Package evaluation to test ReferenceFiniteElements on Julia 1.12.4 (422f456051*) started at 2026-01-29T08:16:16.744 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.12` Set-up completed after 7.63s ################################################################################ # Installation # Installing ReferenceFiniteElements... Resolving package versions... Installed ReferenceFiniteElements ─ v0.14.0 Updating `~/.julia/environments/v1.12/Project.toml` [6dc62d09] + ReferenceFiniteElements v0.14.0 Updating `~/.julia/environments/v1.12/Manifest.toml` [79e6a3ab] + Adapt v4.4.0 [187b0558] + ConstructionBase v1.6.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [442a2c76] + FastGaussQuadrature v1.1.0 [34004b35] + HypergeometricFunctions v0.3.28 [92d709cd] + IrrationalConstants v0.2.6 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.16 [c03570c3] + Memoize v0.4.4 [bac558e1] + OrderedCollections v1.8.1 [f27b6e38] + Polynomials v4.1.0 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [1fd47b50] + QuadGK v2.11.2 [3cdcf5f2] + RecipesBase v1.3.4 [6dc62d09] + ReferenceFiniteElements v0.14.0 [ae029012] + Requires v1.3.1 [efcf1570] + Setfield v1.1.2 [276daf66] + SpecialFunctions v2.6.1 [a25cea48] + SpecialPolynomials v0.5.0 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [56f22d72] + Artifacts v1.11.0 [ade2ca70] + Dates v1.11.0 [9fa8497b] + Future v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.12.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [2f01184e] + SparseArrays v1.12.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.7+0 [bea87d4a] + SuiteSparse_jll v7.8.3+2 [8e850b90] + libblastrampoline_jll v5.15.0+0 Installation completed after 6.27s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling packages... 10955.3 ms ✓ SpecialPolynomials → SpecialPolynomialsFastGaussQuadratureExt 6529.0 ms ✓ ReferenceFiniteElements 27181.9 ms ✓ ReferenceFiniteElements → RecipesBaseExt 3 dependencies successfully precompiled in 47 seconds. 88 already precompiled. Precompilation completed after 64.1s ################################################################################ # Testing # Testing ReferenceFiniteElements Status `/tmp/jl_ed9daK/Project.toml` [79e6a3ab] Adapt v4.4.0 [4c88cf16] Aqua v0.8.14 [31c24e10] Distributions v0.25.123 [ffbed154] DocStringExtensions v0.9.5 [442a2c76] FastGaussQuadrature v1.1.0 [f27b6e38] Polynomials v4.1.0 [6dc62d09] ReferenceFiniteElements v0.14.0 [a25cea48] SpecialPolynomials v0.5.0 [90137ffa] StaticArrays v1.9.16 [37e2e46d] LinearAlgebra v1.12.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_ed9daK/Manifest.toml` [79e6a3ab] Adapt v4.4.0 [66dad0bd] AliasTables v1.1.3 [4c88cf16] Aqua v0.8.14 [34da2185] Compat v4.18.1 [187b0558] ConstructionBase v1.6.0 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [31c24e10] Distributions v0.25.123 [ffbed154] DocStringExtensions v0.9.5 [442a2c76] FastGaussQuadrature v1.1.0 [1a297f60] FillArrays v1.16.0 [34004b35] HypergeometricFunctions v0.3.28 [92d709cd] IrrationalConstants v0.2.6 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 [c03570c3] Memoize v0.4.4 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [90014a1f] PDMats v0.11.37 [f27b6e38] Polynomials v4.1.0 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [3cdcf5f2] RecipesBase v1.3.4 [189a3867] Reexport v1.2.2 [6dc62d09] ReferenceFiniteElements v0.14.0 [ae029012] Requires v1.3.1 [79098fc4] Rmath v0.9.0 [efcf1570] Setfield v1.1.2 [a2af1166] SortingAlgorithms v1.2.2 [276daf66] SpecialFunctions v2.6.1 [a25cea48] SpecialPolynomials v0.5.0 [90137ffa] StaticArrays v1.9.16 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 [2913bbd2] StatsBase v0.34.10 [4c63d2b9] StatsFuns v1.5.2 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.12.