Package evaluation to test IterativeLQR on Julia 1.12.4 (422f456051*) started at 2026-01-29T10:23:24.090 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.12` Set-up completed after 8.24s ################################################################################ # Installation # Installing IterativeLQR... Resolving package versions... Updating `~/.julia/environments/v1.12/Project.toml` [605048dd] + IterativeLQR v0.2.3 Updating `~/.julia/environments/v1.12/Manifest.toml` ⌅ [47edcb42] + ADTypes v0.2.7 ⌅ [c3fe647b] + AbstractAlgebra v0.27.10 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.43 ⌅ [79e6a3ab] + Adapt v3.7.2 [66dad0bd] + AliasTables v1.1.3 [dce04be8] + ArgCheck v2.5.0 ⌃ [4fba245c] + ArrayInterface v7.7.1 [30b0a656] + ArrayInterfaceCore v0.1.29 ⌅ [15f4f7f2] + AutoHashEquals v0.2.0 [198e06fe] + BangBang v0.4.7 [9718e550] + Baselet v0.1.1 ⌅ [e2ed5e7c] + Bijections v0.1.10 [d360d2e6] + ChainRulesCore v1.26.0 [861a8166] + Combinatorics v1.1.0 [38540f10] + CommonSolve v0.2.6 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.18.1 [b152e2b5] + CompositeTypes v0.1.4 [a33af91c] + CompositionsBase v0.1.2 ⌅ [187b0558] + ConstructionBase v1.5.6 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 ⌅ [864edb3b] + DataStructures v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [244e2a9f] + DefineSingletons v0.1.2 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [31c24e10] + Distributions v0.25.123 [ffbed154] + DocStringExtensions v0.9.5 ⌅ [5b8099bc] + DomainSets v0.5.14 ⌅ [7c1d4256] + DynamicPolynomials v0.4.6 [4e289a0a] + EnumX v1.0.6 [e2ba6199] + ExprTools v0.1.10 [5789e2e9] + FileIO v1.17.1 [1a297f60] + FillArrays v1.16.0 [59287772] + Formatting v0.4.3 ⌅ [f6369f11] + ForwardDiff v0.10.39 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 ⌅ [46192b85] + GPUArraysCore v0.1.5 ⌅ [0b43b601] + Groebner v0.2.11 ⌅ [d5909c97] + GroupsCore v0.4.2 [34004b35] + HypergeometricFunctions v0.3.28 [615f187c] + IfElse v0.1.1 [22cec73e] + InitialValues v0.3.1 [18e54dd8] + IntegerMathUtils v0.1.3 [8197267c] + IntervalSets v0.7.13 [3587e190] + InverseFunctions v0.1.17 [92d709cd] + IrrationalConstants v0.2.6 [605048dd] + IterativeLQR v0.2.3 [82899510] + IteratorInterfaceExtensions v1.0.0 ⌅ [033835bb] + JLD2 v0.4.55 [692b3bcd] + JLLWrappers v1.7.1 [b964fa9f] + LaTeXStrings v1.4.0 ⌃ [2ee39098] + LabelledArrays v1.15.1 ⌅ [984bce1d] + LambertW v0.4.6 ⌅ [23fbe1c1] + Latexify v0.15.21 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.16 ⌅ [e9d8d322] + Metatheory v1.3.5 [128add7d] + MicroCollections v0.2.0 [e1d29d7a] + Missings v1.2.0 ⌅ [102ac46a] + MultivariatePolynomials v0.4.7 [d8a4904e] + MutableArithmetics v1.6.7 [77ba4419] + NaNMath v1.1.3 [bac558e1] + OrderedCollections v1.8.1 [90014a1f] + PDMats v0.11.37 [d96e819e] + Parameters v0.12.3 ⌅ [d236fae5] + PreallocationTools v0.4.24 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [27ebfcd6] + Primes v0.5.7 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [fb686558] + RandomExtensions v0.4.4 [3cdcf5f2] + RecipesBase v1.3.4 ⌅ [731186ca] + RecursiveArrayTools v2.38.10 [189a3867] + Reexport v1.2.2 [42d2dcc6] + Referenceables v0.1.3 [ae029012] + Requires v1.3.1 [79098fc4] + Rmath v0.9.0 [7e49a35a] + RuntimeGeneratedFunctions v0.5.16 ⌅ [0bca4576] + SciMLBase v1.98.1 ⌅ [c0aeaf25] + SciMLOperators v0.3.12 [6c6a2e73] + Scratch v1.3.0 [efcf1570] + Setfield v1.1.2 [66db9d55] + SnoopPrecompile v1.0.3 [a2af1166] + SortingAlgorithms v1.2.2 [276daf66] + SpecialFunctions v2.6.1 [171d559e] + SplittablesBase v0.1.15 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 [2913bbd2] + StatsBase v0.34.10 [4c63d2b9] + StatsFuns v1.5.2 ⌅ [2efcf032] + SymbolicIndexingInterface v0.2.2 ⌅ [d1185830] + SymbolicUtils v0.19.11 ⌅ [0c5d862f] + Symbolics v4.14.0 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.1 ⌅ [8ea1fca8] + TermInterface v0.2.3 [ac1d9e8a] + ThreadsX v0.1.12 [a759f4b9] + TimerOutputs v0.5.29 [3bb67fe8] + TranscodingStreams v0.11.3 [28d57a85] + Transducers v0.4.85 [a2a6695c] + TreeViews v0.3.0 [781d530d] + TruncatedStacktraces v1.4.0 [3a884ed6] + UnPack v1.0.2 [700de1a5] + ZygoteRules v0.2.7 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.12.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.12.1 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.12.0 [f489334b] + StyledStrings v1.11.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.15.0+0 [e37daf67] + LibGit2_jll v1.9.0+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.11.4 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.7+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [bea87d4a] + SuiteSparse_jll v7.8.3+2 [83775a58] + Zlib_jll v1.3.1+2 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.64.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 7.85s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling packages... 8277.9 ms ✓ SciMLOperators 3512.3 ms ? DomainSets 2919.1 ms ✓ Transducers → TransducersReferenceablesExt 2399.4 ms ✓ Transducers → TransducersAdaptExt 1718.8 ms ✓ SciMLOperators → SciMLOperatorsStaticArraysCoreExt 1725.7 ms ✓ SciMLOperators → SciMLOperatorsSparseArraysExt 8040.9 ms ✓ ThreadsX 29737.6 ms ✓ SciMLBase 37915.8 ms ✓ Metatheory 107041.4 ms ✓ SymbolicUtils 7514.2 ms ? Symbolics 7998.9 ms ? IterativeLQR 9 dependencies successfully precompiled in 224 seconds. 183 already precompiled. 3 dependencies failed but may be precompilable after restarting julia 3 dependencies had output during precompilation: ┌ IterativeLQR │ WARNING: Constructor for type "Number" was extended in `DomainSets` without explicit qualification or import. │ NOTE: Assumed "Number" refers to `Base.Number`. This behavior is deprecated and may differ in future versions.` │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function Number end`. │ Hint: To silence the warning, qualify `Number` as `Base.Number` in the method signature or explicitly `import Base: Number`. │ WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/K4CRG/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. │ ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. └ ┌ DomainSets │ WARNING: Constructor for type "Number" was extended in `DomainSets` without explicit qualification or import. │ NOTE: Assumed "Number" refers to `Base.Number`. This behavior is deprecated and may differ in future versions.` │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function Number end`. │ Hint: To silence the warning, qualify `Number` as `Base.Number` in the method signature or explicitly `import Base: Number`. │ WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/K4CRG/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. │ ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. └ ┌ Symbolics │ WARNING: Constructor for type "Number" was extended in `DomainSets` without explicit qualification or import. │ NOTE: Assumed "Number" refers to `Base.Number`. This behavior is deprecated and may differ in future versions.` │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function Number end`. │ Hint: To silence the warning, qualify `Number` as `Base.Number` in the method signature or explicitly `import Base: Number`. │ WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/K4CRG/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. │ ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. └ Precompilation completed after 235.98s ################################################################################ # Testing # Testing IterativeLQR Status `/tmp/jl_kmXGVU/Project.toml` [6e4b80f9] BenchmarkTools v1.6.3 ⌅ [f6369f11] ForwardDiff v0.10.39 [605048dd] IterativeLQR v0.2.3 ⌅ [0c5d862f] Symbolics v4.14.0 [37e2e46d] LinearAlgebra v1.12.0 [2f01184e] SparseArrays v1.12.