Package evaluation to test IterativeLQR on Julia 1.11.7 (58327cce5e*) started at 2025-10-29T03:49:39.434 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.65s ################################################################################ # Installation # Installing IterativeLQR... Resolving package versions... Updating `~/.julia/environments/v1.11/Project.toml` [605048dd] + IterativeLQR v0.2.3 Updating `~/.julia/environments/v1.11/Manifest.toml` ⌅ [47edcb42] + ADTypes v0.2.7 ⌅ [c3fe647b] + AbstractAlgebra v0.27.10 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 ⌅ [79e6a3ab] + Adapt v3.7.2 [66dad0bd] + AliasTables v1.1.3 [dce04be8] + ArgCheck v2.5.0 ⌃ [4fba245c] + ArrayInterface v7.7.1 [30b0a656] + ArrayInterfaceCore v0.1.29 ⌅ [15f4f7f2] + AutoHashEquals v0.2.0 [198e06fe] + BangBang v0.4.6 [9718e550] + Baselet v0.1.1 ⌅ [e2ed5e7c] + Bijections v0.1.10 [d360d2e6] + ChainRulesCore v1.26.0 [861a8166] + Combinatorics v1.0.3 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.18.1 [b152e2b5] + CompositeTypes v0.1.4 [a33af91c] + CompositionsBase v0.1.2 ⌅ [187b0558] + ConstructionBase v1.5.6 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 ⌅ [864edb3b] + DataStructures v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [244e2a9f] + DefineSingletons v0.1.2 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [31c24e10] + Distributions v0.25.122 [ffbed154] + DocStringExtensions v0.9.5 ⌅ [5b8099bc] + DomainSets v0.5.14 ⌅ [7c1d4256] + DynamicPolynomials v0.4.6 [4e289a0a] + EnumX v1.0.5 [e2ba6199] + ExprTools v0.1.10 [5789e2e9] + FileIO v1.17.1 [1a297f60] + FillArrays v1.14.0 [59287772] + Formatting v0.4.3 ⌅ [f6369f11] + ForwardDiff v0.10.39 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 ⌅ [46192b85] + GPUArraysCore v0.1.5 ⌅ [0b43b601] + Groebner v0.2.11 ⌅ [d5909c97] + GroupsCore v0.4.2 [34004b35] + HypergeometricFunctions v0.3.28 [615f187c] + IfElse v0.1.1 [22cec73e] + InitialValues v0.3.1 [18e54dd8] + IntegerMathUtils v0.1.3 [8197267c] + IntervalSets v0.7.11 [3587e190] + InverseFunctions v0.1.17 [92d709cd] + IrrationalConstants v0.2.6 [605048dd] + IterativeLQR v0.2.3 [82899510] + IteratorInterfaceExtensions v1.0.0 ⌅ [033835bb] + JLD2 v0.4.55 [692b3bcd] + JLLWrappers v1.7.1 [b964fa9f] + LaTeXStrings v1.4.0 ⌃ [2ee39098] + LabelledArrays v1.15.1 ⌅ [984bce1d] + LambertW v0.4.6 ⌅ [23fbe1c1] + Latexify v0.15.21 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.16 ⌅ [e9d8d322] + Metatheory v1.3.5 [128add7d] + MicroCollections v0.2.0 [e1d29d7a] + Missings v1.2.0 ⌅ [102ac46a] + MultivariatePolynomials v0.4.7 [d8a4904e] + MutableArithmetics v1.6.7 [77ba4419] + NaNMath v1.1.3 [bac558e1] + OrderedCollections v1.8.1 [90014a1f] + PDMats v0.11.36 [d96e819e] + Parameters v0.12.3 ⌃ [d236fae5] + PreallocationTools v0.4.24 ⌅ [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.5.0 [27ebfcd6] + Primes v0.5.7 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [fb686558] + RandomExtensions v0.4.4 [3cdcf5f2] + RecipesBase v1.3.4 ⌅ [731186ca] + RecursiveArrayTools v2.38.10 [189a3867] + Reexport v1.2.2 [42d2dcc6] + Referenceables v0.1.3 [ae029012] + Requires v1.3.1 [79098fc4] + Rmath v0.9.0 [7e49a35a] + RuntimeGeneratedFunctions v0.5.15 ⌅ [0bca4576] + SciMLBase v1.98.1 ⌅ [c0aeaf25] + SciMLOperators v0.3.12 [6c6a2e73] + Scratch v1.3.0 [efcf1570] + Setfield v1.1.2 [66db9d55] + SnoopPrecompile v1.0.3 [a2af1166] + SortingAlgorithms v1.2.2 [276daf66] + SpecialFunctions v2.6.1 [171d559e] + SplittablesBase v0.1.15 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.7 [4c63d2b9] + StatsFuns v1.5.2 ⌅ [2efcf032] + SymbolicIndexingInterface v0.2.2 ⌅ [d1185830] + SymbolicUtils v0.19.11 ⌅ [0c5d862f] + Symbolics v4.14.0 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.1 ⌅ [8ea1fca8] + TermInterface v0.2.3 [ac1d9e8a] + ThreadsX v0.1.12 [a759f4b9] + TimerOutputs v0.5.29 [3bb67fe8] + TranscodingStreams v0.11.3 [28d57a85] + Transducers v0.4.85 [a2a6695c] + TreeViews v0.3.0 [781d530d] + TruncatedStacktraces v1.4.0 [3a884ed6] + UnPack v1.0.2 [700de1a5] + ZygoteRules v0.2.7 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.6.0 [7b1f6079] + FileWatching v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.2.0 [44cfe95a] + Pkg v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.11.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] + LibCURL_jll v8.6.0+0 [e37daf67] + LibGit2_jll v1.7.2+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.6+0 [14a3606d] + MozillaCACerts_jll v2023.12.12 [4536629a] + OpenBLAS_jll v0.3.27+1 [05823500] + OpenLibm_jll v0.8.5+0 [bea87d4a] + SuiteSparse_jll v7.7.0+0 [83775a58] + Zlib_jll v1.2.13+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 [8e850ede] + nghttp2_jll v1.59.0+0 [3f19e933] + p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 7.95s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 178.08s ################################################################################ # Testing # Testing IterativeLQR Status `/tmp/jl_XtAZEA/Project.toml` [6e4b80f9] BenchmarkTools v1.6.3 ⌅ [f6369f11] ForwardDiff v0.10.39 [605048dd] IterativeLQR v0.2.3 ⌅ [0c5d862f] Symbolics v4.14.0 [37e2e46d] LinearAlgebra v1.11.0 [2f01184e] SparseArrays v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_XtAZEA/Manifest.toml` ⌅ [47edcb42] ADTypes v0.2.7 ⌅ [c3fe647b] AbstractAlgebra v0.27.10 [1520ce14] AbstractTrees v0.4.5 [7d9f7c33] Accessors v0.1.42 ⌅ [79e6a3ab] Adapt v3.7.2 [66dad0bd] AliasTables v1.1.3 [dce04be8] ArgCheck v2.5.0 ⌃ [4fba245c] ArrayInterface v7.7.1 [30b0a656] ArrayInterfaceCore v0.1.29 ⌅ [15f4f7f2] AutoHashEquals v0.2.0 [198e06fe] BangBang v0.4.6 [9718e550] Baselet v0.1.1 [6e4b80f9] BenchmarkTools v1.6.3 ⌅ [e2ed5e7c] Bijections v0.1.10 [d360d2e6] ChainRulesCore v1.26.0 [861a8166] Combinatorics v1.0.3 [38540f10] CommonSolve v0.2.4 [bbf7d656] CommonSubexpressions v0.3.1 [34da2185] Compat v4.18.1 [b152e2b5] CompositeTypes v0.1.4 [a33af91c] CompositionsBase v0.1.2 ⌅ [187b0558] ConstructionBase v1.5.6 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 ⌅ [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [31c24e10] Distributions v0.25.122 [ffbed154] DocStringExtensions v0.9.5 ⌅ [5b8099bc] DomainSets v0.5.14 ⌅ [7c1d4256] DynamicPolynomials v0.4.6 [4e289a0a] EnumX v1.0.5 [e2ba6199] ExprTools v0.1.10 [5789e2e9] FileIO v1.17.1 [1a297f60] FillArrays v1.14.0 [59287772] Formatting v0.4.3 ⌅ [f6369f11] ForwardDiff v0.10.39 [069b7b12] FunctionWrappers v1.1.3 [77dc65aa] FunctionWrappersWrappers v0.1.3 ⌅ [46192b85] GPUArraysCore v0.1.5 ⌅ [0b43b601] Groebner v0.2.11 ⌅ [d5909c97] GroupsCore v0.4.2 [34004b35] HypergeometricFunctions v0.3.28 [615f187c] IfElse v0.1.1 [22cec73e] InitialValues v0.3.1 [18e54dd8] IntegerMathUtils v0.1.3 [8197267c] IntervalSets v0.7.11 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.6 [605048dd] IterativeLQR v0.2.3 [82899510] IteratorInterfaceExtensions v1.0.0 ⌅ [033835bb] JLD2 v0.4.55 [692b3bcd] JLLWrappers v1.7.1 [682c06a0] JSON v1.2.0 [b964fa9f] LaTeXStrings v1.4.0 ⌃ [2ee39098] LabelledArrays v1.15.1 ⌅ [984bce1d] LambertW v0.4.6 ⌅ [23fbe1c1] Latexify v0.15.21 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 ⌅ [e9d8d322] Metatheory v1.3.5 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 ⌅ [102ac46a] MultivariatePolynomials v0.4.7 [d8a4904e] MutableArithmetics v1.6.7 [77ba4419] NaNMath v1.1.3 [bac558e1] OrderedCollections v1.8.1 [90014a1f] PDMats v0.11.36 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.3 ⌃ [d236fae5] PreallocationTools v0.4.24 ⌅ [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.5.0 [27ebfcd6] Primes v0.5.7 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [fb686558] RandomExtensions v0.4.4 [3cdcf5f2] RecipesBase v1.3.4 ⌅ [731186ca] RecursiveArrayTools v2.38.10 [189a3867] Reexport v1.2.2 [42d2dcc6] Referenceables v0.1.3 [ae029012] Requires v1.3.1 [79098fc4] Rmath v0.9.0 [7e49a35a] RuntimeGeneratedFunctions v0.5.15 ⌅ [0bca4576] SciMLBase v1.98.1 ⌅ [c0aeaf25] SciMLOperators v0.3.12 [6c6a2e73] Scratch v1.3.0 [efcf1570] Setfield