Package evaluation to test QuasiNewtonMethods on Julia 1.12.4 (422f456051*) started at 2026-01-29T06:16:29.768 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.12` Set-up completed after 6.3s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.12/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.12/Manifest.toml` [79e6a3ab] + Adapt v4.4.0 [4fba245c] + ArrayInterface v7.22.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.18.1 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.5 [3e5b6fbb] + HostCPUFeatures v0.1.18 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.173 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.17.0 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.72 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.12.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [8e850b90] + libblastrampoline_jll v5.15.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 3.4s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling packages... 9781.3 ms ✓ StaticArrayInterface 1080.6 ms ✓ StaticArrayInterface → StaticArrayInterfaceOffsetArraysExt 1088.9 ms ✓ CloseOpenIntervals 1233.9 ms ✓ LayoutPointers 18299.8 ms ✓ VectorizationBase 1907.3 ms ✓ StrideArraysCore 6114.3 ms ✓ SLEEFPirates 7499.8 ms ✓ VectorizedRNG 52578.6 ms ✓ LoopVectorization 4258.0 ms ✓ VectorizedRNG → VectorizedRNGStaticArraysExt 17323.1 ms ✓ QuasiNewtonMethods 51249.7 ms ✓ VectorizedStatistics 18843.7 ms ✓ Octavian 20045.7 ms ✓ StrideArrays 14 dependencies successfully precompiled in 212 seconds. 55 already precompiled. Precompilation completed after 227.31s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_On6oCa/Project.toml` [4c88cf16] Aqua v0.8.14 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test v1.11.0 Status `/tmp/jl_On6oCa/Manifest.toml` [79e6a3ab] Adapt v4.4.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.22.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.18.1 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.5 [3e5b6fbb] HostCPUFeatures v0.1.18 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.173 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.72 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.11 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.12.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.12.1 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.15.0+0 [e37daf67] LibGit2_jll v1.9.0+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.11.4 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [83775a58] Zlib_jll v1.3.1+2 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.64.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Base.PkgId(Base.UUID("8dfed614-e22c-5e08-85e1-65c5234f0b40"), "Test")]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:680 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1776 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [1.0180745135812685e-11, 2.151856470788971e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-2.3318014186202163e-12, -5.012323889275194e-12] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [1.0349787693542112e-10, 2.0637958009217527e-10, -2.3961055362065053e-11] QuasiNewtonMethods.optimum(state) .- 1 = [6.469651481211258e-10, 1.30816668608702e-9, -1.7324142120855868e-11] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [-6.413092279444754e-12, 2.6219471038757547e-11, -9.168332759657005e-12, 5.0043080790374006e-11] QuasiNewtonMethods.optimum(state) .- 1 = [2.1809221095736575e-12, -7.515654765199997e-12, 4.396705222120545e-12, -1.470679134030206e-11] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [-1.2029044427208646e-11, 6.636469151999336e-12, -2.5258573010944474e-11, 1.3420375921668892e-11, -1.1367351504532053e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-8.388005845461066e-10, -6.228351168147128e-13, -1.668719606939817e-9, 1.7503998250845143e-11, 1.6320278461989801e-12] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [-3.0012659024691857e-12, -2.6147417564459374e-11, -9.665601652386613e-13, -7.990608175134639e-12, -5.128109048513352e-11, -1.6817658377021871e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.024429430174223e-10, -7.271583335466403e-11, -2.827182932207961e-11, 