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_kmXGVU/Manifest.toml` ⌅ [47edcb42] ADTypes v0.2.7 ⌅ [c3fe647b] AbstractAlgebra v0.27.10 [1520ce14] AbstractTrees v0.4.5 [7d9f7c33] Accessors v0.1.43 ⌅ [79e6a3ab] Adapt v3.7.2 [66dad0bd] AliasTables v1.1.3 [dce04be8] ArgCheck v2.5.0 ⌃ [4fba245c] ArrayInterface v7.7.1 [30b0a656] ArrayInterfaceCore v0.1.29 ⌅ [15f4f7f2] AutoHashEquals v0.2.0 [198e06fe] BangBang v0.4.7 [9718e550] Baselet v0.1.1 [6e4b80f9] BenchmarkTools v1.6.3 ⌅ [e2ed5e7c] Bijections v0.1.10 [d360d2e6] ChainRulesCore v1.26.0 [861a8166] Combinatorics v1.1.0 [38540f10] CommonSolve v0.2.6 [bbf7d656] CommonSubexpressions v0.3.1 [34da2185] Compat v4.18.1 [b152e2b5] CompositeTypes v0.1.4 [a33af91c] CompositionsBase v0.1.2 ⌅ [187b0558] ConstructionBase v1.5.6 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 ⌅ [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [31c24e10] Distributions v0.25.123 [ffbed154] DocStringExtensions v0.9.5 ⌅ [5b8099bc] DomainSets v0.5.14 ⌅ [7c1d4256] DynamicPolynomials v0.4.6 [4e289a0a] EnumX v1.0.6 [e2ba6199] ExprTools v0.1.10 [5789e2e9] FileIO v1.17.1 [1a297f60] FillArrays v1.16.0 [59287772] Formatting v0.4.3 ⌅ [f6369f11] ForwardDiff v0.10.39 [069b7b12] FunctionWrappers v1.1.3 [77dc65aa] FunctionWrappersWrappers v0.1.3 ⌅ [46192b85] GPUArraysCore v0.1.5 ⌅ [0b43b601] Groebner v0.2.11 ⌅ [d5909c97] GroupsCore v0.4.2 [34004b35] HypergeometricFunctions v0.3.28 [615f187c] IfElse v0.1.1 [22cec73e] InitialValues v0.3.1 [18e54dd8] IntegerMathUtils v0.1.3 [8197267c] IntervalSets v0.7.13 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.6 [605048dd] IterativeLQR v0.2.3 [82899510] IteratorInterfaceExtensions v1.0.0 ⌅ [033835bb] JLD2 v0.4.55 [692b3bcd] JLLWrappers v1.7.1 [682c06a0] JSON v1.4.0 [b964fa9f] LaTeXStrings v1.4.0 ⌃ [2ee39098] LabelledArrays v1.15.1 ⌅ [984bce1d] LambertW v0.4.6 ⌅ [23fbe1c1] Latexify v0.15.21 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 ⌅ [e9d8d322] Metatheory v1.3.5 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 ⌅ [102ac46a] MultivariatePolynomials v0.4.7 [d8a4904e] MutableArithmetics v1.6.7 [77ba4419] NaNMath v1.1.3 [bac558e1] OrderedCollections v1.8.1 [90014a1f] PDMats v0.11.37 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.3 ⌅ [d236fae5] PreallocationTools v0.4.24 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [27ebfcd6] Primes v0.5.7 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [fb686558] RandomExtensions v0.4.4 [3cdcf5f2] RecipesBase v1.3.4 ⌅ [731186ca] RecursiveArrayTools v2.38.10 [189a3867] Reexport v1.2.2 [42d2dcc6] Referenceables v0.1.3 [ae029012] Requires v1.3.1 [79098fc4] Rmath v0.9.0 [7e49a35a] RuntimeGeneratedFunctions v0.5.16 ⌅ [0bca4576] SciMLBase v1.98.1 ⌅ [c0aeaf25] SciMLOperators v0.3.12 [6c6a2e73] Scratch v1.3.0 [efcf1570] Setfield v1.1.2 [66db9d55] SnoopPrecompile v1.0.3 [a2af1166] SortingAlgorithms v1.2.2 [276daf66] SpecialFunctions v2.6.1 [171d559e] SplittablesBase v0.1.15 [90137ffa] StaticArrays v1.9.16 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 [2913bbd2] StatsBase v0.34.10 [4c63d2b9] StatsFuns v1.5.2 [ec057cc2] StructUtils v2.6.2 ⌅ [2efcf032] SymbolicIndexingInterface v0.2.2 ⌅ [d1185830] SymbolicUtils v0.19.11 ⌅ [0c5d862f] Symbolics v4.14.0 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 ⌅ [8ea1fca8] TermInterface v0.2.3 [ac1d9e8a] ThreadsX v0.1.12 [a759f4b9] TimerOutputs v0.5.29 [3bb67fe8] TranscodingStreams v0.11.3 [28d57a85] Transducers v0.4.85 [a2a6695c] TreeViews v0.3.0 [781d530d] TruncatedStacktraces v1.4.0 [3a884ed6] UnPack v1.0.2 [700de1a5] ZygoteRules v0.2.7 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.12.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.12.1 [de0858da] Printf v1.11.0 [9abbd945] Profile v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.12.0 [f489334b] StyledStrings v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.15.0+0 [e37daf67] LibGit2_jll v1.9.0+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.11.4 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [458c3c95] OpenSSL_jll v3.5.4+0 [bea87d4a] SuiteSparse_jll v7.8.3+2 [83775a58] Zlib_jll v1.3.1+2 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.64.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... Precompiling packages... 3493.4 ms ? DomainSets Info Given Symbolics was explicitly requested, output will be shown live  WARNING: Constructor for type "Number" was extended in `DomainSets` without explicit qualification or import.  NOTE: Assumed "Number" refers to `Base.Number`. This behavior is deprecated and may differ in future versions.`  NOTE: This behavior may have differed in Julia versions prior to 1.12.  Hint: If you intended to create a new generic function of the same name, use `function Number end`.  Hint: To silence the warning, qualify `Number` as `Base.Number` in the method signature or explicitly `import Base: Number`. WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/K4CRG/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. 6951.0 ms ? Symbolics WARNING: Constructor for type "Number" was extended in `DomainSets` without explicit qualification or import. NOTE: Assumed "Number" refers to `Base.Number`. This behavior is deprecated and may differ in future versions.` NOTE: This behavior may have differed in Julia versions prior to 1.12. Hint: If you intended to create a new generic function of the same name, use `function Number end`. Hint: To silence the warning, qualify `Number` as `Base.Number` in the method signature or explicitly `import Base: Number`. WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/K4CRG/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. Precompiling packages... Info Given DomainSets was explicitly requested, output will be shown live  WARNING: Constructor for type "Number" was extended in `DomainSets` without explicit qualification or import.  NOTE: Assumed "Number" refers to `Base.Number`. This behavior is deprecated and may differ in future versions.`  NOTE: This behavior may have differed in Julia versions prior to 1.12.  Hint: If you intended to create a new generic function of the same name, use `function Number end`.  Hint: To silence the warning, qualify `Number` as `Base.Number` in the method signature or explicitly `import Base: Number`. WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/K4CRG/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. 3457.1 ms ? DomainSets WARNING: Constructor for type "Number" was extended in `DomainSets` without explicit qualification or import. NOTE: Assumed "Number" refers to `Base.Number`. This behavior is deprecated and may differ in future versions.` NOTE: This behavior may have differed in Julia versions prior to 1.12. Hint: If you intended to create a new generic function of the same name, use `function Number end`. Hint: To silence the warning, qualify `Number` as `Base.Number` in the method signature or explicitly `import Base: Number`. WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/K4CRG/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. Precompiling packages... 1867.1 ms ✓ Accessors → IntervalSetsExt 1 dependency successfully precompiled in 2 seconds. 14 already precompiled. WARNING: Constructor for type "Number" was extended in `DomainSets` without explicit qualification or import. NOTE: Assumed "Number" refers to `Base.Number`. This behavior is deprecated and may differ in future versions.