v1.1.2 [66db9d55] SnoopPrecompile v1.0.3 [a2af1166] SortingAlgorithms v1.2.2 [276daf66] SpecialFunctions v2.6.1 [171d559e] SplittablesBase v0.1.15 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 [2913bbd2] StatsBase v0.34.7 [4c63d2b9] StatsFuns v1.5.2 [ec057cc2] StructUtils v2.5.1 ⌅ [2efcf032] SymbolicIndexingInterface v0.2.2 ⌅ [d1185830] SymbolicUtils v0.19.11 ⌅ [0c5d862f] Symbolics v4.14.0 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 ⌅ [8ea1fca8] TermInterface v0.2.3 [ac1d9e8a] ThreadsX v0.1.12 [a759f4b9] TimerOutputs v0.5.29 [3bb67fe8] TranscodingStreams v0.11.3 [28d57a85] Transducers v0.4.85 [a2a6695c] TreeViews v0.3.0 [781d530d] TruncatedStacktraces v1.4.0 [3a884ed6] UnPack v1.0.2 [700de1a5] ZygoteRules v0.2.7 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.11.0 [de0858da] Printf v1.11.0 [9abbd945] Profile v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.6.0+0 [e37daf67] LibGit2_jll v1.7.2+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.6+0 [14a3606d] MozillaCACerts_jll v2023.12.12 [4536629a] OpenBLAS_jll v0.3.27+1 [05823500] OpenLibm_jll v0.8.5+0 [bea87d4a] SuiteSparse_jll v7.7.0+0 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.59.0+0 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... Precompiling Symbolics... 3185.5 ms ? DomainSets 14824.3 ms ✓ SciMLBase Info Given Symbolics was explicitly requested, output will be shown live  WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/CFJJK/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. 5553.5 ms ? Symbolics 1 dependency successfully precompiled in 29 seconds. 176 already precompiled. 2 dependencies failed but may be precompilable after restarting julia 2 dependencies had output during precompilation: ┌ Symbolics │ [Output was shown above] └ ┌ DomainSets │ WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/CFJJK/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. │ ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. └ WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/CFJJK/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. Precompiling DomainSets... Info Given DomainSets was explicitly requested, output will be shown live  WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/CFJJK/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. 2944.1 ms ? DomainSets WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/CFJJK/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/CFJJK/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. WARNING: Wrapping `Vararg` directly in UnionAll is deprecated (wrap the tuple instead). You may need to write `f(x::Vararg{T})` rather than `f(x::Vararg{<:T})` or `f(x::Vararg{T}) where T` instead of `f(x::Vararg{T} where T)`. Precompiling ArrayInterfaceCore... 2106.8 ms ✓ ArrayInterfaceCore 1 dependency successfully precompiled in 2 seconds. 10 already precompiled. Precompiling Groebner... 17540.6 ms ✓ AbstractAlgebra 4136.6 ms ✓ Groebner 2 dependencies successfully precompiled in 22 seconds. 27 already precompiled. WARNING: Code.get_symbolify is deprecated, use get_rewrites instead. likely near /home/pkgeval/.julia/packages/Symbolics/UrqtQ/src/build_function.jl:130 Precompiling Distributions... 4090.0 ms ✓ StatsBase 1847.3 ms ✓ PDMats → StatsBaseExt 9669.8 ms ✓ Distributions 3 dependencies successfully precompiled in 19 seconds. 44 already precompiled. Precompiling StatsFunsInverseFunctionsExt... 1663.7 ms ✓ StatsFuns → StatsFunsInverseFunctionsExt 1 dependency successfully precompiled in 2 seconds. 21 already precompiled. Precompiling StatsFunsChainRulesCoreExt... 4145.9 ms ✓ StatsFuns → StatsFunsChainRulesCoreExt 1 dependency successfully precompiled in 5 seconds. 24 already precompiled. Precompiling DistributionsTestExt... 4732.4 ms ✓ Distributions → DistributionsTestExt 1 dependency successfully precompiled in 7 seconds. 49 already precompiled. Precompiling DistributionsChainRulesCoreExt... 4958.4 ms ✓ Distributions → DistributionsChainRulesCoreExt 1 dependency successfully precompiled in 7 seconds. 52 already precompiled. Precompiling Latexify... 5246.8 ms ✓ Latexify 1 dependency successfully precompiled in 5 seconds. 12 already precompiled. Precompiling IterativeLQR... 2897.0 ms ? DomainSets 46625.5 ms ✓ JLD2 3635.7 ms ? Symbolics Info Given IterativeLQR was explicitly requested, output will be shown live  ┌ Warning: Module Symbolics with build ID ffffffff-ffff-ffff-0ff9-0a134b3c421f is missing from the cache. │ This may mean Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] does not support precompilation but is imported by a module that does. └ @ Base loading.jl:2541 1943.2 ms ? IterativeLQR 1 dependency successfully precompiled in 60 seconds. 182 already precompiled. 2 dependencies precompiled but different versions are currently loaded. Restart julia to access the new versions. Otherwise, loading dependents of these packages may trigger further precompilation to work with the unexpected versions. 3 dependencies failed but may be precompilable after restarting julia 3 dependencies had output during precompilation: ┌ Symbolics │ ┌ Warning: Module DomainSets with build ID ffffffff-ffff-ffff-8955-0906150fb5ee is missing from the cache. │ │ This may mean DomainSets [5b8099bc-c8ec-5219-889f-1d9e522a28bf] does not support precompilation but is imported by a module that does. │ └ @ Base loading.jl:2541 └ ┌ DomainSets │ WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/CFJJK/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. │ ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. └ ┌ IterativeLQR │ [Output was shown above] └ ┌ Warning: Module Symbolics with build ID ffffffff-ffff-ffff-0ff9-0a134b3c421f is missing from the cache. │ This may mean Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] does not support precompilation but is imported by a module that does. └ @ Base loading.jl:2541 Test Summary: | Pass Total Time Objective | 7 7 41.2s Test Summary: | Pass Total Time Dynamics | 4 4 23.4s Test Summary: | Pass Total Time Constraints | 12 12 18.9s ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University al iter: 1 ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University iter: 1 cost: 7.769270416576891 gradient_norm: 4.36512659822129 max_violation: 3.12119029316725 step_size: 1.0 iter: 2 cost: 5.6034561220028785 gradient_norm: 2.148089711770583 max_violation: 3.1141711128474103 step_size: 1.0 iter: 3 cost: 5.2017356711665474 gradient_norm: 1.419591902588415 max_violation: 3.111782039022594 step_size: 1.0 iter: 4 cost: 5.0611500111360606 gradient_norm: 1.05935012739479 max_violation: 3.1105882194244514 step_size: 1.0 iter: 5 cost: 4.99607798171025 gradient_norm: 0.8447574360313408 max_violation: 3.1098721866715575 step_size: 1.0 iter: 6 cost: 4.960728790373366 gradient_norm: 0.7024035741671942 max_violation: 3.1093947989678057 step_size: 1.0 iter: 7 cost: 4.939413421029308 gradient_norm: 0.6010875119843995 max_violation: 3.1090537128113773 step_size: 1.0 iter: 8 cost: 4.9255783561600275 gradient_norm: 0.5253069726196584 max_violation: 3.1087978036536965 step_size: 1.0 iter: 9 cost: 4.9160927187598435 gradient_norm: 0.46649171626133723 max_violation: 3.1085986829216496 step_size: 1.0 iter: 10 cost: 4.9093074589680565 gradient_norm: 0.4195196218200075 max_violation: 3.1084393211178303 step_size: 1.0 iter: 11 cost: 4.904286970540785 gradient_norm: 0.38114147784613944 max_violation: 3.1083088817483615 step_size: 1.0 iter: 12 cost: 4.900468361923049 gradient_norm: 0.3491968228048503 max_violation: 3.108200140021452 step_size: 1.0 iter: 13 cost: 4.897496502752881 gradient_norm: 0.3221932508522985 max_violation: 3.1081080935071634 step_size: 1.0 iter: 14 cost: 4.895138361258076 gradient_norm: 0.2990667612693764 max_violation: 3.108029168429819 step_size: 1.0 iter: 15 cost: 4.893235885845458 gradient_norm: 0.27903835098405605 max_violation: 3.107960743506765 step_size: 1.0 iter: 16 cost: 4.891678812686702 gradient_norm: 