Package evaluation to test ModalDecisionTrees on Julia 1.11.7 (58327cce5e*) started at 2025-10-29T06:19:40.660 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.51s ################################################################################ # Installation # Installing ModalDecisionTrees... Resolving package versions... Updating `~/.julia/environments/v1.11/Project.toml` [e54bda2e] + ModalDecisionTrees v0.5.2 Updating `~/.julia/environments/v1.11/Manifest.toml` [da404889] + ARFFFiles v1.5.0 [1520ce14] + AbstractTrees v0.4.5 [79e6a3ab] + Adapt v4.4.0 [66dad0bd] + AliasTables v1.1.3 [ec485272] + ArnoldiMethod v0.4.0 [4fba245c] + ArrayInterface v7.22.0 [d1d4a3ce] + BitFlags v0.1.9 [336ed68f] + CSV v0.10.15 [acdeb78f] + Catch22 v0.7.0 ⌅ [324d7699] + CategoricalArrays v0.10.8 ⌅ [af321ab8] + CategoricalDistributions v0.1.15 [da1fd8a2] + CodeTracking v2.0.1 [944b1d66] + CodecZlib v0.7.8 [3da002f7] + ColorTypes v0.12.1 [34da2185] + Compat v4.18.1 [807dbc54] + Compiler v0.1.1 [f0e56b4a] + ConcurrentUtilities v2.5.0 [187b0558] + ConstructionBase v1.6.0 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 [a93c6f00] + DataFrames v1.8.1 ⌅ [864edb3b] + DataStructures v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [e7dc6d0d] + DataValues v0.4.13 [8bb1440f] + DelimitedFiles v1.9.1 [85a47980] + Dictionaries v0.4.5 [0703355e] + DimensionalData v0.29.24 [6e83dbb3] + Discretizers v3.2.4 [31c24e10] + Distributions v0.25.122 [ffbed154] + DocStringExtensions v0.9.5 [460bff9d] + ExceptionUnwrapping v0.1.11 [411431e0] + Extents v0.1.6 [48062228] + FilePathsBase v0.9.24 [1a297f60] + FillArrays v1.14.0 [53c48c17] + FixedPointNumbers v0.8.5 [069b7b12] + FunctionWrappers v1.1.3 [86223c79] + Graphs v1.13.1 [cd3eb016] + HTTP v1.10.19 [34004b35] + HypergeometricFunctions v0.3.28 [313cdc1a] + Indexing v1.1.1 [d25df0c9] + Inflate v0.1.5 [842dd82b] + InlineStrings v1.4.5 [85a1e053] + Interfaces v0.3.2 [8197267c] + IntervalSets v0.7.11 [41ab1584] + InvertedIndices v1.3.1 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [1c8ee90f] + IterableTables v1.0.0 [82899510] + IteratorInterfaceExtensions v1.0.0 [692b3bcd] + JLLWrappers v1.7.1 ⌅ [682c06a0] + JSON v0.21.4 [aa1ae85d] + JuliaInterpreter v0.10.6 [b964fa9f] + LaTeXStrings v1.4.0 [50d2b5c4] + Lazy v0.15.1 [2ab3a3ac] + LogExpFunctions v0.3.29 [e6f89c97] + LoggingExtras v1.2.0 [6f1432cf] + LoweredCodeUtils v3.4.4 [e80e1ace] + MLJModelInterface v1.12.0 [1914dd2f] + MacroTools v0.5.16 [739be429] + MbedTLS v1.1.9 [6fafb56a] + Memoization v0.2.2 [e1d29d7a] + Missings v1.2.0 [e54bda2e] + ModalDecisionTrees v0.5.2 [8cc5100c] + MultiData v0.1.4 [8b6db2d4] + OpenML v0.3.2 [4d8831e6] + OpenSSL v1.5.0 [bac558e1] + OrderedCollections v1.8.1 [90014a1f] + PDMats v0.11.36 [69de0a69] + Parsers v2.8.3 [2dfb63ee] + PooledArrays v1.4.3 ⌅ [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.5.0 ⌅ [08abe8d2] + PrettyTables v2.4.0 [33c8b6b6] + ProgressLogging v0.1.5 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [1a8c2f83] + Query v1.0.0 [2aef5ad7] + QueryOperators v0.9.3 [3cdcf5f2] + RecipesBase v1.3.4 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [c5292f4c] + ResumableFunctions v1.0.4 [295af30f] + Revise v3.11.0 [79098fc4] + Rmath v0.9.0 [321657f4] + ScientificTypes v3.1.1 [30f210dd] + ScientificTypesBase v3.0.0 [6c6a2e73] + Scratch v1.3.0 [91c51154] + SentinelArrays v1.4.8 [777ac1f9] + SimpleBufferStream v1.2.0 [699a6c99] + SimpleTraits v0.9.5 [4475fa32] + SoleBase v0.13.4 [123f1ae1] + SoleData v0.16.5 [b002da8f] + SoleLogics v0.13.2 [4249d9c7] + SoleModels v0.10.6 [a2af1166] + SortingAlgorithms v1.2.2 [276daf66] + SpecialFunctions v2.6.1 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [64bff920] + StatisticalTraits v3.5.0 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.7 [4c63d2b9] + StatsFuns v1.5.2 [892a3eda] + StringManipulation v0.4.1 [5e66a065] + TableShowUtils v0.2.6 [3783bdb8] + TableTraits v1.0.1 [382cd787] + TableTraitsUtils v1.0.2 [bd369af6] + Tables v1.12.1 [4239201d] + ThreadSafeDicts v0.1.6 [f3112013] + TimeseriesFeatures v0.6.1 [3bb67fe8] + TranscodingStreams v0.11.3 [5c2747f8] + URIs v1.6.1 [2fbcfb34] + UniqueVectors v1.2.0 [ea10d353] + WeakRefStrings v1.4.2 [76eceee3] + WorkerUtilities v1.6.1 [a5390f91] + ZipFile v0.10.1 [458c3c95] + OpenSSL_jll v3.5.4+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [8a07c0c5] + catch22_jll v0.5.0+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.6.0 [7b1f6079] + FileWatching v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [4af54fe1] + LazyArtifacts v1.11.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.2.0 [44cfe95a] + Pkg v1.11.0 [de0858da] + Printf v1.11.0 [3fa0cd96] + REPL v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [1a1011a3] + SharedArrays v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.11.0 [f489334b] + StyledStrings v1.11.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] + LibCURL_jll v8.6.0+0 [e37daf67] + LibGit2_jll v1.7.2+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.6+0 [14a3606d] + MozillaCACerts_jll v2023.12.12 [4536629a] + OpenBLAS_jll v0.3.27+1 [05823500] + OpenLibm_jll v0.8.5+0 [bea87d4a] + SuiteSparse_jll v7.7.0+0 [83775a58] + Zlib_jll v1.2.13+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 [8e850ede] + nghttp2_jll v1.59.0+0 [3f19e933] + p7zip_jll v17.4.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.7s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 378.36s ################################################################################ # Testing # Testing ModalDecisionTrees Status `/tmp/jl_F8jt1p/Project.toml` [da404889] ARFFFiles v1.5.0 [1520ce14] AbstractTrees v0.4.5 ⌅ [324d7699] CategoricalArrays v0.10.8 ⌅ [af321ab8] CategoricalDistributions v0.1.15 [e3df1716] D3Trees v0.3.5 [a93c6f00] DataFrames v1.8.1 ⌅ [864edb3b] DataStructures v0.18.22 [31c24e10] Distributions v0.25.122 [1a297f60] FillArrays v1.14.0 [069b7b12] FunctionWrappers v1.1.3 [cd3eb016] HTTP v1.10.19 [6a3955dd] ImageFiltering v0.7.12 [916415d5] Images v0.26.2 [50d2b5c4] Lazy v0.15.1 [eb30cadb] MLDatasets v0.7.18 [add582a8] MLJ v0.21.0 [a7f614a8] MLJBase v1.9.2 [e80e1ace] MLJModelInterface v1.12.0 [6fafb56a] Memoization v0.2.2 [e54bda2e] ModalDecisionTrees v0.5.2 [8cc5100c] MultiData v0.1.4 [8b6db2d4] OpenML v0.3.2 [7f904dfe] PlutoUI v0.7.73 [92933f4c] ProgressMeter v1.11.0 [ce6b1742] RDatasets v0.7.7 [189a3867] Reexport v1.2.2 [c5292f4c] ResumableFunctions v1.0.4 [321657f4] ScientificTypes v3.1.1 [4475fa32] SoleBase v0.13.4 `https://github.com/aclai-lab/SoleBase.jl#devModal` [123f1ae1] SoleData v0.16.5 [b002da8f] SoleLogics v0.13.2 [4249d9c7] SoleModels v0.10.6 [2913bbd2] StatsBase v0.34.7 [bd369af6] Tables v1.12.1 [a5390f91] ZipFile v0.10.1 [b77e0a4c] InteractiveUtils v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_F8jt1p/Manifest.toml` [da404889] ARFFFiles v1.5.0 [621f4979] AbstractFFTs v1.5.0 [6e696c72] AbstractPlutoDingetjes v1.3.2 [1520ce14] AbstractTrees v0.4.5 [7d9f7c33] Accessors v0.1.42 [79e6a3ab] Adapt v4.4.0 [66dad0bd] AliasTables v1.1.3 [dce04be8] ArgCheck v2.5.0 [ec485272] ArnoldiMethod v0.4.0 [4fba245c] ArrayInterface v7.22.0 [a9b6321e] Atomix v1.1.2 [a963bdd2] AtomsBase v0.5.2 [13072b0f] AxisAlgorithms v1.1.0 [39de3d68] AxisArrays v0.4.8 ⌅ [ab4f0b2a] BFloat16s v0.5.1 [198e06fe] BangBang v0.4.6 [9718e550] Baselet v0.1.1 [50ba71b6] BitBasis v0.9.10 [d1d4a3ce] BitFlags v0.1.9 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 [e1450e63] BufferedStreams v1.2.2 [fa961155] CEnum v0.5.0 [2a0fbf3d] CPUSummary v0.2.7 [336ed68f] CSV v0.10.15 [aafaddc9] CatIndices v0.2.2 [acdeb78f] Catch22 v0.7.0 ⌅ [324d7699] CategoricalArrays v0.10.8 ⌅ [af321ab8] CategoricalDistributions v0.1.15 [d360d2e6] ChainRulesCore v1.26.0 [46823bd8] Chemfiles v0.10.43 [fb6a15b2] CloseOpenIntervals v0.1.13 [aaaa29a8] Clustering v0.15.8 [da1fd8a2] CodeTracking v2.0.1 [944b1d66] CodecZlib v0.7.8 [35d6a980] ColorSchemes v3.31.0 [3da002f7] ColorTypes v0.12.1 [c3611d14] ColorVectorSpace v0.11.0 [5ae59095] Colors v0.13.1 [861a8166] Combinatorics v1.0.3 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.18.1 [807dbc54] Compiler v0.1.1 [a33af91c] CompositionsBase v0.1.2 [ed09eef8] ComputationalResources v0.3.2 [f0e56b4a] ConcurrentUtilities v2.5.0 [187b0558] ConstructionBase v1.6.0 [6add18c4] ContextVariablesX v0.1.3 [150eb455] CoordinateTransformations v0.6.4 [adafc99b] CpuId v0.3.1 [a8cc5b0e] Crayons v4.1.1 [dc8bdbbb] CustomUnitRanges v1.0.2 [e3df1716] D3Trees v0.3.5 [9a962f9c] DataAPI v1.16.0 [124859b0] DataDeps v0.7.13 [a93c6f00] DataFrames v1.8.1 ⌅ [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [e7dc6d0d] DataValues v0.4.13 [244e2a9f] DefineSingletons v0.1.2 [8bb1440f] DelimitedFiles v1.9.1 [85a47980] Dictionaries v0.4.5 [0703355e] DimensionalData v0.29.24 [6e83dbb3] Discretizers v3.2.4 [b4f34e82] Distances v0.10.12 [31c24e10] Distributions v0.25.122 [ffbed154] DocStringExtensions v0.9.5 [792122b4] EarlyStopping v0.3.0 [460bff9d] ExceptionUnwrapping v0.1.11 [e2ba6199] ExprTools v0.1.10 [411431e0] Extents v0.1.6 [4f61f5a4] FFTViews v0.3.2 [7a1cc6ca] FFTW v1.10.0 [cc61a311] FLoops v0.2.2 [b9860ae5] FLoopsBase v0.1.1 [33837fe5] FeatureSelection v0.2.3 [5789e2e9] FileIO v1.17.1 [48062228] FilePathsBase v0.9.24 [1a297f60] FillArrays v1.14.0 [53c48c17] FixedPointNumbers v0.8.5 [069b7b12] FunctionWrappers v1.1.3 [46192b85] GPUArraysCore v0.2.0 [92fee26a] GZip v0.6.2 [c27321d9] Glob v1.3.1 [a2bd30eb] Graphics v1.1.3 [86223c79] Graphs v1.13.1 [f67ccb44] HDF5 v0.17.2 [cd3eb016] HTTP v1.10.19 [076d061b] HashArrayMappedTries v0.2.0 [2c695a8d] HistogramThresholding v0.3.1 [3e5b6fbb] HostCPUFeatures v0.1.17 [34004b35] HypergeometricFunctions v0.3.28 [47d2ed2b] Hyperscript v0.0.5 [ac1192a8] HypertextLiteral v0.9.5 [b5f81e59] IOCapture v1.0.0 [615f187c] IfElse v0.1.1 [2803e5a7] ImageAxes v0.6.12 [c817782e] ImageBase v0.1.7 [cbc4b850] ImageBinarization v0.3.1 [f332f351] ImageContrastAdjustment v0.3.12 [a09fc81d] ImageCore v0.10.5 [89d5987c] ImageCorners v0.1.3 [51556ac3] ImageDistances v0.2.17 [6a3955dd] ImageFiltering v0.7.12 [82e4d734] ImageIO v0.6.9 [6218d12a] ImageMagick v1.4.2 [bc367c6b] ImageMetadata v0.9.10 ⌃ [787d08f9] ImageMorphology v0.4.6 [2996bd0c] ImageQualityIndexes v0.3.7 ⌃ [80713f31] ImageSegmentation v1.9.0 [4e3cecfd] ImageShow v0.3.8 [02fcd773] ImageTransformations v0.10.2 [916415d5] Images v0.26.2 [313cdc1a] Indexing v1.1.1 [9b13fd28] IndirectArrays v1.0.0 [d25df0c9] Inflate v0.1.5 [22cec73e] InitialValues v0.3.1 [842dd82b] InlineStrings v1.4.5 [1d092043] IntegralArrays v0.1.6 [85a1e053] Interfaces v0.3.2 [7d512f48] InternedStrings v0.7.0 [a98d9a8b] Interpolations v0.16.2 [8197267c] IntervalSets v0.7.11 [3587e190] InverseFunctions v0.1.17 [41ab1584] InvertedIndices v1.3.1 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [1c8ee90f] IterableTables v1.0.0 [b3c1a2ee] IterationControl v0.5.4 [82899510] IteratorInterfaceExtensions v1.0.0 ⌅ [033835bb] JLD2 v0.5.15 [692b3bcd] JLLWrappers v1.7.1 ⌅ [682c06a0] JSON v0.21.4 [0f8b85d8] JSON3 v1.14.3 [b835a17e] JpegTurbo v0.1.6 [aa1ae85d] JuliaInterpreter v0.10.6 [b14d175d] JuliaVariables v0.2.4 [63c18a36] KernelAbstractions v0.9.38 [b964fa9f] LaTeXStrings v1.4.0 [a5e1c1ea] LatinHypercubeSampling v1.9.0 [10f19ff3] LayoutPointers v0.1.17 [50d2b5c4] Lazy v0.15.1 [8cdb02fc] LazyModules v0.3.1 ⌅ [92ad9a40] LearnAPI v1.0.1 [2ab3a3ac] LogExpFunctions v0.3.29 [e6f89c97] LoggingExtras v1.2.0 [bdcacae8] LoopVectorization v0.12.173 [6f1432cf] LoweredCodeUtils v3.4.4 [23992714] MAT v0.10.7 [6c6e2e6c] MIMEs v1.1.0 [c2834f40] MLCore v1.0.0 [eb30cadb] MLDatasets v0.7.18 ⌅ [64a0f543] MLFlowClient v0.5.1 [add582a8] MLJ v0.21.0 [45f359ea] MLJBalancing v0.1.5 [a7f614a8] MLJBase v1.9.2 [50ed68f4] MLJEnsembles v0.4.3 [7b7b8358] MLJFlow v0.5.0 [614be32b] MLJIteration v0.6.3 [e80e1ace] MLJModelInterface v1.12.0 [d491faf4] MLJModels v0.18.1 [23777cdb] MLJTransforms v0.1.3 [03970b2e] MLJTuning v0.8.8 [d8e11817] MLStyle v0.4.17 [f1d291b0] MLUtils v0.4.8 [3da0fdf6] MPIPreferences v0.1.11 [1914dd2f] MacroTools v0.5.16 [d125e4d3] ManualMemory v0.1.8 [dbb5928d] MappedArrays v0.4.2 [739be429] MbedTLS v1.1.9 [6fafb56a] Memoization v0.2.2 [626554b9] MetaGraphs v0.8.1 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 [78c3b35d] Mocking v0.8.1 [e54bda2e] ModalDecisionTrees v0.5.2 [e94cdb99] MosaicViews v0.3.4 [8cc5100c] MultiData v0.1.4 [872c559c] NNlib v0.9.31 [15e1cf62] NPZ v0.4.3 [77ba4419] NaNMath v1.1.3 [71a1bf82] NameResolution v0.1.5 [b8a86587] NearestNeighbors v0.4.22 [f09324ee] Netpbm v1.1.1 [6fe1bfb0] OffsetArrays v1.17.0 [52e1d378] OpenEXR v0.3.3 [8b6db2d4] OpenML v0.3.2 [4d8831e6] OpenSSL v1.5.0 [bac558e1] OrderedCollections v1.8.1 [90014a1f] PDMats v0.11.36 [f57f5aa1] PNGFiles v0.4.4 [65ce6f38] PackageExtensionCompat v1.0.2 [5432bcbf] PaddedViews v0.5.12 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.3 [7b2266bf] PeriodicTable v1.2.1 [fbb45041] Pickle v0.3.6 [eebad327] PkgVersion v0.3.3 [7f904dfe] PlutoUI v0.7.73 [1d0040c9] PolyesterWeave v0.2.2 [f27b6e38] Polynomials v4.1.0 [2dfb63ee] PooledArrays v1.4.3 ⌅ [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.5.0 [8162dcfd] PrettyPrint v0.2.0 [54e16d92] PrettyPrinting v0.4.2 ⌅ [08abe8d2] PrettyTables v2.4.0 [33c8b6b6] ProgressLogging v0.1.5 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [4b34888f] QOI v1.0.1 [1fd47b50] QuadGK v2.11.2 [94ee1d12] Quaternions v0.7.6 [1a8c2f83] Query v1.0.0 [2aef5ad7] QueryOperators v0.9.3 ⌅ [df47a6cb] RData v0.8.3 [ce6b1742] RDatasets v0.7.7 [b3c3ace0] RangeArrays v0.3.2 [c84ed2f1] Ratios v0.4.5 [c1ae055f] RealDot v0.1.0 [3cdcf5f2] RecipesBase v1.3.4 [189a3867] Reexport v1.2.2 [dee08c22] RegionTrees v0.3.2 [05181044] RelocatableFolders v1.0.1 [ae029012] Requires v1.3.1 [c5292f4c] ResumableFunctions v1.0.4 [295af30f] Revise v3.11.0 [79098fc4] Rmath v0.9.0 [6038ab10] Rotations v1.7.1 [fdea26ae] SIMD v3.7.2 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 [431bcebd] SciMLPublic v1.0.0 [321657f4] ScientificTypes v3.1.1 [30f210dd] ScientificTypesBase v3.0.0 [7e506255] ScopedValues v1.5.0 [6c6a2e73] Scratch v1.3.0 [91c51154] SentinelArrays v1.4.8 [efcf1570] Setfield v1.1.2 [605ecd9f] ShowCases v0.1.0 [777ac1f9] SimpleBufferStream v1.2.0 [699a6c99] SimpleTraits v0.9.5 [47aef6b3] SimpleWeightedGraphs v1.5.0 [45858cf5] Sixel v0.1.5 [4475fa32] SoleBase v0.13.4 `https://github.com/aclai-lab/SoleBase.jl#devModal` [123f1ae1] SoleData v0.16.5 [b002da8f] SoleLogics v0.13.2 [4249d9c7] SoleModels v0.10.6 [a2af1166] SortingAlgorithms v1.2.2 [276daf66] SpecialFunctions v2.6.1 [171d559e] SplittablesBase v0.1.15 [860ef19b] StableRNGs v1.0.3 [cae243ae] StackViews v0.1.2 [aedffcd0] Static v1.3.1 [0d7ed370] StaticArrayInterface v1.8.0 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.4 ⌅ [a19d573c] StatisticalMeasures v0.2.1 [c062fc1d] StatisticalMeasuresBase v0.1.3 [64bff920] StatisticalTraits v3.5.0 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 [2913bbd2] StatsBase v0.34.7 [4c63d2b9] StatsFuns v1.5.2 [4db3bf67] StridedViews v0.4.1 [69024149] StringEncodings v0.3.7 [892a3eda] StringManipulation v0.4.1 [856f2bd8] StructTypes v1.11.0 [dc5dba14] TZJData v1.5.0+2025b [ab02a1b2] TableOperations v1.2.0 [5e66a065] TableShowUtils v0.2.6 [3783bdb8] TableTraits v1.0.1 [382cd787] TableTraitsUtils v1.0.2 [bd369af6] Tables v1.12.1 [62fd8b95] TensorCore v0.1.1 [4239201d] ThreadSafeDicts v0.1.6 [8290d209] ThreadingUtilities v0.5.5 [731e570b] TiffImages v0.11.6 [06e1c1a7] TiledIteration v0.5.0 [f269a46b] TimeZones v1.22.1 [f3112013] TimeseriesFeatures v0.6.1 [3bb67fe8] TranscodingStreams v0.11.3 [28d57a85] Transducers v0.4.85 [410a4b4d] Tricks v0.1.12 [5c2747f8] URIs v1.6.1 [3a884ed6] UnPack v1.0.2 [2fbcfb34] UniqueVectors v1.2.0 [1986cc42] Unitful v1.25.1 [a7773ee8] UnitfulAtomic v1.0.0 [013be700] UnsafeAtomics v0.3.0 [3d5dd08c] VectorizationBase v0.21.72 [ea10d353] WeakRefStrings v1.4.2 [e3aaa7dc] WebP v0.1.3 [efce3f68] WoodburyMatrices v1.0.0 [76eceee3] WorkerUtilities v1.6.1 [a5390f91] ZipFile v0.10.1 [6e34b625] Bzip2_jll v1.0.9+0 [78a364fa] Chemfiles_jll v0.10.4+0 [f5851436] FFTW_jll v3.3.11+0 [61579ee1] Ghostscript_jll v9.55.1+0 [59f7168a] Giflib_jll v5.2.3+0 [0234f1f7] HDF5_jll v1.14.6+0 [e33a78d0] Hwloc_jll v2.12.2+0 [c73af94c] ImageMagick_jll v7.1.2005+0 [905a6f67] Imath_jll v3.1.11+0 [1d5cc7b8] IntelOpenMP_jll v2025.2.0+0 [aacddb02] JpegTurbo_jll v3.1.3+0 [88015f11] LERC_jll v4.0.1+0 [7e76a0d4] Libglvnd_jll v1.7.1+1 [94ce4f54] Libiconv_jll v1.18.0+0 [89763e89] Libtiff_jll v4.7.2+0 [d3a379c0] LittleCMS_jll v2.17.0+0 [856f044c] MKL_jll v2025.2.0+0 [7cb0a576] MPICH_jll v4.3.2+0 [f1f71cc9] MPItrampoline_jll v5.5.4+0 [9237b28f] MicrosoftMPI_jll v10.1.4+3 [18a262bb] OpenEXR_jll v3.2.4+0 [643b3616] OpenJpeg_jll v2.5.5+0 [fe0851c0] OpenMPI_jll v5.0.8+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 ⌅ [02c8fc9c] XML2_jll v2.13.9+0 [ffd25f8a] XZ_jll v5.8.1+0 [4f6342f7] Xorg_libX11_jll v1.8.12+0 [0c0b7dd1] Xorg_libXau_jll v1.0.13+0 [a3789734] Xorg_libXdmcp_jll v1.1.6+0 [1082639a] Xorg_libXext_jll v1.3.7+0 [a65dc6b1] Xorg_libpciaccess_jll v0.18.1+0 [c7cfdc94] Xorg_libxcb_jll v1.17.1+0 [c5fb5394] Xorg_xtrans_jll v1.6.0+0 [3161d3a3] Zstd_jll v1.5.7+1 [8a07c0c5] catch22_jll v0.5.0+0 [477f73a3] libaec_jll v1.1.4+0 [b53b4c65] libpng_jll v1.6.50+0 [075b6546] libsixel_jll v1.10.5+0 [c5f90fcd] libwebp_jll v1.6.0+0 [337d8026] libzip_jll v1.11.3+0 [1317d2d5] oneTBB_jll v2022.0.0+1 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [4af54fe1] LazyArtifacts v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.11.0 [de0858da] Printf v1.11.0 [3fa0cd96] REPL v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [1a1011a3] SharedArrays v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.11.0 [f489334b] StyledStrings v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.6.0+0 [e37daf67] LibGit2_jll v1.7.2+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.6+0 [14a3606d] MozillaCACerts_jll v2023.12.12 [4536629a] OpenBLAS_jll v0.3.27+1 [05823500] OpenLibm_jll v0.8.5+0 [bea87d4a] SuiteSparse_jll v7.7.0+0 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.59.0+0 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition _dummy_backedge() in module Memoization at /home/pkgeval/.julia/packages/Memoization/ON3Za/src/Memoization.jl:49 overwritten at /home/pkgeval/.julia/packages/Memoization/ON3Za/src/Memoization.jl:65. Julia version: 1.11.7 ################################################## TEST: base.jl ┌ Warning: Parity encountered in bestguess! counts (2 elements): Dict("Class_1" => 1, "Class_2" => 1), argmax: Class_1, max: 1 (sum = 2) └ @ SoleBase ~/.julia/packages/SoleBase/KRa1C/src/machine-learning-utils.jl:96 ┌ Warning: Parity encountered in bestguess! counts (2 elements): Dict("Class_1" => 1, "Class_2" => 1), argmax: Class_1, max: 1 (sum = 2) └ @ SoleBase ~/.julia/packages/SoleBase/KRa1C/src/machine-learning-utils.jl:96 ================================================== ################################################## TEST: classification/japanesevowels.jl Precompiling MLJ... 9071.7 ms ✓ KernelAbstractions 2283.5 ms ✓ LatinHypercubeSampling 3533.7 ms ✓ MLFlowClient 16183.0 ms ✓ MLJTransforms 24217.4 ms ✓ MLJModels 2268.3 ms ✓ KernelAbstractions → SparseArraysExt 1742.1 ms ✓ KernelAbstractions → LinearAlgebraExt 14324.4 ms ✓ NNlib 3095.2 ms ✓ NNlib → NNlibSpecialFunctionsExt 18746.2 ms ✓ MLUtils 16706.2 ms ✓ StatisticalMeasuresBase 45400.7 ms ✓ StatisticalMeasures 20601.9 ms ✓ MLJBase 14956.8 ms ✓ MLJEnsembles 10438.9 ms ✓ StatisticalMeasures → ScientificTypesExt 16272.9 ms ✓ MLJBalancing 12203.4 ms ✓ MLJBase → DefaultMeasuresExt 18193.0 ms ✓ MLJIteration 16438.8 ms ✓ MLJTuning 15315.6 ms ✓ MLJFlow 23893.7 ms ✓ MLJ 21 dependencies successfully precompiled in 314 seconds. 190 already precompiled. Precompiling BangBangDataFramesExt... 5298.1 ms ✓ BangBang → BangBangDataFramesExt 1 dependency successfully precompiled in 7 seconds. 45 already precompiled. Precompiling TransducersDataFramesExt... 5219.1 ms ✓ Transducers → TransducersDataFramesExt 1 dependency successfully precompiled in 7 seconds. 60 already precompiled. Precompiling DimensionalDataChainRulesCoreExt... 1685.7 ms ✓ DimensionalData → DimensionalDataChainRulesCoreExt 1 dependency successfully precompiled in 2 seconds. 33 already precompiled. [ Info: Downloading dataset 375. ┌ Warning: Base.download is deprecated; use Downloads.download instead │ caller = load(id::Int64; maxbytes::Nothing) at data.jl:73 └ @ OpenML ~/.julia/packages/OpenML/cONhN/src/data.jl:73 ┌ Warning: Conversion to OrderedDict is deprecated for unordered associative containers (in this case, Dict{Any, Any}). Use an ordered or sorted associative type, such as SortedDict and OrderedDict. │ caller = DictColumnTable at dicts.jl:3 [inlined] └ @ Core ~/.julia/packages/Tables/cRTb7/src/dicts.jl:3 ┌ Warning: Conversion to OrderedDict is deprecated for unordered associative containers (in this case, Dict{Symbol, AbstractVector}). Use an ordered or sorted associative type, such as SortedDict and OrderedDict. │ caller = DictColumnTable at dicts.jl:3 [inlined] └ @ Core ~/.julia/packages/Tables/cRTb7/src/dicts.jl:3 [ Info: Precomputing logiset... [ Info: Training machine(ModalDecisionTree(max_depth = nothing, …), …). 166.930257 seconds (121.45 M allocations: 6.282 GiB, 1.45% gc time, 97.76% compilation time) ▣ {1}(⟨G⟩(min[A] < 0.92)) ├✔ {1}(⟨G⟩((min[A] < 0.92) ∧ (max[B] ≥ -0.41))) │ ├✔ {1}(⟨G⟩((min[A] < 0.92) ∧ (max[B] ≥ -0.41) ∧ (min[G] ≥ -0.15))) │ │ ├✔ 3 │ │ └✘ 4 │ └✘ {1}(⟨G⟩((min[A] < 0.92) ∧ (min[J] ≥ -0.07))) │ ├✔ 3 │ └✘ 2 └✘ 1 ▣ {1}(⟨G⟩(min[a] < 0.91504)) ├✔ {1}(⟨G⟩((min[a] < 0.91504) ∧ (max[b] ≥ -0.408784))) │ ├✔variable_names_map = ["a", "b"] {1}(⟨G⟩((min[a] < 0.91504) ∧ (max[b] ≥ -0.408784) ∧ (min[?V7?] ≥ -0.150238))) │ │ ├✔ 3 │ │ └✘ 4 │ └✘variable_names_map = ["a", "b"] {1}(⟨G⟩((min[a] < 0.91504) ∧ (min[?V10?] ≥ -0.066248))) │ ├✔ 3 │ └✘ 2 └✘ 1 ▣ {1}(⟨G⟩(min[a] < 0.91504)) ├✔ {1}(⟨G⟩((min[a] < 0.91504) ∧ (max[b] ≥ -0.408784))) │ ├✔variable_names_map = ["a", "b"] {1}(⟨G⟩((min[a] < 0.91504) ∧ (max[b] ≥ -0.408784) ∧ (min[?V7?] ≥ -0.150238))) │ │ ├✔ 3 │ │ └✘ 4 │ └✘variable_names_map = ["a", "b"] {1}(⟨G⟩((min[a] < 0.91504) ∧ (min[?V10?] ≥ -0.066248))) │ ├✔ 3 │ └✘ 2 └✘ 1 ▣ {1}(⟨G⟩(min[A] < 0.91504)) ├✔ {1}(⟨G⟩((min[A] < 0.91504) ∧ (max[B] ≥ -0.408784))) │ ├✔ {1}(⟨G⟩((min[A] < 0.91504) ∧ (max[B] ≥ -0.408784) ∧ (min[G] ≥ -0.150238))) │ │ ├✔ 3 │ │ └✘ 4 │ └✘ {1}(⟨G⟩((min[A] < 0.91504) ∧ (min[J] ≥ -0.066248))) │ ├✔ 3 │ └✘ 2 └✘ 1 ▣ {1}(⟨G⟩(min[A] < 0.91504)) ├✔ {1}(⟨G⟩((min[A] < 0.91504) ∧ (max[B] ≥ -0.408784))) │ ├✔ {1}(⟨G⟩((min[A] < 0.91504) ∧ (max[B] ≥ -0.408784) ∧ (min[G] ≥ -0.150238))) │ │ ├✔ 3 │ │ └✘ 4 │ └✘ {1}(⟨G⟩((min[A] < 0.91504) ∧ (min[J] ≥ -0.066248))) │ ├✔ 3 │ └✘ 2 └✘ 1 ▣ {1}(⟨G⟩(min[V1] < 0.91504)) ├✔ {1}(⟨G⟩((min[V1] < 0.91504) ∧ (max[V2] ≥ -0.408784))) │ ├✔ {1}(⟨G⟩((min[V1] < 0.91504) ∧ (max[V2] ≥ -0.408784) ∧ (min[V7] ≥ -0.150238))) │ │ ├✔ 3 │ │ └✘ 4 │ └✘ {1}(⟨G⟩((min[V1] < 0.91504) ∧ (min[V10] ≥ -0.066248))) │ ├✔ 3 │ └✘ 2 └✘ 1 ▣ (⟨G⟩(min[1] < 0.91504)) ├✔ (⟨G⟩((min[1] < 0.91504) ∧ (max[2] ≥ -0.408784))) │ ├✔ (⟨G⟩((min[1] < 0.91504) ∧ (max[2] ≥ -0.408784) ∧ (min[7] ≥ -0.150238))) │ │ ├✔ 3 │ │ └✘ 4 │ └✘ (⟨G⟩((min[1] < 0.91504) ∧ (min[10] ≥ -0.066248))) │ ├✔ 3 │ └✘ 2 └✘ 1 [ Info: Training machine(ModalDecisionTree(max_depth = nothing, …), …). 38.755526 seconds (39.55 M allocations: 1.583 GiB, 1.13% gc time, 91.51% compilation time) [ Info: Precomputing logiset... [ Info: Training machine(ModalDecisionTree(max_depth = nothing, …), …). 3.808658 seconds (27.70 M allocations: 996.174 MiB, 5.94% gc time, 9.59% compilation time) [ Info: Precomputing logiset... [ Info: Training machine(ModalDecisionTree(max_depth = nothing, …), …). 11.995045 seconds (22.76 M allocations: 840.083 MiB, 1.32% gc time, 79.26% compilation time) [ Info: Precomputing logiset... [ Info: Training machine(ModalDecisionTree(max_depth = nothing, …), …). 1.127113 seconds (7.12 M allocations: 217.002 MiB, 6.92% gc time, 17.85% compilation time) [ Info: Precomputing logiset... [ Info: Training machine(ModalDecisionTree(max_depth = nothing, …), …). 9.695564 seconds (15.41 M allocations: 583.439 MiB, 9.37% gc time, 74.51% compilation time) ┌ Warning: An absolute n_subfeatures was provided 2. It is recommended to use relative values (between 0 and 1), interpreted as the share of the random portion of feature space explored at each split. └ @ ModalDecisionTrees.MLJInterface ~/.julia/packages/ModalDecisionTrees/WJRxy/src/interfaces/MLJ/ModalDecisionTree.jl:120 [ Info: Precomputing logiset... [ Info: Training machine(ModalDecisionTree(max_depth = nothing, …), …). 