2.0779444831475757e-10, -1.4401790870977038e-10, -4.114431018109599e-11] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [7.52331530406991e-12, -2.8866908863278695e-12, -5.454858786890782e-12, 1.594990806097485e-11, -5.389688695345285e-12, -1.173394714726328e-11, 5.1447734961129754e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.0205836176169214e-11, -1.3352874361771683e-11, -7.954636949136784e-12, 1.719802078525845e-11, -2.2796764476140652e-11, -1.4568457551433767e-11, -6.111156025667697e-11] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [6.983680300720607e-11, -9.932843436644134e-11, -2.0169221848220786e-10, 2.7005508940192158e-11, 1.3693801648173576e-10, -1.9187207378479343e-10, -3.940366921639793e-10, 3.3076652528052364e-11] QuasiNewtonMethods.optimum(state) .- 1 = [6.489564441380935e-11, 1.3334533477404875e-10, 1.7045476141674953e-10, -6.375855399198826e-11, 1.145639139110699e-10, 2.474280780262461e-10, 3.5150371502368216e-10, -1.1508682895566835e-10] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [4.872768855079812e-12, -9.679534951345659e-11, 7.800893264686692e-11, 2.7782887102034692e-11, 1.624744783157439e-11, -1.971338647877019e-10, 1.6034329419767346e-10, 5.2768234226618915e-11, -2.280287070277609e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-2.1451729281807275e-11, -6.042055744615027e-12, -2.67841304690819e-12, 1.7119639039719914e-13, -4.552047627726097e-11, -1.1575407299346807e-11, -6.20370421700045e-12, -1.8851586958135158e-13, -1.4865886299730846e-13] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [2.5475177523048842e-11, -4.7378767575878555e-12, -6.942291186362581e-11, -4.066413872294561e-11, 2.249134212206627e-11, 4.989142432521021e-11, -8.850142840799435e-12, -1.34333877355175e-10, -8.352951663681552e-11, 4.4389159015167934e-11] QuasiNewtonMethods.optimum(state) .- 1 = [4.299560707465844e-11, 2.758506756350698e-10, 5.9218852044296e-11, -6.89792667429856e-11, 1.071063238100578e-10, 1.0396061789208488e-10, 5.377989165111785e-10, 1.074549338397901e-10, -1.4546963633677024e-10, 2.179685321124225e-10] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [1.651656589274353e-11, -1.3841483514909214e-11, 5.534528391137883e-11, 5.879963183019754e-12, -2.476052696209763e-11, 4.047540080875933e-11, -2.9267588352865914e-11, 1.1309175818041695e-10, 1.297584262260898e-11, -4.478706294719359e-11, -4.283906562818629e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-3.2807090377673376e-13, -2.988709280060675e-11, -4.358313709929007e-11, 3.45743433882717e-11, 2.2522428366755776e-11, -1.549538275469331e-12, -6.528344531631092e-11, -8.582801136469698e-11, 7.012035396769534e-11, 4.813882625853694e-11, -8.815170815523743e-14] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [-9.901279796054041e-11, 1.4325940433934647e-10, -9.852740845417429e-11, -1.7068457758284694e-11, 2.1665313987284662e-10, 1.1589773585285457e-10, -1.899002066707567e-10, 2.858839831532123e-10, -1.759099532705477e-10, -2.4663160402838002e-11, 4.5545212046249617e-10, 2.46400677639258e-10] QuasiNewtonMethods.optimum(state) .- 1 = [1.4445067364476927e-10, -1.2026235562956344e-10, 6.994982371111291e-11, 2.0071277972988355e-11, 1.2699197249332883e-10, 2.232385387657132e-10, 3.0699665032329904e-10, -2.4637236695213005e-10, 1.4359424760357342e-10, 5.944356118448013e-11, 2.608571136875071e-10, 4.661233621305882e-10] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [2.8669067120290492e-11, -1.9972934417467059e-10, 3.3935076970692535e-12, -1.5882961612589952e-11, 2.1224133561759118e-11, -1.30270239040442e-11, 5.502087674358336e-11, -4.0844727600131137e-10, 4.4153569689342476e-12, -3.078504118292358e-11, 4.8194337409768195e-11, -2.8187563394510562e-11, 4.0529801736965965e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-5.81517056730263e-11, 7.831824078152749e-11, -2.3074542276901866e-11, 8.742473411871288e-11, 2.034816759532987e-12, 5.072320341525938e-11, -1.0927170279728671e-10, 1.6004886305154287e-10, -4.8400394803138624e-11, 1.7663404072720823e-10, -7.172040739078511e-14, 1.0262368732583127e-10, 8.917533378394182e-12] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [1.9206858326015208e-11, -1.2659095993683422e-11, -7.504108445743896e-11, 