0.26152459176397436 max_violation: 3.1079008523619285 step_size: 1.0 iter: 17 cost: 4.890388319961226 gradient_norm: 0.24607988522272992 max_violation: 3.1078479909675827 step_size: 1.0 iter: 18 cost: 4.889306851758524 gradient_norm: 0.23235803470208158 max_violation: 3.107800989265128 step_size: 1.0 iter: 19 cost: 4.888391586935612 gradient_norm: 0.22008599393357076 max_violation: 3.10775892331915 step_size: 1.0 al iter: 2 iter: 1 cost: 56.25964530638702 gradient_norm: 6.683529446492894 max_violation: 2.9377810739664114 step_size: 1.0 iter: 2 cost: 55.78744406371352 gradient_norm: 3.1583132820246558 max_violation: 2.9406490181522327 step_size: 1.0 iter: 3 cost: 55.70082946330442 gradient_norm: 2.066281578287117 max_violation: 2.9414361873152988 step_size: 1.0 iter: 4 cost: 55.670501625760465 gradient_norm: 1.535092159669265 max_violation: 2.9417887939653187 step_size: 1.0 iter: 5 cost: 55.656447596180044 gradient_norm: 1.22109983447604 max_violation: 2.941984100633245 step_size: 1.0 iter: 6 cost: 55.64880420453293 gradient_norm: 1.013738631338739 max_violation: 2.94210621837126 step_size: 1.0 iter: 7 cost: 55.64419042468532 gradient_norm: 0.8665869941243898 max_violation: 2.9421888430811416 step_size: 1.0 iter: 8 cost: 55.64119292709409 gradient_norm: 0.7567498727838249 max_violation: 2.94224794501644 step_size: 1.0 iter: 9 cost: 55.63913599780548 gradient_norm: 0.6716326333786364 max_violation: 2.9422920077695505 step_size: 1.0 iter: 10 cost: 55.637663475669214 gradient_norm: 0.6037347544373306 max_violation: 2.9423259276526927 step_size: 1.0 iter: 11 cost: 55.636573150269975 gradient_norm: 0.5483111135736891 max_violation: 2.9423527150275475 step_size: 1.0 iter: 12 cost: 55.63574328705482 gradient_norm: 0.5022132518960483 max_violation: 2.942374315412212 step_size: 1.0 al iter: 3 iter: 1 cost: 477.7019374690942 gradient_norm: 138.1130005725007 max_violation: 2.268885878688994 step_size: 1.0 iter: 2 cost: 404.0253423432493 gradient_norm: 155.73312461384236 max_violation: 1.7673896899847972 step_size: 1.0 iter: 3 cost: 343.09369409202964 gradient_norm: 109.9756950071282 max_violation: 1.5529574249312301 step_size: 1.0 iter: 4 cost: 311.64704810665245 gradient_norm: 89.91444726583353 max_violation: 1.396251685784758 step_size: 1.0 iter: 5 cost: 295.6485672093982 gradient_norm: 81.10166520694925 max_violation: 1.3032125631832392 step_size: 1.0 iter: 6 cost: 280.2543612201598 gradient_norm: 74.13748358348862 max_violation: 1.2026918829751128 step_size: 1.0 iter: 7 cost: 267.813972696264 gradient_norm: 67.18994627780435 max_violation: 1.1135507491967553 step_size: 1.0 iter: 8 cost: 258.19009568552 gradient_norm: 71.13438436063865 max_violation: 1.0428182927989975 step_size: 1.0 iter: 9 cost: 250.75260844682515 gradient_norm: 74.13718141170168 max_violation: 0.9881299843948641 step_size: 1.0 iter: 10 cost: 244.72862269615104 gradient_norm: 77.1089553501975 max_violation: 0.944462087028064 step_size: 1.0 iter: 11 cost: 239.81705505352076 gradient_norm: 76.9836104040572 max_violation: 0.9079300600132565 step_size: 1.0 iter: 12 cost: 236.1464485115699 gradient_norm: 72.45900444835381 max_violation: 0.8773542031106758 step_size: 1.0 iter: 13 cost: 233.3733083692844 gradient_norm: 66.38530424495637 max_violation: 0.852227534285114 step_size: 1.0 iter: 14 cost: 231.13152137971747 gradient_norm: 60.53543956879585 max_violation: 0.8314586904647734 step_size: 1.0 iter: 15 cost: 229.26737194951286 gradient_norm: 55.32783714582729 max_violation: 0.8140160638353384 step_size: 1.0 iter: 16 cost: 227.69923132700862 gradient_norm: 64.38281204828145 max_violation: 0.7991339598833331 step_size: 1.0 iter: 17 cost: 226.36802392622997 gradient_norm: 74.58552098332918 max_violation: 0.7862617468993025 step_size: 1.0 iter: 18 cost: 225.22731117721315 gradient_norm: 81.71340182612795 max_violation: 0.7749978969589635 step_size: 1.0 iter: 19 cost: 224.24037944235843 gradient_norm: 86.5548988824084 max_violation: 0.7650431084715779 step_size: 1.0 iter: 20 cost: 223.37835971261924 gradient_norm: 89.70564265110428 max_violation: 0.7561694570972453 step_size: 1.0 iter: 21 cost: 222.6186377539949 gradient_norm: 91.60581627276522 max_violation: 0.7482000736828773 step_size: 1.0 iter: 22 cost: 221.94351584243287 gradient_norm: 92.57930743406646 max_violation: 0.7409954860868075 step_size: 1.0 iter: 23 cost: 221.33911861249678 gradient_norm: 92.86514317533324 max_violation: 0.7344442031809142 step_size: 1.0 iter: 24 cost: 220.79451498418717 gradient_norm: 92.64077514917109 max_violation: 0.7284560464443359 step_size: 1.0 iter: 25 cost: 220.30102344590773 gradient_norm: 92.03883641679231 max_violation: 0.7229573034519183 step_size: 1.0 iter: 26 cost: 219.85167153987823 gradient_norm: 91.15910341066771 max_violation: 0.7178871264816222 step_size: 1.0 iter: 27 cost: 219.44078383778304 gradient_norm: 90.07705473203804 max_violation: 0.7131948121059124 step_size: 1.0 iter: 28 cost: 219.06367429625053 gradient_norm: 88.85004292659437 max_violation: 0.7088377244560173 step_size: 1.0 iter: 29 cost: 218.71642018997645 gradient_norm: 87.52179077420728 max_violation: 0.7047796993979922 step_size: 1.0 iter: 30 cost: 218.39569719984223 gradient_norm: 86.12570167719271 max_violation: 0.7009898119254405 step_size: 1.0 iter: 31 cost: 218.09865874632928 gradient_norm: 84.68732044681342 max_violation: 0.6974414186445879 step_size: 1.0 iter: 32 cost: 217.82284658045222 gradient_norm: 83.2261776070578 max_violation: 0.6941114085717843 step_size: 1.0 iter: 33 cost: 217.56612323988386 gradient_norm: 81.75718120933337 max_violation: 0.690979611782478 step_size: 1.0 iter: 34 cost: 217.32661985829952 gradient_norm: 80.29167335643757 max_violation: 0.6880283280791843 step_size: 1.0 iter: 35 cost: 217.1026949206481 gradient_norm: 78.8382363653751 max_violation: 0.6852419474935063 step_size: 1.0 iter: 36 cost: 216.89290100398412 gradient_norm: 77.40331080111936 max_violation: 0.6826066416695715 step_size: 1.0 iter: 37 cost: 216.69595750171504 gradient_norm: 75.99167137154802 max_violation: 0.6801101105137839 step_size: 1.0 iter: 38 cost: 216.51072795214864 gradient_norm: 74.60679489786418 max_violation: 0.6777413723997507 step_size: 1.0 iter: 39 cost: 216.33620099619287 gradient_norm: 73.25114595452575 max_violation: 0.6754905890652463 step_size: 1.0 iter: 40 cost: 216.17147425375626 gradient_norm: 71.9263994185312 max_violation: 0.6733489184223198 step_size: 1.0 iter: 41 cost: 216.01574058549204 gradient_norm: 70.63361445796455 max_violation: 0.6713083900374204 step_size: 1.0 iter: 42 cost: 215.868276328382 gradient_norm: 69.37337098198716 max_violation: 0.6693617991809391 step_size: 1.0 iter: 43 cost: 215.7284311802771 gradient_norm: 68.14587695124318 max_violation: 0.6675026162051232 step_size: 1.0 iter: 44 cost: 215.59561947206015 gradient_norm: 66.95105297706361 max_violation: 0.6657249086631478 step_size: 1.0 iter: 45 cost: 215.46931261417726 gradient_norm: 65.78859915131616 max_violation: 0.6640232740855594 step_size: 1.0 iter: 46 cost: 215.3490325415644 gradient_norm: 64.65804792238573 max_violation: 0.6623927817217972 step_size: 1.0 iter: 47 cost: 215.23434601056502 gradient_norm: 63.5588059760886 max_violation: 0.6608289218623757 step_size: 1.0 iter: 48 cost: 215.12485962521868 gradient_norm: 62.49018742493026 max_violation: 0.6593275616014909 step_size: 1.0 iter: 49 cost: 215.02021548972522 gradient_norm: 61.45144010666693 max_violation: 0.6578849060952221 step_size: 1.0 iter: 50 cost: 214.92008739986468 gradient_norm: 60.441766405217564 max_violation: 0.6564974645281012 step_size: 1.0 iter: 51 cost: 214.82417749941908 gradient_norm: 59.460339706958145 max_violation: 0.6551620201287998 step_size: 1.0 iter: 52 cost: 214.73221333869893 gradient_norm: 58.50631737224558 max_violation: 0.6538756036802686 step_size: 1.0 iter: 53 cost: 214.6439452815443 gradient_norm: 57.57885091958696 max_violation: 0.6526354700556589 step_size: 1.0 iter: 54 cost: 214.55914421495734 gradient_norm: 