12.577021 seconds (13.07 M allocations: 521.388 MiB, 1.37% gc time, 90.22% compilation time) [ Info: Precomputing logiset... [ Info: Training machine(ModalDecisionTree(max_depth = nothing, …), …). 6.685462 seconds (19.51 M allocations: 717.350 MiB, 2.10% gc time, 66.83% compilation time) [ Info: Precomputing logiset... [ Info: Training machine(ModalDecisionTree(max_depth = nothing, …), …). 3.938536 seconds (27.95 M allocations: 1011.173 MiB, 4.98% gc time, 13.20% compilation time) [ Info: Precomputing logiset... [ Info: Training machine(ModalDecisionTree(max_depth = nothing, …), …). ┌ Error: Problem fitting the machine machine(ModalDecisionTree(max_depth = nothing, …), …). └ @ MLJBase ~/.julia/packages/MLJBase/GY2fM/src/machines.jl:695 [ Info: Running type checks... [ Info: Type checks okay. [ Info: Precomputing logiset... [ Info: Training machine(ModalDecisionTree(max_depth = nothing, …), …). ┌ Error: Problem fitting the machine machine(ModalDecisionTree(max_depth = nothing, …), …). └ @ MLJBase ~/.julia/packages/MLJBase/GY2fM/src/machines.jl:695 [ Info: Running type checks... [ Info: Type checks okay. [ Info: Precomputing logiset... [ Info: Training machine(ModalDecisionTree(max_depth = nothing, …), …). ┌ Error: Problem fitting the machine machine(ModalDecisionTree(max_depth = nothing, …), …). └ @ MLJBase ~/.julia/packages/MLJBase/GY2fM/src/machines.jl:695 [ Info: Running type checks... [ Info: Type checks okay. [ Info: Precomputing logiset... [ Info: Training machine(ModalDecisionTree(max_depth = nothing, …), …). ┌ Error: Problem fitting the machine machine(ModalDecisionTree(max_depth = nothing, …), …). └ @ MLJBase ~/.julia/packages/MLJBase/GY2fM/src/machines.jl:695 [ Info: Running type checks... [ Info: Type checks okay. ┌ Warning: AbstractArray of 3 dimensions and size (7, 12, 640) encountered. This will be interpreted as a dataset of 640 instances, 12 variables, and channel size (7,). └ @ SoleData ~/.julia/packages/SoleData/XeyXX/src/utils/autologiset-tools.jl:184 [ Info: Precomputing logiset... Computing logiset... 0%|▏ | ETA: 0:07:05 Computing logiset... 100%|███████████████████████████████| Time: 0:00:03 [ Info: Training machine(ModalDecisionTree(max_depth = nothing, …), …). 38.815162 seconds (219.25 M allocations: 8.885 GiB, 3.61% gc time, 26.76% compilation time) [ Info: Training machine(ModalDecisionTree(max_depth = nothing, …), …). 24.676966 seconds (174.64 M allocations: 7.017 GiB, 4.36% gc time, 2.33% compilation time) [ Info: Precomputing logiset... [ Info: Training machine(ModalAdaBoost(max_depth = 1, …), …). Applying trees... 8%|██▊ | ETA: 0:00:39 Applying trees... 100%|██████████████████████████████████| Time: 0:00:03 ▣ Ensemble{String} of 25 models of type DecisionTree{String} ├[1/25]┐ {1}(⟨G⟩(minimum⁻[A] < 0.92)) │ ├✔ 3 : (ninstances = 56, ncovered = 56, confidence = 0.45, lift = 1.0) │ └✘ 1 : (ninstances = 24, ncovered = 24, confidence = 0.92, lift = 1.0) ├[2/25]┐ {1}(⟨G⟩(minimum⁺[B] ≥ -0.41)) │ ├✔ 4 : (ninstances = 51, ncovered = 51, confidence = 0.14, lift = 1.0) │ └✘ 2 : (ninstances = 29, ncovered = 29, confidence = 0.86, lift = 1.0) ├[3/25]┐ {1}(⟨G⟩(minimum⁻[A] < 0.92)) │ ├✔ 3 : (ninstances = 56, ncovered = 56, confidence = 0.45, lift = 1.0) │ └✘ 1 : (ninstances = 24, ncovered = 24, confidence = 0.92, lift = 1.0) ├[4/25]┐ {1}(⟨G⟩(minimum⁻[A] < 0.56)) │ ├✔ 2 : (ninstances = 48, ncovered = 48, confidence = 0.5, lift = 1.0) │ └✘ 4 : (ninstances = 32, ncovered = 32, confidence = 0.19, lift = 1.0) ├[5/25]┐ {1}(⟨G⟩(minimum⁺[A] ≥ 1.32)) │ ├✔ 1 : (ninstances = 20, ncovered = 20, confidence = 1.0, lift = 1.0) │ └✘ 3 : (ninstances = 60, ncovered = 60, confidence = 0.42, lift = 1.0) ├[6/25]┐ {1}(⟨G⟩(minimum⁺[B] ≥ -0.41)) │ ├✔ 4 : (ninstances = 51, ncovered = 51, confidence = 0.14, lift = 1.0) │ └✘ 2 : (ninstances = 29, ncovered = 29, confidence = 0.86, lift = 1.0) ├[7/25]┐ {1}(⟨G⟩(minimum⁻[A] < 1.02)) │ ├✔ 4 : (ninstances = 58, ncovered = 58, confidence = 0.14, lift = 1.0) │ └✘ 1 : (ninstances = 22, ncovered = 22, confidence = 0.95, lift = 1.0) ├[8/25]┐ {1}(⟨G⟩(minimum⁺[B] ≥ -0.34)) │ ├✔ 3 : (ninstances = 48, ncovered = 48, confidence = 0.46, lift = 1.0) │ └✘ 2 : (ninstances = 32, ncovered = 32, confidence = 0.78, lift = 1.0) ├[9/25]┐ {1}(⟨G⟩(minimum⁺[C] ≥ 0.43)) │ ├✔ 1 : (ninstances = 20, ncovered = 20, confidence = 0.95, lift = 1.0) │ └✘ 4 : (ninstances = 60, ncovered = 60, confidence = 0.13, lift = 1.0) ├[10/25]┐ {1}(⟨G⟩(minimum⁻[A] < 0.92)) │ ├✔ 3 : (ninstances = 56, ncovered = 56, confidence = 0.45, lift = 1.0) │ └✘ 1 : (ninstances = 24, ncovered = 24, confidence = 0.92, lift = 1.0) ├[11/25]┐ {1}(⟨G⟩(minimum⁺[J] ≥ -0.14)) │ ├✔ 4 : (ninstances = 39, ncovered = 39, confidence = 0.15, lift = 1.0) │ └✘ 2 : (ninstances = 41, ncovered = 41, confidence = 0.54, lift = 1.0) ├[12/25]┐ {1}(⟨G⟩(minimum⁻[A] < 0.92)) │ ├✔ 3 : (ninstances = 56, ncovered = 56, confidence = 0.45, lift = 1.0) │ └✘ 1 : (ninstances = 24, ncovered = 24, confidence = 0.92, lift = 1.0) ├[13/25]┐ {1}(⟨G⟩(minimum⁻[I] < -0.24)) │ ├✔ 2 : (ninstances = 46, ncovered = 46, confidence = 0.48, lift = 1.0) │ └✘ 4 : (ninstances = 34, ncovered = 34, confidence = 0.24, lift = 1.0) ├[14/25]┐ {1}(⟨G⟩(minimum⁻[F] < -0.58)) │ ├✔ 3 : (ninstances = 22, ncovered = 22, confidence = 0.91, lift = 1.0) │ └✘ 2 : (ninstances = 58, ncovered = 58, confidence = 0.43, lift = 1.0) ├[15/25]┐ {1}(⟨G⟩(minimum⁻[D] < -0.57)) │ ├✔ 3 : (ninstances = 58, ncovered = 58, confidence = 0.41, lift = 1.0) │ └✘ 1 : (ninstances = 22, ncovered = 22, confidence = 0.86, lift = 1.0) ├[16/25]┐ {1}(⟨G⟩(minimum⁺[D] ≥ -0.45)) │ ├✔ 2 : (ninstances = 46, ncovered = 46, confidence = 0.24, lift = 1.0) │ └✘ 4 : (ninstances = 34, ncovered = 34, confidence = 0.24, lift = 1.0) ├[17/25]┐ {1}(⟨G⟩(minimum⁻[A] < 0.92)) │ ├✔ 3 : (ninstances = 56, ncovered = 56, confidence = 0.45, lift = 1.0) │ └✘ 1 : (ninstances = 24, ncovered = 24, confidence = 0.92, lift = 1.0) ├[18/25]┐ {1}(⟨G⟩(minimum⁺[I] ≥ 0.08)) │ ├✔ 4 : (ninstances = 14, ncovered = 14, confidence = 0.43, lift = 1.0) │ └✘ 2 : (ninstances = 66, ncovered = 66, confidence = 0.38, lift = 1.0) ├[19/25]┐ {1}(⟨G⟩(minimum⁻[A] < 1.02)) │ ├✔ 3 : (ninstances = 58, ncovered = 58, confidence = 0.43, lift = 1.0) │ └✘ 1 : (ninstances = 22, ncovered = 22, confidence = 0.95, lift = 1.0) ├[20/25]┐ {1}(⟨G⟩(minimum⁺[D] ≥ -0.44)) │ ├✔ 1 : (ninstances = 44, ncovered = 44, confidence = 0.48, lift = 1.0) │ └✘ 4 : (ninstances = 36, ncovered = 36, confidence = 0.22, lift = 1.0) ├[21/25]┐ {1}(⟨G⟩(minimum⁻[B] < -0.62)) │ ├✔ 2 : (ninstances = 33, ncovered = 33, confidence = 0.76, lift = 1.0) │ └✘ 3 : (ninstances = 47, ncovered = 47, confidence = 0.47, lift = 1.0) ├[22/25]┐ {1}(⟨G⟩(minimum⁺[A] ≥ 1.32)) │ ├✔ 1 : (ninstances = 20, ncovered = 20, confidence = 1.0, lift = 1.0) │ └✘ 4 : (ninstances = 60, ncovered = 60, confidence = 0.13, lift = 1.0) ├[23/25]┐ {1}(⟨G⟩(minimum⁺[J] ≥ -0.07)) │ ├✔ 3 : (ninstances = 22, ncovered = 22, confidence = 0.73, lift = 1.0) │ └✘ 2 : (ninstances = 58, ncovered = 58, confidence = 0.41, lift = 1.0) ├[24/25]┐ {1}(⟨G⟩(minimum⁺[C] ≥ 0.43)) │ ├✔ 1 : (ninstances = 20, ncovered = 20, confidence = 0.95, lift = 1.0) │ └✘ 4 : (ninstances = 60, ncovered = 60, confidence = 0.13, lift = 1.0) └[25/25]┐ {1}(⟨G⟩(minimum⁺[C] ≥ 0.21)) ├✔ 2 : (ninstances = 58, ncovered = 58, confidence = 0.43, lift = 1.0) └✘ 3 : (ninstances = 22, ncovered = 22, confidence = 0.91, lift = 1.0) ▣ Ensemble{String} of 25 models of type DecisionTree{String} ├[1/25]┐ {1}(⟨G⟩(minimum⁻[A] < 0.91504)) │ ├✔ 3 : (ninstances = 56, ncovered = 56, confidence = 0.45, lift = 1.0) │ └✘ 1 : (ninstances = 24, ncovered = 24, confidence = 0.92, lift = 1.0) ├[2/25]┐ {1}(⟨G⟩(minimum⁺[B] ≥ -0.408784)) │ ├✔ 4 : (ninstances = 51, ncovered = 51, confidence = 0.14, lift = 1.0) │ └✘ 2 : (ninstances = 29, ncovered = 29, confidence = 0.86, lift = 1.0) ├[3/25]┐ {1}(⟨G⟩(minimum⁻[A] < 0.91504)) │ ├✔ 3 : (ninstances = 56, ncovered = 56, confidence = 0.45, lift = 1.0) │ └✘ 1 : (ninstances = 24, ncovered = 24, confidence = 0.92, lift = 1.0) ├[4/25]┐ {1}(⟨G⟩(minimum⁻[A] < 0.562459)) │ ├✔ 2 : (ninstances = 48, ncovered = 48, confidence = 0.5, lift = 1.0) │ └✘ 4 : (ninstances = 32, ncovered = 32, confidence = 0.19, lift = 1.0) ├[5/25]┐ {1}(⟨G⟩(minimum⁺[A] ≥ 1.320922)) │ ├✔ 1 : (ninstances = 20, ncovered = 20, confidence = 1.0, lift = 1.0) │ └✘ 3 : (ninstances = 60, ncovered = 60, confidence = 0.42, lift = 1.0) ├[6/25]┐ {1}(⟨G⟩(minimum⁺[B] ≥ -0.408784)) │ ├✔ 4 : (ninstances = 51, ncovered = 51, confidence = 0.14, lift = 1.0) │ └✘ 2 : (ninstances = 29, ncovered = 29, confidence = 0.86, lift = 1.0) ├[7/25]┐ {1}(⟨G⟩(minimum⁻[A] < 1.019561)) │ ├✔ 4 : (ninstances = 58, ncovered = 58, confidence = 0.14, lift = 1.0) │ └✘ 1 : (ninstances = 22, ncovered = 22, confidence = 0.95, lift = 1.0) ├[8/25]┐ {1}(⟨G⟩(minimum⁺[B] ≥ -0.343207)) │ ├✔ 3 : (ninstances = 48, ncovered = 48, confidence = 0.46, lift = 1.0) │ └✘ 2 : (ninstances = 32, ncovered = 32, confidence = 0.78, lift = 1.0) ├[9/25]┐ {1}(⟨G⟩(minimum⁺[C] ≥ 0.434608)) │ ├✔ 1 : (ninstances = 20, ncovered = 20, confidence = 0.95, lift = 1.0) │ └✘ 4 : (ninstances = 60, ncovered = 60, confidence = 0.13, lift = 1.0) ├[10/25]┐ {1}(⟨G⟩(minimum⁻[A] < 0.91504)) │ ├✔ 3 : (ninstances = 56, ncovered = 56, confidence = 0.45, lift = 1.0) │ └✘ 1 : (ninstances = 24, ncovered = 24, confidence = 0.92, lift = 1.0) ├[11/25]┐ {1}(⟨G⟩(minimum⁺[J] ≥ -0.144559)) │ ├✔ 4 : (ninstances = 39, ncovered = 39, confidence = 0.15, lift = 1.0) │ └✘ 2 : (ninstances = 41, ncovered = 41, confidence = 0.54, lift = 1.0) ├[12/25]┐ {1}(⟨G⟩(minimum⁻[A] < 0.91504)) │ ├✔ 3 : (ninstances = 56, ncovered = 56, confidence = 0.45, lift = 1.0) │ └✘ 1 : (ninstances = 24, ncovered = 24, confidence = 0.92, lift = 1.0) ├[13/25]┐ {1}(⟨G⟩(minimum⁻[I] < -0.243571)) │ ├✔ 2 : (ninstances = 46, ncovered = 46, confidence = 0.48, lift = 1.0) │ └✘ 4 : (ninstances = 34, ncovered = 34, confidence = 0.24, lift = 1.0) ├[14/25]┐ {1}(⟨G⟩(minimum⁻[F] < -0.575495)) │ ├✔ 3 : (ninstances = 22, ncovered = 22, confidence = 0.91, lift = 1.0) │ └✘ 2 : (ninstances = 58, ncovered = 58, confidence = 0.43, lift = 1.0) ├[15/25]┐ {1}(⟨G⟩(minimum⁻[D] < -0.568272)) │ ├✔ 3 : (ninstances = 58, ncovered = 58, confidence = 0.41, lift = 1.0) │ └✘ 1 : (ninstances = 22, ncovered = 22, confidence = 0.86, lift = 1.0) ├[16/25]┐ {1}(⟨G⟩(minimum⁺[D] ≥ -0.446165)) │ ├✔ 2 : (ninstances = 46, ncovered = 46, confidence = 0.24, lift = 1.0) │ └✘ 4 : (ninstances = 34, ncovered = 34, confidence = 0.24, lift = 1.0) ├[17/25]┐ {1}(⟨G⟩(minimum⁻[A] < 0.91504)) │ ├✔ 3 : (ninstances = 56, ncovered = 56, confidence = 0.45, lift = 1.0) │ └✘ 1 : (ninstances = 24, ncovered = 24, confidence = 0.92, lift = 1.0) ├[18/25]┐ {1}(⟨G⟩(minimum⁺[I] ≥ 0.083275)) │ ├✔ 4 : (ninstances = 14, ncovered = 14, confidence = 0.43, lift = 1.0) │ └✘ 2 : (ninstances = 66, ncovered = 66, confidence = 0.38, lift = 1.0) ├[19/25]┐ {1}(⟨G⟩(minimum⁻[A] < 1.019561)) │ ├✔ 3 : (ninstances = 58, ncovered = 58, confidence = 0.43, lift = 1.0) │ └✘ 1 : (ninstances = 22, ncovered = 22, confidence = 0.95, lift = 1.0) ├[20/25]┐ {1}(⟨G⟩(minimum⁺[D] ≥ -0.4391)) │ ├✔ 1 : (ninstances = 44, ncovered = 44, confidence = 0.48, lift = 1.0) │ └✘ 4 : (ninstances = 36, ncovered = 36, confidence = 0.22, lift = 1.0) ├[21/25]┐ {1}(⟨G⟩(minimum⁻[B] < -0.621772)) │ ├✔ 2 : (ninstances = 33, ncovered = 33, confidence = 0.76, lift = 1.0) │ └✘ 3 : (ninstances = 47, ncovered = 47, confidence = 0.47, lift = 1.0) ├[22/25]┐ {1}(⟨G⟩(minimum⁺[A] ≥ 1.320922)) │ ├✔ 1 : (ninstances = 20, ncovered = 20, confidence = 1.0, lift = 1.0) │ └✘ 4 : (ninstances = 60, ncovered = 60, confidence = 0.13, lift = 1.0) ├[23/25]┐ {1}(⟨G⟩(minimum⁺[J] ≥ -0.068057)) │ ├✔ 3 : (ninstances = 22, ncovered = 22, confidence = 0.73, lift = 1.0) │ └✘ 2 : (ninstances = 58, ncovered = 58, confidence = 0.41, lift = 1.0) ├[24/25]┐ {1}(⟨G⟩(minimum⁺[C] ≥ 0.434608)) │ ├✔ 1 : (ninstances = 20, ncovered = 20, confidence = 0.95, lift = 1.0) │ └✘ 4 : (ninstances = 60, ncovered = 60, confidence = 0.13, lift = 1.0) └[25/25]┐ {1}(⟨G⟩(minimum⁺[C] ≥ 0.212466)) ├✔ 2 : (ninstances = 58, ncovered = 58, confidence = 0.43, lift = 1.0) └✘ 3 : (ninstances = 22, ncovered = 22, confidence = 0.91, lift = 1.0) ▣ Ensemble{String} of 25 models of type DecisionTree{String} ├[1/25]┐ {1}(⟨G⟩(minimum⁻[A] < 0.91504)) │ ├✔ 3 : (ninstances = 56, ncovered = 56, confidence = 0.45, lift = 1.0) │ └✘ 1 : (ninstances = 24, ncovered = 24, confidence = 0.92, lift = 1.0) ├[2/25]┐ {1}(⟨G⟩(minimum⁺[B] ≥ -0.408784)) │ ├✔ 4 : (ninstances = 51, ncovered = 51, confidence = 0.14, lift = 1.0) │ └✘ 2 : (ninstances = 29, ncovered = 29, confidence = 0.86, lift = 1.0) ├[3/25]┐ {1}(⟨G⟩(minimum⁻[A] < 0.91504)) │ ├✔ 3 : (ninstances = 56, ncovered = 56, confidence = 0.45, lift = 1.0) │ └✘ 1 : (ninstances = 24, ncovered = 24, confidence = 0.92, lift = 1.0) ├[4/25]┐ {1}(⟨G⟩(minimum⁻[A] < 0.562459)) │ ├✔ 2 : (ninstances = 48, ncovered = 48, confidence = 0.5, lift = 1.0) │ └✘ 4 : (ninstances = 32, ncovered = 32, confidence = 0.19, lift = 1.0) ├[5/25]┐ {1}(⟨G⟩(minimum⁺[A] ≥ 1.320922)) │ ├✔ 1 : (ninstances = 20, ncovered = 20, confidence = 1.0, lift = 1.0) │ └✘ 3 : (ninstances = 60, ncovered = 60, confidence = 0.42, lift = 1.0) ├[6/25]┐ {1}(⟨G⟩(minimum⁺[B] ≥ -0.408784)) │ ├✔ 4 : (ninstances = 51, ncovered = 51, confidence = 0.14, lift = 1.0) │ └✘ 2 : (ninstances = 29, ncovered = 29, confidence = 0.86, lift = 1.0) ├[7/25]┐ {1}(⟨G⟩(minimum⁻[A] < 1.019561)) │ ├✔ 4 : (ninstances = 58, ncovered = 58, confidence = 0.14, lift = 1.0) │ └✘ 1 : (ninstances = 22, ncovered = 22, confidence = 0.95, lift = 1.0) ├[8/25]┐ {1}(⟨G⟩(minimum⁺[B] ≥ -0.343207)) │ ├✔ 3 : (ninstances = 48, ncovered = 48, confidence = 0.46, lift = 1.0) │ └✘ 2 : (ninstances = 32, ncovered = 32, confidence = 0.78, lift = 1.0) ├[9/25]┐ {1}(⟨G⟩(minimum⁺[C] ≥ 0.434608)) │ ├✔ 1 : (ninstances = 20, ncovered = 20, confidence = 0.95, lift = 1.0) │ └✘ 4 : (ninstances = 60, ncovered = 60, confidence = 0.13, lift = 1.0) ├[10/25]┐ {1}(⟨G⟩(minimum⁻[A] < 0.91504)) │ ├✔ 3 : (ninstances = 56, ncovered = 56, confidence = 0.45, lift = 1.0) │ └✘ 1 : (ninstances = 24, ncovered = 24, confidence = 0.92, lift = 1.0) ├[11/25]┐ {1}(⟨G⟩(minimum⁺[J] ≥ -0.144559)) │ ├✔ 4 : (ninstances = 39, ncovered = 39, confidence = 0.15, lift = 1.0) │ └✘ 2 : (ninstances = 41, ncovered = 41, confidence = 0.54, lift = 1.0) ├[12/25]┐ {1}(⟨G⟩(minimum⁻[A] < 0.91504)) │ ├✔ 3 : (ninstances = 56, ncovered = 56, confidence = 0.45, lift = 1.0) │ └✘ 1 : (ninstances = 24, ncovered = 24, confidence = 0.92, lift = 1.0) ├[13/25]┐ {1}(⟨G⟩(minimum⁻[I] < -0.243571)) │ ├✔ 2 : (ninstances = 46, ncovered = 46, confidence = 0.48, lift = 1.0) │ └✘ 4 : (ninstances = 34, ncovered = 34, confidence = 0.24, lift = 1.0) ├[14/25]┐ {1}(⟨G⟩(minimum⁻[F] < -0.575495)) │ ├✔ 3 : (ninstances = 22, ncovered = 22, confidence = 0.91, lift = 1.0) │ └✘ 2 : (ninstances = 58, ncovered = 58, confidence = 0.43, lift = 1.0) ├[15/25]┐ {1}(⟨G⟩(minimum⁻[D] < -0.568272)) │ ├✔ 3 : (ninstances = 58, ncovered = 58, confidence = 0.41, lift = 1.0) │ └✘ 1 : (ninstances = 22, ncovered = 22, confidence = 0.86, lift = 1.0) ├[16/25]┐ {1}(⟨G⟩(minimum⁺[D] ≥ -0.446165)) │ ├✔ 2 : (ninstances = 46, ncovered = 46, confidence = 0.24, lift = 1.0) │ └✘ 4 : (ninstances = 34, ncovered = 34, confidence = 0.24, lift = 1.0) ├[17/25]┐ {1}(⟨G⟩(minimum⁻[A] < 0.91504)) │ ├✔ 3 : (ninstances = 56, ncovered = 56, confidence = 0.45, lift = 1.0) │ └✘ 1 : (ninstances = 24, ncovered = 24, confidence = 0.92, lift = 1.0) ├[18/25]┐ {1}(⟨G⟩(minimum⁺[I] ≥ 0.083275)) │ ├✔ 4 : (ninstances = 14, ncovered = 14, confidence = 0.43, lift = 1.0) │ └✘ 2 : (ninstances = 66, ncovered = 66, confidence = 0.38, lift = 1.0) ├[19/25]┐ {1}(⟨G⟩(minimum⁻[A] < 1.019561)) │ ├✔ 3 : (ninstances = 58, ncovered = 58, confidence = 0.43, lift = 1.0) │ └✘ 1 : (ninstances = 22, ncovered = 22, confidence = 0.95, lift = 1.0) ├[20/25]┐ {1}(⟨G⟩(minimum⁺[D] ≥ -0.4391)) │ ├✔ 1 : (ninstances = 44, ncovered = 44, confidence = 0.48, lift = 1.0) │ └✘ 4 : (ninstances = 36, ncovered = 36, confidence = 0.22, lift = 1.0) ├[21/25]┐ {1}(⟨G⟩(minimum⁻[B] < -0.621772)) │ ├✔ 2 : (ninstances = 33, ncovered = 33, confidence = 