Package evaluation to test RayTraceHeatTransfer on Julia 1.12.4 (422f456051*) started at 2026-01-29T04:04:37.640 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.12` Set-up completed after 8.07s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.12/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.12/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.12.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.12.1 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.12.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.15.0+0 [e37daf67] + LibGit2_jll v1.9.0+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.11.4 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [bea87d4a] + SuiteSparse_jll v7.8.3+2 [83775a58] + Zlib_jll v1.3.1+2 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.64.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.34s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling packages... 1498.4 ms ✓ Measurements 7553.9 ms ✓ StatsBase 11583.3 ms ✓ RayTraceHeatTransfer 3 dependencies successfully precompiled in 23 seconds. 57 already precompiled. Precompilation completed after 37.86s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_JnFZWD/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.16 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.12.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.12.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_JnFZWD/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.16 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.12.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.12.1 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.12.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.15.0+0 [e37daf67] LibGit2_jll v1.9.0+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.11.4 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [bea87d4a] SuiteSparse_jll v7.8.3+2 [83775a58] Zlib_jll v1.3.1+2 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.64.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:04:16 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 99%|████████████████████████████████▊| ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:06 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013789342379914805 Iteration 10: d = 1.784182943955957e-5 Iteration 20: d = 2.6713466326313016e-7 Iteration 30: d = 4.369910675535913e-9 Iteration 40: d = 7.312292640766081e-11 Iteration 50: d = 1.234789780001547e-12 Iteration 60: d = 2.093386575520544e-14 Converged after 66 iterations. d = 1.8302186465678372e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 35%|███████████▋ | ETA: 0:00:02 Bin 1 progress: 67%|██████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013713388572977124 Iteration 10: d = 1.6532137353973668e-5 Iteration 20: d = 2.386919819478643e-7 Iteration 30: d = 3.849206038274035e-9 Iteration 40: d = 6.398858007750504e-11 Iteration 50: d = 1.0772291937129083e-12 Iteration 60: d = 1.826108575115556e-14 Converged after 66 iterations. d = 1.5514415333038906e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 75%|████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012873213555510679 Iteration 10: d = 1.2315186545612848e-5 Iteration 20: d = 1.5572826130747195e-7 Iteration 30: d = 2.2611902681316437e-9 Iteration 40: d = 3.490772916574435e-11 Iteration 50: d = 5.628021639312181e-13 Iteration 60: d = 9.391315459183518e-15 Converged after 64 iterations. d = 1.8342507453200784e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 75%|████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012741026900681507 Iteration 10: d = 9.676244602445815e-6 Iteration 20: d = 1.1139884095444197e-7 Iteration 30: d = 1.8141444982696197e-9 Iteration 40: d = 3.183591806165446e-11 Iteration 50: d = 5.672556642320618e-13 Iteration 60: d = 1.0137579223555166e-14 Converged after 64 iterations. d = 2.020775866707201e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 74%|████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012755581134889051 Iteration 10: d = 1.0821581585636516e-5 Iteration 20: d = 1.3143150946913222e-7 Iteration 30: d = 1.995823407668972e-9 Iteration 40: d = 3.1222543488211295e-11 Iteration 50: d = 4.903747004380791e-13 Iteration 60: d = 7.675533602198848e-15 Converged after 63 iterations. d = 2.2027440266401878e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 34%|███████████▏ | ETA: 0:00:02 Bin 1 progress: 70%|███████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001190936404771292 Iteration 10: d = 9.629171816120075e-6 Iteration 20: d = 1.1215298107930273e-7 Iteration 30: d = 1.6454777925612226e-9 Iteration 40: d = 2.52271992458659e-11 Iteration 50: d = 3.915111800533816e-13 Iteration 60: d = 6.091604984996245e-15 Converged after 63 iterations. d = 1.7583451020410951e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 75%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014253304085453538 Iteration 10: d = 1.4119304074662586e-5 Iteration 20: d = 1.84073161421373e-7 Iteration 30: d = 2.7895179789383627e-9 Iteration 40: d = 4.331940014063677e-11 Iteration 50: d = 6.767832045330856e-13 Iteration 60: d = 1.0589872545218461e-14 Converged after 64 iterations. d = 1.9934160490866567e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013502277276193147 Iteration 10: d = 1.2443404891652116e-5 Iteration 20: d = 1.537514948893116e-7 Iteration 30: d = 2.2822937659843583e-9 Iteration 40: d = 3.4999764397591536e-11 Iteration 50: d = 5.403624108084402e-13 Iteration 60: d = 8.332429714047772e-15 Converged after 64 iterations. d = 1.5637895313799903e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 74%|████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012196155657417354 Iteration 10: d = 1.285240068614335e-5 Iteration 20: d = 1.6010472202168393e-7 Iteration 30: d = 2.3228051201632296e-9 Iteration 40: d = 3.51667150656851e-11 Iteration 50: d = 5.411792076467843e-13 Iteration 60: d = 8.3803987232946e-15 Converged after 64 iterations. d = 1.5810628118868253e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 71%|███████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011809676317390497 Iteration 10: d = 8.374968759625454e-6 Iteration 20: d = 9.52286775501568e-8 Iteration 30: d = 1.391699142918549e-9 Iteration 40: d = 2.121458837617947e-11 Iteration 50: d = 3.2734001820651104e-13 Iteration 60: d = 5.0944269295357695e-15 Converged after 63 iterations. d = 1.4345439177028222e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0052860418282598 Iteration 10: d = 6.65521784148798e-5 Iteration 20: d = 8.878245415946418e-7 Iteration 30: d = 1.2896666340376908e-8 Iteration 40: d = 1.9097817104376466e-10 Iteration 50: d = 2.8468027080219995e-12 Iteration 60: d = 4.2560037594944995e-14 Converged after 68 iterations. d = 1.4613836862216606e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0036319214233984675 Iteration 10: d = 5.411068271457695e-5 Iteration 20: d = 7.477181639004656e-7 Iteration 30: d = 1.0901429867097272e-8 Iteration 40: d = 1.610658287097637e-10 Iteration 50: d = 2.390609561516384e-12 Iteration 60: d = 3.5578118725716575e-14 Converged after 67 iterations. d = 1.8753456986986946e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0022323865146978194 Iteration 10: d = 1.7289728830056572e-5 Iteration 20: d = 2.565567446527584e-7 Iteration 30: d = 4.362137932186988e-9 Iteration 40: d = 7.502826453452624e-11 Iteration 50: d = 1.2951086214190923e-12 Iteration 60: d = 2.243150859114727e-14 Converged after 66 iterations. d = 1.9340573069947715e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002120634288738747 Iteration 10: d = 2.2717756853279054e-5 Iteration 20: d = 3.227849203194787e-7 Iteration 30: d = 5.0845347648422675e-9 Iteration 40: d = 8.322234440121304e-11 Iteration 50: d = 1.397050970072209e-12 Iteration 60: d = 2.3861999571435863e-14 Converged after 66 iterations. d = 2.098577265110939e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012755581134889051 Iteration 10: d = 1.0821581585636516e-5 Iteration 20: d = 1.3143150946913222e-7 Iteration 30: d = 1.995823407668972e-9 Iteration 40: d = 3.1222543488211295e-11 Iteration 50: d = 4.903747004380791e-13 Iteration 60: d = 7.675533602198848e-15 Converged after 63 iterations. d = 2.2027440266401878e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015631698034910416 Iteration 10: d = 1.6711878873622265e-5 Iteration 20: d = 1.857953169921491e-7 Iteration 30: d = 2.3989707095761987e-9 Iteration 40: d = 3.275141167009009e-11 Iteration 50: d = 4.57499801411377e-13 Iteration 60: d = 6.427078959252184e-15 Converged after 63 iterations. d = 1.8274742887433676e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001201624738502418 Iteration 10: d = 1.4773047074520066e-5 Iteration 20: d = 1.8871429913894049e-7 Iteration 30: d = 2.5884455768248195e-9 Iteration 40: d = 3.6112467449816824e-11 Iteration 50: d = 5.067910738601822e-13 Iteration 60: d = 7.119554284418759e-15 Converged after 63 iterations. d = 1.9343953348193722e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.71099076736 Iteration 2: convergence error = 4821.649163756396 Iteration 3: convergence error = 1092.0772779666231 Iteration 4: convergence error = 317.8865702092155 Iteration 5: convergence error = 94.10631762623711 Iteration 6: convergence error = 28.03063502821874 Iteration 7: convergence error = 8.416084853932261 Iteration 8: convergence error = 2.520975786788995 Iteration 9: convergence error = 0.7534320562854191 Iteration 10: convergence error = 0.22487882420318783 Iteration 11: convergence error = 0.0670696963136379 Iteration 12: convergence error = 0.019994838192815223 Iteration 13: convergence error = 0.005959408334547334 Iteration 14: convergence error = 0.001775936748344975 Iteration 15: convergence error = 0.0005291963116178522 Iteration 16: convergence error = 0.00015768336697874474 Iteration 17: convergence error = 4.6983275751699694e-5 Iteration 18: convergence error = 1.3998889244248858e-5 Iteration 19: convergence error = 4.171000682617887e-6 Iteration 20: convergence error = 1.2427526598912664e-6 Iteration 21: convergence error = 3.7028030419605784e-7 Iteration 22: convergence error = 1.101770976674743e-7 Iteration 23: convergence error = 3.191030373272952e-8 Iteration 24: convergence error = 9.191580829792656e-9 Iteration 25: convergence error = 2.6461748348083347e-9 Iteration 26: convergence error = 7.562448445241898e-10 Iteration 27: convergence error = 2.1327650756575167e-10 Iteration 28: convergence error = 5.95719029661268e-11 Iteration 29: convergence error = 1.77351466845721e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015631698034910416 Iteration 10: d = 1.6711878873622265e-5 Iteration 20: d = 1.857953169921491e-7 Iteration 30: d = 2.3989707095761987e-9 Iteration 40: d = 3.275141167009009e-11 Iteration 50: d = 4.57499801411377e-13 Iteration 60: d = 6.427078959252184e-15 Converged after 63 iterations. d = 1.8274742887433676e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.81508581595 Iteration 2: convergence error = 4819.3190728697045 Iteration 3: convergence error = 1099.1125717344917 Iteration 4: convergence error = 319.3594852434037 Iteration 5: convergence error = 94.65590445512225 Iteration 6: convergence error = 28.215456974210156 Iteration 7: convergence error = 8.469665385969392 Iteration 8: convergence error = 2.538561293984003 Iteration 9: convergence error = 0.7590856851738863 Iteration 10: convergence error = 0.22667575409559504 Iteration 11: convergence error = 0.0676368309418649 Iteration 12: convergence error = 0.020172987191017455 Iteration 13: convergence error = 0.006015174026060777 Iteration 14: convergence error = 0.0017933450092186831 Iteration 15: convergence error = 0.0005346181528693705 Iteration 16: convergence error = 0.0001593686492924462 Iteration 17: convergence error = 4.7506187456747284e-5 Iteration 18: convergence error = 1.416089003214438e-5 Iteration 19: convergence error = 4.221106337354286e-6 Iteration 20: convergence error = 1.2582356703205733e-6 Iteration 21: convergence error = 3.750508312805323e-7 Iteration 22: convergence error = 1.1165593605255708e-7 Iteration 23: convergence error = 3.236573320464231e-8 Iteration 24: convergence error = 9.336645234725438e-9 Iteration 25: convergence error = 2.685737854335457e-9 Iteration 26: convergence error = 7.667040335945785e-10 Iteration 27: convergence error = 2.205524651799351e-10 Iteration 28: convergence error = 6.571099220309407e-11 Iteration 29: convergence error = 1.9099388737231493e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 12:34:36 Bin 1 ray tracing: 12%|███▊ | ETA: 0:00:39 Bin 1 ray tracing: 25%|███████▌ | ETA: 0:00:21 Bin 1 ray tracing: 34%|██████████▎ | ETA: 0:00:15 Bin 1 ray tracing: 43%|████████████▉ | ETA: 0:00:12 Bin 1 ray tracing: 53%|███████████████▊ | ETA: 0:00:09 Bin 1 ray tracing: 62%|██████████████████▌ | ETA: 0:00:07 Bin 1 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:05 Bin 1 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:03 Bin 1 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 1 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 7%|██▎ | ETA: 0:00:12 Bin 2 ray tracing: 15%|████▋ | ETA: 0:00:11 Bin 2 ray tracing: 24%|███████ | ETA: 0:00:10 Bin 2 ray tracing: 32%|█████████▌ | ETA: 0:00:09 Bin 2 ray tracing: 40%|████████████ | ETA: 0:00:08 Bin 2 ray tracing: 48%|██████████████▍ | ETA: 0:00:07 Bin 2 ray tracing: 56%|████████████████▊ | ETA: 0:00:06 Bin 2 ray tracing: 64%|███████████████████▏ | ETA: 0:00:05 Bin 2 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:04 Bin 2 ray tracing: 80%|████████████████████████ | ETA: 0:00:03 Bin 2 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:02 Bin 2 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 3 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 3 ray tracing: 25%|███████▌ | ETA: 0:00:09 Bin 3 ray tracing: 33%|██████████ | ETA: 0:00:08 Bin 3 ray tracing: 42%|████████████▌ | ETA: 0:00:07 Bin 3 ray tracing: 50%|██████████████▉ | ETA: 0:00:06 Bin 3 ray tracing: 58%|█████████████████▍ | ETA: 0:00:05 Bin 3 ray tracing: 66%|███████████████████▉ | ETA: 0:00:04 Bin 3 ray tracing: 74%|██████████████████████▎ | ETA: 0:00:03 Bin 3 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:02 Bin 3 ray tracing: 90%|███████████████████████████▏ | ETA: 0:00:01 Bin 3 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 4 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 4 ray tracing: 25%|███████▌ | ETA: 0:00:09 Bin 4 ray tracing: 34%|██████████▏ | ETA: 0:00:08 Bin 4 ray tracing: 42%|████████████▋ | ETA: 0:00:07 Bin 4 ray tracing: 51%|███████████████▍ | ETA: 0:00:06 Bin 4 ray tracing: 60%|██████████████████ | ETA: 0:00:05 Bin 4 ray tracing: 69%|████████████████████▋ | ETA: 0:00:04 Bin 4 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:03 Bin 4 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 4 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 4 Energy per ray: 0.00018533358351859177 Processing spectral bin 5/10 Bin 5 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 5 ray tracing: 17%|█████▎ | ETA: 0:00:10 Bin 5 ray tracing: 26%|███████▊ | ETA: 0:00:09 Bin 5 ray tracing: 34%|██████████▍ | ETA: 0:00:08 Bin 5 ray tracing: 43%|████████████▉ | ETA: 0:00:07 Bin 5 ray tracing: 51%|███████████████▍ | ETA: 0:00:06 Bin 5 ray tracing: 59%|█████████████████▉ | ETA: 0:00:05 Bin 5 ray tracing: 68%|████████████████████▎ | ETA: 0:00:04 Bin 5 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:03 Bin 5 ray tracing: 84%|█████████████████████████▍ | ETA: 0:00:02 Bin 5 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 6 ray tracing: 17%|█████▎ | ETA: 0:00:10 Bin 6 ray tracing: 26%|███████▊ | ETA: 0:00:09 Bin 6 ray tracing: 34%|██████████▍ | ETA: 0:00:08 Bin 6 ray tracing: 43%|████████████▉ | ETA: 0:00:07 Bin 6 ray tracing: 51%|███████████████▍ | ETA: 0:00:06 Bin 6 ray tracing: 60%|██████████████████ | ETA: 0:00:05 Bin 6 ray tracing: 68%|████████████████████▌ | ETA: 0:00:04 Bin 6 ray tracing: 77%|███████████████████████ | ETA: 0:00:03 Bin 6 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:02 Bin 6 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 7 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 7 ray tracing: 25%|███████▋ | ETA: 0:00:09 Bin 7 ray tracing: 34%|██████████▍ | ETA: 0:00:08 Bin 7 ray tracing: 43%|█████████████ | ETA: 0:00:07 Bin 7 ray tracing: 53%|███████████████▉ | ETA: 0:00:05 Bin 7 ray tracing: 62%|██████████████████▋ | ETA: 0:00:04 Bin 7 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:03 Bin 7 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:02 Bin 7 ray tracing: 89%|██████████████████████████▉ | ETA: 0:00:01 Bin 7 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 8 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 8 ray tracing: 25%|███████▋ | ETA: 0:00:09 Bin 8 ray tracing: 34%|██████████▏ | ETA: 0:00:08 Bin 8 ray tracing: 42%|████████████▋ | ETA: 0:00:07 Bin 8 ray tracing: 50%|███████████████▏ | ETA: 0:00:06 Bin 8 ray tracing: 59%|█████████████████▋ | ETA: 0:00:05 Bin 8 ray tracing: 67%|████████████████████▏ | ETA: 0:00:04 Bin 8 ray tracing: 75%|██████████████████████▋ | ETA: 0:00:03 Bin 8 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:02 Bin 8 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 9%|██▌ | ETA: 0:00:11 Bin 9 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 9 ray tracing: 25%|███████▋ | ETA: 0:00:09 Bin 9 ray tracing: 34%|██████████▏ | ETA: 0:00:08 Bin 9 ray tracing: 42%|████████████▋ | ETA: 0:00:07 Bin 9 ray tracing: 51%|███████████████▎ | ETA: 0:00:06 Bin 9 ray tracing: 59%|█████████████████▊ | ETA: 0:00:05 Bin 9 ray tracing: 68%|████████████████████▎ | ETA: 0:00:04 Bin 9 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:03 Bin 9 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:02 Bin 9 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 10 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 10 ray tracing: 26%|███████▌ | ETA: 0:00:09 Bin 10 ray tracing: 34%|█████████▉ | ETA: 0:00:08 Bin 10 ray tracing: 43%|████████████▍ | ETA: 0:00:07 Bin 10 ray tracing: 51%|██████████████▉ | ETA: 0:00:06 Bin 10 ray tracing: 60%|█████████████████▎ | ETA: 0:00:05 Bin 10 ray tracing: 68%|███████████████████▊ | ETA: 0:00:04 Bin 10 ray tracing: 76%|██████████████████████▏ | ETA: 0:00:03 Bin 10 ray tracing: 85%|████████████████████████▋ | ETA: 0:00:02 Bin 10 ray tracing: 93%|███████████████████████████ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 22%|███████▍ | ETA: 0:00:04 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 22%|███████▍ | ETA: 0:00:04 Bin 2 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 2 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 2 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 22%|███████▍ | ETA: 0:00:04 Bin 3 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 3 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 3 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 22%|███████▍ | ETA: 0:00:04 Bin 4 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 4 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 4 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 22%|███████▍ | ETA: 0:00:04 Bin 5 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 5 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 5 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 22%|███████▍ | ETA: 0:00:04 Bin 6 progress: 42%|█████████████▉ | ETA: 0:00:03 Bin 6 progress: 64%|█████████████████████▎ | ETA: 0:00:02 Bin 6 progress: 87%|████████████████████████████▋ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 22%|███████▍ | ETA: 0:00:04 Bin 7 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 7 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 7 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 22%|███████▍ | ETA: 0:00:04 Bin 8 progress: 42%|█████████████▉ | ETA: 0:00:03 Bin 8 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 8 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 22%|███████▍ | ETA: 0:00:04 Bin 9 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 9 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 9 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 22%|███████▏ | ETA: 0:00:04 Bin 10 progress: 44%|██████████████▎ | ETA: 0:00:03 Bin 10 progress: 67%|█████████████████████▍ | ETA: 0:00:02 Bin 10 progress: 89%|████████████████████████████▌ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:04 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015631698034910416 Iteration 10: d = 1.6711878873622265e-5 Iteration 20: d = 1.857953169921491e-7 Iteration 30: d = 2.3989707095761987e-9 Iteration 40: d = 3.275141167009009e-11 Iteration 50: d = 4.57499801411377e-13 Iteration 60: d = 6.427078959252184e-15 Converged after 63 iterations. d = 1.8274742887433676e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00121136084277707 Iteration 10: d = 1.490851393886266e-5 Iteration 20: d = 1.907456508512491e-7 Iteration 30: d = 2.6155251011654227e-9 Iteration 40: d = 3.645817941391278e-11 Iteration 50: d = 5.110857421094206e-13 Iteration 60: d = 7.17302154531647e-15 Converged after 63 iterations. d = 2.0081715307723613e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016352782953224336 Iteration 10: d = 1.6581888934267985e-5 Iteration 20: d = 1.8035124300666012e-7 Iteration 30: d = 2.4399381996778177e-9 Iteration 40: d = 3.469014171877296e-11 Iteration 50: d = 4.977590457387045e-13 Iteration 60: d = 7.178082391600162e-15 Converged after 63 iterations. d = 1.9692996263688925e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012204970420533565 Iteration 10: d = 9.208188362338753e-6 Iteration 20: d = 8.412021891981761e-8 Iteration 30: d = 9.582197758845627e-10 Iteration 40: d = 1.198051172815486e-11 Iteration 50: d = 1.5707951572757802e-13 Converged after 60 iterations. d = 2.1366254371811158e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017816999419376753 Iteration 10: d = 1.4811217860156633e-5 Iteration 20: d = 1.8288768222285045e-7 Iteration 30: d = 2.56604505505802e-9 Iteration 40: d = 3.6250696812348966e-11 Iteration 50: d = 5.120704518749071e-13 Iteration 60: d = 7.235611724103126e-15 Converged after 63 iterations. d = 2.009444146709185e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013564205579202793 Iteration 10: d = 1.1444573474980749e-5 Iteration 20: d = 1.2215981429114512e-7 Iteration 30: d = 1.5844412119073108e-9 Iteration 40: d = 2.1541488182914287e-11 Iteration 50: d = 2.969316451123011e-13 Iteration 60: d = 4.087750491985639e-15 Converged after 62 iterations. d = 1.7620698796795983e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014758959382258502 Iteration 10: d = 2.164849932983486e-5 Iteration 20: d = 2.835608832660315e-7 Iteration 30: d = 3.894681527297033e-9 Iteration 40: d = 5.4086355572399484e-11 Iteration 50: d = 7.540959546247155e-13 Iteration 60: d = 1.0528566008237778e-14 Converged after 64 iterations. d = 1.9094825779538005e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010914859537144758 Iteration 10: d = 9.61593914812853e-6 Iteration 20: d = 9.916903423745592e-8 Iteration 30: d = 1.2905782759542938e-9 Iteration 40: d = 1.787664783381684e-11 Iteration 50: d = 2.5133346413093363e-13 Iteration 60: d = 3.5417897950157314e-15 Converged after 62 iterations. d = 1.4935482071355371e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014137420887921158 Iteration 10: d = 1.2894139863645178e-5 Iteration 20: d = 1.1479326086065016e-7 Iteration 30: d = 1.3227060927762684e-9 Iteration 40: d = 1.7242613694015284e-11 Iteration 50: d = 2.35230004658844e-13 Iteration 60: d = 3.2927934996956198e-15 Converged after 61 iterations. d = 2.106664945932036e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015195391034470793 Iteration 10: d = 1.0401005969461813e-5 Iteration 20: d = 1.0978643924281287e-7 Iteration 30: d = 1.4680608917544857e-9 Iteration 40: d = 2.0164057754777572e-11 Iteration 50: d = 2.7860741746405493e-13 Iteration 60: d = 3.837680851674784e-15 Converged after 62 iterations. d = 1.6336842543405848e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.350412903272 Iteration 2: convergence error = 4818.53115811549 Iteration 3: convergence error = 1102.879983455256 Iteration 4: convergence error = 323.9504349697054 Iteration 5: convergence error = 96.3434093671899 Iteration 6: convergence error = 28.803674442041256 Iteration 7: convergence error = 8.621183393697265 Iteration 8: convergence error = 2.5798678227163236 Iteration 9: convergence error = 0.7717556358456932 Iteration 10: convergence error = 0.23081420571111266 Iteration 11: convergence error = 0.0690225608034325 Iteration 12: convergence error = 0.020639194123532434 Iteration 13: convergence error = 0.006171372248672924 Iteration 14: convergence error = 0.0018452914675890497 Iteration 15: convergence error = 0.0005517541740118759 Iteration 16: convergence error = 0.00016497766273460002 Iteration 17: convergence error = 4.9329216835758416e-5 Iteration 18: convergence error = 1.4749696447324823e-5 Iteration 19: convergence error = 4.410235533214291e-6 Iteration 20: convergence error = 1.3186822798161302e-6 Iteration 21: convergence error = 3.942918738175649e-7 Iteration 22: convergence error = 1.1774568520195317e-7 Iteration 23: convergence error = 3.4190861697425134e-8 Iteration 24: convergence error = 9.87074599834159e-9 Iteration 25: convergence error = 2.841488822014071e-9 Iteration 26: convergence error = 8.162714948412031e-10 Iteration 27: convergence error = 2.3783286451362073e-10 Iteration 28: convergence error = 6.798472895752639e-11 Iteration 29: convergence error = 1.978150976356119e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 980.074165609906 K, F = -4540.1203201447115, relative_change = 0.019925834390094047 Iter 2: T = 962.194974818896 K, F = -3835.1228544266082, relative_change = 0.018242691643528534 Iter 3: T = 946.2420095639266 K, F = -3238.0886801136317, relative_change = 0.016579763636753665 Iter 5: T = 919.5930405232594 K, F = -2305.2105653149474, relative_change = 0.013403611036801048 Iter 10: T = 877.2556090322655 K, F = -978.7144785832888, relative_change = 0.007049951323735928 Iter 15: T = 857.1992196183221 K, F = -412.4431086643581, relative_change = 0.003308261927360372 Iter 20: T = 848.2946728945586 K, F = -173.09354962762484, relative_change = 0.0014583957990964183 Iter 25: T = 844.4699779201803 K, F = -72.50042897874083, relative_change = 0.0006240723051146055 Iter 30: T = 842.8519646703132 K, F = -30.340274762755662, relative_change = 0.00026355517491260627 Iter 35: T = 842.1719926914936 K, F = -12.692144468651447, relative_change = 0.00011067626597508139 Iter 40: T = 841.887038147057 K, F = -5.308617023600322, relative_change = 4.636608325458108e-5 Iter 45: T = 841.767764562418 K, F = -2.2202339924260395, relative_change = 1.9404868062521494e-5 Iter 50: T = 841.7178650240975 K, F = -0.9285470885848666, relative_change = 8.11780198915615e-6 Iter 55: T = 841.6969933083651 K, F = -0.3883327561668435, relative_change = 3.395391210420922e-6 Iter 60: T = 841.6882639594944 K, F = -0.16240596905160132, relative_change = 1.4200682825215418e-6 Iter 65: T = 841.6846131456745 K, F = -0.06792021596258513, relative_change = 5.939026559907835e-7 Iter 70: T = 841.6830863149663 K, F = -0.028405062966977646, relative_change = 2.483794818277552e-7 Iter 75: T = 841.6824477731972 K, F = -0.011879339622522522, relative_change = 1.0387566756360305e-7 Iter 80: T = 841.6821807268906 K, F = -0.004968082234023008, relative_change = 4.344211501308173e-8 Iter 85: T = 841.6820690448463 K, F = -0.0020777114164296506, relative_change = 1.8168023613284264e-8 Iter 90: T = 841.6820223380658 K, F = -0.0008689237392411897, relative_change = 7.598086557598014e-9 Iter 95: T = 841.6820028047299 K, F = -0.0003633942889462727, relative_change = 3.1776109252783207e-9 Iter 100: T = 841.6819946356551 K, F = -0.000151975834402851, relative_change = 1.328914924594954e-9 Iter 105: T = 841.6819912192502 K, F = -6.355810710712007e-5, relative_change = 5.55768086932306e-10 Iter 110: T = 841.681989790469 K, F = -2.658075929917736e-5, relative_change = 2.3242885190734404e-10 Iter 115: T = 841.6819891929356 K, F = -1.111639308515322e-5, relative_change = 9.720454038897506e-11 Iter 120: T = 841.68198894304 K, F = -4.649008034762758e-6, relative_change = 4.0652096994136135e-11 Iter 125: T = 841.6819888385306 K, F = -1.944271242226847e-6, relative_change = 1.7001197368908442e-11 Iter 130: T = 841.6819887948235 K, F = -8.131164686009384e-7, relative_change = 7.110095170763946e-12 Iter 135: T = 841.6819887765447 K, F = -3.400527537333886e-7, relative_change = 2.973506915356015e-12 Iter 140: T = 841.6819887689004 K, F = -1.422170243792209e-7, relative_change = 1.2435814762517933e-12 Iter 145: T = 841.6819887657034 K, F = -5.947615711043852e-8, relative_change = 5.200744959006965e-13 Converged in 150 iterations to T = 841.6819887643665 K Iter 1: T = 964.2958697857539 K, F = -8135.220032711846, relative_change = 0.035704130214246156 Iter 2: T = 930.5155444633052 K, F = -6901.641561942481, relative_change = 0.035031079548182575 Iter 3: T = 898.627987359242 K, F = -5854.052906650103, relative_change = 0.03426869899573268 Iter 5: T = 840.418092452589 K, F = -4209.063207811393, relative_change = 0.03245029082876081 Iter 10: T = 726.038963739444 K, F = -1835.7244569334323, relative_change = 0.02608210921957301 Iter 15: T = 652.1593484832899 K, F = -792.7339500790898, relative_change = 0.01788981155337878 Iter 20: T = 610.327606805744 K, F = -338.4755570512719, relative_change = 0.010269999052224848 Iter 25: T = 589.4092952138561 K, F = -143.1669435411497, relative_change = 0.005099270837394219 Iter 30: T = 579.8263275513532 K, F = -60.20142894319643, relative_change = 0.0023152388039702283 Iter 35: T = 575.646261862475 K, F = -25.238360923395227, relative_change = 0.0010043775186278198 Iter 40: T = 573.8655837788714 K, F = -10.566061806603555, relative_change = 0.0004267110622107896 Iter 45: T = 573.1150027672918 K, F = -4.420816677060279, relative_change = 0.00017964933745376314 Iter 50: T = 572.8000577670526 K, F = -1.8491836721160284, relative_change = 7.534232949160308e-5 Iter 55: T = 572.6681604870744 K, F = -0.7734112388451866, relative_change = 3.154608866556769e-5 Iter 60: T = 572.6129672914466 K, F = -0.323460416069681, relative_change = 1.3199438208857932e-5 Iter 65: T = 572.5898792040477 K, F = -0.13527686354381008, relative_change = 5.521298129093714e-6 Iter 70: T = 572.5802225043727 K, F = -0.056574724300567564, relative_change = 2.309271464441907e-6 Iter 75: T = 572.5761837847957 K, F = -0.023660282089170287, relative_change = 9.657996530807314e-7 Iter 80: T = 572.5744947138728 K, F = -0.009895022456083424, relative_change = 4.039150267494047e-7 Iter 85: T = 572.5737883189654 K, F = -0.004138218297584595, relative_change = 1.6892315095389198e-7 Iter 90: T = 572.5734928952563 K, F = -0.0017306526154757251, relative_change = 7.064586498781936e-8 Iter 95: T = 572.5733693453717 K, F = -0.0007237796450159095, relative_change = 2.9544976937473385e-8 Iter 100: T = 572.5733176753063 K, F = -0.00030269330062787647, relative_change = 1.2356067886118103e-8 Iter 105: T = 572.573296066263 K, F = -0.00012658995476250157, relative_change = 5.167456143048386e-9 Iter 110: T = 572.5732870291021 K, F = -5.294143113010463e-5, relative_change = 2.1610920438782537e-9 Iter 115: T = 572.5732832496533 K, F = -2.2140738827225448e-5, relative_change = 9.037945330790558e-10 Iter 120: T = 572.5732816690427 K, F = -9.259521696669548e-6, relative_change = 3.779776846503926e-10 Iter 125: T = 572.5732810080124 K, F = -3.872442206509508e-6, relative_change = 1.580747683468854e-10 Iter 130: T = 572.5732807315616 K, F = -1.6195011406927584e-6, relative_change = 6.610873825583565e-11 Iter 135: T = 572.5732806159466 K, F = -6.772946154476323e-7, relative_change = 2.764745968539729e-11 Iter 140: T = 572.5732805675951 K, F = -2.832526131979485e-7, relative_change = 1.1562494413374923e-11 Iter 145: T = 572.5732805473739 K, F = -1.1845978631352949e-7, relative_change = 4.835579810636637e-12 Iter 150: T = 572.5732805389172 K, F = -4.954147519997676e-8, relative_change = 2.022304486089114e-12 Iter 155: T = 572.5732805353804 K, F = -2.071811960879799e-8, relative_change = 8.457226204974787e-13 Iter 160: T = 572.5732805339013 K, F = -8.664586825801734e-9, relative_change = 3.5369218897758023e-13 Converged in 163 iterations to T = 572.5732805334683 K Iter 1: T = 963.635833136581 K, F = -8285.610011082825, relative_change = 0.03636416686341902 Iter 2: T = 929.1541695102505 K, F = -7030.477397814355, relative_change = 0.03578287817929584 Iter 3: T = 896.5217710447657 K, F = -5964.542225125504, relative_change = 0.0351205424635667 Iter 5: T = 836.6867339136925 K, F = -4290.604388212502, relative_change = 0.033523747171697475 Iter 10: T = 717.5234231371776 K, F = -1874.6249729061356, relative_change = 0.027732900668817558 Iter 15: T = 638.4697940087815 K, F = -811.5303900855835, relative_change = 0.019782426819822323 Iter 20: T = 592.3256687416847 K, F = -347.36637794722503, relative_change = 0.011806779042378777 Iter 25: T = 568.6572444066519 K, F = -147.1952654100019, relative_change = 0.006028223812240693 Iter 30: T = 557.6392004989707 K, F = -61.95901006839598, relative_change = 0.002780022478392243 Iter 35: T = 552.7931219798085 K, F = -25.98810026409432, relative_change = 0.001215069712380245 Iter 40: T = 550.7207990025443 K, F = -10.882351346481656, relative_change = 0.0005179459053101627 Iter 45: T = 549.8458211288217 K, F = -4.5535852184160435, relative_change = 0.00021837213290211435 Iter 50: T = 549.4784168335788 K, F = -1.9047962031053758, relative_change = 9.163751807532026e-5 Iter 55: T = 549.32450357388 K, F = -0.7966843792148581, relative_change = 3.837869189504242e-5 Iter 60: T = 549.2600895286913 K, F = -0.3331962055448469, relative_change = 1.6060029800792156e-5 Iter 65: T = 549.2331428057579 K, F = -0.13934895685001564, relative_change = 6.718177225345558e-6 Iter 70: T = 549.2218719644685 K, F = -0.05827780456372164, relative_change = 2.809916058058301e-6 Iter 75: T = 549.2171581191329 K, F = -0.024372544975209937, relative_change = 1.1751919009615635e-6 Iter 80: T = 549.2151866898803 K, F = -0.010192901816525324, relative_change = 4.914882865531041e-7 Iter 85: T = 549.2143622071305 K, F = -0.00426279544330499, relative_change = 2.0554784495305582e-7 Iter 90: T = 549.2140173972875 K, F = -0.0017827523426271752, relative_change = 8.596283876912411e-8 Iter 95: T = 549.2138731934643 K, F = -0.00074556838644535, relative_change = 3.595073391791991e-8 Iter 100: T = 549.2138128856633 K, F = -0.0003118056151779902, relative_change = 1.50350347055077e-8 Iter 105: T = 549.2137876642136 K, F = -0.0001304008343149532, relative_change = 6.287832555804082e-9 Iter 110: T = 549.2137771163009 K, F = -5.4535187057030976e-5, relative_change = 2.629646947959877e-9 Iter 115: T = 549.2137727050376 K, F = -2.2807266486790656e-5, relative_change = 1.0997497989502855e-9 Iter 120: T = 549.2137708601946 K, F = -9.53827145586117e-6, relative_change = 4.5992851838442326e-10 Iter 125: T = 549.2137700886592 K, F = -3.989019459638143e-6, relative_change = 1.9234762091206354e-10 Iter 130: T = 549.2137697659939 K, F = -1.6682553266589295e-6, relative_change = 8.044206033613944e-11 Iter 135: T = 549.2137696310514 K, F = -6.976840820072105e-7, relative_change = 3.3641819803709437e-11 Iter 140: T = 549.2137695746168 K, F = -2.917802116864099e-7, relative_change = 1.4069429935113486e-11 Iter 145: T = 549.2137695510152 K, F = -1.220254613742977e-7, relative_change = 5.883979141470994e-12 Iter 150: T = 549.2137695411446 K, F = -5.1032332276657044e-8, relative_change = 2.4607420066301485e-12 Iter 155: T = 549.2137695370167 K, F = -2.1342316025574348e-8, relative_change = 1.0291109816434617e-12 Iter 160: T = 549.2137695352903 K, F = -8.925107569668356e-9, relative_change = 4.303622063053566e-13 Converged in 164 iterations to T = 549.2137695346673 K Iter 1: T = 969.3410513961782 K, F = -6985.670603569986, relative_change = 0.03065894860382184 Iter 2: T = 940.8235402694824 K, F = -5918.315357794651, relative_change = 0.029419481497890698 Iter 3: T = 914.4082886992816 K, F = -5012.352861928674, relative_change = 0.028076733244402696 Iter 5: T = 867.6981854836152 K, F = -3591.2026093426502, relative_change = 0.025113540294769036 Iter 10: T = 783.5649270986203 K, F = -1548.6235673178376, relative_change = 0.016843735566980544 Iter 15: T = 736.7231282557225 K, F = -660.3284717026631, relative_change = 0.009468914368652768 Iter 20: T = 713.6096878197209 K, F = -279.0420785671444, relative_change = 0.004634805421431549 Iter 25: T = 703.1061816196841 K, F = -117.27688180086774, relative_change = 0.0020881777050072068 Iter 30: T = 698.5431827489806 K, F = -49.15433642797476, relative_change = 0.0009025846965120088 Iter 35: T = 696.6029805244992 K, F = -20.576308267712218, relative_change = 0.00038284925145544896 Iter 40: T = 695.7858165120375 K, F = -8.60868771161136, relative_change = 0.0001610724592978178 Iter 45: T = 695.4430505770945 K, F = -3.6008589252744447, relative_change = 6.753187164264855e-5 Iter 50: T = 695.2995227359154 K, F = -1.5060278793779176, relative_change = 2.8272381003073607e-5 Iter 55: T = 695.2394662953621 K, F = -0.6298573436208473, relative_change = 1.1829057997924988e-5 Iter 60: T = 695.2143444805853 K, F = -0.26341709978598116, relative_change = 4.9479652559842e-6 Iter 65: T = 695.2038372763262 K, F = -0.1101647431494398, relative_change = 2.0694577021631812e-6 Iter 70: T = 695.1994428698629 K, F = -0.046072310250231285, relative_change = 8.654998325146948e-7 Iter 75: T = 695.1976050471866 K, F = -0.01926800768128034, relative_change = 3.6196724731656054e-7 Iter 80: T = 695.1968364426507 K, F = -0.008058113948677836, relative_change = 1.5137987934519698e-7 Iter 85: T = 695.196515002155 K, F = -0.0033700000164877952, relative_change = 6.330902270530974e-8 Iter 90: T = 695.1963805717436 K, F = -0.0014093743445818818, relative_change = 2.6476615457420816e-8 Iter 95: T = 695.1963243513126 K, F = -0.0005894171979542451, relative_change = 1.1072841337652962e-8 Iter 100: T = 695.1963008392521 K, F = -0.0002465013147251449, relative_change = 4.630795294841033e-9 Iter 105: T = 695.1962910062267 K, F = -0.00010308979296047571, relative_change = 1.9366540128524486e-9 Iter 110: T = 695.196286893938 K, F = -4.311338225548855e-5, relative_change = 8.099318536439566e-10 Iter 115: T = 695.1962851741297 K, F = -1.8030530835266845e-5, relative_change = 3.3872316829739336e-10 Iter 120: T = 695.1962844548854 K, F = -7.540583998877359e-6, relative_change = 1.4165808754215177e-10 Iter 125: T = 695.1962841540887 K, F = -3.1535620849121315e-6, relative_change = 5.924310038597456e-11 Iter 130: T = 695.196284028292 K, F = -1.3188574171651979e-6, relative_change = 2.4776173838795994e-11 Iter 135: T = 695.1962839756823 K, F = -5.515610020934147e-7, relative_change = 1.0361674505242568e-11 Iter 140: T = 695.1962839536802 K, F = -2.3066882459676918e-7, relative_change = 4.333365249296509e-12 Iter 145: T = 695.1962839444788 K, F = -9.646754606240648e-8, relative_change = 1.812247981706413e-12 Iter 150: T = 695.1962839406307 K, F = -4.0344955931637116e-8, relative_change = 7.57923964540064e-13 Iter 155: T = 695.1962839390213 K, F = -1.687200545941181e-8, relative_change = 3.1695900943226174e-13 Converged in 158 iterations to T = 695.1962839385501 K Iter 1: T = 980.7806171091013 K, F = -4379.154674044193, relative_change = 0.019219382890898716 Iter 2: T = 963.5759129460965 K, F = -3698.429077826998, relative_change = 0.017541847649596203 Iter 3: T = 948.2605713187551 K, F = -3122.0674995838176, relative_change = 0.015894276124561218 Iter 5: T = 922.7612822718004 K, F = -2221.7808139441095, relative_change = 0.012774547022316752 Iter 10: T = 882.5082772067028 K, F = -942.5711652242906, relative_change = 0.0066403551675148055 Iter 15: T = 863.572053986851 K, F = -397.0289679148919, relative_change = 0.003094319526815488 Iter 20: T = 855.1966257084865 K, F = -166.58618009990337, relative_change = 0.001359347743512045 Iter 25: T = 851.605649289098 K, F = -69.76751818898038, relative_change = 0.000580774331397885 Iter 30: T = 850.0877142427273 K, F = -29.195273282528667, relative_change = 0.0002451030767005345 Iter 35: T = 849.4500170507094 K, F = -12.212925136812423, relative_change = 0.00010289788280050445 Iter 40: T = 849.1828168947807 K, F = -5.108137400524432, relative_change = 4.310222040058033e-5 Iter 45: T = 849.070981520241 K, F = -2.1363797343619524, relative_change = 1.8037976964757774e-5 Iter 50: T = 849.0241950288676 K, F = -0.8934762606821292, relative_change = 7.545818166238277e-6 Iter 55: T = 849.0046256289648 K, F = -0.37366537140394174, relative_change = 3.156122352918035e-6 Iter 60: T = 848.9964409945385 K, F = -0.15627183310532033, relative_change = 1.3199929733065104e-6 Iter 65: T = 848.9930179991214 K, F = -0.0653548364741694, relative_change = 5.520481796091131e-7 Iter 70: T = 848.9915864469447 K, F = -0.02733218877886867, relative_change = 2.3087512742162083e-7 Iter 75: T = 848.990987752172 K, F = -0.01143065050158465, relative_change = 9.655508284760443e-8 Iter 80: T = 848.9907373704212 K, F = -0.004780435029119845, relative_change = 4.038054950242229e-8 Iter 85: T = 848.9906326577046 K, F = -0.001999235104598318, relative_change = 1.6887638682516004e-8 Iter 90: T = 848.9905888655823 K, F = -0.0008361040104574169, relative_change = 7.062614029179869e-9 Iter 95: T = 848.9905705511915 K, F = -0.0003496686869048915, relative_change = 2.9536698741586822e-9 Iter 100: T = 848.990562891894 K, F = -0.0001462356201515913, relative_change = 1.2352600633116577e-9 Iter 105: T = 848.9905596886842 K, F = -6.115748218515904e-5, relative_change = 5.166005149417404e-10 Iter 110: T = 848.9905583490636 K, F = -2.5576786824910158e-5, relative_change = 2.1604848452667918e-10 Iter 115: T = 848.9905577888183 K, F = -1.0696515799990536e-5, relative_change = 9.035404061443259e-11 Iter 120: T = 848.990557554517 K, F = -4.473409394467609e-6, relative_change = 3.778712827631011e-11 Iter 125: T = 848.9905574565294 K, F = -1.8708318116900102e-6, relative_change = 1.580301632531307e-11 Iter 130: T = 848.9905574155498 K, F = -7.824030749947752e-7, relative_change = 6.6090006021385165e-12 Iter 135: T = 848.9905573984116 K, F = -3.272091708694802e-7, relative_change = 2.7639533593652222e-12 Iter 140: T = 848.9905573912444 K, F = -1.3684244981604365e-7, relative_change = 1.1559154894191327e-12 Iter 145: T = 848.9905573882469 K, F = -5.722930862539499e-8, relative_change = 4.834190295400447e-13 Converged in 150 iterations to T = 848.9905573869934 K Iter 1: T = 967.2530285117571 K, F = -7461.428604007872, relative_change = 0.03274697148824299 Iter 2: T = 936.5783039040904 K, F = -6324.963751047293, relative_change = 0.03171323707806184 Iter 3: T = 907.9446442538828 K, F = -5360.093578649683, relative_change = 0.03057262754309957 Iter 5: T = 856.6634267220163 K, F = -3845.780917659959, relative_change = 0.027975455626845547 Iter 10: T = 761.1960281045576 K, F = -1665.4653459701622, relative_change = 0.020073351266495013 Iter 15: T = 705.2091842309902 K, F = -713.1623082684115, relative_change = 0.012053786135827024 Iter 20: T = 676.3749886829814 K, F = -302.2896828930937, relative_change = 0.006182437025759841 Iter 25: T = 662.9165384824753 K, F = -127.2649247331346, relative_change = 0.0028585974887030616 Iter 30: T = 656.9887982864013 K, F = -53.38453167536953, relative_change = 0.0012510031202669074 Iter 35: T = 654.4522678619538 K, F = -22.355279629307212, relative_change = 0.000533567038538608 Iter 40: T = 653.3809844636238 K, F = -9.354442949672318, relative_change = 0.00022501338857354062 Iter 45: T = 652.9310960857955 K, F = -3.9130553102069157, relative_change = 9.44342606710199e-5 Iter 50: T = 652.7426187888741 K, F = -1.63664706750339, relative_change = 3.9551722732697705e-5 Iter 55: T = 652.6637376791524 K, F = -0.6844934740449887, relative_change = 1.6551201817596243e-5 Iter 60: T = 652.6307385601946 K, F = -0.2862682669748373, relative_change = 6.9236956987665374e-6 Iter 65: T = 652.6169361676396 K, F = -0.1197216689661027, relative_change = 2.895884620256942e-6 Iter 70: T = 652.6111635331324 K, F = -0.0500691823274641, relative_change = 1.2111481786726888e-6 Iter 75: T = 652.608749294374 K, F = -0.02093955633695882, relative_change = 5.065261907388969e-7 Iter 80: T = 652.6077396214363 K, F = -0.00875717713555485, relative_change = 2.1183697391979316e-7 Iter 85: T = 652.6073173625018 K, F = -0.003662356865647809, relative_change = 8.859304474314271e-8 Iter 90: T = 652.6071407684833 K, F = -0.001531641519335325, relative_change = 3.7050720464222424e-8 Iter 95: T = 652.6070669147052 K, F = -0.0006405507993560433, relative_change = 1.549506271381584e-8 Iter 100: T = 652.6070360281643 K, F = -0.0002678859970781655, relative_change = 6.480221809692895e-9 Iter 105: T = 652.6070231110426 K, F = -0.00011203312464791448, relative_change = 2.7101064411166307e-9 Iter 110: T = 652.6070177089478 K, F = -4.685359038136827e-5, relative_change = 1.1333989164839544e-9 Iter 115: T = 652.6070154497272 K, F = -1.9594731236860508e-5, relative_change = 4.740009749076742e-10 Iter 120: T = 652.6070145048942 K, F = -8.194751347834206e-6, relative_change = 1.9823288759719296e-10 Iter 125: T = 652.6070141097537 K, F = -3.427142990675147e-6, relative_change = 8.290336391817426e-11 Iter 130: T = 652.6070139445012 K, F = -1.4332724730392599e-6, relative_change = 3.4671185267971105e-11 Iter 135: T = 652.6070138753906 K, F = -5.994114546936657e-7, relative_change = 1.4499898657676317e-11 Iter 140: T = 652.6070138464878 K, F = -2.506815044434063e-7, relative_change = 6.064042290295051e-12 Iter 145: T = 652.6070138344003 K, F = -1.048382616830601e-7, relative_change = 2.5360612620971504e-12 Iter 150: T = 652.6070138293451 K, F = -4.384392632283962e-8, relative_change = 1.060594494268138e-12 Iter 155: T = 652.6070138272311 K, F = -1.8337048046657145e-8, relative_change = 4.4357733968692694e-13 Converged in 159 iterations to T = 652.6070138264679 K Iter 1: T = 980.0882148973125 K, F = -4536.9191766448075, relative_change = 0.019911785102687502 Iter 2: T = 962.2224679889927 K, F = -3832.403897417219, relative_change = 0.01822871312679917 Iter 3: T = 946.2822408262969 K, F = -3235.7804528744764, relative_change = 0.016566051711523845 Iter 5: T = 919.6563158319105 K, F = -2303.5500248132494, relative_change = 0.0133909573437059 Iter 10: T = 877.3609417908738 K, F = -977.9943470896534, relative_change = 0.007041618298590352 Iter 15: T = 857.3273178428543 K, F = -412.13576522571157, relative_change = 0.003303879714638541 Iter 20: T = 848.4335677848076 K, F = -172.96374693518248, relative_change = 0.00145636009280935 Iter 25: T = 844.6136510270027 K, F = -72.4459052799427, relative_change = 0.00062318104587446 Iter 30: T = 842.9976855599906 K, F = -30.31742920218966, relative_change = 0.00026317509825991744 Iter 35: T = 842.3185789186033 K, F = -12.682582541102406, relative_change = 0.00011051600144428814 Iter 40: T = 842.0339878514831 K, F = -5.304616767151148, relative_change = 4.629882716733093e-5 Iter 45: T = 841.9148665558007 K, F = -2.2185608017451948, relative_change = 1.9376700111755295e-5 Iter 50: T = 841.8650307553478 K, F = -0.9278472990035469, relative_change = 8.10601469439335e-6 Iter 55: T = 841.8441857040978 K, F = -0.3880400885863433, relative_change = 3.3904603766055157e-6 Iter 60: T = 841.8354675081272 K, F = -0.16228357071504096, relative_change = 1.4180059309139758e-6 Iter 65: T = 841.8318213588448 K, F = -0.06786902729506838, relative_change = 5.930401177723736e-7 Iter 70: T = 841.8302964789477 K, F = -0.028383655218719328, relative_change = 2.4801875139405036e-7 Iter 75: T = 841.8296587530391 K, F = -0.011870386639704966, relative_change = 1.0372480462069373e-7 Iter 80: T = 841.8293920479365 K, F = -0.004964337988058176, relative_change = 4.337902212068528e-8 Iter 85: T = 841.8292805085881 K, F = -0.00207614552888713, relative_change = 1.8141637385603568e-8 Iter 90: T = 841.8292338614848 K, F = -0.0008682688686874052, relative_change = 7.587051536412408e-9 Iter 95: T = 841.8292143531065 K, F = -0.0003631204164724622, relative_change = 3.172995965922483e-9 Iter 100: T = 841.8292061944692 K, F = -0.00015186129490918354, relative_change = 1.3269848692137267e-9 Iter 105: T = 841.8292027824295 K, F = -6.351020770511973e-5, relative_change = 5.549609355175509e-10 Iter 110: T = 841.8292013554737 K, F = -2.6560728351610052e-5, relative_change = 2.320913016288647e-10 Iter 115: T = 841.8292007587038 K, F = -1.110801456305488e-5, relative_change = 9.70633611030931e-11 Iter 120: T = 841.8292005091274 K, F = -4.645502477806929e-6, relative_change = 4.059304051012815e-11 Iter 125: T = 841.8292004047516 K, F = -1.9428050723746537e-6, relative_change = 1.6976498329191327e-11 Iter 130: T = 841.8292003611004 K, F = -8.125048893692366e-7, relative_change = 7.099779641496682e-12 Iter 135: T = 841.8292003428451 K, F = -3.3979816516094274e-7, relative_change = 2.969203172856653e-12 Iter 140: T = 841.8292003352104 K, F = -1.421088340336496e-7, relative_change = 1.241766566697141e-12 Iter 145: T = 841.8292003320175 K, F = -5.943086800463959e-8, relative_change = 5.193151109931017e-13 Converged in 150 iterations to T = 841.8292003306823 K Iter 1: T = 969.9998399919381 K, F = -6835.564995356347, relative_change = 0.030000160008061896 Iter 2: T = 942.1569004786479 K, F = -5790.1072823735885, relative_change = 0.028704066088837316 Iter 3: T = 916.4284465073624 K, F = -4902.814670485922, relative_change = 0.027308035379473 Iter 5: T = 871.1094840888952 K, F = -3511.19940190383, relative_change = 0.024256820751101037 Iter 10: T = 790.2681706754984 K, F = -1512.2568517834443, relative_change = 0.015954818256493992 Iter 15: T = 745.9009154043506 K, F = -644.0925820765931, relative_change = 0.008813203258559452 Iter 20: T = 724.247463995868 K, F = -271.9747880306975, relative_change = 0.0042641862635354934 Iter 25: T = 714.470884824527 K, F = -114.26033886665763, relative_change = 0.0019094647348742498 Iter 30: T = 710.2373046491197 K, F = -47.880921661724955, relative_change = 0.0008229830232341402 Iter 35: T = 708.4397866284264 K, F = -20.041576034355817, relative_change = 0.0003486470747579029 Iter 40: T = 707.683193612461 K, F = -8.384668110085189, relative_change = 0.00014660439434830823 Iter 45: T = 707.365919357158 K, F = -3.5071027726959247, relative_change = 6.14520524793393e-5 Iter 50: T = 707.2330806758682 K, F = -1.4668059163168632, relative_change = 2.572461112282913e-5 Iter 55: T = 707.1774995243479 K, F = -0.6134521447148314, relative_change = 1.0762653270796609e-5 Iter 60: T = 707.1542501966776 K, F = -0.25655588119099676, relative_change = 4.501825042826131e-6 Iter 65: T = 707.1445262407534 K, F = -0.10729523512551209, relative_change = 1.8828490632284179e-6 Iter 70: T = 707.1404594246654 K, F = -0.044872236448516345, relative_change = 7.87453065165408e-7 Iter 75: T = 707.1387586088437 K, F = -0.01876612051372384, relative_change = 3.293263165258866e-7 Iter 80: T = 707.1380473030233 K, F = -0.00784821839695371, relative_change = 1.3772890525382205e-7 Iter 85: T = 707.137749825677 K, F = -0.003282219129694286, relative_change = 5.759999659741092e-8 Iter 90: T = 707.1376254169655 K, F = -0.0013726633193745785, relative_change = 2.408902807196686e-8 Iter 95: T = 707.1375733877335 K, F = -0.0005740642067106894, relative_change = 1.0074322989256345e-8 Iter 100: T = 707.1375516284832 K, F = -0.00024008050784729562, relative_change = 4.213202818685717e-9 Iter 105: T = 707.1375425285042 K, F = -0.00010040453497250912, relative_change = 1.7620118328918154e-9 Iter 110: T = 707.1375387227844 K, F = -4.199037643104475e-5, relative_change = 7.368944246908495e-10 Iter 115: T = 707.1375371311867 K, F = -1.7560876763078603e-5, relative_change = 3.0817804978049435e-10 Iter 120: T = 707.1375364655615 K, F = -7.344167735956475e-6, relative_change = 1.2888373005553855e-10 Iter 125: T = 707.1375361871892 K, F = -3.07141867927907e-6, relative_change = 5.3900715632024946e-11 Iter 130: T = 707.1375360707705 K, F = -1.2845030514796463e-6, relative_change = 2.2541906848334214e-11 Iter 135: T = 707.1375360220829 K, F = -5.371952137567249e-7, relative_change = 9.427306893429017e-12 Iter 140: T = 707.1375360017213 K, F = -2.246628882929258e-7, relative_change = 3.942637502260172e-12 Iter 145: T = 707.1375359932056 K, F = -9.395636280107311e-8, relative_change = 1.6488521196866356e-12 Iter 150: T = 707.1375359896442 K, F = -3.92924884851098e-8, relative_change = 6.895488607318626e-13 Iter 155: T = 707.1375359881549 K, F = -1.6433259086845453e-8, relative_change = 2.8838934662673795e-13 Converged in 157 iterations to T = 707.1375359878397 K Iter 1: T = 969.3036856352627 K, F = -6994.184427738582, relative_change = 0.030696314364737274 Iter 2: T = 940.7478269934322 K, F = -5925.5885150838885, relative_change = 0.029460177511979126 Iter 3: T = 914.2934346394793 K, F = -5018.5682814609545, relative_change = 0.028120598947859846 Iter 5: T = 867.5037128474459 K, F = -3595.7448125483543, relative_change = 0.02516277386163035 Iter 10: T = 783.179924481311 K, F = -1550.6930421118198, relative_change = 0.016895847132404287 Iter 15: T = 736.1925550646513 K, F = -661.2550417735189, relative_change = 0.009508058845259017 Iter 20: T = 712.9921267496114 K, F = -279.4463343139326, relative_change = 0.00465720029689595 Iter 25: T = 702.4449764737523 K, F = -117.44966420030913, relative_change = 0.002099046489607924 Iter 30: T = 697.8621232795639 K, F = -49.22732369863704, relative_change = 0.0009074404906090838 Iter 35: T = 695.9133062713297 K, F = -20.606966165209585, relative_change = 0.0003849383986130555 Iter 40: T = 695.0924824041606 K, F = -8.621533107574093, relative_change = 0.0001619567037305431 Iter 45: T = 694.748175698282 K, F = -3.6062352407453013, relative_change = 6.790354087333542e-5 Iter 50: T = 694.6040016937046 K, F = -1.5082770591531016, relative_change = 2.8428145985599026e-5 Iter 55: T = 694.5436747049328 K, F = -0.6307981071729896, relative_change = 1.189425835762263e-5 Iter 60: T = 694.5184396884913 K, F = -0.26381056104099965, relative_change = 4.975242906359381e-6 Iter 65: T = 694.5078851322891 K, F = -0.11032929731510854, relative_change = 2.080867305225369e-6 Iter 70: T = 694.5034709209887 K, F = -0.04614112946122739, relative_change = 8.702717733237817e-7 Iter 75: T = 694.5016248153975 K, F = -0.0192967888195007, relative_change = 3.639629839393235e-7 Iter 80: T = 694.500852746796 K, F = -0.008070150585464786, relative_change = 1.5221452967146425e-7 Iter 85: T = 694.5005298575777 K, F = -0.003375033885218315, relative_change = 6.365808508613432e-8 Iter 90: T = 694.5003948212916 K, F = -0.001411479570323948, relative_change = 2.662259782266908e-8 Iter 95: T = 694.5003383474763 K, F = -0.0005902976296479068, relative_change = 1.113389297614015e-8 Iter 100: T = 694.5003147294474 K, F = -0.0002468695196540249, relative_change = 4.656327787683388e-9 Iter 105: T = 694.5003048521048 K, F = -0.00010324378218273811, relative_change = 1.9473320364098477e-9 Iter 110: T = 694.5003007212821 K, F = -4.317778268247974e-5, relative_change = 8.143975364151535e-10 Iter 115: T = 694.5002989937227 K, F = -1.8057465414500484e-5, relative_change = 3.4059079943453143e-10 Iter 120: T = 694.5002982712366 K, F = -7.551847460152139e-6, relative_change = 1.4243913624416352e-10 Iter 125: T = 694.5002979690844 K, F = -3.1582735267043915e-6, relative_change = 5.956976176652751e-11 Iter 130: T = 694.5002978427207 K, F = -1.3208281866017302e-6, relative_change = 2.491279485872854e-11 Iter 135: T = 694.5002977898739 K, F = -5.52386031693608e-7, relative_change = 1.0418826638460513e-11 Iter 140: T = 694.5002977677727 K, F = -2.3101432300443037e-7, relative_change = 4.35727560917795e-12 Iter 145: T = 694.5002977585298 K, F = -9.661348698841721e-8, relative_change = 1.822274848260655e-12 Iter 150: T = 694.5002977546642 K, F = -4.040531276228165e-8, relative_change = 7.621046241048063e-13 Iter 155: T = 694.5002977530476 K, F = -1.6897166221774285e-8, relative_change = 3.187058243500468e-13 Converged in 158 iterations to T = 694.5002977525743 K Iter 1: T = 965.1718016058019 K, F = -7935.638134287639, relative_change = 0.034828198394198144 Iter 2: T = 932.3175957784719 K, F = -6730.732487860783, relative_change = 0.034039748957303675 Iter 3: T = 901.4079142260225 K, F = -5707.557463831181, relative_change = 0.03315359668465785 Iter 5: T = 845.3091310561372 K, F = -4101.111647951139, relative_change = 0.031069378693933402 Iter 10: T = 736.9364133365135 K, F = -1784.6376234058162, relative_change = 0.02408602004566602 Iter 15: T = 669.1516160844325 K, F = -768.4462199891153, relative_change = 0.015781251585535547 Iter 20: T = 632.0548255040369 K, F = -327.2205219240237, relative_change = 0.008687662431124578 Iter 25: T = 613.987978374566 K, F = -138.1522342137135, relative_change = 0.0041941627158604946 Iter 30: T = 605.8407797347919 K, F = -58.03520609648791, relative_change = 0.0018759376280579171 Iter 35: T = 602.3149097439001 K, F = -24.318849984301277, relative_change = 0.000808098998174006 Iter 40: T = 600.8182836020175 K, F = -10.179011593438803, relative_change = 0.00034226123518745437 Iter 45: T = 600.188413139157 K, F = -4.258500625965564, relative_change = 0.00014390476678970685 Iter 50: T = 599.9242926721322 K, F = -1.7812222377060754, relative_change = 6.031790439645967e-5 Iter 55: T = 599.8137111269401 K, F = -0.7449750970152255, relative_change = 2.5249394836560675e-5 Iter 60: T = 599.767443011188 K, F = -0.31156565411175074, relative_change = 1.0563754051204119e-5 Iter 65: T = 599.7480893528372 K, F = -0.13030190711422693, relative_change = 4.418615338946726e-6 Iter 70: T = 599.7399947604642 K, F = -0.05449406376742971, relative_change = 1.8480449291984956e-6 Iter 75: T = 599.7366093895822 K, F = -0.02279011200240394, relative_change = 7.72896713660076e-7 Iter 80: T = 599.7351935668155 K, F = -0.009531104658409673, relative_change = 3.232385283126561e-7 Iter 85: T = 599.7346014492871 K, F = -0.003986023130378047, relative_change = 1.3518289358133786e-7 Iter 90: T = 599.7343538180464 K, F = -0.0016670027097888118, relative_change = 5.653521957599832e-8 Iter 95: T = 599.7342502555961 K, F = -0.0006971604829744682, relative_change = 2.36437248460691e-8 Iter 100: T = 599.7342069445234 K, F = -0.00029156084646725366, relative_change = 9.888091721018868e-9 Iter 105: T = 599.7341888313124 K, F = -0.00012193422872158743, relative_change = 4.1353186667801124e-9 Iter 110: T = 599.7341812561507 K, F = -5.0994351056488085e-5, relative_change = 1.7294397702456056e-9 Iter 115: T = 599.7341780881274 K, F = -2.132644643232373e-5, relative_change = 7.232723778519363e-10 Iter 120: T = 599.7341767632222 K, F = -8.918973733174074e-6, relative_change = 3.0248112025181275e-10 Iter 125: T = 599.7341762091311 K, F = -3.7300210437019032e-6, relative_change = 1.265012077149645e-10 Iter 130: T = 599.7341759774035 K, F = -1.5599391259280004e-6, relative_change = 5.290430843223279e-11 Iter 135: T = 599.7341758804923 K, F = -6.5238552715563e-7, relative_change = 2.2125225656729638e-11 Iter 140: T = 599.7341758399629 K, F = -2.728349812741726e-7, relative_change = 9.253018772506923e-12 Iter 145: T = 599.7341758230131 K, F = -1.1410313133231043e-7, relative_change = 3.8697325813246046e-12 Iter 150: T = 599.7341758159245 K, F = -4.771921291446546e-8, relative_change = 1.6183656909718314e-12 Iter 155: T = 599.7341758129598 K, F = -1.9956278407562422e-8, relative_change = 6.768040443779151e-13 Iter 160: T = 599.7341758117201 K, F = -8.34644220404357e-9, relative_change = 2.8306409264054733e-13 Converged in 162 iterations to T = 599.7341758114577 K Iter 1: T = 965.2577440819539 K, F = -7916.056059344, relative_change = 0.03474225591804612 Iter 2: T = 932.4941217872771 K, F = -6713.967869285488, relative_change = 0.033942874320928566 Iter 3: T = 901.6797401487817 K, F = -5693.192231936092, relative_change = 0.033045121592224794 Iter 5: T = 845.7853503717255 K, F = -4090.535793013487, relative_change = 0.030936494340662583 Iter 10: T = 737.9822124921265 K, F = -1779.6566542437583, relative_change = 0.02390106364900332 Iter 15: T = 670.7538998617 K, F = -766.0996005874131, relative_change = 0.015595084154432714 Iter 20: T = 634.0723644430929 K, F = -326.1447487252736, relative_change = 0.008554046946311752 Iter 25: T = 616.2478140831978 K, F = -137.67690726339526, relative_change = 0.004119997648419786 Iter 30: T = 608.2203115864402 K, F = -57.83086019582668, relative_change = 0.0018405170278848442 Iter 35: T = 604.7484578979546 K, F = -24.23231152216325, relative_change = 0.0007923926922088929 Iter 40: T = 603.2751829486313 K, F = -10.142622726680838, relative_change = 0.00033552603558530375 Iter 45: T = 602.6552168946498 K, F = -4.2432471534412075, relative_change = 0.00014105806443962747 Iter 50: T = 602.3952632481886 K, F = -1.7748368434915298, relative_change = 5.912207772589109e-5 Iter 55: T = 602.2864286652115 K, F = -0.742303559029181, relative_change = 2.4748354009729043e-5 Iter 60: T = 602.2408919127519 K, F = -0.3104481941261811, relative_change = 1.0354049480778266e-5 Iter 65: T = 602.2218442528564 K, F = -0.12983453859361704, relative_change = 4.330885795009331e-6 Iter 70: T = 602.2138776560699 K, F = -0.054298598825435584, relative_change = 1.8113503843040068e-6 Iter 75: T = 602.2105458185606 K, F = -0.02270836520708258, relative_change = 7.575497417968645e-7 Iter 80: T = 602.2091523848052 K, F = -0.009496916994716442, relative_change = 3.1682008839665653e-7 Iter 85: T = 602.2085696307536 K, F = -0.003971725409988192, relative_change = 1.324985985931057e-7 Iter 90: T = 602.2083259154527 K, F = -0.0016610232274603676, relative_change = 5.541261069182362e-8 Iter 95: T = 602.2082239906989 K, F = -0.0006946597905220786, relative_change = 2.317423556553154e-8 Iter 100: T = 602.2081813645314 K, F = -0.0002905150275434587, relative_change = 9.691745577159513e-9 Iter 105: T = 602.2081635377558 K, F = -0.00012149685528023424, relative_change = 4.053204358175177e-9 Iter 110: T = 602.2081560823848 K, F = -5.0811435878539424e-5, relative_change = 1.695098568698041e-9 Iter 115: T = 602.2081529644596 K, F = -2.124994984264994e-5, relative_change = 7.089105007224772e-10 Iter 120: T = 602.208151660506 K, F = -8.886983596745335e-6, relative_change = 2.9647486714452676e-10 Iter 125: T = 602.2081511151771 K, F = -3.716643087126048e-6, relative_change = 1.2398934444229356e-10 Iter 130: T = 602.2081508871139 K, F = -1.5543444702448284e-6, relative_change = 5.185382285380235e-11 Iter 135: T = 602.2081507917352 K, F = -6.500455481672773e-7, relative_change = 2.168589226664564e-11 Iter 140: T = 602.2081507518467 K, F = -2.7185726408918143e-7, relative_change = 9.06931423409283e-12 Iter 145: T = 602.2081507351648 K, F = -1.1369391406113039e-7, relative_change = 3.792894174503536e-12 Iter 150: T = 602.2081507281883 K, F = -4.7548619153126026e-8, relative_change = 1.5862492033175847e-12 Iter 155: T = 602.2081507252707 K, F = -1.98864701927981e-8, relative_change = 6.634240502182621e-13 Iter 160: T = 602.2081507240503 K, F = -8.315719446372327e-9, relative_change = 2.774171696715816e-13 Converged in 162 iterations to T = 602.2081507237921 K Iter 1: T = 973.4994552925258 K, F = -6038.174320123867, relative_change = 0.026500544707474177 Iter 2: T = 949.1919651436395 K, F = -5109.790772904757, relative_change = 0.024969187210877417 Iter 3: T = 927.0102284256657 K, F = -4322.334405630735, relative_change = 0.02336907341458289 Iter 5: T = 888.7022992853261 K, F = -3088.6570854311926, relative_change = 0.020040451337840878 Iter 10: T = 823.4654931693823 K, F = -1322.524604921999, relative_change = 0.01202588455970344 Iter 15: T = 789.8825190532917 K, F = -560.563016664683, relative_change = 0.006165001923405872 Iter 20: T = 774.2121713843145 K, F = -235.99431354529602, relative_change = 0.002849705600240569 Iter 25: T = 767.3112810080726 K, F = -98.99292857414545, relative_change = 0.0012469345286928773 Iter 30: T = 764.3585462776884 K, F = -41.454053969781036, relative_change = 0.0005317978623754988 Iter 35: T = 763.1115221942792 K, F = -17.34618770029152, relative_change = 0.00022426114474479662 Iter 40: T = 762.5878381926221 K, F = -7.256074986053722, relative_change = 9.411746277764084e-5 Iter 45: T = 762.3684460480932 K, F = -3.0348740436219726, relative_change = 3.941884621595204e-5 Iter 50: T = 762.2766267455988 K, F = -1.269272548710742, relative_change = 1.649556321572958e-5 Iter 55: T = 762.2382151027533 K, F = -0.5308340340964443, relative_change = 6.9004150519011724e-6 Iter 60: T = 762.2221488450758 K, F = -0.22200272374737906, relative_change = 2.8861462898403358e-6 Iter 65: T = 762.2154293856313 K, F = -0.09284446865381968, relative_change = 1.2070751276698598e-6 Iter 70: T = 762.2126191647171 K, F = -0.038828714260744746, relative_change = 5.048227283434006e-7 Iter 75: T = 762.2114438857984 K, F = -0.016238640527633796, relative_change = 2.111245544569447e-7 Iter 80: T = 762.2109523682 K, F = -0.006791194887850183, relative_change = 8.829510048269809e-8 Iter 85: T = 762.2107468093348 K, F = -0.0028401590659539178, relative_change = 3.692611628111186e-8 Iter 90: T = 762.2106608421037 K, F = -0.0011877884858877419, relative_change = 1.544295170862344e-8 Iter 95: T = 762.2106248895707 K, F = -0.0004967473374613007, relative_change = 6.458428379930465e-9 Iter 100: T = 762.2106098537904 K, F = -0.000207745669722037, relative_change = 2.7009921422302822e-9 Iter 105: T = 762.2106035656471 K, F = -8.688172196469335e-5, relative_change = 1.1295872393471325e-9 Iter 110: T = 762.2106009358706 K, F = -3.6334975705543116e-5, relative_change = 4.724069072879875e-10 Iter 115: T = 762.2105998360665 K, F = -1.519572168739991e-5, relative_change = 1.9756622362555357e-10 Iter 120: T = 762.2105993761154 K, F = -6.355033111526964e-6, relative_change = 8.262456514376199e-11 Iter 125: T = 762.2105991837583 K, F = -2.657751676404807e-6, relative_change = 3.4554592074209986e-11 Iter 130: T = 762.2105991033122 K, F = -1.111503815653947e-6, relative_change = 1.445114729834541e-11 Iter 135: T = 762.2105990696687 K, F = -4.648454958733339e-7, relative_change = 6.043659624593791e-12 Iter 140: T = 762.2105990555985 K, F = -1.9440372867052247e-7, relative_change = 2.527527912758217e-12 Iter 145: T = 762.2105990497142 K, F = -8.130170425779681e-8, relative_change = 1.0570390201837067e-12 Iter 150: T = 762.2105990472535 K, F = -3.4002959559131796e-8, relative_change = 4.420873508667747e-13 Converged in 154 iterations to T = 762.2105990463651 K Iter 1: T = 976.3834853869163 K, F = -5381.045319696143, relative_change = 0.023616514613083745 Iter 2: T = 954.929697238525 K, F = -4550.0960871804655, relative_change = 0.02197270690203206 Iter 3: T = 935.5474450792617 K, F = -3845.7225128376285, relative_change = 0.020297046175559413 Iter 5: T = 902.5782861353839 K, F = -2743.39549034558, relative_change = 0.01694322849420225 Iter 10: T = 848.2504463058882 K, F = -1169.9257036409963, relative_change = 0.00954380490923822 Iter 15: T = 821.4094223971517 K, F = -494.43127251277275, relative_change = 0.0046777019122098565 Iter 20: T = 809.2028218057152 K, F = -207.8112901887806, relative_change = 0.002109008680594409 Iter 25: T = 803.8979620590533 K, F = -87.10201991539502, relative_change = 0.0009118937314570936 Iter 30: T = 801.6419333783346 K, F = -36.461800108304104, relative_change = 0.0003868548148243988 Iter 35: T = 800.6916810020653 K, F = -15.25490205968847, relative_change = 0.0001627679219128167 Iter 40: T = 800.2930775789465 K, F = -6.3808619126274015, relative_change = 6.824453013153979e-5 Iter 45: T = 800.1261664620596 K, F = -2.6687418979101825, relative_change = 2.8571055710063117e-5 Iter 50: T = 800.0563253563167 K, F = -1.116132861407377, relative_change = 1.1954078195899198e-5 Iter 55: T = 800.0271105147771 K, F = -0.4667858883353725, relative_change = 5.000269605823546e-6 Iter 60: T = 800.014891389357 K, F = -0.19521644700020258, relative_change = 2.0913354021202894e-6 Iter 65: T = 800.0097810075459 K, F = -0.08164202684363153, relative_change = 8.746499420206368e-7 Iter 70: T = 800.0076437502732 K, F = -0.034143701647646796, relative_change = 3.6579403631515e-7 Iter 75: T = 800.0067499177115 K, F = -0.014279309213409697, relative_change = 1.5298030638293408e-7 Iter 80: T = 800.0063761052022 K, F = -0.0059717785906874266, relative_change = 6.397834357791652e-8 Iter 85: T = 800.0062197721616 K, F = -0.002497469290154597, relative_change = 2.6756534014193052e-8 Iter 90: T = 800.0061543917847 K, F = -0.0010444715122363002, relative_change = 1.1189906730182348e-8 Iter 95: T = 800.0061270489246 K, F = -0.00043681046503174503, relative_change = 4.679753445279236e-9 Iter 100: T = 800.006115613813 K, F = -0.00018267935498650356, relative_change = 1.9571289323352804e-9 Iter 105: T = 800.0061108315125 K, F = -7.639868815034756e-5, relative_change = 8.184947184548917e-10 Iter 110: T = 800.0061088314974 K, F = -3.1950842827366266e-5, relative_change = 3.423042600444016e-10 Iter 115: T = 800.006107995067 K, F = -1.3362224124291444e-5, relative_change = 1.43155731099045e-10 Iter 120: T = 800.006107645262 K, F = -5.58824136787095e-6, relative_change = 5.986943287282942e-11 Iter 125: T = 800.0061074989694 K, F = -2.3370696888846965e-6, relative_change = 2.503811624603047e-11 Iter 130: T = 800.006107437788 K, F = -9.773901687992748e-7, relative_change = 1.0471236176407302e-11 Iter 135: T = 800.0061074122012 K, F = -4.0875614648605563e-7, relative_change = 4.379195009014287e-12 Iter 140: T = 800.0061074015005 K, F = -1.709455357268297e-7, relative_change = 1.831419156265627e-12 Iter 145: T = 800.0061073970254 K, F = -7.149242431392366e-8, relative_change = 7.659316452060339e-13 Iter 150: T = 800.0061073951539 K, F = -2.9899451137183064e-8, relative_change = 3.2032674818743013e-13 Converged in 153 iterations to T = 800.0061073946059 K Iter 1: T = 967.3134955537807 K, F = -7447.651130963771, relative_change = 0.0326865044462193 Iter 2: T = 936.7016536671276 K, F = -6313.181341825271, relative_change = 0.03164624708262545 Iter 3: T = 908.133140966242 K, F = -5350.011319637433, relative_change = 0.03049905227458688 Iter 5: T = 856.9878842948723 K, F = -3838.386596703943, relative_change = 0.02788929612590867 Iter 10: T = 761.8697383099845 K, F = -1662.0456252573192, relative_change = 0.01996981805023719 Iter 15: T = 706.180363543585 K, F = -711.5991727579388, relative_change = 0.011965620031968627 Iter 20: T = 677.5409095388046 K, F = -301.59521259075063, relative_change = 0.006127253454759051 Iter 25: T = 664.1860063000273 K, F = -126.96473939494847, relative_change = 0.002830437582134891 Iter 30: T = 658.3068180584605 K, F = -53.25700300019699, relative_change = 0.0012381155213189866 Iter 35: T = 655.7916521201948 K, F = -22.301573116405148, relative_change = 0.0005279625802767288 Iter 40: T = 654.7295010502409 K, F = -9.3319151178625, relative_change = 0.0002226303282317776 Iter 45: T = 654.2834674067904 K, F = -3.903622011528649, relative_change = 9.343065209527385e-5 Iter 50: T = 654.096608484054 K, F = -1.6326998585708572, relative_change = 3.9130770647484995e-5 Iter 55: T = 654.0184053011302 K, F = -0.6828423376340659, relative_change = 1.637493863065722e-5 Iter 60: T = 653.9856898926298 K, F = -0.2855776778494184, relative_change = 6.849942499695739e-6 Iter 65: T = 653.9720061850263 K, F = -0.11943284512132091, relative_change = 2.8650335315068635e-6 Iter 70: T = 653.9662831919056 K, F = -0.04994839078162977, relative_change = 1.1982447267569727e-6 Iter 75: T = 653.9638897148039 K, F = -0.020889039525716635, relative_change = 5.011296104512114e-7 Iter 80: T = 653.9628887248203 K, F = -0.008736050342463608, relative_change = 2.0958002418015505e-7 Iter 85: T = 653.9624700972327 K, F = -0.0036535213778599585, relative_change = 8.764915520872452e-8 Iter 90: T = 653.9622950218923 K, F = -0.0015279464105375506, relative_change = 3.665597349391462e-8 Iter 95: T = 653.9622218032445 K, F = -0.0006390054605028284, relative_change = 1.532997462935653e-8 Iter 100: T = 653.9621911823228 K, F = -0.00026723971900044496, relative_change = 6.411179995709401e-9 Iter 105: T = 653.9621783762863 K, F = -0.00011176284176539486, relative_change = 2.681232284158312e-9 Iter 110: T = 653.9621730206486 K, F = -4.674055532039034e-5, relative_change = 1.1213234095637792e-9 Iter 115: T = 653.9621707808568 K, F = -1.9547457997592943e-5, relative_change = 4.689508384600335e-10 Iter 120: T = 653.9621698441492 K, F = -8.174980046016245e-6, relative_change = 1.961208344117749e-10 Iter 125: T = 653.9621694524069 K, F = -3.418874120864057e-6, relative_change = 8.202007142167037e-11 Iter 130: T = 653.9621692885756 K, F = -1.429813589248763e-6, relative_change = 3.4301763885970837e-11 Iter 135: T = 653.9621692200595 K, F = -5.979662356936366e-7, relative_change = 1.4345434113235785e-11 Iter 140: T = 653.9621691914051 K, F = -2.500767045110486e-7, relative_change = 5.999433871722443e-12 Iter 145: T = 653.9621691794215 K, F = -1.0458498944654337e-7, relative_change = 2.509033096228868e-12 Iter 150: T = 653.9621691744098 K, F = -4.373892670272994e-8, relative_change = 1.0493132453847486e-12 Iter 155: T = 653.9621691723139 K, F = -1.8291544723325615e-8, relative_change = 4.388210137727956e-13 Converged in 159 iterations to T = 653.9621691715574 K Iter 1: T = 970.3844366345862 K, F = -6747.934284483107, relative_change = 0.029615563365413728 Iter 2: T = 942.9339754612823 K, F = -5715.280853879405, relative_change = 0.028288233134184933 Iter 3: T = 917.603613037735 K, F = -4838.905991124693, relative_change = 0.026863346833118085 Iter 5: T = 873.0859196718635 K, F = -3464.5630734431747, relative_change = 0.023766387680226188 Iter 10: T = 794.1095415200755 K, F = -1491.1283370535111, relative_change = 0.015460752444335165 Iter 15: T = 751.111059375612 K, F = -634.698152803386, relative_change = 0.008458322234459572 Iter 20: T = 730.2503847434031 K, F = -267.89861487455573, relative_change = 0.004067098966709726 Iter 25: T = 720.8641971554276 K, F = -112.52373122916222, relative_change = 0.001815310403408175 Iter 30: T = 716.8065552559581 K, F = -47.14848643719728, relative_change = 0.0007812271818166362 Iter 35: T = 715.0850521771637 K, F = -19.73413621597154, relative_change = 0.00033074021060429805 Iter 40: T = 714.3606932649299 K, F = -8.255892320562438, relative_change = 0.00013903567865726079 Iter 45: T = 714.0569786693501 K, F = -3.4532118026886964, relative_change = 5.8272594883046246e-5 Iter 50: T = 713.9298247135408 K, F = -1.4442618574807762, relative_change = 2.4392440421136958e-5 Iter 55: T = 713.8766234231356 K, F = -0.6040228621514467, relative_change = 1.0205088301880994e-5 Iter 60: T = 713.8543698092928 K, F = -0.25261225222477945, relative_change = 4.268568519036988e-6 Iter 65: T = 713.8450623475909 K, F = -0.10564592908721726, relative_change = 1.7852850679094381e-6 Iter 70: T = 713.8411697274478 K, F = -0.04418247114084062, relative_change = 7.466483051484274e-7 Iter 75: T = 713.8395417647394 K, F = -0.01847765140432278, relative_change = 3.1226087065837324e-7 Iter 80: T = 713.8388609273616 K, F = -0.007727576990317342, relative_change = 1.3059186061370595e-7 Iter 85: T = 713.8385761923518 K, F = -0.003231765420257049, relative_change = 5.461518679585015e-8 Iter 90: T = 713.83845711265 K, F = -0.0013515629699804022, relative_change = 2.2840742782935783e-8 Iter 95: T = 713.8384073120757 K, F = -0.000565239788775096, relative_change = 9.552274811588428e-9 Iter 100: T = 713.8383864848771 K, F = -0.00023639003362752042, relative_change = 3.9948760197812945e-9 Iter 105: T = 713.8383777746932 K, F = -9.886113578982947e-5, relative_change = 1.6707049681346151e-9 Iter 110: T = 713.8383741319901 K, F = -4.13449077325545e-5, relative_change = 6.987087886683995e-10 Iter 115: T = 713.8383726085682 K, F = -1.729093347313526e-5, relative_change = 2.9220835085343006e-10 Iter 120: T = 713.838371971455 K, F = -7.231275526486947e-6, relative_change = 1.2220503354683916e-10 Iter 125: T = 713.8383717050066 K, F = -3.0242053110640654e-6, relative_change = 5.1107596549767106e-11 Iter 130: T = 713.8383715935747 K, F = -1.2647587277481165e-6, relative_change = 2.1373806402001673e-11 Iter 135: T = 713.8383715469726 K, F = -5.289378653960952e-7, relative_change = 8.938792268551715e-12 Iter 140: T = 713.838371527483 K, F = -2.2120793818913853e-7, relative_change = 3.7383064008919976e-12 Iter 145: T = 713.8383715193322 K, F = -9.251213561878302e-8, relative_change = 1.5634100276590663e-12 Iter 150: T = 713.8383715159235 K, F = -3.8689996095797596e-8, relative_change = 6.538420874520834e-13 Iter 155: T = 713.8383715144979 K, F = -1.618085732069119e-8, relative_change = 2.7344860674655865e-13 Converged in 157 iterations to T = 713.8383715141962 K Iter 1: T = 964.2709834449781 K, F = -8140.890409130614, relative_change = 0.03572901655502187 Iter 2: T = 930.4642689462286 K, F = -6906.498447292578, relative_change = 0.035059350617365766 Iter 3: T = 898.5487532144426 K, F = -5858.217267252508, relative_change = 0.034300635496654734 Iter 5: T = 840.2781257580185 K, F = -4212.134583893703, relative_change = 0.032490243434659644 Iter 10: T = 725.722782823671 K, F = -1837.184684592941, relative_change = 0.02614194434955586 Iter 15: T = 651.6578286142071 K, F = -793.4344878087751, relative_change = 0.017955958225385416 Iter 20: T = 609.6764670862719 K, F = -338.80381098598946, relative_change = 0.010321777190988844 Iter 25: T = 588.6652797447545 K, F = -143.31449365273417, relative_change = 0.005129747891767148 Iter 30: T = 579.034678017801 K, F = -60.26549575823086, relative_change = 0.0023302606819504174 Iter 35: T = 574.8327047635551 K, F = -25.265624339827752, relative_change = 0.0010111381090819147 Iter 40: T = 573.0424737233022 K, F = -10.577550763071185, relative_change = 0.00042962915336740954 Iter 45: T = 572.287825549223 K, F = -4.425637106829836, relative_change = 0.00018088615014826137 Iter 50: T = 571.9711667392944 K, F = -1.851202392582877, relative_change = 7.586249601168652e-5 Iter 55: T = 571.8385504509793 K, F = -0.7742559765669967, relative_change = 3.176414181676494e-5 Iter 60: T = 571.7830561584342 K, F = -0.32381378040613884, relative_change = 1.3290720650914252e-5 Iter 65: T = 571.7598420788014 K, F = -0.13542465959495248, relative_change = 5.559489296457717e-6 Iter 70: T = 571.7501326754343 K, F = -0.056636536975527035, relative_change = 2.3252462244372623e-6 Iter 75: T = 571.7460719124032 K, F = -0.02368613334195291, relative_change = 9.724809708605376e-7 Iter 80: T = 571.7443736222701 K, F = -0.009905833837339673, relative_change = 4.067093179782083e-7 Iter 85: T = 571.7436633717135 K, F = -0.004142739760382708, relative_change = 1.700917716804109e-7 Iter 90: T = 571.7433663355145 K, F = -0.0017325435478334206, relative_change = 7.113459872062578e-8 Iter 95: T = 571.7432421112652 K, F = -0.0007245704553440202, relative_change = 2.974937164836866e-8 Iter 100: T = 571.7431901591722 K, F = -0.00030302402710430387, relative_change = 1.244154827740082e-8 Iter 105: T = 571.7431684321814 K, F = -0.0001267282690153304, relative_change = 5.203205096931962e-9 Iter 110: T = 571.7431593456935 K, F = -5.299927503854551e-5, relative_change = 2.1760426542731376e-9 Iter 115: T = 571.7431555456155 K, F = -2.216492938145187e-5, relative_change = 9.1004703845707e-10 Iter 120: T = 571.7431539563777 K, F = -9.269638615416742e-6, relative_change = 3.80592562962205e-10 Iter 125: T = 571.7431532917393 K, F = -3.876673786151752e-6, relative_change = 1.5916836474635782e-10 Iter 130: T = 571.7431530137796 K, F = -1.621271340901398e-6, relative_change = 6.656611388363911e-11 Iter 135: T = 571.7431528975336 K, F = -6.780352453938931e-7, relative_change = 2.7838752383426594e-11 Iter 140: T = 571.7431528489182 K, F = -2.8356263853668295e-7, relative_change = 1.1642506988001155e-11 Iter 145: T = 571.7431528285865 K, F = -1.1858937748465692e-7, relative_change = 4.869039389062407e-12 Iter 150: T = 571.7431528200837 K, F = -4.959596294762392e-8, relative_change = 2.0363096785696653e-12 Iter 155: T = 571.7431528165275 K, F = -2.0741430906134894e-8, relative_change = 8.51601098004704e-13 Iter 160: T = 571.7431528150405 K, F = -8.6751080763392e-9, relative_change = 3.561823481053217e-13 Converged in 163 iterations to T = 571.743152814605 K Iter 1: T = 966.45851912905 K, F = -7642.4583226311815, relative_change = 0.03354148087094992 Iter 2: T = 934.9552478591626 K, F = -6479.813971161977, relative_change = 0.0325966098351303 Iter 3: T = 905.4604891840371 K, F = -5492.63688019876, relative_change = 0.03154670637194866 Iter 5: T = 852.3721599871315 K, F = -3943.0633336960964, relative_change = 0.029126669254455905 Iter 10: T = 752.1872279435212 K, F = -1710.6146562692888, relative_change = 0.021497573963314653 Iter 15: T = 692.075250299439 K, F = -733.9116805583849, relative_change = 0.013305467982583405 Iter 20: T = 660.4751097366636 K, F = -311.55637023562355, relative_change = 0.006985320412235835 Iter 25: T = 645.5218709973051 K, F = -131.28429492897916, relative_change = 0.003274281583602439 Iter 30: T = 638.8870197379596 K, F = -55.09517579090433, relative_change = 0.0014426132861794113 Iter 35: T = 636.0380286018335 K, F = -23.076289265468546, relative_change = 0.0006171631059088468 Iter 40: T = 634.8329344665498 K, F = -9.656989197365046, relative_change = 0.00026060886840829884 Iter 45: T = 634.3265199223717 K, F = -4.039763119722211, relative_change = 0.00010943393639782183 Iter 50: T = 634.1143026606131 K, F = -1.6896693390269073, relative_change = 4.584473502750222e-5 Iter 55: T = 634.0254756236262 K, F = -0.7066735532317707, relative_change = 1.9186519543904194e-5 Iter 60: T = 633.9883139157383 K, F = -0.2955452095212326, relative_change = 8.026430943773412e-6 Iter 65: T = 633.9727701389994 K, F = -0.12360156660047833, relative_change = 3.3571691068366523e-6 Iter 70: T = 633.9662691423852 K, F = -0.051691831498432816, relative_change = 1.4040816556051043e-6 Iter 75: T = 633.963550277374 K, F = -0.021618172783546663, relative_change = 5.872165626326712e-7 Iter 80: T = 633.96241320321 K, F = -0.009040983546465486, relative_change = 2.4558322618679057e-7 Iter 85: T = 633.9619376630557 K, F = -0.003781048255643349, relative_change = 1.0270623106004731e-7 Iter 90: T = 633.9617387861063 K, F = -0.0015812797051529826, relative_change = 4.295304115439379e-8 Iter 95: T = 633.9616556133249 K, F = -0.0006613100869821698, relative_change = 1.7963486808771052e-8 Iter 100: T = 633.9616208294628 K, F = -0.00027656778046691866, relative_change = 7.512546794217045e-9 Iter 105: T = 633.9616062824343 K, F = -0.00011566395074152913, relative_change = 3.141837186569144e-9 Iter 110: T = 633.9616001986928 K, F = -4.837204489738234e-5, relative_change = 1.3139538760196651e-9 Iter 115: T = 633.9615976543995 K, F = -2.0229766665824656e-5, relative_change = 5.495112080917347e-10 Iter 120: T = 633.9615965903457 K, F = -8.460331207882366e-6, relative_change = 2.2981218403788583e-10 Iter 125: T = 633.9615961453455 K, F = -3.5382117375970523e-6, relative_change = 9.611020535052787e-11 Iter 130: T = 633.9615959592412 K, F = -1.479722023189911e-6, relative_change = 4.019442539236833e-11 Iter 135: T = 633.9615958814102 K, F = -6.188378577909326e-7, relative_change = 1.6809800577183944e-11 Iter 140: T = 633.9615958488604 K, F = -2.5880565035496517e-7, relative_change = 7.030066627320941e-12 Iter 145: T = 633.9615958352476 K, F = -1.0823619822630803e-7, relative_change = 2.9400736964321537e-12 Iter 150: T = 633.9615958295545 K, F = -4.526584579389592e-8, relative_change = 1.2295786876476747e-12 Iter 155: T = 633.9615958271736 K, F = -1.8930658485238894e-8, relative_change = 5.142228938565733e-13 Converged in 160 iterations to T = 633.9615958261779 K Iter 1: T = 963.5490117315269 K, F = -8305.392350812886, relative_change = 0.03645098826847316 Iter 2: T = 928.9748702784275 K, F = -7047.427793209014, relative_change = 0.03588207868219237 Iter 3: T = 896.243979137242 K, F = -5979.082518688647, relative_change = 0.0352333439669638 Iter 5: T = 836.1929216570512 K, F = -4301.343092155968, relative_change = 0.03366711800045718 Iter 10: T = 716.3826765676313 K, F = -1879.769223979992, relative_change = 0.027960353385265767 Iter 15: T = 636.605913712627 K, F = -814.0380913907211, relative_change = 0.02005464198465238 Iter 20: T = 589.8357198162397 K, F = -348.56676856870496, relative_change = 0.012037611826875487 Iter 25: T = 565.7549251941913 K, F = -147.74478477514575, relative_change = 0.00617224365154733 Iter 30: T = 554.5171681606159 K, F = -62.20029854301162, relative_change = 0.0028533800764304084 Iter 35: T = 549.5679986992097 K, F = -26.091358021591443, relative_change = 0.0012486122131881196 Iter 40: T = 547.4503013686431 K, F = -10.925975732044332, relative_change = 0.0005325267237581699 Iter 45: T = 546.555926291389 K, F = -4.571908937976923, relative_change = 0.0002245709353377639 Iter 50: T = 546.1803341838609 K, F = -1.9124734840004913, relative_change = 9.424790648891702e-5 Iter 55: T = 546.0229832964434 K, F = -0.7998975862888292, relative_change = 3.947355541377058e-5 Iter 60: T = 545.9571292416534 K, F = -0.33454044125303667, relative_change = 1.6518470641903257e-5 Iter 65: T = 545.9295798772008 K, F = -0.1399112082798532, relative_change = 6.9100000074238574e-6 Iter 70: T = 545.9180569318573 K, F = -0.058512958124698145, relative_change = 2.8901556720536523e-6 Iter 75: T = 545.913237640968 K, F = -0.02447089132885011, relative_change = 1.2087520460434103e-6 Iter 80: T = 545.9112221109165 K, F = -0.010234031842284386, relative_change = 5.05524061281896e-7 Iter 85: T = 545.9103791842996 K, F = -0.004279996582291196, relative_change = 2.114178647383182e-7 Iter 90: T = 545.9100266609438 K, F = -0.0017899460773569964, relative_change = 8.841776711925665e-8 Iter 95: T = 545.9098792312253 K, F = -0.0007485768944178739, relative_change = 3.69774170618499e-8 Iter 100: T = 545.9098175743143 K, F = -0.000313063809387254, relative_change = 1.546440633910232e-8 Iter 105: T = 545.9097917886504 K, F = -0.0001309270258692541, relative_change = 6.467400968776974e-9 Iter 110: T = 545.9097810047765 K, F = -5.4755246552906645e-5, relative_change = 2.7047446129218914e-9 Iter 115: T = 545.9097764948315 K, F = -2.2899298288359127e-5, relative_change = 1.131156556136086e-9 Iter 120: T = 545.9097746087185 K, F = -9.576759764651221e-6, relative_change = 4.730631758274551e-10 Iter 125: T = 545.9097738199235 K, F = -4.005115489896793e-6, relative_change = 1.97840680230205e-10 Iter 130: T = 545.90977349004 K, F = -1.6749872651378173e-6, relative_change = 8.273934214907864e-11 Iter 135: T = 545.9097733520789 K, F = -7.004998501813908e-7, relative_change = 3.4602589557300934e-11 Iter 140: T = 545.9097732943818 K, F = -2.9295732625889137e-7, relative_change = 1.4471212407563667e-11 Iter 145: T = 545.9097732702522 K, F = -1.225180932817871e-7, relative_change = 6.052025988442828e-12 Iter 150: T = 545.9097732601608 K, F = -5.123803209494682e-8, relative_change = 2.5310049606254606e-12 Iter 155: T = 545.9097732559406 K, F = -2.1428561536307456e-8, relative_change = 1.0585066079227316e-12 Iter 160: T = 545.9097732541755 K, F = -8.96104854208879e-9, relative_change = 4.426488954842769e-13 Converged in 164 iterations to T = 545.9097732535386 K Iter 1: T = 976.395107293144 K, F = -5378.397257306881, relative_change = 0.023604892706856073 Iter 2: T = 954.9527108564603 K, F = -4547.842410966506, relative_change = 0.02196077825105898 Iter 3: T = 935.5815228436486 K, F = -3843.8050750370458, relative_change = 0.020284970965146993 Iter 5: T = 902.6331367209466 K, F = -2742.0093490961062, relative_change = 0.016931369129801203 Iter 10: T = 848.3462724862849 K, F = -1169.3167943021756, relative_change = 0.009534872924241593 Iter 15: T = 821.5294911732459 K, F = -494.1688062527362, relative_change = 0.004672582665946999 Iter 20: T = 809.3350027566204 K, F = -207.6998098456128, relative_change = 0.0021065217827209606 Iter 25: T = 804.0356434217208 K, F = -87.05506380795353, relative_change = 0.000910782166831682 Iter 30: T = 801.7819996410987 K, F = -36.44210129710605, relative_change = 0.0003863764816562073 Iter 35: T = 800.8327601464886 K, F = -15.24665285589679, relative_change = 0.00016256544709916863 Iter 40: T = 800.4345830851554 K, F = -6.3774100696172455, relative_change = 6.81594220127052e-5 Iter 45: T = 800.2678507650527 K, F = -2.6672979575982394, relative_change = 2.8535386720303784e-5 Iter 50: T = 800.1980845197672 K, F = -1.115528929056234, relative_change = 1.1939147717146568e-5 Iter 55: T = 800.1689010007419 K, F = -0.466533306239974, relative_change = 4.994023176106322e-6 Iter 60: T = 800.1566949773927 K, F = -0.19511081233657523, relative_change = 2.0887226637682718e-6 Iter 65: T = 800.1515900754827 K, F = -0.08159784884755084, relative_change = 8.735571924611072e-7 Iter 70: T = 800.1494551100502 K, F = -0.034125225827289496, relative_change = 3.6533702295838285e-7 Iter 75: T = 800.1485622359775 K, F = -0.014271582392984095, relative_change = 1.5278917574058606e-7 Iter 80: T = 800.1481888243221 K, F = -0.005968547142080727, relative_change = 6.389841009779236e-8 Iter 85: T = 800.1480326589239 K, F = -0.0024961178582780796, relative_change = 2.672310479895685e-8 Iter 90: T = 800.1479673486571 K, F = -0.0010439063267615456, relative_change = 1.1175926216433015e-8 Iter 95: T = 800.1479400351179 K, F = -0.00043657409709985107, relative_change = 4.673906618925709e-9 Iter 100: T = 800.1479286122686 K, F = -0.00018258050116548574, relative_change = 1.9546836987290263e-9 Iter 105: T = 800.1479238350965 K, F = -7.635734755340184e-5, relative_change = 8.174721058976096e-10 Iter 110: T = 800.147921837226 K, F = -3.1933555632690513e-5, relative_change = 3.4187661199124103e-10 Iter 115: T = 800.1479210016927 K, F = -1.3354992585035141e-5, relative_change = 1.4297686400339613e-10 Iter 120: T = 800.1479206522627 K, F = -5.585216444559116e-6, relative_change = 5.97946220186221e-11 Iter 125: T = 800.1479205061269 K, F = -2.3358027836373196e-6, relative_change = 2.5006809685083998e-11 Iter 130: T = 800.1479204450112 K, F = -9.768614266381093e-7, relative_change = 1.045815509967109e-11 Iter 135: T = 800.1479204194518 K, F = -4.085342831805505e-7, relative_change = 4.37371645678437e-12 Iter 140: T = 800.1479204087626 K, F = -1.7085472381328515e-7, relative_change = 1.8291491022279524e-12 Iter 145: T = 800.1479204042922 K, F = -7.145235192407284e-8, relative_change = 7.649598586475116e-13 Iter 150: T = 800.1479204024226 K, F = -2.988195568764951e-8, relative_change = 3.199124449182569e-13 Converged in 153 iterations to T = 800.1479204018752 K Iter 1: T = 973.6134367300906 K, F = -6012.203541150402, relative_change = 0.02638656326990943 Iter 2: T = 949.4197483054635 K, F = -5087.654358243702, relative_change = 0.02484937811240805 Iter 3: T = 927.3507218728541 K, F = -4303.467917316871, relative_change = 0.023244751830787568 Iter 5: T = 889.2609814590173 K, F = -3074.9623505928944, relative_change = 0.019911948325574004 Iter 10: T = 824.4854424145133 K, F = -1316.4339831110728, relative_change = 0.011916653500986472 Iter 15: T = 791.1997624268797 K, F = -557.9083755511439, relative_change = 0.006096727602497946 Iter 20: T = 775.686325795162 K, F = -234.85884970043534, relative_change = 0.0028148932663517845 Iter 25: T = 768.8587648258871 K, F = -98.51295626158418, relative_change = 0.0012310086036281158 Iter 30: T = 765.9382509515066 K, F = -41.25236999889319, relative_change = 0.0005248733324055136 Iter 35: T = 764.7049913393931 K, F = -17.26166943513237, relative_change = 0.00022131700154986785 Iter 40: T = 764.1871157863621 K, F = -7.220698058388526, relative_change = 9.287759786672623e-5 Iter 45: T = 763.9701620001034 K, F = -3.020073649547958, relative_change = 3.889880611666894e-5 Iter 50: T = 763.8793640641909 K, F = -1.263081911122407, relative_change = 1.627781062120699e-5 Iter 55: T = 763.8413798522598 K, F = -0.52824487166707, relative_change = 6.809301797611694e-6 Iter 60: T = 763.8254924008709 K, F = -0.22091987643033384, relative_change = 2.848033498038625e-6 Iter 65: T = 763.8188477290255 K, F = -0.09239160395939516, relative_change = 1.1911344788219534e-6 Iter 70: T = 763.8160687866957 K, F = -0.03863931995920733, relative_change = 4.981559095022311e-7 Iter 75: T = 763.8149065891199 K, F = -0.016159433414649427, relative_change = 2.0833636761706417e-7 Iter 80: T = 763.8144205423416 K, F = -0.0067580694983711, relative_change = 8.712903980083959e-8 Iter 85: T = 763.814217271447 K, F = -0.002826305628387482, relative_change = 3.643845445324241e-8 Iter 90: T = 763.814132261074 K, F = -0.001181994811627174, relative_change = 1.523900546992219e-8 Iter 95: T = 763.8140967087106 K, F = -0.0004943243539179409, relative_change = 6.373135591284874e-9 Iter 100: T = 763.814081840286 K, F = -0.00020673234849566402, relative_change = 2.665321665292063e-9 Iter 105: T = 763.814075622133 K, F = -8.645793838790716e-5, relative_change = 1.1146694115872296e-9 Iter 110: T = 763.8140730216271 K, F = -3.6157742460019016e-5, relative_change = 4.661680687403776e-10 Iter 115: T = 763.8140719340644 K, F = -1.512159998284801e-5, relative_change = 1.9495705839079795e-10 Iter 120: T = 763.8140714792328 K, F = -6.32403339284604e-6, relative_change = 8.153336633216283e-11 Iter 125: T = 763.8140712890167 K, F = -2.6447881144031626e-6, relative_change = 3.409825107852914e-11 Iter 130: T = 763.8140712094661 K, F = -1.106080948054533e-6, relative_change = 1.4260282588707213e-11 Iter 135: T = 763.8140711761971 K, F = -4.6257627150936287e-7, relative_change = 5.963820607817599e-12 Iter 140: T = 763.8140711622835 K, F = -1.934553324201005e-7, relative_change = 2.4941463048130208e-12 Iter 145: T = 763.8140711564647 K, F = -8.090458047949056e-8, relative_change = 1.0430721031483024e-12 Iter 150: T = 763.8140711540311 K, F = -3.3833614243583554e-8, relative_change = 4.3620396963364394e-13 Converged in 154 iterations to T = 763.8140711531528 K Iter 1: T = 964.5861695611039 K, F = -8069.074952751943, relative_change = 0.03541383043889603 Iter 2: T = 931.1133602193156 K, F = -6844.990528103845, relative_change = 0.03470173054318077 Iter 3: T = 899.5512205248108 K, F = -5805.484681747601, relative_change = 0.033897204189048034 Iter 5: T = 842.0466731081247 K, F = -4173.253299982059, relative_change = 0.03198720920451783 Iter 10: T = 729.699852184808 K, F = -1818.7273663642293, relative_change = 0.02539730793230629 Iter 15: T = 657.930165448134 K, F = -784.6065740443928, relative_change = 0.017145291249024194 Iter 20: T = 617.777614778987 K, F = -334.68304409350765, relative_change = 0.009696401493833329 Iter 25: T = 597.8897190384619 K, F = -141.4679353183087, relative_change = 0.004765349983483854 Iter 30: T = 588.8314818738742 K, F = -59.465179062139796, relative_change = 0.0021516403671047795 Iter 35: T = 584.891869144068 K, F = -24.92535884219337, relative_change = 0.0009309601455432462 Iter 40: T = 583.2158668742206 K, F = -10.434218995964663, relative_change = 0.0003950617390042221 Iter 45: T = 582.5098189595277 K, F = -4.3655097903146745, relative_change = 0.00016624224809842086 Iter 50: T = 582.2136333591754 K, F = -1.8260238767031032, relative_change = 6.97049965462742e-5 Iter 55: T = 582.0896053298295 K, F = -0.7637203026024643, relative_change = 2.9183152661339233e-5 Iter 60: T = 582.03770733505 K, F = -0.31940663388220986, relative_change = 1.2210294544715102e-5 Iter 65: T = 582.0159980733284 K, F = -0.13358136293213663, relative_change = 5.107462626315704e-6 Iter 70: T = 582.0069181433626 K, F = -0.05586561761924652, relative_change = 2.1361718520270457e-6 Iter 75: T = 582.0031206582197 K, F = -0.023363720295063395, relative_change = 8.934023138343835e-7 Iter 80: T = 582.0015324783457 K, F = -0.009770995913069347, relative_change = 3.7363671783828707e-7 Iter 85: T = 582.0008682779668 K, F = -0.004086348765901637, relative_change = 1.562602471723809e-7 Iter 90: T = 582.0005905006336 K, F = -0.0017089601329131066, relative_change = 6.535006062212499e-8 Iter 95: T = 582.000474330695 K, F = -0.0007147075850443274, relative_change = 2.7330203610429956e-8 Iter 100: T = 582.0004257470149 K, F = -0.0002988992556280934, relative_change = 1.1429822395668454e-8 Iter 105: T = 582.0004054287355 K, F = -0.00012500324038161592, relative_change = 4.780089100308338e-9 Iter 110: T = 582.0003969313875 K, F = -5.22778481049091e-5, relative_change = 1.9990904917435283e-9 Iter 115: T = 582.000393377695 K, F = -2.1863220093898406e-5, relative_change = 8.360435301670124e-10 Iter 120: T = 582.0003918914982 K, F = -9.143459706872914e-6, relative_change = 3.496433915671445e-10 Iter 125: T = 582.0003912699531 K, F = -3.823903675870266e-6, relative_change = 1.462250285906782e-10 Iter 130: T = 582.0003910100154 K, F = -1.5992020785393635e-6, relative_change = 6.115304933791393e-11 Iter 135: T = 582.0003909013064 K, F = -6.688050509517929e-7, relative_change = 2.5574921933585326e-11 Iter 140: T = 582.0003908558431 K, F = -2.797026731893304e-7, relative_change = 1.0695753604002336e-11 Iter 145: T = 582.0003908368298 K, F = -1.1697489371575998e-7, relative_change = 4.473087893535551e-12 Iter 150: T = 582.000390828878 K, F = -4.8920192730061984e-8, relative_change = 1.870694769736027e-12 Iter 155: T = 582.0003908255527 K, F = -2.0459454963539514e-8, relative_change = 7.823639535554179e-13 Iter 160: T = 582.000390824162 K, F = -8.556907959977877e-9, relative_change = 3.272138164865415e-13 Converged in 163 iterations to T = 582.0003908237547 K Iter 1: T = 966.4355256808567 K, F = -7647.697401674465, relative_change = 0.03356447431914333 Iter 2: T = 934.9082122485133 K, F = -6484.296364593644, relative_change = 0.03262226252509941 Iter 3: T = 905.388391167075 K, F = -5496.474598190131, relative_change = 0.03157510084379433 Iter 5: T = 852.2471851737896 K, F = -3945.8821941075494, relative_change = 0.029160523165181557 Iter 10: T = 751.9220570530756 K, F = -1711.9274119855475, relative_change = 0.021540639587574687 Iter 15: T = 691.6843418739905 K, F = -734.5182685290315, relative_change = 0.013344478831961814 Iter 20: T = 659.9979192796725 K, F = -311.8287238819926, relative_change = 0.0070109413307173326 Iter 25: T = 644.9973094967778 K, F = -131.40285146034455, relative_change = 0.003287733220138425 Iter 30: T = 638.3398553802621 K, F = -55.14572905624547, relative_change = 0.001448856964677166 Iter 35: T = 635.4808353846274 K, F = -23.09761541158992, relative_change = 0.0006198956530052692 Iter 40: T = 634.2714385992603 K, F = -9.665941405094095, relative_change = 0.0002617739723383532 Iter 45: T = 633.7632050543067 K, F = -4.04351296192106, relative_change = 0.00010992518475312665 Iter 50: T = 633.5502235936538 K, F = -1.6912386101015653, relative_change = 4.6050884750588684e-5 Iter 55: T = 633.461076349037 K, F = -0.707330023912837, relative_change = 1.927285737896221e-5 Iter 60: T = 633.4237806194595 K, F = -0.2958197854018169, relative_change = 8.062560102159385e-6 Iter 65: T = 633.4081807745105 K, F = -0.12371640311186333, relative_change = 3.3722825405032295e-6 Iter 70: T = 633.4016563262226 K, F = -0.05173985847936208, relative_change = 1.4104029368185791e-6 Iter 75: T = 633.3989276528679 K, F = -0.021638258413748446, relative_change = 5.89860313905922e-7 Iter 80: T = 633.3977864766368 K, F = -0.009049383625407414, relative_change = 2.466888947794733e-7 Iter 85: T = 633.3973092209316 K, F = -0.0037845612735160072, relative_change = 1.0316863839738273e-7 Iter 90: T = 633.3971096265153 K, F = -0.001582748891905128, relative_change = 4.3146426040271624e-8 Iter 95: T = 633.3970261536801 K, F = -0.0006619245177864053, relative_change = 1.8044362764216348e-8 Iter 100: T = 633.396991244332 K, F = -0.0002768247436296667, relative_change = 7.546370126296094e-9 Iter 105: T = 633.3969766448236 K, F = -0.00011577141412572045, relative_change = 3.1559824654978736e-9 Iter 110: T = 633.3969705391345 K, F = -4.841698778745851e-5, relative_change = 1.3198696125130947e-9 Iter 115: T = 633.3969679856624 K, F = -2.0248563394775765e-5, relative_change = 5.519852691390767e-10 Iter 120: T = 633.3969669177699 K, F = -8.468191052823926e-6, relative_change = 2.3084683410876304e-10 Iter 125: T = 633.3969664711644 K, F = -3.541499176029639e-6, relative_change = 9.654291813091143e-11 Iter 130: T = 633.3969662843887 K, F = -1.4810971362688719e-6, relative_change = 4.037539828875067e-11 Iter 135: T = 633.3969662062768 K, F = -6.194127092906676e-7, relative_change = 1.6885479179583348e-11 Iter 140: T = 633.3969661736095 K, F = -2.590460202456235e-7, relative_change = 7.061715261694513e-12 Iter 145: T = 633.3969661599476 K, F = -1.0833547481325922e-7, relative_change = 2.9532755424108917e-12 Iter 150: T = 633.3969661542342 K, F = -4.530819225356808e-8, relative_change = 1.235122440638281e-12 Iter 155: T = 633.3969661518446 K, F = -1.8948055069412106e-8, relative_change = 5.165328135831362e-13 Converged in 160 iterations to T = 633.3969661508453 K Iter 1: T = 966.9472838996422 K, F = -7531.092804716428, relative_change = 0.03305271610035773 Iter 2: T = 935.9542219516234 K, F = -6384.545868715921, relative_change = 0.032052483588376875 Iter 3: T = 906.9903165155879 K, F = -5411.084393267609, relative_change = 0.03094585691984043 Iter 5: T = 855.0182476788164 K, F = -3883.1898800554477, relative_change = 0.028414235041343012 Iter 10: T = 757.7640761641155 K, F = -1682.7918558094243, relative_change = 0.02060711555843983 Iter 15: T = 700.2385846263878 K, F = -721.0999563301496, relative_change = 0.012514296851218687 Iter 20: T = 670.38714389112 K, F = -305.8237431458766, relative_change = 0.006473564264144839 Iter 25: T = 656.3842328710917 K, F = -128.7946567311599, relative_change = 0.0030080260199605675 Iter 30: T = 650.2002927961602 K, F = -54.03488362024379, relative_change = 0.0013195863914255157 Iter 35: T = 647.5508364892821 K, F = -22.62925572086809, relative_change = 0.0005634304476133998 Iter 40: T = 646.4312467200073 K, F = -9.469382212808673, relative_change = 0.00023771861164655352 Iter 45: T = 645.9609618659274 K, F = -3.961187935536942, relative_change = 9.9786234508942e-5 Iter 50: T = 645.7639201514821 K, F = -1.6567879008739461, relative_change = 4.179676919955914e-5 Iter 55: T = 645.6814512590457 K, F = -0.6929185735886745, relative_change = 1.7491298097770256e-5 Iter 60: T = 645.6469506277133 K, F = -0.28979208779791654, relative_change = 7.317063794987143e-6 Iter 65: T = 645.6325200994044 K, F = -0.12119543303379637, relative_change = 3.0604323624201375e-6 Iter 70: T = 645.6264847385942 K, F = -0.05068553857767322, relative_change = 1.279970396158473e-6 Iter 75: T = 645.6239606188853 K, F = -0.021197325720907767, relative_change = 5.353095811304427e-7 Iter 80: T = 645.6229049914298 K, F = -0.008864979691768138, relative_change = 2.2387472691449732e-7 Iter 85: T = 645.6224635135935 K, F = -0.0037074412382137045, relative_change = 9.362741097765332e-8 Iter 90: T = 645.6222788819705 K, F = -0.0015504963523709225, relative_change = 3.915615852751165e-8 Iter 95: T = 645.6222016667649 K, F = -0.0006484361171993358, relative_change = 1.6375583095470576e-8 Iter 100: T = 645.6221693744341 K, F = -0.0002711837328939204, relative_change = 6.848466166300565e-9 Iter 105: T = 645.6221558693939 K, F = -0.00011341227621702865, relative_change = 2.864110636647845e-9 Iter 110: T = 645.6221502214245 K, F = -4.743036775173293e-5, relative_change = 1.1978053079180292e-9 Iter 115: T = 645.6221478593762 K, F = -1.9835947545621124e-5, relative_change = 5.009365264876494e-10 Iter 120: T = 645.6221468715394 K, F = -8.295629521815062e-6, relative_change = 2.0949762336287545e-10 Iter 125: T = 645.6221464584142 K, F = -3.469331634364803e-6, relative_change = 8.761441580292495e-11 Iter 130: T = 645.6221462856403 K, F = -1.450915441070233e-6, relative_change = 3.664138292563369e-11 Iter 135: T = 645.6221462133842 K, F = -6.067906711537674e-7, relative_change = 1.532387671944155e-11 Iter 140: T = 645.6221461831659 K, F = -2.537668082336353e-7, relative_change = 6.408620749443775e-12 Iter 145: T = 645.6221461705281 K, F = -1.0612843615032119e-7, relative_change = 2.6801649231296273e-12 Iter 150: T = 645.622146165243 K, F = -4.438381490112775e-8, relative_change = 1.1208677727883115e-12 Iter 155: T = 645.6221461630327 K, F = -1.8561906678371543e-8, relative_change = 4.687619359439347e-13 Converged in 160 iterations to T = 645.6221461621084 K Iter 1: T = 974.3913779673113 K, F = -5834.948890236504, relative_change = 0.02560862203268872 Iter 2: T = 950.9721558497728 K, F = -4936.605825777193, relative_change = 0.02403471812978648 Iter 3: T = 929.6677916182994 K, F = -4174.767376673311, relative_change = 0.022402721362999537 Iter 5: T = 893.0510320887837 K, F = -2981.6037395734133, relative_change = 0.01904871872058597 Iter 10: T = 831.3539739005614 K, F = -1275.0008517461683, relative_change = 0.011197457360931222 Iter 15: T = 800.0237856964117 K, F = -539.8855985313269, relative_change = 0.0056538600720075615 Iter 20: T = 785.532581282131 K, F = -227.16011097388832, relative_change = 0.002591002495743397 Iter 25: T = 779.1803000318647 K, F = -95.26083555212865, relative_change = 0.0011290085661154526 Iter 30: T = 776.4681219091799 K, F = -39.886260423765485, relative_change = 0.00048060665530416663 Iter 35: T = 775.3237673564869 K, F = -16.689261986791852, relative_change = 0.00020251097111746857 Iter 40: T = 774.8433917383586 K, F = -6.981118639161045, relative_change = 8.496051774149642e-5 Iter 45: T = 774.6421772332966 K, F = -2.9198449697962143, relative_change = 3.5578596681240425e-5 Iter 50: T = 774.5579715551409 K, F = -1.2211591732710283, relative_change = 1.4887646776788992e-5 Iter 55: T = 774.5227460393698 K, F = -0.5107112480229801, relative_change = 6.227636268033316e-6 Iter 60: T = 774.5080126113978 K, F = -0.21358692471350638, relative_change = 2.6047246071443368e-6 Iter 65: T = 774.5018506190688 K, F = -0.08932484433037768, relative_change = 1.089371149402299e-6 Iter 70: T = 774.4992735483731 K, F = -0.03735675892488066, relative_change = 4.555957576128396e-7 Iter 75: T = 774.4981957775514 K, F = -0.015623050105510239, relative_change = 1.9053693932601438e-7 Iter 80: T = 774.4977450393343 K, F = -0.006533747423651981, relative_change = 7.968506006127779e-8 Iter 85: T = 774.4975565349513 K, F = -0.002732491427731909, relative_change = 3.332528512961441e-8 Iter 90: T = 774.4974777001186 K, F = -0.001142760586629099, relative_change = 1.393703945569574e-8 Iter 95: T = 774.4974447304414 K, F = -0.00047791613187597726, relative_change = 5.828637611769545e-9 Iter 100: T = 774.4974309421273 K, F = -0.0001998702343481984, relative_change = 2.4376060702731027e-9 Iter 105: T = 774.4974251756894 K, F = -8.358811869990657e-5, relative_change = 1.0194360027295437e-9 Iter 110: T = 774.4974227640961 K, F = -3.495754781179805e-5, relative_change = 4.2634029679213283e-10 Iter 115: T = 774.497421755539 K, F = -1.4619663111670178e-5, relative_change = 1.7830059425884018e-10 Iter 120: T = 774.4974213337484 K, F = -6.114117556133003e-6, relative_change = 7.456743620743366e-11 Iter 125: T = 774.4974211573506 K, F = -2.556998949021505e-6, relative_change = 3.1185016393598866e-11 Iter 130: T = 774.4974210835788 K, F = -1.0693663160532552e-6, relative_change = 1.3041931880640174e-11 Iter 135: T = 774.4974210527266 K, F = -4.472220287432549e-7, relative_change = 5.454294892160232e-12 Iter 140: T = 774.4974210398238 K, F = -1.87032766385542e-7, relative_change = 2.281041176148822e-12 Iter 145: T = 774.4974210344278 K, F = -7.822026382164893e-8, relative_change = 9.539699702913469e-13 Iter 150: T = 774.497421032171 K, F = -3.271128512505328e-8, relative_change = 3.9894500701920474e-13 Converged in 154 iterations to T = 774.4974210313565 K Iter 1: T = 970.3590055208755 K, F = -6753.72878793335, relative_change = 0.02964099447912454 Iter 2: T = 942.8826223261941 K, F = -5720.228215309767, relative_change = 0.028315688356942148 Iter 3: T = 917.5260010732297 K, F = -4843.131009272797, relative_change = 0.026892659438782388 Iter 5: T = 872.9555686734338 K, F = -3467.645299229224, relative_change = 0.02379859980780098 Iter 10: T = 793.8571274105035 K, F = -1492.523172098961, relative_change = 0.015492881227755866 Iter 15: T = 750.7697692257649 K, F = -635.3175164120167, relative_change = 0.008481197026229646 Iter 20: T = 729.8579312361469 K, F = -268.1670757520631, relative_change = 0.004079729844439757 Iter 25: T = 720.4466392769104 K, F = -112.63803866261038, relative_change = 0.0018213263404113693 Iter 30: T = 716.3777037216764 K, F = -47.19668325998157, relative_change = 0.000783891405045125 Iter 35: T = 714.6513251047865 K, F = -19.754364275727266, relative_change = 0.0003318820523344345 Iter 40: T = 713.9248994451358 K, F = -8.264364685764107, relative_change = 0.00013951817572304962 Iter 45: T = 713.6203155765792 K, F = -3.4567572940841576, relative_change = 5.847525929594604e-5 Iter 50: T = 713.4927972111966 K, F = -1.4457450186177054, relative_change = 2.4477351464986387e-5 Iter 55: T = 713.4394433678704 K, F = -0.60464320690749, relative_change = 1.0240626167428259e-5 Iter 60: T = 713.4171259278709 K, F = -0.25287169989383335, relative_change = 4.283435614362676e-6 Iter 65: T = 713.4077917686352 K, F = -0.1057544353169586, relative_change = 1.7915034933035023e-6 Iter 70: T = 713.403887982447 K, F = -0.04422785011095198, relative_change = 7.492490698328055e-7 Iter 75: T = 713.4022553498223 K, F = -0.018496629496576156, relative_change = 3.133485668652837e-7 Iter 80: T = 713.4015725594048 K, F = -0.007735513868221244, relative_change = 1.3104675262104392e-7 Iter 85: T = 713.401287007606 K, F = -0.0032350847202392563, relative_change = 5.480542885617775e-8 Iter 90: T = 713.4011675863125 K, F = -0.0013529511407657235, relative_change = 2.2920304412445786e-8 Iter 95: T = 713.4011176428803 K, F = -0.0005658203389576899, relative_change = 9.585548467782818e-9 Iter 100: T = 713.4010967559368 K, F = -0.00023663282564656551, relative_change = 4.008791447243761e-9 Iter 105: T = 713.4010880207668 K, F = -9.896267281961357e-5, relative_change = 1.6765245415101976e-9 Iter 110: T = 713.4010843676143 K, F = -4.1387371584211685e-5, relative_change = 7.011426013897647e-10 Iter 115: T = 713.4010828398225 K, F = -1.7308694487461196e-5, relative_change = 2.932262363809825e-10 Iter 120: T = 713.4010822008815 K, F = -7.238702075529346e-6, relative_change = 1.2263070311163034e-10 Iter 125: T = 713.4010819336688 K, F = -3.027311737624494e-6, relative_change = 5.128562602956471e-11 Iter 130: T = 713.4010818219173 K, F = -1.2660581454326802e-6, relative_change = 2.144826507947321e-11 Iter 135: T = 713.4010817751814 K, F = -5.294810387912463e-7, relative_change = 8.969927423207362e-12 Iter 140: T = 713.4010817556359 K, F = -2.2143452393930119e-7, relative_change = 3.751317730888945e-12 Iter 145: T = 713.4010817474617 K, F = -9.260575850600361e-8, relative_change = 1.5688322566185243e-12 Iter 150: T = 713.4010817440434 K, F = -3.8729928153458104e-8, relative_change = 6.561229189771183e-13 Iter 155: T = 713.4010817426137 K, F = -1.619724121493249e-8, relative_change = 2.7439713142020113e-13 Converged in 157 iterations to T = 713.4010817423111 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 1 ray tracing: 12%|███▋ | ETA: 0:00:15 Bin 1 ray tracing: 18%|█████▌ | ETA: 0:00:13 Bin 1 ray tracing: 24%|███████▍ | ETA: 0:00:13 Bin 1 ray tracing: 30%|█████████▏ | ETA: 0:00:12 Bin 1 ray tracing: 37%|███████████ | ETA: 0:00:10 Bin 1 ray tracing: 43%|████████████▉ | ETA: 0:00:09 Bin 1 ray tracing: 49%|██████████████▋ | ETA: 0:00:08 Bin 1 ray tracing: 55%|████████████████▌ | ETA: 0:00:07 Bin 1 ray tracing: 61%|██████████████████▍ | ETA: 0:00:06 Bin 1 ray tracing: 67%|████████████████████▎ | ETA: 0:00:05 Bin 1 ray tracing: 73%|██████████████████████ | ETA: 0:00:04 Bin 1 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:03 Bin 1 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 1 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 1 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 7%|██ | ETA: 0:00:14 Bin 2 ray tracing: 13%|████ | ETA: 0:00:14 Bin 2 ray tracing: 19%|█████▉ | ETA: 0:00:13 Bin 2 ray tracing: 25%|███████▋ | ETA: 0:00:12 Bin 2 ray tracing: 31%|█████████▍ | ETA: 0:00:11 Bin 2 ray tracing: 37%|███████████▎ | ETA: 0:00:10 Bin 2 ray tracing: 43%|█████████████ | ETA: 0:00:09 Bin 2 ray tracing: 49%|██████████████▉ | ETA: 0:00:08 Bin 2 ray tracing: 56%|████████████████▋ | ETA: 0:00:07 Bin 2 ray tracing: 62%|██████████████████▌ | ETA: 0:00:06 Bin 2 ray tracing: 68%|████████████████████▎ | ETA: 0:00:05 Bin 2 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:04 Bin 2 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:03 Bin 2 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 2 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 2 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 6%|█▉ | ETA: 0:00:16 Bin 3 ray tracing: 12%|███▋ | ETA: 0:00:15 Bin 3 ray tracing: 18%|█████▌ | ETA: 0:00:14 Bin 3 ray tracing: 24%|███████▎ | ETA: 0:00:13 Bin 3 ray tracing: 