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.12.1 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [2f01184e] SparseArrays v1.12.0 [f489334b] StyledStrings v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.15.0+0 [e37daf67] LibGit2_jll v1.9.0+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.11.4 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [458c3c95] OpenSSL_jll v3.5.4+0 [bea87d4a] SuiteSparse_jll v7.8.3+2 [83775a58] Zlib_jll v1.3.1+2 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.64.0+1 [3f19e933] p7zip_jll v17.7.0+0 Testing Running tests... Precompiling packages... 4472.3 ms ✓ FastGaussQuadrature 9040.0 ms ✓ SpecialPolynomials 6224.0 ms ✓ SpecialPolynomials → SpecialPolynomialsFastGaussQuadratureExt 6040.6 ms ✓ ReferenceFiniteElements 5412.7 ms ✓ ReferenceFiniteElements → RecipesBaseExt 5 dependencies successfully precompiled in 32 seconds. 37 already precompiled. Test Summary: | Pass Total Time Topology interface - Vertex | 11 11 2.3s Test Summary: | Pass Total Time Topology interface - Edge | 24 24 2.8s Test Summary: | Pass Total Time Topology interface - Quad | 14 14 0.6s Test Summary: | Pass Total Time Topology interface - Tri | 13 13 0.5s Test Summary: | Pass Total Time Topology interface - Hex | 16 16 0.6s Test Summary: | Pass Total Time Topology interface - Tet | 14 14 0.5s Test Summary: | Pass Total Time Dof Interface - Vertex | 5 5 0.2s Test Summary: | Total Time Dof Interface - Edge | 0 0.0s Test Summary: | Pass Total Time Dof Interface - Quad | 96 96 5.2s Test Summary: | Pass Total Time Dof Interface - Tri | 54 54 0.9s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Edge{Lagrange, 0}(1, false) Polynomial type = Lagrange Polynomial degree = 0 Test Summary: | Pass Total Time Edge{Lagrange, 0}(1, false) - GaussLobattoLegendre(1, 1) Tests | 13 13 4.4s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Edge{Lagrange, 0}(1, true) Polynomial type = Lagrange Polynomial degree = 0 Test Summary: | Pass Total Time Edge{Lagrange, 0}(1, true) - GaussLobattoLegendre(1, 1) Tests | 13 13 0.0s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Edge{Lagrange, 1}(1, false) Polynomial type = Lagrange Polynomial degree = 1 Test Summary: | Pass Total Time Edge{Lagrange, 1}(1, false) - GaussLobattoLegendre(1, 1) Tests | 13 13 5.5s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Edge{Lagrange, 1}(1, true) Polynomial type = Lagrange Polynomial degree = 1 Test Summary: | Pass Total Time Edge{Lagrange, 1}(1, true) - GaussLobattoLegendre(1, 1) Tests | 13 13 0.7s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Edge{Lagrange, 2}(1, false) Polynomial type = Lagrange Polynomial degree = 2 Test Summary: | Pass Total Time Edge{Lagrange, 2}(1, false) - GaussLobattoLegendre(2, 2) Tests | 17 17 1.9s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Edge{Lagrange, 2}(1, true) Polynomial type = Lagrange Polynomial degree = 2 Test Summary: | Pass Total Time Edge{Lagrange, 2}(1, true) - GaussLobattoLegendre(2, 2) Tests | 17 17 0.0s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Edge{Lagrange, 3}(1, false) Polynomial type = Lagrange Polynomial degree = 3 Test Summary: | Pass Total Time Edge{Lagrange, 3}(1, false) - GaussLobattoLegendre(3, 3) Tests | 21 21 1.9s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Edge{Lagrange, 3}(1, true) Polynomial type = Lagrange Polynomial degree = 3 Test Summary: | Pass Total Time Edge{Lagrange, 3}(1, true) - GaussLobattoLegendre(3, 3) Tests | 21 21 0.0s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Edge{Lagrange, 4}(1, false) Polynomial type = Lagrange Polynomial degree = 4 Test Summary: | Pass Total Time Edge{Lagrange, 4}(1, false) - GaussLobattoLegendre(4, 4) Tests | 25 25 2.1s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Edge{Lagrange, 4}(1, true) Polynomial type = Lagrange Polynomial degree = 4 Test Summary: | Pass Total Time Edge{Lagrange, 4}(1, true) - GaussLobattoLegendre(4, 4) Tests | 25 25 0.0s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Edge{Lagrange, 5}(1, false) Polynomial type = Lagrange Polynomial degree = 5 Test Summary: | Pass Total Time Edge{Lagrange, 5}(1, false) - GaussLobattoLegendre(5, 5) Tests | 29 29 1.9s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Edge{Lagrange, 5}(1, true) Polynomial type = Lagrange Polynomial degree = 5 Test Summary: | Pass Total Time Edge{Lagrange, 5}(1, true) - GaussLobattoLegendre(5, 5) Tests | 29 29 0.0s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Quad{Lagrange, 0}() Polynomial type = Lagrange Polynomial degree = 0 Test Summary: | Pass Total Time Quad{Lagrange, 0}() - GaussLobattoLegendre(1, 1) Tests | 29 29 3.5s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Quad{Lagrange, 1}() Polynomial type = Lagrange Polynomial degree = 1 Test Summary: | Pass Total Time Quad{Lagrange, 1}() - GaussLobattoLegendre(1, 1) Tests | 29 29 4.3s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Quad{Lagrange, 2}() Polynomial type = Lagrange Polynomial degree = 2 Test Summary: | Pass Total Time Quad{Lagrange, 2}() - GaussLobattoLegendre(2, 2) Tests | 49 49 4.9s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Quad{Lagrange, 3}() Polynomial type = Lagrange Polynomial degree = 3 Test Summary: | Pass Total Time Quad{Lagrange, 3}() - GaussLobattoLegendre(3, 3) Tests | 77 77 6.7s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Quad{Lagrange, 4}() Polynomial type = Lagrange Polynomial degree = 4 Test Summary: | Pass Total Time Quad{Lagrange, 4}() - GaussLobattoLegendre(4, 4) Tests | 113 113 7.2s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Quad{Lagrange, 5}() Polynomial type = Lagrange Polynomial degree = 5 Test Summary: | Pass Total Time Quad{Lagrange, 5}() - GaussLobattoLegendre(5, 5) Tests | 157 157 7.6s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Tri{Lagrange, 1}() Polynomial type = Lagrange Polynomial degree = 1 Test Summary: | Pass Total Time Tri{Lagrange, 1}() - GaussLobattoLegendre(1, 1) Tests | 20 20 3.9s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Tri{Lagrange, 2}() Polynomial type = Lagrange Polynomial degree = 2 Test Summary: | Pass Total Time Tri{Lagrange, 2}() - GaussLobattoLegendre(2, 2) Tests | 34 34 4.3s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Tri{Lagrange, 3}() Polynomial type = Lagrange Polynomial degree = 3 Test Summary: | Pass Total Time Tri{Lagrange, 3}() - GaussLobattoLegendre(3, 3) Tests | 52 52 5.1s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Tri{Lagrange, 4}() Polynomial type = Lagrange Polynomial degree = 4 Test Summary: | Pass Total Time Tri{Lagrange, 4}() - GaussLobattoLegendre(4, 4) Tests | 58 58 5.3s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Tri{Lagrange, 5}() Polynomial type = Lagrange Polynomial degree = 5 Test Summary: | Pass Total Time Tri{Lagrange, 5}() - GaussLobattoLegendre(5, 5) Tests | 68 68 5.9s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Hex{Lagrange, 1}() Polynomial type = Lagrange Polynomial degree = 1 Test Summary: | Pass Total Time Hex{Lagrange, 1}() - GaussLobattoLegendre(1, 1) Tests | 53 53 7.4s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Tet{Lagrange, 0}() Polynomial type = Lagrange Polynomial degree = 0 Test Summary: | Pass Total Time Tet{Lagrange, 0}() - GaussLobattoLegendre(1, 1) Tests | 24 24 5.2s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Tet{Lagrange, 1}() Polynomial type = Lagrange Polynomial degree = 1 Test Summary: | Pass Total Time Tet{Lagrange, 1}() - GaussLobattoLegendre(1, 1) Tests | 24 24 4.6s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Tet{Lagrange, 2}() Polynomial type = Lagrange Polynomial degree = 2 Test Summary: | Pass Total Time Tet{Lagrange, 2}() - GaussLobattoLegendre(2, 2) Tests | 44 44 6.6s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Edge{Lagrange, 0}(1, false) Polynomial type = Lagrange Polynomial degree = 0 Test Summary: | Pass Total Time Edge{Lagrange, 0}(1, false) - GaussLobattoLegendre(1, 1) Tests | 16 16 1.3s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Edge{Lagrange, 0}(1, true) Polynomial type = Lagrange Polynomial degree = 0 Test Summary: | Pass Total Time Edge{Lagrange, 0}(1, true) - GaussLobattoLegendre(1, 1) Tests | 16 16 0.0s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Edge{Lagrange, 1}(1, false) Polynomial type = Lagrange Polynomial degree = 1 Test Summary: | Pass Total Time Edge{Lagrange, 1}(1, false) - GaussLobattoLegendre(1, 1) Tests | 16 16 1.4s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Edge{Lagrange, 1}(1, true) Polynomial type = Lagrange Polynomial degree = 1 Test Summary: | Pass Total Time Edge{Lagrange, 1}(1, true) - GaussLobattoLegendre(1, 1) Tests | 16 16 0.0s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Edge{Lagrange, 2}(1, false) Polynomial type = Lagrange Polynomial degree = 2 Test Summary: | Pass Total Time Edge{Lagrange, 2}(1, false) - GaussLobattoLegendre(2, 2) Tests | 21 21 1.5s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Edge{Lagrange, 2}(1, true) Polynomial type = Lagrange Polynomial degree = 2 Test Summary: | Pass Total Time Edge{Lagrange, 2}(1, true) - GaussLobattoLegendre(2, 2) Tests | 21 21 0.0s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Edge{Lagrange, 3}(1, false) Polynomial type = Lagrange Polynomial degree = 3 Test Summary: | Pass Total Time Edge{Lagrange, 3}(1, false) - GaussLobattoLegendre(3, 3) Tests | 26 26 1.4s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Edge{Lagrange, 3}(1, true) Polynomial type = Lagrange Polynomial degree = 3 Test Summary: | Pass Total Time Edge{Lagrange, 3}(1, true) - GaussLobattoLegendre(3, 3) Tests | 26 26 0.0s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Edge{Lagrange, 4}(1, false) Polynomial type = Lagrange Polynomial degree = 4 Test Summary: | Pass Total Time Edge{Lagrange, 4}(1, false) - GaussLobattoLegendre(4, 4) Tests | 31 31 1.4s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Edge{Lagrange, 4}(1, true) Polynomial type = Lagrange Polynomial degree = 4 Test Summary: | Pass Total Time Edge{Lagrange, 4}(1, true) - GaussLobattoLegendre(4, 4) Tests | 31 31 0.0s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Edge{Lagrange, 5}(1, false) Polynomial type = Lagrange Polynomial degree = 5 Test Summary: | Pass Total Time Edge{Lagrange, 5}(1, false) - GaussLobattoLegendre(5, 5) Tests | 36 36 1.4s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Edge{Lagrange, 5}(1, true) Polynomial type = Lagrange Polynomial degree = 5 Test Summary: | Pass Total Time Edge{Lagrange, 