Package evaluation to test QuasiNewtonMethods on Julia 1.11.7 (58327cce5e*) started at 2025-10-28T21:37:30.963 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.82s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.11/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.11/Manifest.toml` [79e6a3ab] + Adapt v4.4.0 [4fba245c] + ArrayInterface v7.22.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.18.1 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.5 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.173 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.17.0 [1d0040c9] + PolyesterWeave v0.2.2 ⌅ [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.5.0 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.72 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [4536629a] + OpenBLAS_jll v0.3.27+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 5.1s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 193.01s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_OUQd2h/Project.toml` [4c88cf16] Aqua v0.8.14 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test v1.11.0 Status `/tmp/jl_OUQd2h/Manifest.toml` [79e6a3ab] Adapt v4.4.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.22.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.18.1 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.5 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.173 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [1d0040c9] PolyesterWeave v0.2.2 ⌅ [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.5.0 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.72 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.11 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.11.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.6.0+0 [e37daf67] LibGit2_jll v1.7.2+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.6+0 [14a3606d] MozillaCACerts_jll v2023.12.12 [4536629a] OpenBLAS_jll v0.3.27+1 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.59.0+0 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Base.PkgId(Base.UUID("8dfed614-e22c-5e08-85e1-65c5234f0b40"), "Test")]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.11/Test/src/Test.jl:680 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.11/Test/src/Test.jl:1709 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [1.961741880052159e-11, 3.799849324082061e-11] QuasiNewtonMethods.optimum(state) .- 1 = [9.033218617560124e-12, 1.803912574871447e-11] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [-5.360478727567397e-11, -1.065527666099797e-10, 7.777334332104147e-12] QuasiNewtonMethods.optimum(state) .- 1 = [3.630873379734112e-12, 8.354206215699378e-12, 5.047318119011379e-11] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [-4.2092107577218485e-11, 2.0308643655653214e-11, -8.613965096770926e-11, 3.6167735473213725e-11] QuasiNewtonMethods.optimum(state) .- 1 = [6.652234318949013e-12, -1.9543033857871706e-11, 1.2581935493471974e-11, -4.1549208518176783e-11] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [4.0183412153282916e-12, 3.738565013122752e-12, 6.073808123119306e-12, 8.280487406864268e-12, -2.702549295463541e-11] QuasiNewtonMethods.optimum(state) .- 1 = [3.027917916398337e-10, -1.786079062426893e-10, 6.028371135613497e-10, -3.4084179922899693e-10, 4.338849279861279e-10] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [-2.9249491717564524e-11, 4.36206626375224e-12, 2.3030466422824247e-11, -5.666356273081874e-11, 8.770761894538737e-13, 4.9180215455635334e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.697253448895708e-11, -7.131739643284618e-12, 1.5516921081371038e-11, -3.2788105563952286e-11, -1.46246348364798e-11, 3.3080205241731164e-11] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [-2.210076566200314e-11, -5.008896630798176e-10, 1.451490039272585e-10, -3.1317948234743653e-11, -1.0184324494844077e-9, 2.992379677380086e-10, -2.9471414197956847e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-5.257239088507504e-12, 1.6349144260630055e-11, 