56.67709397743094 max_violation: 0.6514390773824088 step_size: 1.0 iter: 55 cost: 214.47759952210365 gradient_norm: 55.800208446166415 max_violation: 0.6502840684959419 step_size: 1.0 iter: 56 cost: 214.39911728496486 gradient_norm: 54.94736922445658 max_violation: 0.6491682543935884 step_size: 1.0 iter: 57 cost: 214.3235186876497 gradient_norm: 54.11776778360829 max_violation: 0.6480895994407185 step_size: 1.0 iter: 58 cost: 214.25063859535553 gradient_norm: 53.3106148182195 max_violation: 0.6470462081156452 step_size: 1.0 iter: 59 cost: 214.1803242874022 gradient_norm: 52.52514215677291 max_violation: 0.6460363131093096 step_size: 1.0 iter: 60 cost: 214.11243432563845 gradient_norm: 51.76060408013673 max_violation: 0.6450582646204257 step_size: 1.0 iter: 61 cost: 214.04683754203705 gradient_norm: 51.016278167838266 max_violation: 0.6441105207080224 step_size: 1.0 iter: 62 cost: 213.98341213139446 gradient_norm: 50.29146576869163 max_violation: 0.6431916385812038 step_size: 1.0 iter: 63 cost: 213.9220448368933 gradient_norm: 49.58549217422134 max_violation: 0.6423002667213717 step_size: 1.0 iter: 64 cost: 213.862630217853 gradient_norm: 48.897706558271565 max_violation: 0.6414351377453968 step_size: 1.0 iter: 65 cost: 213.8050699903372 gradient_norm: 48.22748173418997 max_violation: 0.6405950619295084 step_size: 1.0 iter: 66 cost: 213.74927243246336 gradient_norm: 47.574213771187715 max_violation: 0.6397789213235132 step_size: 1.0 iter: 67 cost: 213.69515184725873 gradient_norm: 46.937321503691464 max_violation: 0.6389856643933869 step_size: 1.0 iter: 68 cost: 213.64262807678492 gradient_norm: 46.31624596074949 max_violation: 0.6382143011376296 step_size: 1.0 iter: 69 cost: 213.59162606201045 gradient_norm: 45.710449737726265 max_violation: 0.6374638986291559 step_size: 1.0 iter: 70 cost: 213.54207544356075 gradient_norm: 45.119416327855596 max_violation: 0.6367335769399793 step_size: 1.0 iter: 71 cost: 213.49391019905738 gradient_norm: 44.5426494279103 max_violation: 0.6360225054108652 step_size: 1.0 iter: 72 cost: 213.44706831325234 gradient_norm: 43.979672229555604 max_violation: 0.6353298992322958 step_size: 1.0 iter: 73 cost: 213.40149147759496 gradient_norm: 43.43002670519204 max_violation: 0.6346550163068052 step_size: 1.0 iter: 74 cost: 213.35712481626024 gradient_norm: 42.89327289573222 max_violation: 0.6339971543660154 step_size: 1.0 iter: 75 cost: 213.3139166359889 gradient_norm: 42.368988205681994 max_violation: 0.633355648318533 step_size: 1.0 iter: 76 cost: 213.27181819739505 gradient_norm: 41.85676671014057 max_violation: 0.6327298678074023 step_size: 1.0 iter: 77 cost: 213.23078350564344 gradient_norm: 41.3562184768641 max_violation: 0.6321192149580281 step_size: 1.0 iter: 78 cost: 213.19076911863306 gradient_norm: 40.86696890598892 max_violation: 0.6315231222994306 step_size: 1.0 iter: 79 cost: 213.15173397101802 gradient_norm: 40.38865808909798 max_violation: 0.6309410508434716 step_size: 1.0 iter: 80 cost: 213.11363921257978 gradient_norm: 39.92094018913221 max_violation: 0.6303724883081836 step_size: 1.0 iter: 81 cost: 213.0764480596111 gradient_norm: 39.463482841712995 max_violation: 0.6298169474727602 step_size: 1.0 iter: 82 cost: 213.04012565811874 gradient_norm: 39.01596657843358 max_violation: 0.6292739646529175 step_size: 1.0 iter: 83 cost: 213.00463895777227 gradient_norm: 38.57808427237055 max_violation: 0.6287430982865083 step_size: 1.0 iter: 84 cost: 212.96995659562955 gradient_norm: 38.149540605594204 max_violation: 0.6282239276201529 step_size: 1.0 iter: 85 cost: 212.93604878877503 gradient_norm: 37.730051558576825 max_violation: 0.6277160514885902 step_size: 1.0 iter: 86 cost: 212.90288723508488 gradient_norm: 37.319343921098 max_violation: 0.6272190871791752 step_size: 1.0 iter: 87 cost: 212.87044502141575 gradient_norm: 36.917154824090204 max_violation: 0.6267326693746798 step_size: 1.0 iter: 88 cost: 212.83869653857766 gradient_norm: 36.52323129198671 max_violation: 0.6262564491681681 step_size: 1.0 iter: 89 cost: 212.80761740251538 gradient_norm: 36.137329814806485 max_violation: 0.6257900931442579 step_size: 1.0 iter: 90 cost: 212.77718438117802 gradient_norm: 35.75921593950617 max_violation: 0.6253332825216185 step_size: 1.0 iter: 91 cost: 212.74737532660328 gradient_norm: 35.38866387969711 max_violation: 0.6248857123519951 step_size: 1.0 iter: 92 cost: 212.71816911178558 gradient_norm: 35.025456143204615 max_violation: 0.624447090771433 step_size: 1.0 iter: 93 cost: 212.68954557194442 gradient_norm: 34.66938317667526 max_violation: 0.6240171382998048 step_size: 1.0 iter: 94 cost: 212.66148544983233 gradient_norm: 34.320243026504116 max_violation: 0.6235955871850192 step_size: 1.0 iter: 95 cost: 212.63397034476702 gradient_norm: 33.97784101548907 max_violation: 0.6231821807886222 step_size: 1.0 iter: 96 cost: 212.6069826650913 gradient_norm: 33.64198943439417 max_violation: 0.6227766730097848 step_size: 1.0 iter: 97 cost: 212.5805055837921 gradient_norm: 33.3125072478994 max_violation: 0.6223788277448854 step_size: 1.0 iter: 98 cost: 212.55452299704103 gradient_norm: 32.98921981414131 max_violation: 0.6219884183801612 step_size: 1.0 iter: 99 cost: 212.52901948542583 gradient_norm: 32.67195861726739 max_violation: 0.6216052273150869 step_size: 1.0 iter: 100 cost: 212.50398027767676 gradient_norm: 32.360561012482655 max_violation: 0.6212290455143155 step_size: 1.0 al iter: 4 iter: 1 cost: 448.02994249737094 gradient_norm: 249.13809955840475 max_violation: 0.3679581392070168 step_size: 1.0 iter: 2 cost: 418.34825816478553 gradient_norm: 480.8298811243556 max_violation: 0.35363960146869866 step_size: 0.125 iter: 3 cost: 393.441833734488 gradient_norm: 1601.4304859104152 max_violation: 0.34084904540905736 step_size: 0.25 iter: 4 cost: 380.9821133540591 gradient_norm: 3681.2947934829117 max_violation: 0.34032361143099354 step_size: 0.5 iter: 5 cost: 356.38026060439614 gradient_norm: 4641.026955302637 max_violation: 0.30586051601503783 step_size: 1.0 iter: 6 cost: 329.1136594311778 gradient_norm: 3795.644234158943 max_violation: 0.2766953503610261 step_size: 1.0 iter: 7 cost: 313.2374458970554 gradient_norm: 3202.0708485530113 max_violation: 0.2563878160037607 step_size: 1.0 iter: 8 cost: 302.78833605577336 gradient_norm: 2761.5385833917016 max_violation: 0.24048522426485075 step_size: 1.0 iter: 9 cost: 295.44752189476225 gradient_norm: 2424.2973656896493 max_violation: 0.23192607481129945 step_size: 1.0 iter: 10 cost: 290.0554545709163 gradient_norm: 2159.125060982015 max_violation: 0.2296113434463214 step_size: 1.0 iter: 11 cost: 285.9596194999736 gradient_norm: 1945.6858822837642 max_violation: 0.2278226978047595 step_size: 1.0 iter: 12 cost: 282.7636134947028 gradient_norm: 1770.4131282165101 max_violation: 0.22635618200442664 step_size: 1.0 iter: 13 cost: 280.2134048895359 gradient_norm: 1624.0085264096263 max_violation: 0.22510723272732713 step_size: 1.0 iter: 14 cost: 278.13948161224886 gradient_norm: 1499.9259090843964 max_violation: 0.2240162122353877 step_size: 1.0 iter: 15 cost: 276.42498713284726 gradient_norm: 1393.4401058848614 max_violation: 0.22304598430439038 step_size: 1.0 iter: 16 cost: 274.9871378842884 gradient_norm: 1301.0625008485367 max_violation: 0.22217172839959076 step_size: 1.0 iter: 17 cost: 273.76589949767623 gradient_norm: 1220.1649201333432 max_violation: 0.22137589332767904 step_size: 1.0 iter: 18 cost: 272.71683562324495 gradient_norm: 1148.7314800447673 max_violation: 0.22064550041274522 step_size: 1.0 iter: 19 cost: 271.8064537836746 gradient_norm: 1085.1909425765512 max_violation: 0.21997060401312707 step_size: 1.0 iter: 20 cost: 271.00909645570005 gradient_norm: 1028.3009493051914 max_violation: 0.2193433608038009 step_size: 1.0 iter: 21 cost: 270.30481621556993 gradient_norm: 977.0664562159471 max_violation: 0.2187574383527533 step_size: 1.0 iter: 22 cost: 269.67789347073006 gradient_norm: 930.6812008507615 max_violation: 0.21820762272859762 