` NOTE: This behavior may have differed in Julia versions prior to 1.12. Hint: If you intended to create a new generic function of the same name, use `function Number end`. Hint: To silence the warning, qualify `Number` as `Base.Number` in the method signature or explicitly `import Base: Number`. WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/K4CRG/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. WARNING: Wrapping `Vararg` directly in UnionAll is deprecated (wrap the tuple instead). You may need to write `f(x::Vararg{T})` rather than `f(x::Vararg{<:T})` or `f(x::Vararg{T}) where T` instead of `f(x::Vararg{T} where T)`. To make this warning an error, and hence obtain a stack trace, use `julia --depwarn=error`. Precompiling packages... 7373.9 ms ✓ SciMLOperators 1817.9 ms ✓ TruncatedStacktraces 1750.3 ms ✓ SciMLOperators → SciMLOperatorsStaticArraysCoreExt 1821.2 ms ✓ SciMLOperators → SciMLOperatorsSparseArraysExt 19249.2 ms ✓ SciMLBase 5 dependencies successfully precompiled in 33 seconds. 61 already precompiled. Precompiling packages... 20490.5 ms ✓ AbstractAlgebra 6193.2 ms ✓ Groebner 2 dependencies successfully precompiled in 27 seconds. 29 already precompiled. 1 dependency had output during precompilation: ┌ AbstractAlgebra │ WARNING: Constructor for type "Matrix" was extended in `AbstractAlgebra` without explicit qualification or import. │ NOTE: Assumed "Matrix" refers to `Base.Matrix`. This behavior is deprecated and may differ in future versions.` │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function Matrix end`. │ Hint: To silence the warning, qualify `Matrix` as `Base.Matrix` in the method signature or explicitly `import Base: Matrix`. └ WARNING: Use of Code.get_symbolify is deprecated, use get_rewrites instead. likely near /home/pkgeval/.julia/packages/Symbolics/UrqtQ/src/build_function.jl:130 Precompiling packages... 8273.1 ms ✓ StatsBase 2616.6 ms ✓ PDMats → StatsBaseExt 11014.6 ms ✓ Distributions 3 dependencies successfully precompiled in 25 seconds. 46 already precompiled. Precompiling packages... 1280.7 ms ✓ StatsFuns → StatsFunsInverseFunctionsExt 1 dependency successfully precompiled in 2 seconds. 21 already precompiled. Precompiling packages... 4722.4 ms ✓ Distributions → DistributionsTestExt 1 dependency successfully precompiled in 6 seconds. 51 already precompiled. Precompiling packages... 7841.5 ms ✓ Distributions → DistributionsChainRulesCoreExt 1 dependency successfully precompiled in 10 seconds. 54 already precompiled. Precompiling packages... 8497.6 ms ✓ Latexify 1 dependency successfully precompiled in 9 seconds. 14 already precompiled. Precompiling packages... 2706.4 ms ? DomainSets 41181.4 ms ✓ JLD2 3115.3 ms ? Symbolics Info Given IterativeLQR was explicitly requested, output will be shown live  ┌ Warning: Module Symbolics with build ID ffffffff-ffff-ffff-9946-4626861c9050 is missing from the cache. │ This may mean Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] does not support precompilation but is imported by a module that does. └ @ Base loading.jl:2641 628.7 ms ? IterativeLQR 1 dependency successfully precompiled in 51 seconds. 185 already precompiled. 2 dependencies precompiled but different versions are currently loaded. Restart julia to access the new versions. Otherwise, loading dependents of these packages may trigger further precompilation to work with the unexpected versions. 3 dependencies failed but may be precompilable after restarting julia 3 dependencies had output during precompilation: ┌ IterativeLQR │ [Output was shown above] └ ┌ DomainSets │ WARNING: Constructor for type "Number" was extended in `DomainSets` without explicit qualification or import. │ NOTE: Assumed "Number" refers to `Base.Number`. This behavior is deprecated and may differ in future versions.` │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function Number end`. │ Hint: To silence the warning, qualify `Number` as `Base.Number` in the method signature or explicitly `import Base: Number`. │ WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/K4CRG/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. │ ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. └ ┌ Symbolics │ ┌ Warning: Module DomainSets with build ID ffffffff-ffff-ffff-091b-f705ff4ab00d is missing from the cache. │ │ This may mean DomainSets [5b8099bc-c8ec-5219-889f-1d9e522a28bf] does not support precompilation but is imported by a module that does. │ └ @ Base loading.jl:2641 └ ┌ Warning: Module Symbolics with build ID ffffffff-ffff-ffff-9946-4626861c9050 is missing from the cache. │ This may mean Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] does not support precompilation but is imported by a module that does. └ @ Base loading.jl:2641 Test Summary: | Pass Total Time Objective | 7 7 40.2s Test Summary: | Pass Total Time Dynamics | 4 4 21.4s Test Summary: | Pass Total Time Constraints | 12 12 16.8s ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University al iter: 1 ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University iter: 1 cost: 10.410042202472347 gradient_norm: 5.121546683973332 max_violation: 3.15067238864828 step_size: 1.0 iter: 2 cost: 6.352823900867668 gradient_norm: 2.585553715499251 max_violation: 3.1309190420152855 step_size: 1.0 iter: 3 cost: 5.536127478766759 gradient_norm: 1.7127227174987827 max_violation: 3.1229826985699924 step_size: 1.0 iter: 4 cost: 5.249360606562821 gradient_norm: 1.277339849932114 max_violation: 3.1189872752044687 step_size: 1.0 iter: 5 cost: 5.116558695591819 gradient_norm: 1.0175748581870734 max_violation: 3.1165885777596385 step_size: 1.0 iter: 6 cost: 5.044405025526038 gradient_norm: 0.8452971006165106 max_violation: 3.1149894232049316 step_size: 1.0 iter: 7 cost: 5.0008937497028185 gradient_norm: 0.7227761582539769 max_violation: 3.1138472457335133 step_size: 1.0 iter: 8 cost: 4.972651116822009 gradient_norm: 0.6312144454925284 max_violation: 3.1129906745711193 step_size: 1.0 iter: 9 cost: 4.953286978077753 gradient_norm: 0.5602108661800478 max_violation: 3.11232449630515 step_size: 1.0 iter: 10 cost: 4.939435322062445 gradient_norm: 0.5035487899064408 max_violation: 3.111791584517757 step_size: 1.0 iter: 11 cost: 4.9291863051696545 gradient_norm: 0.4572860561456488 max_violation: 3.1113555880115116 step_size: 1.0 iter: 12 cost: 4.92139086254775 gradient_norm: 0.41880281214075304 max_violation: 3.1109922740533813 step_size: 1.0 iter: 13 cost: 4.915324027787625 gradient_norm: 0.3862903874310862 max_violation: 3.110684867051706 step_size: 1.0 iter: 14 cost: 4.910510079961172 gradient_norm: 0.3584600934199356 max_violation: 3.110421385039558 step_size: 1.0 iter: 15 cost: 4.906626362308386 gradient_norm: 0.3343689940443464 max_violation: 3.110193041639544 step_size: 1.0 iter: 16 cost: 4.903447773488543 gradient_norm: 0.3133112967020439 max_violation: 3.1099932473400194 step_size: 1.0 iter: 17 cost: 4.900813399670711 gradient_norm: 0.29474824513322206 max_violation: 3.109816963292017 step_size: 1.0 iter: 18 cost: 4.898605740870511 gradient_norm: 0.2782614850295328 max_violation: 3.1096602705258767 step_size: 1.0 iter: 19 cost: 4.896737377976712 gradient_norm: 0.26352122143136864 max_violation: 3.10952007521655 step_size: 1.0 iter: 20 cost: 4.895142183466289 gradient_norm: 0.2502639708076688 max_violation: 3.1093939023769654 step_size: 1.0 iter: 21 cost: 4.8937693886306475 gradient_norm: 0.23827669723075967 max_violation: 3.1092797485011903 step_size: 1.0 iter: 22 cost: 4.89257949356391 gradient_norm: 0.22738529352243514 max_violation: 3.1091759743992267 step_size: 1.0 