -3.9917844444348205e-6, relative_change = 1.9327674237176056e-10 Iter 130: T = 548.6474387731095 K, F = -1.6694121441063192e-6, relative_change = 8.083065262840184e-11 Iter 135: T = 548.647438637655 K, F = -6.981682856010973e-7, relative_change = 3.3804353487635154e-11 Iter 140: T = 548.6474385810063 K, F = -2.9198253270745766e-7, relative_change = 1.4137394889273488e-11 Iter 145: T = 548.6474385573151 K, F = -1.2211081271140678e-7, relative_change = 5.9124385417802014e-12 Iter 150: T = 548.6474385474071 K, F = -5.1067880202371185e-8, relative_change = 2.4726369145954275e-12 Iter 155: T = 548.6474385432634 K, F = -2.1356224927382428e-8, relative_change = 1.034039202420148e-12 Iter 160: T = 548.6474385415305 K, F = -8.931261952227487e-9, relative_change = 4.3243948859071774e-13 Converged in 164 iterations to T = 548.647438540905 K Iter 1: T = 969.2557932680644 K, F = -7005.096749162112, relative_change = 0.030744206731935553 Iter 2: T = 940.6507703187386 K, F = -5934.910861234861, relative_change = 0.029512356952623914 Iter 3: T = 914.1461811302171 K, F = -5026.535094674014, relative_change = 0.02817686438457978 Iter 5: T = 867.2542975112542 K, F = -3601.5673476544075, relative_change = 0.02522597937157807 Iter 10: T = 782.685690395702 K, F = -1553.3466111231076, relative_change = 0.016962914378772495 Iter 15: T = 735.5108870088981 K, F = -662.4435641003873, relative_change = 0.009558554406315835 Iter 20: T = 712.1982713546487 K, F = -279.96503266038576, relative_change = 0.004686134649647048 Iter 25: T = 701.5947777239387 K, F = -117.67139950961008, relative_change = 0.0021131009224154844 Iter 30: T = 696.9862801931362 K, F = -49.320997947200894, relative_change = 0.0009137220208575824 Iter 35: T = 695.0263335519226 K, F = -20.64631504913634, relative_change = 0.0003876414256174452 Iter 40: T = 694.2007809622492 K, F = -8.638020229876476, relative_change = 0.0001631008624025308 Iter 45: T = 693.8544834154038 K, F = -3.6131358145641634, relative_change = 6.838447354529727e-5 Iter 50: T = 693.7094744835688 K, F = -1.5111639205571628, relative_change = 2.862970548781392e-5 Iter 55: T = 693.6487979086344 K, F = -0.632005595091326, relative_change = 1.1978627931694627e-5 Iter 60: T = 693.6234166193381 K, F = -0.2643155763122964, relative_change = 5.010540397299716e-6 Iter 65: T = 693.6128008775249 K, F = -0.1105405058786969, relative_change = 2.0956314344632836e-6 Iter 70: T = 693.6083610754746 K, F = -0.04622946030529318, relative_change = 8.7644671031074e-7 Iter 75: T = 693.606504267142 K, F = -0.019333729991701354, relative_change = 3.6654548663061274e-7 Iter 80: T = 693.6057277224589 K, F = -0.008085599851710201, relative_change = 1.532945754184657e-7 Iter 85: T = 693.6054029612782 K, F = -0.003381494957674147, relative_change = 6.41097752658202e-8 Iter 90: T = 693.6052671421129 K, F = -0.0014141816698677312, relative_change = 2.681150044586136e-8 Iter 95: T = 693.6052103408878 K, F = -0.0005914276786559425, relative_change = 1.1212894347672667e-8 Iter 100: T = 693.6051865859321 K, F = -0.00024734212029453584, relative_change = 4.68936712791462e-9 Iter 105: T = 693.6051766513251 K, F = -0.00010344142857321437, relative_change = 1.9611494690726324e-9 Iter 110: T = 693.6051724965537 K, F = -4.3260439337555745e-5, relative_change = 8.201761250643347e-10 Iter 115: T = 693.6051707589787 K, F = -1.809203325575659e-5, relative_change = 3.430074713629477e-10 Iter 120: T = 693.605170032304 K, F = -7.566305153972053e-6, relative_change = 1.4344983643804778e-10 Iter 125: T = 693.6051697284 K, F = -3.164318866710758e-6, relative_change = 5.999242900956895e-11 Iter 130: T = 693.6051696013038 K, F = -1.3233567527359824e-6, relative_change = 2.5089565703166863e-11 Iter 135: T = 693.6051695481506 K, F = -5.534440465915225e-7, relative_change = 1.0492764514438632e-11 Iter 140: T = 693.6051695259213 K, F = -2.3145606486973946e-7, relative_change = 4.388183411574146e-12 Iter 145: T = 693.6051695166246 K, F = -9.679782775329215e-8, relative_change = 1.83519331104833e-12 Iter 150: T = 693.6051695127368 K, F = -4.0482379226602916e-8, relative_change = 7.675068056621702e-13 Iter 155: T = 693.605169511111 K, F = -1.6931128277164476e-8, relative_change = 3.2099783729777677e-13 Converged in 158 iterations to T = 693.6051695106348 K Iter 1: T = 980.8106451632817 K, F = -4372.3127533351335, relative_change = 0.019189354836718308 Iter 2: T = 963.6345416257672 K, F = -3692.6200069924435, relative_change = 0.017512150405601654 Iter 3: T = 948.3461721043549 K, F = -3117.1380079030496, relative_change = 0.015865319123595345 Iter 5: T = 922.895344398328 K, F = -2218.2376775653256, relative_change = 0.012748130928958538 Iter 10: T = 882.7295873950466 K, F = -941.0378991173217, relative_change = 0.006623361433009848 Iter 15: T = 863.8398931617353 K, F = -396.375573360818, relative_change = 0.0030855071661363863 Iter 20: T = 855.4863499754571 K, F = -166.3104512981689, relative_change = 0.001355282602147634 Iter 25: T = 851.9050208211116 K, F = -69.65174235478098, relative_change = 0.000579000191305347 Iter 30: T = 850.391212992056 K, F = -29.14677107538008, relative_change = 0.00024434753410367 Iter 35: T = 849.7552585313646 K, F = -12.192626168071051, relative_change = 0.00010257948345061603 Iter 40: T = 849.4887901601495 K, F = -5.099645532960566, relative_change = 4.2968634727215705e-5 Iter 45: T = 849.377261346011 K, F = -2.132827878803841, relative_change = 1.7982034847919385e-5 Iter 50: T = 849.3306031528817 K, F = -0.8919907525914356, relative_change = 7.522409369140146e-6 Iter 55: T = 849.3110874247718 K, F = -0.37304410023893675, relative_change = 3.1463302155378916e-6 Iter 60: T = 849.3029252393183 K, F = -0.15601200764778134, relative_change = 1.3158973823476234e-6 Iter 65: T = 849.2995116328174 K, F = -0.06524617393995613, relative_change = 5.503352842232317e-7 Iter 70: T = 849.2980840072829 K, F = -0.027286744737607727, relative_change = 2.3015876183442933e-7 Iter 75: T = 849.2974869546937 K, F = -0.011411645248062596, relative_change = 9.625548805421998e-8 Iter 80: T = 849.2972372597262 K, F = -0.004772486802027576, relative_change = 4.025525499861838e-8 Iter 85: T = 849.2971328342311 K, F = -0.001995911057708799, relative_change = 1.6835238933551365e-8 Iter 90: T = 849.2970891622283 K, F = -0.0008347138547957211, relative_change = 7.040699821215799e-9 Iter 95: T = 849.2970708980729 K, F = -0.00034908730423555134, relative_change = 2.94450506369352e-9 Iter 100: T = 849.2970632597845 K, F = -0.00014599248055380265, relative_change = 1.2314272431109174e-9 Iter 105: T = 849.297060065361 K, F = -6.105579783932669e-5, relative_change = 5.149975798101181e-10 Iter 110: T = 849.297058729415 K, F = -2.5534264381787963e-5, relative_change = 2.1537814462675963e-10 Iter 115: T = 849.2970581707065 K, F = -1.0678734843949655e-5, relative_change = 9.007371704412329e-11 Iter 120: T = 849.2970579370478 K, F = -4.465976178646969e-6, relative_change = 3.76699188664751e-11 Iter 125: T = 849.297057839329 K, F = -1.8677237587638729e-6, relative_change = 1.575400308505055e-11 Iter 130: T = 849.2970577984618 K, F = -7.811051645489897e-7, relative_change = 6.5885188412537254e-12 Iter 135: T = 849.2970577813707 K, F = -3.2666642213463604e-7, relative_change = 2.755388102558407e-12 Iter 140: T = 849.2970577742229 K, F = -1.3661769759920617e-7, relative_change = 1.1523522256098634e-12 Iter 145: T = 849.2970577712338 K, F = -5.713711215271644e-8, relative_change = 4.819439905096832e-13 Converged in 150 iterations to T = 849.2970577699836 K Iter 1: T = 967.439522814585 K, F = -7418.93569970664, relative_change = 0.032560477185415014 Iter 2: T = 936.9586637281897 K, F = -6288.625286197763, relative_change = 0.03150673335912193 Iter 3: T = 908.5257569644322 K, F = -5328.999881522763, relative_change = 0.030345956406040424 Iter 5: T = 857.663169073734 K, F = -3822.9794002274243, relative_change = 0.027710369931296466 Iter 10: T = 763.268650796278 K, F = -1654.925406958631, relative_change = 0.019756131865404362 Iter 15: T = 708.1922514706492 K, F = -708.3481684677423, relative_change = 0.01178482161936691 Iter 20: T = 679.9521541780707 K, F = -300.15235418758044, relative_change = 0.006014640634674924 Iter 25: T = 666.8089154494741 K, F = -126.34148233201711, relative_change = 0.002773133295145732 Iter 30: T = 661.0288041448691 K, F = -52.992314844772956, relative_change = 0.0012119258460327191 Iter 35: T = 658.5572002087839 K, F = -22.1901220726194, relative_change = 0.00051658045109846 Iter 40: T = 657.5136632548099 K, F = -9.28516891818271, relative_change = 0.00021779184462800719 Iter 45: T = 657.0754853905567 K, F = -3.8840481001043097, relative_change = 9.139318965932676e-5 Iter 50: T = 656.8919244313585 K, F = -1.6245095790911228, relative_change = 3.827622097205137e-5 Iter 55: T = 656.8151027074098 K, F = -0.6794163224370973, relative_change = 1.6017124380579945e-5 Iter 60: T = 656.7829654290696 K, F = -0.2841447473943549, relative_change = 6.700224759653827e-6 Iter 65: T = 656.7695235702373 K, F = -0.11883355374763521, relative_change = 2.8024065639012344e-6 Iter 70: T = 656.7639017330295 K, F = -0.04969775599448739, relative_change = 1.1720510681530264e-6 Iter 75: T = 656.7615505626146 K, F = -0.020784220369111317, relative_change = 4.901747050583987e-7 Iter 80: T = 656.7605672661559 K, F = -0.008692213597807863, relative_change = 2.0499848115927548e-7 Iter 85: T = 656.760156038275 K, F = -0.0036351883057040846, relative_change = 8.57330868090399e-8 Iter 90: T = 656.7599840575915 K, F = -0.0015202792975866908, relative_change = 3.5854648653824705e-8 Iter 95: T = 656.7599121331682 K, F = -0.000635798981661051, relative_change = 1.4994850633128066e-8 Iter 100: T = 656.7598820535071 K, F = -0.00026589873129445607, relative_change = 6.271027075721369e-9 Iter 105: T = 656.7598694738322 K, F = -0.00011120202724962391, relative_change = 2.622618708846844e-9 Iter 110: T = 656.7598642128615 K, F = -4.650601604239135e-5, relative_change = 1.0968105115975038e-9 Iter 115: T = 656.7598620126608 K, F = -1.9449371471080834e-5, relative_change = 4.5869926579495677e-10 Iter 120: T = 656.7598610925106 K, F = -8.133960203049462e-6, relative_change = 1.918335306402836e-10 Iter 125: T = 656.7598607076927 K, F = -3.4017184742940465e-6, relative_change = 8.022705431284063e-11 Iter 130: T = 656.7598605467573 K, F = -1.4226399973615855e-6, relative_change = 3.355192892403892e-11 Iter 135: T = 656.7598604794521 K, F = -5.949638803293134e-7, relative_change = 1.4031790102865825e-11 Iter 140: T = 656.7598604513043 K, F = -2.488205120831921e-7, relative_change = 5.8682506871154484e-12 Iter 145: T = 656.7598604395326 K, F = -1.0406021894171502e-7, relative_change = 2.4541845294251502e-12 Iter 150: T = 656.7598604346095 K, F = -4.351879412389792e-8, relative_change = 1.0263590867682244e-12 Iter 155: T = 656.7598604325506 K, F = -1.8199488693859678e-8, relative_change = 4.292216954030843e-13 Converged in 159 iterations to T = 656.7598604318074 K Iter 1: T = 980.1246224900774 K, F = -4528.623672000765, relative_change = 0.019875377509922607 Iter 2: T = 962.2937085904063 K, F = -3825.3580365735206, relative_change = 0.01819249663820339 Iter 3: T = 946.3864802469735 K, F = -3229.7990386511606, relative_change = 0.01653053345504469 Iter 5: T = 919.8202377473486 K, F = -2299.2471267162737, relative_change = 0.013358193669737955 Iter 10: T = 877.633736392128 K, F = -976.128441217314, relative_change = 0.0070200600498661545 Iter 15: T = 857.6590129943074 K, F = -411.33946296353713, relative_change = 0.003292548306102808 Iter 20: T = 848.7931885087787 K, F = -172.62744861995958, relative_change = 0.0014510975578994713 Iter 25: T = 844.98562882066 K, F = -72.30464496595286, relative_change = 0.0006208773046993144 Iter 30: T = 843.3749588369668 K, F = -30.25824116005543, relative_change = 0.00026219271929406047 Iter 35: T = 842.698089861117 K, F = -12.657809663952573, relative_change = 0.00011010177670686641 Iter 40: T = 842.4144386945615 K, F = -5.294252983294468, relative_change = 4.6124996530793886e-5 Iter 45: T = 842.2957111944902 K, F = -2.2142259350658784, relative_change = 1.9303897268045113e-5 Iter 50: T = 842.2460402099333 K, F = -0.9260342994574047, relative_change = 8.075549317769289e-6 Iter 55: T = 842.2252641086953 K, F = -0.38728185188309017, relative_change = 3.3777161793039063e-6 Iter 60: T = 842.2165747522989 K, F = -0.16196646380592283, relative_change = 1.4126755932661758e-6 Iter 65: T = 842.2129406647454 K, F = -0.06773640882661147, relative_change = 5.908108085718269e-7 Iter 70: T = 842.2114208293253 K, F = -0.028328192490255644, relative_change = 2.470864104528443e-7 Iter 75: T = 842.210785213098 K, F = -0.011847191447387662, relative_change = 1.0333488550133884e-7 Iter 80: T = 842.2105193902928 K, F = -0.004954637477341928, relative_change = 4.321595275156271e-8 Iter 85: T = 842.2104082199323 K, F = -0.002072088654792026, relative_change = 1.8073439699893944e-8 Iter 90: T = 842.2103617271445 K, F = -0.0008665722397476205, relative_change = 7.558530471675553e-9 Iter 95: T = 842.2103422833026 K, F = -0.00036241086228439023, relative_change = 3.1610680810073263e-9 Iter 100: T = 842.2103341516553 K, F = -0.00015156455349130127, relative_change = 1.3219965076611887e-9 Iter 105: T = 842.210330750903 K, F = -6.338610500367103e-5, relative_change = 5.528747265101218e-10 Iter 110: T = 842.2103293286679 K, F = -2.650882440025093e-5, relative_change = 2.3121880035671937e-10 Iter 115: T = 842.2103287338722 K, F = -1.1086308509433707e-5, relative_change = 9.66984776032168e-11 Iter 120: T = 842.2103284851215 K, F = -4.63642556902677e-6, relative_change = 4.0440449072339574e-11 Iter 125: T = 842.210328381091 K, F = -1.93900912726086e-6, relative_change = 1.6912683863998997e-11 Iter 130: T = 842.2103283375842 K, F = -8.109168878611683e-7, relative_change = 7.073087369692435e-12 Iter 135: T = 842.2103283193891 K, F = -3.391339860048248e-7, relative_change = 2.958039657575348e-12 Iter 140: T = 842.2103283117798 K, F = -1.4183215801821802e-7, relative_change = 1.2371073542286067e-12 Iter 145: T = 842.2103283085974 K, F = -5.931550361992777e-8, relative_change = 5.173695921617506e-13 Converged in 150 iterations to T = 842.2103283072665 K Iter 1: T = 970.0237060671112 K, F = -6830.127087425656, relative_change = 0.02997629393288879 Iter 2: T = 942.2051502700871 K, F = -5785.463498841544, relative_change = 0.02867822262799368 Iter 3: T = 916.5014608313843 K, F = -4898.8479925363645, relative_change = 0.027280353361828578 Iter 5: T = 871.2324521670215 K, F = -3508.303918851311, relative_change = 0.024226181009977928 Iter 10: T = 790.5080613500878 K, F = -1510.9435696955022, relative_change = 0.015923641632384317 Iter 15: T = 746.2273120735535 K, F = -643.5078600556278, relative_change = 0.008790610709084502 Iter 20: T = 724.6242709893364 K, F = -271.7208137113989, relative_change = 0.004251566808103906 Iter 25: T = 714.8726052465731 K, F = -114.15207045537284, relative_change = 0.001903417822038339 Iter 30: T = 710.6502729555673 K, F = -47.83524476642141, relative_change = 0.0008202975556891061 Iter 35: T = 708.8576185747604 K, F = -20.022400642718807, relative_change = 0.0003474947124703611 Iter 40: T = 708.1030887068742 K, F = -8.37663575769286, relative_change = 0.00014611719634352772 Iter 45: T = 707.7866824686191 K, F = -3.5037412592097583, relative_change = 6.124736826942572e-5 Iter 50: T = 707.6542077159168 K, F = -1.4653996897258743, relative_change = 2.5638845879570748e-5 Iter 55: T = 707.5987789239521 K, F = -0.6128639736353607, relative_change = 1.0726756501680135e-5 Iter 60: T = 707.5755933429366 K, F = -0.25630988871420474, relative_change = 4.486807557674064e-6 Iter 65: T = 707.5658960515369 K, F = -0.10719235598123733, relative_change = 1.8765676919388902e-6 Iter 70: T = 707.5618403877309 K, F = -0.04482921078480506, relative_change = 7.848259667942422e-7 Iter 75: T = 707.5601442360767 K, F = -0.01874812660152292, relative_change = 3.282276056993049e-7 Iter 80: T = 707.5594348808934 K, F = -0.007840693115646724, relative_change = 1.3726940654302856e-7 Iter 85: T = 707.5591382193312 K, F = -0.003279071964935598, relative_change = 5.740782792162009e-8 Iter 90: T = 707.5590141517914 K, F = -0.0013713471373535402, relative_change = 2.4008660696621043e-8 Iter 95: T = 707.5589622652416 K, F = -0.000573513764814737, relative_change = 1.0040712389050393e-8 Iter 100: T = 707.5589405656627 K, F = -0.00023985030842399446, relative_change = 4.199146494299321e-9 Iter 105: T = 707.558931490639 K, F = -0.00010030826364504364, relative_change = 1.7561333238355355e-9 Iter 110: T = 707.5589276953556 K, F = -4.1950113974786873e-5, relative_change = 7.344359506801691e-10 Iter 115: T = 707.5589261081227 K, F = -1.7544038272698792e-5, relative_change = 3.071498821895859e-10 Iter 120: T = 707.5589254443229 K, F = -7.3371259572407865e-6, relative_change = 1.2845374299882145e-10 Iter 125: T = 707.558925166714 K, F = -3.0684744189990454e-6, relative_change = 5.3720902087536214e-11 Iter 130: T = 707.5589250506147 K, F = -1.2832732481093956e-6, relative_change = 2.2466733351351918e-11 Iter 135: T = 707.5589250020605 K, F = -5.366819043617355e-7, relative_change = 9.39588607609031e-12 Iter 140: T = 707.5589249817546 K, F = -2.244466748013707e-7, relative_change = 3.9294698959286935e-12 Iter 145: T = 707.5589249732624 K, F = -9.386661070642788e-8, relative_change = 1.6433570305786984e-12 Iter 150: T = 707.5589249697108 K, F = -3.925698111029163e-8, relative_change = 6.87286303648512e-13 Iter 155: T = 707.5589249682255 K, F = -1.6417111114996885e-8, relative_change = 2.874203592789223e-13 Converged in 157 iterations to T = 707.5589249679111 K Iter 1: T = 969.3304007551781 K, F = -6988.097362253237, relative_change = 0.030669599244821957 Iter 2: T = 940.801960098896 K, F = -5920.388465343613, relative_change = 0.029431080087920947 Iter 3: T = 914.3755539867096 K, F = -5014.1244614756715, relative_change = 0.028089233688892847 Iter 5: T = 867.6427643806509 K, F = -3592.4972577732165, relative_change = 0.02512756660878769 Iter 10: T = 783.4552404341997 K, F = -1549.213369587317, relative_change = 0.01685857022299978 Iter 15: T = 736.5720077543164 K, F = -660.5925149033149, relative_change = 0.009480049598649763 Iter 20: T = 713.4338205597952 K, F = -279.15726797199864, relative_change = 0.004641172851365374 Iter 25: T = 702.9179021273011 K, F = -117.32611204069201, relative_change = 0.002091267159873539 Iter 30: T = 698.3492576403776 K, F = -49.17513185432092, relative_change = 0.0009039647858055948 Iter 35: T = 696.4066059612073 K, F = -20.58504316488241, relative_change = 0.0003834429858243615 Iter 40: T = 695.5884013691721 K, F = -8.612347539395167, relative_change = 0.0001613237551541365 Iter 45: T = 695.2451973639838 K, F = -3.6023907071777215, relative_change = 6.763749629958706e-5 Iter 50: T = 695.1014858073887 K, F = -1.506668699226008, relative_change = 2.8316647660729925e-5 Iter 55: T = 695.0413524454841 K, F = -0.6301253789862088, relative_change = 1.1847587175294386e-5 Iter 60: T = 695.0161984456258 K, F = -0.26352920182680417, relative_change = 4.955717238595948e-6 Iter 65: T = 695.0056777784416 K, F = -0.11021162669046808, relative_change = 2.072700174182915e-6 Iter 70: T = 695.0012777411431 K, F = -0.046091917704171315, relative_change = 8.668559605516313e-7 Iter 75: T = 694.9994375635004 K, F = -0.01927620778852035, relative_change = 3.625344115901037e-7 Iter 80: T = 694.9986679740748 K, F = -0.00806154333708109, relative_change = 1.516170768874798e-7 Iter 85: T = 694.9983461216839 K, F = -0.00337143422794417, relative_change = 6.340822200374246e-8 Iter 90: T = 694.9982115190126 K, F = -0.001409974150617388, relative_change = 2.6518101898649294e-8 Iter 95: T = 694.9981552265402 K, F = -0.000589668044577607, relative_change = 1.1090191487367184e-8 Iter 100: T = 694.9981316843513 K, F = -0.0002466062218645648, relative_change = 4.638051338681254e-9 Iter 105: T = 694.9981218387259 K, F = -0.00010313366712877414, relative_change = 1.9396885915365013e-9 Iter 110: T = 694.9981177211675 K, F = -4.3131731712997556e-5, relative_change = 8.112009649802127e-10 Iter 115: T = 694.9981159991555 K, F = -1.803820614421081e-5, relative_change = 3.392539511438799e-10 Iter 120: T = 694.9981152789894 K, F = -7.543793508313357e-6, relative_change = 1.4188005982825465e-10 Iter 125: T = 694.9981149778074 K, F = -3.154903941426923e-6, relative_change = 5.933592434526718e-11 Iter 130: T = 694.9981148518494 K, F = -1.3194184871334613e-6, relative_change = 2.481499185184149e-11 Iter 135: T = 694.9981147991723 K, F = -5.517961847445463e-7, relative_change = 1.037791873221598e-11 Iter 140: T = 694.9981147771422 K, F = -2.307688010683151e-7, relative_change = 4.34018924014134e-12 Iter 145: T = 694.9981147679289 K, F = -9.650980703490575e-8, relative_change = 1.8151102928486984e-12 Iter 150: T = 694.9981147640757 K, F = -4.036155332176605e-8, relative_change = 7.591007911261902e-13 Iter 155: T = 694.9981147624644 K, F = -1.6880936093421894e-8, relative_change = 3.174885723909491e-13 Converged in 158 iterations to T = 694.9981147619927 K Iter 1: T = 965.3383968786076 K, F = -7897.679242905851, relative_change = 0.03466160312139247 Iter 2: T = 932.6597368641441 K, F = -6698.23578189479, relative_change = 0.03385202548674017 Iter 3: T = 901.9346853819931 K, F = -5679.712503677009, relative_change = 0.032943473667531746 Iter 5: T = 846.2316699404873 K, F = -4080.613430592033, relative_change = 0.030812204261913254 Iter 10: T = 738.9599735119785 K, F = -1774.9872112957435, relative_change = 0.023729159719268006 Iter 15: T = 672.2476809696818 K, F = -763.9029600421902, relative_change = 0.01542338968775595 Iter 20: T = 635.9487797588915 K, F = -325.1394004194944, relative_change = 0.008431657233254355 Iter 25: T = 618.3464303237497 K, F = -137.23324773716178, relative_change = 0.0040523639703382375 Iter 30: T = 610.428390101467 K, F = -57.64026105086924, relative_change = 0.0018082906288181975 Iter 35: T = 607.0058660123022 K, F = -24.151621596738785, relative_change = 0.00077811814908054 Iter 40: T = 605.5539028489046 K, F = -10.108698155774203, relative_change = 0.0003294076914621253 Iter 45: T = 604.942973740672 K, F = -4.229027566870052, relative_change = 0.00013847260230645138 Iter 50: T = 604.6868215328651 K, F = -1.7688844134684256, relative_change = 5.803608343464064e-5 Iter 55: T = 604.5795806466554 K, F = -0.7398131938300017, relative_change = 2.4293348167625104e-5 Iter 60: T = 604.5347110795911 K, F = -0.3094065206331994, relative_change = 1.0163615133022972e-5 Iter 65: T = 604.5159425640948 K, F = -0.12939886801858244, relative_change = 4.251218412115547e-6 Iter 70: T = 604.5080927297414 K, F = -0.05411639089130099, relative_change = 1.7780280780536531e-6 Iter 75: T = 604.5048097273342 K, F = -0.022632162745751472, relative_change = 7.436131759957219e-7 Iter 80: T = 604.5034367176414 K, F = -0.009465048053139857, relative_change = 3.1099151381907487e-7 Iter 85: T = 604.5028625052889 K, F = -0.0039583974097147645, relative_change = 1.300609952557768e-7 Iter 90: T = 604.5026223622481 K, F = -0.0016554492930874742, relative_change = 5.4393171677380726e-8 Iter 95: T = 604.5025219314595 K, F = -0.0006923287030270453, relative_change = 2.2747893242428527e-8 Iter 100: T = 604.5024799300867 K, F = -0.0002895401390430874, relative_change = 9.513444007608763e-9 Iter 105: T = 604.5024623646078 K, F = -0.00012108914500252865, relative_change = 3.978636482268181e-9 Iter 110: T = 604.5024550185143 K, F = -5.0640927016953885e-5, relative_change = 1.663913403454588e-9 Iter 115: T = 604.5024519462901 K, F = -2.11786407730008e-5, relative_change = 6.95868483805814e-10 Iter 120: T = 604.5024506614492 K, F = -8.85716002285708e-6, relative_change = 2.9102049769676583e-10 Iter 125: T = 604.5024501241135 K, F = -3.7041694127548652e-6, relative_change = 1.2170822564266297e-10 Iter 130: T = 604.5024498993931 K, F = -1.5491274734658056e-6, relative_change = 5.0899820017490436e-11 Iter 135: T = 604.5024498054124 K, F = -6.478627561090633e-7, relative_change = 2.12868845664576e-11 Iter 140: T = 604.5024497661087 K, F = -2.709437683101612e-7, relative_change = 8.902423649792036e-12 Iter 145: T = 604.5024497496713 K, F = -1.1331198090935857e-7, relative_change = 3.723101900716482e-12 Iter 150: T = 604.502449742797 K, F = -4.7387652413188874e-8, relative_change = 1.557020337688017e-12 Iter 155: T = 604.5024497399222 K, F = -1.9818168217611287e-8, relative_change = 6.511673273490446e-13 Iter 160: T = 604.5024497387199 K, F = -8.288268404932353e-9, relative_change = 2.7232837699128933e-13 Converged in 162 iterations to T = 604.5024497384654 K Iter 1: T = 965.2461060504951 K, F = -7918.707795882522, relative_change = 0.034753893949504955 Iter 2: T = 932.4702202045825 K, F = -6716.2380316224935, relative_change = 0.033955988675284064 Iter 3: T = 901.6429400888925 K, F = -5695.137435658572, relative_change = 0.033059801211588795 Iter 5: T = 845.7209003480604 K, F = -4091.9677737605207, relative_change = 0.030954462300608603 Iter 10: T = 737.8408309540166 K, F = -1780.3308401870286, relative_change = 0.023926001863850768 Iter 15: T = 670.5375638156577 K, F = -766.4170127011503, relative_change = 0.015620098469660332 Iter 20: T = 633.8002553427176 K, F = -326.29015292710915, relative_change = 0.008571944951575173 Iter 25: T = 615.9432320039659 K, F = -137.74111766634397, relative_change = 0.004129912276963211 Iter 30: T = 607.8997079312783 K, F = -57.858455935510264, relative_change = 0.0018452471908865819 Iter 35: T = 604.4206285869591 K, F = -24.243996278261303, relative_change = 0.0007944891301144395 Iter 40: T = 602.9442308810043 K, F = -10.14753576175499, relative_change = 0.0003364248405681351 Iter 45: T = 602.3229404725244 K, F = -4.245306538478907, relative_change = 0.00014143791906141986 Iter 50: T = 602.0624296944084 K, F = -1.7756989308097217, relative_change = 5.928163877081489e-5 Iter 55: T = 601.9533615360779 K, F = -0.7426642395395071, relative_change = 2.481520760004531e-5 Iter 60: T = 601.9077269985227 K, F = -0.310599060472396, relative_change = 1.0382030052081576e-5 Iter 65: T = 601.8886384260284 K, F = -0.12989763715569655, relative_change = 4.342591385435602e-6 Iter 70: T = 601.8806547160065 K, F = -0.0543249881769427, relative_change = 1.8162464636123065e-6 Iter 75: T = 601.8773157209956 K, F = -0.02271940168487091, relative_change = 7.595974563503179e-7 Iter 80: T = 601.8759192937928 K, F = -0.009501532605490415, relative_change = 3.176764873244041e-7 Iter 85: T = 601.8753352878292 K, F = -0.0039736557174041565, relative_change = 1.3285675838266122e-7 Iter 90: T = 601.8750910489608 K, F = -0.0016618305051421256, relative_change = 5.556239799028455e-8 Iter 95: T = 601.8749889052443 K, F = -0.0006949974037231965, relative_change = 2.3236878507757684e-8 Iter 100: T = 601.8749461875041 K, F = -0.0002906562217689923, relative_change = 9.717943633721118e-9 Iter 105: T = 601.8749283224315 K, F = -0.00012155590453227783, relative_change = 4.064160706191647e-9 Iter 110: T = 601.8749208510443 K, F = -5.083613146839028e-5, relative_change = 1.6996806611250253e-9 Iter 115: T = 601.8749177264209 K, F = -2.1260277749068912e-5, relative_change = 7.108267838171561e-10 Iter 120: T = 601.8749164196661 K, F = -8.891302009428337e-6, relative_change = 2.972762515727431e-10 Iter 125: T = 601.8749158731656 K, F = -3.7184491896713467e-6, relative_change = 1.243244960496918e-10 Iter 130: T = 601.8749156446125 K, F = -1.5551002585101337e-6, relative_change = 5.1994002454727494e-11 Iter 135: T = 601.8749155490289 K, F = -6.503615041508759e-7, relative_change = 2.1744512923716103e-11 Iter 140: T = 601.8749155090546 K, F = -2.7198859531285535e-7, relative_change = 9.093803200230387e-12 Iter 145: T = 601.874915492337 K, F = -1.1374883568393557e-7, relative_change = 3.803135660566992e-12 Iter 150: T = 601.8749154853455 K, F = -4.757110583231139e-8, relative_change = 1.590516227490724e-12 Iter 155: T = 601.8749154824214 K, F = -1.9894879299542367e-8, relative_change = 6.651753794029013e-13 Iter 160: T = 601.8749154811986 K, F = -8.320310385112606e-9, relative_change = 2.7818543324100585e-13 Converged in 162 iterations to T = 601.8749154809399 K Iter 1: T = 973.4602418446583 K, F = -6047.109141522097, relative_change = 0.026539758155341684 Iter 2: T = 949.1135805721627 K, F = -5117.406755323558, relative_change = 0.025010432091566278 Iter 3: T = 926.8930276511945 K, F = -4328.8256862000535, relative_change = 0.023411900720641636 Iter 5: T = 888.5098924498989 K, F = -3093.3694940300898, relative_change = 0.020084782184602044 Iter 10: T = 823.1137756689835 K, F = -1324.621186406084, relative_change = 0.01206369995178715 Iter 15: T = 789.4278586039494 K, F = -561.477154368785, relative_change = 0.006188701322257609 Iter 20: T = 773.703084211867 K, F = -236.38540854916215, relative_change = 0.002861808331175892 Iter 25: T = 766.7767349619844 K, F = -99.15826900692869, relative_change = 0.0012524754651822856 Iter 30: T = 763.8128087451912 K, F = -41.52353387226436, relative_change = 0.0005342078575838645 Iter 35: T = 762.5610028341723 K, F = -17.375304878169295, relative_change = 0.0002252859665565664 Iter 40: T = 762.0353007898459 K, F = -7.2682627338138355, relative_change = 9.454907200985158e-5 Iter 45: T = 761.8150614513924 K, F = -3.039972968078109, relative_change = 3.959988203498401e-5 Iter 50: T = 761.7228872756099 K, F = -1.271405306314462, relative_change = 1.6571367851058558e-5 Iter 55: T = 761.6843271212058 K, F = -0.5317260359540736, relative_change = 6.932133795033888e-6 Iter 60: T = 761.6681987368363 K, F = -0.22237577957734067, relative_change = 2.8994143064074446e-6 Iter 65: T = 761.6614532922257 K, F = -0.09300048680614115, relative_change = 1.2126244708757358e-6 Iter 70: T = 761.6586322034726 K, F = -0.038893963221151684, relative_change = 5.071436174426106e-7 Iter 75: T = 761.6574523794009 K, F = -0.01626592847429109, relative_change = 2.1209519328227135e-7 Iter 80: T = 761.6569589609489 K, F = -0.006802607042422415, relative_change = 8.870103590854001e-8 Iter 85: T = 761.6567526071211 K, F = -0.0028449317669256846, relative_change = 3.709588379228156e-8 Iter 90: T = 761.6566663074267 K, F = -0.0011897844844429573, relative_change = 1.5513950561470797e-8 Iter 95: T = 761.6566302158536 K, F = -0.0004975820878945214, relative_change = 6.488120961748938e-9 Iter 100: T = 761.6566151219249 K, F = -0.00020809477303629365, relative_change = 2.713409946229353e-9 Iter 105: T = 761.6566088094634 K, F = -8.702771964497202e-5, relative_change = 1.1347804942668426e-9 Iter 110: T = 761.6566061695165 K, F = -3.639603250737977e-5, relative_change = 4.745787733856328e-10 Iter 115: T = 761.6566050654592 K, F = -1.5221253975683524e-5, relative_change = 1.9847449277778575e-10 Iter 120: T = 761.6566046037292 K, F = -6.36570920709012e-6, relative_change = 8.300439055239095e-11 Iter 125: T = 761.6566044106282 K, F = -2.662215352833286e-6, relative_change = 3.4713424059924364e-11 Iter 130: T = 761.656604329871 K, F = -1.113369069161152e-6, relative_change = 1.4517553063982136e-11 Iter 135: T = 761.6566042960975 K, F = -4.656243157707962e-7, relative_change = 6.071415041737267e-12 Iter 140: T = 761.656604281973 K, F = -1.9473057899510593e-7, relative_change = 2.5391503975566967e-12 Iter 145: T = 761.656604276066 K, F = -8.143822571859971e-8, relative_change = 1.0618974394490299e-12 Iter 150: T = 761.6566042735956 K, F = -3.4058902698141935e-8, relative_change = 4.4410424278065895e-13 Converged in 154 iterations to T = 761.6566042727039 K Iter 1: T = 976.385057342774 K, F = -5380.687148058646, relative_change = 0.023614942657226027 Iter 2: T = 954.932810064978 K, F = -4549.791258606999, relative_change = 0.021971093388276713 Iter 3: T = 935.5520545202712 K, F = -3845.463162535822, relative_change = 0.02029541276667199 Iter 5: T = 902.5857056026291 K, F = -2743.208001260888, relative_change = 0.016941624141511534 Iter 10: T = 848.2634093493612 K, F = -1169.8433411023027, relative_change = 0.009542596335761601 Iter 15: T = 821.425665662886 K, F = -494.395770110472, relative_change = 0.004677009140866451 Iter 20: T = 809.2207040856107 K, F = -207.79621069176923, relative_change = 0.0021086721120543122 Iter 25: T = 803.9165886839692 K, F = -87.09566832070655, relative_change = 0.0009117432908073461 Iter 30: T = 801.6608827469317 K, F = -36.459135510488565, relative_change = 0.0003867900755909696 Iter 35: T = 800.7107674430415 K, F = -15.253786214107075, relative_change = 0.00016274051810736046 Iter 40: T = 800.3122217192945 K, F = -6.38039499176925, relative_change = 6.82330112040305e-5 Iter 45: T = 800.1453347989424 K, F = -2.668546580230208, relative_change = 2.8566228098014886e-5 Iter 50: T = 800.0755038240574 K, F = -1.1160511691959605, relative_change = 1.1952057432343137e-5 Iter 55: T = 800.0462932213914 K, F = -0.4667517222702732, relative_change = 4.999424183471999e-6 Iter 60: T = 800.0340758690741 K, F = -0.19520215809767927, relative_change = 2.090981781297809e-6 Iter 65: T = 800.0289662288577 K, F = -0.0816360510117089, relative_change = 8.745020439396788e-7 Iter 70: T = 800.0268292817397 K, F = -0.034141202474483934, relative_change = 3.6573218187098117e-7 Iter 75: T = 800.0259355788902 K, F = -0.0142782640268182, relative_change = 1.5295443780783378e-7 Iter 80: T = 800.0255618206284 K, F = -0.005971341480418335, relative_change = 6.396752497368726e-8 Iter 85: T = 800.0254055102748 K, F = -0.0024972864846598553, relative_change = 2.6752009527972964e-8 Iter 90: T = 800.025340139386 K, F = -0.0010443950615727227, relative_change = 1.1188014542837836e-8 Iter 95: T = 800.0253128004938 K, F = -0.0004367784908498873, relative_change = 4.67896209251741e-9 Iter 100: T = 800.0253013670417 K, F = -0.00018266598176208682, relative_change = 1.9567979658322202e-9 Iter 105: T = 800.0252965854353 K, F = -7.639309522833315e-5, relative_change = 8.183563034471859e-10 Iter 110: T = 800.0252945857104 K, F = -3.1948505474943545e-5, relative_change = 3.42246391171202e-10 Iter 115: T = 800.0252937494015 K, F = -1.33612446122644e-5, relative_change = 1.431315081843006e-10 Iter 120: T = 800.0252933996471 K, F = -5.587831478859329e-6, relative_change = 5.985929993224566e-11 Iter 125: T = 800.0252932533757 K, F = -2.3368978475657443e-6, relative_change = 2.5033874020621852e-11 Iter 130: T = 800.0252931922032 K, F = -9.773184537209545e-7, relative_change = 1.0469463645093348e-11 Iter 135: T = 800.0252931666201 K, F = -4.087260689900063e-7, relative_change = 4.378452800571074e-12 Iter 140: T = 800.025293155921 K, F = -1.709324658483169e-7, relative_change = 1.831103496038658e-12 Iter 145: T = 800.0252931514466 K, F = -7.148674596724192e-8, relative_change = 7.657973563704882e-13 Iter 150: T = 800.0252931495753 K, F = -2.989714664725085e-8, relative_change = 3.2027133919666666e-13 Converged in 153 iterations to T = 800.0252931490274 K Iter 1: T = 967.3523679334633 K, F = -7438.794022275931, relative_change = 0.03264763206653679 Iter 2: T = 936.7809383613494 K, F = -6305.606995144245, relative_change = 0.031603199191441486 Iter 3: T = 908.2542777852464 K, F = -5343.530129448147, relative_change = 0.030451794446205237 Iter 5: T = 857.1963101528992 K, F = -3833.633720469559, relative_change = 0.02783401383373756 Iter 10: T = 762.3019799684666 K, F = -1659.8483901847126, relative_change = 0.019903606452332856 Iter 15: T = 706.8026791676546 K, F = -710.5954251414809, relative_change = 0.011909430707951977 Iter 20: T = 678.2873371173933 K, F = -301.14951577234973, relative_change = 0.006092176184854197 Iter 25: T = 664.9983124750123 K, F = -126.77215630587706, relative_change = 0.002812564912413439 Iter 30: T = 659.1499854333949 K, F = -53.175202642152215, relative_change = 0.0012299420195541347 Iter 35: T = 656.6483935554023 K, F = -22.267127266911032, relative_change = 0.0005244093348580199 Iter 40: T = 655.5920436556142 K, F = -9.317466941450325, relative_change = 0.00022111967682164664 Iter 45: T = 655.1484584716981 K, F = -3.89757208239987, relative_change = 9.279449090479363e-5 Iter 50: T = 654.9626274762098 K, F = -1.6301683821100978, relative_change = 3.886394696994262e-5 Iter 55: T = 654.8848548793038 K, F = -0.6817834118889511, relative_change = 1.6263214068076586e-5 Iter 60: T = 654.8523196687428 K, F = -0.2851347818310547, relative_change = 6.803194184990236e-6 Iter 65: T = 654.8387113433772 K, F = -0.11924761360872488, relative_change = 2.84547866855769e-6 Iter 70: T = 654.8330198797368 K, F = -0.04987092350664102, relative_change = 1.1900659218562042e-6 Iter 75: T = 654.8306395892924 K, F = -0.02085664157053696, relative_change = 4.977090093300539e-7 Iter 80: T = 654.8296441142404 K, F = -0.008722501091347812, relative_change = 2.0814946564719023e-7 Iter 85: T = 654.8292277930829 K, F = -0.0036478549117273107, relative_change = 8.705087463178966e-8 Iter 90: T = 654.8290536823226 K, F = -0.0015255766261280113, relative_change = 3.640576474418301e-8 Iter 95: T = 654.8289808670744 K, F = -0.0006380143882300793, relative_change = 1.5225334224731022e-8 Iter 100: T = 654.8289504148595 K, F = -0.00026682524066362623, relative_change = 6.367418107038382e-9 Iter 105: T = 654.828937679378 K, F = -0.0001115895024821345, relative_change = 2.662930548419485e-9 Iter 110: T = 654.8289323532472 K, F = -4.6668062104626706e-5, relative_change = 1.1136693888054746e-9 Iter 115: T = 654.8289301257959 K, F = -1.951714155251638e-5, relative_change = 4.657498613784409e-10 Iter 120: T = 654.828929194249 K, F = -8.162302573500035e-6, relative_change = 1.947821768702807e-10 Iter 125: T = 654.8289288046649 K, F = -3.413571804944393e-6, relative_change = 8.146021823696344e-11 Iter 130: T = 654.8289286417363 K, F = -1.4275964600463098e-6, relative_change = 3.406763530182806e-11 Iter 135: T = 654.8289285735975 K, F = -5.970384273634721e-7, relative_change = 1.4247504798388534e-11 Iter 140: T = 654.8289285451011 K, F = -2.4968824313686966e-7, relative_change = 5.958468131842833e-12 Iter 145: T = 654.8289285331836 K, F = -1.0442248765674123e-7, relative_change = 2.4918997273864086e-12 Iter 150: T = 654.8289285281994 K, F = -4.3670457361422166e-8, relative_change = 1.0421356859016166e-12 Iter 155: T = 654.8289285261151 K, F = -1.8262907575117282e-8, relative_change = 4.358192898033186e-13 Converged in 159 iterations to T = 654.8289285253627 K Iter 1: T = 970.323806006861 K, F = -6761.749030684924, relative_change = 0.029676193993138988 Iter 2: T = 942.8115367607185 K, F = -5727.076028355037, relative_change = 0.028353699121701173 Iter 3: T = 917.4185552725482 K, F = -4848.979115430547, relative_change = 0.02693325282740452 Iter 5: T = 872.7750693207854 K, F = -3471.9118091910154, relative_change = 0.023843235506742597 Iter 10: T = 793.507388926455 K, F = -1494.4543064748227, relative_change = 0.015537475637171002 Iter 15: T = 750.2966413958976 K, F = -636.1752083610824, relative_change = 0.008512993424767893 Iter 20: T = 729.3137002978058 K, F = -268.53890224362624, relative_change = 0.0040973036138722335 Iter 25: T = 719.8674995435013 K, F = -112.79637323998162, relative_change = 0.0018297006542618043 Iter 30: T = 715.7828550502924 K, F = -47.26344689163728, relative_change = 0.00078760091068874 Iter 35: T = 714.0496938972216 K, F = -19.782385350312683, relative_change = 0.00033347204403975445 Iter 40: T = 713.3203929469406 K, F = -8.27610119915252, relative_change = 0.0001401900719158236 Iter 45: T = 713.0145997032404 K, F = -3.4616687754906104, relative_change = 5.8757482567608554e-5 Iter 50: T = 712.886574348246 K, F = -1.4477996082579818, relative_change = 2.4595596466224733e-5 Iter 55: T = 712.8330082627555 K, F = -0.6055025570634953, relative_change = 1.029011546903553e-5 Iter 60: T = 712.810602023238 K, F = -0.253231107232836, relative_change = 4.304139253402703e-6 Iter 65: T = 712.8012307204543 K, F = -0.10590474670414018, relative_change = 1.8001631610135733e-6 Iter 70: T = 712.7973113992487 K, F = -0.044290712645502994, relative_change = 7.528708489941642e-7 Iter 75: T = 712.7956722694943 K, F = -0.01852291944911344, relative_change = 3.1486327360853485e-7 Iter 80: T = 712.7949867618646 K, F = -0.007746508656394369, relative_change = 1.3168022727573014e-7 Iter 85: T = 712.7947000736891 K, F = -0.0032396828746901196, relative_change = 5.507035660600441e-8 Iter 90: T = 712.7945801771482 K, F = -0.0013548741448089485, relative_change = 2.3031100558680616e-8 Iter 95: T = 712.7945300349617 K, F = -0.0005666245614013299, relative_change = 9.631884757293172e-9 Iter 100: T = 712.7945090648967 K, F = -0.00023696916153770342, relative_change = 4.028169850285548e-9 Iter 105: T = 712.7945002949645 K, F = -9.910333381157876e-5, relative_change = 1.6846288441802828e-9 Iter 110: T = 712.7944966272739 K, F = -4.1446198137284895e-5, relative_change = 7.045319253028123e-10 Iter 115: T = 712.7944950934019 K, F = -1.733329513042836e-5, relative_change = 2.9464366972211993e-10 Iter 120: T = 712.7944944519184 K, F = -7.2489922378071725e-6, relative_change = 1.232235225797875e-10 Iter 125: T = 712.7944941836422 K, F = -3.0316134091989966e-6, relative_change = 5.15335196667335e-11 Iter 130: T = 712.7944940714459 K, F = -1.267857681619411e-6, relative_change = 2.1551946109309858e-11 Iter 135: T = 712.7944940245242 K, F = -5.302326954170766e-7, relative_change = 9.013272267285018e-12 Iter 140: T = 712.7944940049008 K, F = -2.217493249023761e-7, relative_change = 3.769452653464887e-12 Iter 145: T = 712.7944939966941 K, F = -9.27371672787558e-8, relative_change = 1.5764122909811832e-12 Iter 150: T = 712.794493993262 K, F = -3.878401011458976e-8, relative_change = 6.59278173289484e-13 Iter 155: T = 712.7944939918266 K, F = -1.6219062537459195e-8, relative_change = 2.757031542296365e-13 Converged in 157 iterations to T = 712.7944939915228 K Iter 1: T = 964.3240588324527 K, F = -8128.797131606818, relative_change = 0.03567594116754735 Iter 2: T = 930.5736196920583 K, F = -6896.14018766939, relative_change = 0.03499906367705636 Iter 3: T = 898.7177198465853 K, F = -5849.336036696491, relative_change = 0.034232541274933914 Iter 5: T = 840.576566540139 K, F = -4205.584515654005, relative_change = 0.03240508478911764 Iter 10: T = 726.3966538058143 K, F = -1834.0710418335743, relative_change = 0.026014552019280338 Iter 15: T = 652.7261044789445 K, F = -791.941181477894, relative_change = 0.017815342202949884 Iter 20: T = 611.0627208166479 K, F = -338.1043537590822, relative_change = 0.010211867602088759 Iter 25: T = 590.2487060391263 K, F = -143.00018619167298, relative_change = 0.005065120688379476 Iter 30: T = 580.7191628352687 K, F = -60.129047710123665, relative_change = 0.0022984244961953264 Iter 35: T = 576.5636518946304 K, F = -25.207564679275936, relative_change = 0.0009968141017432045 Iter 40: T = 574.7936778974412 K, F = -10.553085110549613, relative_change = 0.0004234471820305576 Iter 45: T = 574.0476535473138 K, F = -4.415372218904022, relative_change = 0.00017826609837018039 Iter 50: T = 573.7346285139654 K, F = -1.8469036509223473, relative_change = 7.476060419612667e-5 Iter 55: T = 573.6035367142763 K, F = -0.7724571650323501, relative_change = 3.130223434301663e-5 Iter 60: T = 573.5486808238509 K, F = -0.32306131608489347, relative_change = 1.3097355493158556e-5 Iter 65: T = 573.5257338792503 K, F = -0.13510993854885167, relative_change = 5.478588422259919e-6 Iter 70: T = 573.5161362207841 K, F = -0.05650491136770963, relative_change = 2.291406693550748e-6 Iter 75: T = 573.512122195326 K, F = -0.023631084979099687, relative_change = 9.583278570199452e-7 Iter 80: T = 573.5104434521947 K, F = -0.009882811786847634, relative_change = 4.0079013872195816e-7 Iter 85: T = 573.5097413765661 K, F = -0.004133111634580078, relative_change = 1.676162690876536e-7 Iter 90: T = 573.5094477592437 K, F = -0.0017285169454915872, relative_change = 7.009930852618897e-8 Iter 95: T = 573.5093249648138 K, F = -0.0007228864828308645, relative_change = 2.9316400036682295e-8 Iter 100: T = 573.5092736106889 K, F = -0.00030231976939909533, relative_change = 1.2260474206591684e-8 Iter 105: T = 573.5092521337757 K, F = -0.0001264337398049209, relative_change = 5.127477720600686e-9 Iter 110: T = 573.5092431518733 K, F = -5.287610052268077e-5, relative_change = 2.1443726019328743e-9 Iter 115: T = 573.5092393955342 K, F = -2.211341642888165e-5, relative_change = 8.968022478047461e-10 Iter 120: T = 573.5092378245884 K, F = -9.248095110270249e-6, relative_change = 3.7505342594318884e-10 Iter 125: T = 573.5092371676001 K, F = -3.867664054635345e-6, relative_change = 1.5685183215608438e-10 Iter 130: T = 573.5092368928397 K, F = -1.6175035065235654e-6, relative_change = 6.559731804827382e-11 Iter 135: T = 573.5092367779316 K, F = -6.764587749952256e-7, relative_change = 2.7433561209153965e-11 Iter 140: T = 573.5092367298756 K, F = -2.8290260462027206e-7, relative_change = 1.1473021283861967e-11 Iter 145: T = 573.5092367097781 K, F = -1.183131478343924e-7, relative_change = 4.798150463524887e-12 Iter 150: T = 573.5092367013731 K, F = -4.948068810239903e-8, relative_change = 2.0066728923732276e-12 Iter 155: T = 573.509236697858 K, F = -2.0692958790924365e-8, relative_change = 8.391960795699329e-13 Iter 160: T = 573.5092366963879 K, F = -8.65439203634466e-9, relative_change = 3.5097599823354616e-13 Converged in 163 iterations to T = 573.5092366959576 K Iter 1: T = 966.3334264564061 K, F = -7670.960807086961, relative_change = 0.03366657354359388 Iter 2: T = 934.6993137920421 K, F = -6504.200464473296, relative_change = 0.03273622933687384 Iter 3: T = 905.0681096572995 K, F = -5513.516717456402, relative_change = 0.03170132223006549 Iter 5: T = 851.69171378459 K, F = -3958.4013238130287, relative_change = 0.029311217822344863 Iter 10: T = 750.7414887388511 K, F = -1717.7607835014214, relative_change = 0.021733182953581547 Iter 15: T = 689.94085970628 K, F = -737.2160797655957, relative_change = 0.013519754968860409 Iter 20: T = 657.8666838203642 K, F = -313.0411012418688, relative_change = 0.007126513342153457 Iter 25: T = 642.6526188847897 K, F = -131.9309261434273, relative_change = 0.0033485571037604406 Iter 30: T = 635.8931648994889 K, F = -55.370976866257635, relative_change = 0.0014771228269660937 Iter 35: T = 632.9888555428137 K, F = -23.192651779380544, relative_change = 0.0006322729805149263 Iter 40: T = 631.7600222651636 K, F = -9.70583807003075, relative_change = 0.0002670526710532096 Iter 45: T = 631.2435705772494 K, F = -4.060225092059985, relative_change = 0.00011215109193316024 Iter 50: T = 631.0271363108452 K, F = -1.698232551775417, relative_change = 4.698501428824244e-5 Iter 55: T = 630.9365422682433 K, F = -0.7102558032066011, relative_change = 1.9664088345879003e-5 Iter 60: T = 630.8986409807325 K, F = -0.2970435264612378, relative_change = 8.22627686391684e-6 Iter 65: T = 630.8827877984821 K, F = -0.1242282116479938, relative_change = 3.440768224592072e-6 Iter 70: T = 630.8761573865067 K, F = -0.05195390736669436, relative_change = 1.439047508274414e-6 Iter 75: T = 630.873384395248 K, F = -0.021727776990875913, relative_change = 6.018403475834483e-7 Iter 80: T = 630.8722246842813 K, F = -0.009086821499783349, relative_change = 2.516991809687855e-7 Iter 85: T = 630.8717396770478 K, F = -0.003800218262542343, relative_change = 1.0526401616174269e-7 Iter 90: T = 630.8715368408358 K, F = -0.0015892968339327185, relative_change = 4.402274083802161e-8 Iter 95: T = 630.8714520122406 K, F = -0.00066466294655676, relative_change = 1.84108485890731e-8 Iter 100: T = 630.8714165358971 K, F = -0.00027796998818163665, relative_change = 7.699638984508355e-9 Iter 105: T = 630.8714016992643 K, F = -0.0001162503701123696, relative_change = 3.220081375534826e-9 Iter 110: T = 630.871395494407 K, F = -4.861729359389999e-5, relative_change = 1.346676563782256e-9 Iter 115: T = 630.8713928994614 K, F = -2.033233308851301e-5, relative_change = 5.631962408734624e-10 Iter 120: T = 630.8713918142241 K, F = -8.503223607791988e-6, relative_change = 2.355353706625086e-10 Iter 125: T = 630.871391360365 K, F = -3.556149659522667e-6, relative_change = 9.850370514640795e-11 Iter 130: T = 630.8713911705557 K, F = -1.4872248309538705e-6, relative_change = 4.1195441831941265e-11 Iter 135: T = 630.8713910911753 K, F = -6.219758255654462e-7, relative_change = 1.7228443490867995e-11 Iter 140: T = 630.8713910579772 K, F = -2.6011707154882657e-7, relative_change = 7.205122908495146e-12 Iter 145: T = 630.8713910440936 K, F = -1.0878400591440851e-7, relative_change = 3.013266789860705e-12 Iter 150: T = 630.8713910382871 K, F = -4.5494152001168686e-8, relative_change = 1.2601670274200336e-12 Iter 155: T = 630.8713910358589 K, F = -1.9025371444936212e-8, relative_change = 5.269940140691209e-13 Converged in 160 iterations to T = 630.8713910348433 K Iter 1: T = 963.6376324543202 K, F = -8285.20003482437, relative_change = 0.03636236754567988 Iter 2: T = 929.1578848208419 K, F = -7030.126119875139, relative_change = 0.03578082307315108 Iter 3: T = 896.527526278504 K, F = -5964.240902895993, relative_change = 0.03511820657759333 Iter 5: T = 836.6969604488038 K, F = -4290.381867007257, relative_change = 0.03352078130013875 Iter 10: T = 717.5470124572715 K, F = -1874.518430080731, relative_change = 0.02772821320974608 Iter 15: T = 638.5082591032201 K, F = -811.4785101550503, relative_change = 0.019776847047468352 Iter 20: T = 592.3769503861762 K, F = -347.341582148901, relative_change = 0.011802074193257097 Iter 25: T = 568.7169319337676 K, F = -147.18392982289961, relative_change = 0.006025300884612724 Iter 30: T = 557.7033541049971 K, F = -61.95403700973295, relative_change = 0.002778537327882204 Iter 35: T = 552.8593679425112 K, F = -25.985973010395828, relative_change = 0.0012143914507221183 Iter 40: T = 550.7879652400353 K, F = -10.881452803282391, relative_change = 0.0005176512265518518 Iter 45: T = 549.9133806540527 K, F = -4.553207832664028, relative_change = 0.00021824688413545426 Iter 50: T = 549.5461423484868 K, F = -1.904638091686269, relative_change = 9.158477956036251e-5 Iter 55: T = 549.3922987751062 K, F = -0.7966182051578274, relative_change = 3.8356572934683505e-5 Iter 60: T = 549.3279139205677 K, F = -0.3331685220035786, relative_change = 1.6050768319251927e-5 Iter 65: T = 549.3009794137494 K, F = -0.139337377728668, relative_change = 6.71430202476811e-6 Iter 70: T = 549.2897136828269 K, F = -0.058272961768442516, relative_change = 2.8082950636794956e-6 Iter 75: T = 549.2850019749601 K, F = -0.024370519612598285, relative_change = 1.1745139223703656e-6 Iter 80: T = 549.2830314396666 K, F = -0.010192054777387188, relative_change = 4.912047374248961e-7 Iter 85: T = 549.2822073307889 K, F = -0.004262441200401451, relative_change = 2.0542925952586383e-7 Iter 90: T = 549.2818626773051 K, F = -0.0017826041931140735, relative_change = 8.591324457845125e-8 Iter 95: T = 549.2817185388733 K, F = -0.0007455064282273771, relative_change = 3.592999296615263e-8 Iter 100: T = 549.2816582584197 K, F = -0.0003117797034626335, relative_change = 1.502636058008175e-8 Iter 105: T = 549.2816330484072 K, F = -0.00013038999746886604, relative_change = 6.284204918920027e-9 Iter 110: T = 549.2816225052776 K, F = -5.453065414542935e-5, relative_change = 2.628129787404605e-9 Iter 115: T = 549.2816180960147 K, F = -2.2805370292450222e-5, relative_change = 1.0991152812707931e-9 Iter 120: T = 549.2816162520082 K, F = -9.537478043469827e-6, relative_change = 4.59663136159514e-10 Iter 125: T = 549.2816154808228 K, F = -3.988687215822351e-6, relative_change = 1.9223661419538055e-10 Iter 130: T = 549.2816151583038 K, F = -1.6681168638066346e-6, relative_change = 8.039565940512186e-11 Iter 135: T = 549.2816150234224 K, F = -6.976261645030846e-7, relative_change = 3.3622413870376055e-11 Iter 140: T = 549.2816149670135 K, F = -2.917561252313572e-7, relative_change = 1.406132065520984e-11 Iter 145: T = 549.2816149434226 K, F = -1.2201557461621881e-7, relative_change = 5.880596743594095e-12 Iter 150: T = 549.2816149335566 K, F = -5.102843994575501e-8, relative_change = 2.4593391355587378e-12 Iter 155: T = 549.2816149294306 K, F = -2.1340908512579304e-8, relative_change = 1.0285349023218169e-12 Iter 160: T = 549.281614927705 K, F = -8.925546329807688e-9, relative_change = 4.3017081101414475e-13 Converged in 164 iterations to T = 549.281614927082 K Iter 1: T = 976.444849802376 K, F = -5367.063379261021, relative_change = 0.02355515019762404 Iter 2: T = 955.0512008927823 K, F = -4538.196690336434, relative_change = 0.021909736032632625 Iter 3: T = 935.727348793086 K, F = -3835.598605090113, relative_change = 0.020233315325536818 Iter 5: T = 902.8678068374908 K, F = -2736.077035433868, relative_change = 0.016880664085664424 Iter 10: T = 848.7560701880858 K, F = -1166.7111394652304, relative_change = 0.009496730406658225 Iter 15: T = 822.0428141373147 K, F = -493.04576924566777, relative_change = 0.004650739832096675 Iter 20: T = 809.9000229735091 K, F = -207.2228380473975, relative_change = 0.0020959153827226234 Iter 25: T = 804.6241344347741 K, F = -86.85416677365524, relative_change = 0.000906042432982365 Iter 30: T = 802.3806660480606 K, F = -36.35782302706186, relative_change = 0.0003843370473536666 Iter 35: T = 801.4357478821943 K, F = -15.21136013805134, relative_change = 0.00016170220399436549 Iter 40: T = 801.0393897983611 K, F = -6.362642023566054, relative_change = 6.779657305758137e-5 Iter 45: T = 800.8734202678143 K, F = -2.661120343242936, relative_change = 2.8383317030134274e-5 Iter 50: T = 800.8039733937846 K, F = -1.1129451245201238, relative_change = 1.1875493920218357e-5 Iter 55: T = 800.7749235033107 K, F = -0.46545268414618246, relative_change = 4.967392517602792e-6 Iter 60: T = 800.7627733761617 K, F = -0.19465887554213157, relative_change = 2.077583675534749e-6 Iter 65: T = 800.7576918526597 K, F = -0.08140884213031208, relative_change = 8.688984321266857e-7 Iter 70: T = 800.7555666646979 K, F = -0.03404618072448995, relative_change = 3.6338862085210154e-7 Iter 75: T = 800.7546778797397 K, F = -0.014238524746239878, relative_change = 1.5197432146535353e-7 Iter 80: T = 800.7543061782114 K, F = -0.005954722032787019, relative_change = 6.355762669666669e-8 Iter 85: T = 800.7541507280105 K, F = -0.002490336032031082, relative_change = 2.6580584836691047e-8 Iter 90: T = 800.754085716848 K, F = -0.0010414882968966532, relative_change = 1.1116322607525891e-8 Iter 95: T = 800.7540585283979 K, F = -0.000435562847559412, relative_change = 4.648979663518833e-9 Iter 100: T = 800.7540471578624 K, F = -0.00018215758483697275, relative_change = 1.9442589501428906e-9 Iter 105: T = 800.7540424025685 K, F = -7.618047760882263e-5, relative_change = 8.131123375267917e-10 Iter 110: T = 800.7540404138477 K, F = -3.1859585481353037e-5, relative_change = 3.400532937418284e-10 Iter 115: T = 800.754039582141 K, F = -1.3324059400243726e-5, relative_change = 1.4221435210207383e-10 Iter 120: T = 800.7540392343112 K, F = -5.5722796806767505e-6, relative_change = 5.947572900669057e-11 Iter 125: T = 800.7540390888448 K, F = -2.3303935621221683e-6, relative_change = 2.4873456474238464e-11 Iter 130: T = 800.754039028009 K, F = -9.745977194164368e-7, relative_change = 1.040236909189283e-11 Iter 135: T = 800.7540390025666 K, F = -4.075873907272154e-7, relative_change = 4.3503841551426564e-12 Iter 140: T = 800.7540389919263 K, F = -1.7045796341097486e-7, relative_change = 1.8193831312220534e-12 Iter 145: T = 800.7540389874766 K, F = -7.128937962175286e-8, relative_change = 7.609072179855882e-13 Iter 150: T = 800.7540389856156 K, F = -2.981440738736296e-8, relative_change = 3.1822408753766284e-13 Converged in 153 iterations to T = 800.7540389850707 K Iter 1: T = 973.5071549120016 K, F = -6036.419954502074, relative_change = 0.026492845087998363 Iter 2: T = 949.207354899197 K, F = -5108.295382017158, relative_change = 0.024961090311658978 Iter 3: T = 927.0332373899261 K, F = -4321.059867451448, relative_change = 0.02336066760842342 Iter 5: T = 888.740066535197 K, F = -3087.731854633576, relative_change = 0.020031754226962146 Iter 10: T = 823.5345039622881 K, F = -1322.1130104716333, relative_change = 0.012018473714261648 Iter 15: T = 789.9717027467713 K, F = -560.3835757480327, relative_change = 0.006160361258561753 Iter 20: T = 774.3120149854399 K, F = -235.91754906067428, relative_change = 0.0028473368480974 Iter 25: T = 767.41610950865 K, F = -98.96047664572022, relative_change = 0.0012458503068938796 Iter 30: T = 764.4655657989285 K, F = -41.44041715482812, relative_change = 0.000531326336365707 Iter 35: T = 763.2194778253246 K, F = -17.34047291831249, relative_change = 0.0002240606429724031 Iter 40: T = 762.6961888737637 K, F = -7.253682924158631, relative_change = 9.403302199130221e-5 Iter 45: T = 762.476962573322 K, F = -3.0338732905544816, relative_change = 3.938342833623179e-5 Iter 50: T = 762.3852127394216 K, F = -1.268853957987492, relative_change = 1.6480732833461488e-5 Iter 55: T = 762.3468301685579 K, F = -0.5306589632814713, relative_change = 6.894209621067039e-6 Iter 60: T = 762.3307760725238 K, F = -0.22192950508857134, relative_change = 2.88355054670935e-6 Iter 65: T = 762.3240616998174 K, F = -0.0928138473949296, relative_change = 1.2059894593055675e-6 Iter 70: T = 762.3212536063417 K, F = -0.03881590802388013, relative_change = 5.043686717851637e-7 Iter 75: T = 762.3200792171613 K, F = -0.016233284794838987, relative_change = 2.1093465958105818e-7 Iter 80: T = 762.3195880716653 K, F = -0.006788955053263046, relative_change = 8.821568363810247e-8 Iter 85: T = 762.3193826684183 K, F = -0.0028392223401692007, relative_change = 3.6892903118342325e-8 Iter 90: T = 762.3192967662686 K, F = -0.0011873967328780433, relative_change = 1.542906151177654e-8 Iter 95: T = 762.3192608409536 K, F = -0.000496583501457204, relative_change = 6.452619328243085e-9 Iter 100: T = 762.3192458165561 K, F = -0.00020767715208802606, relative_change = 2.6985627339884815e-9 Iter 105: T = 762.3192395331732 K, F = -8.685306387590241e-5, relative_change = 1.1285711901848657e-9 Iter 110: T = 762.3192369053875 K, F = -3.6322988024140024e-5, relative_change = 4.719819505370337e-10 Iter 115: T = 762.319235806416 K, F = -1.5190707454149077e-5, relative_change = 1.9738849069062408e-10 Iter 120: T = 762.3192353468131 K, F = -6.352935867814935e-6, relative_change = 8.255023209333505e-11 Iter 125: T = 762.3192351546018 K, F = -2.6568750529643026e-6, relative_change = 3.4523511191043985e-11 Iter 130: T = 762.3192350742165 K, F = -1.1111359742299598e-6, relative_change = 1.4438132955315229e-11 Iter 135: T = 762.3192350405984 K, F = -4.646887583614756e-7, relative_change = 6.0381791545554984e-12 Iter 140: T = 762.319235026539 K, F = -1.9433738096541475e-7, relative_change = 2.5252255443771933e-12 Iter 145: T = 762.3192350206592 K, F = -8.127603978724807e-8, relative_change = 1.0561032098124166e-12 Iter 150: T = 762.3192350182002 K, F = -3.3989897008090963e-8, relative_change = 4.416657040125832e-13 Converged in 154 iterations to T = 762.3192350173126 K Iter 1: T = 964.6091527648445 K, F = -8063.838207916998, relative_change = 0.03539084723515552 Iter 2: T = 931.1606649196923 K, F = -6840.505798708136, relative_change = 0.03467568988877953 Iter 3: T = 899.6242321197163 K, F = -5801.640225988302, relative_change = 0.033867874780444944 Iter 5: T = 842.1752847468155 K, F = -4170.41960329146, relative_change = 0.03195077876117461 Iter 10: T = 729.9875587647485 K, F = -1817.3845392551718, relative_change = 0.025344108694548992 Iter 15: T = 658.3809319318367 K, F = -783.9665447337746, relative_change = 0.017088400550242105 Iter 20: T = 618.3563403050969 K, F = -334.3855728716398, relative_change = 0.00965325532124321 Iter 25: T = 598.5460805268376 K, F = -141.33509726574036, relative_change = 0.004740504138385288 Iter 30: T = 589.5271036300885 K, F = -59.40772311240918, relative_change = 0.0021395395703161383 Iter 35: T = 585.6054174721938 K, F = -24.900955121116475, relative_change = 0.0009255449618545375 Iter 40: T = 583.9372063578877 K, F = -10.423943912671426, relative_change = 0.00039273021798459835 Iter 45: T = 583.234470733148 K, F = -4.361200253903062, relative_change = 0.00016525510890801886 Iter 50: T = 582.9396799985541 K, F = -1.8242193919829064, relative_change = 6.929002340555025e-5 Iter 55: T = 582.8162370168646 K, F = -0.7629652618135112, relative_change = 2.900922955742896e-5 Iter 60: T = 582.7645839940747 K, F = -0.31909079957855224, relative_change = 1.2137491838913981e-5 Iter 65: T = 582.7429772347764 K, F = -0.13344926548781316, relative_change = 5.077004112629474e-6 Iter 70: T = 582.7339401816856 K, F = -0.05581037083137241, relative_change = 2.123431716415242e-6 Iter 75: T = 582.7301606297626 K, F = -0.023340615067563686, relative_change = 8.880738833272407e-7 Iter 80: T = 582.7285799500551 K, F = -0.00976133296860493, relative_change = 3.714082427369611e-7 Iter 85: T = 582.7279188863843 K, F = -0.004082307596733781, relative_change = 1.5532826147708137e-7 Iter 90: T = 582.7276424208683 K, F = -0.0017072700652861483, relative_change = 6.496029116314227e-8 Iter 95: T = 582.727526799549 K, F = -0.0007140007779691815, relative_change = 2.7167197026595e-8 Iter 100: T = 582.7274784453081 K, F = -0.00029860366017347983, relative_change = 1.1361651028808814e-8 Iter 105: T = 582.7274582229828 K, F = -0.0001248796178009992, relative_change = 4.751578971465329e-9 Iter 110: T = 582.7274497657643 K, F = -5.2226147742140405e-5, relative_change = 1.9871672166250265e-9 Iter 115: T = 582.7274462288542 K, F = -2.1841598106697724e-5, relative_change = 8.310570633091214e-10 Iter 120: T = 582.7274447496762 K, F = -9.134417327028022e-6, relative_change = 3.475579988925645e-10 Iter 125: T = 582.7274441310664 K, F = -3.820122206898979e-6, relative_change = 1.4535289870505722e-10 Iter 130: T = 582.7274438723563 K, F = -1.5976204578715958e-6, relative_change = 6.078830793779185e-11 Iter 135: T = 582.7274437641606 K, F = -6.681434223665406e-7, relative_change = 2.5422376097661502e-11 Iter 140: T = 582.727443718912 K, F = -2.7942559716054305e-7, relative_change = 1.0631942764315729e-11 Iter 145: T = 582.7274436999885 K, F = -1.1685950340734053e-7, relative_change = 4.4464199576227476e-12 Iter 150: T = 582.7274436920744 K, F = -4.887262916586366e-8, relative_change = 1.8595683481656157e-12 Iter 155: T = 582.7274436887647 K, F = -2.0438724046556445e-8, relative_change = 7.776787327300717e-13 Iter 160: T = 582.7274436873804 K, F = -8.547443641759855e-9, relative_change = 3.2522407584443193e-13 Converged in 163 iterations to T = 582.7274436869752 K Iter 1: T = 966.5217802752957 K, F = -7628.04421028225, relative_change = 0.03347821972470438 Iter 2: T = 935.0846369382257 K, F = -6467.481982664715, relative_change = 0.03252605784850058 Iter 3: T = 905.6587903143063 K, F = -5482.078827867765, relative_change = 0.03146864514881697 Iter 5: T = 852.7157698627406 K, F = -3935.308903476934, relative_change = 0.029033686056466182 Iter 10: T = 752.9154619119616 K, F = -1707.0047240951217, relative_change = 0.021379645776229653 Iter 15: T = 693.147484795387 K, F = -732.2446305511764, relative_change = 0.013199001186883044 Iter 20: T = 661.7827882394209 K, F = -310.8083281640837, relative_change = 0.006915584279411099 Iter 25: T = 646.9585812572094 K, F = -130.95880357241825, relative_change = 0.003237727483269936 Iter 30: T = 640.3852354756872 K, F = -54.956414601883324, relative_change = 0.0014256601583602741 Iter 35: T = 637.5635212066438 K, F = -23.017758151976082, relative_change = 0.0006097462925760875 Iter 40: T = 636.3701270942428 K, F = -9.632420332554709, relative_change = 0.0002574469897741056 Iter 45: T = 635.8686584343436 K, F = -4.029472071218183, relative_change = 0.00010810086849113917 Iter 50: T = 635.6585189581103 K, F = -1.6853626739441843, relative_change = 4.528533618906134e-5 Iter 55: T = 635.5705625216934 K, F = -0.7048719589523486, relative_change = 1.8952239780658962e-5 Iter 60: T = 635.5337651978983 K, F = -0.2947916745183253, relative_change = 7.92839410527502e-6 Iter 65: T = 635.5183738614536 K, F = -0.12328641408155999, relative_change = 3.3161587366191556e-6 Iter 70: T = 635.5119366260298 K, F = -0.051560028296706084, relative_change = 1.3869288456948535e-6 Iter 75: T = 635.509244428256 K, F = -0.021563050645989068, relative_change = 5.800427407357777e-7 Iter 80: T = 635.5081185069195 K, F = -0.009017930728163537, relative_change = 2.425829936116344e-7 Iter 85: T = 635.507647631058 K, F = -0.0037714072767280893, relative_change = 1.0145148840254186e-7 Iter 90: T = 635.50745070478 K, F = -0.001577247728769271, relative_change = 4.242829108383656e-8 Iter 95: T = 635.5073683477942 K, F = -0.0006596238654626996, relative_change = 1.774402975940123e-8 Iter 100: T = 635.5073339051078 K, F = -0.0002758625831288941, relative_change = 7.4207672036840144e-9 Iter 105: T = 635.5073195007631 K, F = -0.0001153690264631968, relative_change = 3.1034537941875764e-9 Iter 110: T = 635.5073134766938 K, F = -4.8248704618336635e-5, relative_change = 1.2979014971395159e-9 Iter 115: T = 635.507310957356 K, F = -2.0178185123675974e-5, relative_change = 5.427979338106725e-10 Iter 120: T = 635.5073099037389 K, F = -8.438758508810817e-6, relative_change = 2.2700459385175082e-10 Iter 125: T = 635.5073094631035 K, F = -3.529189738060712e-6, relative_change = 9.493603649428013e-11 Iter 130: T = 635.5073092788246 K, F = -1.4759488348170535e-6, relative_change = 3.970337188964024e-11 Iter 135: T = 635.5073092017569 K, F = -6.172589166464348e-7, relative_change = 1.660441050248005e-11 Iter 140: T = 635.5073091695263 K, F = -2.581447319793817e-7, relative_change = 6.944154202196055e-12 Iter 145: T = 635.5073091560471 K, F = -1.0795927568585384e-7, relative_change = 2.9041299903634954e-12 Iter 150: T = 635.5073091504099 K, F = -4.514993334758799e-8, relative_change = 1.2145438608232696e-12 Iter 155: T = 635.5073091480524 K, F = -1.888224260282456e-8, relative_change = 5.079367815604176e-13 Converged in 160 iterations to T = 635.5073091470664 K Iter 1: T = 966.8342007029624 K, F = -7556.858918649804, relative_change = 0.03316579929703751 Iter 2: T = 935.7232378840931 K, F = -6406.5854287108605, relative_change = 0.03217817780571812 Iter 3: T = 906.636831793467 K, F = -5429.948610653707, relative_change = 0.031084411408225706 Iter 5: T = 854.4078041595855 K, F = -3897.0346928399927, relative_change = 0.02857785532176045 Iter 10: T = 756.4838186704337 K, F = -1689.2153025560126, relative_change = 0.020808981675076565 Iter 15: T = 698.3741654716086 K, F = -724.0504483117023, relative_change = 0.012691107424359574 Iter 20: T = 668.132080082066 K, F = -307.140716894918, relative_change = 0.00658664625652441 Iter 25: T = 653.9184678980948 K, F = -129.36566866992789, relative_change = 0.003066464454347871 Iter 30: T = 647.6349669646677 K, F = -54.277856452159085, relative_change = 0.0013464980045522989 Iter 35: T = 644.9415403275135 K, F = -22.731655093200835, relative_change = 0.0005751663614100154 Iter 40: T = 643.8031249389707 K, F = -9.512348676406528, relative_change = 0.00024271484948867018 Iter 45: T = 643.3248883447783 K, F = -3.9791821696944476, relative_change = 0.00010189144190224484 Iter 50: T = 643.1245071923832 K, F = -1.6643177278968784, relative_change = 4.2679964506115914e-5 Iter 55: T = 643.0406392589038 K, F = -0.6960684126982344, relative_change = 1.78611475063407e-5 Iter 60: T = 643.0055531027724 K, F = -0.2911095239058459, relative_change = 7.47182446208671e-6 Iter 65: T = 642.990877625877 K, F = -0.12174642430406674, relative_change = 3.125170037041733e-6 Iter 70: T = 642.9847398114986 K, F = -0.050915973862485364, relative_change = 1.3070470741879333e-6 Iter 75: T = 642.9821728421847 K, F = -0.021293697236068554, relative_change = 5.466338276815511e-7 Iter 80: T = 642.9810992941103 K, F = -0.008905283537249065, relative_change = 2.2861074188963558e-7 Iter 85: T = 642.9806503215871 K, F = -0.0037242968096504736, relative_change = 9.560808295514573e-8 Iter 90: T = 642.980462555584 K, F = -0.0015575455574962094, relative_change = 3.9984501643822e-8 Iter 95: T = 642.9803840295413 K, F = -0.0006513841810064647, relative_change = 1.6722006540996778e-8 Iter 100: T = 642.9803511890021 K, F = -0.0002724166480862489, relative_change = 6.993344652409425e-9 Iter 105: T = 642.9803374546947 K, F = -0.00011392789595876529, relative_change = 2.9247005591857863e-9 Iter 110: T = 642.980331710843 K, F = -4.764600712975353e-5, relative_change = 1.2231447658130941e-9 Iter 115: T = 642.9803293086954 K, F = -1.9926128298597412e-5, relative_change = 5.115337345790511e-10 Iter 120: T = 642.9803283040889 K, F = -8.333345600242126e-6, relative_change = 2.139295383559024e-10 Iter 125: T = 642.9803278839502 K, F = -3.4851037491456793e-6, relative_change = 8.9467864920294e-11 Iter 130: T = 642.9803277082433 K, F = -1.4575122764259874e-6, relative_change = 3.7416536500117834e-11 Iter 135: T = 642.9803276347606 K, F = -6.095494230473619e-7, relative_change = 1.5648052244481517e-11 Iter 140: T = 642.9803276040292 K, F = -2.549204367596758e-7, relative_change = 6.544191763100434e-12 Iter 145: T = 642.980327591177 K, F = -1.066113363146215e-7, relative_change = 2.736873661045107e-12 Iter 150: T = 642.980327585802 K, F = -4.45855024011621e-8, relative_change = 1.1445770347625319e-12 Iter 155: T = 642.9803275835541 K, F = -1.8645527566363285e-8, relative_change = 4.786587905150557e-13 Converged in 160 iterations to T = 642.980327582614 K Iter 1: T = 974.3730992478582 K, F = -5839.113713851424, relative_change = 0.025626900752141732 Iter 2: T = 950.9357249720903 K, F = -4940.15418284137, relative_change = 0.024053798584813036 Iter 3: T = 929.613485672956 K, F = -4177.790036552489, relative_change = 0.022422376969547558 Iter 5: T = 892.9624371364506 K, F = -2983.7951282808276, relative_change = 0.019068728622885403 Iter 10: T = 831.1944090190635 K, F = -1275.9716955838348, relative_change = 0.011213846477341236 Iter 15: T = 799.8196911793864 K, F = -540.307205451141, relative_change = 0.005663825104916814 Iter 20: T = 785.305396927169 K, F = -227.34001543369027, relative_change = 0.002596003940077399 Iter 25: T = 778.9424264195792 K, F = -95.33678936208246, relative_change = 0.0011312791114811878 Iter 30: T = 776.2255721939532 K, F = -39.918158051754894, relative_change = 0.00048159049091724766 Iter 35: T = 775.0792239382523 K, F = -16.702625793693432, relative_change = 0.00020292865541868217 Iter 40: T = 774.5980077007353 K, F = -6.986711757727878, relative_change = 8.513630659187421e-5 Iter 45: T = 774.3964404318035 K, F = -2.9221848193557376, relative_change = 3.565230887383233e-5 Iter 50: T = 774.3120870115955 K, F = -1.2221378560768101, relative_change = 1.4918508335882194e-5 Iter 55: T = 774.2767996711893 K, F = -0.5111205675796049, relative_change = 6.240548936561163e-6 Iter 60: T = 774.2620403809149 K, F = -0.21375811101482822, relative_change = 2.610125888560857e-6 Iter 65: T = 774.2558675715247 K, F = -0.08939643718290424, relative_change = 1.0916302133665333e-6 Iter 70: T = 774.2532859768057 K, F = -0.03738670003122557, relative_change = 4.5654055723312215e-7 Iter 75: T = 774.2522063139486 K, F = -0.01563557185375497, relative_change = 1.909320714105424e-7 Iter 80: T = 774.2517547844537 K, F = -0.0065389841723918485, relative_change = 7.985031000448752e-8 Iter 85: T = 774.2515659491478 K, F = -0.0027346814981247247, relative_change = 3.339439478746005e-8 Iter 90: T = 774.251486975919 K, F = -0.0011436765000176763, relative_change = 1.3965941966094416e-8 