1.4617418386819736e-11, -6.035394406467276e-11, 6.79130085501356e-11, -6.653633199960041e-11, 3.247535573791538e-11, -2.5408120052361483e-11, -1.4793344327301838e-10, 2.8467894708228414e-11, -1.185262998859571e-10, 1.3576784141378084e-10, -1.328046561610563e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-7.285139158597076e-11, -2.567412948906167e-11, -1.1084477780087809e-10, 6.910449990016332e-11, 7.588130124247527e-11, 9.662048938707812e-11, 9.922151988916994e-11, -1.363973378687433e-10, -5.20233855993979e-11, -2.1131218996828238e-10, 1.1848899639232968e-10, 1.5032219913280187e-10, 2.0255708221839086e-10, 2.0129098388110833e-10] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [1.615421130196637e-10, -8.159539710561603e-11, 7.524714185080938e-11, 3.693454431186183e-10, -5.003332192998755e-10, -2.085057682066349e-10, 8.810729923425242e-13, 3.1306957026799864e-10, -1.6572831995631532e-10, 1.495561452458105e-10, 7.261664602964402e-10, -1.0128937688591577e-9, -4.0714198679125957e-10, 6.1024518771546354e-12, 3.870459508448221e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-9.050538096744276e-13, -3.42283978937985e-11, -2.2728929849336055e-11, 4.4151349243293225e-12, 9.298783965050461e-12, 2.275513111271721e-11, -5.88684656577243e-12, -2.442601676477807e-12, -7.272749069642259e-11, -5.005995618034831e-11, 1.3147483102216029e-11, 2.0133894551577214e-11, 4.6107340168077826e-11, -1.0192735544478637e-11, 3.427857997451156e-11] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [-6.091971371802174e-11, -5.661027202563673e-12, -5.4734772270137455e-11, -2.8723912137706975e-11, -3.4484637367881987e-12, 3.627076416989894e-11, 9.512390874988341e-13, 1.9761969838327786e-14, -1.18334009258092e-10, -1.0507150705052481e-11, -1.0714940046341326e-10, -6.080413950115826e-11, -7.85826959059932e-12, 7.052047834577024e-11, -5.111799872281608e-12, -1.6575629757653587e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.2972067864325254e-11, -1.770472657369737e-11, -3.9543035512679126e-11, 1.4966028416552035e-11, 2.0151658119971216e-11, -1.7909562721740713e-11, -2.5299651262855605e-11, -5.0601411949458e-11, -2.5382695945097566e-11, -3.4379499247449985e-11, -8.269918083669836e-11, 3.176792162662423e-11, 4.5025982942092924e-11, -2.949784860817317e-11, -5.7062354841264096e-11, -9.710632298265409e-11] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [-9.496770037031865e-11, -3.1406977019088345e-10, -2.4451329849739523e-11, 3.6675329440072346e-11, 3.113376223495834e-11, 3.830737949073182e-10, -1.5104728579018456e-10, -4.585631874221008e-10, -1.7971779620040707e-10, -6.350969750101854e-10, -4.694389321713288e-11, 7.869305207464095e-11, 5.4194648768657316e-11, 7.741187690868401e-10, -3.130281589491801e-10, -9.37514288423813e-10, -3.407385484877068e-12] QuasiNewtonMethods.optimum(state) .- 1 = [3.256017677699674e-11, 1.740585453546828e-11, 1.529225635010789e-10, -1.4288903393833152e-11, 1.4015100191500096e-10, -1.1685097334179773e-11, 2.032476409397077e-10, 9.219136565263852e-11, 6.087175208335793e-11, 4.136202491622498e-11, 2.957065703412809e-10, -3.0511704274260865e-11, 2.7898683363503096e-10, -1.3304357615595563e-11, 4.0864511774429957e-10, 1.8333579099305553e-10, -1.0149325824215794e-11] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [1.6471934927153598e-11, 7.385425604411466e-12, 1.6534995594952306e-11, -2.7759683440820027e-11, 1.751176981201752e-11, 2.733702153534523e-11, -3.197331288617988e-11, 4.653832874623731e-12, 3.367106593543667e-11, 3.750111332578854e-11, 1.5714096690544466e-11, 3.951639016008812e-11, -5.2347570722588443e-11, 3.397859771325784e-11, 5.99746918794608e-11, -6.860989554269281e-11, 1.0001999228848035e-11, 7.033817972512679e-11] QuasiNewtonMethods.optimum(state) .