30%|█████████▏ | ETA: 0:00:12 Bin 3 ray tracing: 36%|██████████▉ | ETA: 0:00:11 Bin 3 ray tracing: 43%|████████████▊ | ETA: 0:00:10 Bin 3 ray tracing: 49%|██████████████▋ | ETA: 0:00:09 Bin 3 ray tracing: 55%|████████████████▌ | ETA: 0:00:07 Bin 3 ray tracing: 61%|██████████████████▎ | ETA: 0:00:06 Bin 3 ray tracing: 67%|████████████████████▏ | ETA: 0:00:05 Bin 3 ray tracing: 73%|██████████████████████ | ETA: 0:00:04 Bin 3 ray tracing: 79%|███████████████████████▉ | ETA: 0:00:03 Bin 3 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 3 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 3 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 4 ray tracing: 13%|███▉ | ETA: 0:00:13 Bin 4 ray tracing: 20%|█████▉ | ETA: 0:00:12 Bin 4 ray tracing: 26%|███████▉ | ETA: 0:00:11 Bin 4 ray tracing: 33%|█████████▉ | ETA: 0:00:10 Bin 4 ray tracing: 39%|███████████▉ | ETA: 0:00:09 Bin 4 ray tracing: 46%|█████████████▉ | ETA: 0:00:08 Bin 4 ray tracing: 53%|███████████████▉ | ETA: 0:00:07 Bin 4 ray tracing: 60%|██████████████████ | ETA: 0:00:06 Bin 4 ray tracing: 67%|████████████████████▏ | ETA: 0:00:05 Bin 4 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:04 Bin 4 ray tracing: 80%|████████████████████████▏ | ETA: 0:00:03 Bin 4 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 4 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 4 Energy per ray: 0.00018533358351859177 Processing spectral bin 5/10 Bin 5 ray tracing: 6%|██ | ETA: 0:00:15 Bin 5 ray tracing: 13%|███▉ | ETA: 0:00:14 Bin 5 ray tracing: 19%|█████▊ | ETA: 0:00:13 Bin 5 ray tracing: 25%|███████▋ | ETA: 0:00:12 Bin 5 ray tracing: 32%|█████████▌ | ETA: 0:00:11 Bin 5 ray tracing: 38%|███████████▎ | ETA: 0:00:10 Bin 5 ray tracing: 44%|█████████████▏ | ETA: 0:00:09 Bin 5 ray tracing: 50%|███████████████ | ETA: 0:00:08 Bin 5 ray tracing: 56%|████████████████▉ | ETA: 0:00:07 Bin 5 ray tracing: 62%|██████████████████▋ | ETA: 0:00:06 Bin 5 ray tracing: 69%|████████████████████▌ | ETA: 0:00:05 Bin 5 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:04 Bin 5 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:03 Bin 5 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:02 Bin 5 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 6%|██ | ETA: 0:00:15 Bin 6 ray tracing: 13%|███▉ | ETA: 0:00:14 Bin 6 ray tracing: 19%|█████▊ | ETA: 0:00:13 Bin 6 ray tracing: 25%|███████▋ | ETA: 0:00:12 Bin 6 ray tracing: 32%|█████████▌ | ETA: 0:00:11 Bin 6 ray tracing: 38%|███████████▍ | ETA: 0:00:10 Bin 6 ray tracing: 44%|█████████████▎ | ETA: 0:00:09 Bin 6 ray tracing: 50%|███████████████▏ | ETA: 0:00:08 Bin 6 ray tracing: 57%|█████████████████ | ETA: 0:00:07 Bin 6 ray tracing: 63%|██████████████████▉ | ETA: 0:00:06 Bin 6 ray tracing: 69%|████████████████████▊ | ETA: 0:00:05 Bin 6 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:04 Bin 6 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:03 Bin 6 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 6 ray tracing: 99%|██████████████████████████████| ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 7 ray tracing: 16%|████▊ | ETA: 0:00:12 Bin 7 ray tracing: 22%|██████▋ | ETA: 0:00:11 Bin 7 ray tracing: 29%|████████▋ | ETA: 0:00:11 Bin 7 ray tracing: 35%|██████████▍ | ETA: 0:00:10 Bin 7 ray tracing: 41%|████████████▍ | ETA: 0:00:09 Bin 7 ray tracing: 47%|██████████████▎ | ETA: 0:00:08 Bin 7 ray tracing: 54%|████████████████▏ | ETA: 0:00:07 Bin 7 ray tracing: 60%|██████████████████ | ETA: 0:00:06 Bin 7 ray tracing: 66%|███████████████████▉ | ETA: 0:00:05 Bin 7 ray tracing: 72%|█████████████████████▊ | ETA: 0:00:04 Bin 7 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:03 Bin 7 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:02 Bin 7 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 7 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 7%|██▏ | ETA: 0:00:14 Bin 8 ray tracing: 14%|████▏ | ETA: 0:00:13 Bin 8 ray tracing: 20%|██████ | ETA: 0:00:12 Bin 8 ray tracing: 26%|███████▉ | ETA: 0:00:11 Bin 8 ray tracing: 35%|██████████▌ | ETA: 0:00:10 Bin 8 ray tracing: 43%|████████████▉ | ETA: 0:00:08 Bin 8 ray tracing: 52%|███████████████▌ | ETA: 0:00:07 Bin 8 ray tracing: 60%|██████████████████ | ETA: 0:00:06 Bin 8 ray tracing: 67%|████████████████████▏ | ETA: 0:00:05 Bin 8 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:04 Bin 8 ray tracing: 80%|████████████████████████▏ | ETA: 0:00:03 Bin 8 ray tracing: 88%|██████████████████████████▎ | ETA: 0:00:02 Bin 8 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 7%|██ | ETA: 0:00:14 Bin 9 ray tracing: 13%|████ | ETA: 0:00:14 Bin 9 ray tracing: 20%|██████ | ETA: 0:00:12 Bin 9 ray tracing: 26%|███████▉ | ETA: 0:00:11 Bin 9 ray tracing: 33%|█████████▉ | ETA: 0:00:10 Bin 9 ray tracing: 40%|███████████▉ | ETA: 0:00:09 Bin 9 ray tracing: 46%|█████████████▉ | ETA: 0:00:08 Bin 9 ray tracing: 52%|███████████████▋ | ETA: 0:00:07 Bin 9 ray tracing: 59%|█████████████████▋ | ETA: 0:00:06 Bin 9 ray tracing: 65%|███████████████████▋ | ETA: 0:00:05 Bin 9 ray tracing: 72%|█████████████████████▊ | ETA: 0:00:04 Bin 9 ray tracing: 79%|███████████████████████▌ | ETA: 0:00:03 Bin 9 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 9 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 9 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 10 ray tracing: 12%|███▋ | ETA: 0:00:14 Bin 10 ray tracing: 19%|█████▌ | ETA: 0:00:13 Bin 10 ray tracing: 26%|███████▌ | ETA: 0:00:12 Bin 10 ray tracing: 32%|█████████▍ | ETA: 0:00:11 Bin 10 ray tracing: 38%|███████████▏ | ETA: 0:00:10 Bin 10 ray tracing: 45%|█████████████ | ETA: 0:00:09 Bin 10 ray tracing: 51%|██████████████▊ | ETA: 0:00:08 Bin 10 ray tracing: 57%|████████████████▋ | ETA: 0:00:07 Bin 10 ray tracing: 64%|██████████████████▌ | ETA: 0:00:06 Bin 10 ray tracing: 70%|████████████████████▎ | ETA: 0:00:05 Bin 10 ray tracing: 76%|██████████████████████▏ | ETA: 0:00:04 Bin 10 ray tracing: 83%|████████████████████████ | ETA: 0:00:03 Bin 10 ray tracing: 89%|█████████████████████████▊ | ETA: 0:00:02 Bin 10 ray tracing: 95%|███████████████████████████▋ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 980.1250859607018 K, F = -4528.518069778115, relative_change = 0.019874914039298183 Iter 2: T = 962.2946154338474 K, F = -3825.268343281574, relative_change = 0.01819203567203595 Iter 3: T = 946.3878070656408 K, F = -3229.72289650692, relative_change = 0.016530081446039294 Iter 5: T = 919.8223240086203 K, F = -2299.192352993816, relative_change = 0.013357776840614673 Iter 10: T = 877.6372075326348 K, F = -976.1046905205119, relative_change = 0.007019785947584957 Iter 15: T = 857.6632330661624 K, F = -411.32932741818644, relative_change = 0.0032924042863248042 Iter 20: T = 848.797763581607 K, F = -172.6231682197792, relative_change = 0.0014510306846414126 Iter 25: T = 844.9903609648937 K, F = -72.30284702519486, relative_change = 0.0006208480325577986 Iter 30: T = 843.3797582892219 K, F = -30.25748782666858, relative_change = 0.000262180237300184 Iter 35: T = 842.7029177545525 K, F = -12.657494360411757, relative_change = 0.00011009651369694154 Iter 40: T = 842.4192785342207 K, F = -5.294121075519287, relative_change = 4.612278790754906e-5 Iter 45: T = 842.3005560393103 K, F = -2.2141707619311948, relative_change = 1.930297226645898e-5 Iter 50: T = 842.2508871495681 K, F = -0.9260112240393663, relative_change = 8.075162238241731e-6 Iter 55: T = 842.2301119246863 K, F = -0.38727220123315076, relative_change = 3.377554257296818e-6 Iter 60: T = 842.2214229348415 K, F = -0.16196242774945535, relative_change = 1.4126078684381803e-6 Iter 65: T = 842.2177890005927 K, F = -0.06773472089575217, relative_change = 5.90782484022709e-7 Iter 70: T = 842.2162692292881 K, F = -0.028327486578714645, relative_change = 2.470745645924545e-7 Iter 75: T = 842.2156336398747 K, F = -0.011846896226602954, relative_change = 1.0332993138355198e-7 Iter 80: T = 842.2153678282835 K, F = -0.00495451401342395, relative_change = 4.3213880882204085e-8 Iter 85: T = 842.2152566626129 K, F = -0.00207203702300629, relative_change = 1.8072573238331667e-8 Iter 90: T = 842.2152101717863 K, F = -0.0008665506445852955, relative_change = 7.558168088304734e-9 Iter 95: T = 842.2151907287647 K, F = -0.00036240183254232505, relative_change = 3.1609165419863996e-9 Iter 100: T = 842.2151825974604 K, F = -0.00015156077547739955, relative_change = 1.3219331176785692e-9 Iter 105: T = 842.2151791968516 K, F = -6.338452474086154e-5, relative_change = 5.528482138612101e-10 Iter 110: T = 842.2151777746765 K, F = -2.650816467264505e-5, relative_change = 2.3120772254349958e-10 Iter 115: T = 842.2151771799058 K, F = -1.1086030702989191e-5, relative_change = 9.669382815283983e-11 Iter 120: T = 842.2151769311656 K, F = -4.636309762329205e-6, relative_change = 4.0438507890071144e-11 Iter 125: T = 842.2151768271395 K, F = -1.9389612908593534e-6, relative_change = 1.6911877230929182e-11 Iter 130: T = 842.2151767836345 K, F = -8.108944158369269e-7, relative_change = 7.072728514954022e-12 Iter 135: T = 842.2151767654402 K, F = -3.391242024974872e-7, relative_change = 2.9578862186221776e-12 Iter 140: T = 842.2151767578312 K, F = -1.418240824779815e-7, relative_change = 1.2370084351367118e-12 Iter 145: T = 842.215176754649 K, F = -5.9312655009691184e-8, relative_change = 5.173328342882284e-13 Converged in 150 iterations to T = 842.2151767533181 K Iter 1: T = 964.3115933793916 K, F = -8131.637396944473, relative_change = 0.03568840662060835 Iter 2: T = 930.5479389710456 K, F = -6898.5729354875975, relative_change = 0.03501322045711662 Iter 3: T = 898.6780415435195 K, F = -5851.421859934635, relative_change = 0.03424852830555543 Iter 5: T = 840.5064967351778 K, F = -4207.122786864771, relative_change = 0.032425068930933956 Iter 10: T = 726.2385390941176 K, F = -1834.8021183163678, relative_change = 0.026044397839263524 Iter 15: T = 652.4756524547175 K, F = -792.2916544655669, relative_change = 0.017848213792071906 Iter 20: T = 610.7379650500798 K, F = -338.2684231582899, relative_change = 0.010237506415693372 Iter 25: T = 589.8779469679167 K, F = -143.07387901622195, relative_change = 0.005080173913580637 Iter 30: T = 580.3248480243759 K, F = -60.16103086319712, relative_change = 0.002305833820364622 Iter 35: T = 576.1585125529181 K, F = -25.221171945353383, relative_change = 0.0010001464643528237 Iter 40: T = 574.3838202623072 K, F = -10.558818709014744, relative_change = 0.0004248851176997931 Iter 45: T = 573.6357874419307 K, F = -4.417777763980536, relative_change = 0.00017887548102088108 Iter 50: T = 573.3219161457504 K, F = -1.8479110368820968, relative_change = 7.501687877950147e-5 Iter 55: T = 573.1904693173735 K, F = -0.7728787044743796, relative_change = 3.1409661935103644e-5 Iter 60: T = 573.135464754562 K, F = -0.3232376507222599, relative_change = 1.3142326920792142e-5 Iter 65: T = 573.1124555992069 K, F = -0.13518369111768366, relative_change = 5.4974037012756904e-6 Iter 70: T = 573.1028319174768 K, F = -0.05653575685299006, relative_change = 2.299276813688015e-6 Iter 75: T = 573.0988070077321 K, F = -0.02364398515247182, relative_change = 9.61619470631933e-7 Iter 80: T = 573.0971237124793 K, F = -0.009888206832523005, relative_change = 4.021667720200932e-7 Iter 85: T = 573.0964197330669 K, F = -0.004135367914304744, relative_change = 1.6819200078955904e-7 Iter 90: T = 573.0961253195537 K, F = -0.0017294605490805748, relative_change = 7.034008762931424e-8 Iter 95: T = 573.0960021921464 K, F = -0.000723281108570395, relative_change = 2.941709692262429e-8 Iter 100: T = 573.0959506987663 K, F = -0.0003024848063368779, relative_change = 1.2302586873363762e-8 Iter 105: T = 573.0959291636149 K, F = -0.0001265027606093816, relative_change = 5.145089762979795e-9 Iter 110: T = 573.0959201573565 K, F = -5.290496605458994e-5, relative_change = 2.151738177985592e-9 Iter 115: T = 573.0959163908316 K, F = -2.212548918101298e-5, relative_change = 8.998826540767449e-10 Iter 120: T = 573.0959148156259 K, F = -9.253144179044437e-6, relative_change = 3.7634169275229625e-10 Iter 125: T = 573.0959141568559 K, F = -3.8697752450800316e-6, relative_change = 1.5739058487520955e-10 Iter 130: T = 573.0959138813505 K, F = -1.6183861715757253e-6, relative_change = 6.582262032015387e-11 Iter 135: T = 573.0959137661308 K, F = -6.768287590941391e-7, relative_change = 2.7527819538201174e-11 Iter 140: T = 573.0959137179445 K, F = -2.8305727883815024e-7, relative_change = 1.1512438839594633e-11 Iter 145: T = 573.0959136977924 K, F = -1.1837764840594289e-7, relative_change = 4.814627778061308e-12 Iter 150: T = 573.0959136893647 K, F = -4.950699883377041e-8, relative_change = 2.0135369727300777e-12 Iter 155: T = 573.0959136858401 K, F = -2.0704644221325452e-8, relative_change = 8.420944034208706e-13 Iter 160: T = 573.0959136843661 K, F = -8.659354344686676e-9, relative_change = 3.521912162816834e-13 Converged in 163 iterations to T = 573.0959136839346 K Iter 1: T = 963.5034536208657 K, F = -8315.772809663978, relative_change = 0.03649654637913429 Iter 2: T = 928.8807651124052 K, F = -7056.322541804057, relative_change = 0.03593416129267386 Iter 3: T = 896.0981433209816 K, F = -5986.712904783572, relative_change = 0.03529260484520474 Iter 5: T = 835.9335212014772 K, F = -4306.979244669895, relative_change = 0.033742554112917204 Iter 10: T = 715.7821149794817 K, F = -1882.4711862978731, relative_change = 0.02808071027623895 Iter 15: T = 635.6216619955246 K, F = -815.3574245369911, relative_change = 0.020199854578193385 Iter 20: T = 588.5168428605455 K, F = -349.19978462062534, relative_change = 0.01216180081189723 Iter 25: T = 564.2142193234757 K, F = -148.03517480990175, relative_change = 0.0062502270048280665 Iter 30: T = 552.8577654148093 K, F = -62.3279740842064, relative_change = 0.002893249725885448 Iter 35: T = 547.8527751707077 K, F = -26.146032646890784, relative_change = 0.0012668757522608758 Iter 40: T = 545.7104824939456 K, F = -10.949081794080708, relative_change = 0.0005404723300001847 Iter 45: T = 544.8055880994806 K, F = -4.5816155631458075, relative_change = 0.00022795007612852523 Iter 50: T = 544.42555475021 K, F = -1.9165406014360789, relative_change = 9.567111521530226e-5 Iter 55: T = 544.2663390614116 K, F = -0.8015998560315862, relative_change = 4.007052302819161e-5 Iter 60: T = 544.1997038200856 K, F = -0.3352525879244652, relative_change = 1.676843928865784e-5 Iter 65: T = 544.1718275254964 K, F = -0.1402090780384198, relative_change = 7.0145941148121676e-6 Iter 70: T = 544.1601678140491 K, F = -0.05863753808017119, relative_change = 2.933907667946176e-6 Iter 75: T = 544.1552913189404 K, F = -0.02452299342488043, relative_change = 1.2270513136256198e-6 Iter 80: T = 544.1532518641766 K, F = -0.010255821784196123, relative_change = 5.131773239976851e-7 Iter 85: T = 544.1523989317449 K, F = -0.004289109435003352, relative_change = 2.1461860139868875e-7 Iter 90: T = 544.1520422238003 K, F = -0.001793757188008005, relative_change = 8.975636230111258e-8 Iter 95: T = 544.1518930440305 K, F = -0.0007501707481644138, relative_change = 3.7537235135351636e-8 Iter 100: T = 544.1518306552258 K, F = -0.0003137303779036926, relative_change = 1.5698529196858152e-8 Iter 105: T = 544.151804563475 K, F = -0.00013120579295625157, relative_change = 6.565313998219558e-9 Iter 110: T = 544.1517936515919 K, F = -5.48718298447326e-5, relative_change = 2.745692997721665e-9 Iter 115: T = 544.1517890881119 K, F = -2.2948054897053982e-5, relative_change = 1.148281665403981e-9 Iter 120: T = 544.15178717961 K, F = -9.597150546492017e-6, relative_change = 4.802251104116969e-10 Iter 125: T = 544.1517863814516 K, F = -4.0136428640091815e-6, relative_change = 2.0083587223566285e-10 Iter 130: T = 544.1517860476523 K, F = -1.67855324467725e-6, relative_change = 8.399195379245664e-11 Iter 135: T = 544.1517859080534 K, F = -7.01990918838824e-7, relative_change = 3.512643347884123e-11 Iter 140: T = 544.1517858496715 K, F = -2.935804806480924e-7, relative_change = 1.469026870959661e-11 Iter 145: T = 544.1517858252556 K, F = -1.22779475808521e-7, relative_change = 6.143676473497878e-12 Iter 150: T = 544.1517858150445 K, F = -5.134765099223948e-8, relative_change = 2.569349260706741e-12 Iter 155: T = 544.1517858107742 K, F = -2.1474509698249378e-8, relative_change = 1.0745479988488144e-12 Iter 160: T = 544.1517858089882 K, F = -8.980846150086208e-9, relative_change = 4.4938629073713896e-13 Converged in 165 iterations to T = 544.1517858082412 K Iter 1: T = 969.2621806961653 K, F = -7003.641367593333, relative_change = 0.030737819303834756 Iter 2: T = 940.6637156979161 K, F = -5933.667521816337, relative_change = 0.02950539654576072 Iter 3: T = 914.1658231944431 K, F = -5025.472531090757, relative_change = 0.028169357509248857 Iter 5: T = 867.2875723092383 K, F = -3600.7907471102308, relative_change = 0.025217542993205184 Iter 10: T = 782.7516566923154 K, F = -1552.992632699419, relative_change = 0.016953951673370726 Iter 15: T = 735.6019071310284 K, F = -662.2849903198946, relative_change = 0.009551798671245424 Iter 20: T = 712.3042992497845 K, F = -279.8958173241024, relative_change = 0.004682260590775244 Iter 25: T = 701.7083465714612 K, F = -117.64180849166068, relative_change = 0.0021112183786963067 Iter 30: T = 697.1032821049462 K, F = -49.308496399893166, relative_change = 0.0009128804675673025 Iter 35: T = 695.1448255802005 K, F = -20.641063538078907, relative_change = 0.0003872792628902756 Iter 40: T = 694.3199061374031 K, F = -8.63581983659183, relative_change = 0.00016294755767987346 Iter 45: T = 693.9738751574764 K, F = -3.612214851574681, relative_change = 6.832003284133631e-5 Iter 50: T = 693.8289780205777 K, F = -1.5107786342786884, relative_change = 2.8602698130444816e-5 Iter 55: T = 693.7683482546389 K, F = -0.6318444412458349, relative_change = 1.1967323054394416e-5 Iter 60: T = 693.7429865510605 K, F = -0.26424817590717925, relative_change = 5.005810798224355e-6 Iter 65: T = 693.7323790019151 K, F = -0.11051231753321639, relative_change = 2.0936531509010987e-6 Iter 70: T = 693.7279426264312 K, F = -0.046217671481239786, relative_change = 8.756193144818545e-7 Iter 75: T = 693.7260872511812 K, F = -0.019328799742018177, relative_change = 3.6619945033787297e-7 Iter 80: T = 693.7253113058396 K, F = -0.008083537958641807, relative_change = 1.5314985725461358e-7 Iter 85: T = 693.724986795312 K, F = -0.0033806326475600557, relative_change = 6.404925209040156e-8 Iter 90: T = 693.7248510809733 K, F = -0.0014138210397761641, relative_change = 2.678618885040993e-8 Iter 95: T = 693.724794323588 K, F = -0.0005912768603852925, relative_change = 1.1202308756904301e-8 Iter 100: T = 693.7247705869668 K, F = -0.00024727904685517554, relative_change = 4.684940116626764e-9 Iter 105: T = 693.7247606600274 K, F = -0.00010341505182864807, relative_change = 1.9592980648584702e-9 Iter 110: T = 693.7247565084626 K, F = -4.324941059485887e-5, relative_change = 8.1940188977135e-10 Iter 115: T = 693.7247547722286 K, F = -1.8087419828005658e-5, relative_change = 3.426836565148951e-10 Iter 120: T = 693.7247540461149 K, F = -7.564374948310082e-6, relative_change = 1.4331439774736915e-10 Iter 125: T = 693.7247537424454 K, F = -3.163511821058229e-6, relative_change = 5.993579052395052e-11 Iter 130: T = 693.7247536154472 K, F = -1.3230172917211291e-6, relative_change = 2.5065841953690288e-11 Iter 135: T = 693.7247535623351 K, F = -5.533027718218619e-7, relative_change = 1.0482856061570166e-11 Iter 140: T = 693.724753540123 K, F = -2.313985199009494e-7, relative_change = 4.384068724912855e-12 Iter 145: T = 693.7247535308335 K, F = -9.677281065378907e-8, relative_change = 1.833454478524077e-12 Iter 150: T = 693.7247535269486 K, F = -4.047165025333754e-8, relative_change = 7.66774550732912e-13 Iter 155: T = 693.7247535253239 K, F = -1.6926742896217206e-8, relative_change = 3.206935125827455e-13 Converged in 158 iterations to T = 693.7247535248481 K Iter 1: T = 980.8256649559369 K, F = -4368.89047929115, relative_change = 0.019174335044063174 Iter 2: T = 963.6638651225976 K, F = -3689.714391787322, relative_change = 0.017497298904908063 Iter 3: T = 948.388982861041 K, F = -3114.672378011947, relative_change = 0.01585084054138875 Iter 5: T = 922.9623828041618 K, F = -2216.465523011242, relative_change = 0.012734927569580704 Iter 10: T = 882.8402259282501 K, F = -940.2710630352461, relative_change = 0.006614873743857556 Iter 15: T = 863.9737727743434 K, F = -396.04880450740757, relative_change = 0.0030811076386626545 Iter 20: T = 855.6311583602638 K, F = -166.1725600685907, relative_change = 0.0013532535337163355 Iter 25: T = 852.0546461859116 K, F = -69.59384383554412, relative_change = 0.0005781147351638228 Iter 30: T = 850.5428990092403 K, F = -29.122515652152494, relative_change = 0.000243970465840723 Iter 35: T = 849.907814645946 K, F = -12.182474897635963, relative_change = 0.00010242058285969745 Iter 40: T = 849.6417116309897 K, F = -5.095398855848186, relative_change = 4.29019678688291e-5 Iter 45: T = 849.5303358718445 K, F = -2.1310516407916404, relative_change = 1.7954116633014537e-5 Iter 50: T = 849.4837417334768 K, F = -0.8912478689137744, relative_change = 7.510727098052418e-6 Iter 55: T = 849.4642528017696 K, F = -0.3727334104621056, relative_change = 3.141443405661376e-6 Iter 60: T = 849.4561018242803 K, F = -0.15588207225591155, relative_change = 1.3138534598472232e-6 Iter 65: T = 849.4526929053268 K, F = -0.06519183319195987, relative_change = 5.494804563751106e-7 Iter 70: T = 849.451267240223 K, F = -0.027264018750145835, relative_change = 2.2980125648905936e-7 Iter 75: T = 849.4506710075169 K, F = -0.011402140960049545, relative_change = 9.610597395966491e-8 Iter 80: T = 849.4504216554355 K, F = -0.004768511994248659, relative_change = 4.019272623223295e-8 Iter 85: T = 849.4503173733398 K, F = -0.0019942487444872814, relative_change = 1.6809088616005968e-8 Iter 90: T = 849.4502737613084 K, F = -0.0008340186555519935, relative_change = 7.029763440660751e-9 Iter 95: T = 849.4502555222336 K, F = -0.0003487965635091683, relative_change = 2.9399313369472217e-9 Iter 100: T = 849.4502478944345 K, F = -0.00014587088866768738, relative_change = 1.2295144503817139e-9 Iter 105: T = 849.4502447043977 K, F = -6.1004950630660915e-5, relative_change = 5.14197660489078e-10 Iter 110: T = 849.4502433702862 K, F = -2.5513000132981745e-5, relative_change = 2.1504361437748692e-10 Iter 115: T = 849.4502428123449 K, F = -1.0669842682498043e-5, relative_change = 8.993381924899693e-11 Iter 120: T = 849.4502425790071 K, F = -4.462257747306353e-6, relative_change = 3.761141510285136e-11 Iter 125: T = 849.4502424814224 K, F = -1.8661690945886988e-6, relative_change = 1.572953972671114e-11 Iter 130: T = 849.4502424406113 K, F = -7.804546886536201e-7, relative_change = 6.5782854664565996e-12 Iter 135: T = 849.4502424235436 K, F = -3.2639423075409013e-7, relative_change = 2.7511070865809724e-12 Iter 140: T = 849.4502424164057 K, F = -1.3650139152332486e-7, relative_change = 1.1505410028093817e-12 Iter 145: T = 849.4502424134206 K, F = -5.7086847693454956e-8, relative_change = 4.811728163396033e-13 Converged in 150 iterations to T = 849.4502424121721 K Iter 1: T = 967.2719752486723 K, F = -7457.111571978708, relative_change = 0.032728024751327627 Iter 2: T = 936.6169569614385 K, F = -6321.271811872808, relative_change = 0.03169224279381488 Iter 3: T = 908.0037163242429 K, F = -5356.934327114361, relative_change = 0.030549565032457253 Iter 5: T = 856.7651244051796 K, F = -3843.4638386502793, relative_change = 0.027948436594772592 Iter 10: T = 761.4073051788934 K, F = -1664.3935666540935, relative_change = 0.02004083926659352 Iter 15: T = 705.5139077260894 K, F = -712.6722816532101, relative_change = 0.012026059688284851 Iter 20: T = 676.7409543876526 K, F = -302.0719226820823, relative_change = 0.006165063893621108 Iter 25: T = 663.3150910882214 K, F = -127.17078335976613, relative_change = 0.002849726437562873 Iter 30: T = 657.4026364216082 K, F = -53.34453414513764, relative_change = 0.0012469419532928536 Iter 35: T = 654.872833368211 K, F = -22.338434744059512, relative_change = 0.0005318007035757228 Iter 40: T = 653.8044258405935 K, F = -9.347377051536995, relative_change = 0.00022426228367369437 Iter 45: T = 653.3557514027943 K, F = -3.9100965178451803, relative_change = 9.411793022756588e-5 Iter 50: T = 653.1677837746453 K, F = -1.63540900590922, relative_change = 3.941904014070749e-5 Iter 55: T = 653.0891161632785 K, F = -0.6839755863308108, relative_change = 1.649564404173749e-5 Iter 60: T = 653.0562063930098 K, F = -0.2860516599158356, relative_change = 6.900448805974095e-6 Iter 65: T = 653.0424413778439 K, F = -0.11963107776804427, relative_change = 2.886160397781487e-6 Iter 70: T = 653.0366843768794 K, F = -0.05003129538762113, relative_change = 1.2070810263268967e-6 Iter 75: T = 653.0342766765826 K, F = -0.020923711457626448, relative_change = 5.04825194961469e-7 Iter 80: T = 653.0332697381651 K, F = -0.008750550598896123, relative_change = 2.1112558596349356e-7 Iter 85: T = 653.0328486228497 K, F = -0.0036595855666584076, relative_change = 8.829553186989955e-8 Iter 90: T = 653.032672507108 K, F = -0.0015304825285697432, relative_change = 3.6926296688268266e-8 Iter 95: T = 653.0325988533513 K, F = -0.0006400660956022985, relative_change = 1.5443027147889855e-8 Iter 100: T = 653.0325680504618 K, F = -0.00026768328843801426, relative_change = 6.458459910838449e-9 Iter 105: T = 653.032555168324 K, F = -0.00011194834901695483, relative_change = 2.7010053422997415e-9 Iter 110: T = 653.03254978086 K, F = -4.681813680940117e-5, relative_change = 1.1295927426899124e-9 Iter 115: T = 653.0325475277581 K, F = -1.9579904095679e-5, relative_change = 4.724091866875459e-10 Iter 120: T = 653.0325465854839 K, F = -8.188549065479833e-6, relative_change = 1.9756714904455631e-10 Iter 125: T = 653.0325461914136 K, F = -3.4245490419526625e-6, relative_change = 8.262494216196498e-11 Iter 130: T = 653.0325460266088 K, F = -1.432187485994607e-6, relative_change = 3.455474192015182e-11 Iter 135: T = 653.0325459576853 K, F = -5.989580723619881e-7, relative_change = 1.4451209652545545e-11 Iter 140: T = 653.0325459288607 K, F = -2.504909020206725e-7, relative_change = 6.0436559902125734e-12 Iter 145: T = 653.032545916806 K, F = -1.0475844247626043e-7, relative_change = 2.527532869838058e-12 Iter 150: T = 653.0325459117646 K, F = -4.38118316070657e-8, relative_change = 1.05705890485946e-12 Iter 155: T = 653.0325459096563 K, F = -1.8323153383459356e-8, relative_change = 4.4208725677347676e-13 Converged in 159 iterations to T = 653.0325459088953 K Iter 1: T = 980.310396747964 K, F = -4486.294830624361, relative_change = 0.019689603252036 Iter 2: T = 962.657093984638 K, F = -3789.4078259118432, relative_change = 0.01800787059067028 Iter 3: T = 946.918001244617 K, F = -3199.2819512458977, relative_change = 0.016349635647386684 Iter 5: T = 920.6555277284035 K, F = -2277.296852955699, relative_change = 0.0131916253003749 Iter 10: T = 879.0219748180443 K, F = -966.6131705461454, relative_change = 0.006910861781466872 Iter 15: T = 859.3456964866091 K, F = -407.2796606416148, relative_change = 0.0032352788481862732 Iter 20: T = 850.6211835581329 K, F = -170.91311672788927, relative_change = 0.0014245299996904226 Iter 25: T = 846.8761148403925 K, F = -71.58459328658506, relative_change = 0.0006092528846950872 Iter 30: T = 845.2922171422268 K, F = -29.956547827648397, relative_change = 0.0002572368283816197 Iter 35: T = 844.6266597295252 K, F = -12.531538798090203, relative_change = 0.00010801229578315667 Iter 40: T = 844.3477595866718 K, F = -5.241427566295879, relative_change = 4.5248173928447346e-5 Iter 45: T = 844.2310226079662 K, F = -2.192130658536951, relative_change = 1.893667699765981e-5 Iter 50: T = 844.1821847119571 K, F = -0.9167932558642089, relative_change = 7.921881870697182e-6 Iter 55: T = 844.1617571283732 K, F = -0.3834170434701659, relative_change = 3.3134345960482237e-6 Iter 60: T = 844.1532135454818 K, F = -0.16035013839640633, relative_change = 1.3857894644938853e-6 Iter 65: T = 844.149640425518 K, F = -0.0670604393753036, relative_change = 5.795662181526002e-7 Iter 70: T = 844.1481460880615 K, F = -0.028045493493092932, relative_change = 2.4238370270322413e-7 Iter 75: T = 844.1475211354899 K, F = -0.011728963261952385, relative_change = 1.013681419498223e-7 