Iter 95: T = 774.251453948363 K, F = -0.00047829917824537826, relative_change = 5.8407249973214056e-9 Iter 100: T = 774.2514401358432 K, F = -0.00020003042944582994, relative_change = 2.442661166619219e-9 Iter 105: T = 774.2514343592823 K, F = -8.36551153563514e-5, relative_change = 1.021550118623793e-9 Iter 110: T = 774.2514319434554 K, F = -3.4985568058476524e-5, relative_change = 4.2722446295079614e-10 Iter 115: T = 774.2514309331277 K, F = -1.4631381672680632e-5, relative_change = 1.786703650410246e-10 Iter 120: T = 774.2514305105967 K, F = -6.119019631212197e-6, relative_change = 7.472209381865594e-11 Iter 125: T = 774.2514303338891 K, F = -2.5590486837367976e-6, relative_change = 3.124969154619228e-11 Iter 130: T = 774.2514302599878 K, F = -1.070224205590442e-6, relative_change = 1.306898791637391e-11 Iter 135: T = 774.2514302290815 K, F = -4.4758118289411897e-7, relative_change = 5.465614626725976e-12 Iter 140: T = 774.2514302161561 K, F = -1.871836250444403e-7, relative_change = 2.2857832234869063e-12 Iter 145: T = 774.2514302107506 K, F = -7.828422654565514e-8, relative_change = 9.559638118193926e-13 Iter 150: T = 774.2514302084899 K, F = -3.27391349586037e-8, relative_change = 3.997922650852127e-13 Converged in 154 iterations to T = 774.2514302076738 K Iter 1: T = 970.2162369030962 K, F = -6786.2587533023825, relative_change = 0.029783763096903854 Iter 2: T = 942.5942496407664 K, F = -5748.0036167073185, relative_change = 0.028469928879461287 Iter 3: T = 917.0900433526655 K, F = -4866.8523171370325, relative_change = 0.027057460087222936 Iter 5: T = 872.2228972966027 K, F = -3484.952810107679, relative_change = 0.0239800058676527 Iter 10: T = 792.4359266844513 K, F = -1500.3596211783467, relative_change = 0.015674658473792822 Iter 15: T = 748.8453810904415 K, F = -638.799365859231, relative_change = 0.008611146266702558 Iter 20: T = 727.6430581158546 K, F = -269.67698651252886, relative_change = 0.00415167453270672 Iter 25: T = 718.0889983777213 K, F = -113.28111456533443, relative_change = 0.0018556401939658883 Iter 30: T = 713.9557836228498 K, F = -47.467866529982544, relative_change = 0.0007990974283086606 Iter 35: T = 712.201645035758 K, F = -19.868185688882548, relative_change = 0.00033840093230643256 Iter 40: T = 711.4634500038231 K, F = -8.312039089011733, relative_change = 0.00014227312614018507 Iter 45: T = 711.1539156069759 K, F = -3.476708154209732, relative_change = 5.963248626555484e-5 Iter 50: T = 711.0243218619814 K, F = -1.4540909623810752, relative_change = 2.4962209323619865e-5 Iter 55: T = 710.9700991912821 K, F = -0.6081339753416305, relative_change = 1.0443555793610731e-5 Iter 60: T = 710.9474182433952 K, F = -0.2543316500826447, relative_change = 4.36833056416907e-6 Iter 65: T = 710.9379320338876 K, F = -0.10636501601548276, relative_change = 1.8270123615483696e-6 Iter 70: T = 710.9339646537483 K, F = -0.04448320436628994, relative_change = 7.64100139861233e-7 Iter 75: T = 710.9323054245496 K, F = -0.018603422065763153, relative_change = 3.19559608157481e-7 Iter 80: T = 710.9316115109831 K, F = -0.007780175859458116, relative_change = 1.3364430985718174e-7 Iter 85: T = 710.9313213073254 K, F = -0.003253762911138547, relative_change = 5.58917628186993e-8 Iter 90: T = 710.9311999405645 K, F = -0.001360762585662867, relative_change = 2.3374623039592333e-8 Iter 95: T = 710.9311491835139 K, F = -0.0005690871787350504, relative_change = 9.775550078651461e-9 Iter 100: T = 710.9311279563052 K, F = -0.00023799905773080887, relative_change = 4.088252424584054e-9 Iter 105: T = 710.9311190788324 K, F = -9.953404703733071e-5, relative_change = 1.709756068790019e-9 Iter 110: T = 710.9311153661672 K, F = -4.162632780402298e-5, relative_change = 7.150404356336417e-10 Iter 115: T = 710.9311138134861 K, F = -1.7408627371318097e-5, relative_change = 2.9903845199636914e-10 Iter 120: T = 710.9311131641365 K, F = -7.280496341799392e-6, relative_change = 1.2506146055327265e-10 Iter 125: T = 710.9311128925707 K, F = -3.0447907787278794e-6, relative_change = 5.2302200932809315e-11 Iter 130: T = 710.9311127789986 K, F = -1.2733687366761615e-6, relative_change = 2.1873420020562277e-11 Iter 135: T = 710.9311127315013 K, F = -5.325385132870508e-7, relative_change = 9.147734074549605e-12 Iter 140: T = 710.9311127116374 K, F = -2.2271371091786563e-7, relative_change = 3.825687253919995e-12 Iter 145: T = 710.9311127033301 K, F = -9.314047610953224e-8, relative_change = 1.5999299316938363e-12 Iter 150: T = 710.9311126998559 K, F = -3.895265232589651e-8, relative_change = 6.691131179448328e-13 Iter 155: T = 710.931112698403 K, F = -1.629107371226013e-8, relative_change = 2.7984156342387566e-13 Converged in 157 iterations to T = 710.9311126980955 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 6%|█▉ | ETA: 0:00:16 Bin 1 ray tracing: 12%|███▋ | ETA: 0:00:15 Bin 1 ray tracing: 18%|█████▌ | ETA: 0:00:14 Bin 1 ray tracing: 24%|███████▎ | ETA: 0:00:13 Bin 1 ray tracing: 30%|█████████ | ETA: 0:00:12 Bin 1 ray tracing: 36%|██████████▉ | ETA: 0:00:11 Bin 1 ray tracing: 42%|████████████▊ | ETA: 0:00:10 Bin 1 ray tracing: 48%|██████████████▌ | ETA: 0:00:09 Bin 1 ray tracing: 54%|████████████████▎ | ETA: 0:00:08 Bin 1 ray tracing: 60%|██████████████████ | ETA: 0:00:07 Bin 1 ray tracing: 66%|███████████████████▊ | ETA: 0:00:06 Bin 1 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:05 Bin 1 ray tracing: 78%|███████████████████████▎ | ETA: 0:00:04 Bin 1 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:03 Bin 1 ray tracing: 90%|███████████████████████████▏ | ETA: 0:00:02 Bin 1 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 2 ray tracing: 17%|█████ | ETA: 0:00:11 Bin 2 ray tracing: 24%|███████▍ | ETA: 0:00:10 Bin 2 ray tracing: 32%|█████████▋ | ETA: 0:00:09 Bin 2 ray tracing: 39%|███████████▊ | ETA: 0:00:08 Bin 2 ray tracing: 48%|██████████████▎ | ETA: 0:00:07 Bin 2 ray tracing: 56%|████████████████▊ | ETA: 0:00:06 Bin 2 ray tracing: 63%|███████████████████ | ETA: 0:00:05 Bin 2 ray tracing: 72%|█████████████████████▊ | ETA: 0:00:04 Bin 2 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:03 Bin 2 ray tracing: 90%|███████████████████████████▏ | ETA: 0:00:01 Bin 2 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 9%|██▉ | ETA: 0:00:13 Bin 3 ray tracing: 17%|█████▎ | ETA: 0:00:11 Bin 3 ray tracing: 26%|████████ | ETA: 0:00:09 Bin 3 ray tracing: 35%|██████████▋ | ETA: 0:00:08 Bin 3 ray tracing: 45%|█████████████▍ | ETA: 0:00:07 Bin 3 ray tracing: 54%|████████████████▎ | ETA: 0:00:05 Bin 3 ray tracing: 63%|███████████████████ | ETA: 0:00:04 Bin 3 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:03 Bin 3 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:02 Bin 3 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 4 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 4 ray tracing: 27%|████████▎ | ETA: 0:00:08 Bin 4 ray tracing: 37%|███████████ | ETA: 0:00:07 Bin 4 ray tracing: 46%|█████████████▉ | ETA: 0:00:06 Bin 4 ray tracing: 56%|████████████████▊ | ETA: 0:00:05 Bin 4 ray tracing: 66%|███████████████████▊ | ETA: 0:00:04 Bin 4 ray tracing: 76%|██████████████████████▋ | ETA: 0:00:03 Bin 4 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:02 Bin 4 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 4 Energy per ray: 0.00018533358351859177 Processing spectral bin 5/10 Bin 5 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 5 ray tracing: 18%|█████▍ | ETA: 0:00:11 Bin 5 ray tracing: 25%|███████▍ | ETA: 0:00:10 Bin 5 ray tracing: 31%|█████████▍ | ETA: 0:00:10 Bin 5 ray tracing: 37%|███████████▏ | ETA: 0:00:09 Bin 5 ray tracing: 43%|█████████████ | ETA: 0:00:09 Bin 5 ray tracing: 49%|██████████████▊ | ETA: 0:00:08 Bin 5 ray tracing: 55%|████████████████▋ | ETA: 0:00:07 Bin 5 ray tracing: 61%|██████████████████▍ | ETA: 0:00:06 Bin 5 ray tracing: 67%|████████████████████▎ | ETA: 0:00:05 Bin 5 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:04 Bin 5 ray tracing: 80%|████████████████████████ | ETA: 0:00:03 Bin 5 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 5 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 5 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 6 ray tracing: 12%|███▋ | ETA: 0:00:15 Bin 6 ray tracing: 18%|█████▍ | ETA: 0:00:14 Bin 6 ray tracing: 24%|███████▍ | ETA: 0:00:13 Bin 6 ray tracing: 31%|█████████▎ | ETA: 0:00:11 Bin 6 ray tracing: 37%|███████████▏ | ETA: 0:00:11 Bin 6 ray tracing: 43%|████████████▉ | ETA: 0:00:10 Bin 6 ray tracing: 50%|██████████████▉ | ETA: 0:00:08 Bin 6 ray tracing: 56%|████████████████▉ | ETA: 0:00:07 Bin 6 ray tracing: 62%|██████████████████▋ | ETA: 0:00:06 Bin 6 ray tracing: 68%|████████████████████▌ | ETA: 0:00:05 Bin 6 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:04 Bin 6 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:03 Bin 6 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:02 Bin 6 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 7 ray tracing: 12%|███▋ | ETA: 0:00:15 Bin 7 ray tracing: 18%|█████▍ | ETA: 0:00:14 Bin 7 ray tracing: 24%|███████▎ | ETA: 0:00:13 Bin 7 ray tracing: 30%|█████████ | ETA: 0:00:12 Bin 7 ray tracing: 36%|██████████▉ | ETA: 0:00:11 Bin 7 ray tracing: 42%|████████████▊ | ETA: 0:00:10 Bin 7 ray tracing: 49%|██████████████▋ | ETA: 0:00:09 Bin 7 ray tracing: 55%|████████████████▋ | ETA: 0:00:07 Bin 7 ray tracing: 62%|██████████████████▌ | ETA: 0:00:06 Bin 7 ray tracing: 68%|████████████████████▌ | ETA: 0:00:05 Bin 7 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:04 Bin 7 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:03 Bin 7 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 7 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 8 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 8 ray tracing: 25%|███████▋ | ETA: 0:00:10 Bin 8 ray tracing: 32%|█████████▌ | ETA: 0:00:09 Bin 8 ray tracing: 38%|███████████▍ | ETA: 0:00:09 Bin 8 ray tracing: 44%|█████████████▎ | ETA: 0:00:08 Bin 8 ray tracing: 50%|███████████████▏ | ETA: 0:00:07 Bin 8 ray tracing: 57%|█████████████████ | ETA: 0:00:06 Bin 8 ray tracing: 63%|██████████████████▉ | ETA: 0:00:06 Bin 8 ray tracing: 69%|████████████████████▉ | ETA: 0:00:05 Bin 8 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:04 Bin 8 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:03 Bin 8 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:02 Bin 8 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 9 ray tracing: 12%|███▊ | ETA: 0:00:14 Bin 9 ray tracing: 20%|██████ | ETA: 0:00:12 Bin 9 ray tracing: 28%|████████▎ | ETA: 0:00:11 Bin 9 ray tracing: 35%|██████████▍ | ETA: 0:00:10 Bin 9 ray tracing: 42%|████████████▌ | ETA: 0:00:09 Bin 9 ray tracing: 49%|██████████████▋ | ETA: 0:00:08 Bin 9 ray tracing: 55%|████████████████▌ | ETA: 0:00:07 Bin 9 ray tracing: 61%|██████████████████▎ | ETA: 0:00:06 Bin 9 ray tracing: 67%|████████████████████▏ | ETA: 0:00:05 Bin 9 ray tracing: 73%|██████████████████████ | ETA: 0:00:04 Bin 9 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:03 Bin 9 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 9 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 9 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 6%|█▊ | ETA: 0:00:15 Bin 10 ray tracing: 12%|███▋ | ETA: 0:00:14 Bin 10 ray tracing: 18%|█████▍ | ETA: 0:00:14 Bin 10 ray tracing: 24%|███████▏ | ETA: 0:00:13 Bin 10 ray tracing: 30%|████████▉ | ETA: 0:00:12 Bin 10 ray tracing: 36%|██████████▋ | ETA: 0:00:11 Bin 10 ray tracing: 42%|████████████▍ | ETA: 0:00:10 Bin 10 ray tracing: 49%|██████████████▏ | ETA: 0:00:09 Bin 10 ray tracing: 55%|███████████████▉ | ETA: 0:00:08 Bin 10 ray tracing: 61%|█████████████████▋ | ETA: 0:00:07 Bin 10 ray tracing: 67%|███████████████████▍ | ETA: 0:00:06 Bin 10 ray tracing: 73%|█████████████████████▎ | ETA: 0:00:04 Bin 10 ray tracing: 80%|███████████████████████▎ | ETA: 0:00:03 Bin 10 ray tracing: 86%|█████████████████████████ | ETA: 0:00:02 Bin 10 ray tracing: 92%|██████████████████████████▊ | ETA: 0:00:01 Bin 10 ray tracing: 98%|████████████████████████████▌| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 980.1105707453851 K, F = -4531.8253753955805, relative_change = 0.019889429254614975 Iter 2: T = 962.266213801119 K, F = -3828.077415403194, relative_change = 0.01820647330708333 Iter 3: T = 946.3462512175805 K, F = -3232.1075748714584, relative_change = 0.016544239374935328 Iter 5: T = 919.7569797361595 K, F = -2300.9078137463202, relative_change = 0.01337083434625609 Iter 10: T = 877.5284780527264 K, F = -976.8485557258952, relative_change = 0.007028374426395012 Iter 15: T = 857.531037716954 K, F = -411.64677473191335, relative_change = 0.0032969175116619497 Iter 20: T = 848.6544442464638 K, F = -172.75723232749462, relative_change = 0.0014531264762904245 Iter 25: T = 844.8421195860694 K, F = -72.35915957964372, relative_change = 0.0006217654438540112 Iter 30: T = 843.2294076853055 K, F = -30.28108270897526, relative_change = 0.00026257143798437237 Iter 35: T = 842.5516758852007 K, F = -12.667369875763805, relative_change = 0.00011026146372735282 Iter 40: T = 842.2676623030899 K, F = -5.298252515485094, relative_change = 4.6192009395259264e-5 Iter 45: T = 842.1487829599946 K, F = -2.215898821671621, relative_change = 1.9331963200895344e-5 Iter 50: T = 842.0990484243963 K, F = -0.9267339616640511, relative_change = 8.087293894959554e-6 Iter 55: T = 842.0782457368673 K, F = -0.3875744661589655, relative_change = 3.3826291389458373e-6 Iter 60: T = 842.0695452602814 K, F = -0.16208883984822453, relative_change = 1.4147304681149286e-6 Iter 65: T = 842.065906521872 K, F = -0.0677875881700929, relative_change = 5.916702196462219e-7 Iter 70: T = 842.0643847413631 K, F = -0.02834959634275136, relative_change = 2.4744583306207204e-7 Iter 75: T = 842.0637483116684 K, F = -0.011856142799486769, relative_change = 1.0348520147535202e-7 Iter 80: T = 842.0634821486601 K, F = -0.004958381042671656, relative_change = 4.327881690535807e-8 Iter 85: T = 842.0633708360223 K, F = -0.002073654258230917, relative_change = 1.8099730270863756e-8 Iter 90: T = 842.0633242837323 K, F = -0.0008672269906626617, relative_change = 7.569525480916293e-9 Iter 95: T = 842.063304815006 K, F = -0.0003626846873467926, relative_change = 3.165666329788945e-9 Iter 100: T = 842.0632966729517 K, F = -0.00015167906882251891, relative_change = 1.3239195366189792e-9 Iter 105: T = 842.0632932678471 K, F = -6.343399882702272e-5, relative_change = 5.536789789247246e-10 Iter 110: T = 842.0632918437918 K, F = -2.6528854672136504e-5, relative_change = 2.315551527066329e-10 Iter 115: T = 842.0632912482348 K, F = -1.1094683583623421e-5, relative_change = 9.683912825634036e-11 Iter 120: T = 842.0632909991658 K, F = -4.639929842564783e-6, relative_change = 4.049928583998438e-11 Iter 125: T = 842.0632908950022 K, F = -1.940473409955956e-6, relative_change = 1.6937279227812916e-11 Iter 130: T = 842.0632908514397 K, F = -8.115294092281289e-7, relative_change = 7.0833746747276954e-12 Iter 135: T = 842.0632908332213 K, F = -3.3939199162169587e-7, relative_change = 2.9623580010399377e-12 Iter 140: T = 842.0632908256023 K, F = -1.419376556288654e-7, relative_change = 1.2388923728283287e-12 Iter 145: T = 842.0632908224158 K, F = -5.935930724731975e-8, relative_change = 5.181133412453461e-13 Converged in 150 iterations to T = 842.0632908210831 K Iter 1: T = 964.3157452073814 K, F = -8130.6913989876, relative_change = 0.035684254792618594 Iter 2: T = 930.5564924840934 K, F = -6897.762666313182, relative_change = 0.03500850514063516 Iter 3: T = 898.6912574579896 K, F = -5850.7271381085475, relative_change = 0.03424320316227166 Iter 5: T = 840.5298362209742 K, F = -4206.610433152054, relative_change = 0.032418411754473034 Iter 10: T = 726.2912122468479 K, F = -1834.558607189839, relative_change = 0.026034452160050667 Iter 15: T = 652.5591000591539 K, F = -792.1749065923095, relative_change = 0.01783725491488297 Iter 20: T = 610.8461863536288 K, F = -338.2137630224587, relative_change = 0.01022895514080077 Iter 25: T = 590.0015111000148 K, F = -143.0493258151176, relative_change = 0.0050751517158736485 Iter 30: T = 580.4562699021277 K, F = -60.15037403796403, relative_change = 0.0023033614418053803 Iter 35: T = 576.2935456503692 K, F = -25.21663786601944, relative_change = 0.0009990344178584256 Iter 40: T = 574.5204275233502 K, F = -10.55690819263886, relative_change = 0.00042440524576846486 Iter 45: T = 573.7730648021568 K, F = -4.416976198039996, relative_change = 0.00017867211308022642 Iter 50: T = 573.4594758526572 K, F = -1.847575359089801, relative_change = 7.493135228057509e-5 Iter 55: T = 573.3281474762919 K, F = -0.772738240376267, relative_change = 3.137381003682085e-5 Iter 60: T = 573.2731925167112 K, F = -0.3231788930051178, relative_change = 1.3127318552693192e-5 Iter 65: T = 573.2502041174391 K, F = -0.1351591154964451, relative_change = 5.491124452877724e-6 Iter 70: T = 573.2405891181494 K, F = -0.056525478607187624, relative_change = 2.296650307376779e-6 Iter 75: T = 573.2365678398547 K, F = -0.023639686593207476, relative_change = 9.605209556948104e-7 Iter 80: T = 573.2348860633788 K, F = -0.009886409111439787, relative_change = 4.0170734622923737e-7 Iter 85: T = 573.2341827191477 K, F = -0.004134616083262432, relative_change = 1.679998610173613e-7 Iter 90: T = 573.2338885712769 K, F = -0.0017291461250516504, relative_change = 7.025973210547663e-8 Iter 95: T = 573.2337655549646 K, F = -0.0007231496131732129, relative_change = 2.938349123191365e-8 Iter 100: T = 573.2337141080458 K, F = -0.00030242981395955937, relative_change = 1.2288532582892107e-8 Iter 105: T = 573.2336925923249 K, F = -0.00012647976073237865, relative_change = 5.139212031461106e-9 Iter 110: T = 573.2336835941927 K, F = -5.289534661512274e-5, relative_change = 2.1492800150314457e-9 Iter 115: T = 573.2336798310662 K, F = -2.2121465442670463e-5, relative_change = 8.988545894418452e-10 Iter 120: T = 573.2336782572818 K, F = -9.251460881765095e-6, relative_change = 3.75911722614411e-10 Iter 125: T = 573.2336775991063 K, F = -3.86907123833824e-6, relative_change = 1.572107649440284e-10 Iter 130: T = 573.2336773238494 K, F = -1.6180915233809934e-6, relative_change = 6.574740837053497e-11 Iter 135: T = 573.2336772087338 K, F = -6.767045103717173e-7, relative_change = 2.7496323408928448e-11 Iter 140: T = 573.233677160591 K, F = -2.8300605642295196e-7, relative_change = 1.149929686877344e-11 Iter 145: T = 573.2336771404571 K, F = -1.1835636776202918e-7, relative_change = 4.809137396688264e-12 Iter 150: T = 573.2336771320369 K, F = -4.949755683103518e-8, relative_change = 2.011218797252145e-12 Iter 155: T = 573.2336771285154 K, F = -2.0700236746939993e-8, relative_change = 8.41106267049711e-13 Iter 160: T = 573.2336771270427 K, F = -8.657002781298218e-9, relative_change = 3.5175729545132605e-13 Converged in 163 iterations to T = 573.2336771266116 K Iter 1: T = 963.5201477983315 K, F = -8311.96902544813, relative_change = 0.03647985220166848 Iter 2: T = 928.9152503919407 K, F = -7053.063152339839, relative_change = 0.03591507399763654 Iter 3: T = 896.1515884812179 K, F = -5983.916800624393, relative_change = 0.03527088385824083 Iter 5: T = 836.0285975735767 K, F = -4304.913854403422, relative_change = 0.033714895146496136 Iter 10: T = 716.0023413277254 K, F = -1881.480878752051, relative_change = 0.028036526213649403 Iter 15: T = 635.9828286845259 K, F = -814.8736935051941, relative_change = 0.020146451121694442 Iter 20: T = 589.0011247462717 K, F = -348.9675706698808, relative_change = 0.012116043355283447 Iter 25: T = 564.7802324466228 K, F = -147.92859945975346, relative_change = 0.006221453106018551 Iter 30: T = 553.4675528787528 K, F = -62.28110241502324, relative_change = 0.0028785266665710815 Iter 35: T = 548.4831592824958 K, F = -26.125957729381355, relative_change = 0.0012601286610980382 Iter 40: T = 546.3499439205667 K, F = -10.940597343162537, relative_change = 0.0005375364537275161 Iter 45: T = 545.4489322617112 K, F = -4.578051223800037, relative_change = 0.00022670139627631411 Iter 50: T = 545.0705382722504 K, F = -1.9150471090390697, relative_change = 9.5145185307909e-5 Iter 55: T = 544.9120109356944 K, F = -0.800974759617981, relative_change = 3.984991763830776e-5 Iter 60: T = 544.8456640552704 K, F = -0.334991077472141, relative_change = 1.667606450491122e-5 Iter 65: T = 544.8179084414418 K, F = -0.1400996958962922, relative_change = 6.975941740195719e-6 Iter 70: T = 544.8062992149719 K, F = -0.058591790475422595, relative_change = 2.917739259235976e-6 Iter 75: T = 544.8014438358805 K, F = -0.02450386075981617, relative_change = 1.2202888754836319e-6 Iter 80: T = 544.7994132125416 K, F = -0.01024782019245446, relative_change = 5.103490837424382e-7 Iter 85: T = 544.7985639735969 K, F = -0.004285763059735881, relative_change = 2.1343577870282272e-7 Iter 90: T = 544.7982088103265 K, F = -0.0017923576915784833, relative_change = 8.926168843414011e-8 Iter 95: T = 544.7980602765601 K, F = -0.0007495854605039931, relative_change = 3.7330355984675525e-8 Iter 100: T = 544.7979981579224 K, F = -0.00031348560335464626, relative_change = 1.5612009755400388e-8 Iter 105: T = 544.7979721791587 K, F = -0.00013110342539537911, relative_change = 6.529130521472358e-9 Iter 110: T = 544.7979613145283 K, F = -5.482901898065662e-5, relative_change = 2.7305606561975915e-9 Iter 115: T = 544.7979567708097 K, F = -2.293015023299705e-5, relative_change = 1.1419531065313618e-9 Iter 120: T = 544.7979548705723 K, F = -9.58966286487839e-6, relative_change = 4.775784445243545e-10 Iter 125: T = 544.7979540758703 K, F = -4.010510854801641e-6, relative_change = 1.9972897651078415e-10 Iter 130: T = 544.7979537435165 K, F = -1.6772433491796246e-6, relative_change = 8.352903422840325e-11 Iter 135: T = 544.7979536045223 K, F = -7.01443453432482e-7, relative_change = 3.4932852368069233e-11 Iter 140: T = 544.7979535463932 K, F = -2.933521957571017e-7, relative_change = 1.4609344347418185e-11 Iter 145: T = 544.7979535220827 K, F = -1.226829048628364e-7, relative_change = 6.109778038094323e-12 Iter 150: T = 544.7979535119158 K, F = -5.130697136590534e-8, relative_change = 2.555158008614715e-12 Iter 155: T = 544.797953507664 K, F = -2.1457397914037557e-8, relative_change = 1.0686080403209435e-12 Iter 160: T = 544.7979535058857 K, F = -8.973353088359559e-9, relative_change = 4.4688537246800225e-13 Converged in 165 iterations to T = 544.7979535051421 K Iter 1: T = 969.2835606940479 K, F = -6998.76991473815, relative_change = 0.030716439305952137 Iter 2: T = 940.7070444892047 K, F = -5929.505846893604, relative_change = 0.029482101382572887 Iter 3: T = 914.2315628529511 K, F = -5021.915976428017, relative_change = 0.028144236605169116 Iter 5: T = 867.398926961586 K, F = -3598.19141348516, relative_change = 0.02518931959914224 Iter 10: T = 782.972346905663 K, F = -1551.8079544765587, relative_change = 0.016923991861365836 Iter 15: T = 735.9063327054398 K, F = -661.7543466376708, relative_change = 0.009529233235674311 Iter 20: T = 712.6588572552245 K, F = -279.6642211162436, relative_change = 0.004669327151544062 Iter 25: T = 702.0880864000998 K, F = -117.5428019646168, relative_change = 0.002104935298365203 Iter 30: T = 697.4944842175169 K, F = -49.266669537605615, relative_change = 0.0009100721091939816 Iter 35: T = 695.541002504342 K, F = -20.62349360014465, relative_change = 0.00038607075442557114 Iter 40: T = 694.7181967774844 K, F = -8.628458039383348, relative_change = 0.00016243600448261219 Iter 45: T = 694.3730556998783 K, F = -3.609133617464215, relative_change = 6.810500681051449e-5 Iter 50: T = 694.2285317750346 K, F = -1.5094895965283797, relative_change = 2.8512580251432973e-5 Iter 55: T = 694.1680582741203 K, F = -0.6313052751392554, relative_change = 1.192960112222875e-5 Iter 60: T = 694.1427619545452 K, F = -0.2640226770546447, relative_change = 4.990029160456391e-6 