- 1 = [6.087796933229583e-12, -2.2570612046024507e-11, 2.7966962079517543e-11, -2.841471502534887e-11, -1.0564960017944713e-10, -6.461453594397426e-11, 6.3815619455454e-13, -2.0940582601269853e-11, -3.106925827722762e-11, 1.3319789715637853e-11, -4.1988412746718495e-11, 5.936739988499085e-11, -6.045486333761119e-11, -2.1451707077346782e-10, -1.347499889448045e-10, 2.206013149930186e-12, -4.096090133742791e-11, -5.6393223424322514e-11] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [-5.216937992713611e-13, 2.1111556947062127e-11, -1.8143930802239083e-11, 9.701572878384468e-12, 2.1298962593618853e-11, -1.1739498262386405e-11, 5.369482636297107e-12, -2.4094726214229922e-11, 1.963540441352052e-11, 5.786482404346316e-13, 4.0566439096778595e-11, -3.8369085686440485e-11, 1.992628284597231e-11, 3.5567548906101365e-11, -2.6968427491169678e-11, 1.0738743227989289e-11, -4.734335146139301e-11, 4.014877319491461e-11, 7.750911024118068e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-2.8963942355630934e-11, 6.98308078028731e-11, -2.567945855957987e-12, -1.1033396418724806e-12, -2.2544965894155666e-11, 4.571076850368172e-11, 4.038103185166619e-12, -1.2065237697811426e-11, 1.9138246543093373e-11, -5.464417807132804e-11, 1.4060241859681355e-10, -6.3550276152568586e-12, -3.711142504414511e-12, -4.453692969974554e-11, 9.463230199457939e-11, 5.3150817080904744e-12, -2.406641552710198e-11, 3.9497072279459644e-11, 4.2446046677468985e-12] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [3.164817297118816e-10, 3.162039519111204e-10, 2.386379982510789e-11, -3.138167503635714e-11, -3.678968241160874e-11, -1.2373924107578205e-10, -2.0569457248598155e-10, 3.032687434512127e-10, 2.4099988671366646e-10, -4.423639232697951e-11, 6.316436262920888e-10, 6.344607061947727e-10, 5.141931325169935e-11, -7.414902025715264e-11, -6.323452872436519e-11, -2.4072599469349143e-10, -4.1019276864062704e-10, 5.955969051285592e-10, 4.924542995610182e-10, -9.191103433892067e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.0690559548720557e-11, 5.855071982807658e-11, 6.461720047923336e-11, -1.1235234964601659e-11, -1.2742029653622922e-10, -8.065770273901762e-13, -2.6695090582506964e-11, 3.4054314923537277e-11, -6.913469796643312e-12, -4.757083615913871e-12, -2.068101245811249e-11, 1.1754286433074412e-10, 1.2854028952347107e-10, -2.2050916648197472e-11, -2.5563662298111467e-10, -1.3665735210111052e-12, -5.471956221470009e-11, 6.831890608793856e-11, -1.4044987395323005e-11, -8.923084493517308e-12] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [-3.8418601633338767e-10, 3.5326985781125586e-10, -4.232680872462424e-11, 4.3211323408343105e-10, -2.449535019266591e-10, 7.642908528282533e-11, 5.367573052694752e-11, -2.8392421747014396e-10, -2.0887613860764986e-10, 7.40683070432624e-11, -7.790449396694044e-10, 7.012133096395701e-10, -8.251399563619088e-11, 8.465246281730288e-10, -4.687018551052802e-10, 1.6296830551709718e-10, 1.0453660159726041e-10, -5.822038406932961e-10, -4.2904513275487943e-10, 1.6330092833527488e-10, 3.489164512870957e-11] QuasiNewtonMethods.optimum(state) .- 1 = [4.466427228067005e-12, -1.2968071061436603e-11, 8.522960115442402e-12, -1.588329467949734e-11, -2.9689584124525936e-12, -1.899858048659553e-11, 1.3503420603910854e-11, 8.294920306184395e-12, -1.5224266292079847e-11, -3.120603775386144e-11, 8.146150420884624e-12, -2.749100946886074e-11, 1.3500756068651754e-11, -3.388733738063365e-11, -7.435052573612211e-12, -3.722266939121255e-11, 2.6938451469504798e-11, 1.7778667427137407e-11, -3.4421354655478353e-11, -5.7757798543889294e-11, -1.110245229085649e-11] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [1.2102718827122771e-10, 9.526823774308468e-11, -4.1173287002038705e-11, -4.2592596116719506e-12, 8.086198377554865e-12, -6.403644281505194e-11, -7.42395034336596e-12, 3.488764832582092e-11, -3.52839979456121e-12, 2.3596680165383077e-11, -7.938827373266122e-11, 2.491489237144151e-10, 1.8528023559838402e-10, -8.189904310285101e-11, -6.233236149455479e-12, 1.8608226071137324e-11, -1.313317232742861e-10, -1.1969758517693663e-11, 7.795497580787014e-11, -2.5602853170880735e-12, 3.7616576520349554e-11, -1.6031631577817507e-10] QuasiNewtonMethods.optimum(state) .