3.163069806078056e-11, -1.0658363081006428e-11, 2.8818059050195188e-11, 6.438294342103745e-11, 1.0336842493074982e-11] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [2.1751489498456067e-12, -3.068767462366395e-12, -2.3594792786241214e-11, -1.567679319691706e-11, 3.5937919307116317e-12, -5.9144911190855964e-12, -4.872369174790947e-11, -3.1720515103472735e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-2.6060964497531813e-10, -6.933953411447646e-11, 1.3837819778927951e-11, 1.2823742068235333e-10, -4.97941576860228e-10, -1.4191603447955004e-10, 3.2366553881502114e-11, 2.5140955983715685e-10] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [2.8884006297857923e-11, 6.251110740151944e-11, -1.1167544666790263e-10, 1.1511347430825936e-10, 5.69311264797534e-11, 1.1962142387744734e-10, -2.0109458542805214e-10, 2.222122486017497e-10, 3.833222628202293e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.8404000545757526e-10, 8.341927149047024e-11, -6.166511745675507e-11, -5.396316726802297e-11, -3.5405056664217227e-10, 1.5928236507534166e-10, -1.2908918378684575e-10, -1.0566425512337219e-10, 1.9872992140790302e-13] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [-1.0522249738187384e-11, 1.1212630823820291e-10, 1.265889615353899e-10, -4.8464343649357033e-11, 6.27324858726297e-11, -1.8074763907804936e-11, 2.2096569018970058e-10, 2.4485147243069605e-10, -9.023526370555146e-11, 1.287374651326445e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-5.080136311619299e-11, -5.931877211651226e-11, 6.681410980036162e-11, 1.3832979206540585e-10, -2.502231755130424e-11, -9.71880353972665e-11, -1.227057344621585e-10, 1.3563195011556672e-10, 2.8954905140210485e-10, -5.411349146555722e-11] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [-1.866240495473903e-11, -1.949251871025126e-11, 1.1963097179545912e-11, 4.197753256107717e-12, -3.3215652450735433e-12, -3.7204350711306233e-11, -3.8747782760140126e-11, 2.4490853789416178e-11, 7.664757717407156e-12, -7.809641822120739e-12, 1.652811221219963e-11] QuasiNewtonMethods.optimum(state) .- 1 = [6.9038108563290734e-12, 2.0148105406292416e-11, 2.4913404672588513e-13, 7.680522884356833e-12, 2.4324764424932255e-11, 1.4978907003637687e-11, 4.153855037714038e-11, 1.0575984532579241e-12, 1.5267564990040228e-11, 4.744427073433144e-11, 1.4806378345610938e-11] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [2.1790347304317947e-11, -9.048772842135122e-11, -4.5806802795311796e-11, -6.961942133898447e-11, -2.657485342894006e-11, 2.660183184843845e-11, 4.2348569095906896e-11, -1.898077250928054e-10, -9.311051929472569e-11, -1.3856649161425594e-10, -6.171285704681395e-11, 5.607270203711323e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-2.32268315691897e-10, -3.133937553911892e-12, -2.0969337377607644e-11, -1.3494594330865084e-10, 7.134826063293076e-11, 1.1424305945695323e-10, -4.788770491259697e-10, -8.800737916203616e-13, -6.054678980405015e-11, -2.851396896375036e-10, 1.6095325072740252e-10, 2.2301027691185027e-10] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [2.2957191703198987e-11, -6.212841352493115e-11, -1.472300059646159e-11, 4.993694346921984e-11, 4.959810340210424e-12, -1.3606227255991143e-11, 4.806555153891168e-11, -1.237118185670738e-10, -3.3727243220482706e-11, 1.042845809706705e-10, 9.318323890283864e-12, -2.7283508785558297e-11, 3.9102054927298013e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-2.5733970510088966e-11, -8.58202398035246e-12, -2.1282864359761788e-11, 6.506573058118192e-11, -4.289013588731905e-12, 3.079092536495409e-11, -5.048073070668124e-11, -1.6543766356846845e-11, -4.128375419298891e-11, 1.2477241462249822e-10, -7.760569964432307e-12, 6.785416672983047e-11, -2.784994457272205e-12] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [-7.390754674929667e-13, 7.658096379259405e-12, -3.0347946378128654e-12, -4.289102406573875e-11, -1.3364087614320397e-11, 5.38857847232066e-12, 4.610578585584335e-11, 5.101030708942744e-12, 1.538547067525542e-11, -9.902079156631771e-12, -9.353007257573154e-11, -2.2842283620150283e-11, 2.280242661356624e-11, 9.373568587989212e-11] QuasiNewtonMethods.optimum(state) .