iter: 23 cost: 4.8915413936560235 gradient_norm: 0.21744607993564638 max_violation: 3.1090812259902902 step_size: 1.0 iter: 24 cost: 4.890630325980751 gradient_norm: 0.20833943692888895 max_violation: 3.108994374899408 step_size: 1.0 al iter: 2 iter: 1 cost: 56.267707379211 gradient_norm: 6.71823223964164 max_violation: 2.937746250646234 step_size: 1.0 iter: 2 cost: 55.79149148955082 gradient_norm: 3.1729461756942765 max_violation: 2.940615897875864 step_size: 1.0 iter: 3 cost: 55.70413542910192 gradient_norm: 2.0754482805156718 max_violation: 2.9414035530490668 step_size: 1.0 iter: 4 cost: 55.6735476017586 gradient_norm: 1.5417477625748104 max_violation: 2.9417563582871225 step_size: 1.0 iter: 5 cost: 55.659373030969405 gradient_norm: 1.2263193885776742 max_violation: 2.941951762684459 step_size: 1.0 iter: 6 cost: 55.651664067844685 gradient_norm: 1.0180301700159964 max_violation: 2.9420739338718995 step_size: 1.0 iter: 7 cost: 55.64701070324303 gradient_norm: 0.870230017754511 max_violation: 2.9421565897111535 step_size: 1.0 iter: 8 cost: 55.64398748706403 gradient_norm: 0.7599143486716233 max_violation: 2.942215710429668 step_size: 1.0 iter: 9 cost: 55.6419129091231 gradient_norm: 0.6744295441753971 max_violation: 2.9422597846703966 step_size: 1.0 iter: 10 cost: 55.640427752708824 gradient_norm: 0.6062405314074466 max_violation: 2.9422937115151764 step_size: 1.0 iter: 11 cost: 55.63932807246161 gradient_norm: 0.5505806166988023 max_violation: 2.9423205029396025 step_size: 1.0 iter: 12 cost: 55.63849108930402 gradient_norm: 0.5042871826056103 max_violation: 2.942342105448143 step_size: 1.0 al iter: 3 iter: 1 cost: 477.6839527316772 gradient_norm: 138.08560538255853 max_violation: 2.2688843685564946 step_size: 1.0 iter: 2 cost: 404.03740350621325 gradient_norm: 155.4710637402773 max_violation: 1.767375577474564 step_size: 1.0 iter: 3 cost: 343.1361293843797 gradient_norm: 109.78369947326718 max_violation: 1.5530820509671337 step_size: 1.0 iter: 4 cost: 311.67789742907206 gradient_norm: 89.80407790973958 max_violation: 1.3963605685759637 step_size: 1.0 iter: 5 cost: 295.6747755964734 gradient_norm: 80.9837197579969 max_violation: 1.303351272812778 step_size: 1.0 iter: 6 cost: 280.2866737653914 gradient_norm: 74.0603171946739 max_violation: 1.2028671597980718 step_size: 1.0 iter: 7 cost: 267.84491195973857 gradient_norm: 67.12854937993643 max_violation: 1.1136865005780652 step_size: 1.0 iter: 8 cost: 258.2187941881997 gradient_norm: 71.06928122272419 max_violation: 1.042968607255787 step_size: 1.0 iter: 9 cost: 250.7803102949099 gradient_norm: 74.07447842007691 max_violation: 0.9882559163112004 step_size: 1.0 iter: 10 cost: 244.7562611150514 gradient_norm: 77.05661921787471 max_violation: 0.9445892741108426 step_size: 1.0 iter: 11 cost: 239.84025517683116 gradient_norm: 76.97934245208675 max_violation: 0.9080575340583854 step_size: 1.0 iter: 12 cost: 236.16207762223175 gradient_norm: 72.49384099016531 max_violation: 0.8774693699545004 step_size: 1.0 iter: 13 cost: 233.38471036942175 gradient_norm: 66.43180013907204 max_violation: 0.8523261137351392 step_size: 1.0 iter: 14 cost: 231.1407042000876 gradient_norm: 60.58271749064236 max_violation: 0.8315431434447813 step_size: 1.0 iter: 15 cost: 229.27506843028712 gradient_norm: 55.37281560399952 max_violation: 0.8140894202982882 step_size: 1.0 iter: 16 cost: 227.705797059451 gradient_norm: 64.11841479752614 max_violation: 0.7991986008622329 step_size: 1.0 iter: 17 cost: 226.37369185375343 gradient_norm: 74.35175515139585 max_violation: 0.7863194275107679 step_size: 1.0 iter: 18 cost: 225.2322554082152 gradient_norm: 81.50626888869968 max_violation: 0.7750499128839903 step_size: 1.0 iter: 19 cost: 224.24473571196876 gradient_norm: 86.37032741759784 max_violation: 0.7650904325337327 step_size: 1.0 iter: 20 cost: 223.38223526522322 gradient_norm: 89.5400618957263 max_violation: 0.7562128343762073 step_size: 1.0 iter: 21 cost: 222.6221178111099 gradient_norm: 91.45624912028454 max_violation: 0.7482400858761236 step_size: 1.0 iter: 22 cost: 221.94666839634812 gradient_norm: 92.44331564479167 max_violation: 0.7410325952888437 step_size: 1.0 iter: 23 cost: 221.34199811531448 gradient_norm: 92.7407382378537 max_violation: 0.7344787821450431 step_size: 1.0 iter: 24 cost: 220.79716522133904 gradient_norm: 92.52633196250028 max_violation: 0.728488399923148 step_size: 1.0 iter: 25 cost: 220.3034797872365 gradient_norm: 91.93302011680524 max_violation: 0.7229876835693734 step_size: 1.0 iter: 26 cost: 219.85396270786214 gradient_norm: 91.06081042372733 max_violation: 0.71791574403772 step_size: 1.0 iter: 27 cost: 219.44293329626296 gradient_norm: 89.98536627513882 max_violation: 0.7132218450475212 step_size: 1.0 iter: 28 cost: 219.0657013387001 gradient_norm: 88.76418859435222 max_violation: 0.7088633243259257 step_size: 1.0 iter: 29 cost: 218.71834079006783 gradient_norm: 87.44112003863663 max_violation: 0.7048039963090469 step_size: 1.0 iter: 30 cost: 218.3975246751998 gradient_norm: 86.04966151128039 max_violation: 0.7010129184385891 step_size: 1.0 iter: 31 cost: 218.1004042767331 gradient_norm: 84.61543766829621 max_violation: 0.6974634328207614 step_size: 1.0 iter: 32 cost: 217.82451961345745 gradient_norm: 83.15804486378883 max_violation: 0.6941324163943641 step_size: 1.0 iter: 33 cost: 217.56773180972834 gradient_norm: 81.69244578436209 max_violation: 0.6909996890961443 step_size: 1.0 iter: 34 cost: 217.32817083807797 gradient_norm: 80.23002816710623 max_violation: 0.6880475421542949 step_size: 1.0 iter: 35 cost: 217.10419422302445 gradient_norm: 78.77941267945266 max_violation: 0.6852603582983883 step_size: 1.0 iter: 36 cost: 216.8943537420513 gradient_norm: 77.3470723048691 max_violation: 0.6826243029132746 step_size: 1.0 iter: 37 cost: 216.69736811881398 gradient_norm: 75.9378093087202 max_violation: 0.6801270705071056 step_size: 1.0 iter: 38 cost: 216.51210032735256 gradient_norm: 74.555124062274 max_violation: 0.6777576747712568 step_size: 1.0 iter: 39 cost: 216.3375385305831 gradient_norm: 73.20150136727617 max_violation: 0.6755062733607535 step_size: 1.0 iter: 40 cost: 216.17277994143183 gradient_norm: 71.87863355749774 max_violation: 0.6733640206100246 step_size: 1.0 iter: 41 cost: 216.0170170723584 gradient_norm: 70.58759493543342 max_violation: 0.6713229429360652 step_size: 1.0 iter: 42 cost: 215.86952596109833 gradient_norm: 69.32897858802542 max_violation: 0.6693758328248247 step_size: 1.0 iter: 43 cost: 215.72965604722293 gradient_norm: 68.10300399716112 max_violation: 0.6675161581568974 step_size: 1.0 iter: 44 cost: 215.59682143779713 gradient_norm: 66.90960188639423 max_violation: 0.6657379842832234 step_size: 1.0 iter: 45 cost: 215.47049334857064 gradient_norm: 65.74848125598628 max_violation: 0.6640359067652155 step_size: 1.0 iter: 46 cost: 215.35019354450736 gradient_norm: 64.61918242985432 max_violation: 0.6624049930857856 step_size: 1.0 iter: 47 cost: 215.23548863305294 gradient_norm: 63.521119079498796 max_violation: 0.6608407319457235 step_size: 1.0 iter: 48 cost: 215.12598508738944 gradient_norm: 62.45361153364939 max_violation: 0.6593389890044077 step_size: 1.0 iter: 49 cost: 215.02132489635667 gradient_norm: 61.415913178280675 max_violation: 0.6578959681193126 step_size: 1.0 iter: 50 cost: 214.92118175373804 gradient_norm: 60.40723136369482 max_violation: 0.6565081772965593 step_size: 1.0 iter: 51 cost: 214.82525771288232 gradient_norm: 59.42674393413453 max_violation: 0.6551723986928213 step_size: 1.0 iter: 52 cost: 214.73328024370394 gradient_norm: 