step_size: 1.0 iter: 23 cost: 269.11578319209167 gradient_norm: 888.4849889151577 max_violation: 0.21768954827481668 step_size: 1.0 iter: 24 cost: 268.60835377556924 gradient_norm: 849.9320451965332 max_violation: 0.21719950546107336 step_size: 1.0 iter: 25 cost: 268.1473284140656 gradient_norm: 814.5672333237484 max_violation: 0.21673430049230946 step_size: 1.0 iter: 26 cost: 267.72586917540775 gradient_norm: 782.00795863655 max_violation: 0.21629115042934588 step_size: 1.0 iter: 27 cost: 267.3382632255342 gradient_norm: 751.9302345663002 max_violation: 0.21586760353881296 step_size: 1.0 iter: 28 cost: 266.9796833436758 gradient_norm: 724.0578402099095 max_violation: 0.21546147828574913 step_size: 1.0 iter: 29 cost: 266.6460034803803 gradient_norm: 698.1538021305496 max_violation: 0.21507081678990225 step_size: 1.0 iter: 30 cost: 266.3336561112778 gradient_norm: 674.0136451408338 max_violation: 0.2146938502200868 step_size: 1.0 iter: 31 cost: 266.0395224746036 gradient_norm: 651.460005691649 max_violation: 0.21432897477952118 step_size: 1.0 iter: 32 cost: 265.7608500095649 gradient_norm: 630.3383073023336 max_violation: 0.21397473774774678 step_size: 1.0 iter: 33 cost: 265.49519370420524 gradient_norm: 610.513272899344 max_violation: 0.21362983345942022 step_size: 1.0 iter: 34 cost: 265.240379611441 gradient_norm: 591.8661020941039 max_violation: 0.2132931089588368 step_size: 1.0 iter: 35 cost: 264.9944892387932 gradient_norm: 574.2921773779717 max_violation: 0.21296357814193456 step_size: 1.0 iter: 36 cost: 264.75586245925626 gradient_norm: 557.6991857770139 max_violation: 0.2126404413434253 step_size: 1.0 iter: 37 cost: 264.52311383376 gradient_norm: 542.0055558562756 max_violation: 0.2123231047963956 step_size: 1.0 iter: 38 cost: 264.29515338153874 gradient_norm: 527.1391200907716 max_violation: 0.2120111921513237 step_size: 1.0 iter: 39 cost: 264.0711997358185 gradient_norm: 513.0359270072436 max_violation: 0.21170453993156446 step_size: 1.0 iter: 40 cost: 263.85077391350313 gradient_norm: 499.639151627832 max_violation: 0.21140317187593238 step_size: 1.0 iter: 41 cost: 263.6336672101585 gradient_norm: 486.8980849214142 max_violation: 0.2111072533647329 step_size: 1.0 iter: 42 cost: 263.41988556359036 gradient_norm: 474.7672127575502 max_violation: 0.2108170339310642 step_size: 1.0 iter: 43 cost: 263.2095808014122 gradient_norm: 463.20540959731426 max_violation: 0.21053278959733834 step_size: 1.0 iter: 44 cost: 263.00298236392774 gradient_norm: 452.1752671463347 max_violation: 0.2102547755716735 step_size: 1.0 iter: 45 cost: 262.8003405486346 gradient_norm: 441.6425604312104 max_violation: 0.20998319496907225 step_size: 1.0 iter: 46 cost: 262.60188662578406 gradient_norm: 431.5758355437733 max_violation: 0.2097181837594797 step_size: 1.0 iter: 47 cost: 262.4078097235922 gradient_norm: 421.9460930544507 max_violation: 0.20945980850811896 step_size: 1.0 iter: 48 cost: 262.2182471159231 gradient_norm: 412.72654002986604 max_violation: 0.20920807226752203 step_size: 1.0 iter: 49 cost: 262.0332835727654 gradient_norm: 403.89238833199136 max_violation: 0.2089629244920923 step_size: 1.0 iter: 50 cost: 261.852955914427 gradient_norm: 395.42068341949096 max_violation: 0.20872427206020694 step_size: 1.0 iter: 51 cost: 261.6772599486665 gradient_norm: 387.29015368670497 max_violation: 0.2084919896990769 step_size: 1.0 iter: 52 cost: 261.50615800344275 gradient_norm: 379.48107456944877 max_violation: 0.2082659290136979 step_size: 1.0 iter: 53 cost: 261.3395860655893 gradient_norm: 371.97514426256555 max_violation: 0.20804592588801007 step_size: 1.0 iter: 54 cost: 261.1774600668541 gradient_norm: 364.7553693628904 max_violation: 0.20783180632964937 step_size: 1.0 iter: 55 cost: 261.0196811749093 gradient_norm: 357.8059594834161 max_violation: 0.20762339096222027 step_size: 1.0 iter: 56 cost: 260.86614011556554 gradient_norm: 351.1122302159837 max_violation: 0.207420498404991 step_size: 1.0 iter: 57 cost: 260.71672062999954 gradient_norm: 344.6605139364285 max_violation: 0.20722294776825834 step_size: 1.0 iter: 58 cost: 260.5713021967309 gradient_norm: 338.4380779718403 max_violation: 0.20703056046131163 step_size: 1.0 iter: 59 cost: 260.4297621473663 gradient_norm: 332.4330496572416 max_violation: 0.2068431614742683 step_size: 1.0 iter: 60 cost: 260.291977292211 gradient_norm: 326.63434778971117 max_violation: 0.2066605802615431 step_size: 1.0 iter: 61 cost: 260.157825154841 gradient_norm: 321.0316199974374 max_violation: 0.2064826513262319 step_size: 1.0 iter: 62 cost: 260.0271848974688 gradient_norm: 315.6151855476528 max_violation: 0.20630921458152907 step_size: 1.0 iter: 63 cost: 259.89993800341364 gradient_norm: 310.37598313634356 max_violation: 0.20614011554710965 step_size: 1.0 iter: 64 cost: 259.7759687696711 gradient_norm: 305.30552322490917 max_violation: 0.20597520542422654 step_size: 1.0 iter: 65 cost: 259.6551646516144 gradient_norm: 300.39584452005204 max_violation: 0.2058143410826032 step_size: 1.0 iter: 66 cost: 259.5374164929929 gradient_norm: 295.6394742186273 max_violation: 0.20565738498392605 step_size: 1.0 iter: 67 cost: 259.42261866729166 gradient_norm: 291.02939167396926 max_violation: 0.20550420506059464 step_size: 1.0 iter: 68 cost: 259.3106691509292 gradient_norm: 286.5589951661539 max_violation: 0.20535467456370027 step_size: 1.0 iter: 69 cost: 259.20146954431436 gradient_norm: 282.22207148756496 max_violation: 0.20520867189069047 step_size: 1.0 iter: 70 cost: 259.09492505335834 gradient_norm: 278.012768085119 max_violation: 0.2050660804004636 step_size: 1.0 iter: 71 cost: 258.9909444412599 gradient_norm: 273.92556751823787 max_violation: 0.20492678822172028 step_size: 1.0 iter: 72 cost: 258.889439958285 gradient_norm: 269.9552640234606 max_violation: 0.20479068805878375 step_size: 1.0 iter: 73 cost: 258.790327255554 gradient_norm: 266.096941986357 max_violation: 0.2046576769980537 step_size: 1.0 iter: 74 cost: 258.6935252875588 gradient_norm: 262.34595615444493 max_violation: 0.20452765631727665 step_size: 1.0 iter: 75 cost: 258.59895620706294 gradient_norm: 258.6979134238388 max_violation: 0.20440053129929936 step_size: 1.0 iter: 76 cost: 258.5065452552502 gradient_norm: 255.14865606688002 max_violation: 0.20427621105132898 step_size: 1.0 iter: 77 cost: 258.41622064933694 gradient_norm: 251.69424626634117 max_violation: 0.20415460833050902 step_size: 1.0 iter: 78 cost: 258.3279134693343 gradient_norm: 248.33095184311634 max_violation: 0.20403563937617974 step_size: 1.0 iter: 79 cost: 258.24155754529255 gradient_norm: 245.0552330726862 max_violation: 0.20391922374913163 step_size: 1.0 iter: 80 cost: 258.15708934598814 gradient_norm: 241.8637304964727 max_violation: 0.20380528417788524 step_size: 1.0 iter: 81 cost: 258.0744478698083 gradient_norm: 238.7532536403225 max_violation: 0.2036937464120112 step_size: 1.0 iter: 82 cost: 257.9935745383746 gradient_norm: 235.72077056613315 max_violation: 0.20358453908232832 step_size: 1.0 iter: 83 cost: 257.9144130932846 gradient_norm: 232.76339818387422 max_violation: 0.20347759356787076 step_size: 1.0 iter: 84 cost: 257.83690949624025 gradient_norm: 229.87839326267576 max_violation: 0.20337284386934895 step_size: 1.0 iter: 85 cost: 257.76101183273755 gradient_norm: 227.06314408239552 max_violation: 0.20327022648892168 step_size: 1.0 iter: 86 cost: 257.68667021939734 gradient_norm: 224.31516267232928 max_violation: 0.20316968031597726 step_size: 1.0 iter: 87 cost: 257.61383671499146 gradient_norm: 221.63207759230363 max_violation: 0.20307114651868963 step_size: 1.0 iter: 88 cost: 257.54246523513626 gradient_norm: 219.01162721123197 max_violation: 0.20297456844107575 step_size: 1.0 iter: 89 cost: 257.4725114706245 gradient_norm: 216.45165344244586 max_violation: 0.20287989150526542 step_size: 1.0 iter: 90 cost: 257.40393280931863 gradient_norm: 213.9500959030446 max_violation: 0.20278706311876915 step_size: 1.0 iter: 91 cost: 257.33668826151967 