- 1 = [8.97037999436634e-11, -3.255073988128743e-11, -8.640133053461341e-11, 1.008790828649353e-10, -1.0885359280621287e-10, -1.018096718041761e-11, 1.0407652517585575e-10, 1.9849166754681846e-10, -6.74708067194274e-11, -1.6185019990899718e-10, 1.9624080138669342e-10, -2.1210688760930907e-10, -2.3945290195115376e-11, 2.0610291251443869e-10] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [4.126032848716932e-12, -3.3385183506595695e-11, -2.2365331808771316e-11, 1.3202550164237437e-11, 3.3190117321169055e-11, 1.9841905896100798e-11, -4.3115178094410567e-11, 1.0762279956111342e-11, -7.041334182389392e-11, -4.531919284289643e-11, 2.6158408772403163e-11, 6.57627285960416e-11, 3.740008303054765e-11, -9.149525581619855e-11, 1.0400569294688466e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-2.016619093936356e-10, -2.380536878732187e-10, -2.609871208036907e-10, 1.5732815050739646e-10, 1.234896629398463e-10, 5.991207530087195e-11, 2.6180613232895666e-11, -3.811492232941305e-10, -4.5333681253367786e-10, -5.110075695924365e-10, 3.056772612808345e-10, 2.2985813252773823e-10, 1.2888401457189502e-10, 4.054689917154519e-11, -1.5464829417055626e-10] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [-1.0560774477141877e-11, -5.558953297679636e-11, -1.0168976771751659e-11, 2.688738121037204e-12, -4.884581628061824e-11, 3.482902855012071e-11, 5.568878691519785e-12, -2.5908164502652653e-12, -1.5449419521473828e-11, -1.1382172981910799e-10, -1.695665829970494e-11, 1.0286660412361925e-11, -9.342027151859611e-11, 7.03905822518891e-11, 1.0137002348642454e-11, -6.273315200644447e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-6.08280092961877e-11, -6.073952452112508e-11, -3.1827818158802756e-10, -1.5363055272388237e-10, -2.2382040665291925e-10, 1.4411360993449307e-11, -2.340559968061484e-10, -2.5853097440631245e-11, -1.317211895113246e-10, -1.1404710509310689e-10, -6.234630589574408e-10, -3.0269931006188244e-10, -4.2442349634796983e-10, 1.6519452472607554e-11, -4.751986582007817e-10, -2.7310487205056688e-11] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [-2.8580582345227867e-11, 1.7386314610234876e-11, -1.2910894575668408e-11, -9.385714427878611e-12, -1.693323259388535e-11, -2.3201995880128834e-11, -1.4259149416773198e-11, -4.342304293913912e-12, -5.7183258128645775e-11, 3.5555558497435413e-11, -2.5076718479510873e-11, -2.0773049946853916e-11, -3.2917779613228504e-11, -4.899824990189927e-11, -2.923294939449761e-11, -5.903277866536882e-12, -2.110200902905035e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-7.973322002641225e-11, -1.7420287434788406e-11, 3.645972412869014e-13, 5.63624702465404e-11, 3.342126575489601e-11, -4.588907032143652e-11, 1.3432721601702724e-10, 3.3848479574771773e-12, -1.7543744235126724e-10, -2.9535485168707964e-11, -2.0612400675190656e-12, 1.0661760363461781e-10, 6.17470519159724e-11, -8.792544470281882e-11, 2.6357760418704856e-10, 1.2609913113692528e-11, 1.1679546219056647e-12] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [-7.69779795462e-11, 3.244493562704065e-11, 8.457901046199368e-12, 5.032174676955492e-11, 4.207012516133091e-11, 6.833000831818481e-11, -1.6332823982168065e-11, -1.9767742998055837e-11, 1.8416157487877172e-11, -1.5296708344436638e-10, 6.662714824301474e-11, 1.963718077035992e-11, 1.0446710163591888e-10, 9.149681012843303e-11, 1.2834733276179122e-10, -3.244327029250371e-11, -3.48382434012251e-11, 5.048139684049602e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.922808579024604e-10, 4.6237458306563894e-11, -1.8248202948711878e-10, -1.0611556078288231e-10, 4.3092440726866243e-10, 3.879445653609537e-10, 8.891221092710566e-11, -3.4492841916033967e-10, -2.520897934843447e-10, -3.903859457921044e-10, 9.053580107831749e-11, -3.6832992211799365e-10, -2.158218048720073e-10, 8.774678761369614e-10, 7.833009796343049e-10, 1.8549184410687758e-10, -6.895418680485932e-10, -5.184555007531344e-10] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [-5.218292464803653e-11, -1.6584067452640738e-11, 