58.47361226184713 max_violation: 0.65388566211355 step_size: 1.0 iter: 53 cost: 214.64499963838685 gradient_norm: 57.546991485020094 max_violation: 0.6526452215385681 step_size: 1.0 iter: 54 cost: 214.56018671991197 gradient_norm: 56.646038505759634 max_violation: 0.6514485342771814 step_size: 1.0 iter: 55 cost: 214.47863081410904 gradient_norm: 55.769918192018245 max_violation: 0.650293242414004 step_size: 1.0 iter: 56 cost: 214.4001379514983 gradient_norm: 54.917808138432406 max_violation: 0.6491771562560387 step_size: 1.0 iter: 57 cost: 214.32452926989714 gradient_norm: 54.08890227078843 max_violation: 0.6480982395327359 step_size: 1.0 iter: 58 cost: 214.2516395927785 gradient_norm: 53.282413522818366 max_violation: 0.647054596135602 step_size: 1.0 iter: 59 cost: 214.18131616177675 gradient_norm: 52.49757576963183 max_violation: 0.6460444582131601 step_size: 1.0 iter: 60 cost: 214.11341750464013 gradient_norm: 51.73364516632566 max_violation: 0.6450661754619422 step_size: 1.0 iter: 61 cost: 214.04781242242578 gradient_norm: 50.98990101180763 max_violation: 0.6441182054753192 step_size: 1.0 iter: 62 cost: 213.9843790818511 gradient_norm: 50.26564623496716 max_violation: 0.6431991050299617 step_size: 1.0 iter: 63 cost: 213.92300420055477 gradient_norm: 49.560207581819846 max_violation: 0.6423075222051384 step_size: 1.0 iter: 64 cost: 213.86358231457726 gradient_norm: 48.87293556722876 max_violation: 0.6414421892432367 step_size: 1.0 iter: 65 cost: 213.80601511873328 gradient_norm: 48.203204242816405 max_violation: 0.6406019160713017 step_size: 1.0 iter: 66 cost: 213.75021087171342 gradient_norm: 47.550410822976716 max_violation: 0.6397855844131248 step_size: 1.0 iter: 67 cost: 213.69608385875728 gradient_norm: 46.913975202668304 max_violation: 0.6389921424299412 step_size: 1.0 iter: 68 cost: 213.64355390561624 gradient_norm: 46.29333939448437 max_violation: 0.638220599835059 step_size: 1.0 iter: 69 cost: 213.59254593827916 gradient_norm: 45.68796690713799 max_violation: 0.6374700234341897 step_size: 1.0 iter: 70 cost: 213.54298958359607 gradient_norm: 45.09734208310586 max_violation: 0.6367395330487247 step_size: 1.0 iter: 71 cost: 213.49481880650316 gradient_norm: 44.52096940986698 max_violation: 0.6360282977841205 step_size: 1.0 iter: 72 cost: 213.44797158005358 gradient_norm: 43.958372816082395 max_violation: 0.6353355326096954 step_size: 1.0 iter: 73 cost: 213.40238958489482 gradient_norm: 43.40909496193929 max_violation: 0.6346604952199129 step_size: 1.0 iter: 74 cost: 213.35801793521378 gradient_norm: 42.8726965309236 max_violation: 0.6340024831504594 step_size: 1.0 iter: 75 cost: 213.31480492850477 gradient_norm: 42.348755528552196 max_violation: 0.633360831125259 step_size: 1.0 iter: 76 cost: 213.2727018168115 gradient_norm: 41.83686659265888 max_violation: 0.6327349086131302 step_size: 1.0 iter: 77 cost: 213.2316625973436 gradient_norm: 41.3366403184115 max_violation: 0.6321241175749677 step_size: 1.0 iter: 78 cost: 213.19164382060848 gradient_norm: 40.847702600761295 max_violation: 0.6315278903843327 step_size: 1.0 iter: 79 cost: 213.15260441438406 gradient_norm: 40.36969399600887 max_violation: 0.6309456879060593 step_size: 1.0 iter: 80 cost: 213.1145055220463 gradient_norm: 39.90226910391433 max_violation: 0.6303769977190194 step_size: 1.0 iter: 81 cost: 213.0773103539146 gradient_norm: 39.44509597107279 max_violation: 0.6298213324705828 step_size: 1.0 iter: 82 cost: 213.04098405042006 gradient_norm: 38.99785551610294 max_violation: 0.6292782283515135 step_size: 1.0 iter: 83 cost: 213.00549355601973 gradient_norm: 38.56024097686002 max_violation: 0.6287472436811257 step_size: 1.0 iter: 84 cost: 212.97080750289436 gradient_norm: 38.13195737949331 max_violation: 0.6282279575935124 step_size: 1.0 iter: 85 cost: 212.93689610356003 gradient_norm: 37.71272102934413 max_violation: 0.6277199688165225 step_size: 1.0 iter: 86 cost: 212.90373105160882 gradient_norm: 37.30225902310009 max_violation: 0.6272228945359015 step_size: 1.0 iter: 87 cost: 212.871285429875 gradient_norm: 36.90030878192171 max_violation: 0.626736369337773 step_size: 1.0 iter: 88 cost: 212.83953362538898 gradient_norm: 36.50661760485736 max_violation: 0.6262600442232138 step_size: 1.0 iter: 89 cost: 212.8084512505392 gradient_norm: 36.12094224199326 max_violation: 0.6257935856892307 step_size: 1.0 iter: 90 cost: 212.7780150699266 gradient_norm: 35.743048486734324 max_violation: 0.6253366748710114 step_size: 1.0 iter: 91 cost: 212.74820293243073 gradient_norm: 35.37271078638388 max_violation: 0.6248890067406911 step_size: 1.0 iter: 92 cost: 212.71899370806776 gradient_norm: 35.00971187054979 max_violation: 0.6244502893583745 step_size: 1.0 iter: 93 cost: 212.69036722924187 gradient_norm: 34.653842396448816 max_violation: 0.6240202431714317 step_size: 1.0 iter: 94 cost: 212.6623042360454 gradient_norm: 34.304900610608115 max_violation: 0.6235986003585285 step_size: 1.0 iter: 95 cost: 212.63478632527776 gradient_norm: 33.96269202605551 max_violation: 0.6231851042150423 step_size: 1.0 iter: 96 cost: 212.60779590289474 gradient_norm: 33.627029114563356 max_violation: 0.622779508576873 step_size: 1.0 iter: 97 cost: 212.58131613962246 gradient_norm: 33.29773101313632 max_violation: 0.6223815772798797 step_size: 1.0 iter: 98 cost: 212.5553309294844 gradient_norm: 32.974623244003006 max_violation: 0.6219910836523734 step_size: 1.0 iter: 99 cost: 212.52982485102945 gradient_norm: 32.65753744775284 max_violation: 0.6216078100383613 step_size: 1.0 iter: 100 cost: 212.50478313104838 gradient_norm: 32.34631112872167 max_violation: 0.6212315473493599 step_size: 1.0 al iter: 4 iter: 1 cost: 448.0283730641404 gradient_norm: 249.1297455250219 max_violation: 0.36795936177647226 step_size: 1.0 iter: 2 cost: 418.34454034429774 gradient_norm: 480.3485816825994 max_violation: 0.3536408130391706 step_size: 0.125 iter: 3 cost: 393.43525569335753 gradient_norm: 1600.907481129245 max_violation: 0.3408323523796053 step_size: 0.25 iter: 4 cost: 380.9730866844556 gradient_norm: 3680.7921745807507 max_violation: 0.34030951173568713 step_size: 0.5 iter: 5 cost: 356.3702562940264 gradient_norm: 4640.409616037994 max_violation: 0.3058469731831299 step_size: 1.0 iter: 6 cost: 329.1069246714068 gradient_norm: 3795.14982156136 max_violation: 0.27668441542082345 step_size: 1.0 iter: 7 cost: 313.23262782171133 gradient_norm: 3201.6635315309227 max_violation: 0.25637856465437237 step_size: 1.0 iter: 8 cost: 302.78476565218693 gradient_norm: 2761.1917384341764 max_violation: 0.2404771999547255 step_size: 1.0 iter: 9 cost: 295.4448059840565 gradient_norm: 2423.994847065863 max_violation: 0.23192573850648257 step_size: 1.0 iter: 10 cost: 290.05334875269733 gradient_norm: 2158.856572314176 max_violation: 0.22961101144232687 step_size: 1.0 iter: 11 cost: 285.9579644514851 gradient_norm: 1945.4444340815826 max_violation: 0.22782235572512288 step_size: 1.0 iter: 12 cost: 282.76230089147055 gradient_norm: 1770.1937293302713 max_violation: 0.2263558228468301 step_size: 1.0 iter: 13 cost: 280.21235845132264 gradient_norm: 1623.8074722896306 max_violation: 0.22510685329311286 step_size: 1.0 iter: 14 cost: 278.1386460380584 gradient_norm: 1499.7403666842456 max_violation: 0.2240158113159878 step_size: 1.0 iter: 15 cost: 276.42432134176397 gradient_norm: 1393.267856434455 max_violation: 0.22304556174921286 step_size: 1.0 iter: 16 cost: 274.9866107215002 gradient_norm: 1300.9017724547123 max_violation: 0.222171284623375 step_size: 1.0 iter: 17 cost: 273.76548691372335 gradient_norm: 1220.0142744736372 