Iter 65: T = 694.1321817553893 K, F = -0.11041800892048315, relative_change = 2.0870520535183765e-6 Iter 70: T = 694.1277568189806 K, F = -0.04617823009157207, relative_change = 8.728584769078242e-7 Iter 75: T = 694.1259062278605 K, F = -0.019312304812414305, relative_change = 3.6504480365659204e-7 Iter 80: T = 694.1251322833291 K, F = -0.008076639570437139, relative_change = 1.5266696473396104e-7 Iter 85: T = 694.1248086095694 K, F = -0.0033777476575694854, relative_change = 6.38472997184838e-8 Iter 90: T = 694.124673245178 K, F = -0.0014126145022884673, relative_change = 2.670172979135245e-8 Iter 95: T = 694.124616634145 K, F = -0.0005907722722043873, relative_change = 1.1166986945424075e-8 Iter 100: T = 694.12459295873 K, F = -0.000247068022224628, relative_change = 4.6701681115853705e-9 Iter 105: T = 694.1245830573879 K, F = -0.00010332679810720613, relative_change = 1.9531202217916986e-9 Iter 110: T = 694.1245789165281 K, F = -4.321250141692268e-5, relative_change = 8.16818233941569e-10 Iter 115: T = 694.1245771847712 K, F = -1.807198453651626e-5, relative_change = 3.416031515014005e-10 Iter 120: T = 694.1245764605296 K, F = -7.5579190355057335e-6, relative_change = 1.42862504609274e-10 Iter 125: T = 694.1245761576432 K, F = -3.1608117087023047e-6, relative_change = 5.974680016024443e-11 Iter 130: T = 694.1245760309725 K, F = -1.3218897323419299e-6, relative_change = 2.4986835350960663e-11 Iter 135: T = 694.1245759779973 K, F = -5.528301362245358e-7, relative_change = 1.0449794152979977e-11 Iter 140: T = 694.1245759558424 K, F = -2.312003363202919e-7, relative_change = 4.3702319477617276e-12 Iter 145: T = 694.124575946577 K, F = -9.6690609074912e-8, relative_change = 1.8276806841196975e-12 Iter 150: T = 694.124575942702 K, F = -4.043602175318739e-8, relative_change = 7.643362329598198e-13 Iter 155: T = 694.1245759410815 K, F = -1.691112294643915e-8, relative_change = 3.1966013093576547e-13 Converged in 158 iterations to T = 694.1245759406071 K Iter 1: T = 980.8251538563434 K, F = -4369.006933819687, relative_change = 0.019174846143656575 Iter 2: T = 963.6628673137736 K, F = -3689.8132648493906, relative_change = 0.017497804246855028 Iter 3: T = 948.3875261457905 K, F = -3114.756278781148, relative_change = 0.01585133316443271 Iter 5: T = 922.9601017956664 K, F = -2216.5258255755734, relative_change = 0.012735376751957789 Iter 10: T = 882.8364617220748 K, F = -940.297156243668, relative_change = 0.006615162430224666 Iter 15: T = 863.9692180652938 K, F = -396.05992334049955, relative_change = 0.0030812572562760312 Iter 20: T = 855.62623195919 K, F = -166.1772520013835, relative_change = 0.0013533225328370014 Iter 25: T = 852.0495559637255 K, F = -69.59581390255028, relative_change = 0.0005781448444487944 Iter 30: T = 850.5377387073447 K, F = -29.12334097086943, relative_change = 0.00024398328759766413 Iter 35: T = 849.9026247535562 K, F = -12.1828203060701, relative_change = 0.00010242598605419798 Iter 40: T = 849.6365093135096 K, F = -5.095543353785194, relative_change = 4.2904234777555986e-5 Iter 45: T = 849.5251283492544 K, F = -2.1311120792698803, relative_change = 1.7955065950016857e-5 Iter 50: T = 849.4785320325069 K, F = -0.8912731463601267, relative_change = 7.511124336003518e-6 Iter 55: T = 849.4590421895055 K, F = -0.37274398202591763, relative_change = 3.1416095741870824e-6 Iter 60: T = 849.4508908308549 K, F = -0.15588649345220484, relative_change = 1.313922960319045e-6 Iter 65: T = 849.4474817524871 K, F = -0.06519368219910082, relative_change = 5.495095235163361e-7 Iter 70: T = 849.4460560207127 K, F = -0.027264792028295792, relative_change = 2.298134129229629e-7 Iter 75: T = 849.445459760124 K, F = -0.011402464355604103, relative_change = 9.611105797182384e-8 Iter 80: T = 849.4452103963818 K, F = -0.004768647243644786, relative_change = 4.019485244562884e-8 Iter 85: T = 849.4451061094093 K, F = -0.001994305311464606, relative_change = 1.6809977859157482e-8 Iter 90: T = 849.4450624953383 K, F = -0.0008340423127217722, relative_change = 7.030135334504832e-9 Iter 95: T = 849.4450442554107 K, F = -0.0003488064592127582, relative_change = 2.940086884222404e-9 Iter 100: T = 849.4450366272547 K, F = -0.0001458750276643883, relative_change = 1.229579506290157e-9 Iter 105: T = 849.4450334370687 K, F = -6.100667951569605e-5, relative_change = 5.14224850008174e-10 Iter 110: T = 849.4450321028947 K, F = -2.5513721742864703e-5, relative_change = 2.1505497330195224e-10 Iter 115: T = 849.4450315449272 K, F = -1.0670144088287259e-5, relative_change = 8.993856648346313e-11 Iter 120: T = 849.4450313115785 K, F = -4.462380951419931e-6, relative_change = 3.7613376452836844e-11 Iter 125: T = 849.4450312139894 K, F = -1.866221521318323e-6, relative_change = 1.573036758365352e-11 Iter 130: T = 849.4450311731764 K, F = -7.804748507478365e-7, relative_change = 6.578616822614087e-12 Iter 135: T = 849.445031156108 K, F = -3.2640628822022677e-7, relative_change = 2.7512762222133584e-12 Iter 140: T = 849.4450311489697 K, F = -1.3650645924734306e-7, relative_change = 1.1506119492017362e-12 Iter 145: T = 849.4450311459844 K, F = -5.708793215930541e-8, relative_change = 4.811937637309461e-13 Converged in 150 iterations to T = 849.4450311447359 K Iter 1: T = 967.3029013092575 K, F = -7450.065039656095, relative_change = 0.032697098690742436 Iter 2: T = 936.680043717427 K, F = -6315.245674488889, relative_change = 0.03165798174530653 Iter 3: T = 908.1001207646141 K, F = -5351.777749189165, relative_change = 0.03051193750150475 Iter 5: T = 856.9310586868838 K, F = -3839.682036773925, relative_change = 0.027904377218099373 Iter 10: T = 761.7518182413149 K, F = -1662.6446200164226, relative_change = 0.01998791023301793 Iter 15: T = 706.0104840095247 K, F = -711.8728880735257, relative_change = 0.011981000028157 Iter 20: T = 677.3370585622682 K, F = -301.7167847391477, relative_change = 0.006136867168623697 Iter 25: T = 663.9641078981385 K, F = -127.01727945288128, relative_change = 0.002835339662341606 Iter 30: T = 658.0764613747828 K, F = -53.27932164653592, relative_change = 0.0012403581556441699 Iter 35: T = 655.5575743265096 K, F = -22.3109718222478, relative_change = 0.0005289376754571764 Iter 40: T = 654.4938328084121 K, F = -9.33585744137206, relative_change = 0.00022304491638968366 Iter 45: T = 654.0471278683525 K, F = -3.9052728057671793, relative_change = 9.360524752197489e-5 Iter 50: T = 653.8599871129436 K, F = -1.6333906039641692, relative_change = 3.920400174617904e-5 Iter 55: T = 653.7816658729482 K, F = -0.6831312793291919, relative_change = 1.6405602160611355e-5 Iter 60: T = 653.7489010580476 K, F = -0.2856985278720978, relative_change = 6.862772905951453e-6 Iter 65: T = 653.7351966822295 K, F = -0.11948338799493963, relative_change = 2.870400507175242e-6 Iter 70: T = 653.7294650443879 K, F = -0.04996952875699795, relative_change = 1.2004894606735575e-6 Iter 75: T = 653.7270679517811 K, F = -0.020897879740035707, relative_change = 5.020684200890417e-7 Iter 80: T = 653.7260654497186 K, F = -0.008739747435321132, relative_change = 2.0997265170017112e-7 Iter 85: T = 653.7256461897559 K, F = -0.0036550675477097228, relative_change = 8.781335779115245e-8 Iter 90: T = 653.725470849948 K, F = -0.001528593039243742, relative_change = 3.672464520318435e-8 Iter 95: T = 653.7253975206966 K, F = -0.000639275889062596, relative_change = 1.5358694006886838e-8 Iter 100: T = 653.7253668535191 K, F = -0.00026735281615958284, relative_change = 6.423190804834319e-9 Iter 105: T = 653.7253540281376 K, F = -0.00011181014144123758, relative_change = 2.6862553751678585e-9 Iter 110: T = 653.7253486644097 K, F = -4.676033604728014e-5, relative_change = 1.1234241128696663e-9 Iter 115: T = 653.7253464212346 K, F = -1.9555730165543572e-5, relative_change = 4.69829368836057e-10 Iter 120: T = 653.7253454831119 K, F = -8.178440591977143e-6, relative_change = 1.9648827096289826e-10 Iter 125: T = 653.7253450907779 K, F = -3.4203213316597036e-6, relative_change = 8.217373702938991e-11 Iter 130: T = 653.725344926699 K, F = -1.4304190297242947e-6, relative_change = 3.436603346090367e-11 Iter 135: T = 653.7253448580793 K, F = -5.982182073593911e-7, relative_change = 1.4372282886414945e-11 Iter 140: T = 653.7253448293817 K, F = -2.501814663213864e-7, relative_change = 6.010647558743379e-12 Iter 145: T = 653.7253448173801 K, F = -1.0462852972903391e-7, relative_change = 2.5137162480206333e-12 Iter 150: T = 653.725344812361 K, F = -4.3758192624920866e-8, relative_change = 1.0512971946960058e-12 Iter 155: T = 653.7253448102617 K, F = -1.829941231878962e-8, relative_change = 4.3964614810591654e-13 Converged in 159 iterations to T = 653.725344809504 K Iter 1: T = 980.153361411903 K, F = -4522.075481325036, relative_change = 0.019846638588097036 Iter 2: T = 962.3499376750407 K, F = -3819.796370769203, relative_change = 0.018163916421422673 Iter 3: T = 946.4687463614188 K, F = -3225.077685995079, relative_change = 0.016502511915769017 Iter 5: T = 919.9495802892384 K, F = -2295.8508277780843, relative_change = 0.013332358974589656 Iter 10: T = 877.8489015432237 K, F = -974.6558195317037, relative_change = 0.00700307941045244 Iter 15: T = 857.920576381078 K, F = -410.71104498062164, relative_change = 0.0032836288081091306 Iter 20: T = 849.076741437569 K, F = -172.3620622583122, relative_change = 0.0014469565217908264 Iter 25: T = 845.2789103132925 K, F = -72.1931728652716, relative_change = 0.0006190647839334387 Iter 30: T = 843.672409050507 K, F = -30.211534746868722, relative_change = 0.00026141986022798036 Iter 35: T = 842.9973015513787 K, F = -12.638260980882661, relative_change = 0.00010977590596547018 Iter 40: T = 842.7143902576813 K, F = -5.286074763535096, relative_change = 4.598824548904302e-5 Iter 45: T = 842.5959727444836 K, F = -2.210805227788475, relative_change = 1.924662418478363e-5 Iter 50: T = 842.5464314988754 K, F = -0.9246036351144608, relative_change = 8.051582636944856e-6 Iter 55: T = 842.5257096733014 K, F = -0.3866835163255171, relative_change = 3.3676905080958975e-6 Iter 60: T = 842.5170430186604 K, F = -0.16171623016972947, relative_change = 1.4084822971370603e-6 Iter 65: T = 842.513418425781 K, F = -0.06763175768371621, relative_change = 5.890570449649417e-7 Iter 70: T = 842.5119025612397 K, F = -0.02828442605483983, relative_change = 2.4635295209068196e-7 Iter 75: T = 842.5112686056973 K, F = -0.011828887786142328, relative_change = 1.030281420829713e-7 Iter 80: T = 842.5110034774134 K, F = -0.004946982666157895, relative_change = 4.308766858643583e-8 Iter 85: T = 842.5108925975105 K, F = -0.0020688873233865035, relative_change = 1.8019789679385514e-8 Iter 90: T = 842.5108462261954 K, F = -0.0008652334031864495, relative_change = 7.536093367003857e-9 Iter 95: T = 842.510826833155 K, F = -0.0003618509442573359, relative_change = 3.151684608664116e-9 Iter 100: T = 842.5108187227534 K, F = -0.0001513303850257941, relative_change = 1.3180721917099523e-9 Iter 105: T = 842.5108153308864 K, F = -6.32881748090508e-5, relative_change = 5.512335468166448e-10 Iter 110: T = 842.5108139123672 K, F = -2.6467869832735857e-5, relative_change = 2.305324482110758e-10 Iter 115: T = 842.5108133191254 K, F = -1.1069175232192308e-5, relative_change = 9.641138824680825e-11 Iter 120: T = 842.5108130710248 K, F = -4.62926097855032e-6, relative_change = 4.032039142596488e-11 Iter 125: T = 842.5108129672661 K, F = -1.936012047787372e-6, relative_change = 1.68624676767281e-11 Iter 130: T = 842.510812923873 K, F = -8.096658312695126e-7, relative_change = 7.052106895556319e-12 Iter 135: T = 842.5108129057255 K, F = -3.3861086801145746e-7, relative_change = 2.9492661604784274e-12 Iter 140: T = 842.5108128981359 K, F = -1.4161124273215364e-7, relative_change = 1.2334194959655537e-12 Iter 145: T = 842.5108128949618 K, F = -5.922048917916811e-8, relative_change = 5.158044270091583e-13 Converged in 150 iterations to T = 842.5108128936344 K Iter 1: T = 969.9497593982929 K, F = -6846.975906257329, relative_change = 0.030050240601707013 Iter 2: T = 942.0556407835483 K, F = -5799.851992435713, relative_change = 0.02875831283472746 Iter 3: T = 916.2751945721112 K, F = -4911.13871110367, relative_change = 0.027366160867095177 Iter 5: T = 870.85130916086 K, F = -3517.275922185726, relative_change = 0.024321204479300522 Iter 10: T = 789.7641245279219 K, F = -1515.0135810412899, relative_change = 0.016020466243094354 Iter 15: T = 745.2146549887714 K, F = -645.3203302192967, relative_change = 0.008860864356034899 Iter 20: T = 723.4548835177973 K, F = -272.508180095912, relative_change = 0.004290840694327155 Iter 25: T = 713.6257194091702 K, F = -114.48775140846172, relative_change = 0.001922245066993097 Iter 30: T = 709.3683891899034 K, F = -47.9768697596278, relative_change = 0.0008286605425732769 Iter 35: T = 707.5605997573392 K, F = -20.081856655299852, relative_change = 0.00035108367836846034 Iter 40: T = 706.7996492985156 K, F = -8.401541404359541, relative_change = 0.0001476346042744396 Iter 45: T = 706.480541701654 K, F = -3.514164227627731, relative_change = 6.18848799876993e-5 Iter 50: T = 706.3469343553401 K, F = -1.4697599508406887, relative_change = 2.5905973063358246e-5 Iter 55: T = 706.2910313985983 K, F = -0.614687706065644, relative_change = 1.0838562048734411e-5 Iter 60: T = 706.2676474285385 K, F = -0.2570726337494958, relative_change = 4.533581687197544e-6 Iter 65: T = 706.2578671531288 K, F = -0.10751135177538035, relative_change = 1.8961319410360892e-6 Iter 70: T = 706.2537767817347 K, F = -0.044962619810221316, relative_change = 7.930084503959595e-7 Iter 75: T = 706.2520661144832 K, F = -0.0188039200541682, relative_change = 3.316497021819131e-7 Iter 80: T = 706.2513506886215 K, F = -0.007864026637154575, relative_change = 1.3870058282856957e-7 Iter 85: T = 706.251051488215 K, F = -0.0032888303293084897, relative_change = 5.800636552251776e-8 Iter 90: T = 706.2509263588975 K, F = -0.0013754282014427632, relative_change = 2.425897669244516e-8 Iter 95: T = 706.2508740282992 K, F = -0.0005752205140915345, relative_change = 1.0145397595115141e-8 Iter 100: T = 706.250852143014 K, F = -0.00024056409101613774, relative_change = 4.242927104927044e-9 Iter 105: T = 706.2508429903255 K, F = -0.00010060677662204753, relative_change = 1.774442910429799e-9 Iter 110: T = 706.2508391625619 K, F = -4.2074955540427617e-5, relative_change = 7.420932366453873e-10 Iter 115: T = 706.2508375617454 K, F = -1.759624946728877e-5, relative_change = 3.1035226759473347e-10 Iter 120: T = 706.2508368922647 K, F = -7.35896133163827e-6, relative_change = 1.297930193004617e-10 Iter 125: T = 706.25083661228 K, F = -3.077605863488486e-6, relative_change = 5.428099700369121e-11 Iter 130: T = 706.250836495187 K, F = -1.2870915481189016e-6, relative_change = 2.2700961598401524e-11 Iter 135: T = 706.2508364462172 K, F = -5.382766021799767e-7, relative_change = 9.493805236541572e-12 Iter 140: T = 706.2508364257377 K, F = -2.2511528285917848e-7, relative_change = 3.9704505878085374e-12 Iter 145: T = 706.2508364171728 K, F = -9.414707968780078e-8, relative_change = 1.6605106644061335e-12 Iter 150: T = 706.2508364135907 K, F = -3.937211923155104e-8, relative_change = 6.944222176899925e-13 Iter 155: T = 706.2508364120927 K, F = -1.646393377185973e-8, relative_change = 2.9038115359331815e-13 Converged in 157 iterations to T = 706.2508364117757 K Iter 1: T = 969.241338510851 K, F = -7008.390279343202, relative_change = 0.030758661489148915 Iter 2: T = 940.6214739062768 K, F = -5937.724555258669, relative_change = 0.0295281097363697 Iter 3: T = 914.1017279414918 K, F = -5028.939706692619, relative_change = 0.028193855552384982 Iter 5: T = 867.1789850576381 K, F = -3603.324848147097, relative_change = 0.025245078446872713 Iter 10: T = 782.5363516053254 K, F = -1554.1477451108326, relative_change = 0.016983217407956795 Iter 15: T = 735.3047878988417 K, F = -662.8024850959282, relative_change = 0.009573866750705505 Iter 20: T = 711.9581579189393 K, F = -280.12170842550796, relative_change = 0.004694918873657108 Iter 25: T = 701.3375689228081 K, F = -117.73838463503724, relative_change = 0.002117370381429206 Iter 30: T = 696.7212876547062 K, F = -49.349298282817564, relative_change = 0.0009156307841452493 Iter 35: T = 694.75796230157 K, F = -20.658203254628717, relative_change = 0.00038846289808364625 Iter 40: T = 693.9309740698534 K, F = -8.64300143175167, relative_change = 0.0001634486009522095 Iter 45: T = 693.5840720839442 K, F = -3.615220673985361, relative_change = 6.853064446415248e-5 Iter 50: T = 693.4388096565652 K, F = -1.51203612534718, relative_change = 2.8690966507195e-5 Iter 55: T = 693.3780269418149 K, F = -0.632370412648238, relative_change = 1.2004270916654892e-5 Iter 60: T = 693.3526012416938 K, F = -0.2644681563141407, relative_change = 5.021268608156596e-6 Iter 65: T = 693.341966922913 K, F = -0.11060431822349953, relative_change = 2.100118801735792e-6 Iter 70: T = 693.3375193510827 K, F = -0.04625614766317576, relative_change = 8.783235035728151e-7 Iter 75: T = 693.3356592932181 K, F = -0.019344891010346532, relative_change = 3.673304054269958e-7 Iter 80: T = 693.3348813895216 K, F = -0.008090267531390749, relative_change = 1.5362284158677215e-7 Iter 85: T = 693.3345560599814 K, F = -0.003383447037971554, relative_change = 6.424706074368303e-8 Iter 90: T = 693.334420003121 K, F = -0.001414998051708749, relative_change = 2.6868914954647308e-8 Iter 95: T = 693.3343631024887 K, F = -0.000591769100423134, relative_change = 1.1236905821609736e-8 Iter 100: T = 693.3343393059598 K, F = -0.0002474849070331908, relative_change = 4.699409017893043e-9 Iter 105: T = 693.3343293539665 K, F = -0.00010350114507029495, relative_change = 1.965349134121283e-9 Iter 110: T = 693.3343251919238 K, F = -4.3285414104698994e-5, relative_change = 8.219324868758895e-10 Iter 115: T = 693.3343234513079 K, F = -1.8102476940451417e-5, relative_change = 3.4374198274121407e-10 Iter 120: T = 693.3343227233615 K, F = -7.570672347689822e-6, relative_change = 1.437570087810704e-10 Iter 125: T = 693.3343224189257 K, F = -3.1661462001064677e-6, relative_change = 6.012090962849212e-11 Iter 130: T = 693.3343222916069 K, F = -1.3241199251501357e-6, relative_change = 2.514327810388547e-11 Iter 135: T = 693.3343222383608 K, F = -5.537640425101742e-7, relative_change = 1.051524341972077e-11 Iter 140: T = 693.3343222160926 K, F = -2.3159036210973483e-7, relative_change = 4.397593279221955e-12 Iter 145: T = 693.3343222067797 K, F = -9.685326451958076e-8, relative_change = 1.8391148114680088e-12 Iter 150: T = 693.3343222028849 K, F = -4.0505115928013424e-8, relative_change = 7.69138335346149e-13 Iter 155: T = 693.3343222012561 K, F = -1.6940296720946435e-8, relative_change = 3.216737274254564e-13 Converged in 158 iterations to T = 693.3343222007792 K Iter 1: T = 965.1926113347095 K, F = -7930.896617760886, relative_change = 0.034807388665290574 Iter 2: T = 932.3603436346717 K, F = -6726.673108645247, relative_change = 0.03401628578013656 Iter 3: T = 901.4737480936989 K, F = -5704.078995576811, relative_change = 0.03312731579784479 Iter 5: T = 845.4245001876111 K, F = -4098.550599108699, relative_change = 0.031037160656962486 Iter 10: T = 737.1900105548905 K, F = -1783.431051975424, relative_change = 0.024041065845318458 Iter 15: T = 669.5405917879718 K, F = -767.8774556345087, relative_change = 0.01573586521610278 Iter 20: T = 632.5450736866189 K, F = -326.95960866671356, relative_change = 0.008655000219559787 Iter 25: T = 614.537429134127 K, F = -138.03689361632286, relative_change = 0.004176001393997477 Iter 30: T = 606.4195092613464 K, F = -57.985606708822964, relative_change = 0.0018672559819249588 Iter 35: T = 602.9068593917183 K, F = -24.297842336585678, relative_change = 0.000804247718063958 Iter 40: T = 601.4159497114154 K, F = -10.170177489925255, relative_change = 0.0003406094160855304 Iter 45: T = 600.7885041459533 K, F = -4.2547974554957415, relative_change = 0.00014320655270943518 Iter 50: T = 600.5254038884522 K, F = -1.77967200335224, relative_change = 6.00245927290871e-5 Iter 55: T = 600.4152500798517 K, F = -0.7443265029734625, relative_change = 2.5126498105977356e-5 Iter 60: T = 600.3691610368646 K, F = -0.3112943574794384, relative_change = 1.0512316809783001e-5 Iter 65: T = 600.3498823018443 K, F = -0.1301884394210938, relative_change = 4.397096604972641e-6 Iter 70: T = 600.3418190490713 K, F = -0.05444660878890972, relative_change = 1.8390443015060022e-6 Iter 75: T = 600.3384467857933 K, F = -0.02277026551191841, relative_change = 7.691323274018428e-7 Iter 80: T = 600.3370364449596 K, F = -0.009522804575496369, relative_change = 3.216641792111684e-7 Iter 85: T = 600.336446620072 K, F = -0.003982551929453182, relative_change = 1.345244753886743e-7 Iter 90: T = 600.3361999476465 K, F = -0.0016655510106498572, relative_change = 5.62598600637864e-8 Iter 95: T = 600.336096786185 K, F = -0.0006965533642289135, relative_change = 2.352856598706152e-8 Iter 100: T = 600.336053642811 K, F = -0.0002913069426018211, relative_change = 9.839930891972222e-9 Iter 105: T = 600.3360355997335 K, F = -0.00012182804409710535, relative_change = 4.115177260953817e-9 Iter 110: T = 600.3360280539024 K, F = -5.09499436981975e-5, relative_change = 1.7210164035262898e-9 Iter 115: T = 600.3360248981456 K, F = -2.1307875132769993e-5, relative_change = 7.197496382481875e-10 Iter 120: T = 600.3360235783704 K, F = -8.91120799162426e-6, relative_change = 3.0100790226576276e-10 Iter 125: T = 600.3360230264248 K, F = -3.726774151724399e-6, relative_change = 1.258851185600747e-10 Iter 130: T = 600.3360227955944 K, F = -1.5585823629482576e-6, relative_change = 5.264669065437331e-11 Iter 135: T = 600.3360226990583 K, F = -6.51817287145029e-7, relative_change = 2.2017458891845517e-11 Iter 140: T = 600.3360226586858 K, F = -2.7259786772315664e-7, relative_change = 9.207967427205663e-12 Iter 145: T = 600.3360226418016 K, F = -1.1400409694051206e-7, relative_change = 3.850895900634439e-12 Iter 150: T = 600.3360226347405 K, F = -4.7678560655128877e-8, relative_change = 1.6105138211048145e-12 Iter 155: T = 600.3360226317873 K, F = -1.99397741096341e-8, relative_change = 6.735371486213536e-13 Iter 160: T = 600.3360226305523 K, F = -8.33879942874205e-9, relative_change = 2.816727591463356e-13 Converged in 162 iterations to T = 600.3360226302909 K Iter 1: T = 965.2008746853878 K, F = -7929.01380544835, relative_change = 0.034799125314612225 Iter 2: T = 932.3773175911849 K, F = -6725.061178980359, relative_change = 0.034006969901370976 Iter 3: T = 901.4998874273496 K, F = -5702.6977519519, relative_change = 0.03311688259813939 Iter 5: T = 845.4703016475382 K, F = -4097.533676140203, relative_change = 0.03102437462676678 Iter 10: T = 737.2906455875002 K, F = -1782.9520227093112, relative_change = 0.024023245119222318 Iter 15: T = 669.6948715395107 K, F = -767.6517049477346, relative_change = 0.01571789772771022 Iter 20: T = 632.7394385513778 K, F = -326.85607908190343, relative_change = 0.00864208560127079 Iter 25: T = 614.7552073749155 K, F = -137.9911369871323, relative_change = 0.004168826089337599 Iter 30: T = 606.648860862759 K, F = -57.965932659102386, relative_change = 0.0018638273980588046 Iter 35: T = 603.1414353699693 K, F = -24.28950996223893, relative_change = 0.0008027270513212201 Iter 40: T = 601.6527844888718 K, F = -10.166673666312603, relative_change = 0.00033995725521785 Iter 45: T = 601.0262970493865 K, F = -4.253328703467162, relative_change = 0.0001429308981352046 Iter 50: T = 600.763599888982 K, F = -1.7790571521468361, relative_change = 5.990879518740223e-5 Iter 55: T = 600.6536150828058 K, F = -0.7440692592759978, relative_change = 2.5077979584213103e-5 Iter 60: T = 600.6075967927587 K, F = -0.31118675660070144, relative_change = 1.0492009904660924e-5 Iter 65: T = 600.5883476604412 K, F = -0.13014343621161548, relative_change = 4.388601234908528e-6 Iter 70: T = 600.5802967901432 K, F = -0.05442778734321724, relative_change = 1.8354909499278853e-6 Iter 75: T = 600.5769297057614 K, F = -0.02276239405976066, relative_change = 7.676461882654678e-7 Iter 80: T = 600.5755215308735 K, F = -0.009519512623488713, relative_change = 3.2104264321554487e-7 Iter 85: T = 600.5749326118224 K, F = -0.003981175192944664, relative_change = 1.342645390153731e-7 Iter 90: T = 600.5746863182306 K, F = -0.0016649752434989007, relative_change = 5.615115114765471e-8 Iter 95: T = 600.5745833152022 K, F = -0.0006963125705142237, relative_change = 2.348310250931341e-8 Iter 100: T = 600.5745402380869 K, F = -0.00029120624008310836, relative_change = 9.820917518980196e-9 Iter 105: T = 600.5745222227197 K, F = -0.00012178592887535089, relative_change = 4.1072256313185e-9 Iter 110: T = 600.5745146884773 K, F = -5.0932330477981846e-5, relative_change = 1.7176909321785616e-9 Iter 115: T = 600.574511537567 K, F = -2.1300508296739906e-5, relative_change = 7.183588601314465e-10 Iter 120: T = 600.5745102198186 K, F = -8.908126663542681e-6, relative_change = 3.0042624775091293e-10 Iter 125: T = 600.5745096687207 K, F = -3.7254848738177415e-6, relative_change = 1.2564184242732415e-10 Iter 130: T = 600.5745094382448 K, F = -1.5580422916827708e-6, relative_change = 5.254491994857203e-11 Iter 135: T = 600.5745093418572 K, F = -6.515921656125023e-7, relative_change = 2.1974922240658742e-11 Iter 140: T = 600.5745093015468 K, F = -2.7250450834737094e-7, relative_change = 9.190204700277456e-12 Iter 145: T = 600.5745092846885 K, F = -1.1396575494426742e-7, relative_change = 3.843490969200148e-12 Iter 150: T = 600.5745092776381 K, F = -4.76619682054924e-8, relative_change = 1.6073981563315897e-12 Iter 155: T = 600.5745092746894 K, F = -1.9932092809593627e-8, relative_change = 6.722091101354851e-13 Iter 160: T = 600.5745092734562 K, F = -8.335202639209172e-9, relative_change = 2.811044079756495e-13 Converged in 162 iterations to T = 600.5745092731953 K Iter 1: T = 973.5803542085149 K, F = -6019.741425161018, relative_change = 0.026419645791485088 Iter 2: T = 949.3536441099592 K, F = -5094.079199183618, relative_change = 0.024884140270323284 Iter 3: T = 927.2519219420343 K, F = -4308.943562066033, relative_change = 0.02328081037561693 Iter 5: T = 889.0989164615002 K, F = -3078.9367493983436, relative_change = 0.019949191639037626 Iter 10: T = 824.1897720268145 K, F = -1318.2012200082897, relative_change = 0.011948252497792421 Iter 15: T = 790.8180980889057 K, F = -558.6784933031354, relative_change = 0.006116450621442441 Iter 20: T = 775.2593153290283 K, F = -235.18820943068405, relative_change = 0.0028249416285555814 Iter 25: T = 768.4105730557125 K, F = -98.65217096221575, relative_change = 0.0012356036884102397 Iter 30: T = 765.4807542844192 K, F = -41.31086614137053, relative_change = 0.0005268708994744728 Iter 35: T = 764.2435201045937 K, F = -17.286182674826776, relative_change = 0.00022216625330998707 Iter 40: T = 763.7239674026092 K, F = -7.230958541759224, relative_change = 9.323523094774278e-5 Iter 45: T = 763.5063095703655 K, F = -3.0243662450064317, relative_change = 3.904880712250782e-5 Iter 50: T = 763.415216729678 K, F = -1.2648773955100836, relative_change = 1.6340619085103155e-5 Iter 55: T = 763.3771091036734 K, F = -0.5289958118932577, relative_change = 6.835582401692059e-6 Iter 60: T = 763.3611700248008 K, F = -0.22123393686091508, relative_change = 2.8590266975173023e-6 Iter 65: T = 763.3545037592329 K, F = -0.09252294922793614, relative_change = 1.195732374980857e-6 Iter 70: T = 763.3517157857145 K, F = -0.03869425037298979, relative_change = 5.000788761144612e-7 Iter 75: T = 763.3505498111115 K, F = -0.016182406013437678, relative_change = 2.091405877215014e-7 Iter 80: T = 763.350062184722 K, F = -0.006767676921109689, relative_change = 8.746537643858464e-8 Iter 85: T = 763.3498582532127 K, F = -0.002830323568233206, relative_change = 3.6579114828907444e-8 Iter 90: T = 763.3497729665625 K, F = -0.0011836751634958231, relative_change = 1.5297831401351036e-8 Iter 95: T = 763.3497372986566 K, F = -0.0004950270968149262, relative_change = 6.397737305341952e-9 Iter 100: T = 763.3497223819106 K, F = -0.00020702624378166057, relative_change = 2.6756103954301164e-9 Iter 105: T = 763.349716143549 K, F = -8.658084815860168e-5, relative_change = 1.1189722721166014e-9 Iter 110: T = 763.3497135345917 K, F = -3.620914590707347e-5, relative_change = 4.679675908480592e-10 Iter 115: T = 763.3497124434946 K, F = -1.5143096934511213e-5, relative_change = 1.957096325010027e-10 Iter 120: T = 763.3497119871846 K, F = -6.333023248816794e-6, relative_change = 8.184809629984888e-11 Iter 125: T = 763.3497117963504 K, F = -2.6485458756164704e-6, relative_change = 3.422985036105036e-11 Iter 130: T = 763.3497117165413 K, F = -1.1076533539267075e-6, relative_change = 1.4315330130679878e-11 Iter 135: T = 763.3497116831641 K, F = -4.632336118026714e-7, relative_change = 5.986838805168068e-12 Iter 140: T = 763.3497116692054 K, F = -1.9372770143633034e-7, relative_change = 2.503739994562559e-12 Iter 145: T = 763.3497116633677 K, F = -8.101990367492817e-8, relative_change = 1.0471025655594147e-12 Iter 150: T = 763.3497116609263 K, F = -3.388290581440856e-8, relative_change = 4.3790323115867245e-13 Converged in 154 iterations to T = 763.349711660045 K Iter 1: T = 976.4888015131626 K, F = -5357.048940149428, relative_change = 0.023511198486837456 Iter 2: T = 955.1382120332652 K, F = -4529.674095650017, relative_change = 0.021864653692712722 Iter 3: T = 935.8561591266929 K, F = -3828.347883374961, relative_change = 0.0201877096567264 Iter 5: T = 903.0750311233616 K, F = -2730.8359556689884, relative_change = 0.016835934358293215 Iter 10: T = 849.1176972962509 K, F = -1164.4095186093364, relative_change = 0.009463145142597176 Iter 15: T = 822.4955993530666 K, F = -492.05392251890595, relative_change = 0.004631530935302538 Iter 20: T = 810.3982942785808 K, F = -206.80162343591056, relative_change = 0.0020865942699242997 Iter 25: T = 805.1430484840188 K, F = -86.67676230066466, relative_change = 0.0009018783870363602 Iter 30: T = 802.908527816925 K, F = -36.283401636040225, relative_change = 0.0003825455738495718 Iter 35: T = 801.9674093072977 K, F = -15.180195402535029, relative_change = 0.00016094396214671482 Iter 40: T = 801.572650559821 K, F = -6.349601358035663, relative_change = 6.747786758872065e-5 Iter 45: T = 801.4073517027118 K, F = -2.655665317196911, relative_change = 2.8249749257262137e-5 Iter 50: T = 801.338185630315 K, F = -1.110663546076216, relative_change = 1.1819584961442183e-5 Iter 55: T = 801.309253230135 K, F = -0.4644984620458813, relative_change = 4.944002088668052e-6 Iter 60: T = 801.2971522485774 K, F = -0.19425980168564794, relative_change = 2.0678000079885485e-6 Iter 65: T = 801.2920912800537 K, F = -0.0812419434895425, relative_change = 8.648065212022437e-7 Iter 70: T = 801.2899746887276 K, F = -0.03397638151222726, relative_change = 3.616772886067806e-7 Iter 75: T = 801.2890894990375 K, F = -0.014209333846374794, relative_change = 1.512586138031903e-7 Iter 80: T = 801.2887193011021 K, F = -0.0059425140408181365, relative_change = 6.325830776218497e-8 Iter 85: T = 801.2885644797235 K, F = -0.0024852305041229705, relative_change = 2.6455405849516307e-8 Iter 90: T = 801.2884997315424 K, F = -0.0010393531062454775, relative_change = 1.1063971241258435e-8 Iter 95: T = 801.2884726530742 K, F = -0.00043466988706497567, relative_change = 4.62708570824222e-9 Iter 100: T = 801.2884613285345 K, F = -0.0001817841408491283, relative_change = 1.9351026646628704e-9 Iter 105: T = 801.2884565924766 K, F = -7.602429931319321e-5, relative_change = 8.09283074051225e-10 Iter 110: T = 801.2884546118005 K, F = -3.1794270588081375e-5, relative_change = 3.384518578141148e-10 Iter 115: T = 801.2884537834581 K, F = -1.3296743356150387e-5, relative_change = 1.4154460632929788e-10 Iter 120: T = 801.2884534370354 K, F = -5.560855826924893e-6, relative_change = 5.919563380398782e-11 Iter 125: T = 801.2884532921572 K, F = -2.325615400922132e-6, relative_change = 2.475631126666727e-11 Iter 130: T = 801.2884532315676 K, F = -9.726007990096264e-7, relative_change = 1.0353392103274283e-11 Iter 135: T = 801.2884532062283 K, F = -4.0675437218418153e-7, relative_change = 4.329923962499636e-12 Iter 140: T = 801.2884531956311 K, F = -1.7011103348174572e-7, relative_change = 1.8108418509415444e-12 Iter 145: T = 801.2884531911991 K, F = -7.114225097915039e-8, relative_change = 7.573134017814865e-13 Iter 150: T = 801.2884531893457 K, F = -2.975270674276942e-8, relative_change = 3.167192947328207e-13 Converged in 153 iterations to T = 801.288453188803 K Iter 1: T = 967.2733487961547 K, F = -7456.798607878297, relative_change = 0.03272665120384538 Iter 2: T = 936.6197590283593 K, F = -6321.004165431741, relative_change = 0.03169072093834282 Iter 3: T = 908.0079984631233 K, F = -5356.70529929235, relative_change = 0.03054789341078774 Iter 5: T = 856.7724958568283 K, F = -3843.2958666268664, relative_change = 0.0279464786194435 Iter 10: T = 761.4226154726848 K, F = -1664.3158764776538, relative_change = 0.02003848482367837 Iter 15: T = 705.5359839891615 K, F = -712.6367653905191, relative_change = 0.012024053231427745 Iter 20: T = 676.7674625144997 K, F = -302.05614162470516, relative_change = 0.006163807344361888 Iter 25: T = 663.3439565662094 K, F = -127.16396145669732, relative_change = 0.0028490850202821396 Iter 30: T = 657.432607450841 K, F = -53.341635858550106, relative_change = 0.0012466483574854498 Iter 35: T = 654.9032909219765 K, F = -22.337214157887395, relative_change = 0.0005316730179023372 Iter 40: T = 653.835091369537 K, F = -9.346865058120075, relative_change = 0.00022420798905267798 Iter 45: T = 653.3865047191027 K, F = -3.909882125115812, relative_change = 9.409506414657613e-5 Iter 50: T = 653.1985739479292 K, F = -1.6353192966635115, relative_change = 3.9409449173728406e-5 Iter 55: T = 653.1199217757661 K, F = -0.6839380605007597, relative_change = 1.6491628054379396e-5 Iter 60: T = 653.087018466769 K, F = -0.28603596470464965, relative_change = 6.898768408625694e-6 Iter 65: T = 653.0732561545564 K, F = -0.11962451358623266, relative_change = 2.885457484399394e-6 Iter 70: T = 653.0675002841342 K, F = -0.05002855012148344, relative_change = 1.2067870330677477e-6 Iter 75: T = 653.0650930566676 K, F = -0.020922563346071676, relative_change = 5.047022388298143e-7 Iter 80: T = 653.0640863159973 K, F = -0.008750070443223845, relative_change = 2.1107416342384196e-7 Iter 85: T = 653.0636652833829 K, F = -0.0036593847579046157, relative_change = 8.827402616776253e-8 Iter 90: T = 653.063489202228 K, F = -0.0015303985489844019, relative_change = 3.691730274800672e-8 Iter 95: T = 653.0634155629358 K, F = -0.000640030973748984, relative_change = 1.5439265756333118e-8 Iter 100: T = 653.0633847660956 K, F = -0.0002676686007312967, relative_change = 6.4568868674528614e-9 Iter 105: T = 653.0633718864877 K, F = -0.00011194220587090742, relative_change = 2.700347462851075e-9 Iter 110: T = 653.0633665000817 K, F = -4.681556702007539e-5, relative_change = 1.1293175938898927e-9 Iter 115: T = 653.0633642474223 K, F = -1.957882970626823e-5, relative_change = 4.722941240612632e-10 Iter 120: T = 653.0633633053332 K, F = -8.18810003661019e-6, relative_change = 1.9751903556518754e-10 Iter 125: T = 653.0633629113403 K, F = -3.4243613950546425e-6, relative_change = 8.260482396361199e-11 Iter 130: T = 653.0633627465678 K, F = -1.43210855269027e-6, relative_change = 3.4546317221281806e-11 Iter 135: T = 653.063362677658 K, F = -5.989251567473097e-7, relative_change = 1.4447688639471328e-11 Iter 140: T = 653.063362648839 K, F = -2.504772267930555e-7, relative_change = 6.042185645361735e-12 Iter 145: T = 653.0633626367866 K, F = -1.0475246159380447e-7, relative_change = 2.5269116395037993e-12 Iter 150: T = 653.0633626317461 K, F = -4.3809299465902285e-8, relative_change = 1.0567983516438092e-12 Iter 155: T = 653.0633626296383 K, F = -1.8322629580236338e-8, relative_change = 4.41991197634701e-13 Converged in 159 iterations to T = 653.0633626288774 K Iter 1: T = 970.3044408522264 K, F = -6766.161399589421, relative_change = 0.029695559147773526 Iter 2: T = 942.7724252509765 K, F = -5730.843434723944, relative_change = 0.028374615679454505 Iter 3: T = 917.3594325678829 K, F = -4852.196577183999, relative_change = 0.026955596072221175 Iter 5: T = 872.6757277518026 K, F = -3474.2592270497353, relative_change = 0.023867817054074605 Iter 10: T = 793.3147957834906 K, F = -1495.5169888643795, relative_change = 0.015562071325408404 Iter 15: T = 750.0359786788532 K, F = -636.6472812550014, relative_change = 0.00853055360826625 Iter 20: T = 729.0137768776941 K, F = -268.74358663243606, relative_change = 0.004107017361790839 Iter 25: T = 719.5482904158104 K, F = -112.88354145783862, relative_change = 0.001834331549977719 Iter 30: T = 715.4549650752386 K, F = -47.30020394576708, relative_change = 0.0007896526477699072 Iter 35: T = 713.7180554076048 K, F = -19.797812784462735, relative_change = 0.0003343515521953959 Iter 40: T = 712.9871652841061 K, F = -8.282562969562083, relative_change = 0.00014056174744338142 Iter 45: T = 712.6807036040968 K, F = -3.464372898313678, relative_change = 5.8913603695823213e-5 Iter 50: T = 712.5523980272144 K, F = -1.448930808858715, relative_change = 2.4661008042845903e-5 Iter 55: T = 712.4987146313722 K, F = -0.6059756919308017, relative_change = 1.0317492376934573e-5 Iter 60: T = 712.4762593105633 K, F = -0.25342898720786566, relative_change = 4.315592280229511e-6 Iter 65: T = 712.4668674777747 K, F = -0.10598750410288793, relative_change = 1.8049535969310445e-6 Iter 70: T = 712.4629395700421 K, F = -0.04432532306128856, relative_change = 7.548743790077097e-7 Iter 75: T = 712.4612968491888 K, F = -0.01853739398962584, relative_change = 3.157011934950716e-7 Iter 80: T = 712.4606098396991 K, F = -0.007752562089044512, relative_change = 1.320306587916359e-7 Iter 85: T = 712.4603225234246 K, F = -0.003242214494637685, relative_change = 5.521691186322488e-8 Iter 90: T = 712.4602023642046 K, F = -0.0013559329007670762, relative_change = 2.3092391856760768e-8 Iter 95: T = 712.4601521121623 K, F = -0.0005670673449651442, relative_change = 9.657517513743632e-9 Iter 100: T = 712.4601310961544 K, F = -0.00023715433804083474, relative_change = 4.0388897634195275e-9 Iter 105: T = 712.4601223070082 K, F = -9.918077587889318e-5, relative_change = 1.6891120241044885e-9 Iter 110: T = 712.4601186312823 K, F = -4.147858639802493e-5, relative_change = 7.064068629014257e-10 Iter 115: T = 712.4601170940497 K, F = -1.734683871879028e-5, relative_change = 2.954277643141517e-10 Iter 120: T = 712.4601164511607 K, F = -7.254655510990915e-6, relative_change = 1.2355142642604812e-10 Iter 125: T = 712.4601161822969 K, F = -3.0339846799343206e-6, relative_change = 5.167070098177133e-11 Iter 130: T = 712.4601160698548 K, F = -1.268849724400667e-6, relative_change = 2.1609322941931753e-11 Iter 135: T = 712.4601160228302 K, F = -5.306478777500345e-7, relative_change = 9.037273005494044e-12 Iter 140: T = 712.4601160031639 K, F = -2.219234203071352e-7, relative_change = 3.7794978930207005e-12 Iter 145: T = 712.4601159949392 K, F = -9.281137913763615e-8, relative_change = 1.5806371920225987e-12 Iter 150: T = 712.4601159914995 K, F = -3.881399157634746e-8, relative_change = 6.610271200350944e-13 Iter 155: T = 712.4601159900611 K, F = -1.623252698923494e-8, relative_change = 2.7645032450689285e-13 Converged in 157 iterations to T = 712.4601159897567 K Iter 1: T = 964.3066401246351 K, F = -8132.766000752496, relative_change = 0.03569335987536482 Iter 2: T = 930.5377342195471 K, F = -6899.539613098636, relative_change = 0.03501884618436667 Iter 3: T = 898.6622740522151 K, F = -5852.250688324602, relative_change = 0.03425488187651656 Iter 5: T = 840.4786499887252 K, F = -4207.734048914988, relative_change = 0.03243301260928594 Iter 10: T = 726.1756848544418 K, F = -1835.092652474362, relative_change = 0.02605626990887163 Iter 15: T = 652.376057254164 K, F = -792.4309603662183, relative_change = 0.017861301732054257 Iter 20: T = 610.6087805711447 K, F = -338.3336527531424, relative_change = 0.01024772385419338 Iter 25: T = 589.7304309660525 K, F = -143.1031829420505, relative_change = 0.005086176649404959 Iter 30: T = 580.1679416184394 K, F = -60.17375040637709, relative_change = 0.0023087894477232525 Iter 35: T = 575.9972900801669 K, F = -25.22658379362516, relative_change = 0.0010014759859330166 Iter 40: T = 574.2207162809987 K, F = -10.56109911953099, relative_change = 0.0004254588568782598 Iter 45: T = 573.4718825112553 K, F = -4.418734526198869, relative_change = 0.00017911863356290483 Iter 50: T = 573.1576737314027 K, F = -1.8483117083594411, relative_change = 7.511913742715956e-5 Iter 55: T = 573.0260853190022 K, F = -0.7730463653005561, relative_change = 3.145252791726152e-5 Iter 60: T = 572.9710214660471 K, F = -0.32330778516805125, relative_change = 1.3160271555798321e-5 Iter 65: T = 572.947987501179 K, F = -0.13521302510097338, relative_change = 5.504911438146984e-6 Iter 70: T = 572.9383534414224 K, F = -0.05654802518649901, relative_change = 2.3024171772006987e-6 Iter 75: T = 572.9343241910445 K, F = -0.023649116005033444, relative_change = 9.6293290230278e-7 Iter 80: T = 572.9326390804139 K, F = -0.009890352631779398, relative_change = 4.027160812930011e-7 Iter 85: T = 572.931934341776 K, F = -0.004136265315969112, relative_change = 1.6842173137063626e-7 Iter 90: T = 572.9316396107434 K, F = -0.0017298358543836878, relative_change = 7.043616423546461e-8 Iter 95: T = 572.9315163505454 K, F = -0.0007234380657675787, relative_change = 2.9457277392953503e-8 Iter 100: T = 572.9314648016303 K, F = -0.00030255044737015346, relative_change = 1.231939082682786e-8 Iter 105: T = 572.9314432432536 K, F = -0.00012653021210273785, relative_change = 5.152117364523996e-9 Iter 110: T = 572.9314342272821 K, F = -5.291644570915022e-5, relative_change = 2.15467716920646e-9 Iter 115: T = 572.931430456695 K, F = -2.2130289425104088e-5, relative_change = 9.011117475338183e-10 Iter 120: T = 572.9314288797906 K, F = -9.25515180077996e-6, relative_change = 3.7685571851194487e-10 Iter 125: T = 572.9314282203102 K, F = -3.870614875389755e-6, relative_change = 1.576055573522539e-10 Iter 130: T = 572.9314279445076 K, F = -1.6187375503906587e-6, relative_change = 6.591253396021512e-11 Iter 135: T = 572.9314278291637 K, F = -6.769748560064848e-7, relative_change = 2.7565387742280266e-11 Iter 140: T = 572.9314277809254 K, F = -2.831189813701229e-7, relative_change = 1.152817483921503e-11 Iter 145: T = 572.9314277607517 K, F = -1.1840405211849259e-7, relative_change = 4.821233137095408e-12 Iter 150: T = 572.9314277523148 K, F = -4.951795262719827e-8, relative_change = 2.0162958094136036e-12 Iter 155: T = 572.9314277487863 K, F = -2.0709038262012314e-8, relative_change = 8.432405794372646e-13 Iter 160: T = 572.9314277473106 K, F = -8.660028916196438e-9, relative_change = 3.5262322223441155e-13 Converged in 163 iterations to T = 572.9314277468786 K Iter 1: T = 966.4500761018636 K, F = -7644.382074407021, relative_change = 0.033549923898136436 Iter 2: T = 934.9379771412767 K, F = -6481.459867202787, relative_change = 0.03260602874355357 Iter 3: T = 905.4340166640262 K, F = -5494.046050221217, relative_change = 0.03155713127352426 Iter 5: T = 852.3262753116173 K, F = -3944.0983759886562, relative_change = 0.02913909660295539 Iter 10: T = 752.0898889568474 K, F = -1711.09664977808, relative_change = 0.0215133747626325 Iter 15: T = 691.9317852328463 K, F = -734.1343737565658, relative_change = 0.013319772937458525 Iter 20: T = 660.3000065484284 K, F = -311.65634763774466, relative_change = 0.006994711105261313 Iter 25: T = 645.3294030003988 K, F = -131.32781240567417, relative_change = 0.0032792105798827324 Iter 30: T = 638.6862676166794 K, F = -55.11373122946031, relative_change = 0.0014449008011509757 Iter 35: T = 635.8336011242501 K, F = -23.084116833056903, relative_change = 0.0006181641745200981 Iter 40: T = 634.6269302195117 K, F = -9.660274998528056, relative_change = 0.0002610356926283724 Iter 45: T = 634.1198490860949 K, F = -4.041139450127186, relative_change = 0.00010961389826361106 Iter 50: T = 633.9073517786021 K, F = -1.690245318604436, relative_change = 4.592025468727555e-5 Iter 55: T = 633.8184073997378 K, F = -0.7069145017156788, relative_change = 1.9218147966931583e-5 Iter 60: T = 633.781196578909 K, F = -0.2956459887759991, relative_change = 8.039666245881605e-6 Iter 65: T = 633.7656322556945 K, F = -0.1236437157385692, relative_change = 3.362705653977023e-6 Iter 70: T = 633.7591226650992 K, F = -0.05170945913148467, relative_change = 1.4063973482133135e-6 Iter 75: T = 633.7564002057726 K, F = -0.021625544933228047, relative_change = 5.881850553510887e-7 Iter 80: T = 633.7552616283859 K, F = -0.00904406667709512, relative_change = 2.4598826878762503e-7 Iter 85: T = 633.7547854595596 K, F = -0.0037823376583363544, relative_change = 1.0287562597557716e-7 Iter 90: T = 633.754586319691 K, F = -0.001581818947935465, relative_change = 4.302388432650364e-8 Iter 95: T = 633.7545030369536 K, F = -0.0006615356043105924, relative_change = 1.799311429544176e-8 Iter 100: T = 633.7544682071066 K, F = -0.00027666209606935777, relative_change = 7.524937412100914e-9 Iter 105: T = 633.7544536408466 K, F = -0.00011570339431415944, relative_change = 3.1470190829371155e-9 Iter 110: T = 633.7544475490622 K, F = -4.838854062361175e-5, relative_change = 1.3161210058661071e-9 Iter 115: T = 633.7544450014053 K, F = -2.023666555228676e-5, relative_change = 5.504175325097587e-10 Iter 120: T = 633.7544439359448 K, F = -8.463215424303616e-6, relative_change = 2.301911931189192e-10 Iter 125: T = 633.7544434903564 K, F = -3.5394177247405345e-6, relative_change = 9.626870531877135e-11 Iter 130: T = 633.754443304006 K, F = -1.4802270071889723e-6, relative_change = 4.0260728979057764e-11 Iter 135: T = 633.7544432260721 K, F = -6.190492411461967e-7, relative_change = 1.6837534794342814e-11 Iter 140: T = 633.7544431934792 K, F = -2.588939774783583e-7, relative_change = 7.0416633527146674e-12 Iter 145: T = 633.7544431798484 K, F = -1.0827278423830577e-7, relative_change = 2.9449139928682363e-12 Iter 150: T = 633.7544431741479 K, F = -4.5281662197638184e-8, relative_change = 1.2316169900865076e-12 Iter 155: T = 633.754443171764 K, F = -1.8938272783319832e-8, relative_change = 5.151025247581107e-13 Converged in 160 iterations to T = 633.7544431707669 K Iter 1: T = 963.5270060378206 K, F = -8310.406369056685, relative_change = 0.03647299396217945 Iter 2: T = 928.9294169473247 K, F = -7051.724150361448, relative_change = 0.03590723339739766 Iter 3: T = 896.17354277092 K, F = -5982.768131792503, relative_change = 0.03526196240404148 Iter 5: T = 836.0676489662238 K, F = -4304.065390504619, relative_change = 0.033703537887768004 Iter 10: T = 716.0927607625763 K, F = -1881.0741142816828, relative_change = 0.02801840181909362 Iter 15: T = 636.1310338048597 K, F = -814.6750624544374, relative_change = 0.020124576710760532 Iter 20: T = 589.1997407435749 K, F = -348.8722585779173, relative_change = 0.012097329601364316 Iter 25: T = 565.0122751747524 K, F = -147.88487230007968, relative_change = 0.006209699008171664 Iter 30: T = 553.7174846769246 K, F = -62.26187591869334, relative_change = 0.0028725164105845983 Iter 35: T = 548.7415047074531 K, F = -26.117724126400898, relative_change = 0.0012573752799010282 Iter 40: T = 546.6119966522745 K, F = -10.937117694692228, relative_change = 0.000536338549004203 Iter 45: T = 545.7125706209546 K, F = -4.576589450543195, relative_change = 0.00022619193933073005 Iter 50: T = 545.3348460866358 K, F = -1.9144346184074443, relative_change = 9.493061366616128e-5 Iter 55: T = 545.1765998437746 K, F = -0.8007184047716913, relative_change = 3.975991493391349e-5 Iter 60: T = 545.1103707168661 K, F = -0.3348838310601781, relative_change = 1.6638377573979175e-5 Iter 65: T = 545.082664383451 K, F = -0.14005483790711307, relative_change = 6.960172432186921e-6 Iter 70: T = 545.0710757726755 K, F = -0.058573029233789736, relative_change = 2.91114291420944e-6 Iter 75: T = 545.06622901637 K, F = -0.02449601439352242, relative_change = 1.2175299547090576e-6 Iter 80: T = 545.0642019993678 K, F = -0.010244538714885232, relative_change = 5.091952263041239e-7 Iter 85: T = 545.0633542686684 K, F = -0.004284390700306312, relative_change = 2.1295321405426736e-7 Iter 90: T = 545.06299973617 K, F = -0.0017917837529667635, relative_change = 8.905987277037957e-8 Iter 95: T = 545.062851466201 K, F = -0.0007493454328657556, relative_change = 3.7245954055485026e-8 Iter 100: T = 545.0627894578865 K, F = -0.0003133852208315746, relative_change = 1.5576711816336713e-8 Iter 105: T = 545.0627635252615 K, F = -0.00013106144418054133, relative_change = 6.514368492665552e-9 Iter 110: T = 545.0627526799268 K, F = -5.481146204713849e-5, relative_change = 2.7243870037702655e-9 Iter 115: T = 545.062748144278 K, F = -2.292280781335254e-5, relative_change = 1.1393712161335432e-9 Iter 120: T = 545.0627462474154 K, F = -9.586591563026658e-6, relative_change = 4.76498636539091e-10 Iter 125: T = 545.0627454541249 K, F = -4.009227234591517e-6, relative_change = 1.9927742947381926e-10 Iter 130: T = 545.0627451223614 K, F = -1.6767073561241297e-6, relative_change = 8.334023324835115e-11 Iter 135: T = 545.0627449836139 K, F = -7.012195890609974e-7, relative_change = 3.48539081480315e-11 Iter 140: T = 545.062744925588 K, F = -2.9325872491492433e-7, relative_change = 1.4576336466385966e-11 Iter 145: T = 545.0627449013208 K, F = -1.2264404347650526e-7, relative_change = 6.095985189218683e-12 Iter 150: T = 545.0627448911721 K, F = -5.12917263384427e-8, relative_change = 2.5494397873160444e-12 Iter 155: T = 545.0627448869277 K, F = -2.14509470464197e-8, relative_change = 1.0662128530618646e-12 Iter 160: T = 545.0627448851526 K, F = -8.970807346964094e-9, relative_change = 4.458912734773471e-13 Converged in 164 iterations to T = 545.062744884512 K Iter 1: T = 976.4705429923935 K, F = -5361.20916147499, relative_change = 0.023529457007606495 Iter 2: T = 955.1020671607415 K, F = -4533.2145470767055, relative_change = 0.021883379877664616 Iter 3: T = 935.8026529076742 K, F = -3831.359950664981, relative_change = 0.020206651117863517 Iter 5: T = 902.9889599449643 K, F = -2733.0131464013416, relative_change = 0.01685450783916693 Iter 10: T = 848.9675220829123 K, F = -1165.3655841287177, relative_change = 0.009477083931700572 Iter 15: T = 822.3075908312871 K, F = -492.465906451606, relative_change = 0.004639500400514001 Iter 20: T = 810.1914117052607 K, F = -206.97657920828013, relative_change = 0.002090460735248468 Iter 25: T = 804.9276013118748 K, F = -86.7504481403078, relative_change = 0.0009036055131084599 Iter 30: T = 802.6893684522807 K, F = -36.31431276251598, relative_change = 0.0003832885968406576 Iter 35: T = 801.7466735910625 K, F = -15.193139728733716, relative_change = 0.00016125844175244697 Iter 40: T = 801.3512513379442 K, F = -6.355017815242302, relative_change = 6.76100492616959e-5 Iter 45: T = 801.1856742442441 K, F = -2.6579310683119965, relative_change = 2.8305145734738755e-5 Iter 50: T = 801.116391678248 K, F = -1.1116112020424849, relative_change = 1.1842772857271773e-5 Iter 55: T = 801.0874105359795 K, F = -0.46489479915157095, relative_change = 4.953703119852957e-6 Iter 60: T = 801.0752891658606 K, F = -0.19442555740947187, relative_change = 2.071857720854218e-6 Iter 65: T = 801.0702196698907 K, F = -0.08131126500646513, relative_change = 8.665036146656332e-7 Iter 70: T = 801.0680995121611 K, F = -0.034005372685011026, relative_change = 3.623870525128314e-7 Iter 75: T = 801.0672128309366 K, F = -0.014221458313951052, relative_change = 1.5155544887094757e-7 Iter 80: T = 801.0668420092202 K, F = -0.005947584641795345, relative_change = 6.338244833106058e-8 Iter 85: T = 801.0666869269679 K, F = -0.00248735108651732, relative_change = 2.6507322978323362e-8 Iter 90: T = 801.0666220696864 K, F = -0.0010402399578074428, relative_change = 1.1085683607546265e-8 Iter 95: T = 801.0665949455912 K, F = -0.0004350407781065213, relative_change = 4.636166072811903e-9 Iter 100: T = 801.0665836019697 K, F = -0.00018193925132981015, relative_change = 1.938900175910471e-9 Iter 105: T = 801.0665788579315 K, F = -7.608916891665984e-5, relative_change = 8.108712445442944e-10 Iter 110: T = 801.066576873918 K, F = -3.182139901003467e-5, relative_change = 3.3911604095644827e-10 Iter 115: T = 801.0665760441799 K, F = -1.3308090558772356e-5, relative_change = 1.418223945406734e-10 Iter 120: T = 801.0665756971736 K, F = -5.565603283685938e-6, relative_change = 5.931182861266633e-11 Iter 125: T = 801.0665755520512 K, F = -2.3276009751826976e-6, relative_change = 2.4804906710196073e-11 Iter 130: T = 801.0665754913592 K, F = -9.734281930517952e-7, relative_change = 1.0373683369220715e-11 Iter 135: T = 801.0665754659773 K, F = -4.07100455790399e-7, relative_change = 4.338410638418228e-12 Iter 140: T = 801.0665754553622 K, F = -1.702518234170114e-7, relative_change = 1.8143490420196313e-12 Iter 145: T = 801.0665754509229 K, F = -7.120240186342386e-8, relative_change = 7.587936917267718e-13 Iter 150: T = 801.0665754490662 K, F = -2.9776266119441175e-8, relative_change = 3.173213585996359e-13 Converged in 153 iterations to T = 801.0665754485227 K Iter 1: T = 973.4632826162991 K, F = -6046.41629881121, relative_change = 0.02653671738370084 Iter 2: T = 949.1196591906588 K, F = -5116.816175099096, relative_change = 0.025007233308496194 Iter 3: T = 926.9021169717428 K, F = -4328.322315156958, relative_change = 0.023408578680017604 Iter 5: T = 888.5248161581793 K, F = -3093.004056950949, relative_change = 0.020081342358999093 Iter 10: T = 823.1410643657717 K, F = -1324.4585867853712, relative_change = 0.01206076324021941 Iter 15: T = 789.4631421550293 K, F = -561.4062527077299, relative_change = 0.006186859682124177 Iter 20: T = 773.7425964343279 K, F = -236.35507301671822, relative_change = 0.002860867503281295 Iter 25: T = 766.8182256415107 K, F = -99.14544389153764, relative_change = 0.00125204465288058 Iter 30: T = 763.8551692266423 K, F = -41.518144386131375, relative_change = 0.0005340204633651785 Iter 35: T = 762.6037349761451 K, F = -17.37304627446385, relative_change = 0.00022520627661619743 Iter 40: T = 762.0781897842985 K, F = -7.26731733441644, relative_change = 9.451550966623902e-5 Iter 45: T = 761.8580162945865 K, F = -3.0395774458389235, relative_change = 3.9585804430444906e-5 Iter 50: T = 761.7658697016751 K, F = -1.2712398687902409, relative_change = 1.6565473158732096e-5 Iter 55: T = 761.7273210904929 K, F = -0.5316568435572333, relative_change = 6.929667291022031e-6 Iter 60: T = 761.711197534991 K, F = -0.22234684171518282, relative_change = 2.898382562185424e-6 Iter 65: T = 761.7044541101073 K, F = -0.09298838451161962, relative_change = 1.2121929441541541e-6 Iter 70: T = 761.7016338660698 K, F = -0.03888890187514904, relative_change = 5.069631410204692e-7 Iter 75: T = 761.7004543952752 K, F = -0.01626381175460112, relative_change = 2.12019714692207e-7 Iter 80: T = 761.6999611245692 K, F = -0.006801721802869309, relative_change = 8.866946963429826e-8 Iter 85: T = 761.6997548325307 K, F = -0.002844561547580726, relative_change = 3.7082682343839505e-8 Iter 90: T = 761.6996685586776 K, F = -0.0011896296547594387, relative_change = 1.550842955808862e-8 Iter 95: T = 761.6996324779116 K, F = -0.000497517337162301, relative_change = 6.485812022744819e-9 Iter 100: T = 761.6996173885024 K, F = -0.00020806769273185033, relative_change = 2.7124443100742793e-9 Iter 105: T = 761.699611077931 K, F = -8.701639375641168e-5, relative_change = 1.1343766460766542e-9 Iter 110: T = 761.6996084387746 K, F = -3.639129463239854e-5, relative_change = 4.744098629053472e-10 Iter 115: T = 761.699607335048 K, F = -1.5219274723254905e-5, relative_change = 1.9840388086559426e-10 Iter 120: T = 761.6996068734562 K, F = -6.364881763087915e-6, relative_change = 8.29748637601846e-11 Iter 125: T = 761.699606680413 K, F = -2.6618692868796145e-6, relative_change = 3.470107535597273e-11 Iter 130: T = 761.6996065996801 K, F = -1.1132264422508698e-6, relative_change = 1.451241609447608e-11 Iter 135: T = 761.6996065659166 K, F = -4.655638461414924e-7, relative_change = 6.069255992082623e-12 Iter 140: T = 761.6996065517964 K, F = -1.94704346978547e-7, relative_change = 2.5382351625500597e-12 Iter 145: T = 761.699606545891 K, F = -8.142640328667738e-8, relative_change = 1.061503572966595e-12 Iter 150: T = 761.6996065434215 K, F = -3.4054901898450396e-8, relative_change = 4.439518213216304e-13 Converged in 154 iterations to T = 761.69960654253 K Iter 1: T = 964.5717557204841 K, F = -8072.359160048264, relative_change = 0.03542824427951582 Iter 2: T = 931.0836913822119 K, F = -6847.803138813816, relative_change = 0.03471806440492181 Iter 3: T = 899.5054254638407 K, F = -5807.895773342793, relative_change = 0.033915604161740526 Iter 5: T = 841.9659905609632 K, F = -4175.030547737394, relative_change = 0.03201007371805435 Iter 10: T = 729.5192601815236 K, F = -1819.5697269691145, relative_change = 0.025430746582731374 Iter 15: T = 657.6470193440628 K, F = -785.0082178489313, relative_change = 0.017181119191939834 Iter 20: T = 617.4138594362563 K, F = -334.86980507544155, relative_change = 0.00972362276699712 Iter 25: T = 597.4769925527435 K, F = -141.55136538886077, relative_change = 0.004781044821274906 Iter 30: T = 588.393971198427 K, F = -59.5012724665341, relative_change = 0.002159289415540971 Iter 35: T = 584.4430372400021 K, F = -24.940690680010164, relative_change = 0.0009343842238103794 Iter 40: T = 582.7621136883478 K, F = -10.440674703091998, relative_change = 0.00039653618979933577 Iter 45: T = 582.0539733985607 K, F = -4.368217473003693, relative_change = 0.0001668665507977048 Iter 50: T = 581.7569066308 K, F = -1.8271576445227833, relative_change = 6.996744724321844e-5 Iter 55: T = 581.6325090086577 K, F = -0.7641947006445926, relative_change = 2.9293151881763787e-5 Iter 60: T = 581.580456256522 K, F = -0.3196050753465892, relative_change = 1.2256339469931992e-5 Iter 65: T = 581.5586822402785 K, F = -0.13366436096798898, relative_change = 5.126726506240272e-6 Iter 70: T = 581.549575223397 K, F = -0.05590032969071157, relative_change = 2.1442295213504717e-6 Iter 75: T = 581.5457664091678 K, F = -0.023378237526118895, relative_change = 8.967723521256185e-7 Iter 80: T = 581.5441734911569 K, F = -0.00977706723259092, relative_change = 3.750461474182407e-7 Iter 85: T = 581.5435073092016 K, F = -0.004088887870510705, relative_change = 1.5684969430372667e-7 Iter 90: T = 581.543228703144 K, F = -0.0017100220168265734, relative_change = 6.559657560940656e-8 Iter 95: T = 581.5431121866222 K, F = -0.0007151516778073908, relative_change = 2.7433299333010316e-8 Iter 100: T = 581.5430634579966 K, F = -0.00029908498123987215, relative_change = 1.1472938320805917e-8 Iter 105: T = 581.5430430790991 K, F = -0.00012508091244600728, relative_change = 4.798120678179612e-9 Iter 110: T = 581.5430345564 K, F = -5.2310331752958295e-5, relative_change = 2.0066315241103158e-9 Iter 115: T = 581.5430309921054 K, F = -2.1876806192089315e-5, relative_change = 8.391973203337458e-10 Iter 120: T = 581.5430295014747 K, F = -9.149141132147598e-6, relative_change = 3.509623273038018e-10 Iter 125: T = 581.5430288780752 K, F = -3.826280790597547e-6, relative_change = 1.467766644588007e-10 Iter 130: T = 581.543028617362 K, F = -1.600195598194798e-6, relative_change = 6.138372632326136e-11 Iter 135: T = 581.5430285083287 K, F = -6.692204904679144e-7, relative_change = 2.5671391372286935e-11 Iter 140: T = 581.5430284627297 K, F = -2.798769329626083e-7, relative_change = 1.0736118195987953e-11 Iter 145: T = 581.5430284436596 K, F = -1.1704777813648093e-7, relative_change = 4.489969100151275e-12 Iter 150: T = 581.5430284356843 K, F = -4.8950239084355474e-8, relative_change = 1.8777380010737847e-12 Iter 155: T = 581.5430284323489 K, F = -2.047170161167955e-8, relative_change = 7.852973301662458e-13 Iter 160: T = 581.543028430954 K, F = -8.561298725506816e-9, relative_change = 3.2841261364112757e-13 Converged in 163 iterations to T = 581.5430284305456 K Iter 1: T = 966.4870489739492 K, F = -7635.957770332042, relative_change = 0.033512951026050855 Iter 2: T = 935.0136037880081 K, F = -6474.252375434903, relative_change = 0.03256478730817365 Iter 3: T = 905.5499309399311 K, F = -5487.875256154636, relative_change = 0.031511491093510605 Iter 5: T = 852.5271646068385 K, F = -3939.5660163571974, relative_change = 0.029084706537483213 Iter 10: T = 752.5158904641888 K, F = -1708.9863016370894, relative_change = 0.021444289230389522 Iter 15: T = 692.5594025193561 K, F = -733.1595330187763, relative_change = 0.013257297130903446 Iter 20: T = 661.0657944010958 K, F = -311.2187834730762, relative_change = 0.006953734402040722 Iter 25: T = 646.1709814440617 K, F = -131.13737848224494, relative_change = 0.0032577142038694817 Iter 30: T = 639.5639910728006 K, F = -55.032537914207865, relative_change = 0.0014349271496609834 Iter 35: T = 636.7273582324431 K, F = -23.04986678732138, relative_change = 0.0006138000091353635 Iter 40: T = 635.527565461732 K, F = -9.645897969391935, relative_change = 0.00025917504774456595 Iter 45: T = 635.0233920149902 K, F = -4.035117352064994, relative_change = 0.0001088294122697112 Iter 50: T = 634.8121162616295 K, F = -1.6877251416161199, relative_change = 4.559105407352648e-5 Iter 55: T = 634.7236837230382 K, F = -0.7058602418631434, relative_change = 1.9080275853399907e-5 Iter 60: T = 634.6866871302846 K, F = -0.2952050336329971, relative_change = 7.981972061908956e-6 Iter 65: T = 634.6712124296353 K, F = -0.12345929409343315, relative_change = 3.3385712332558106e-6 Iter 70: T = 634.6647403254857 K, F = -0.051632330233376156, relative_change = 1.3963029913524784e-6 Iter 75: T = 634.6620335443513 K, F = -0.02159328843344771, relative_change = 5.839632904134813e-7 Iter 80: T = 634.6609015239316 K, F = -0.009030576575220661, relative_change = 2.4422264401201385e-7 Iter 85: T = 634.6604280973351 K, F = -0.0037766959286869572, relative_change = 1.021372149804985e-7 Iter 90: T = 634.6602301043046 K, F = -0.0015794595075762086, relative_change = 4.27150710386804e-8 Iter 95: T = 634.6601473011893 K, F = -0.0006605488577269836, relative_change = 1.7863964712785563e-8 Iter 100: T = 634.6601126719263 K, F = -0.00027624942640880334, relative_change = 7.470925472872624e-9 Iter 105: T = 634.6600981895529 K, F = -0.0001155308097833263, relative_change = 3.1244306086113087e-9 Iter 110: T = 634.660092132851 K, F = -4.831636415830731e-5, relative_change = 1.3066742474592824e-9 Iter 115: T = 634.6600895998658 K, F = -2.0206480653262027e-5, relative_change = 5.464667895248973e-10 Iter 120: T = 634.6600885405413 K, F = -8.450591844899602e-6, relative_change = 2.2853894802406466e-10 Iter 125: T = 634.6600880975191 K, F = -3.5341392502497015e-6, relative_change = 9.557773987089198e-11 Iter 130: T = 634.6600879122419 K, F = -1.4780192658103708e-6, relative_change = 3.997175298006513e-11 Iter 135: T = 634.6600878347567 K, F = -6.181248057290922e-7, relative_change = 1.6716650879560102e-11 Iter 140: T = 634.6600878023515 K, F = -2.58507452943757e-7, relative_change = 6.991110535644053e-12 Iter 145: T = 634.6600877887993 K, F = -1.0811080819461694e-7, relative_change = 2.9237633254142995e-12 Iter 150: T = 634.6600877831316 K, F = -4.5213976784808096e-8, relative_change = 1.2227729061760743e-12 Iter 155: T = 634.6600877807613 K, F = -1.8908910381920663e-8, relative_change = 5.113751309861328e-13 Converged in 160 iterations to T = 634.66008777977 K Iter 1: T = 966.9276958278826 K, F = -7535.555965499921, relative_change = 0.033072304172117345 Iter 2: T = 935.9142174942269 K, F = -6388.363428786421, relative_change = 0.032074247606592776 Iter 3: T = 906.9291064813183 K, F = -5414.351838951587, relative_change = 0.030969837268325705 Iter 5: T = 854.9125835987631 K, F = -3885.5877179116696, relative_change = 0.02844252523209745 Iter 10: T = 757.5427383481754 K, F = -1683.9039273692426, relative_change = 0.020641907627361032 Iter 15: T = 699.9166549025814 K, F = -721.6104590880966, relative_change = 0.012544665751181072 Iter 20: T = 669.9981216201803 K, F = -306.05147703597225, relative_change = 0.006492935233880543 Iter 25: T = 655.9590873846247 K, F = -128.8933590785978, relative_change = 0.003018020726294304 Iter 30: T = 649.7580948270025 K, F = -54.07687419485464, relative_change = 0.0013241854759999017 Iter 35: T = 647.101110875866 K, F = -22.646950720726835, relative_change = 0.0005654353592148033 Iter 40: T = 645.9782988489335 K, F = -9.476806675572645, relative_change = 0.00023857201656750653 Iter 45: T = 645.5066530663872 K, F = -3.9642972252300575, relative_change = 0.00010014580067184852 Iter 50: T = 645.3090398331763 K, F = -1.6580889976884643, relative_change = 4.1947613482996815e-5 Iter 55: T = 645.2263315094805 K, F = -0.6934628401333406, relative_change = 1.755446536296469e-5 Iter 60: T = 645.1917306723453 K, F = -0.2900197297317174, relative_change = 7.343495529495447e-6 Iter 65: T = 645.1772582240304 K, F = -0.12129063966154707, relative_change = 3.0714889547425875e-6 Iter 70: T = 645.1712053295435 K, F = -0.05072535583434323, relative_change = 1.2845948368738158e-6 Iter 75: T = 645.1686738766517 K, F = -0.021213977897534153, relative_change = 5.372436547514259e-7 Iter 80: T = 645.1676151823033 K, F = -0.008871943853422104, relative_change = 2.2468359313785404e-7 Iter 85: T = 645.1671724218439 K, F = -0.0037103537380225315, relative_change = 9.396569086737468e-8 Iter 90: T = 645.1669872538104 K, F = -0.001551714395119419, relative_change = 3.9297631627785844e-8 Iter 95: T = 645.1669098142712 K, F = -0.0006489455184041093, relative_change = 1.6434748934796337e-8 Iter 100: T = 645.1668774281212 K, F = -0.00027139677014653696, relative_change = 6.873210028534525e-9 Iter 105: T = 645.1668638838448 K, F = -0.00011350137188909093, relative_change = 2.8744588414680055e-9 Iter 110: T = 645.1668582194665 K, F = -4.7467629735287176e-5, relative_change = 1.2021330791741773e-9 Iter 115: T = 645.1668558505555 K, F = -1.9851529024117465e-5, relative_change = 5.027464034404293e-10 Iter 120: T = 645.1668548598487 K, F = -8.302145096006353e-6, relative_change = 2.1025451557418683e-10 Iter 125: T = 645.1668544455233 K, F = -3.4720563086843015e-6, relative_change = 8.793095170209927e-11 Iter 130: T = 645.1668542722475 K, F = -1.452054730510799e-6, relative_change = 3.677375687175913e-11 Iter 135: T = 645.1668541997816 K, F = -6.072669643808482e-7, relative_change = 1.5379232784482505e-11 Iter 140: T = 645.1668541694755 K, F = -2.53967587016124e-7, relative_change = 6.43181149379675e-12 Iter 145: T = 645.166854156801 K, F = -1.0621218693440682e-7, relative_change = 2.689858075182368e-12 Iter 150: T = 645.1668541515004 K, F = -4.441889084327855e-8, relative_change = 1.124922814214322e-12 Iter 155: T = 645.1668541492837 K, F = -1.857731390941808e-8, relative_change = 4.704764987851918e-13 Converged in 160 iterations to T = 645.1668541483566 K Iter 1: T = 974.4563904660229 K, F = -5820.135730562229, relative_change = 0.025543609533977187 Iter 2: T = 951.1017132185553 K, F = -4923.98555326476, relative_change = 0.023966877816151866 Iter 3: T = 929.8608902446887 K, F = -4164.017102101736, relative_change = 0.02233286164734905 Iter 5: T = 893.3659637943824 K, F = -2973.8104076654413, relative_change = 0.018977653810193337 Iter 10: T = 831.9208070944326 K, F = -1271.5488485060246, relative_change = 0.011139357949566654 Iter 15: T = 800.7484662197082 K, F = -538.3867630582907, relative_change = 0.0056185811698096005 Iter 20: T = 786.3390403498403 K, F = -226.52061218263455, relative_change = 0.002573309389017722 Iter 25: T = 780.0246008384171 K, F = -94.9908612026651, relative_change = 0.0011209792135435986 Iter 30: T = 777.3289734262178 K, F = -39.77288473550746, relative_change = 0.0004771280731222178 Iter 35: T = 776.1916747846446 K, F = -16.641762733353456, relative_change = 0.00020103425328990817 Iter 40: T = 775.7142740844118 K, F = -6.961238999380578, relative_change = 8.433903675994835e-5 Iter 45: T = 775.5143079756809 K, F = -2.911528451782469, relative_change = 3.531799906030409e-5 Iter 50: T = 775.4306251383512 K, F = -1.2176806478327442, relative_change = 1.4778541258548965e-5 Iter 55: T = 775.3956184116704 K, F = -0.5092564069263563, relative_change = 6.181985939426972e-6 Iter 60: T = 775.3809765068053 K, F = -0.21297847875880582, relative_change = 2.585629402630276e-6 Iter 65: T = 775.3748527945386 K, F = -0.08907038251187482, relative_change = 1.0813846609851067e-6 Iter 70: T = 775.3722917337227 K, F = -0.03725033952236878, relative_change = 4.522555997861955e-7 Iter 75: T = 775.3712206585463 K, F = -0.015578544164089547, relative_change = 1.8914002565820074e-7 Iter 80: T = 775.3707727205498 K, F = -0.006515134493189856, relative_change = 7.910085061332578e-8 Iter 85: T = 775.370585387256 K, F = -0.0027247072751304113, relative_change = 3.3080961151038396e-8 Iter 90: T = 775.3705070421876 K, F = -0.0011395051617254515, relative_change = 1.3834860157429262e-8 Iter 95: T = 775.3704742773359 K, F = -0.0004765546748245475, relative_change = 5.7859049976367425e-9 Iter 100: T = 775.3704605746822 K, F = -0.00019930085805519582, relative_change = 2.419734793508897e-9 Iter 105: T = 775.3704548440685 K, F = -8.334999836190349e-5, relative_change = 1.0119620163225769e-9 Iter 110: T = 775.3704524474574 K, F = -3.4857965714230055e-5, relative_change = 4.2321461885384963e-10 Iter 115: T = 775.3704514451659 K, F = -1.4578017565325396e-5, relative_change = 1.7699340908489114e-10 Iter 120: T = 775.3704510259957 K, F = -6.096702355629091e-6, relative_change = 7.402077354075946e-11 Iter 125: T = 775.3704508506937 K, F = -2.549713613464455e-6, relative_change = 3.095637004567709e-11 Iter 130: T = 775.3704507773804 K, F = -1.0663216107875684e-6, relative_change = 1.2946334918473787e-11 Iter 135: T = 775.3704507467198 K, F = -4.459488351926666e-7, relative_change = 5.414316768587634e-12 Iter 140: T = 775.3704507338971 K, F = -1.8649921906810363e-7, relative_change = 2.2643087491689122e-12 Iter 145: T = 775.3704507285346 K, F = -7.799546719589046e-8, relative_change = 9.469520551101945e-13 Iter 150: T = 775.3704507262919 K, F = -3.2618420298113904e-8, relative_change = 3.960240414817323e-13 Converged in 154 iterations to T = 775.3704507254823 K Iter 1: T = 970.3088013278399 K, F = -6765.167861073019, relative_change = 0.029691198672160097 Iter 2: T = 942.7812322542683 K, F = -5729.995119844367, relative_change = 0.0283699055763494 Iter 3: T = 917.3727459788319 K, F = -4851.472091025007, relative_change = 0.0269505643580565 Iter 5: T = 872.6980990384062 K, F = -3473.7306449309203, relative_change = 0.023862280445296192 Iter 10: T = 793.3581735705193 K, F = -1495.2776871863437, relative_change = 0.015556529243171155 Iter 15: T = 750.0946953497679 K, F = -636.5409709810425, relative_change = 0.008526595380780282 Iter 20: T = 729.0813428177117 K, F = -268.6974899906997, relative_change = 0.004104827278000783 Iter 25: T = 719.620203946609 K, F = -112.86390996948218, relative_change = 0.0018332873291303105 Iter 30: T = 715.5288356780243 K, F = -47.29192565218752, relative_change = 0.0007891899750842816 Iter 35: T = 713.7927711299786 K, F = -19.79433825431834, relative_change = 0.00033415321559000745 Iter 40: T = 713.0622392978793 K, F = -8.281107661701427, relative_change = 