4.435851685968828e-11, 8.46120951081275e-11, 8.62221405384389e-12, -3.8370417954070035e-12, 1.8206325336223017e-11, 1.73812075843216e-11, -2.8331670343106907e-11, -1.0636669323105252e-10, -3.5310199208993254e-11, 8.989609057152848e-11, 1.7102053107009851e-10, 2.3545387861645395e-11, -1.7646994976416863e-12, 3.921796221106888e-11, 3.853917185381306e-11, -5.540012892879531e-11, -1.8942403201549496e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-6.423106491126873e-11, -8.139477980506626e-11, 1.1521827936178397e-10, -6.319011980338018e-11, -1.2078660294179144e-10, 7.864908724286579e-11, 2.4524604569364783e-11, 7.813527602706927e-12, -9.272393963755121e-11, -1.2652801029133798e-10, -1.5436996125828273e-10, 2.2053403547772632e-10, -1.232767221637232e-10, -2.4758672889646505e-10, 1.5965739841306004e-10, 5.1442405890611553e-11, 2.1707746711285836e-11, -1.9440349330324125e-10, 4.607203507589475e-12] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [2.7672308888782027e-11, -4.052869151394134e-12, 5.084155318968442e-12, -4.659561625430797e-11, -2.6548319098651518e-11, 4.844924461622213e-11, 1.0514011883344665e-10, 3.912892232449394e-11, 7.83768605572277e-11, 1.5538015318838916e-11, 4.2095216201687435e-11, -5.002331882053568e-12, 2.010014377162861e-11, -8.958822572679992e-11, -6.080913550476907e-11, 9.436607051327428e-11, 2.1218249379728604e-10, 8.848188848276095e-11, 1.640703128913401e-10, 3.285482996773226e-11] QuasiNewtonMethods.optimum(state) .- 1 = [9.867728856249869e-11, 4.092415295531282e-11, -1.8742785101721893e-11, -6.108724637243768e-11, -7.391642853349367e-12, 4.4291237344395995e-12, -7.918221633929079e-12, 5.198419472662863e-11, -7.696210335694786e-11, 8.51292369929979e-11, 1.9042434296068222e-10, 7.688938374883492e-11, -3.733313658216275e-11, -1.173391384057254e-10, -1.5174195233669252e-11, 4.0751846341891e-12, -1.461497589616556e-11, 1.0216405499363646e-10, -1.5454870716524738e-10, 1.6284551485057364e-10] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [3.296518613638e-11, 2.903344231697247e-11, -8.567369036427408e-12, -5.0872750456676386e-11, 1.0636247438355895e-10, -9.165168624036824e-11, -2.0990209570470597e-11, -1.1854894843565944e-10, 1.1944378819350732e-10, -4.0983438864827804e-11, 6.529310425662516e-11, 5.330735852737689e-11, -1.1845524561238108e-11, -1.0230827296453526e-10, 2.129272314022046e-10, -1.7131740470688328e-10, -3.5551228627639375e-11, -2.5462398856035406e-10, 2.470073034999132e-10, -9.328748884485094e-11, 6.910028105266974e-13] QuasiNewtonMethods.optimum(state) .- 1 = [6.073630487435366e-11, 2.4204638293667813e-11, -5.712819106662437e-11, -1.8561596704103067e-11, -8.224743108797838e-11, -6.068334723607904e-11, -4.817068965934368e-11, 8.257905470543392e-11, -7.005029889484149e-11, 1.2196621490545567e-10, 1.21627596882945e-10, 4.7864157082244674e-11, -1.0877165834699554e-10, -3.699807127333088e-11, -1.695384943545264e-10, -1.3196965742423572e-10, -9.407119527793384e-11, 1.586724085456126e-10, -1.4287449001670893e-10, 2.460620596167473e-10, -8.854139643688086e-12] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [-2.0556867319498906e-10, -6.949951725232495e-11, 1.1416667611285902e-10, 5.7687632448732984e-11, 3.489741828843762e-11, -1.1428458179807421e-10, -9.456546656849696e-11, 1.2246448299890744e-10, 9.48372491649252e-11, -8.592904165993787e-11, 1.0002265682373945e-10, -3.9208791768885476e-10, -1.4869505626791124e-10, 2.297264600770177e-10, 1.2036460717013142e-10, 5.990785645337837e-11, -2.3017265871061454e-10, -1.9113510774104725e-10, 2.5677282522451605e-10, 1.9303270093473657e-10, -1.698459151100451e-10, 2.1420265561289398e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-5.820122161992458e-11, -1.3116197017382092e-10, -2.1984969400534737e-11, 5.867846208928995e-10, 4.017874921657949e-11, -1.739104416031978e-10, 2.69165356669987e-10, 2.5569746320286413e-10, 2.894573469802708e-10, 3.128801662199976e-10, 3.9902925408341616e-10, -1.245811231953553e-10, -2.592703829407128e-10, -3.833700024102882e-11, 