max_violation: 0.2213754290429466 step_size: 1.0 iter: 18 cost: 272.7165187670848 gradient_norm: 1148.5897331822348 max_violation: 0.22064501648144264 step_size: 1.0 iter: 19 cost: 271.80621768107585 gradient_norm: 1085.057108134613 max_violation: 0.21997010136338835 step_size: 1.0 iter: 20 cost: 271.0089290731908 gradient_norm: 1028.1741967657285 max_violation: 0.21934284038321472 step_size: 1.0 iter: 21 cost: 270.304707784666 gradient_norm: 976.9460797199669 max_violation: 0.21875690110257429 step_size: 1.0 iter: 22 cost: 269.6778359918174 gradient_norm: 930.5665954660017 max_violation: 0.2182070695701661 step_size: 1.0 iter: 23 cost: 269.11577006468934 gradient_norm: 888.3756323126195 max_violation: 0.21768898010309545 step_size: 1.0 iter: 24 cost: 268.6083795191056 gradient_norm: 849.827483318539 max_violation: 0.21719892314232947 step_size: 1.0 iter: 25 cost: 268.147388454488 gradient_norm: 814.4670690412561 max_violation: 0.21673370486407562 step_size: 1.0 iter: 26 cost: 267.72595968029003 gradient_norm: 781.9118426742532 max_violation: 0.21629054230143696 step_size: 1.0 iter: 27 cost: 267.3383809752706 gradient_norm: 751.837858170947 max_violation: 0.2158669836945064 step_size: 1.0 iter: 28 cost: 266.9798256296551 gradient_norm: 723.968929172174 max_violation: 0.2154608474823969 step_size: 1.0 iter: 29 cost: 266.6461680232238 gradient_norm: 698.0681118680887 max_violation: 0.21507017575824516 step_size: 1.0 iter: 30 cost: 266.3338409936447 gradient_norm: 673.930956615637 max_violation: 0.214693199661522 step_size: 1.0 iter: 31 cost: 266.03972608400915 gradient_norm: 651.3801219924837 max_violation: 0.214328315360524 step_size: 1.0 iter: 32 cost: 265.7610709872499 gradient_norm: 630.2610507536167 max_violation: 0.21397407009072733 step_size: 1.0 iter: 33 cost: 265.4954308966102 gradient_norm: 610.4384825932426 max_violation: 0.21362915812955707 step_size: 1.0 iter: 34 cost: 265.24063202162637 gradient_norm: 591.7936317633674 max_violation: 0.21329242644715318 step_size: 1.0 iter: 35 cost: 264.99475597646585 gradient_norm: 574.2218935482136 max_violation: 0.2129628888460573 step_size: 1.0 iter: 36 cost: 264.75614269032144 gradient_norm: 557.6309661600703 max_violation: 0.21263974554921283 step_size: 1.0 iter: 37 cost: 264.5234067331653 gradient_norm: 541.9392879650104 max_violation: 0.2123224026651669 step_size: 1.0 iter: 38 cost: 264.29545809576354 gradient_norm: 527.0747000610806 max_violation: 0.21201048371800724 step_size: 1.0 iter: 39 cost: 264.0715153620046 gradient_norm: 512.9732586252587 max_violation: 0.211703825117612 step_size: 1.0 iter: 40 cost: 263.85109949952226 gradient_norm: 499.5781455436889 max_violation: 0.2114024505167973 step_size: 1.0 iter: 41 cost: 263.63400177434795 gradient_norm: 486.83865802204787 max_violation: 0.21110652524707874 step_size: 1.0 iter: 42 cost: 263.42022812704914 gradient_norm: 474.7092876525183 max_violation: 0.21081629883151676 step_size: 1.0 iter: 43 cost: 263.2099304228904 gradient_norm: 463.14891417967067 max_violation: 0.21053204731487574 step_size: 1.0 iter: 44 cost: 263.0033381686489 gradient_norm: 452.12013419258614 max_violation: 0.21025402594895093 step_size: 1.0 iter: 45 cost: 262.80070174648745 gradient_norm: 441.5887272264792 max_violation: 0.20998243790206494 step_size: 1.0 iter: 46 cost: 262.6022525185216 gradient_norm: 431.52324352572384 max_violation: 0.20971741919782305 step_size: 1.0 iter: 47 cost: 262.4081797033769 gradient_norm: 421.8946874765473 max_violation: 0.20945903644959696 step_size: 1.0 iter: 48 cost: 262.21862065839105 gradient_norm: 412.6762696496497 max_violation: 0.20920729274986005 step_size: 1.0 iter: 49 cost: 262.03366022744035 gradient_norm: 403.8432051245701 max_violation: 0.20896213758424897 step_size: 1.0 iter: 50 cost: 261.8533352944622 gradient_norm: 395.37254231489106 max_violation: 0.20872347785439693 step_size: 1.0 iter: 51 cost: 261.6776417211139 gradient_norm: 387.24301233439587 max_violation: 0.20849118830406166 step_size: 1.0 iter: 52 cost: 261.50654188060133 gradient_norm: 379.4348931239112 max_violation: 0.20826512054943436 step_size: 1.0 iter: 53 cost: 261.33997179762184 gradient_norm: 371.92988519047486 max_violation: 0.20804511048153973 step_size: 1.0 iter: 54 cost: 261.17784743562345 gradient_norm: 364.7109972677872 max_violation: 0.2078309841120154 step_size: 1.0 iter: 55 cost: 261.0200699889061 gradient_norm: 357.7624409469485 max_violation: 0.20762256206620666 step_size: 1.0 iter: 56 cost: 260.86653020576995 gradient_norm: 351.069533655006 max_violation: 0.207419662963503 step_size: 1.0 iter: 57 cost: 260.71711184648683 gradient_norm: 344.618609470089 max_violation: 0.2072221059131496 step_size: 1.0 iter: 58 cost: 260.5716944059168 gradient_norm: 338.3969373042957 max_violation: 0.20702971232259948 step_size: 1.0 iter: 59 cost: 260.4301552297285 gradient_norm: 332.39264596677475 max_violation: 0.20684230717957242 step_size: 1.0 iter: 60 cost: 260.29237114042235 gradient_norm: 326.5946556295592 max_violation: 0.20665971993573606 step_size: 1.0 iter: 61 cost: 260.1582196722081 gradient_norm: 320.99261520382294 max_violation: 0.2064817850912144 step_size: 1.0 iter: 62 cost: 260.0275799966336 gradient_norm: 315.5768451559232 max_violation: 0.2063083425561092 step_size: 1.0 iter: 63 cost: 259.9003336052558 gradient_norm: 310.3382853030707 max_violation: 0.20613923784694155 step_size: 1.0 iter: 64 cost: 259.776364802375 gradient_norm: 305.268447156957 max_violation: 0.20597432216181177 step_size: 1.0 iter: 65 cost: 259.6555610498741 gradient_norm: 300.3593704084412 max_violation: 0.20581345236732007 step_size: 1.0 iter: 66 cost: 259.53781319732695 gradient_norm: 295.6035831785813 max_violation: 0.20565649092207705 step_size: 1.0 iter: 67 cost: 259.4230156234491 gradient_norm: 290.99406568803636 max_violation: 0.20550330575548426 step_size: 1.0 iter: 68 cost: 259.3110663093697 gradient_norm: 286.52421703223536 max_violation: 0.20535377011571487 step_size: 1.0 iter: 69 cost: 259.2018668597567 gradient_norm: 282.1878247710991 max_violation: 0.20520776239737648 step_size: 1.0 iter: 70 cost: 259.09532248437876 gradient_norm: 277.97903707419476 max_violation: 0.20506516595662605 step_size: 1.0 iter: 71 cost: 258.9913419499394 gradient_norm: 273.8923371824755 max_violation: 0.20492586891950815 step_size: 1.0 iter: 72 cost: 258.88983750989064 gradient_norm: 269.92251997454593 max_violation: 0.2047897639877836 step_size: 1.0 iter: 73 cost: 258.7907248182638 gradient_norm: 266.06467044346397 max_violation: 0.20465674824537805 step_size: 1.0 iter: 74 cost: 258.6939228322049 gradient_norm: 262.31414390924556 max_violation: 0.20452672296765684 step_size: 1.0 iter: 75 cost: 258.5993537069074 gradient_norm: 258.66654781065847 max_violation: 0.20439959343515923 step_size: 1.0 iter: 76 cost: 258.50694268578064 gradient_norm: 255.11772493293373 max_violation: 0.20427526875287727 step_size: 1.0 iter: 77 cost: 258.4166179880805 gradient_norm: 251.66373794410097 max_violation: 0.2041536616758166 step_size: 1.0 iter: 78 cost: 258.3283106956951 gradient_norm: 248.3008551259575 max_violation: 0.20403468844125117 step_size: 1.0 iter: 79 cost: 258.24195464039593 gradient_norm: 245.02553719061555 max_violation: 0.20391826860798457 step_size: 1.0 iter: 80 cost: 258.1574862925432 gradient_norm: 241.83442509381575 max_violation: 0.20380432490261713 step_size: 1.0 iter: 81 cost: 258.07484465198553 gradient_norm: 238.72432875483835 max_violation: 0.20369278307286898 step_size: 1.0 iter: 82 cost: 257.99397114168664 gradient_norm: 235.69221660900286 