gradient_norm: 211.5049864624622 max_violation: 0.20269603258644064 step_size: 1.0 iter: 92 cost: 257.2707383887067 gradient_norm: 209.11444415074482 max_violation: 0.20260675102691206 step_size: 1.0 iter: 93 cost: 257.2060452355435 gradient_norm: 206.7766703995032 max_violation: 0.20251917129326102 step_size: 1.0 iter: 94 cost: 257.14257226501456 gradient_norm: 204.4899445897292 max_violation: 0.20243324789769757 step_size: 1.0 iter: 95 cost: 257.0802842965949 gradient_norm: 202.2526198865412 max_violation: 0.20234893694000844 step_size: 1.0 iter: 96 cost: 257.0191474473067 gradient_norm: 200.06311933402023 max_violation: 0.2022661960396186 step_size: 1.0 iter: 97 cost: 256.9591290755548 gradient_norm: 197.91993219852674 max_violation: 0.2021849842710184 step_size: 1.0 iter: 98 cost: 256.9001977276079 gradient_norm: 195.82161053596056 max_violation: 0.2021052621023962 step_size: 1.0 iter: 99 cost: 256.8423230866121 gradient_norm: 193.7667659710759 max_violation: 0.20202699133729318 step_size: 1.0 iter: 100 cost: 256.7854759240235 gradient_norm: 191.75406667317804 max_violation: 0.20195013505914305 step_size: 1.0 al iter: 5 iter: 1 cost: 573.643847926389 gradient_norm: 28677.368324575105 max_violation: 0.15220234155510287 step_size: 0.5 iter: 2 cost: 532.9439294037196 gradient_norm: 25698.9933047541 max_violation: 0.1480393860151143 step_size: 0.25 iter: 3 cost: 438.9847523153055 gradient_norm: 19539.991556874247 max_violation: 0.13541454772683895 step_size: 1.0 iter: 4 cost: 367.4162177035844 gradient_norm: 14343.569308752458 max_violation: 0.10226174973150388 step_size: 1.0 iter: 5 cost: 334.0629568715767 gradient_norm: 11277.626218412532 max_violation: 0.08326042162937808 step_size: 1.0 iter: 6 cost: 314.6959171643533 gradient_norm: 9271.106378396404 max_violation: 0.06972174505088363 step_size: 1.0 iter: 7 cost: 302.66669467559194 gradient_norm: 7866.350809791431 max_violation: 0.05988516494250684 step_size: 1.0 iter: 8 cost: 294.6909366255737 gradient_norm: 6829.3340583798245 max_violation: 0.05244550600266784 step_size: 1.0 iter: 9 cost: 289.1273472270879 gradient_norm: 6032.8322402459 max_violation: 0.046631912789411256 step_size: 1.0 iter: 10 cost: 285.0873494419558 gradient_norm: 5402.072652980493 max_violation: 0.04196795897552086 step_size: 1.0 iter: 11 cost: 282.056924254118 gradient_norm: 4890.307714165914 max_violation: 0.03814530195644511 step_size: 1.0 iter: 12 cost: 279.7221746775904 gradient_norm: 4466.833347212776 max_violation: 0.03495619858549148 step_size: 1.0 iter: 13 cost: 277.88264205039934 gradient_norm: 4110.658838876823 max_violation: 0.03225581165370106 step_size: 1.0 iter: 14 cost: 276.4054251838177 gradient_norm: 3806.9510145099275 max_violation: 0.02994017715436359 step_size: 1.0 iter: 15 cost: 275.1995682427834 gradient_norm: 3544.9325287202487 max_violation: 0.02793278416423378 step_size: 1.0 iter: 16 cost: 274.2011013090273 gradient_norm: 3316.585387701815 max_violation: 0.02617609849069369 step_size: 1.0 iter: 17 cost: 273.3639568330839 gradient_norm: 3115.8216106814893 max_violation: 0.0246260357999043 step_size: 1.0 iter: 18 cost: 272.6542651674098 gradient_norm: 2937.9358862398662 max_violation: 0.02324825580248646 step_size: 1.0 iter: 19 cost: 272.0466651563926 gradient_norm: 2779.2344062792718 max_violation: 0.022015615469764105 step_size: 1.0 iter: 20 cost: 271.5218552654265 gradient_norm: 2636.777113233924 max_violation: 0.02090638009699658 step_size: 1.0 iter: 21 cost: 271.06493024517044 gradient_norm: 2508.1949044255753 max_violation: 0.019902941955718068 step_size: 1.0 iter: 22 cost: 270.66422784593976 gradient_norm: 2391.5575468958914 max_violation: 0.018990886320856104 step_size: 1.0 iter: 23 cost: 270.3105142348358 gradient_norm: 2285.2766211488547 max_violation: 0.01815829988079376 step_size: 1.0 iter: 24 cost: 269.9963989313557 gradient_norm: 2188.033118427749 max_violation: 0.017395251262309563 step_size: 1.0 iter: 25 cost: 269.7159081526881 gradient_norm: 2098.7226847474467 max_violation: 0.0166933957337847 step_size: 1.0 iter: 26 cost: 269.4641693304048 gradient_norm: 2016.4136913910595 max_violation: 0.016045670810733603 step_size: 1.0 iter: 27 cost: 269.23717484601957 gradient_norm: 1940.3147594984239 max_violation: 0.01544605929480447 step_size: 1.0 iter: 28 cost: 269.031603012166 gradient_norm: 1869.7493427304607 max_violation: 0.01488940295050678 step_size: 1.0 iter: 29 cost: 268.8446809573573 gradient_norm: 1804.135641549028 max_violation: 0.014371254637342123 step_size: 1.0 iter: 30 cost: 268.6740785514039 gradient_norm: 1742.9705889069237 max_violation: 0.013887759951445311 step_size: 1.0 iter: 31 cost: 268.51782557974946 gradient_norm: 1685.816976295683 max_violation: 0.013435561731026224 step_size: 1.0 iter: 32 cost: 268.37424651028454 gradient_norm: 1632.2930247138017 max_violation: 0.01301172243644988 step_size: 1.0 iter: 33 cost: 268.2419087001713 gradient_norm: 1582.063875653835 max_violation: 0.012613660621582978 step_size: 1.0 iter: 34 cost: 268.1195809624341 gradient_norm: 1534.8346021345758 max_violation: 0.012239098600988929 step_size: 1.0 iter: 35 cost: 268.00620018500604 gradient_norm: 1490.3444322651644 max_violation: 0.011886019077920418 step_size: 1.0 iter: 36 cost: 267.9008442580481 gradient_norm: 1448.3619468714398 max_violation: 0.011552628993309555 step_size: 1.0 iter: 37 cost: 267.80270997973383 gradient_norm: 1408.6810649002182 max_violation: 0.011237329231932991 step_size: 1.0 iter: 38 cost: 267.7110949183672 gradient_norm: 1371.117669874754 max_violation: 0.010938689107973576 step_size: 1.0 iter: 39 cost: 267.6253824392419 gradient_norm: 1335.506761118829 max_violation: 0.010655424773212241 step_size: 1.0 iter: 40 cost: 267.5450292787338 gradient_norm: 1301.700036963658 max_violation: 0.01038638086217325 step_size: 1.0 iter: 41 cost: 267.46955518068876 gradient_norm: 1269.563835415346 max_violation: 0.010130514822060621 step_size: 1.0 iter: 42 cost: 267.39853421176974 gradient_norm: 1238.9773721191116 max_violation: 0.009886883480459518 step_size: 1.0 iter: 43 cost: 267.3315874509036 gradient_norm: 1209.8312267141641 max_violation: 0.009654631486611498 step_size: 1.0 iter: 44 cost: 267.2683768090249 gradient_norm: 1182.0260377125694 max_violation: 0.009432981328664658 step_size: 1.0 iter: 45 cost: 267.20859978295806 gradient_norm: 1155.471373124274 max_violation: 0.009221224681644435 step_size: 1.0 iter: 46 cost: 267.15198498490184 gradient_norm: 1130.0847498508374 max_violation: 0.009018714883937795 step_size: 1.0 iter: 47 cost: 267.0982883186398 gradient_norm: 1105.7907794719938 max_violation: 0.008824860374129995 step_size: 1.0 iter: 48 cost: 267.0472896972877 gradient_norm: 1082.5204218275126 max_violation: 0.008639118948290614 step_size: 1.0 iter: 49 cost: 266.99879021629187 gradient_norm: 1060.2103308641401 max_violation: 0.008460992720545235 step_size: 1.0 iter: 50 cost: 266.95260971057894 gradient_norm: 1038.8022796979285 max_violation: 0.008290023688396264 step_size: 1.0 iter: 51 cost: 266.90858463708423 gradient_norm: 1018.2426539497865 max_violation: 0.00812578981998957 step_size: 1.0 iter: 52 cost: 266.86656623377513 gradient_norm: 998.4820040489074 max_violation: 0.007967901592800253 step_size: 1.0 iter: 53 cost: 266.8264189144948 gradient_norm: 979.4746486851994 max_violation: 0.007815998924399992 step_size: 1.0 iter: 54 cost: 266.7880188655215 gradient_norm: 961.1783227051745 max_violation: 0.007669748444353086 step_size: 1.0 iter: 55 cost: 266.7512528152336 gradient_norm: 943.5538637453507 max_violation: 0.00752884106376317 step_size: 1.0 iter: 56 cost: 266.7160169527639 gradient_norm: 926.5649327309429 max_violation: 0.007392989805380279 step_size: 1.0 iter: 57 cost: 266.68221597526684 gradient_norm: 910.1777640513345 max_violation: 0.0072619278622773065 step_size: 1.0 iter: 58 cost: 266.6497622464808 gradient_norm: 894.3609417756636 max_violation: 0.007135406857293747 step_size: 1.0 iter: 59 cost: 266.61857505190824 