1.1838070523850774e-9, 6.516898132247206e-11, -3.4278524463360327e-10, 5.565654603856274e-10, 5.156055582489216e-10, 5.666058733311274e-10, 6.321556611510459e-10, 8.128897555081949e-10] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [3.164868367377949e-11, 2.088218487017457e-11, -1.0747736034488753e-11, 1.0170064790315791e-10, 4.0843550763725034e-11, -1.207437483330409e-10, -6.176115174838515e-11, 5.127409608007838e-11, 5.826006344022971e-11, -1.7141110753016164e-10, 2.4679525090220977e-10, 5.799516422655415e-11, 4.067479686398201e-11, -1.4556578165070277e-11, 2.1036306030453034e-10, 7.996403539323182e-11, -2.3895918577210296e-10, -1.232953739105369e-10, 1.0855916166008228e-10, 1.1997380866546337e-10, -3.40115935415497e-10, 4.906011152883138e-10, -2.8722579870077425e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-2.284394895468722e-12, 2.2956969658594062e-11, 1.8673951274195133e-13, -3.0088931346483605e-11, -1.3499756867929591e-11, 2.3025581441515897e-11, -9.779710374857586e-11, -4.065581205026092e-11, -6.07051076073617e-11, -4.0111913790497056e-11, -2.1294077612310502e-12, -2.389199948993337e-12, 4.616529380996326e-11, 5.896394483784206e-12, -6.058753498905389e-11, -2.3480661859309748e-11, 4.497469063835524e-11, -1.8711154847750322e-10, -8.286804575874385e-11, -1.2259060433450486e-10, -7.423062164946259e-11, -1.1369571950581303e-11, 1.4308554341369017e-11] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [5.327027707835441e-11, 1.3830958600635768e-10, 2.708722135480457e-12, 3.872102638524666e-11, -1.5759060723041785e-11, -1.0823675289373114e-11, -2.537359211629564e-11, -1.4395706848802092e-11, -4.478539761265665e-11, 9.678857715300637e-11, 7.500755572209528e-11, -9.648859489175265e-11, 1.0804623862270546e-10, 2.8236102345147174e-10, 5.640821143515495e-12, 8.151368469100362e-11, -3.9342196167524435e-11, -2.3167689988667917e-11, -5.538947078775891e-11, -2.566924450775332e-11, -8.465195211471155e-11, 2.0791302013378754e-10, 1.5005841014215093e-10, -1.8987666994263463e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-5.3014037604270925e-11, -2.7859270446128903e-11, 2.6524338281319615e-11, 8.914802229753604e-11, 5.919176260249515e-11, 3.547162563677375e-11, 4.5785597535541456e-12, -2.051192549146208e-11, 1.9369172932215406e-11, 1.290718643076616e-10, -1.8436696613832737e-11, 4.235434225563495e-11, -1.0744849454624728e-10, -5.445688344707378e-11, 5.341926900825911e-11, 1.7302803634322572e-10, 1.2611556243768973e-10, 6.968248200678318e-11, 1.035971308738226e-11, -3.4032665574557086e-11, 3.1668889732827665e-11, 2.624203077061793e-10, -3.803002357471996e-11, 8.343215007755589e-11] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 148 1 149 3m59.2s Method ambiguity | 1 1 9.1s Unbound type parameters | 1 1 0.2s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.4s Stale dependencies | 1 1 5.6s Compat bounds | 3 1 4 10.3s julia | 1 1 0.0s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") deps | 1 1 0.6s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras | 1 1 9.7s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") weakdeps | 1 1 0.0s Piracy | 1 1 0.3s Persistent tasks | 1 1 19.4s ERROR: LoadError: Some tests did not pass: 148 passed, 1 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 257.05s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.11/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{Pkg.Types.PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:2128 [3] test @ /opt/julia/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:2011 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{Pkg.Types.PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.11/Pkg/src/API.jl:481 [5] test(pkgs::Vector{Pkg.Types.PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.11/Pkg/src/API.jl:159 [6] test @ /opt/julia/share/julia/stdlib/v1.11/Pkg/src/API.jl:147 [inlined] [7] #test#74 @ /opt/julia/share/julia/stdlib/v1.11/Pkg/src/API.jl:146 [inlined] [8] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 479.23s: package has test failures