max_violation: 0.2035835717477683 step_size: 1.0 iter: 83 cost: 257.91480950448454 gradient_norm: 232.7352059224623 max_violation: 0.20347662230462626 step_size: 1.0 iter: 84 cost: 257.8373057032239 gradient_norm: 229.85055380191736 max_violation: 0.20337186874248658 step_size: 1.0 iter: 85 cost: 257.76140782445697 gradient_norm: 227.03564884927056 max_violation: 0.2032692475619018 step_size: 1.0 iter: 86 cost: 257.68706598578075 gradient_norm: 224.2880034005912 max_violation: 0.20316869765069745 step_size: 1.0 iter: 87 cost: 257.61423224686496 gradient_norm: 221.60524630832703 max_violation: 0.2030701601755478 step_size: 1.0 iter: 88 cost: 257.542860524161 gradient_norm: 218.9851162194427 max_violation: 0.20297357847901454 step_size: 1.0 iter: 89 cost: 257.47290650922935 gradient_norm: 216.42545531388 max_violation: 0.20287889798182146 step_size: 1.0 iter: 90 cost: 257.40432759064515 gradient_norm: 213.92420346201132 max_violation: 0.2027860660901184 step_size: 1.0 iter: 91 cost: 257.33708277936853 gradient_norm: 211.47939277614086 max_violation: 0.202695032107441 step_size: 1.0 iter: 92 cost: 257.27113263748896 gradient_norm: 209.08914251793792 max_violation: 0.20260574715114554 step_size: 1.0 iter: 93 cost: 257.206439210232 gradient_norm: 206.75165434032687 max_violation: 0.20251816407307688 step_size: 1.0 iter: 94 cost: 257.1429659611077 gradient_norm: 204.4652078366847 max_violation: 0.2024322373842491 step_size: 1.0 iter: 95 cost: 257.0806777100717 gradient_norm: 202.22815637429113 max_violation: 0.20234792318328854 step_size: 1.0 iter: 96 cost: 257.01954057459466 gradient_norm: 200.0389231919519 max_violation: 0.20226517908849573 step_size: 1.0 iter: 97 cost: 256.9595219134962 gradient_norm: 197.89599774180178 max_violation: 0.20218396417327256 step_size: 1.0 iter: 98 cost: 256.90059027342835 gradient_norm: 195.79793225813245 max_violation: 0.20210423890474605 step_size: 1.0 iter: 99 cost: 256.8427153378945 gradient_norm: 193.7433385366041 max_violation: 0.2020259650854399 step_size: 1.0 iter: 100 cost: 256.7858678786772 gradient_norm: 191.730884910354 max_violation: 0.20194910579778735 step_size: 1.0 al iter: 5 iter: 1 cost: 573.6667814954883 gradient_norm: 28680.027069410753 max_violation: 0.15221502961496897 step_size: 0.5 iter: 2 cost: 532.9681432343617 gradient_norm: 25701.488191542823 max_violation: 0.1480531852113251 step_size: 0.25 iter: 3 cost: 438.99948243846427 gradient_norm: 19541.555832284354 max_violation: 0.13542447029379637 step_size: 1.0 iter: 4 cost: 367.4244954009848 gradient_norm: 14344.713151642907 max_violation: 0.10226929725729692 step_size: 1.0 iter: 5 cost: 334.0684140008111 gradient_norm: 11278.518818862669 max_violation: 0.08326657820531314 step_size: 1.0 iter: 6 cost: 314.69976036467295 gradient_norm: 9271.837830228897 max_violation: 0.06972693452153289 step_size: 1.0 iter: 7 cost: 302.66955138691947 gradient_norm: 7866.969909262171 max_violation: 0.05988965214745634 step_size: 1.0 iter: 8 cost: 294.69314876821915 gradient_norm: 6829.870484623192 max_violation: 0.05244946156740504 step_size: 1.0 iter: 9 cost: 289.12911586576587 gradient_norm: 6033.305343059276 max_violation: 0.04663545244069772 step_size: 1.0 iter: 10 cost: 285.0888002122924 gradient_norm: 5402.495729205431 max_violation: 0.04197116460111722 step_size: 1.0 iter: 11 cost: 282.0581395772963 gradient_norm: 4890.690285738899 max_violation: 0.03814823354287106 step_size: 1.0 iter: 12 cost: 279.72321081552263 gradient_norm: 4467.182462574063 max_violation: 0.0349589013518517 step_size: 1.0 iter: 13 cost: 277.8835386944754 gradient_norm: 4110.979859330025 max_violation: 0.03225832051346744 step_size: 1.0 iter: 14 cost: 276.40621112270827 gradient_norm: 3807.2481117176876 max_violation: 0.02994251961660832 step_size: 1.0 iter: 15 cost: 275.2002648571387 gradient_norm: 3545.2090117282237 max_violation: 0.027934982284047005 step_size: 1.0 iter: 16 cost: 274.2017248051485 gradient_norm: 3316.843925002039 max_violation: 0.026178170218627006 step_size: 1.0 iter: 17 cost: 273.3645197158206 gradient_norm: 3116.0643852311828 max_violation: 0.02462799593925974 step_size: 1.0 iter: 18 cost: 272.6547772375607 gradient_norm: 2938.1647063351934 max_violation: 0.023250116703268486 step_size: 1.0 iter: 19 cost: 272.0471342028279 gradient_norm: 2779.450786519859 max_violation: 0.02201738754175775 step_size: 1.0 iter: 20 cost: 271.5222875551899 gradient_norm: 2636.9823347617166 max_violation: 0.0209080721954516 step_size: 1.0 iter: 21 cost: 271.06533087719265 gradient_norm: 2508.390060501934 max_violation: 0.019904561675928245 step_size: 1.0 iter: 22 cost: 270.664601010665 gradient_norm: 2391.743577872934 max_violation: 0.018992440226116236 step_size: 1.0 iter: 23 cost: 270.3108634076295 gradient_norm: 2285.454341684539 max_violation: 0.01815979368114151 step_size: 1.0 iter: 24 cost: 269.9967270186262 gradient_norm: 2188.203238898026 max_violation: 0.01739668995613186 step_size: 1.0 iter: 25 cost: 269.71621760364 gradient_norm: 2098.885828301186 max_violation: 0.016694783721325934 step_size: 1.0 iter: 26 cost: 269.4644622234519 gradient_norm: 2016.570407649211 max_violation: 0.016047011985759974 step_size: 1.0 iter: 27 cost: 269.23745295639714 gradient_norm: 1940.4655356781138 max_violation: 0.015447357119480754 step_size: 1.0 iter: 28 cost: 269.0318678652431 gradient_norm: 1869.8946127286672 max_violation: 0.014890660516794774 step_size: 1.0 iter: 29 cost: 268.84493387115396 gradient_norm: 1804.2757934511717 max_violation: 0.01437247471803138 step_size: 1.0 iter: 30 cost: 268.67432067067125 gradient_norm: 1743.1059712020594 max_violation: 0.013888945042520029 step_size: 1.0 iter: 31 cost: 268.51805790358947 gradient_norm: 1685.9479030867906 max_violation: 0.013436714087361468 step_size: 1.0 iter: 32 cost: 268.374469914639 gradient_norm: 1632.4197800904046 max_violation: 0.013012844101859322 step_size: 1.0 iter: 33 cost: 268.2421239562699 gradient_norm: 1582.1867173964008 max_violation: 0.01261475345435259 step_size: 1.0 iter: 34 cost: 268.11978875204136 gradient_norm: 1534.9537648647615 max_violation: 0.012240164295687861 step_size: 1.0 iter: 35 cost: 268.00640111307314 gradient_norm: 1490.4601301309299 max_violation: 0.011887059184033988 step_size: 1.0 iter: 36 cost: 267.9010388632811 gradient_norm: 1448.4743758671957 max_violation: 0.011553644931378337 step_size: 1.0 iter: 37 cost: 267.80289874346283 gradient_norm: 1408.79040485642 max_violation: 0.011238322307446813 step_size: 1.0 iter: 38 cost: 267.7112782720345 gradient_norm: 1371.2240861874407 max_violation: 0.010939660523470285 step_size: 1.0 iter: 39 cost: 267.6255607707386 gradient_norm: 1335.610406252435 max_violation: 0.010656375638811055 step_size: 1.0 iter: 40 cost: 267.54520293780314 gradient_norm: 1301.801051767122 max_violation: 0.010387312204840127 step_size: 1.0 iter: 41 cost: 267.4697244835402 gradient_norm: 1269.6623502688465 max_violation: 0.010131427593674691 step_size: 1.0 iter: 42 cost: 267.39869944503755 gradient_norm: 1239.0735079462531 max_violation: 0.00988777856496259 step_size: 1.0 iter: 43 cost: 267.33174887506163 gradient_norm: 1209.925095875998 max_violation: 0.009655509706338439 step_size: 1.0 iter: 44 cost: 267.26853466133224 gradient_norm: 1182.1177447928778 max_violation: 0.00943384344989695 step_size: 1.0 iter: 45 cost: 267.20875428002614 gradient_norm: 1155.5610156389166 max_violation: 0.009222071419662248 step_size: 1.0 iter: 46 cost: 267.15213632491526 gradient_norm: 1130.1724188634284 max_violation: 0.009019546907386489 step_size: 1.0 iter: 47 cost: 