Iter 80: T = 844.1472597723711 K, F = -0.0049051930250028075, relative_change = 4.239343450519663e-8 Iter 85: T = 844.1471504671078 K, F = -0.002051410394575015, relative_change = 1.7729452312906687e-8 Iter 90: T = 844.1471047543264 K, F = -0.0008579243430022476, relative_change = 7.414670750135437e-9 Iter 95: T = 844.1470856366926 K, F = -0.0003587942076543893, relative_change = 3.1009042060392403e-9 Iter 100: T = 844.1470776414694 K, F = -0.00015005202380757865, relative_change = 1.296835240943662e-9 Iter 105: T = 844.1470742977715 K, F = -6.275354970264324e-5, relative_change = 5.423520071137409e-10 Iter 110: T = 844.147072899397 K, F = -2.6244283062970553e-5, relative_change = 2.2681808079662205e-10 Iter 115: T = 844.1470723145801 K, F = -1.0975673228275085e-5, relative_change = 9.485803591306809e-11 Iter 120: T = 844.1470720700028 K, F = -4.59015689591169e-6, relative_change = 3.967075724867338e-11 Iter 125: T = 844.1470719677175 K, F = -1.919656889226573e-6, relative_change = 1.659077112702063e-11 Iter 130: T = 844.1470719249406 K, F = -8.028229572243362e-7, relative_change = 6.938454479439244e-12 Iter 135: T = 844.1470719070509 K, F = -3.357496503042512e-7, relative_change = 2.901740221048254e-12 Iter 140: T = 844.1470718995691 K, F = -1.4041520302043864e-7, relative_change = 1.2135483742098722e-12 Iter 145: T = 844.1470718964403 K, F = -5.8723155005324656e-8, relative_change = 5.075190417669427e-13 Converged in 150 iterations to T = 844.1470718951316 K Iter 1: T = 969.9951790325205 K, F = -6836.626999393363, relative_change = 0.030004820967479494 Iter 2: T = 942.1474770251585 K, F = -5791.014203586445, relative_change = 0.028709113827903164 Iter 3: T = 916.4141856840931 K, F = -4903.589361477154, relative_change = 0.027313442925430937 Iter 5: T = 871.0854638875549 K, F = -3511.76490225286, relative_change = 0.024262807785947645 Iter 10: T = 790.2212972376831 K, F = -1512.5133646981553, relative_change = 0.01596091507122246 Iter 15: T = 745.8371229410303 K, F = -644.2068036888934, relative_change = 0.00881762455324323 Iter 20: T = 724.1738072874658 K, F = -272.02440450525813, relative_change = 0.004266657012180399 Iter 25: T = 714.3923516465939 K, F = -114.28149125171987, relative_change = 0.001910648945860384 Iter 30: T = 710.1565695259019 K, F = -47.88984576494063, relative_change = 0.0008235089984981903 Iter 35: T = 708.3580993100707 K, F = -20.045322458178262, relative_change = 0.0003488727876615119 Iter 40: T = 707.6011023628528 K, F = -8.386237451440548, relative_change = 0.0001466998237528344 Iter 45: T = 707.2836581616772 K, F = -3.5077595382572095, relative_change = 6.149214515149319e-5 Iter 50: T = 707.150748227778 K, F = -1.4670806621870502, relative_change = 2.574141051784879e-5 Iter 55: T = 707.0951372461215 K, F = -0.6135670604976105, relative_change = 1.0769684615244935e-5 Iter 60: T = 707.0718754376251 K, F = -0.2566039427555874, relative_change = 4.504766621813049e-6 Iter 65: T = 707.0621462611068 K, F = -0.10731533546812094, relative_change = 1.8840794393475937e-6 Iter 70: T = 707.0580772615355 K, F = -0.04488064272621162, relative_change = 7.879676533634583e-7 Iter 75: T = 707.0563755325252 K, F = -0.01876963613284177, relative_change = 3.2954152874686247e-7 Iter 80: T = 707.0556638447935 K, F = -0.007849688671278443, relative_change = 1.3781891046656752e-7 Iter 85: T = 707.0553662077263 K, F = -0.0032828340169288595, relative_change = 5.763763802366778e-8 Iter 90: T = 707.0552417322175 K, F = -0.0013729204723029742, relative_change = 2.4104770188505137e-8 Iter 95: T = 707.0551896750501 K, F = -0.0005741717525911127, relative_change = 1.0080906560658348e-8 Iter 100: T = 707.055167904117 K, F = -0.0002401254858588331, relative_change = 4.215956165943394e-9 Iter 105: T = 707.055158799252 K, F = -0.00010042334694115862, relative_change = 1.7631633443003481e-9 Iter 110: T = 707.0551549914886 K, F = -4.1998242399032826e-5, relative_change = 7.373759755794127e-10 Iter 115: T = 707.0551533990365 K, F = -1.7564167097194883e-5, relative_change = 3.0837945227231597e-10 Iter 120: T = 707.055152733054 K, F = -7.345544117742797e-6, relative_change = 1.2896796468031202e-10 Iter 125: T = 707.0551524545322 K, F = -3.0719950309121558e-6, relative_change = 5.393595641619627e-11 Iter 130: T = 707.055152338051 K, F = -1.2847455197473323e-6, relative_change = 2.2556670084447138e-11 Iter 135: T = 707.0551522893371 K, F = -5.372962365024492e-7, relative_change = 9.433474382350771e-12 Iter 140: T = 707.0551522689644 K, F = -2.2470290317322394e-7, relative_change = 3.9451776078196766e-12 Iter 145: T = 707.0551522604443 K, F = -9.397264144617168e-8, relative_change = 1.6499064122752825e-12 Iter 150: T = 707.0551522568811 K, F = -3.9300708132294915e-8, relative_change = 6.900145548545726e-13 Iter 155: T = 707.0551522553908 K, F = -1.6435105387735405e-8, relative_change = 2.8855617283142884e-13 Converged in 157 iterations to T = 707.0551522550755 K Iter 1: T = 969.333851739751 K, F = -6987.311052135553, relative_change = 0.03066614826024899 Iter 2: T = 940.8089525153625 K, F = -5919.716742790516, relative_change = 0.02942732183879917 Iter 3: T = 914.3861608387512 K, F = -5013.550431375931, relative_change = 0.028085183082034882 Iter 5: T = 867.6607226882336 K, F = -3592.077765852802, relative_change = 0.025123021230772685 Iter 10: T = 783.490785402786 K, F = -1549.0222572652367, relative_change = 0.016853761883291594 Iter 15: T = 736.6209831372341 K, F = -660.5069549426038, relative_change = 0.009476439646490916 Iter 20: T = 713.4908184891168 K, F = -279.11994132491606, relative_change = 0.004639108309541234 Iter 25: T = 702.978924261375 K, F = -117.31015895070206, relative_change = 0.002090265380373443 Iter 30: T = 698.412110232871 K, F = -49.16839303445181, relative_change = 0.000903517266321204 Iter 35: T = 696.4702527471633 K, F = -20.582212586190586, relative_change = 0.00038325045364454225 Iter 40: T = 695.6523855479495 K, F = -8.611161555756542, relative_change = 0.00016124226611574733 Iter 45: T = 695.3093235811862 K, F = -3.6018943260738316, relative_change = 6.760324474184117e-5 Iter 50: T = 695.1656715919498 K, F = -1.5064610384987458, relative_change = 2.830229302315654e-5 Iter 55: T = 695.105563170819 K, F = -0.6300385208392095, relative_change = 1.1841578595394636e-5 Iter 60: T = 695.0804196065684 K, F = -0.2634928746218251, relative_change = 4.953203451034841e-6 Iter 65: T = 695.0699033045688 K, F = -0.11019643385320377, relative_change = 2.071648715873635e-6 Iter 70: T = 695.0655050929979 K, F = -0.04608556381477247, relative_change = 8.66416199745503e-7 Iter 75: T = 695.0636656789235 K, F = -0.019273550503403625, relative_change = 3.6235049337435383e-7 Iter 80: T = 695.0628964088362 K, F = -0.008060432027411024, relative_change = 1.515401592368886e-7 Iter 85: T = 695.0625746899971 K, F = -0.003370969465523399, relative_change = 6.337605398862023e-8 Iter 90: T = 695.0624401431788 K, F = -0.0014097797803709344, relative_change = 2.6504648805336283e-8 Iter 95: T = 695.0623838740651 K, F = -0.0005895867572675018, relative_change = 1.1084565250816633e-8 Iter 100: T = 695.0623603416448 K, F = -0.0002465722254242353, relative_change = 4.6356983575910695e-9 Iter 105: T = 695.0623505001048 K, F = -0.00010311944932617223, relative_change = 1.9387045450082377e-9 Iter 110: T = 695.0623463842551 K, F = -4.312578495380137e-5, relative_change = 8.107894117015885e-10 Iter 115: T = 695.0623446629576 K, F = -1.803571850100827e-5, relative_change = 3.390818226527488e-10 Iter 120: T = 695.0623439430904 K, F = -7.542752019085164e-6, relative_change = 1.4180805244425016e-10 Iter 125: T = 695.0623436420333 K, F = -3.154468482979844e-6, relative_change = 5.93058119713819e-11 Iter 130: T = 695.0623435161276 K, F = -1.3192359460401093e-6, relative_change = 2.4802390466526874e-11 Iter 135: T = 695.0623434634724 K, F = -5.517202237292906e-7, relative_change = 1.037265582644529e-11 Iter 140: T = 695.0623434414514 K, F = -2.3073667887452132e-7, relative_change = 4.337981560084681e-12 Iter 145: T = 695.062343432242 K, F = -9.649738208494796e-8, relative_change = 1.814205986448307e-12 Iter 150: T = 695.0623434283905 K, F = -4.035724587847511e-8, relative_change = 7.587393097024543e-13 Iter 155: T = 695.0623434267796 K, F = -1.6877018227390295e-8, relative_change = 3.1729759752156297e-13 Converged in 158 iterations to T = 695.062343426308 K Iter 1: T = 965.1683007495527 K, F = -7936.435807714171, relative_change = 0.03483169925044725 Iter 2: T = 932.3104039425782 K, F = -6731.41540849697, relative_change = 0.034043696608619355 Iter 3: T = 901.3968379304035 K, F = -5708.142660960655, relative_change = 0.03315801891885644 Iter 5: T = 845.2897185697542 K, F = -4101.542513808005, relative_change = 0.031074801431550687 Iter 10: T = 736.8937268095284 K, F = -1784.8406385662786, relative_change = 0.024093593475229547 Iter 15: T = 669.0861145345783 K, F = -768.541939815427, relative_change = 0.015788906567884568 Iter 20: T = 631.9722407504254 K, F = -327.2644430404717, relative_change = 0.008693176913195452 Iter 25: T = 613.8953999059012 K, F = -138.1716538207016, relative_change = 0.004197230988949642 Iter 30: T = 605.7432567846613 K, F = -58.043557899276905, relative_change = 0.0018774048628831682 Iter 35: T = 602.2151537684958 K, F = -24.322387539891796, relative_change = 0.0008087499859685078 Iter 40: T = 600.7175619619695 K, F = -10.180499234220953, relative_change = 0.00034254046447829855 Iter 45: T = 600.087281851815 K, F = -4.259124236550791, relative_change = 0.0001440227989101847 Iter 50: T = 599.8229890338723 K, F = -1.7814832968438676, relative_change = 6.0367488958041536e-5 Iter 55: T = 599.7123352277098 K, F = -0.7450843203011932, relative_change = 2.5270170733857848e-5 Iter 60: T = 599.6660368596682 K, F = -0.31161134051826683, relative_change = 1.057244962214179e-5 Iter 65: T = 599.6466705438638 K, F = -0.13032101510124172, relative_change = 4.42225312835255e-6 Iter 70: T = 599.6385706570155 K, F = -0.054502055198004495, relative_change = 1.8495665057332946e-6 Iter 75: T = 599.6351830717496 K, F = -0.02279345415546913, relative_change = 7.73533091762193e-7 Iter 80: T = 599.6337663228712 K, F = -0.009532502394262343, relative_change = 3.235046756507502e-7 Iter 85: T = 599.6331738180266 K, F = -0.003986607681604137, relative_change = 1.3529420070158104e-7 Iter 90: T = 599.6329260248048 K, F = -0.001667247176028619, relative_change = 5.6581769729246735e-8 Iter 95: T = 599.6328223946117 K, F = -0.0006972627207766924, relative_change = 2.3663192678556046e-8 Iter 100: T = 599.6327790552084 K, F = -0.0002916036027535984, relative_change = 9.896233380222265e-9 Iter 105: T = 599.6327609301491 K, F = -0.00012195211047760779, relative_change = 4.138723626111748e-9 Iter 110: T = 599.6327533500322 K, F = -5.100182885098281e-5, relative_change = 1.7308637457576916e-9 Iter 115: T = 599.6327501799368 K, F = -2.1329573847483907e-5, relative_change = 7.238679052504905e-10 Iter 120: T = 599.632748854165 K, F = -8.920283057822775e-6, relative_change = 3.0273022449714064e-10 Iter 125: T = 599.6327482997114 K, F = -3.7305686457211884e-6, relative_change = 1.2660538698964811e-10 Iter 130: T = 599.6327480678323 K, F = -1.5601687213262494e-6, relative_change = 5.2947897185289985e-11 Iter 135: T = 599.6327479708576 K, F = -6.524810617913879e-7, relative_change = 2.2143438545743684e-11 Iter 140: T = 599.6327479303017 K, F = -2.7287539611231537e-7, relative_change = 9.260651259079887e-12 Iter 145: T = 599.6327479133408 K, F = -1.1412024308876667e-7, relative_change = 3.8729317045272155e-12 Iter 150: T = 599.6327479062475 K, F = -4.77265590381748e-8, relative_change = 1.6197100413952939e-12 Iter 155: T = 599.6327479032809 K, F = -1.9960121055984104e-8, relative_change = 6.773924027656224e-13 Iter 160: T = 599.6327479020403 K, F = -8.34686736395085e-9, relative_change = 2.8327005249265283e-13 Converged in 162 iterations to T = 599.6327479017777 K Iter 1: T = 965.2028074241381 K, F = -7928.573429085572, relative_change = 0.03479719257586187 Iter 2: T = 932.381287611102 K, F = -6724.684161139442, relative_change = 0.0340047910766315 Iter 3: T = 901.5060010106757 K, F = -5702.374690887005, relative_change = 0.03311444256837603 Iter 5: T = 845.4810134167333 K, F = -4097.295828872579, relative_change = 0.031021384676643334 Iter 10: T = 737.3141779891818 K, F = -1782.8399884827588, relative_change = 0.02401907944913205 Iter 15: T = 669.7309418253806 K, F = -767.5989116913073, relative_change = 0.015713699759188605 Iter 20: T = 632.7848738950767 K, F = -326.8318705214971, relative_change = 0.008639069475569102 Iter 25: T = 614.8061111485146 K, F = -137.9804384397886, relative_change = 0.004167150805830405 Iter 30: T = 606.7024672401072 K, F = -57.96133278893647, relative_change = 0.001863027011462251 Iter 35: T = 603.1962616348403 K, F = -24.28756186121935, relative_change = 0.0008023720828079639 Iter 40: T = 601.7081381607657 K, F = -10.165854483391495, relative_change = 0.0003398050261074557 Iter 45: T = 601.08187443032 K, F = -4.252985315243388, relative_change = 0.00014286655492674728 Iter 50: T = 600.8192713867828 K, F = -1.7789134026919955, relative_change = 5.988176590325958e-5 Iter 55: T = 600.7093260399099 K, F = -0.7440091168957768, relative_change = 2.5066654490679487e-5 Iter 60: T = 600.6633242694967 K, F = -0.311161600022721, relative_change = 1.0487269913051982e-5 Iter 65: T = 600.6440820489139 K, F = -0.1301329146759827, relative_change = 4.386618265763399e-6 Iter 70: T = 600.6360340697154 K, F = -0.05442338697912957, relative_change = 1.8346615351556663e-6 Iter 75: T = 600.6326681945186 K, F = -0.02276055375110103, relative_change = 7.672992972425635e-7 Iter 80: T = 600.6312605253427 K, F = -0.00951874298092309, relative_change = 3.2089756579570876e-7 Iter 85: T = 600.6306718177891 K, F = -0.003980853318330424, relative_change = 1.3420386529242898e-7 Iter 90: T = 600.6304256126487 K, F = -0.0016648406315197817, relative_change = 5.612577656437196e-8 Iter 95: T = 600.6303226466117 K, F = -0.000696256275555196, relative_change = 2.3472490584189654e-8 Iter 100: T = 600.6302795849668 K, F = -0.000291182697230441, relative_change = 9.816479494562033e-9 Iter 105: T = 600.6302615760693 K, F = -0.00012177608247482263, relative_change = 4.105369579154736e-9 Iter 110: T = 600.6302540445326 K, F = -5.0928211825340686e-5, relative_change = 1.7169146829272712e-9 Iter 115: T = 600.6302508947541 K, F = -2.1298786714529783e-5, relative_change = 7.18034253335284e-10 Iter 120: T = 600.630249577479 K, F = -8.90740768100251e-6, relative_change = 3.002905271500914e-10 Iter 125: T = 600.6302490265788 K, F = -3.7251835013907275e-6, relative_change = 1.255850593471837e-10 Iter 130: T = 600.6302487961858 K, F = -1.5579165730250644e-6, relative_change = 5.2521183336491885e-11 Iter 135: T = 600.6302486998327 K, F = -6.515399448847603e-7, relative_change = 2.196500731488467e-11 Iter 140: T = 600.6302486595366 K, F = -2.7248050910033683e-7, relative_change = 9.185985332829702e-12 Iter 145: T = 600.6302486426844 K, F = -1.1395530047364488e-7, relative_change = 3.841712283734279e-12 Iter 150: T = 600.6302486356366 K, F = -4.765737132705894e-8, relative_change = 1.606646712236257e-12 Iter 155: T = 600.6302486326891 K, F = -1.9931211292512074e-8, relative_change = 6.719299491990047e-13 Iter 160: T = 600.6302486314564 K, F = -8.335936163561541e-9, relative_change = 2.81024824871887e-13 Converged in 162 iterations to T = 600.6302486311955 K Iter 1: T = 973.4500623886589 K, F = -6049.428540254716, relative_change = 0.02654993761134105 Iter 2: T = 949.0932310142517 K, F = -5119.383821450698, relative_change = 0.025021141109837934 Iter 3: T = 926.8625984011063 K, F = -4330.510811920903, relative_change = 0.023423023035775467 Iter 5: T = 888.4599284949785 K, F = -3094.592873006642, relative_change = 0.02009630026618473 Iter 10: T = 823.02240404243 K, F = -1325.165540980061, relative_change = 0.012073536384107218 Iter 15: T = 789.3097079557642 K, F = -561.7145279122799, relative_change = 0.0061948712736251375 Iter 20: T = 773.5707673677854 K, F = -236.4869717851506, relative_change = 0.002864960762112651 Iter 25: T = 766.6377896826021 K, F = -99.20120790584919, relative_change = 0.0012539190826923534 Iter 30: T = 763.6709492526616 K, F = -41.541578135857726, relative_change = 0.0005348358192076372 Iter 35: T = 762.41789809698 K, F = -17.382866810611016, relative_change = 0.0002255530124898747 Iter 40: T = 761.8916705162873 K, F = -7.271427987211652, relative_change = 9.466154211431399e-5 Iter 45: T = 761.6712105500591 K, F = -3.041297200573289, relative_change = 3.964705732395914e-5 Iter 50: T = 761.5789439570932 K, F = -1.2719592012950465, relative_change = 1.659112150156425e-5 Iter 55: T = 761.540345126779 K, F = -0.5319576963535458, relative_change = 6.940399277696488e-6 Iter 60: T = 761.5242005631414 K, F = -0.22247266533161714, relative_change = 2.9028717772527023e-6 Iter 65: T = 761.5174483513731 K, F = -0.09304100604322407, relative_change = 1.2140705572226525e-6 Iter 70: T = 761.514624432375 K, F = -0.038910908930441246, relative_change = 5.077484108983499e-7 Iter 75: T = 761.5134434246364 K, F = -0.016273015387061718, relative_change = 2.1234812913847309e-7 Iter 80: T = 761.5129495111565 K, F = -0.00680557087249023, relative_change = 8.880681735257513e-8 Iter 85: T = 761.5127429503017 K, F = -0.0028461712775041947, relative_change = 3.714012299115397e-8 Iter 90: T = 761.512656564026 K, F = -0.0011903028650538383, relative_change = 1.5532451975587814e-8 Iter 95: T = 761.5126204362434 K, F = -0.0004977988816896595, relative_change = 6.4958584885219114e-9 Iter 100: T = 761.5126053271715 K, F = -0.00020818543892808794, relative_change = 2.7166458747527305e-9 Iter 105: T = 761.5125990083768 K, F = -8.706563735039197e-5, relative_change = 1.1361338002453373e-9 Iter 110: T = 761.5125963657814 K, F = -3.6411889807075326e-5, relative_change = 4.751447377298507e-10 Iter 115: T = 761.5125952606164 K, F = -1.5227886749236141e-5, relative_change = 1.9871119966520968e-10 Iter 120: T = 761.5125947984233 K, F = -6.368484412710984e-6, relative_change = 8.310340116099434e-11 Iter 125: T = 761.5125946051286 K, F = -2.6633777302498274e-6, relative_change = 3.475485435528957e-11 Iter 130: T = 761.5125945242904 K, F = -1.1138582511893702e-6, relative_change = 1.4534919651993515e-11 Iter 135: T = 761.5125944904828 K, F = -4.6582669033234936e-7, relative_change = 6.078649154805983e-12 Iter 140: T = 761.5125944763441 K, F = -1.948133805385055e-7, relative_change = 2.54215186814453e-12 Iter 145: T = 761.5125944704312 K, F = -8.147284802362265e-8, relative_change = 1.0631526040021028e-12 Iter 150: T = 761.5125944679584 K, F = -3.4074401078498795e-8, relative_change = 4.4464246820578187e-13 Converged in 154 iterations to T = 761.5125944670658 K Iter 1: T = 976.5299776593232 K, F = -5347.666916078088, relative_change = 0.02347002234067677 Iter 2: T = 955.2197172190163 K, F = -4521.6898882991745, relative_change = 0.021822433440687856 Iter 3: T = 935.9768016859183 K, F = -3821.5553772823628, relative_change = 0.02014501500149194 Iter 5: T = 903.2690615128894 K, F = -2725.926379658215, relative_change = 0.01679409087918964 Iter 10: T = 849.4560938686686 K, F = -1162.253836305033, relative_change = 0.009431779806702834 Iter 15: T = 822.9191304784965 K, F = -491.12509404072864, relative_change = 0.00461361211386431 Iter 20: T = 810.8642759791306 K, F = -206.40720383376527, relative_change = 0.0020779044807404225 Iter 25: T = 805.628288459165 K, F = -86.51064996963295, relative_change = 0.000897997490255481 Iter 30: T = 803.4021140425058 K, F = -36.21371859533236, relative_change = 0.0003808761294614857 Iter 35: T = 802.4645395231107 K, F = -15.15101513269933, relative_change = 0.00016023740743956687 Iter 40: T = 802.0712724530192 K, F = -6.337391119425584, relative_change = 6.71808941347453e-5 Iter 45: T = 801.9065991151592 K, F = -2.6505576733295815, relative_change = 2.8125290451431104e-5 Iter 50: T = 801.8376949375682 K, F = -1.1085272623768747, relative_change = 1.1767489054540657e-5 Iter 55: T = 801.808872116626 K, F = -0.46360500663247184, relative_change = 4.922206949139425e-6 Iter 60: T = 801.7968169714626 K, F = -0.1938861416527462, relative_change = 2.0586836189726746e-6 Iter 65: T = 801.7917751738493 K, F = -0.08108567329790184, relative_change = 8.609936933009129e-7 Iter 70: T = 801.7896666003038 K, F = -0.0339110272580716, relative_change = 3.6008267555712655e-7 Iter 75: T = 801.7887847637936 K, F = -0.014182001882602657, relative_change = 1.505917200778498e-7 Iter 80: T = 801.7884159682068 K, F = -0.005931083482960342, relative_change = 6.29794035483295e-8 Iter 85: T = 801.7882617333083 K, F = -0.0024804501061026496, relative_change = 2.6338764534477763e-8 Iter 90: T = 801.7881972304004 K, F = -0.0010373538836798701, relative_change = 1.1015190379978663e-8 Iter 95: T = 801.7881702545086 K, F = -0.0004338337875799958, relative_change = 4.606684955015574e-9 Iter 100: T = 801.7881589728676 K, F = -0.00018143447167662252, relative_change = 1.9265707994998553e-9 Iter 105: T = 801.7881542547503 K, F = -7.587806372222339e-5, relative_change = 8.057149484035819e-10 Iter 110: T = 801.7881522815774 K, F = -3.173311122206535e-5, relative_change = 3.3695960487548594e-10 Iter 115: T = 801.7881514563728 K, F = -1.3271164787553857e-5, relative_change = 1.4092051780462009e-10 Iter 120: T = 801.7881511112623 K, F = -5.55015881942289e-6, relative_change = 5.893463526783548e-11 Iter 125: T = 801.7881509669331 K, F = -2.321142994698988e-6, relative_change = 2.4647171435094878e-11 Iter 130: T = 801.7881509065729 K, F = -9.707312251805433e-7, relative_change = 1.0307757422805037e-11 Iter 135: T = 801.7881508813296 K, F = -4.059721792071258e-7, relative_change = 4.310835621387978e-12 Iter 140: T = 801.7881508707724 K, F = -1.6978101657905142e-7, relative_change = 1.802828104082742e-12 Iter 145: T = 801.7881508663575 K, F = -7.10048955188114e-8, relative_change = 7.539689875312164e-13 Iter 150: T = 801.788150864511 K, F = -2.969540968678075e-8, relative_change = 3.153221733870532e-13 Converged in 153 iterations to T = 801.7881508639704 K Iter 1: T = 967.2469208877574 K, F = -7462.820231946033, relative_change = 0.032753079112242595 Iter 2: T = 936.5658432820983 K, F = -6326.153883402056, relative_change = 0.03172000545372579 Iter 3: T = 907.9256002654067 K, F = -5361.112002362901, relative_change = 0.030580063561067766 Iter 5: T = 856.6306374401905 K, F = -3846.527873482491, relative_change = 0.027984169666145278 Iter 10: T = 761.1278868830634 K, F = -1665.810889761243, relative_change = 0.020083845595669843 Iter 15: T = 705.110873454258 K, F = -713.320317701313, relative_change = 0.012062743624010322 Iter 20: T = 676.2568925855633 K, F = -302.35990982232306, relative_change = 0.0061880534396355534 Iter 25: T = 662.7879100230672 K, F = -127.2952878200206, relative_change = 0.002861466443304564 Iter 30: T = 656.8552282514886 K, F = -53.3974325578039, relative_change = 0.0012523167760985039 Iter 35: T = 654.3165227306318 K, F = -22.36071293197111, relative_change = 0.0005341384391742474 Iter 40: T = 653.244309459082 K, F = -9.356722070755135, relative_change = 0.00022525637620323907 Iter 45: T = 652.7940285622307 K, F = -3.9140096791443852, relative_change = 9.45365973462278e-5 Iter 50: T = 652.605386466017 K, F = -1.6370464093372086, relative_change = 3.9594647415608605e-5 Iter 55: T = 652.5264363222279 K, F = -0.6846605209684669, relative_change = 1.6569175587977623e-5 Iter 60: T = 652.4934083125885 K, F = -0.2863381345420306, relative_change = 6.931216424492246e-6 Iter 65: T = 652.4795938341374 K, F = -0.11975088956234797, relative_change = 2.899030556611912e-6 Iter 70: T = 652.4738161445574 K, F = -0.05008140293012098, relative_change = 1.212463965619776e-6 Iter 75: T = 652.471399791601 K, F = -0.020944667174254084, relative_change = 5.070764893397348e-7 Iter 80: T = 652.470389234462 K, F = -0.008759314554494968, relative_change = 2.1206711899175892e-7 Iter 85: T = 652.4699666057408 K, F = -0.003663250760947645, relative_change = 8.868929479885455e-8 Iter 90: T = 652.4697898570724 K, F = -0.0015320153572814799, relative_change = 3.709097349982788e-8 Iter 95: T = 652.4697159386178 K, F = -0.0006407071436696499, relative_change = 1.5511897052525486e-8 Iter 100: T = 652.4696850250285 K, F = -0.0002679513843595882, relative_change = 6.4872621882250415e-9 Iter 105: T = 652.4696720965946 K, F = -0.00011206046956213633, relative_change = 2.713050792042592e-9 Iter 110: T = 652.4696666897689 K, F = -4.686502638190371e-5, relative_change = 1.1346302800417423e-9 Iter 115: T = 652.4696644285698 K, F = -1.959951307406449e-5, relative_change = 4.745159256630923e-10 Iter 120: T = 652.4696634829093 K, F = -8.196749368138967e-6, relative_change = 1.9844820256462496e-10 Iter 125: T = 652.4696630874229 K, F = -3.427978541192811e-6, relative_change = 8.299341011172591e-11 Iter 130: T = 652.4696629220257 K, F = -1.433622423496761e-6, relative_change = 3.4708856094772856e-11 Iter 135: T = 652.4696628528546 K, F = -5.995579881457047e-7, relative_change = 1.4515657400758692e-11 Iter 140: T = 652.4696628239265 K, F = -2.5074203496844305e-7, relative_change = 6.070614599925486e-12 Iter 145: T = 652.4696628118284 K, F = -1.0486410090271292e-7, relative_change = 2.538822587462781e-12 Iter 150: T = 652.4696628067688 K, F = -4.3856161591193654e-8, relative_change = 1.061783896421795e-12 Iter 155: T = 652.4696628046528 K, F = -1.834023166669141e-8, relative_change = 4.4402797541107546e-13 Converged in 159 iterations to T = 652.469662803889 K Iter 1: T = 970.3058024512379 K, F = -6765.851157959459, relative_change = 0.029694197548762128 Iter 2: T = 942.7751753330797 K, F = -5730.578540313254, relative_change = 0.028373144887528165 Iter 3: T = 917.3635898464921 K, F = -4851.9703492552935, relative_change = 0.026954024831646377 Iter 5: T = 872.6827135451246 K, F = -3474.0941716768884, relative_change = 0.023866088099693403 Iter 10: T = 793.3283416092537 K, F = -1495.4422636824345, relative_change = 0.015560340518852384 Iter 15: T = 750.054314936623 K, F = -636.614084070036, relative_change = 0.008529317353812777 Iter 20: T = 729.0348769573603 K, F = -268.729192052728, relative_change = 0.004106333311070995 Iter 25: T = 719.5707483838518 K, F = -112.877411111246, relative_change = 0.0018340053900260112 Iter 30: T = 715.4780343068837 K, F = -47.29761886783511, relative_change = 0.0007895081313813586 Iter 35: T = 713.7413886020728 K, F = -19.796727785428335, relative_change = 0.00033428960120021975 Iter 40: T = 713.0106103868532 K, F = -8.282108517229283, relative_change = 0.00014053556694340716 Iter 45: T = 712.7041957779235 K, F = -3.464182718804631, relative_change = 5.890260660041729e-5 Iter 50: T = 712.5759099342405 K, F = -1.4488512520877097, relative_change = 2.465640047315073e-5 Iter 55: T = 712.522234799393 K, F = -0.6059424165872459, relative_change = 1.0315563954840736e-5 Iter 60: T = 712.4997829348903 K, F = -0.25341507040232436, relative_change = 4.314785531708594e-6 Iter 65: T = 712.4903925478258 K, F = -0.10598168381326822, relative_change = 1.8046161596851596e-6 Iter 70: T = 712.4864652447568 K, F = -0.04432288892717395, relative_change = 7.547332507952082e-7 Iter 75: T = 712.484822776789 K, F = -0.018536376002303068, relative_change = 3.156421706054733e-7 Iter 80: T = 712.4841358730605 K, F = -0.007752136355522188, relative_change = 1.3200597449788058e-7 Iter 85: T = 712.4838486010167 K, F = -0.0032420364469203378, relative_change = 5.520658854126541e-8 Iter 90: T = 712.4837284602946 K, F = -0.001355858438563451, relative_change = 2.3088074504233722e-8 Iter 95: T = 712.4836782159884 K, F = -0.0005670362044098987, relative_change = 9.655711951396793e-9 Iter 100: T = 712.4836572032159 K, F = -0.00023714131729402066, relative_change = 4.038134699830002e-9 Iter 105: T = 712.4836484154226 K, F = -9.917533141245993e-5, relative_change = 1.688796263896995e-9 Iter 110: T = 712.4836447402625 K, F = -4.147630809514524e-5, relative_change = 7.062747850093044e-10 Iter 115: T = 712.4836432032666 K, F = -1.7345887783570824e-5, relative_change = 2.9537255974813375e-10 Iter 120: T = 712.4836425604766 K, F = -7.254258023836613e-6, relative_change = 1.2352834271229042e-10 Iter 125: T = 712.4836422916542 K, F = -3.0338177766653374e-6, relative_change = 5.1661035695773513e-11 Iter 130: T = 712.4836421792293 K, F = -1.2687782595666164e-6, relative_change = 2.1605252467991603e-11 Iter 135: T = 712.4836421322119 K, F = -5.306185255626872e-7, relative_change = 9.03557979980924e-12 Iter 140: T = 712.4836421125486 K, F = -2.2191040405239448e-7, relative_change = 3.778777158902469e-12 Iter 145: T = 712.4836421043253 K, F = -9.280567603298095e-8, relative_change = 1.5803313518657797e-12 Iter 150: T = 712.4836421008863 K, F = -3.881406218653183e-8, relative_change = 6.609410328119957e-13 Iter 155: T = 712.483642099448 K, F = -1.6233620003802685e-8, relative_change = 2.764324311155709e-13 Converged in 157 iterations to T = 712.4836420991437 K Iter 1: T = 964.3030754161233 K, F = -8133.578222977829, relative_change = 0.035696924583876646 Iter 2: T = 930.5303900623467 K, F = -6900.235303452678, relative_change = 0.03502289499512671 Iter 3: T = 898.6509263189407 K, F = -5852.847174230824, relative_change = 0.03425945469794916 Iter 5: T = 840.4586081469072 K, F = -4208.1739617400835, relative_change = 0.032438730424366916 Iter 10: T = 726.1304413903949 K, F = -1835.3017533718235, relative_change = 0.02606481831194818 Iter 15: T = 652.3043548204113 K, F = -792.5312295943785, relative_change = 0.017870729946981818 Iter 20: T = 610.5157610213005 K, F = -338.380608949015, relative_change = 0.010255087502909837 Iter 25: T = 589.6242005057649 K, F = -143.12427966500167, relative_change = 0.005090504132769823 Iter 30: T = 580.05494244975 K, F = -60.182908078056535, relative_change = 0.0023109205787225774 Iter 35: T = 575.8811795203831 K, F = -25.230480262349776, relative_change = 0.0010024347046900845 Iter 40: T = 574.1032493038465 K, F = -10.56274100942842, relative_change = 0.0004258725954440316 Iter 45: T = 573.35383810158 K, F = -4.4194233963222125, relative_change = 0.0001792939800324531 Iter 50: T = 573.0393860157416 K, F = -1.848600193036161, relative_change = 7.519288047688675e-5 Iter 55: T = 572.9076955291611 K, F = -0.773167081718035, relative_change = 3.1483440480634026e-5 Iter 60: T = 572.8525889312543 K, F = -0.3233582822503939, relative_change = 1.3173212243910922e-5 Iter 65: T = 572.8295370800722 K, F = -0.13523414569110473, relative_change = 5.510325609495716e-6 Iter 70: T = 572.8198955383189 K, F = -0.056556858438034985, relative_change = 2.3046818369478963e-6 Iter 75: T = 572.8158631585785 K, F = -0.023652810241057642, relative_change = 9.638800780507893e-7 Iter 80: T = 572.8141767391581 K, F = -0.009891897616758738, relative_change = 4.0311221339723447e-7 Iter 85: T = 572.8134714531597 K, F = -0.004136911448563152, relative_change = 1.685874006050397e-7 Iter 90: T = 572.8131764932127 K, F = -0.0017301060748135533, relative_change = 7.050544944005395e-8 Iter 95: T = 572.8130531372797 K, F = -0.000723551075115958, relative_change = 2.9486253351572024e-8 Iter 100: T = 572.8130015483272 K, F = -0.0003025977101350219, relative_change = 1.233150896635584e-8 Iter 105: T = 572.8129799732062 K, F = -0.00012654997817140856, relative_change = 5.157185325874015e-9 Iter 110: T = 572.8129709502319 K, F = -5.2924711611390673e-5, relative_change = 2.1567966309539828e-9 Iter 115: T = 572.8129671767164 K, F = -2.213374666298895e-5, relative_change = 9.019981456086287e-10 Iter 120: T = 572.8129655985871 K, F = -9.256597331253058e-6, relative_change = 3.7722640744384645e-10 Iter 125: T = 572.8129649385944 K, F = -3.871218964612844e-6, relative_change = 1.5776056559460432e-10 Iter 130: T = 572.8129646625775 K, F = -1.618989077134536e-6, relative_change = 6.597731500618321e-11 Iter 135: T = 572.8129645471442 K, F = -6.770810734302302e-7, relative_change = 2.7592521741008532e-11 Iter 140: T = 572.8129644988686 K, F = -2.831637494482564e-7, relative_change = 1.15395367300229e-11 Iter 145: T = 572.8129644786792 K, F = -1.1842362157565844e-7, relative_change = 4.826019339575352e-12 Iter 150: T = 572.8129644702358 K, F = -4.952673565705723e-8, relative_change = 2.0183218596389976e-12 Iter 155: T = 572.8129644667046 K, F = -2.0713120663096163e-8, relative_change = 8.441045762913536e-13 Iter 160: T = 572.8129644652277 K, F = -8.662547346105498e-9, relative_change = 3.53017586109351e-13 Converged in 163 iterations to T = 572.8129644647953 K Iter 1: T = 966.4764238166784 K, F = -7638.378722523304, relative_change = 0.03352357618332155 Iter 2: T = 934.9918713700852 K, F = -6476.323629319704, relative_change = 0.03257663784726242 Iter 3: T = 905.516622901107 K, F = -5489.648573453743, relative_change = 0.031524603979483555 Iter 5: T = 852.4694453892255 K, F = -3940.8684609060606, relative_change = 0.029100328891271555 Iter 10: T = 752.3935352262757 K, F = -1709.5926744721053, relative_change = 0.021464114256175035 Iter 15: T = 692.3792069220311 K, F = -733.4395857155513, relative_change = 0.013275206987811011 Iter 20: T = 660.8459913498866 K, F = -311.34446392974826, relative_change = 0.006965471480693559 Iter 25: T = 645.9294645578351 K, F = -131.192069453501, relative_change = 0.0032638684218564153 Iter 30: T = 639.3121218879131 K, F = -55.05585436769265, relative_change = 0.001437781806461561 Iter 35: T = 636.4708975196812 K, F = -23.059702136862068, relative_change = 0.000615048978907135 Iter 40: T = 635.2691351985371 K, F = -9.65002646515632, relative_change = 0.00025970751510448486 Iter 45: T = 634.7641291603857 K, F = -4.036846642636318, relative_change = 0.00010905390675555336 Iter 50: T = 634.5525036295028 K, F = -1.6884488275329461, relative_change = 4.5685259805090765e-5 Iter 55: T = 634.4639245322551 K, F = -0.7061629794163518, relative_change = 1.9119729898100484e-5 Iter 60: T = 634.4268665982687 K, F = -0.29533165670760797, relative_change = 7.998482038922537e-6 Iter 65: T = 634.4113662354655 K, F = -0.12351225193319959, relative_change = 3.345477622242169e-6 Iter 70: T = 634.4048833976061 K, F = -0.05165447828057995, relative_change = 1.3991916264838932e-6 Iter 75: T = 634.4021721272455 K, F = -0.021602551090694533, relative_change = 5.85171404772147e-7 Iter 80: T = 634.4010382293321 K, F = -0.009034450342832734, relative_change = 2.447279010692527e-7 Iter 85: T = 634.4005640175375 K, F = -0.0037783159869075877, relative_change = 1.0234852112417664e-7 Iter 90: T = 634.4003656961263 K, F = -0.0015801370362483191, relative_change = 4.280344208812656e-8 Iter 95: T = 634.4002827556781 K, F = -0.0006608322088146878, relative_change = 1.790092260197614e-8 Iter 100: T = 634.4002480689807 K, F = -0.0002763679273992681, relative_change = 7.48638171670518e-9 Iter 105: T = 634.4002335625876 K, F = -0.00011558036892245216, relative_change = 3.1308946123148672e-9 Iter 110: T = 634.4002274958402 K, F = -4.833709076107473e-5, relative_change = 1.3093775815051288e-9 Iter 115: T = 634.4002249586541 K, F = -2.0215148175961595e-5, relative_change = 5.475973401717877e-10 Iter 120: T = 634.4002238975726 K, F = -8.454216645581436e-6, relative_change = 2.2901175618029278e-10 Iter 125: T = 634.4002234538157 K, F = -3.535655189623732e-6, relative_change = 9.577547404624802e-11 Iter 130: T = 634.4002232682311 K, F = -1.4786541768230244e-6, relative_change = 4.005447288766928e-11 Iter 135: T = 634.4002231906175 K, F = -6.183902988565748e-7, relative_change = 1.675124438304705e-11 Iter 140: T = 634.4002231581584 K, F = -2.5861785268865845e-7, relative_change = 7.0055608266691995e-12 Iter 145: T = 634.4002231445837 K, F = -1.081567663208105e-7, relative_change = 2.929800852788162e-12 Iter 150: T = 634.4002231389067 K, F = -4.523280067170177e-8, relative_change = 1.2252871687612218e-12 Iter 155: T = 634.4002231365324 K, F = -1.8916247290778898e-8, relative_change = 5.124121156048368e-13 Converged in 160 iterations to T = 634.4002231355394 K Iter 1: T = 963.5408187570049 K, F = -8307.259127851252, relative_change = 0.036459181242995145 Iter 2: T = 928.9579478679752 K, F = -7049.027370970185, relative_change = 0.035891443533905006 Iter 3: T = 896.2177561589881 K, F = -5980.454703758433, relative_change = 0.03524399762564955 Iter 5: T = 836.1462864530113 K, F = -4302.35661293985, relative_change = 0.033680673701517776 Iter 10: T = 716.2747746874536 K, F = -1880.255000830702, relative_change = 0.027981946553291996 Iter 15: T = 636.4292275772677 K, F = -814.2751778780716, relative_change = 0.020080634597621206 Iter 20: T = 589.5991703619497 K, F = -348.680446813021, relative_change = 0.012059787208815025 Iter 25: T = 565.4787644949552 K, F = -147.7969023235047, relative_change = 0.00618614271543632 Iter 30: T = 554.2198381964737 K, F = -62.223204320340216, relative_change = 0.0028604784453272417 Iter 35: T = 549.260719820232 K, F = -26.101165081948366, relative_change = 0.0012518621257856376 Iter 40: T = 547.1386402355475 K, F = -10.930119929104729, relative_change = 0.000533940272186351 Iter 45: T = 546.2423911455958 K, F = -4.573649806424597, relative_change = 0.00022517203359150918 Iter 50: T = 545.8660078788967 K, F = -1.9132029033478246, relative_change = 9.450106290072142e-5 Iter 55: T = 545.7083248055314 K, F = -0.8002028786540712, relative_change = 3.95797404157082e-5 Iter 60: T = 545.6423315957153 K, F = -0.33466816032449687, relative_change = 1.6562933218343624e-5 Iter 65: T = 545.6147239945022 K, F = -0.1399646293016092, relative_change = 6.928604375065973e-6 Iter 70: T = 545.6031766867665 K, F = -0.058535300725615635, relative_change = 2.897937918554955e-6 Iter 75: T = 545.5983472059943 K, F = -0.02448023549775072, relative_change = 1.212006968004123e-6 Iter 80: T = 545.5963274141955 K, F = -0.010237939726095158, relative_change = 5.068853599210033e-7 Iter 85: T = 545.5954827052268 K, F = -0.004281630912893686, relative_change = 2.1198718506686482e-7 Iter 90: T = 545.5951294364635 K, F = -0.0017906295740109934, relative_change = 8.865586519437687e-8 Iter 95: T = 545.5949816950057 K, F = -0.0007488627412368387, relative_change = 3.7076992802161714e-8 Iter 100: T = 545.5949199077213 K, F = -0.0003131833534295858, relative_change = 1.550605012382277e-8 Iter 105: T = 545.5948940675337 K, F = -0.00013097702053035953, relative_change = 6.484816900740562e-9 Iter 110: T = 545.5948832608574 K, F = -5.477615465226959e-5, relative_change = 2.712028151995799e-9 Iter 115: T = 545.594878741376 K, F = -2.2908042300068265e-5, relative_change = 1.1342026191762153e-9 Iter 120: T = 545.5948768512749 K, F = -9.58041704798851e-6, relative_change = 4.743370972303412e-10 Iter 125: T = 545.594876060812 K, F = -4.006644242271484e-6, relative_change = 1.9837341141861671e-10 Iter 130: T = 545.5948757302309 K, F = -1.675626164154842e-6, relative_change = 8.296211475369114e-11 Iter 135: T = 545.594875591978 K, F = -7.007673668291137e-7, relative_change = 3.469577165619072e-11 Iter 140: T = 545.5948755341591 K, F = -2.9306941592976976e-7, relative_change = 1.4510192712958117e-11 Iter 145: T = 545.5948755099784 K, F = -1.2256486095485464e-7, relative_change = 6.068322574789886e-12 Iter 150: T = 545.5948754998658 K, F = -5.1257794952963565e-8, relative_change = 2.5378304340347515e-12 Iter 155: T = 545.5948754956365 K, F = -2.1435857588958385e-8, relative_change = 1.0613131489721983e-12 Iter 160: T = 545.5948754938678 K, F = -8.964459091709287e-9, relative_change = 4.4384033939943645e-13 Converged in 164 iterations to T = 545.5948754932294 K Iter 1: T = 976.287816450329 K, F = -5402.843577902194, relative_change = 0.023712183549670963 Iter 2: T = 954.740221529577 K, F = -4568.648381467954, relative_change = 0.022070945225043104 Iter 3: T = 935.2668266650687 K, F = -3861.507400203127, relative_change = 0.020396537639642023 Iter 5: T = 902.1264520175558 K, F = -2754.8074453362447, relative_change = 0.017041033496142128 Iter 10: T = 847.4604641831634 K, F = -1174.9398510742262, relative_change = 0.009617625056392628 Iter 15: T = 820.4190868135219 K, F = -496.5929692994456, relative_change = 0.004720072403658359 Iter 20: T = 808.1122948179762 K, F = -208.72955032510882, relative_change = 0.0021296081180194604 Iter 25: T = 802.7619150784017 K, F = -87.48881628913502, relative_change = 0.0009211044239028291 Iter 30: T = 800.4861454438133 K, F = -36.624071004683344, relative_change = 0.0003908190431139393 Iter 35: T = 799.5275081994998 K, F = -15.322856384758019, relative_change = 0.00016444606645494713 Iter 40: T = 799.1253751183204 K, F = -6.40929722442379, relative_change = 6.894994092066573e-5 Iter 45: T = 798.9569837988496 K, F = -2.6806366937972856, relative_change = 2.8866698484299575e-5 Iter 50: T = 798.8865229425766 K, F = -1.121107899131958, relative_change = 1.207783025544863e-5 Iter 55: T = 798.8570487892287 K, F = -0.4688665946377163, relative_change = 5.052043579301104e-6 Iter 60: T = 798.844721194684 K, F = -0.19608663829031225, relative_change = 2.1129912878738413e-6 Iter 65: T = 798.8395654459705 K, F = -0.08200595386645815, relative_change = 8.837072853641932e-7 Iter 70: T = 798.8374092150494 K, F = -0.034295900735508145, relative_change = 3.695820292459575e-7 Iter 75: T = 798.8365074473645 K, F = -0.014342960769040403, relative_change = 1.5456450840376e-7 Iter 80: T = 798.8361303162716 K, F = -0.005998398446056985, relative_change = 6.4640878962929e-8 Iter 85: T = 798.8359725953561 K, F = -0.002508602035133922, relative_change = 2.7033614791535893e-8 Iter 90: T = 798.8359066345528 K, F = -0.0010491273615934604, relative_change = 1.130578533922327e-8 Iter 95: T = 798.8358790489511 K, F = -0.000438757596550321, relative_change = 4.728215276557794e-9 Iter 100: T = 798.8358675123221 K, F = -0.00018349366735403994, relative_change = 1.977396237953069e-9 Iter 105: T = 798.835862687566 K, F = -7.673924286477618e-5, relative_change = 8.269707434374252e-10 Iter 110: T = 798.8358606697952 K, F = -3.20932679249708e-5, relative_change = 3.4584904624612416e-10 Iter 115: T = 798.8358598259395 K, F = -1.3421787918521666e-5, relative_change = 1.4463820215309468e-10 Iter 120: T = 798.8358594730289 K, F = -5.613152626593454e-6, relative_change = 6.048943039166637e-11 Iter 125: T = 798.8358593254375 K, F = -2.3474878833029678e-6, relative_change = 2.529740673084546e-11 Iter 130: T = 798.835859263713 K, F = -9.817465426165128e-7, relative_change = 1.057966764427503e-11 Iter 135: T = 798.8358592378991 K, F = -4.1057887700812756e-7, relative_change = 4.424551421996446e-12 Iter 140: T = 798.8358592271034 K, F = -1.7170792032672466e-7, relative_change = 1.850388721004534e-12 Iter 145: T = 798.8358592225885 K, F = -7.181177741344413e-8, relative_change = 7.738705512934892e-13 Iter 150: T = 798.8358592207003 K, F = -3.003159987358117e-8, relative_change = 3.236317438134368e-13 Converged in 153 iterations to T = 798.8358592201474 K Iter 1: T = 973.5133457631485 K, F = -6035.009363179238, relative_change = 0.02648665423685148 Iter 2: T = 949.2197286971857 K, F = -5107.093022847235, relative_change = 0.024954580408878494 Iter 3: T = 927.0517368112316 K, F = -4320.035087864197, relative_change = 0.02335390975952419 Iter 5: T = 888.7704302713809 K, F = -3086.987939898848, relative_change = 0.020024763087060343 Iter 10: T = 823.5899800781988 K, F = -1321.7820866808004, relative_change = 0.012012518439517861 Iter 15: T = 790.0433892859255 K, F = -560.2393091442691, relative_change = 0.006156632974523391 Iter 20: T = 774.3922662091279 K, F = -235.85583341389417, relative_change = 0.0028454340732600772 Iter 25: T = 767.5003655035823 K, F = -98.9343868578178, relative_change = 0.0012449794314952265 Iter 30: T = 764.5515819472415 K, F = -41.42945386949803, relative_change = 0.0005309476060077359 Iter 35: T = 763.3062459829434 K, F = -17.335878543254687, relative_change = 0.00022389960181178482 Iter 40: T = 762.7832743863725 K, F = -7.251759837875743, relative_change = 9.396520031930701e-5 Iter 45: T = 762.5641813127854 K, F = -3.0330687404239405, relative_change = 3.935498125252418e-5 Iter 50: T = 762.4724872847333 K, F = -1.2685174342506191, relative_change = 1.6468821315645918e-5 Iter 55: T = 762.4341280681018 K, F = -0.5305182160618579, relative_change = 6.88922552371111e-6 Iter 60: T = 762.4180837418104 K, F = -0.22187064134891044, relative_change = 2.881465689942449e-6 Iter 65: T = 762.4113734554037 K, F = -0.09278922960162006, relative_change = 1.2051174689868249e-6 Iter 70: T = 762.4085670709508 K, F = -0.038805612522572974, relative_change = 5.040039813444832e-7 Iter 75: T = 762.4073933965185 K, F = -0.016228979084913497, relative_change = 2.107821392881892e-7 Iter 80: T = 762.4069025499413 K, F = -0.006787154351843849, relative_change = 8.815189740275348e-8 Iter 85: T = 762.4066972717061 K, F = -0.0028384692638461217, relative_change = 3.6866226863704064e-8 Iter 90: T = 762.4066114218382 K, F = -0.0011870817895770491, relative_change = 1.5417905200000035e-8 Iter 95: T = 762.4065755183879 K, F = -0.0004964517879954, relative_change = 6.447953617934976e-9 Iter 100: T = 762.4065605031345 K, F = -0.00020762206996083332, relative_change = 2.696611504021157e-9 Iter 105: T = 762.4065542235758 K, F = -8.683002902121206e-5, relative_change = 1.127755177373412e-9 Iter 110: T = 762.4065515973894 K, F = -3.631335528153645e-5, relative_change = 4.71640693430948e-10 Iter 115: T = 762.4065504990868 K, F = -1.5186679667600345e-5, relative_change = 1.9724578252096316e-10 Iter 120: T = 762.4065500397636 K, F = -6.351252050840195e-6, relative_change = 8.249055828984117e-11 Iter 125: T = 762.4065498476691 K, F = -2.6561698960314573e-6, relative_change = 3.4498542357513143e-11 Iter 130: T = 762.4065497673328 K, F = -1.1108402702131315e-6, relative_change = 1.4427680319268047e-11 Iter 135: T = 762.4065497337352 K, F = -4.645664603009081e-7, relative_change = 6.033825525964908e-12 Iter 140: T = 762.4065497196843 K, F = -1.9428756070638542e-7, relative_change = 2.5234220363458703e-12 Iter 145: T = 762.4065497138082 K, F = -8.125403339054316e-8, relative_change = 1.055333741706014e-12 Iter 150: T = 762.4065497113505 K, F = -3.39801784488003e-8, relative_change = 4.4133721577118057e-13 Converged in 154 iterations to T = 762.4065497104635 K Iter 1: T = 964.5976886350477 K, F = -8066.450320796396, relative_change = 0.035402311364952296 Iter 2: T = 931.1370695664971 K, F = -6842.742796041894, relative_change = 0.034688678464385544 Iter 3: T = 899.5878150829978 K, F = -5803.557845365386, relative_change = 0.03388250292536132 Iter 5: T = 842.1111385805862 K, F = -4171.833038966301, relative_change = 0.031968946205579524 Iter 10: T = 729.8440879893569 K, F = -1818.0542960625792, relative_change = 0.025370626395837162 Iter 15: T = 658.1561974047435 K, F = -784.2857328353853, relative_change = 0.017116741465643733 Iter 20: T = 618.0678671520983 K, F = -334.533903331938, relative_change = 0.009674737236036552 Iter 25: T = 598.2189509910527 K, F = -141.40132792755665, relative_change = 0.004752869852049114 Iter 30: T = 589.1804304472417 K, F = -59.43636773766039, relative_change = 0.002145560866448284 Iter 35: T = 585.2498215994868 K, F = -24.913121190340775, relative_change = 0.0009282392685171958 Iter 40: T = 583.5777327709997 K, F = -10.429066311065434, relative_change = 0.00039389020881727465 Iter 45: T = 582.8733486363976 K, F = -4.363348657512257, relative_change = 0.00016574622668326513 Iter 50: T = 582.5778636914981 K, F = -1.8251189670126162, relative_change = 6.949647768241505e-5 Iter 55: T = 582.4541295389099 K, F = -0.763341665717618, relative_change = 2.9095758174307897e-5 Iter 60: T = 582.4023545968519 K, F = -0.31924824962862014, relative_change = 1.2173711919600201e-5 Iter 65: T = 582.3806968235143 K, F = -0.13351511883275247, relative_change = 5.092157521880894e-6 Iter 70: T = 582.3716384312023 K, F = -0.05583791251029538, relative_change = 2.1297700572821895e-6 Iter 75: T = 582.3678499541678 K, F = -0.023352133506795547, relative_change = 8.907248288738168e-7 Iter 80: T = 582.3662655417329 K, F = -0.009766150148017183, relative_change = 3.725169305196126e-7 Iter 85: T = 582.3656029169667 K, F = -0.004084322203793622, relative_change = 1.5579193330787992e-7 Iter 90: T = 582.3653257985778 K, F = -0.0017081125992289836, relative_change = 6.515420520975543e-8 Iter 95: T = 582.3652099042185 K, F = -0.0007143531363428823, relative_change = 2.724829437818549e-8 Iter 100: T = 582.365161435789 K, F = -0.0002987510215762268, relative_change = 1.139556697253215e-8 Iter 105: T = 582.3651411657087 K, F = -0.00012494124682072005, relative_change = 4.7657630564747124e-9 Iter 110: T = 582.3651326885182 K, F = -5.225192200714046e-5, relative_change = 1.9930991816209156e-9 Iter 115: T = 582.3651291432558 K, F = -2.185237810115037e-5, relative_change = 8.335379159114174e-10 Iter 120: T = 582.3651276605846 K, F = -9.1389248330076e-6, relative_change = 3.4859548997593694e-10 Iter 125: T = 582.3651270405138 K, F = -3.822006261811062e-6, relative_change = 1.4578675026069522e-10 Iter 130: T = 582.3651267811929 K, F = -1.598409156089442e-6, relative_change = 6.096977895499655e-11 Iter 135: T = 582.3651266727418 K, F = -6.684738966256099e-7, relative_change = 2.5498293472177166e-11 Iter 140: T = 582.3651266273862 K, F = -2.795634794772184e-7, relative_change = 1.0663679887037673e-11 Iter 145: T = 582.365126608418 K, F = -1.1691722667794835e-7, relative_change = 4.459695097151609e-12 Iter 150: T = 582.3651266004853 K, F = -4.889652038819747e-8, relative_change = 1.86511071510293e-12 Iter 155: T = 582.3651265971677 K, F = -2.0449328619331908e-8, relative_change = 7.800199609871951e-13 Iter 160: T = 582.3651265957803 K, F = -8.552946073603351e-9, relative_change = 3.262438971432255e-13 Converged in 163 iterations to T = 582.365126595374 K Iter 1: T = 966.443085992852 K, F = -7645.974777394603, relative_change = 0.033556914007147935 Iter 2: T = 934.9236780885963 K, F = -6482.822534763668, relative_change = 0.03261382730248939 Iter 3: T = 905.4120984832538 K, F = -5495.212733918283, relative_change = 0.031565763384747536 Iter 5: T = 852.2882821615068 K, F = -3944.955323049366, relative_change = 0.029149388518636618 Iter 10: T = 752.0092743517623 K, F = -1711.495735313003, relative_change = 0.0215264675288626 Iter 15: T = 691.8129436848333 K, F = -734.3187812275322, relative_change = 0.013331633376499744 Iter 20: T = 660.1549327033424 K, F = -311.7391457759296, relative_change = 0.007002500822806101 Iter 25: T = 645.1699266929838 K, F = -131.36385488619052, relative_change = 0.0032833004462980548 Iter 30: T = 638.5199191779013 K, F = -55.129100008362215, relative_change = 0.0014467991587164147 Iter 35: T = 635.6642035148795 K, F = -23.090600235480558, relative_change = 0.000618994994096365 Iter 40: T = 634.4562244313023 K, F = -9.662996577534706, relative_change = 0.00026138993818909114 Iter 45: T = 633.9485902479205 K, F = -4.042279447553468, relative_change = 0.00010976326061740293 Iter 50: T = 633.7358605928998 K, F = -1.6907223960484343, relative_change = 4.5982933811192354e-5 Iter 55: T = 633.6468188578842 K, F = -0.7071140767734996, relative_change = 1.92443986958695e-5 Iter 60: T = 633.6095672890045 K, F = -0.2957294631782414, relative_change = 8.05065119574221e-6 Iter 65: T = 633.5939859187708 K, F = -0.12367862743442765, relative_change = 3.3673008431107887e-6 Iter 70: T = 633.5874691979113 K, F = -0.05172405991629031, relative_change = 1.40831931267522e-6 Iter 75: T = 633.5847437564489 K, F = -0.02163165120925309, relative_change = 5.889888791290341e-7 Iter 80: T = 633.583603931867 K, F = -0.009046620404290107, relative_change = 2.463244436710661e-7 Iter 85: T = 633.5831272414431 K, F = -0.003783405658595307, relative_change = 1.0301621939010476e-7 Iter 90: T = 633.5829278834353 K, F = -0.0015822655978757205, relative_change = 4.3082682338278874e-8 Iter 95: T = 633.5828445094693 K, F = -0.000661722399211917, relative_change = 1.8017704373126084e-8 Iter 100: T = 633.5828096414695 K, F = -0.0002767402157849985, relative_change = 7.535221277925637e-9 Iter 105: T = 633.5827950592534 K, F = -0.00011573606471038111, relative_change = 3.151319913937288e-9 Iter 110: T = 633.582788960796 K, F = -4.8402202990793786e-5, relative_change = 1.317919643586826e-9 Iter 115: T = 633.5827864103484 K, F = -2.0242379225599016e-5, relative_change = 5.511697418133727e-10 Iter 120: T = 633.5827853437206 K, F = -8.465603979990188e-6, relative_change = 2.3050574961282015e-10 Iter 125: T = 633.5827848976443 K, F = -3.540417128744533e-6, relative_change = 9.640026971115117e-11 Iter 130: T = 633.5827847110897 K, F = -1.4806444602055713e-6, relative_change = 4.031573690890089e-11 Iter 135: T = 633.5827846330703 K, F = -6.192227321455412e-7, relative_change = 1.686051002977466e-11 Iter 140: T = 633.5827846004419 K, F = -2.5896668603975215e-7, relative_change = 7.0512760300199176e-12 Iter 145: T = 633.5827845867962 K, F = -1.0830237018311095e-7, relative_change = 2.948911763992665e-12 Iter 150: T = 633.5827845810894 K, F = -4.529376995687784e-8, relative_change = 1.2332816986490228e-12 Iter 155: T = 633.5827845787027 K, F = -1.8941079094059177e-8, relative_change = 5.157372906257407e-13 Converged in 160 iterations to T = 633.5827845777046 K Iter 1: T = 966.9239485278919 K, F = -7536.4097913674295, relative_change = 0.03307605147210815 Iter 2: T = 935.9065641377445 K, F = -6389.093752350486, relative_change = 0.03207841158280374 Iter 3: T = 906.9173957305644 K, F = -5414.976926932132, relative_change = 0.03097442577923146 Iter 5: T = 854.8923658918496 K, F = -3886.0464528042758, relative_change = 0.028447939763326786 Iter 10: T = 757.5003749830781 K, F = -1684.1167003795233, relative_change = 0.020648571840189336 Iter 15: T = 699.8550195166833 K, F = -721.7081483095801, relative_change = 0.012550487697784106 Iter 20: T = 669.9236238971993 K, F = -306.09506221636985, relative_change = 0.006496651249473589 Iter 25: T = 655.8776614257915 K, F = -128.91225117751455, relative_change = 0.0030199387995224576 Iter 30: T = 649.6733975152017 K, F = -54.08491179316607, relative_change = 0.001325068251088232 Iter 35: T = 647.0149692954434 K, F = -22.650337876023762, relative_change = 0.0005658202270085526 Iter 40: T = 645.8915390088977 K, F = -9.47822787157421, relative_change = 0.00023873584442822888 Iter 45: T = 645.4196320972821 K, F = -3.9648924102656427, relative_change = 0.00010021482756627313 Iter 50: T = 645.2219092025286 K, F = -1.6583380561050287, relative_change = 4.1976571664062746e-5 Iter 55: T = 645.1391549372073 K, F = -0.6935670247468406, relative_change = 1.756659186979852e-5 Iter 60: T = 645.1045348727381 K, F = -0.29006330542949943, relative_change = 7.348569755587262e-6 Iter 65: T = 645.0900543808721 K, F = -0.12130886431787186, relative_change = 3.073611542551126e-6 Iter 70: T = 645.0839981220471 K, F = -0.05073297773825053, relative_change = 1.2854826134097259e-6 Iter 75: T = 645.0814652620741 K, F = -0.0212171654916411, relative_change = 5.37614948344284e-7 Iter 80: T = 645.0804059792545 K, F = -0.008873276946956776, relative_change = 2.2483887513892226e-7 Iter 85: T = 645.0799629726871 K, F = -0.0037109112545156697, relative_change = 9.403063211273702e-8 Iter 90: T = 645.0797777017278 K, F = -0.001551947555423816, relative_change = 3.932479091477735e-8 Iter 95: T = 645.0797002191438 K, F = -0.0006490430284603055, relative_change = 1.6446107277006854e-8 Iter 100: T = 645.0796678149919 K, F = -0.0002714375501309263, relative_change = 6.877960228122507e-9 Iter 105: T = 645.079654263187 K, F = -0.00011351842629397924, relative_change = 2.8764454252001373e-9 Iter 110: T = 645.07964859566 K, F = -4.747476213651236e-5, relative_change = 1.202963893443466e-9 Iter 115: T = 645.0796462254324 K, F = -1.9854512672223823e-5, relative_change = 5.030938799807316e-10 Iter 120: T = 645.0796452341749 K, F = -8.303394064212988e-6, relative_change = 2.1039986406615337e-10 Iter 125: T = 645.0796448196193 K, F = -3.4725786642320067e-6, relative_change = 8.799173873944643e-11 Iter 130: T = 645.0796446462471 K, F = -1.4522731572874648e-6, relative_change = 3.679917800397062e-11 Iter 135: T = 645.0796445737408 K, F = -6.073585618326938e-7, relative_change = 1.538987051363178e-11 Iter 140: T = 645.0796445434178 K, F = -2.5400432301925235e-7, relative_change = 6.436220525562739e-12 Iter 145: T = 645.0796445307363 K, F = -1.0622751239752759e-7, relative_change = 2.6917010215003593e-12 Iter 150: T = 645.0796445254329 K, F = -4.4425596201769224e-8, relative_change = 1.1257010541134405e-12 Iter 155: T = 645.0796445232148 K, F = -1.8579455640654885e-8, relative_change = 