- 1 = [2.2589485837443135e-11, -1.379603098428106e-10, -2.0533297284686114e-10, 6.908340566269544e-11, -1.0475831313527806e-10, 1.3869594361892723e-10, 5.182632101252693e-11, -2.9151570046792585e-11, 1.8017098923905905e-10, -3.136957360538872e-11, 2.7655899792478067e-10, 4.0222714048354646e-11, -2.7415369974193027e-10, -4.239550932538805e-10, 1.45695455699979e-10, -1.9588586308572076e-10, 2.7971136518090134e-10, 1.0014256091039897e-10, -6.927092233155463e-11, 3.569400330860617e-10, -6.565548105186281e-11, 5.370759392775426e-10] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [2.990669933922163e-10, -1.6322587725881021e-10, 1.2952794392617761e-10, -1.6242251987819145e-10, 1.8642198895690854e-11, -2.6439295197633328e-11, 2.786830766154935e-10, 1.2305911845089668e-10, -2.3813173655184983e-12, 1.4312995233467518e-10, -3.258737724110006e-11, 5.91993121190626e-10, -3.094515754753502e-10, 2.64358313017965e-10, -3.326036113193709e-10, 3.628852773829294e-11, -3.186473307437154e-11, 5.667801783459936e-10, 2.4501201068005685e-10, -1.1978529279588201e-11, 2.895024220350706e-10, -5.115396994881394e-11, 4.834577183032707e-12] QuasiNewtonMethods.optimum(state) .- 1 = [6.035549837690724e-11, -1.3272094534499956e-10, -9.55264756186125e-11, -1.73182690410556e-10, 3.3507951968658745e-10, 1.643327696143615e-10, 3.5770941764212694e-11, 2.283560007754204e-10, 8.931344552820519e-11, -1.7817769482064705e-10, -3.7944092312613975e-11, 1.299793606079902e-10, -2.679068078492719e-10, -1.842661578876914e-10, -3.398410441945998e-10, 6.60891119608209e-10, 3.1763547347907206e-10, 7.710432292640235e-11, 4.6330250746962065e-10, 1.937487947856198e-10, -3.6476266451757056e-10, -8.039602317211347e-11, 5.197176022875283e-12] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [5.12370146310559e-11, -1.1077727624098088e-10, -9.134160094959043e-11, -3.966493800078297e-12, -2.302269486165187e-12, 1.0326250965420058e-10, 6.329270441085555e-11, 1.204769617402235e-10, 4.6572523615395767e-11, -1.121301940187891e-10, -3.899325307088475e-11, 5.5321303094046925e-11, 1.0344591849786866e-10, -2.2123380905014756e-10, -1.8487211761453182e-10, -6.6342487059500854e-12, -3.689271110829395e-12, 2.0437962433561552e-10, 1.2700707152646373e-10, 2.304025858990144e-10, 9.43103373174381e-11, -2.2121049436663043e-10, -7.855216477281601e-11, 1.1136891409080363e-10] QuasiNewtonMethods.optimum(state) .- 1 = [6.396261298391437e-11, 3.1938895972416503e-12, -3.040245832863775e-11, 7.045342087508288e-11, -1.9248602711741114e-11, -2.4909185825094937e-11, -4.226974326115851e-11, 2.936628717975509e-11, -4.9866000217946294e-11, 2.318722991390132e-11, 1.1562972801471005e-11, -6.96720459103517e-12, 1.2748957445296583e-10, 1.0233147662574993e-11, -6.278544351090432e-11, 1.3529444231608068e-10, -3.8840486382696326e-11, -5.4060866894189985e-11, -8.425082853591448e-11, 5.1702420122978765e-11, -1.0481160384046007e-10, 4.713718304572012e-11, 2.5011770432570302e-11, -1.1887157924661551e-11] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 148 1 149 4m02.1s Method ambiguity | 1 1 9.4s Unbound type parameters | 1 1 0.1s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.4s Stale dependencies | 1 1 6.8s Compat bounds | 3 1 4 11.3s julia | 1 1 0.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") deps | 1 1 0.6s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras | 1 1 10.5s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") weakdeps | 1 1 0.0s Piracy | 1 1 0.2s Persistent tasks | 1 1 30.2s RNG of the outermost testset: Random.Xoshiro(0x9882e34dc3e07055, 0x7bb632e0498ca092, 0x1871320fef6bbb08, 0xd622f5d8e2dcd732, 0x60d02f2c81aadb91) ERROR: LoadError: Some tests did not pass: 148 passed, 1 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 273.1s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.12/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2535 [3] test @ /opt/julia/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2384 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.12/Pkg/src/API.jl:538 [5] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.12/Pkg/src/API.jl:169 [6] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.12/Pkg/src/API.jl:157 [7] test @ /opt/julia/share/julia/stdlib/v1.12/Pkg/src/API.jl:157 [inlined] [8] #test#81 @ /opt/julia/share/julia/stdlib/v1.12/Pkg/src/API.jl:156 [inlined] [9] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:223 [10] include(mod::Module, _path::String) @ Base ./Base.jl:306 [11] exec_options(opts::Base.JLOptions) @ Base ./client.jl:317 [12] _start() @ Base ./client.jl:550 in expression starting at /PkgEval.jl/scripts/evaluate.jl:214 PkgEval failed after 524.2s: package has test failures