0.00014047793054260764 Iter 45: T = 712.7559283229184 K, F = -3.4637638802479986, relative_change = 5.8878396513956666e-5 Iter 50: T = 712.6276859247708 K, F = -1.4486760416295166, relative_change = 2.4646256922060017e-5 Iter 55: T = 712.5740289777103 K, F = -0.605869133217978, relative_change = 1.031131854019821e-5 Iter 60: T = 712.5515847227699 K, F = -0.2533844209771451, relative_change = 4.3130094778862205e-6 Iter 65: T = 712.5421975186775 K, F = -0.10596886560502439, relative_change = 1.8038732929147118e-6 Iter 70: T = 712.5382715468638 K, F = -0.044317528155258024, relative_change = 7.544225575740792e-7 Iter 75: T = 712.53662963566 K, F = -0.018534134054845386, relative_change = 3.155122319196185e-7 Iter 80: T = 712.5359429647799 K, F = -0.007751198744146426, relative_change = 1.3195163203929884e-7 Iter 85: T = 712.5356557901166 K, F = -0.0032416443261515937, relative_change = 5.518386177826238e-8 Iter 90: T = 712.5355356901204 K, F = -0.0013556944492431056, relative_change = 2.3078569889448376e-8 Iter 95: T = 712.5354854628462 K, F = -0.0005669676216765174, relative_change = 9.651736997741186e-9 Iter 100: T = 712.5354644571966 K, F = -0.0002371126340371399, relative_change = 4.036472306864812e-9 Iter 105: T = 712.5354556723822 K, F = -9.916333461479354e-5, relative_change = 1.6881010122052147e-9 Iter 110: T = 712.5354519984679 K, F = -4.147129080012135e-5, relative_change = 7.059840208854107e-10 Iter 115: T = 712.535450461993 K, F = -1.7343789221468953e-5, relative_change = 2.9525095412837653e-10 Iter 120: T = 712.5354498194209 K, F = -7.253378475735595e-6, relative_change = 1.234774533675347e-10 Iter 125: T = 712.5354495506896 K, F = -3.033448403466643e-6, relative_change = 5.1639727019273295e-11 Iter 130: T = 712.5354494383029 K, F = -1.2686241550596833e-6, relative_change = 2.1596347256695738e-11 Iter 135: T = 712.5354493913014 K, F = -5.305519650278256e-7, relative_change = 9.031819575848047e-12 Iter 140: T = 712.535449371645 K, F = -2.2188391635147298e-7, relative_change = 3.777227550984896e-12 Iter 145: T = 712.5354493634243 K, F = -9.279410417839529e-8, relative_change = 1.5796748707807987e-12 Iter 150: T = 712.5354493599864 K, F = -3.880849386295182e-8, relative_change = 6.606540692683076e-13 Iter 155: T = 712.5354493585486 K, F = -1.6230134569639176e-8, relative_change = 2.7629272308718763e-13 Converged in 157 iterations to T = 712.5354493582443 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015333279019193434 Iteration 10: d = 1.1708552284024867e-5 Iteration 20: d = 1.171728846838347e-7 Iteration 30: d = 1.4692026585438427e-9 Iteration 40: d = 1.9610308244304072e-11 Iteration 50: d = 2.6868280442836545e-13 Iteration 60: d = 3.70933877143075e-15 Converged after 62 iterations. d = 1.6013362208073561e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.791774887914 Iteration 2: convergence error = 4828.97666403637 Iteration 3: convergence error = 1106.460050849897 Iteration 4: convergence error = 320.94207402102484 Iteration 5: convergence error = 95.24092237509285 Iteration 6: convergence error = 28.4151802169672 Iteration 7: convergence error = 8.534227011229177 Iteration 8: convergence error = 2.5600132184831637 Iteration 9: convergence error = 0.766106637816165 Iteration 10: convergence error = 0.228949441539271 Iteration 11: convergence error = 0.06836739875279818 Iteration 12: convergence error = 0.020406301668344895 Iteration 13: convergence error = 0.006089318450904102 Iteration 14: convergence error = 0.0018168101667015435 Iteration 15: convergence error = 0.0005420181937552115 Iteration 16: convergence error = 0.00016169517380149045 Iteration 17: convergence error = 4.823563790523622e-5 Iteration 18: convergence error = 1.4389041098183952e-5 Iteration 19: convergence error = 4.29231158705079e-6 Iteration 20: convergence error = 1.2804055131709902e-6 Iteration 21: convergence error = 3.819548055616906e-7 Iteration 22: convergence error = 1.1379961506463587e-7 Iteration 23: convergence error = 3.3032847568392754e-8 Iteration 24: convergence error = 9.536051948089153e-9 Iteration 25: convergence error = 2.7430360205471516e-9 Iteration 26: convergence error = 7.860307960072532e-10 Iteration 27: convergence error = 2.2873791749589145e-10 Iteration 28: convergence error = 6.59383658785373e-11 Iteration 29: convergence error = 2.0463630789890885e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 34%|███████████▍ | ETA: 0:00:02 Bin 1 progress: 75%|████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016320371757594502 Iteration 10: d = 1.4301839523442798e-5 Iteration 20: d = 1.1696230591108295e-7 Iteration 30: d = 1.1177031060493692e-9 Iteration 40: d = 1.1856451642963541e-11 Iteration 50: d = 1.374310442063694e-13 Converged after 60 iterations. d = 1.6939126455745618e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12279.222403151876 Iteration 2: convergence error = 8314.34625614557 Iteration 3: convergence error = 1949.005034133593 Iteration 4: convergence error = 479.3551980874795 Iteration 5: convergence error = 122.21697688245763 Iteration 6: convergence error = 32.64740780596662 Iteration 7: convergence error = 8.900073093967421 Iteration 8: convergence error = 2.4404003382937844 Iteration 9: convergence error = 0.6700075748028667 Iteration 10: convergence error = 0.1839792561829654 Iteration 11: convergence error = 0.05051730188370129 Iteration 12: convergence error = 0.013870438679532526 Iteration 13: convergence error = 0.0038082673454482574 Iteration 14: convergence error = 0.0010455823353368032 Iteration 15: convergence error = 0.00028706888770102523 Iteration 16: convergence error = 7.881570900281076e-5 Iteration 17: convergence error = 2.1639089254676946e-5 Iteration 18: convergence error = 5.9410745052446146e-6 Iteration 19: convergence error = 1.6311364561261144e-6 Iteration 20: convergence error = 4.478374648897443e-7 Iteration 21: convergence error = 1.238115601154277e-7 Iteration 22: convergence error = 3.3337528293486685e-8 Iteration 23: convergence error = 8.926008376874961e-9 Iteration 24: convergence error = 2.385831976425834e-9 Iteration 25: convergence error = 6.373284122673795e-10 Iteration 26: convergence error = 1.6962076188065112e-10 Iteration 27: convergence error = 4.501998773775995e-11 Iteration 28: convergence error = 1.3642420526593924e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 28%|█████████▎ | ETA: 0:00:03 Bin 1 progress: 62%|████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016320371757594502 Iteration 10: d = 1.4301839523442798e-5 Iteration 20: d = 1.1696230591108295e-7 Iteration 30: d = 1.1177031060493692e-9 Iteration 40: d = 1.1856451642963541e-11 Iteration 50: d = 1.374310442063694e-13 Converged after 60 iterations. d = 1.6939126455745618e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10996.29240943294 Iteration 2: convergence error = 5717.045609804887 Iteration 3: convergence error = 2018.6086399344763 Iteration 4: convergence error = 896.9097690014 Iteration 5: convergence error = 409.98397944308726 Iteration 6: convergence error = 193.50297036758502 Iteration 7: convergence error = 91.41755284360124 Iteration 8: convergence error = 43.211485803266896 Iteration 9: convergence error = 20.425936658767114 Iteration 10: convergence error = 9.653342957948098 Iteration 11: convergence error = 4.561048329134337 Iteration 12: convergence error = 2.1545431981853653 Iteration 13: convergence error = 1.0175860550343714 Iteration 14: convergence error = 0.4805441276066631 Iteration 15: convergence error = 0.22691234860030818 Iteration 16: convergence error = 0.10705520035025984 Iteration 17: convergence error = 0.050075258212018525 Iteration 18: convergence error = 0.02288222026072617 Iteration 19: convergence error = 0.010417953732030583 Iteration 20: convergence error = 0.004733068702080345 Iteration 21: convergence error = 0.0021476593697116186 Iteration 22: convergence error = 0.0009738075987115735 Iteration 23: convergence error = 0.000441362292804115 Iteration 24: convergence error = 0.0001999893538595643 Iteration 25: convergence error = 9.060503089131089e-5 Iteration 26: convergence error = 4.1044768749998184e-5 Iteration 27: convergence error = 1.8592545529827476e-5 Iteration 28: convergence error = 8.421801794611383e-6 Iteration 29: convergence error = 3.814713181782281e-6 Iteration 30: convergence error = 1.7278803170484025e-6 Iteration 31: convergence error = 7.826374712749384e-7 Iteration 32: convergence error = 3.5449738788884133e-7 Iteration 33: convergence error = 1.605640136403963e-7 Iteration 34: convergence error = 7.272819857462309e-8 Iteration 35: convergence error = 3.293962436146103e-8 Iteration 36: convergence error = 1.4917986845830455e-8 Iteration 37: convergence error = 6.753452908014879e-9 Iteration 38: convergence error = 3.0645423976238817e-9 Iteration 39: convergence error = 1.3856151781510562e-9 Iteration 40: convergence error = 6.307345756795257e-10 Iteration 41: convergence error = 2.864908310584724e-10 Iteration 42: convergence error = 1.2732925824820995e-10 Iteration 43: convergence error = 6.002665031701326e-11 Iteration 44: convergence error = 2.8194335754960775e-11 Iteration 45: convergence error = 1.2732925824820995e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 34%|███████████▍ | ETA: 0:00:02 Bin 1 progress: 72%|███████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016320371757594502 Iteration 10: d = 1.4301839523442798e-5 Iteration 20: d = 1.1696230591108295e-7 Iteration 30: d = 1.1177031060493692e-9 Iteration 40: d = 1.1856451642963541e-11 Iteration 50: d = 1.374310442063694e-13 Converged after 60 iterations. d = 1.6939126455745618e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10827.230869733485 Iteration 2: convergence error = 7336.910682564921 Iteration 3: convergence error = 1735.4016779631324 Iteration 4: convergence error = 504.81488638917153 Iteration 5: convergence error = 156.95640607771747 Iteration 6: convergence error = 48.801663766316324 Iteration 7: convergence error = 15.148340608019225 Iteration 8: convergence error = 4.6943298024580145 Iteration 9: convergence error = 1.4530381338395273 Iteration 10: convergence error = 0.44943695775009473 Iteration 11: convergence error = 0.13895626402018024 Iteration 12: convergence error = 0.04295196509519883 Iteration 13: convergence error = 0.013274820244987495 Iteration 14: convergence error = 0.004102424987650011 Iteration 15: convergence error = 0.0012677498807533993 Iteration 16: convergence error = 0.00039175600295493496 Iteration 17: convergence error = 0.0001210574655488017 Iteration 18: convergence error = 3.740794954865123e-5 Iteration 19: convergence error = 1.155937570729293e-5 Iteration 20: convergence error = 3.5719331208383664e-6 Iteration 21: convergence error = 1.1037600415875204e-6 Iteration 22: convergence error = 3.409027158340905e-7 Iteration 23: convergence error = 1.0413805284770206e-7 Iteration 24: convergence error = 3.1021045288071036e-8 Iteration 25: convergence error = 9.217728802468628e-9 Iteration 26: convergence error = 2.723027137108147e-9 Iteration 27: convergence error = 8.039933163672686e-10 Iteration 28: convergence error = 2.419255906715989e-10 Iteration 29: convergence error = 7.139533408917487e-11 Iteration 30: convergence error = 2.091837814077735e-11 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016320371757594502 Iteration 10: d = 1.4301839523442798e-5 Iteration 20: d = 1.1696230591108295e-7 Iteration 30: d = 1.1177031060493692e-9 Iteration 40: d = 1.1856451642963541e-11 Iteration 50: d = 1.374310442063694e-13 Converged after 60 iterations. d = 1.6939126455745618e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.876850499554 Iteration 2: convergence error = 5511.742617597708 Iteration 3: convergence error = 939.0323001570205 Iteration 4: convergence error = 171.0484962319997 Iteration 5: convergence error = 31.06242823476532 Iteration 6: convergence error = 5.656548628394603 Iteration 7: convergence error = 1.031459941916637 Iteration 8: convergence error = 0.18867717583543708 Iteration 9: convergence error = 0.0345198458867344 Iteration 10: convergence error = 0.006311930428182677 Iteration 11: convergence error = 0.0011537885666257353 Iteration 12: convergence error = 0.0002108744929500972 Iteration 13: convergence error = 3.8537858927156776e-5 Iteration 14: convergence error = 7.04261583450716e-6 Iteration 15: convergence error = 1.2869750207755715e-6 Iteration 16: convergence error = 2.3517168301623315e-7 Iteration 17: convergence error = 4.29654392064549e-8 Iteration 18: convergence error = 7.854396244511008e-9 Iteration 19: convergence error = 1.438365870853886e-9 Iteration 20: convergence error = 2.623892214614898e-10 Iteration 21: convergence error = 4.865796654485166e-11 Iteration 22: convergence error = 8.86757334228605e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016320371757594502 Iteration 10: d = 1.4301839523442798e-5 Iteration 20: d = 1.1696230591108295e-7 Iteration 30: d = 1.1177031060493692e-9 Iteration 40: d = 1.1856451642963541e-11 Iteration 50: d = 1.374310442063694e-13 Converged after 60 iterations. d = 1.6939126455745618e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.513662541881 Iteration 2: convergence error = 2712.2587297022515 Iteration 3: convergence error = 205.1429807708558 Iteration 4: convergence error = 19.32565775479168 Iteration 5: convergence error = 1.5996357910939225 Iteration 6: convergence error = 0.13044046555090597 Iteration 7: convergence error = 0.010667455086930292 Iteration 8: convergence error = 0.0008742509310807054 Iteration 9: convergence error = 7.17068295470655e-5 Iteration 10: convergence error = 5.884078900091032e-6 Iteration 11: convergence error = 4.829439196987121e-7 Iteration 12: convergence error = 3.964347662452371e-8 Iteration 13: convergence error = 3.2552353348277136e-9 Iteration 14: convergence error = 2.662509687585087e-10 Iteration 15: convergence error = 2.3533175408374518e-11 Iteration 16: convergence error = 4.092726157978177e-12 Converged after 16 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346354 Iteration 2: convergence error = 858.4060420534047 Iteration 3: convergence error = 199.1210673771193 Iteration 4: convergence error = 59.26562926814245 Iteration 5: convergence error = 17.98548291103714 Iteration 6: convergence error = 5.463033078097283 Iteration 7: convergence error = 1.6609896110641102 Iteration 8: convergence error = 0.5052487627319806 Iteration 9: convergence error = 0.15371874094319082 Iteration 10: convergence error = 0.046771316975991795 Iteration 11: convergence error = 0.01423126902614058 Iteration 12: convergence error = 0.0043302365119188835 Iteration 13: convergence error = 0.0013175920918229167 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198904039451008 Iteration 16: convergence error = 3.7118539353286906e-5 Iteration 17: convergence error = 1.129434190261236e-5 Iteration 18: convergence error = 3.4366170211797e-6 Iteration 19: convergence error = 1.0456856216478627e-6 Iteration 20: convergence error = 3.1818092338653514e-7 Iteration 21: convergence error = 9.681662049842998e-8 Iteration 22: convergence error = 2.9460125006153248e-8 Iteration 23: convergence error = 8.963866093836259e-9 Iteration 24: convergence error = 2.731098902586382e-9 Iteration 25: convergence error = 8.290044206660241e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.685230229981244e-11 Iteration 28: convergence error = 2.4556356947869062e-11 Iteration 29: convergence error = 8.412825991399586e-12 Converged after 29 iterations Energy conservation errors by band: [1.3167035141224952e-25, 1.3490152568003479e-25, 1.308625578453032e-25, 8.825144718888503e-26, 1.0945602832122583e-25, 2.871441691192078e-19, -2.398081733190338e-14, 1.6768808563938364e-12, 4.874323167314287e-12, 3.893774191965349e-12, 2.7711166694643907e-13, 8.171241461241152e-14, 5.10702591327572e-15, 3.2612801348363973e-16, 1.734723475976807e-17, 1.026603932072212e-18, 4.121344683984205e-20, 1.5120861597469346e-21, 3.2447451997099625e-23, 4.356922941010974e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015333279019193434 Iteration 10: d = 1.1708552284024867e-5 Iteration 20: d = 1.171728846838347e-7 Iteration 30: d = 1.4692026585438427e-9 Iteration 40: d = 1.9610308244304072e-11 Iteration 50: d = 2.6868280442836545e-13 Iteration 60: d = 3.70933877143075e-15 Converged after 62 iterations. d = 1.6013362208073561e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.367604712829 Iteration 2: convergence error = 3615.8936336255993 Iteration 3: convergence error = 598.5781160148571 Iteration 4: convergence error = 105.09354414143627 Iteration 5: convergence error = 18.708725280652516 Iteration 6: convergence error = 3.300381611648163 Iteration 7: convergence error = 0.5800497057946359 Iteration 8: convergence error = 0.10178765523073707 Iteration 9: convergence error = 0.017850510669404684 Iteration 10: convergence error = 0.0031296458646465908 Iteration 11: convergence error = 0.0005486497864239936 Iteration 12: convergence error = 9.61784069204441e-5 Iteration 13: convergence error = 1.6859813058545114e-5 Iteration 14: convergence error = 2.9554646516771754e-6 Iteration 15: convergence error = 5.180831976758782e-7 Iteration 16: convergence error = 9.081281859835144e-8 Iteration 17: convergence error = 1.5931618690956384e-8 Iteration 18: convergence error = 2.7735040930565447e-9 Iteration 19: convergence error = 4.906723916064948e-10 Iteration 20: convergence error = 8.458300726488233e-11 Iteration 21: convergence error = 1.432454155292362e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.4924275130231 Iteration 2: convergence error = 871.3046026617826 Iteration 3: convergence error = 207.7529958122509 Iteration 4: convergence error = 62.495505504908806 Iteration 5: convergence error = 18.9793153091847 Iteration 6: convergence error = 5.766215594046912 Iteration 7: convergence error = 1.753306153066319 Iteration 8: convergence error = 0.5333443699001919 Iteration 9: convergence error = 0.16226812526349477 Iteration 10: convergence error = 0.04937275063105062 Iteration 11: convergence error = 0.015022831427359051 Iteration 12: convergence error = 0.004571091656089266 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318630911264 Iteration 15: convergence error = 0.00012877429946911434 Iteration 16: convergence error = 3.918314246220689e-5 Iteration 17: convergence error = 1.1922557064281136e-5 Iteration 18: convergence error = 3.6277685921959346e-6 Iteration 19: convergence error = 1.103850422623509e-6 Iteration 20: convergence error = 3.3587821235414594e-7 Iteration 21: convergence error = 1.022023070618161e-7 Iteration 22: convergence error = 3.10986933982349e-8 Iteration 23: convergence error = 9.464201866649091e-9 Iteration 24: convergence error = 2.8816202757298015e-9 Iteration 25: convergence error = 8.780034477240406e-10 Iteration 26: convergence error = 2.6784618967212737e-10 Iteration 27: convergence error = 8.208189683500677e-11 Iteration 28: convergence error = 2.580691216280684e-11 Iteration 29: convergence error = 7.73070496506989e-12 Converged after 29 iterations Energy conservation errors by band: [1.5004765506027821e-25, 1.5428857128674637e-25, 1.1955344790805478e-25, 1.3530542246350794e-25, 1.4984570666854163e-25, 6.107107549703505e-19, 5.417888360170764e-14, -1.7337242752546445e-12, 8.206768598029157e-12, 3.950617610826157e-12, 7.531752999057062e-13, 8.43769498715119e-14, 5.662137425588298e-15, 3.0184188481996443e-16, 2.1033522146218786e-17, 8.029872339970767e-19, 3.8195891965248606e-20, 1.2523514474052839e-21, 2.3658657988723706e-23, 8.491874715467811e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729989 Iteration 2: convergence error = 2115.11561101764 Iteration 3: convergence error = 714.8959934551624 Iteration 4: convergence error = 296.01907471324057 Iteration 5: convergence error = 115.88799395378692 Iteration 6: convergence error = 44.115249236189584 Iteration 7: convergence error = 16.599581025125644 Iteration 8: convergence error = 6.215983404933013 Iteration 9: convergence error = 2.3231245670035605 Iteration 10: convergence error = 0.8675636398236293 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.1209078441361271 Iteration 13: convergence error = 0.04513241840777482 Iteration 14: convergence error = 0.016846741615609062 Iteration 15: convergence error = 0.006288407473221014 Iteration 16: convergence error = 0.002347277755916366 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782302062085 Iteration 19: convergence error = 0.00012207719169055053 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985380100203e-6 Iteration 23: convergence error = 2.3698873974353774e-6 Iteration 24: convergence error = 8.846077435009647e-7 Iteration 25: convergence error = 3.3019978218362667e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7175352695630863e-8 Iteration 29: convergence error = 6.410118658095598e-9 Iteration 30: convergence error = 2.3951542971190065e-9 Iteration 31: convergence error = 8.942606655182317e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.2505552149377763e-10 Iteration 34: convergence error = 4.7975845518521965e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.4580673883381005e-25, 2.1406529524077376e-25, 2.4718483148557272e-25, 2.003328046026864e-25, 1.704444426256727e-25, 1.0672615135404184e-19, 2.1760371282653068e-14, 3.609557097661309e-12, 1.0931699989669141e-11, 6.66489086142974e-12, 1.8474111129762605e-13, 2.3092638912203256e-14, 1.8596235662471372e-15, 9.302454639925628e-17, 7.684282897491013e-18, 3.4220131069073734e-19, 1.1329065669526267e-20, 3.8381180422460484e-22, 2.0679515313825692e-23, 1.2073675392798577e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238238 Iteration 2: convergence error = 864.8522700482433 Iteration 3: convergence error = 203.4324449469076 Iteration 4: convergence error = 60.87736397590561 Iteration 5: convergence error = 18.481426659698172 Iteration 6: convergence error = 5.614330618626809 Iteration 7: convergence error = 1.7070587705937896 Iteration 8: convergence error = 0.5192694771485549 Iteration 9: convergence error = 0.15798519284203394 Iteration 10: convergence error = 0.048069526692643194 Iteration 11: convergence error = 0.014626287390456127 Iteration 12: convergence error = 0.004450431969644342 Iteration 13: convergence error = 0.001354164904114441 Iteration 14: convergence error = 0.00041204191495580744 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.814885042174865e-5 Iteration 17: convergence error = 1.1607844157879299e-5 Iteration 18: convergence error = 3.5320088045409648e-6 Iteration 19: convergence error = 1.074714077731187e-6 Iteration 20: convergence error = 3.270126853749389e-7 Iteration 21: convergence error = 9.950383628165582e-8 Iteration 22: convergence error = 3.0278101803560276e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8028352971887216e-9 Iteration 25: convergence error = 8.537881512893364e-10 Iteration 26: convergence error = 2.617071004351601e-10 Iteration 27: convergence error = 8.01492205937393e-11 Iteration 28: convergence error = 2.4783730623312294e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [1.4580673883381005e-25, 1.3934439029823953e-25, 1.262177448353619e-25, 1.3944536449410781e-25, 9.956055712613346e-26, -2.710505431213761e-20, 4.241051954068098e-14, 2.5437429940211587e-12, 9.389822253069724e-12, 4.035882739117369e-12, 3.694822225952521e-13, 5.240252676230739e-14, 4.274358644806853e-15, 4.822531263215524e-16, 2.699663409488906e-17, 9.774760211314626e-19, 4.690444945420688e-20, 1.4661776357502416e-21, 5.336607420674143e-23, 3.0586016040091688e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 10m50.1s Testing RayTraceHeatTransfer tests passed Testing completed after 657.01s PkgEval succeeded after 724.03s