4.707851911517749e-13 Converged in 160 iterations to T = 645.0796445222873 K Iter 1: T = 974.4273263598685 K, F = -5826.758014796598, relative_change = 0.025572673640131525 Iter 2: T = 951.0437974347542 K, F = -4929.627443991071, relative_change = 0.023997201528068023 Iter 3: T = 929.7745749381832 K, F = -4168.822957352158, relative_change = 0.022364083077919705 Iter 5: T = 893.2252063611119 K, F = -2977.2942850413547, relative_change = 0.01900940344139919 Iter 10: T = 831.6675361511909 K, F = -1273.0918827382907, relative_change = 0.011165294508390322 Iter 15: T = 800.4247315064648 K, F = -539.056687425676, relative_change = 0.005634321189424299 Iter 20: T = 785.9788127296551 K, F = -226.8064309162657, relative_change = 0.002581200765917686 Iter 25: T = 779.6474899696026 K, F = -95.11152104924938, relative_change = 0.001124559855031249 Iter 30: T = 776.9444790570036 K, F = -39.82355524840883, relative_change = 0.00047867921698265664 Iter 35: T = 775.8040328010482 K, F = -16.662991267930597, relative_change = 0.0002016927205909885 Iter 40: T = 775.3253050240633 K, F = -6.970123659852679, relative_change = 8.461615109261653e-5 Iter 45: T = 775.1247820240309 K, F = -2.915245288440767, relative_change = 3.5434197222629876e-5 Iter 50: T = 775.0408659557739 K, F = -1.2192352775571922, relative_change = 1.4827190329646046e-5 Iter 55: T = 775.0057616309033 K, F = -0.5099066073933665, relative_change = 6.202340950115412e-6 Iter 60: T = 774.9910788991172 K, F = -0.21325040661213468, relative_change = 2.594143754002786e-6 Iter 65: T = 774.9849381107614 K, F = -0.08918410708158309, relative_change = 1.0849457518041267e-6 Iter 70: T = 774.9823699082092 K, F = -0.03729790068704364, relative_change = 4.537449407661671e-7 Iter 75: T = 774.981295846219 K, F = -0.015598434845166431, relative_change = 1.89762894641564e-7 Iter 80: T = 774.9808466590916 K, F = -0.006523453021836323, relative_change = 7.936134342803288e-8 Iter 85: T = 774.9806588033948 K, F = -0.0027281861835561916, relative_change = 3.3189902618473286e-8 Iter 90: T = 774.9805802398508 K, F = -0.0011409600841687517, relative_change = 1.3880420841960867e-8 Iter 95: T = 774.98054738363 K, F = -0.00047716313966206236, relative_change = 5.8049590144561e-9 Iter 100: T = 774.9805336427646 K, F = -0.00019955532573612267, relative_change = 2.4277034173831402e-9 Iter 105: T = 774.9805278961703 K, F = -8.345641963436456e-5, relative_change = 1.015294588378521e-9 Iter 110: T = 774.9805254928759 K, F = -3.490247040294214e-5, relative_change = 4.246083165275828e-10 Iter 115: T = 774.9805244877896 K, F = -1.4596631472740818e-5, relative_change = 1.775762885358044e-10 Iter 120: T = 774.9805240674505 K, F = -6.104485458902076e-6, relative_change = 7.426452301932721e-11 Iter 125: T = 774.9805238916596 K, F = -2.552968825897395e-6, relative_change = 3.105831173154178e-11 Iter 130: T = 774.9805238181417 K, F = -1.0676817573385122e-6, relative_change = 1.2988953303345243e-11 Iter 135: T = 774.9805237873957 K, F = -4.4651832842301786e-7, relative_change = 5.43214837024798e-12 Iter 140: T = 774.9805237745373 K, F = -1.867396333121718e-7, relative_change = 2.2717934074960193e-12 Iter 145: T = 774.9805237691597 K, F = -7.809671520586647e-8, relative_change = 9.500907740407285e-13 Iter 150: T = 774.9805237669108 K, F = -3.266117265532387e-8, relative_change = 3.973416644708289e-13 Converged in 154 iterations to T = 774.980523766099 K Iter 1: T = 970.3016119674727 K, F = -6766.805963671527, relative_change = 0.029698388032527275 Iter 2: T = 942.7667115873155 K, F = -5731.39378514605, relative_change = 0.02837767147920619 Iter 3: T = 917.3507952014361 K, F = -4852.66659390688, relative_change = 0.02695886063169029 Iter 5: T = 872.6612134916251 K, F = -3474.602151345248, relative_change = 0.023871409444782703 Iter 10: T = 793.2866506524517 K, F = -1495.6722422983635, relative_change = 0.015565667979676878 Iter 15: T = 749.9978787526097 K, F = -636.7162547414521, relative_change = 0.008533122833265726 Iter 20: T = 728.9699331676775 K, F = -268.77349447294193, relative_change = 0.0041084390722958275 Iter 25: T = 719.5016246217722 K, F = -112.8962786597343, relative_change = 0.0018350094543972816 Iter 30: T = 715.4070288731084 K, F = -47.30557505595846, relative_change = 0.0007899530214481601 Iter 35: T = 713.6695705983071 K, F = -19.800067129595476, relative_change = 0.00033448031668127464 Iter 40: T = 712.9384478892957 K, F = -8.28350720362348, relative_change = 0.0001406161634969981 Iter 45: T = 712.6318883785467 K, F = -3.464768042101235, relative_change = 5.893646113876267e-5 Iter 50: T = 712.5035417889046 K, F = -1.4490961072497215, relative_change = 2.4670584873148887e-5 Iter 55: T = 712.4498412237083 K, F = -0.6060448294934832, relative_change = 1.032150060180849e-5 Iter 60: T = 712.4273787194358 K, F = -0.2534579027250353, relative_change = 4.317269106861597e-6 Iter 65: T = 712.4179838819059 K, F = -0.10599959715622753, relative_change = 1.8056549601859932e-6 Iter 70: T = 712.4140547174617 K, F = -0.04433038056184657, relative_change = 7.55167713989124e-7 Iter 75: T = 712.4124114710204 K, F = -0.018539509103792984, relative_change = 3.158238725691045e-7 Iter 80: T = 712.4117242417208 K, F = -0.007753446655978435, relative_change = 1.3208196514437524e-7 Iter 85: T = 712.4114368335186 K, F = -0.0032425844325382203, relative_change = 5.523836890176577e-8 Iter 90: T = 712.4113166358533 K, F = -0.0013560876113819509, relative_change = 2.310136543008453e-8 Iter 95: T = 712.4112663677327 K, F = -0.000567132047317287, relative_change = 9.66127038080443e-9 Iter 100: T = 712.4112453450005 K, F = -0.0002371813962260827, relative_change = 4.040459238765681e-9 Iter 105: T = 712.4112365530422 K, F = -9.919209163267162e-5, relative_change = 1.689768392360396e-9 Iter 110: T = 712.4112328761402 K, F = -4.1483316646440116e-5, relative_change = 7.066813275954316e-10 Iter 115: T = 712.4112313384159 K, F = -1.734881954706946e-5, relative_change = 2.9554259270595677e-10 Iter 120: T = 712.4112306953211 K, F = -7.2554827995618965e-6, relative_change = 1.2359942999661757e-10 Iter 125: T = 712.4112304263713 K, F = -3.0343294169510315e-6, relative_change = 5.1690755445505436e-11 Iter 130: T = 712.4112303138932 K, F = -1.2689919016706241e-6, relative_change = 2.161767596308081e-11 Iter 135: T = 712.4112302668536 K, F = -5.30708099466537e-7, relative_change = 9.040779309744208e-12 Iter 140: T = 712.411230247181 K, F = -2.2194777493655948e-7, relative_change = 3.780950118852572e-12 Iter 145: T = 712.4112302389537 K, F = -9.282216806294485e-8, relative_change = 1.581254813162048e-12 Iter 150: T = 712.411230235513 K, F = -3.881928678506341e-8, relative_change = 6.612987538944957e-13 Iter 155: T = 712.4112302340741 K, F = -1.6235537469988515e-8, relative_change = 2.765774847245564e-13 Converged in 157 iterations to T = 712.4112302337695 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015631698034910416 Iteration 10: d = 1.6711878873622265e-5 Iteration 20: d = 1.857953169921491e-7 Iteration 30: d = 2.3989707095761987e-9 Iteration 40: d = 3.275141167009009e-11 Iteration 50: d = 4.57499801411377e-13 Iteration 60: d = 6.427078959252184e-15 Converged after 63 iterations. d = 1.8274742887433676e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.81508581595 Iteration 2: convergence error = 4819.3190728697045 Iteration 3: convergence error = 1099.1125717344917 Iteration 4: convergence error = 319.3594852434037 Iteration 5: convergence error = 94.65590445512225 Iteration 6: convergence error = 28.215456974210156 Iteration 7: convergence error = 8.469665385969392 Iteration 8: convergence error = 2.538561293984003 Iteration 9: convergence error = 0.7590856851738863 Iteration 10: convergence error = 0.22667575409559504 Iteration 11: convergence error = 0.0676368309418649 Iteration 12: convergence error = 0.020172987191017455 Iteration 13: convergence error = 0.006015174026060777 Iteration 14: convergence error = 0.0017933450092186831 Iteration 15: convergence error = 0.0005346181528693705 Iteration 16: convergence error = 0.0001593686492924462 Iteration 17: convergence error = 4.7506187456747284e-5 Iteration 18: convergence error = 1.416089003214438e-5 Iteration 19: convergence error = 4.221106337354286e-6 Iteration 20: convergence error = 1.2582356703205733e-6 Iteration 21: convergence error = 3.750508312805323e-7 Iteration 22: convergence error = 1.1165593605255708e-7 Iteration 23: convergence error = 3.236573320464231e-8 Iteration 24: convergence error = 9.336645234725438e-9 Iteration 25: convergence error = 2.685737854335457e-9 Iteration 26: convergence error = 7.667040335945785e-10 Iteration 27: convergence error = 2.205524651799351e-10 Iteration 28: convergence error = 6.571099220309407e-11 Iteration 29: convergence error = 1.9099388737231493e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:01 Bin 1 progress: 81%|██████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017325036223948403 Iteration 10: d = 1.502120997866976e-5 Iteration 20: d = 1.457553053248792e-7 Iteration 30: d = 1.7477792419394565e-9 Iteration 40: d = 2.2054720446082844e-11 Iteration 50: d = 2.828942800418695e-13 Iteration 60: d = 3.696704360593358e-15 Converged after 62 iterations. d = 1.5518643176969247e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12271.725701360396 Iteration 2: convergence error = 8320.403034913008 Iteration 3: convergence error = 1957.3873374421694 Iteration 4: convergence error = 482.10465651707364 Iteration 5: convergence error = 122.89656507701511 Iteration 6: convergence error = 32.813702937836524 Iteration 7: convergence error = 8.940816645038922 Iteration 8: convergence error = 2.4501920130785493 Iteration 9: convergence error = 0.6722889298914652 Iteration 10: convergence error = 0.18448893462732485 Iteration 11: convergence error = 0.05062437978540402 Iteration 12: convergence error = 0.013890690216157964 Iteration 13: convergence error = 0.003811297582842599 Iteration 14: convergence error = 0.001045717116767264 Iteration 15: convergence error = 0.0002869141426344868 Iteration 16: convergence error = 7.872054402469075e-5 Iteration 17: convergence error = 2.159849759664212e-5 Iteration 18: convergence error = 5.9259587033011485e-6 Iteration 19: convergence error = 1.6258998130069813e-6 Iteration 20: convergence error = 4.4609578253584914e-7 Iteration 21: convergence error = 1.2324903764238115e-7 Iteration 22: convergence error = 3.315199137432501e-8 Iteration 23: convergence error = 8.86757334228605e-9 Iteration 24: convergence error = 2.3687789507675916e-9 Iteration 25: convergence error = 6.307345756795257e-10 Iteration 26: convergence error = 1.6939338820520788e-10 Iteration 27: convergence error = 4.524736141320318e-11 Iteration 28: convergence error = 1.2960299500264227e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 25%|████████▎ | ETA: 0:00:03 Bin 1 progress: 62%|████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017325036223948403 Iteration 10: d = 1.502120997866976e-5 Iteration 20: d = 1.457553053248792e-7 Iteration 30: d = 1.7477792419394565e-9 Iteration 40: d = 2.2054720446082844e-11 Iteration 50: d = 2.828942800418695e-13 Iteration 60: d = 3.696704360593358e-15 Converged after 62 iterations. d = 1.5518643176969247e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10995.024124625046 Iteration 2: convergence error = 5720.819649180165 Iteration 3: convergence error = 2018.4006804681762 Iteration 4: convergence error = 898.4297244537529 Iteration 5: convergence error = 412.62743394897916 Iteration 6: convergence error = 194.6490467544986 Iteration 7: convergence error = 91.90858899495697 Iteration 8: convergence error = 43.4217167307138 Iteration 9: convergence error = 20.515933769311687 Iteration 10: convergence error = 9.691787368777113 Iteration 11: convergence error = 4.577393649446094 Iteration 12: convergence error = 2.1614409121962126 Iteration 13: convergence error = 1.0204661622065032 Iteration 14: convergence error = 0.4817294059926098 Iteration 15: convergence error = 0.22739059244895543 Iteration 16: convergence error = 0.10724107551504858 Iteration 17: convergence error = 0.05014069124899834 Iteration 18: convergence error = 0.022906283709744457 Iteration 19: convergence error = 0.010424707184938597 Iteration 20: convergence error = 0.004734050227853004 Iteration 21: convergence error = 0.0021471596633091394 Iteration 22: convergence error = 0.0009731635118441773 Iteration 23: convergence error = 0.00044088642698625335 Iteration 24: convergence error = 0.00019969234244854306 Iteration 25: convergence error = 9.043424779520137e-5 Iteration 26: convergence error = 4.0951199480332434e-5 Iteration 27: convergence error = 1.8542883481131867e-5 Iteration 28: convergence error = 8.396035354962805e-6 Iteration 29: convergence error = 3.801564162131399e-6 Iteration 30: convergence error = 1.7212541933986358e-6 Iteration 31: convergence error = 7.793364602548536e-7 Iteration 32: convergence error = 3.5286348065710627e-7 Iteration 33: convergence error = 1.5976684153429233e-7 Iteration 34: convergence error = 7.233074938994832e-8 Iteration 35: convergence error = 3.2750904210843146e-8 Iteration 36: convergence error = 1.4828401617705822e-8 Iteration 37: convergence error = 6.7179826146457344e-9 Iteration 38: convergence error = 3.0399860406760126e-9 Iteration 39: convergence error = 1.3760654837824404e-9 Iteration 40: convergence error = 6.2118488131091e-10 Iteration 41: convergence error = 2.8467184165492654e-10 Iteration 42: convergence error = 1.2778400559909642e-10 Iteration 43: convergence error = 5.6843418860808015e-11 Iteration 44: convergence error = 2.8194335754960775e-11 Iteration 45: convergence error = 1.2732925824820995e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 88%|████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017325036223948403 Iteration 10: d = 1.502120997866976e-5 Iteration 20: d = 1.457553053248792e-7 Iteration 30: d = 1.7477792419394565e-9 Iteration 40: d = 2.2054720446082844e-11 Iteration 50: d = 2.828942800418695e-13 Iteration 60: d = 3.696704360593358e-15 Converged after 62 iterations. d = 1.5518643176969247e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.763626950798 Iteration 2: convergence error = 7338.223535559717 Iteration 3: convergence error = 1736.6233392683216 Iteration 4: convergence error = 507.9673234867264 Iteration 5: convergence error = 157.861742077288 Iteration 6: convergence error = 49.052878181094 Iteration 7: convergence error = 15.217318973885085 Iteration 8: convergence error = 4.713116286135119 Iteration 9: convergence error = 1.4581002364020605 Iteration 10: convergence error = 0.4507800510536981 Iteration 11: convergence error = 0.1393047110691441 Iteration 12: convergence error = 0.04303941486978147 Iteration 13: convergence error = 0.013295662682139664 Iteration 14: convergence error = 0.00410696920562259 Iteration 15: convergence error = 0.0012685707720265782 Iteration 16: convergence error = 0.0003918299557881255 Iteration 17: convergence error = 0.00012102488790333155 Iteration 18: convergence error = 3.738078567039338e-5 Iteration 19: convergence error = 1.1545698725967668e-5 Iteration 20: convergence error = 3.5660737012221944e-6 Iteration 21: convergence error = 1.101434918382438e-6 Iteration 22: convergence error = 3.4003551263595e-7 Iteration 23: convergence error = 1.0381654647062533e-7 Iteration 24: convergence error = 3.090781319770031e-8 Iteration 25: convergence error = 9.16725184652023e-9 Iteration 26: convergence error = 2.720753400353715e-9 Iteration 27: convergence error = 8.008100849110633e-10 Iteration 28: convergence error = 2.369233698118478e-10 Iteration 29: convergence error = 7.23048287909478e-11 Iteration 30: convergence error = 2.2737367544323206e-11 Iteration 31: convergence error = 6.366462912410498e-12 Converged after 31 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 88%|████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017325036223948403 Iteration 10: d = 1.502120997866976e-5 Iteration 20: d = 1.457553053248792e-7 Iteration 30: d = 1.7477792419394565e-9 Iteration 40: d = 2.2054720446082844e-11 Iteration 50: d = 2.828942800418695e-13 Iteration 60: d = 3.696704360593358e-15 Converged after 62 iterations. d = 1.5518643176969247e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.728929984521 Iteration 2: convergence error = 5510.407659418901 Iteration 3: convergence error = 938.4335034434243 Iteration 4: convergence error = 171.12585208438009 Iteration 5: convergence error = 31.07144214242885 Iteration 6: convergence error = 5.655337651834088 Iteration 7: convergence error = 1.0347467596170645 Iteration 8: convergence error = 0.1894245858748036 Iteration 9: convergence error = 0.034636475111256004 Iteration 10: convergence error = 0.006329687175821164 Iteration 11: convergence error = 0.0011563940902306058 Iteration 12: convergence error = 0.00021123496253494523 Iteration 13: convergence error = 3.8582728848268744e-5 Iteration 14: convergence error = 7.046967766655143e-6 Iteration 15: convergence error = 1.2870623322669417e-6 Iteration 16: convergence error = 2.350889189983718e-7 Iteration 17: convergence error = 4.292223820812069e-8 Iteration 18: convergence error = 7.838025339879096e-9 Iteration 19: convergence error = 1.4338183973450214e-9 Iteration 20: convergence error = 2.59660737356171e-10 Iteration 21: convergence error = 4.774847184307873e-11 Iteration 22: convergence error = 8.86757334228605e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017325036223948403 Iteration 10: d = 1.502120997866976e-5 Iteration 20: d = 1.457553053248792e-7 Iteration 30: d = 1.7477792419394565e-9 Iteration 40: d = 2.2054720446082844e-11 Iteration 50: d = 2.828942800418695e-13 Iteration 60: d = 3.696704360593358e-15 Converged after 62 iterations. d = 1.5518643176969247e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.4858567285355 Iteration 2: convergence error = 2710.7876957649914 Iteration 3: convergence error = 205.31584900545852 Iteration 4: convergence error = 19.28967225662832 Iteration 5: convergence error = 1.5962226555382117 Iteration 6: convergence error = 0.13029731745488796 Iteration 7: convergence error = 0.010657412437078484 Iteration 8: convergence error = 0.0008727972374434413 Iteration 9: convergence error = 7.154542225070817e-5 Iteration 10: convergence error = 5.8727075062784236e-6 Iteration 11: convergence error = 4.819462710676532e-7 Iteration 12: convergence error = 3.954673018207825e-8 Iteration 13: convergence error = 3.2458471431925135e-9 Iteration 14: convergence error = 2.6539850405401267e-10 Iteration 15: convergence error = 2.125186785467001e-11 Converged after 15 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346352 Iteration 2: convergence error = 858.4060420534064 Iteration 3: convergence error = 199.12106737711963 Iteration 4: convergence error = 59.265629268140174 Iteration 5: convergence error = 17.985482911037252 Iteration 6: convergence error = 5.463033078096487 Iteration 7: convergence error = 1.660989611064224 Iteration 8: convergence error = 0.5052487627317532 Iteration 9: convergence error = 0.15371874094239502 Iteration 10: convergence error = 0.04677131697644654 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.004330236512828378 Iteration 13: convergence error = 0.0013175920926187246 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198903971238906 Iteration 16: convergence error = 3.711853855747904e-5 Iteration 17: convergence error = 1.1294342471046548e-5 Iteration 18: convergence error = 3.4366166801191866e-6 Iteration 19: convergence error = 1.045686303768889e-6 Iteration 20: convergence error = 3.1818046863918426e-7 Iteration 21: convergence error = 9.68161657510791e-8 Iteration 22: convergence error = 2.946035237982869e-8 Iteration 23: convergence error = 8.963752406998537e-9 Iteration 24: convergence error = 2.7299620342091657e-9 Iteration 25: convergence error = 8.292317943414673e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.696598913753405e-11 Iteration 28: convergence error = 2.3646862246096134e-11 Iteration 29: convergence error = 9.094947017729282e-12 Converged after 29 iterations Energy conservation errors by band: [1.5428857128674637e-25, 8.401053096241687e-26, 1.1490863489811346e-25, 9.400697635337753e-26, 1.2440020930973268e-25, -3.2610768469290563e-19, 2.7533531010703882e-14, 1.7053025658242404e-12, 5.6701310313655995e-12, 2.6432189770275727e-12, 7.176481631177012e-13, 8.526512829121202e-14, 4.9960036108132044e-15, 2.636779683484747e-16, 2.0166160408230382e-17, 1.0062751413381088e-18, 3.560185356428231e-20, 1.2755125045567687e-21, 4.105530024647957e-23, 5.6284752489113644e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015631698034910416 Iteration 10: d = 1.6711878873622265e-5 Iteration 20: d = 1.857953169921491e-7 Iteration 30: d = 2.3989707095761987e-9 Iteration 40: d = 3.275141167009009e-11 Iteration 50: d = 4.57499801411377e-13 Iteration 60: d = 6.427078959252184e-15 Converged after 63 iterations. d = 1.8274742887433676e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.374069909787 Iteration 2: convergence error = 3606.6446224412393 Iteration 3: convergence error = 594.2265027528281 Iteration 4: convergence error = 104.5709496972745 Iteration 5: convergence error = 18.592129357847625 Iteration 6: convergence error = 3.2765944141037835 Iteration 7: convergence error = 0.5753553227350494 Iteration 8: convergence error = 0.10087631742908343 Iteration 9: convergence error = 0.01767541618346513 Iteration 10: convergence error = 0.0030962660175646306 Iteration 11: convergence error = 0.0005423269278708176 Iteration 12: convergence error = 9.498724898548971e-5 Iteration 13: convergence error = 1.663649027250358e-5 Iteration 14: convergence error = 2.913771595558501e-6 Iteration 15: convergence error = 5.103295279695885e-7 Iteration 16: convergence error = 8.93778633326292e-8 Iteration 17: convergence error = 1.565831553307362e-8 Iteration 18: convergence error = 2.729848347371444e-9 Iteration 19: convergence error = 4.858975444221869e-10 Iteration 20: convergence error = 8.276401786133647e-11 Iteration 21: convergence error = 1.48929757415317e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.492427513024 Iteration 2: convergence error = 871.304602661783 Iteration 3: convergence error = 207.75299581225158 Iteration 4: convergence error = 62.49550550490892 Iteration 5: convergence error = 18.97931530918413 Iteration 6: convergence error = 5.76621559404623 Iteration 7: convergence error = 1.7533061530655232 Iteration 8: convergence error = 0.5333443698997371 Iteration 9: convergence error = 0.16226812526508638 Iteration 10: convergence error = 0.04937275063014113 Iteration 11: convergence error = 0.015022831428041172 Iteration 12: convergence error = 0.0045710916562029524 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318846916256 Iteration 15: convergence error = 0.0001287742984459328 Iteration 16: convergence error = 3.9183143599075265e-5 Iteration 17: convergence error = 1.1922556950594299e-5 Iteration 18: convergence error = 3.6277691606301232e-6 Iteration 19: convergence error = 1.1038513321182108e-6 Iteration 20: convergence error = 3.3587832604098367e-7 Iteration 21: convergence error = 1.0220117019343888e-7 Iteration 22: convergence error = 3.1099034458748065e-8 Iteration 23: convergence error = 9.464656613999978e-9 Iteration 24: convergence error = 2.880597094190307e-9 Iteration 25: convergence error = 8.786855687503703e-10 Iteration 26: convergence error = 2.6830093702301383e-10 Iteration 27: convergence error = 8.185452315956354e-11 Iteration 28: convergence error = 2.6261659513693303e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [9.81469183839774e-26, 1.2278462217584005e-25, 1.7064639101740927e-25, 1.3045866106183005e-25, 1.2440020930973268e-25, -2.642742795433417e-19, -7.993605777301127e-15, 8.526512829121202e-14, 7.013056801952189e-12, 4.575895218295045e-12, 5.826450433232822e-13, 8.79296635503124e-14, 5.218048215738236e-15, 3.642919299551295e-16, 2.0166160408230382e-17, 8.775261333554552e-19, 3.7613556814011274e-20, 1.2358078351542233e-21, 3.6499344528902346e-23, 4.998575315730623e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729987 Iteration 2: convergence error = 2115.1156110176394 Iteration 3: convergence error = 714.8959934551629 Iteration 4: convergence error = 296.01907471323966 Iteration 5: convergence error = 115.88799395378669 Iteration 6: convergence error = 44.11524923618913 Iteration 7: convergence error = 16.599581025126554 Iteration 8: convergence error = 6.215983404932786 Iteration 9: convergence error = 2.323124567003788 Iteration 10: convergence error = 0.867563639824084 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.12090784413658184 Iteration 13: convergence error = 0.04513241840754745 Iteration 14: convergence error = 0.016846741615154315 Iteration 15: convergence error = 0.0062884074741305085 Iteration 16: convergence error = 0.0023472777563711134 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782211112615 Iteration 19: convergence error = 0.00012207719146317686 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985607473878e-6 Iteration 23: convergence error = 2.3698869426880265e-6 Iteration 24: convergence error = 8.846079708746402e-7 Iteration 25: convergence error = 3.302000095573021e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7174670574604534e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.949427865445614e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.248281478183344e-10 Iteration 34: convergence error = 4.774847184307873e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.9952501103574007e-25, 1.4136387421560532e-25, 1.0339757656912846e-25, 1.6478988765704848e-25, 2.1729646950855903e-25, 9.486769009248164e-20, 5.240252676230739e-14, 2.9274360713316128e-12, 1.2093437362636905e-11, 5.6203930398623925e-12, 2.0961010704922955e-13, 1.84297022087776e-14, 1.582067810090848e-15, 1.723881454251952e-16, 7.101524229780054e-18, 4.641740550953566e-19, 1.4770137017746862e-20, 4.963083675318166e-22, 1.7991178323028352e-23, 9.298117831235686e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238243 Iteration 2: convergence error = 864.8522700482431 Iteration 3: convergence error = 203.43244494690748 Iteration 4: convergence error = 60.87736397590345 Iteration 5: convergence error = 18.481426659698286 Iteration 6: convergence error = 5.6143306186266955 Iteration 7: convergence error = 1.7070587705935623 Iteration 8: convergence error = 0.5192694771476454 Iteration 9: convergence error = 0.1579851928424887 Iteration 10: convergence error = 0.04806952669207476 Iteration 11: convergence error = 0.014626287390910875 Iteration 12: convergence error = 0.004450431969985402 Iteration 13: convergence error = 0.0013541649049102489 Iteration 14: convergence error = 0.0004120419150694943 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.8148852013364376e-5 Iteration 17: convergence error = 1.1607843930505624e-5 Iteration 18: convergence error = 3.532008690854127e-6 Iteration 19: convergence error = 1.0747122587417834e-6 Iteration 20: convergence error = 3.270116621933994e-7 Iteration 21: convergence error = 9.950440471584443e-8 Iteration 22: convergence error = 3.027832917723572e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8029489840264432e-9 Iteration 25: convergence error = 8.546976459911093e-10 Iteration 26: convergence error = 2.609112925711088e-10 Iteration 27: convergence error = 8.003553375601768e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.753886504564434e-12 Converged after 29 iterations Energy conservation errors by band: [1.4621063561728321e-25, 7.674038885990003e-26, 1.32882041762669e-25, 1.3116548043290807e-25, 1.126872025890111e-25, -1.5246593050577406e-19, -3.6637359812630166e-14, 2.5721647034515627e-12, 7.627676268384675e-12, 2.8421709430404007e-12, 4.973799150320701e-13, 7.194245199571014e-14, 4.385380947269368e-15, 4.198030811863873e-16, 2.3310346708438345e-17, 9.84252284709497e-19, 4.1081097941833566e-20, 9.880672416945916e-22, 2.4156258825962636e-23, 4.8210806556121566e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 10m29.9s Testing RayTraceHeatTransfer tests passed Testing completed after 645.37s PkgEval succeeded after 718.6s