gradient_norm: 879.0851988331111 max_violation: 0.007013195279746753 step_size: 1.0 iter: 60 cost: 266.58857993803394 gradient_norm: 864.3232364225007 max_violation: 0.006895077078432843 step_size: 1.0 iter: 61 cost: 266.5597081248702 gradient_norm: 850.0495613422509 max_violation: 0.006780850393208304 step_size: 1.0 iter: 62 cost: 266.5318959825844 gradient_norm: 836.2403391675866 max_violation: 0.006670326409256133 step_size: 1.0 iter: 63 cost: 266.50508456431436 gradient_norm: 822.873261538423 max_violation: 0.006563328320680961 step_size: 1.0 iter: 64 cost: 266.47921918831895 gradient_norm: 809.927425979137 max_violation: 0.006459690391275141 step_size: 1.0 iter: 65 cost: 266.454249063552 gradient_norm: 797.3832268889456 max_violation: 0.006359257101987592 step_size: 1.0 iter: 66 cost: 266.43012695355276 gradient_norm: 785.2222565319104 max_violation: 0.006261882376071282 step_size: 1.0 iter: 67 cost: 266.4068088741838 gradient_norm: 773.4272149416161 max_violation: 0.0061674288735251714 step_size: 1.0 iter: 68 cost: 266.3842538213678 gradient_norm: 761.9818278559052 max_violation: 0.006075767348009076 step_size: 1.0 iter: 69 cost: 266.36242352541376 gradient_norm: 750.8707718149935 max_violation: 0.005986776059529575 step_size: 1.0 iter: 70 cost: 266.34128222901234 gradient_norm: 740.0796057507984 max_violation: 0.005900340237703694 step_size: 1.0 iter: 71 cost: 266.3207964862746 gradient_norm: 729.5947083762305 max_violation: 0.005816351590233415 step_size: 1.0 iter: 72 cost: 266.30093498057926 gradient_norm: 719.4032208488176 max_violation: 0.005734707852543264 step_size: 1.0 iter: 73 cost: 266.2816683591924 gradient_norm: 709.4929941652166 max_violation: 0.005655312374340582 step_size: 1.0 iter: 74 cost: 266.26296908293017 gradient_norm: 699.8525408581695 max_violation: 0.005578073739793132 step_size: 1.0 iter: 75 cost: 266.24481128928437 gradient_norm: 690.4709905773111 max_violation: 0.0055029054180630865 step_size: 1.0 iter: 76 cost: 266.227170667658 gradient_norm: 681.3380492157946 max_violation: 0.005429725441576161 step_size: 1.0 iter: 77 cost: 266.2100243454665 gradient_norm: 672.4439612226581 max_violation: 0.005358456109227472 step_size: 1.0 iter: 78 cost: 266.1933507840495 gradient_norm: 663.7794748481336 max_violation: 0.005289023712545471 step_size: 1.0 iter: 79 cost: 266.17712968340584 gradient_norm: 655.3358100329754 max_violation: 0.005221358282579525 step_size: 1.0 iter: 80 cost: 266.1613418949323 gradient_norm: 647.1046287474014 max_violation: 0.0051553933559859155 step_size: 1.0 iter: 81 cost: 266.14596934135176 gradient_norm: 639.0780075064174 max_violation: 0.005091065758191404 step_size: 1.0 iter: 82 cost: 266.13099494320494 gradient_norm: 631.2484119400177 max_violation: 0.005028315402669792 step_size: 1.0 iter: 83 cost: 266.11640255124547 gradient_norm: 623.6086731859299 max_violation: 0.004967085104542024 step_size: 1.0 iter: 84 cost: 266.1021768842361 gradient_norm: 616.1519660070308 max_violation: 0.004907320407713134 step_size: 1.0 iter: 85 cost: 266.0883034716276 gradient_norm: 608.8717884418144 max_violation: 0.004848969424062988 step_size: 1.0 iter: 86 cost: 266.07476860068704 gradient_norm: 601.7619428904292 max_violation: 0.004791982683923335 step_size: 1.0 iter: 87 cost: 266.0615592676912 gradient_norm: 594.8165185138002 max_violation: 0.004736312996879599 step_size: 1.0 iter: 88 cost: 266.0486631328149 gradient_norm: 588.0298748436409 max_violation: 0.004681915322110597 step_size: 1.0 iter: 89 cost: 266.03606847839876 gradient_norm: 581.396626493964 max_violation: 0.004628746647389881 step_size: 1.0 iter: 90 cost: 266.02376417031314 gradient_norm: 574.911628907345 max_violation: 0.00457676587624356 step_size: 1.0 iter: 91 cost: 266.01173962214244 gradient_norm: 568.5699650441389 max_violation: 0.004525933722539954 step_size: 1.0 iter: 92 cost: 265.9999847619655 gradient_norm: 562.3669329373198 max_violation: 0.0044762126118921275 step_size: 1.0 iter: 93 cost: 265.98849000150955 gradient_norm: 556.2980340666896 max_violation: 0.0044275665895333605 step_size: 1.0 iter: 94 cost: 265.9772462074913 gradient_norm: 550.3589624762924 max_violation: 0.004379961234050267 step_size: 1.0 iter: 95 cost: 265.96624467495207 gradient_norm: 544.5455945702059 max_violation: 0.004333363576466853 step_size: 1.0 iter: 96 cost: 265.9554771024509 gradient_norm: 538.853979576358 max_violation: 0.00428774202461113 step_size: 1.0 iter: 97 cost: 265.94493556894207 gradient_norm: 533.2803305700077 max_violation: 0.004243066291885755 step_size: 1.0 iter: 98 cost: 265.9346125122263 gradient_norm: 527.82101607888 max_violation: 0.004199307330654545 step_size: 1.0 iter: 99 cost: 265.9245007088416 gradient_norm: 522.4725521839873 max_violation: 0.004156437269526303 step_size: 1.0 iter: 100 cost: 265.91459325528535 gradient_norm: 517.2315951000953 max_violation: 0.00411442935444184 step_size: 1.0 Test Summary: | Pass Total Time Solve: acrobot | 1 1 6m12.0s ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University al iter: 1 ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University iter: 1 cost: 261.2537798738653 gradient_norm: 885.6763002794513 max_violation: 1.1807656674637883 step_size: 1.0 iter: 2 cost: 69.99469960068207 gradient_norm: 376.08357134305186 max_violation: 0.766429330514935 step_size: 1.0 iter: 3 cost: 34.54977364243712 gradient_norm: 193.82532155965612 max_violation: 0.5197983639867401 step_size: 1.0 iter: 4 cost: 22.539037764763805 gradient_norm: 111.7024513072441 max_violation: 0.4196158004810382 step_size: 1.0 iter: 5 cost: 17.035664625358486 gradient_norm: 69.14467761180012 max_violation: 0.37323467952446965 step_size: 1.0 iter: 6 cost: 14.062954292496705 gradient_norm: 45.607762506571646 max_violation: 0.34188493819304266 step_size: 1.0 iter: 7 cost: 12.272616098482587 gradient_norm: 31.744197515746393 max_violation: 0.3195794259745215 step_size: 1.0 iter: 8 cost: 11.110324366994146 gradient_norm: 28.481409161315987 max_violation: 0.30283107541267995 step_size: 1.0 iter: 9 cost: 10.312569004061332 gradient_norm: 25.725116998667954 max_violation: 0.28976177042682494 step_size: 1.0 iter: 10 cost: 9.740976036112503 gradient_norm: 24.387263942641127 max_violation: 0.27926490324135944 step_size: 1.0 iter: 11 cost: 9.317182750501477 gradient_norm: 23.27948171916522 max_violation: 0.270642534988605 step_size: 1.0 iter: 12 cost: 8.99409364960746 gradient_norm: 22.133658624582665 max_violation: 0.2634309744732146 step_size: 1.0 iter: 13 cost: 8.742010825607291 gradient_norm: 21.003710960323513 max_violation: 0.25730926409585564 step_size: 1.0 iter: 14 cost: 8.541448500865746 gradient_norm: 19.918615937273927 max_violation: 0.2520477436399142 step_size: 1.0 iter: 15 cost: 8.379187541400649 gradient_norm: 18.892634093629162 max_violation: 0.24747750308208794 step_size: 1.0 iter: 16 cost: 8.246001295724474 gradient_norm: 17.931443843477687 max_violation: 0.243471404916475 step_size: 1.0 iter: 17 cost: 8.135289721002943 gradient_norm: 17.035806102872616 max_violation: 0.2399318426078958 step_size: 1.0 iter: 18 cost: 8.042229513640368 gradient_norm: 16.203750801407285 max_violation: 0.23678258854916034 step_size: 1.0 iter: 19 cost: 7.963228813262942 gradient_norm: 15.431879152844623 max_violation: 0.23396321467267356 step_size: 1.0 iter: 20 cost: 7.895567773780683 gradient_norm: 14.71613518888006 max_violation: 0.2314251818556059 step_size: 1.0 iter: 21 cost: 7.837155934003607 gradient_norm: 14.05225742418412 max_violation: 0.2291290411089797 step_size: 1.0 iter: 22 cost: 7.786364917793634 gradient_norm: 13.436037151680694 max_violation: 0.22704239307714413 step_size: 1.0 iter: 23 cost: 7.741910858273423 gradient_norm: 12.86345977297741 max_violation: 0.22513837563732508 step_size: 1.0 iter: 24 cost: 7.702770335780684 gradient_norm: 12.330775619639935 max_violation: 0.223394526194177 step_size: 1.0 iter: 25 cost: 7.668119333509148 gradient_norm: 11.834528666306948 max_violation: 