5}(1, true) - GaussLobattoLegendre(5, 5) Tests | 36 36 0.0s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Quad{Lagrange, 0}() Polynomial type = Lagrange Polynomial degree = 0 Test Summary: | Pass Total Time Quad{Lagrange, 0}() - GaussLobattoLegendre(1, 1) Tests | 34 34 1.3s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Quad{Lagrange, 1}() Polynomial type = Lagrange Polynomial degree = 1 Test Summary: | Pass Total Time Quad{Lagrange, 1}() - GaussLobattoLegendre(1, 1) Tests | 34 34 3.5s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Quad{Lagrange, 2}() Polynomial type = Lagrange Polynomial degree = 2 Test Summary: | Pass Total Time Quad{Lagrange, 2}() - GaussLobattoLegendre(2, 2) Tests | 61 61 3.9s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Quad{Lagrange, 3}() Polynomial type = Lagrange Polynomial degree = 3 Test Summary: | Pass Total Time Quad{Lagrange, 3}() - GaussLobattoLegendre(3, 3) Tests | 98 98 8.2s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Quad{Lagrange, 4}() Polynomial type = Lagrange Polynomial degree = 4 Test Summary: | Pass Total Time Quad{Lagrange, 4}() - GaussLobattoLegendre(4, 4) Tests | 145 145 9.8s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Quad{Lagrange, 5}() Polynomial type = Lagrange Polynomial degree = 5 Test Summary: | Pass Total Time Quad{Lagrange, 5}() - GaussLobattoLegendre(5, 5) Tests | 202 202 11.0s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Tri{Lagrange, 1}() Polynomial type = Lagrange Polynomial degree = 1 Test Summary: | Pass Total Time Tri{Lagrange, 1}() - GaussLobattoLegendre(1, 1) Tests | 24 24 10.8s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Tri{Lagrange, 2}() Polynomial type = Lagrange Polynomial degree = 2 Test Summary: | Pass Total Time Tri{Lagrange, 2}() - GaussLobattoLegendre(2, 2) Tests | 43 43 12.8s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Tri{Lagrange, 3}() Polynomial type = Lagrange Polynomial degree = 3 Test Summary: | Pass Total Time Tri{Lagrange, 3}() - GaussLobattoLegendre(3, 3) Tests | 67 67 13.1s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Tri{Lagrange, 4}() Polynomial type = Lagrange Polynomial degree = 4 Test Summary: | Pass Total Time Tri{Lagrange, 4}() - GaussLobattoLegendre(4, 4) Tests | 76 76 13.0s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Tri{Lagrange, 5}() Polynomial type = Lagrange Polynomial degree = 5 Test Summary: | Pass Total Time Tri{Lagrange, 5}() - GaussLobattoLegendre(5, 5) Tests | 90 90 14.2s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Hex{Lagrange, 1}() Polynomial type = Lagrange Polynomial degree = 1 Test Summary: | Pass Total Time Hex{Lagrange, 1}() - GaussLobattoLegendre(1, 1) Tests | 60 60 2.3s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Tet{Lagrange, 0}() Polynomial type = Lagrange Polynomial degree = 0 Test Summary: | Pass Total Time Tet{Lagrange, 0}() - GaussLobattoLegendre(1, 1) Tests | 29 29 1.3s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Tet{Lagrange, 1}() Polynomial type = Lagrange Polynomial degree = 1 Test Summary: | Pass Total Time Tet{Lagrange, 1}() - GaussLobattoLegendre(1, 1) Tests | 29 29 1.6s re = ReferenceFE(el, q_rule; interpolants_type = interpolants_type) = ReferenceFE Element type = Tet{Lagrange, 2}() Polynomial type = Lagrange Polynomial degree = 2 Test Summary: | Pass Total Time Tet{Lagrange, 2}() - GaussLobattoLegendre(2, 2) Tests | 61 61 4.6s Test Summary: | Pass Total Time Aqua Tests | 10 10 3m25.6s Testing ReferenceFiniteElements tests passed Testing completed after 499.79s PkgEval succeeded after 592.09s