0.76, lift = 1.0) │ └✘ 3 : (ninstances = 47, ncovered = 47, confidence = 0.47, lift = 1.0) ├[22/25]┐ {1}(⟨G⟩(minimum⁺[A] ≥ 1.320922)) │ ├✔ 1 : (ninstances = 20, ncovered = 20, confidence = 1.0, lift = 1.0) │ └✘ 4 : (ninstances = 60, ncovered = 60, confidence = 0.13, lift = 1.0) ├[23/25]┐ {1}(⟨G⟩(minimum⁺[J] ≥ -0.068057)) │ ├✔ 3 : (ninstances = 22, ncovered = 22, confidence = 0.73, lift = 1.0) │ └✘ 2 : (ninstances = 58, ncovered = 58, confidence = 0.41, lift = 1.0) ├[24/25]┐ {1}(⟨G⟩(minimum⁺[C] ≥ 0.434608)) │ ├✔ 1 : (ninstances = 20, ncovered = 20, confidence = 0.95, lift = 1.0) │ └✘ 4 : (ninstances = 60, ncovered = 60, confidence = 0.13, lift = 1.0) └[25/25]┐ {1}(⟨G⟩(minimum⁺[C] ≥ 0.212466)) ├✔ 2 : (ninstances = 58, ncovered = 58, confidence = 0.43, lift = 1.0) └✘ 3 : (ninstances = 22, ncovered = 22, confidence = 0.91, lift = 1.0) ▣ Ensemble{String} of 25 models of type DecisionTree{String} ├[1/25]┐ {1}(⟨G⟩(minimum⁻[V1] < 0.91504)) │ ├✔ 3 : (ninstances = 56, ncovered = 56, confidence = 0.45, lift = 1.0) │ └✘ 1 : (ninstances = 24, ncovered = 24, confidence = 0.92, lift = 1.0) ├[2/25]┐ {1}(⟨G⟩(minimum⁺[V2] ≥ -0.408784)) │ ├✔ 4 : (ninstances = 51, ncovered = 51, confidence = 0.14, lift = 1.0) │ └✘ 2 : (ninstances = 29, ncovered = 29, confidence = 0.86, lift = 1.0) ├[3/25]┐ {1}(⟨G⟩(minimum⁻[V1] < 0.91504)) │ ├✔ 3 : (ninstances = 56, ncovered = 56, confidence = 0.45, lift = 1.0) │ └✘ 1 : (ninstances = 24, ncovered = 24, confidence = 0.92, lift = 1.0) ├[4/25]┐ {1}(⟨G⟩(minimum⁻[V1] < 0.562459)) │ ├✔ 2 : (ninstances = 48, ncovered = 48, confidence = 0.5, lift = 1.0) │ └✘ 4 : (ninstances = 32, ncovered = 32, confidence = 0.19, lift = 1.0) ├[5/25]┐ {1}(⟨G⟩(minimum⁺[V1] ≥ 1.320922)) │ ├✔ 1 : (ninstances = 20, ncovered = 20, confidence = 1.0, lift = 1.0) │ └✘ 3 : (ninstances = 60, ncovered = 60, confidence = 0.42, lift = 1.0) ├[6/25]┐ {1}(⟨G⟩(minimum⁺[V2] ≥ -0.408784)) │ ├✔ 4 : (ninstances = 51, ncovered = 51, confidence = 0.14, lift = 1.0) │ └✘ 2 : (ninstances = 29, ncovered = 29, confidence = 0.86, lift = 1.0) ├[7/25]┐ {1}(⟨G⟩(minimum⁻[V1] < 1.019561)) │ ├✔ 4 : (ninstances = 58, ncovered = 58, confidence = 0.14, lift = 1.0) │ └✘ 1 : (ninstances = 22, ncovered = 22, confidence = 0.95, lift = 1.0) ├[8/25]┐ {1}(⟨G⟩(minimum⁺[V2] ≥ -0.343207)) │ ├✔ 3 : (ninstances = 48, ncovered = 48, confidence = 0.46, lift = 1.0) │ └✘ 2 : (ninstances = 32, ncovered = 32, confidence = 0.78, lift = 1.0) ├[9/25]┐ {1}(⟨G⟩(minimum⁺[V3] ≥ 0.434608)) │ ├✔ 1 : (ninstances = 20, ncovered = 20, confidence = 0.95, lift = 1.0) │ └✘ 4 : (ninstances = 60, ncovered = 60, confidence = 0.13, lift = 1.0) ├[10/25]┐ {1}(⟨G⟩(minimum⁻[V1] < 0.91504)) │ ├✔ 3 : (ninstances = 56, ncovered = 56, confidence = 0.45, lift = 1.0) │ └✘ 1 : (ninstances = 24, ncovered = 24, confidence = 0.92, lift = 1.0) ├[11/25]┐ {1}(⟨G⟩(minimum⁺[V10] ≥ -0.144559)) │ ├✔ 4 : (ninstances = 39, ncovered = 39, confidence = 0.15, lift = 1.0) │ └✘ 2 : (ninstances = 41, ncovered = 41, confidence = 0.54, lift = 1.0) ├[12/25]┐ {1}(⟨G⟩(minimum⁻[V1] < 0.91504)) │ ├✔ 3 : (ninstances = 56, ncovered = 56, confidence = 0.45, lift = 1.0) │ └✘ 1 : (ninstances = 24, ncovered = 24, confidence = 0.92, lift = 1.0) ├[13/25]┐ {1}(⟨G⟩(minimum⁻[V9] < -0.243571)) │ ├✔ 2 : (ninstances = 46, ncovered = 46, confidence = 0.48, lift = 1.0) │ └✘ 4 : (ninstances = 34, ncovered = 34, confidence = 0.24, lift = 1.0) ├[14/25]┐ {1}(⟨G⟩(minimum⁻[V6] < -0.575495)) │ ├✔ 3 : (ninstances = 22, ncovered = 22, confidence = 0.91, lift = 1.0) │ └✘ 2 : (ninstances = 58, ncovered = 58, confidence = 0.43, lift = 1.0) ├[15/25]┐ {1}(⟨G⟩(minimum⁻[V4] < -0.568272)) │ ├✔ 3 : (ninstances = 58, ncovered = 58, confidence = 0.41, lift = 1.0) │ └✘ 1 : (ninstances = 22, ncovered = 22, confidence = 0.86, lift = 1.0) ├[16/25]┐ {1}(⟨G⟩(minimum⁺[V4] ≥ -0.446165)) │ ├✔ 2 : (ninstances = 46, ncovered = 46, confidence = 0.24, lift = 1.0) │ └✘ 4 : (ninstances = 34, ncovered = 34, confidence = 0.24, lift = 1.0) ├[17/25]┐ {1}(⟨G⟩(minimum⁻[V1] < 0.91504)) │ ├✔ 3 : (ninstances = 56, ncovered = 56, confidence = 0.45, lift = 1.0) │ └✘ 1 : (ninstances = 24, ncovered = 24, confidence = 0.92, lift = 1.0) ├[18/25]┐ {1}(⟨G⟩(minimum⁺[V9] ≥ 0.083275)) │ ├✔ 4 : (ninstances = 14, ncovered = 14, confidence = 0.43, lift = 1.0) │ └✘ 2 : (ninstances = 66, ncovered = 66, confidence = 0.38, lift = 1.0) ├[19/25]┐ {1}(⟨G⟩(minimum⁻[V1] < 1.019561)) │ ├✔ 3 : (ninstances = 58, ncovered = 58, confidence = 0.43, lift = 1.0) │ └✘ 1 : (ninstances = 22, ncovered = 22, confidence = 0.95, lift = 1.0) ├[20/25]┐ {1}(⟨G⟩(minimum⁺[V4] ≥ -0.4391)) │ ├✔ 1 : (ninstances = 44, ncovered = 44, confidence = 0.48, lift = 1.0) │ └✘ 4 : (ninstances = 36, ncovered = 36, confidence = 0.22, lift = 1.0) ├[21/25]┐ {1}(⟨G⟩(minimum⁻[V2] < -0.621772)) │ ├✔ 2 : (ninstances = 33, ncovered = 33, confidence = 0.76, lift = 1.0) │ └✘ 3 : (ninstances = 47, ncovered = 47, confidence = 0.47, lift = 1.0) ├[22/25]┐ {1}(⟨G⟩(minimum⁺[V1] ≥ 1.320922)) │ ├✔ 1 : (ninstances = 20, ncovered = 20, confidence = 1.0, lift = 1.0) │ └✘ 4 : (ninstances = 60, ncovered = 60, confidence = 0.13, lift = 1.0) ├[23/25]┐ {1}(⟨G⟩(minimum⁺[V10] ≥ -0.068057)) │ ├✔ 3 : (ninstances = 22, ncovered = 22, confidence = 0.73, lift = 1.0) │ └✘ 2 : (ninstances = 58, ncovered = 58, confidence = 0.41, lift = 1.0) ├[24/25]┐ {1}(⟨G⟩(minimum⁺[V3] ≥ 0.434608)) │ ├✔ 1 : (ninstances = 20, ncovered = 20, confidence = 0.95, lift = 1.0) │ └✘ 4 : (ninstances = 60, ncovered = 60, confidence = 0.13, lift = 1.0) └[25/25]┐ {1}(⟨G⟩(minimum⁺[V3] ≥ 0.212466)) ├✔ 2 : (ninstances = 58, ncovered = 58, confidence = 0.43, lift = 1.0) └✘ 3 : (ninstances = 22, ncovered = 22, confidence = 0.91, lift = 1.0) ▣ Ensemble{String} of 25 models of type DecisionTree{String} ├[1/25]┐ (⟨G⟩(minimum⁻[coefficient1] < 0.91504)) │ ├✔ 3 : (ninstances = 56, ncovered = 56, confidence = 0.45, lift = 1.0) │ └✘ 1 : (ninstances = 24, ncovered = 24, confidence = 0.92, lift = 1.0) ├[2/25]┐ (⟨G⟩(minimum⁺[coefficient2] ≥ -0.408784)) │ ├✔ 4 : (ninstances = 51, ncovered = 51, confidence = 0.14, lift = 1.0) │ └✘ 2 : (ninstances = 29, ncovered = 29, confidence = 0.86, lift = 1.0) ├[3/25]┐ (⟨G⟩(minimum⁻[coefficient1] < 0.91504)) │ ├✔ 3 : (ninstances = 56, ncovered = 56, confidence = 0.45, lift = 1.0) │ └✘ 1 : (ninstances = 24, ncovered = 24, confidence = 0.92, lift = 1.0) ├[4/25]┐ (⟨G⟩(minimum⁻[coefficient1] < 0.562459)) │ ├✔ 2 : (ninstances = 48, ncovered = 48, confidence = 0.5, lift = 1.0) │ └✘ 4 : (ninstances = 32, ncovered = 32, confidence = 0.19, lift = 1.0) ├[5/25]┐ (⟨G⟩(minimum⁺[coefficient1] ≥ 1.320922)) │ ├✔ 1 : (ninstances = 20, ncovered = 20, confidence = 1.0, lift = 1.0) │ └✘ 3 : (ninstances = 60, ncovered = 60, confidence = 0.42, lift = 1.0) ├[6/25]┐ (⟨G⟩(minimum⁺[coefficient2] ≥ -0.408784)) │ ├✔ 4 : (ninstances = 51, ncovered = 51, confidence = 0.14, lift = 1.0) │ └✘ 2 : (ninstances = 29, ncovered = 29, confidence = 0.86, lift = 1.0) ├[7/25]┐ (⟨G⟩(minimum⁻[coefficient1] < 1.019561)) │ ├✔ 4 : (ninstances = 58, ncovered = 58, confidence = 0.14, lift = 1.0) │ └✘ 1 : (ninstances = 22, ncovered = 22, confidence = 0.95, lift = 1.0) ├[8/25]┐ (⟨G⟩(minimum⁺[coefficient2] ≥ -0.343207)) │ ├✔ 3 : (ninstances = 48, ncovered = 48, confidence = 0.46, lift = 1.0) │ └✘ 2 : (ninstances = 32, ncovered = 32, confidence = 0.78, lift = 1.0) ├[9/25]┐ (⟨G⟩(minimum⁺[coefficient3] ≥ 0.434608)) │ ├✔ 1 : (ninstances = 20, ncovered = 20, confidence = 0.95, lift = 1.0) │ └✘ 4 : (ninstances = 60, ncovered = 60, confidence = 0.13, lift = 1.0) ├[10/25]┐ (⟨G⟩(minimum⁻[coefficient1] < 0.91504)) │ ├✔ 3 : (ninstances = 56, ncovered = 56, confidence = 0.45, lift = 1.0) │ └✘ 1 : (ninstances = 24, ncovered = 24, confidence = 0.92, lift = 1.0) ├[11/25]┐ (⟨G⟩(minimum⁺[coefficient10] ≥ -0.144559)) │ ├✔ 4 : (ninstances = 39, ncovered = 39, confidence = 0.15, lift = 1.0) │ └✘ 2 : (ninstances = 41, ncovered = 41, confidence = 0.54, lift = 1.0) ├[12/25]┐ (⟨G⟩(minimum⁻[coefficient1] < 0.91504)) │ ├✔ 3 : (ninstances = 56, ncovered = 56, confidence = 0.45, lift = 1.0) │ └✘ 1 : (ninstances = 24, ncovered = 24, confidence = 0.92, lift = 1.0) ├[13/25]┐ (⟨G⟩(minimum⁻[coefficient9] < -0.243571)) │ ├✔ 2 : (ninstances = 46, ncovered = 46, confidence = 0.48, lift = 1.0) │ └✘ 4 : (ninstances = 34, ncovered = 34, confidence = 0.24, lift = 1.0) ├[14/25]┐ (⟨G⟩(minimum⁻[coefficient6] < -0.575495)) │ ├✔ 3 : (ninstances = 22, ncovered = 22, confidence = 0.91, lift = 1.0) │ └✘ 2 : (ninstances = 58, ncovered = 58, confidence = 0.43, lift = 1.0) ├[15/25]┐ (⟨G⟩(minimum⁻[coefficient4] < -0.568272)) │ ├✔ 3 : (ninstances = 58, ncovered = 58, confidence = 0.41, lift = 1.0) │ └✘ 1 : (ninstances = 22, ncovered = 22, confidence = 0.86, lift = 1.0) ├[16/25]┐ (⟨G⟩(minimum⁺[coefficient4] ≥ -0.446165)) │ ├✔ 2 : (ninstances = 46, ncovered = 46, confidence = 0.24, lift = 1.0) │ └✘ 4 : (ninstances = 34, ncovered = 34, confidence = 0.24, lift = 1.0) ├[17/25]┐ (⟨G⟩(minimum⁻[coefficient1] < 0.91504)) │ ├✔ 3 : (ninstances = 56, ncovered = 56, confidence = 0.45, lift = 1.0) │ └✘ 1 : (ninstances = 24, ncovered = 24, confidence = 0.92, lift = 1.0) ├[18/25]┐ (⟨G⟩(minimum⁺[coefficient9] ≥ 0.083275)) │ ├✔ 4 : (ninstances = 14, ncovered = 14, confidence = 0.43, lift = 1.0) │ └✘ 2 : (ninstances = 66, ncovered = 66, confidence = 0.38, lift = 1.0) ├[19/25]┐ (⟨G⟩(minimum⁻[coefficient1] < 1.019561)) │ ├✔ 3 : (ninstances = 58, ncovered = 58, confidence = 0.43, lift = 1.0) │ └✘ 1 : (ninstances = 22, ncovered = 22, confidence = 0.95, lift = 1.0) ├[20/25]┐ (⟨G⟩(minimum⁺[coefficient4] ≥ -0.4391)) │ ├✔ 1 : (ninstances = 44, ncovered = 44, confidence = 0.48, lift = 1.0) │ └✘ 4 : (ninstances = 36, ncovered = 36, confidence = 0.22, lift = 1.0) ├[21/25]┐ (⟨G⟩(minimum⁻[coefficient2] < -0.621772)) │ ├✔ 2 : (ninstances = 33, ncovered = 33, confidence = 0.76, lift = 1.0) │ └✘ 3 : (ninstances = 47, ncovered = 47, confidence = 0.47, lift = 1.0) ├[22/25]┐ (⟨G⟩(minimum⁺[coefficient1] ≥ 1.320922)) │ ├✔ 1 : (ninstances = 20, ncovered = 20, confidence = 1.0, lift = 1.0) │ └✘ 4 : (ninstances = 60, ncovered = 60, confidence = 0.13, lift = 1.0) ├[23/25]┐ (⟨G⟩(minimum⁺[coefficient10] ≥ -0.068057)) │ ├✔ 3 : (ninstances = 22, ncovered = 22, confidence = 0.73, lift = 1.0) │ └✘ 2 : (ninstances = 58, ncovered = 58, confidence = 0.41, lift = 1.0) ├[24/25]┐ (⟨G⟩(minimum⁺[coefficient3] ≥ 0.434608)) │ ├✔ 1 : (ninstances = 20, ncovered = 20, confidence = 0.95, lift = 1.0) │ └✘ 4 : (ninstances = 60, ncovered = 60, confidence = 0.13, lift = 1.0) └[25/25]┐ (⟨G⟩(minimum⁺[coefficient3] ≥ 0.212466)) ├✔ 2 : (ninstances = 58, ncovered = 58, confidence = 0.43, lift = 1.0) └✘ 3 : (ninstances = 22, ncovered = 22, confidence = 0.91, lift = 1.0) [ Info: Not retraining machine(ModalAdaBoost(max_depth = 1, …), …). Use `force=true` to force. 0.119316 seconds (29.24 k allocations: 1.480 MiB, 99.01% compilation time) ================================================== TEST: classification/digits.jl [ Info: Precomputing logiset... Computing logiset... 0%| | ETA: 0:21:05 Computing logiset... 100%|███████████████████████████████| Time: 0:00:01 [ Info: Training machine(ModalDecisionTree(max_depth = nothing, …), …). 332.357191 seconds (148.97 M allocations: 8.342 GiB, 1.20% gc time, 98.07% compilation time) ┌ Warning: n_subfeatures must be > 0, but 0 was provided. Defaulting to nothing. └ @ ModalDecisionTrees.MLJInterface ~/.julia/packages/ModalDecisionTrees/WJRxy/src/interfaces/MLJ/ModalDecisionTree.jl:120 [ Info: Precomputing logiset... [ Info: Training machine(ModalDecisionTree(max_depth = 6, …), …). 13.574116 seconds (22.93 M allocations: 2.046 GiB, 9.81% gc time, 59.78% compilation time) [ Info: Precomputing logiset... [ Info: Training machine(ModalRandomForest(sampling_fraction = 0.7, …), …). [ Info: Precomputing logiset... [ Info: Training machine(ModalDecisionTree(max_depth = nothing, …), …). 4.897036 seconds (21.97 M allocations: 2.010 GiB, 10.74% gc time, 0.48% compilation time) [ Info: Precomputing logiset... [ Info: Training machine(ModalDecisionTree(max_depth = nothing, …), …). 139.252222 seconds (46.56 M allocations: 2.926 GiB, 0.63% gc time, 97.79% compilation time) [ Info: Precomputing logiset... [ Info: Training machine(ModalDecisionTree(max_depth = nothing, …), …). 108.907801 seconds (78.26 M allocations: 3.046 GiB, 2.08% gc time, 92.12% compilation time) [ Info: Precomputing logiset... [ Info: Training machine(ModalDecisionTree(max_depth = nothing, …), …). 5.492210 seconds (21.97 M allocations: 2.010 GiB, 26.63% gc time, 0.43% compilation time) ┌ Warning: n_subfeatures must be > 0, but 0 was provided. Defaulting to nothing. └ @ ModalDecisionTrees.MLJInterface ~/.julia/packages/ModalDecisionTrees/WJRxy/src/interfaces/MLJ/ModalDecisionTree.jl:120 [ Info: Precomputing logiset... [ Info: Training machine(ModalDecisionTree(max_depth = 6, …), …). 5.149600 seconds (20.84 M allocations: 1.937 GiB, 26.37% gc time, 0.45% compilation time) ┌ Warning: Assignment to `mach` in soft scope is ambiguous because a global variable by the same name exists: `mach` will be treated as a new local. Disambiguate by using `local mach` to suppress this warning or `global mach` to assign to the existing global variable. └ @ ~/.julia/packages/ModalDecisionTrees/WJRxy/test/classification/digits.jl:111 ┌ Warning: An absolute n_subfeatures was provided 3. It is recommended to use relative values (between 0 and 1), interpreted as the share of the random portion of feature space explored at each split. └ @ ModalDecisionTrees.MLJInterface ~/.julia/packages/ModalDecisionTrees/WJRxy/src/interfaces/MLJ/ModalRandomForest.jl:125 [ Info: Precomputing logiset... [ Info: Training machine(ModalRandomForest(sampling_fraction = 0.7, …), …). ┌ Error: Problem fitting the machine machine(ModalRandomForest(sampling_fraction = 0.7, …), …). └ @ MLJBase ~/.julia/packages/MLJBase/GY2fM/src/machines.jl:695 [ Info: Running type checks... [ Info: Type checks okay. [ Info: Precomputing logiset... [ Info: Training machine(ModalRandomForest(sampling_fraction = 0.7, …), …). ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile ====================================================================================== cmd: /opt/julia/bin/julia 135 running 1 of 1 signal (10): User defined signal 1 _ZN12_GLOBAL__N_18Verifier19verifyFunctionAttrsEPN4llvm12FunctionTypeENS1_13AttributeListEPKNS1_5ValueEbb at /opt/julia/bin/../lib/julia/libLLVM-16jl.so (unknown line) unknown function (ip: 0x57a264af) unknown function (ip: (nil)) ============================================================== Profile collected. A report will print at the next yield point ============================================================== ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:522 poptask at ./task.jl:1012 wait at ./task.jl:1021 #wait#733 at ./condition.jl:130 wait at ./condition.jl:125 [inlined] wait at ./process.jl:694 wait at ./process.jl:687 unknown function (ip: 0x72763e967b32) _jl_invoke at /source/src/gf.c:2951 [inlined] ijl_apply_generic at /source/src/gf.c:3128 subprocess_handler at /source/usr/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:2146 #131 at /source/usr/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:2086 withenv at ./env.jl:265 #118 at /source/usr/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:1935 with_temp_env at /source/usr/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:1793 #116 at /source/usr/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:1902 #mktempdir#28 at ./file.jl:819 unknown function (ip: 0x72763e95e26d) _jl_invoke at /source/src/gf.c:2951 [inlined] ijl_apply_generic at /source/src/gf.c:3128 mktempdir at ./file.jl:815 mktempdir at ./file.jl:815 [inlined] #sandbox#115 at /source/usr/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:1849 [inlined] sandbox at /source/usr/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:1841 unknown function (ip: 0x72763e9527ea) _jl_invoke at /source/src/gf.c:2951 [inlined] ijl_apply_generic at /source/src/gf.c:3128 #test#128 at /source/usr/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:2067 test at /source/usr/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:2011 [inlined] #test#146 at /source/usr/share/julia/stdlib/v1.11/Pkg/src/API.jl:481 test at /source/usr/share/julia/stdlib/v1.11/Pkg/src/API.jl:460 unknown function (ip: 0x72763e9524ed) _jl_invoke at /source/src/gf.c:2951 [inlined] ijl_apply_generic at /source/src/gf.c:3128 #test#77 at /source/usr/share/julia/stdlib/v1.11/Pkg/src/API.jl:159 unknown function (ip: 0x72763e951ecd) _jl_invoke at /source/src/gf.c:2951 [inlined] ijl_apply_generic at /source/src/gf.c:3128 test at /source/usr/share/julia/stdlib/v1.11/Pkg/src/API.jl:148 #test#75 at /source/usr/share/julia/stdlib/v1.11/Pkg/src/API.jl:147 [inlined] test at /source/usr/share/julia/stdlib/v1.11/Pkg/src/API.jl:147 [inlined] #test#74 at /source/usr/share/julia/stdlib/v1.11/Pkg/src/API.jl:146 [inlined] test at /source/usr/share/julia/stdlib/v1.11/Pkg/src/API.jl:146 unknown function (ip: 0x72763e94e366) _jl_invoke at /source/src/gf.c:2951 [inlined] ijl_apply_generic at /source/src/gf.c:3128 jl_apply at /source/src/julia.h:2157 [inlined] do_call at /source/src/interpreter.c:126 eval_value at /source/src/interpreter.c:223 eval_stmt_value at /source/src/interpreter.c:174 [inlined] eval_body at /source/src/interpreter.c:670 eval_body at /source/src/interpreter.c:539 eval_body at /source/src/interpreter.c:539 jl_interpret_toplevel_thunk at /source/src/interpreter.c:824 jl_toplevel_eval_flex at /source/src/toplevel.c:943 jl_toplevel_eval_flex at /source/src/toplevel.c:886 ijl_toplevel_eval_in at /source/src/toplevel.c:994 eval at ./boot.jl:430 [inlined] include_string at ./loading.jl:2775 _jl_invoke at /source/src/gf.c:2951 [inlined] ijl_apply_generic at /source/src/gf.c:3128 _include at ./loading.jl:2835 include at ./Base.jl:562 jfptr_include_47022.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:2951 [inlined] ijl_apply_generic at /source/src/gf.c:3128 exec_options at ./client.jl:316 _start at ./client.jl:524 jfptr__start_73678.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:2951 [inlined] ijl_apply_generic at /source/src/gf.c:3128 jl_apply at /source/src/julia.h:2157 [inlined] true_main at /source/src/jlapi.c:900 jl_repl_entrypoint at /source/src/jlapi.c:1059 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x72763ff3e249) __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) unknown function (ip: (nil)) ============================================================== Profile collected. A report will print at the next yield point ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.11/Profile/src/Profile.jl:1240 Overhead ╎ [+additional indent] Count File:Line; Function ========================================================= Thread 1 Task 0x0000727632ffc010 Total snapshots: 60. Utilization: 0% ╎60 @Base/client.jl:524; _start() ╎ 60 @Base/client.jl:316; exec_options(opts::Base.JLOptions) ╎ 60 @Base/Base.jl:562; include(mod::Module, _path::String) ╎ 60 @Base/loading.jl:2835; _include(mapexpr::Function, mod::Module, _path:… ╎ 60 @Base/loading.jl:2775; include_string(mapexpr::typeof(identity), mod:… ╎ 60 @Base/boot.jl:430; eval ╎ ╎ 60 @Pkg/src/API.jl:146; kwcall(::@NamedTuple{julia_args::Cmd}, ::typeo… ╎ ╎ 60 @Pkg/src/API.jl:146; #test#74 ╎ ╎ 60 @Pkg/src/API.jl:147; test ╎ ╎ 60 @Pkg/src/API.jl:147; #test#75 ╎ ╎ 60 @Pkg/src/API.jl:148; kwcall(::@NamedTuple{julia_args::Cmd}, ::t… ╎ ╎ ╎ 60 @Pkg/src/API.jl:159; test(pkgs::Vector{Pkg.Types.PackageSpec};… ╎ ╎ ╎ 60 @Pkg/src/API.jl:460; kwcall(::@NamedTuple{julia_args::Cmd, io… ╎ ╎ ╎ 60 @Pkg/src/API.jl:481; test(ctx::Pkg.Types.Context, pkgs::Vect… ╎ ╎ ╎ 60 …src/Operations.jl:2011; test ╎ ╎ ╎ 60 …src/Operations.jl:2067; test(ctx::Pkg.Types.Context, pkgs… ╎ ╎ ╎ ╎ 60 …rc/Operations.jl:1841; kwcall(::@NamedTuple{preferences:… ╎ ╎ ╎ ╎ 60 …rc/Operations.jl:1849; #sandbox#115 ╎ ╎ ╎ ╎ 60 @Base/file.jl:815; mktempdir ╎ ╎ ╎ ╎ 60 @Base/file.jl:815; mktempdir(fn::Function, parent::Str… ╎ ╎ ╎ ╎ 60 @Base/file.jl:819; mktempdir(fn::Pkg.Operations.var"#… ╎ ╎ ╎ ╎ ╎ 60 …/Operations.jl:1902; (::Pkg.Operations.var"#116#121… ╎ ╎ ╎ ╎ ╎ 60 …/Operations.jl:1793; with_temp_env(fn::Pkg.Operati… ╎ ╎ ╎ ╎ ╎ 60 …Operations.jl:1935; (::Pkg.Operations.var"#118#12… ╎ ╎ ╎ ╎ ╎ 60 @Base/env.jl:265; withenv(::Pkg.Operations.var"#1… ╎ ╎ ╎ ╎ ╎ 60 …Operations.jl:2086; (::Pkg.Operations.var"#131#… ╎ ╎ ╎ ╎ ╎ ╎ 60 …perations.jl:2146; subprocess_handler(cmd::Cmd… ╎ ╎ ╎ ╎ ╎ ╎ 60 …e/process.jl:687; wait(x::Base.Process) ╎ ╎ ╎ ╎ ╎ ╎ 60 …e/process.jl:694; wait(x::Base.Process, sync… ╎ ╎ ╎ ╎ ╎ ╎ 60 …ondition.jl:125; wait ╎ ╎ ╎ ╎ ╎ ╎ 60 …ondition.jl:130; wait(c::Base.GenericCondi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 60 …ase/task.jl:1021; wait() 59╎ ╎ ╎ ╎ ╎ ╎ ╎ 60 …ase/task.jl:1012; poptask(W::Base.Intrus… ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.11/Profile/src/Profile.jl:1240 Overhead ╎ [+additional indent] Count File:Line; Function ========================================================= Thread 1 Task 0x00007f30b61f7850 Total snapshots: 30. Utilization: 100% ╎26 …nTrees/src/ModalCART.jl:1092; (::ModalDecisionTrees.var"#79#86"{ModalDec… ╎ 26 …Trees/src/ModalCART.jl:1067; (::ModalDecisionTrees.var"#process_node!#8… ╎ 26 …Trees/src/ModalCART.jl:317; kwcall(::@NamedTuple{idxs::Vector{Int64}, … ╎ 26 …Trees/src/ModalCART.jl:965; #optimize_node!#72 ╎ 26 …rees/src/ModalCART.jl:560; (::ModalDecisionTrees.var"#splitnode!#73"… ╎ 26 …-onestep-decisions.jl:37; modalstep(X::SupportedLogiset{Interval2D{… ╎ ╎ 26 …-onestep-decisions.jl:77; modalstep(X::SupportedLogiset{Interval2D… ╎ ╎ 26 @Base/generator.jl:45; iterate ╎ ╎ 26 @Base/iterators.jl:427; iterate ╎ ╎ 26 @Base/iterators.jl:436; _zip_iterate_all 25╎ ╎ 26 @Base/iterators.jl:444; _zip_iterate_some [1] signal 15: Terminated in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:522 poptask at ./task.jl:1012 wait at ./task.jl:1021 #wait#733 at ./condition.jl:130 wait at ./condition.jl:125 [inlined] _trywait at ./asyncevent.jl:145 profile_printing_listener at ./Base.jl:582 #1192 at ./Base.jl:622 jfptr_YY.1192_76252.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:2951 [inlined] ijl_apply_generic at /source/src/gf.c:3128 jl_apply at /source/src/julia.h:2157 [inlined] start_task at /source/src/task.c:1202 unknown function (ip: (nil)) Allocations: 23274585 (Pool: 23272839; Big: 1746); GC: 25 val already in a list atexit hook threw an error: ErrorException("schedule: Task not runnable") [135] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/ModalDecisionTrees/WJRxy/test/classification/digits.jl:122 error at ./error.jl:35 #schedule#763 at ./task.jl:884 schedule at ./task.jl:876 [inlined] uv_writecb_task at ./stream.jl:1200 getindex at ./essentials.jl:917 [inlined] _useref_getindex at ./compiler/ssair/ir.jl:464 jfptr_uv_writecb_task_67129.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:2951 [inlined] ijl_apply_generic at /source/src/gf.c:3128 getindex at ./compiler/ssair/ir.jl:499 [inlined] scan_inconsistency! at ./compiler/optimize.jl:825 jlcapi_uv_writecb_task_67593.1 at /opt/julia/lib/julia/sys.so (unknown line) uv__write_callbacks at /workspace/srcdir/libuv/src/unix/stream.c:926 uv__stream_io at /workspace/srcdir/libuv/src/unix/stream.c:1227 uv__run_pending at /workspace/srcdir/libuv/src/unix/core.c:824 uv_run at /workspace/srcdir/libuv/src/unix/core.c:420 ijl_task_get_next at /source/src/scheduler.c:522 ScanStmt at ./compiler/optimize.jl:851 poptask at ./task.jl:1012 scan! at ./compiler/ssair/irinterp.jl:248 wait at ./task.jl:1021 uv_write at ./stream.jl:1081 ipo_dataflow_analysis! at ./compiler/optimize.jl:960 unsafe_write at ./stream.jl:1154 optimize at ./compiler/optimize.jl:984 write at ./strings/io.jl:248 [inlined] print at ./strings/io.jl:250 jfptr_print_48479.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:2951 [inlined] ijl_apply_generic at /source/src/gf.c:3128 showerror at ./errorshow.jl:152 unknown function (ip: 0x72763e974c76) _jl_invoke at /source/src/gf.c:2951 [inlined] ijl_apply_generic at /source/src/gf.c:3128 _atexit at ./initdefs.jl:454 jfptr__atexit_69637.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:2951 [inlined] ijl_apply_generic at /source/src/gf.c:3128 jl_apply at /source/src/julia.h:2157 [inlined] ijl_atexit_hook at /source/src/init.c:271 jl_exit_thread0_cb at /source/src/signals-unix.c:517 PkgEval terminated after 2726.35s: test duration exceeded the time limit