0.22179191431193956 step_size: 1.0 iter: 26 cost: 7.637288274827675 gradient_norm: 11.37156056170258 max_violation: 0.2203144723692816 step_size: 1.0 iter: 27 cost: 7.609728473089355 gradient_norm: 10.939000679422454 max_violation: 0.21894847327438605 step_size: 1.0 iter: 28 cost: 7.5849867970528555 gradient_norm: 10.534248743252592 max_violation: 0.21768211877573584 step_size: 1.0 iter: 29 cost: 7.562686328832223 gradient_norm: 10.154954010172425 max_violation: 0.21650521190799044 step_size: 1.0 iter: 30 cost: 7.542511446200534 gradient_norm: 9.798993394781991 max_violation: 0.2154088941268837 step_size: 1.0 iter: 31 cost: 7.5241962083383624 gradient_norm: 9.464449922833648 max_violation: 0.21438543266983068 step_size: 1.0 iter: 32 cost: 7.507515233952561 gradient_norm: 9.149592283243631 max_violation: 0.21342804726960818 step_size: 1.0 iter: 33 cost: 7.492276478169418 gradient_norm: 8.852855866270925 max_violation: 0.21253076796176984 step_size: 1.0 iter: 34 cost: 7.478315469141725 gradient_norm: 8.572825443102449 max_violation: 0.2116883176538611 step_size: 1.0 iter: 35 cost: 7.465490676384057 gradient_norm: 8.308219503864 max_violation: 0.21089601456018237 step_size: 1.0 iter: 36 cost: 7.453679763543525 gradient_norm: 8.057876191788143 max_violation: 0.21014969068297518 step_size: 1.0 iter: 37 cost: 7.442776537525081 gradient_norm: 7.820740728824099 max_violation: 0.20944562333843297 step_size: 1.0 iter: 38 cost: 7.432688449752018 gradient_norm: 7.595854208610376 max_violation: 0.2087804773531028 step_size: 1.0 iter: 39 cost: 7.423334538118871 gradient_norm: 7.382343627146472 max_violation: 0.2081512560379437 step_size: 1.0 iter: 40 cost: 7.414643722894794 gradient_norm: 7.179413023837764 max_violation: 0.20755525942109987 step_size: 1.0 iter: 41 cost: 7.406553388595878 gradient_norm: 6.986335612818852 max_violation: 0.20699004851539815 step_size: 1.0 iter: 42 cost: 7.399008198200706 gradient_norm: 6.802446793745567 max_violation: 0.20645341462638545 step_size: 1.0 iter: 43 cost: 7.391959097146254 gradient_norm: 6.627137941422962 max_violation: 0.2059433528896557 step_size: 1.0 iter: 44 cost: 7.385362473123337 gradient_norm: 6.45985088395812 max_violation: 0.20545803937275675 step_size: 1.0 iter: 45 cost: 7.379179444392276 gradient_norm: 6.300072989008616 max_violation: 0.2049958111936343 step_size: 1.0 iter: 46 cost: 7.373375254601611 gradient_norm: 6.147332786703153 max_violation: 0.2045551492013793 step_size: 1.0 iter: 47 cost: 7.367918756251549 gradient_norm: 6.001196066353447 max_violation: 0.2041346628427032 step_size: 1.0 iter: 48 cost: 7.362781968245788 gradient_norm: 5.861262391436014 max_violation: 0.20373307689846154 step_size: 1.0 iter: 49 cost: 7.357939695613454 gradient_norm: 5.727161984084324 max_violation: 0.20334921982621523 step_size: 1.0 iter: 50 cost: 7.353369201599009 gradient_norm: 5.598552936261505 max_violation: 0.2029820134865652 step_size: 1.0 iter: 51 cost: 7.349049924024784 gradient_norm: 5.475118710010506 max_violation: 0.20263046406533292 step_size: 1.0 iter: 52 cost: 7.34496322921335 gradient_norm: 5.35656589373689 max_violation: 0.20229365403219823 step_size: 1.0 iter: 53 cost: 7.341092197882067 gradient_norm: 5.242622185541038 max_violation: 0.2019707350005815 step_size: 1.0 iter: 54 cost: 7.337421438340977 gradient_norm: 5.133034578164165 max_violation: 0.20166092137318348 step_size: 1.0 iter: 55 cost: 7.333936923079356 gradient_norm: 5.0275677230832505 max_violation: 0.2013634846738297 step_size: 1.0 iter: 56 cost: 7.330625845447401 gradient_norm: 4.926002454107622 max_violation: 0.20107774848119497 step_size: 1.0 iter: 57 cost: 7.327476493652688 gradient_norm: 4.828134453115053 max_violation: 0.20080308389097912 step_size: 1.0 iter: 58 cost: 7.324478139716949 gradient_norm: 4.733773042605958 max_violation: 0.2005389054433122 step_size: 1.0 iter: 59 cost: 7.321620941393538 gradient_norm: 4.64274009160189 max_violation: 0.20028466746088736 step_size: 1.0 iter: 60 cost: 7.318895855341548 gradient_norm: 4.554869022929657 max_violation: 0.20003986075024294 step_size: 1.0 iter: 61 cost: 7.316294560101643 gradient_norm: 4.47000391137999 max_violation: 0.19980400962503886 step_size: 1.0 iter: 62 cost: 7.313809387626099 gradient_norm: 4.387998663338512 max_violation: 0.1995766692150367 step_size: 1.0 iter: 63 cost: 7.3114332622926375 gradient_norm: 4.318891416810995 max_violation: 0.19935742302960957 step_size: 1.0 iter: 64 cost: 7.309159646479266 gradient_norm: 4.2614430161156545 max_violation: 0.19914588074805462 step_size: 1.0 iter: 65 cost: 7.306982491904377 gradient_norm: 4.205440961225905 max_violation: 0.19894167621241277 step_size: 1.0 iter: 66 cost: 7.304896196042877 gradient_norm: 4.150833848380019 max_violation: 0.1987444656016777 step_size: 1.0 iter: 67 cost: 7.302895563020863 gradient_norm: 4.09757253229489 max_violation: 0.19855392576839925 step_size: 1.0 iter: 68 cost: 7.300975768469271 gradient_norm: 4.0456100154202375 max_violation: 0.19836975272122537 step_size: 1.0 iter: 69 cost: 7.299132327884227 gradient_norm: 3.994901342440709 max_violation: 0.19819166023870682 step_size: 1.0 iter: 70 cost: 7.297361068098634 gradient_norm: 3.945403499836873 max_violation: 0.1980193786011526 step_size: 1.0 iter: 71 cost: 7.295658101519613 gradient_norm: 3.8970753204244346 max_violation: 0.1978526534292424 step_size: 1.0 iter: 72 cost: 7.294019802828746 gradient_norm: 3.8498773926640872 max_violation: 0.19769124461888232 step_size: 1.0 iter: 73 cost: 7.292442787879104 gradient_norm: 3.803771974568054 max_violation: 0.19753492536320216 step_size: 1.0 iter: 74 cost: 7.290923894554755 gradient_norm: 3.7587229120288264 max_violation: 0.19738348125356087 step_size: 1.0 iter: 75 cost: 7.289460165386733 gradient_norm: 3.714695561357109 max_violation: 0.1972367094521399 step_size: 1.0 iter: 76 cost: 7.28804883174277 gradient_norm: 3.671656715862188 max_violation: 0.19709441792968274 step_size: 1.0 iter: 77 cost: 7.286687299430009 gradient_norm: 3.62957453626189 max_violation: 0.1969564247623623 step_size: 1.0 iter: 78 cost: 7.285373135567649 gradient_norm: 3.588418484737847 max_violation: 0.19682255748258193 step_size: 1.0 iter: 79 cost: 7.284104056602718 gradient_norm: 3.548159262458899 max_violation: 0.19669265247897094 step_size: 1.0 iter: 80 cost: 7.282877917356494 gradient_norm: 3.508768750404913 max_violation: 0.19656655444127047 step_size: 1.0 iter: 81 cost: 7.281692701001064 gradient_norm: 3.470219953278031 max_violation: 0.19644411584615984 step_size: 1.0 iter: 82 cost: 7.28054650987663 gradient_norm: 3.432486946391343 max_violation: 0.19632519648074798 step_size: 1.0 iter: 83 cost: 7.2794375570698175 gradient_norm: 3.3955448253297504 max_violation: 0.19620966300036713 step_size: 1.0 iter: 84 cost: 7.2783641586813435 gradient_norm: 3.3593696582735255 max_violation: 0.19609738851796976 step_size: 1.0 iter: 85 cost: 7.277324726719402 gradient_norm: 3.323938440791899 max_violation: 0.1959882522223797 step_size: 1.0 iter: 86 cost: 7.276317762561029 gradient_norm: 3.2892290530176655 max_violation: 0.19588213902326235 step_size: 1.0 iter: 87 cost: 7.275341850930356 gradient_norm: 3.25522021904111 max_violation: 0.19577893922049228 step_size: 1.0 al iter: 2 iter: 1 cost: 7.269944849743791 gradient_norm: 0.48354130657668726 max_violation: 0.0481756108564424 step_size: 1.0 iter: 2 cost: 7.253994869618226 gradient_norm: 0.13733625988558718 max_violation: 0.0017963190921093108 step_size: 1.0 iter: 3 cost: 7.252163371769252 gradient_norm: 0.12093728810343407 max_violation: 0.001811038634711104 step_size: 1.0 iter: 4 cost: 7.251086984969248 gradient_norm: 0.114766263279237 max_violation: 0.0018202529338060547 step_size: 1.0 iter: 5 cost: 7.250360358028719 gradient_norm: 0.1096676429055452 max_violation: 0.0018264790512261264 step_size: 1.0 Test Summary: | Pass Total Time Solve: car | 3 3 40.0s Testing IterativeLQR tests passed Testing completed after 761.7s PkgEval succeeded after 968.85s