267.0984366832993 gradient_norm: 1105.876560148789 max_violation: 0.008825678308975404 step_size: 1.0 iter: 48 cost: 267.04743525351967 gradient_norm: 1082.6043939427398 max_violation: 0.008639923381431602 step_size: 1.0 iter: 49 cost: 266.99893311773974 gradient_norm: 1060.2925692403228 max_violation: 0.008461784202955958 step_size: 1.0 iter: 50 cost: 266.9527500989233 gradient_norm: 1038.8828546109946 max_violation: 0.00829080273803151 step_size: 1.0 iter: 51 cost: 266.90872264320046 gradient_norm: 1018.3216314855958 max_violation: 0.008126556924330952 step_size: 1.0 iter: 52 cost: 266.86670197876634 gradient_norm: 998.5594464311881 max_violation: 0.007968657211213093 step_size: 1.0 iter: 53 cost: 266.82655251060817 gradient_norm: 979.5506145751474 max_violation: 0.007816743490291822 step_size: 1.0 iter: 54 cost: 266.7881504169531 gradient_norm: 961.2528674596479 max_violation: 0.007670482367022502 step_size: 1.0 iter: 55 cost: 266.75138241886003 gradient_norm: 943.6270396693642 max_violation: 0.007529564730230809 step_size: 1.0 iter: 56 cost: 266.7161446987862 gradient_norm: 926.6367892930873 max_violation: 0.007393703581933253 step_size: 1.0 iter: 57 cost: 266.6823419477875 gradient_norm: 910.2483480834886 max_violation: 0.007262632095913157 step_size: 1.0 iter: 58 cost: 266.64988652402747 gradient_norm: 894.4302976613753 max_violation: 0.00713610187708591 step_size: 1.0 iter: 59 cost: 266.6186977078968 gradient_norm: 879.1533686723817 max_violation: 0.007013881398035937 step_size: 1.0 iter: 60 cost: 266.5887010411941 gradient_norm: 864.390260188541 max_violation: 0.006895754591957903 step_size: 1.0 iter: 61 cost: 266.55982773961784 gradient_norm: 850.1154770171078 max_violation: 0.006781519584093343 step_size: 1.0 iter: 62 cost: 266.53201416936867 gradient_norm: 836.3051828757889 max_violation: 0.006670987545983165 step_size: 1.0 iter: 63 cost: 266.50520137993124 gradient_norm: 822.9370676689023 max_violation: 0.0065639816589713185 step_size: 1.0 iter: 64 cost: 266.4793346861873 gradient_norm: 809.9902272924771 max_violation: 0.0064603361748736265 step_size: 1.0 iter: 65 cost: 266.45436329397006 gradient_norm: 797.4450546141869 max_violation: 0.006359895563362028 step_size: 1.0 iter: 66 cost: 266.430239963931 gradient_norm: 785.2831404644128 max_violation: 0.006262513737130715 step_size: 1.0 iter: 67 cost: 266.4069207092587 gradient_norm: 773.4871835315313 max_violation: 0.006168053346261249 step_size: 1.0 iter: 68 cost: 266.3843645233918 gradient_norm: 762.0409082829976 max_violation: 0.006076385135041162 step_size: 1.0 iter: 69 cost: 266.3625331343353 gradient_norm: 750.9289900679759 max_violation: 0.005987387354689178 step_size: 1.0 iter: 70 cost: 266.3413907826333 gradient_norm: 740.1369866909603 max_violation: 0.00590094522649276 step_size: 1.0 iter: 71 cost: 266.3209040204037 gradient_norm: 729.6512758082724 max_violation: 0.0058169504503502445 step_size: 1.0 iter: 72 cost: 266.3010415291608 gradient_norm: 719.4589975734162 max_violation: 0.005735300754261208 step_size: 1.0 iter: 73 cost: 266.2817739544365 gradient_norm: 709.5480020369557 max_violation: 0.005655899480932702 step_size: 1.0 iter: 74 cost: 266.2630737554247 gradient_norm: 699.9068008382749 max_violation: 0.00557865520792078 step_size: 1.0 iter: 75 cost: 266.2449150681027 gradient_norm: 690.5245227826031 max_violation: 0.005503481398134169 step_size: 1.0 iter: 76 cost: 266.2272735804538 gradient_norm: 681.3908729604717 max_violation: 0.0054302960780521214 step_size: 1.0 iter: 77 cost: 266.21012641856356 gradient_norm: 672.4960950600777 max_violation: 0.005359021540926823 step_size: 1.0 iter: 78 cost: 266.1934520425247 gradient_norm: 663.8309366112024 max_violation: 0.005289584072945663 step_size: 1.0 iter: 79 cost: 266.1772301511711 gradient_norm: 655.3866168785343 max_violation: 0.005221913700140801 step_size: 1.0 iter: 80 cost: 266.1614415947962 gradient_norm: 647.1547971758214 max_violation: 0.0051559439542949725 step_size: 1.0 iter: 81 cost: 266.1460682950939 gradient_norm: 639.1275534066522 max_violation: 0.005091611656294681 step_size: 1.0 iter: 82 cost: 266.1310931716292 gradient_norm: 631.2973506091431 max_violation: 0.005028856715213692 step_size: 1.0 iter: 83 cost: 266.1165000742438 gradient_norm: 623.6570193703411 max_violation: 0.00496762194208189 step_size: 1.0 iter: 84 cost: 266.1022737208384 gradient_norm: 616.199733919638 max_violation: 0.004907852876836705 step_size: 1.0 iter: 85 cost: 266.0883996400485 gradient_norm: 608.9189917884734 max_violation: 0.004849497627583577 step_size: 1.0 iter: 86 cost: 266.07486411837465 gradient_norm: 601.8085948950287 max_violation: 0.0047925067210664585 step_size: 1.0 iter: 87 cost: 266.061654151368 gradient_norm: 594.8626319438781 max_violation: 0.004736832963478266 step_size: 1.0 iter: 88 cost: 266.04875739851695 gradient_norm: 588.0754620248188 max_violation: 0.0046824313107016735 step_size: 1.0 iter: 89 cost: 266.0361621415152 gradient_norm: 581.4416993346834 max_violation: 0.004629258747402609 step_size: 1.0 iter: 90 cost: 266.0238572456175 gradient_norm: 574.9561989147983 max_violation: 0.00457727417411713 step_size: 1.0 iter: 91 cost: 266.0118321238285 gradient_norm: 568.614043344367 max_violation: 0.004526438301868718 step_size: 1.0 iter: 92 cost: 266.0000767036733 gradient_norm: 562.4105302897578 max_violation: 0.004476713553538958 step_size: 1.0 iter: 93 cost: 265.9885813963587 gradient_norm: 556.3411608838983 max_violation: 0.0044280639717731995 step_size: 1.0 iter: 94 cost: 265.9773370681038 gradient_norm: 550.4016288336514 max_violation: 0.004380455132639849 step_size: 1.0 iter: 95 cost: 265.9663350134784 gradient_norm: 544.5878102249158 max_violation: 0.004333854064788589 step_size: 1.0 iter: 96 cost: 265.95556693059393 gradient_norm: 538.8957539758369 max_violation: 0.004288229173730618 step_size: 1.0 iter: 97 cost: 265.9450248979785 gradient_norm: 533.3216728690221 max_violation: 0.004243550170685784 step_size: 1.0 iter: 98 cost: 265.9347013530267 gradient_norm: 527.8619351491781 max_violation: 0.004199788005900484 step_size: 1.0 iter: 99 cost: 265.924589071891 gradient_norm: 522.5130566268566 max_violation: 0.004156914805962031 step_size: 1.0 iter: 100 cost: 265.91468115070097 gradient_norm: 517.2716932577482 max_violation: 0.004114903814875448 step_size: 1.0 Test Summary: | Pass Total Time Solve: acrobot | 1 1 6m12.5s ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University al iter: 1 ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University iter: 1 cost: 261.2537798738653 gradient_norm: 885.6763002794513 max_violation: 1.1807656674637883 step_size: 1.0 iter: 2 cost: 69.99469960068207 gradient_norm: 376.08357134305186 max_violation: 0.766429330514935 step_size: 1.0 iter: 3 cost: 34.54977364243712 gradient_norm: 193.82532155965612 max_violation: 0.5197983639867401 step_size: 1.0 iter: 4 cost: 22.539037764763805 gradient_norm: 111.7024513072441 max_violation: 0.4196158004810382 step_size: 1.0 iter: 5 cost: 17.035664625358486 gradient_norm: 69.14467761180012 max_violation: 0.37323467952446965 step_size: 1.0 iter: 6 cost: 14.062954292496705 gradient_norm: 45.607762506571646 max_violation: 0.34188493819304266 step_size: 1.0 iter: 7 cost: 12.272616098482587 gradient_norm: 31.744197515746393 max_violation: 0.3195794259745215 step_size: 1.0 iter: 8 cost: 11.110324366994146 gradient_norm: 28.481409161315987 max_violation: 0.30283107541267995 step_size: 1.0 iter: 9 cost: 10.312569004061332 gradient_norm: 25.725116998667954 max_violation: 0.28976177042682494 step_size: 1.0 iter: 10 cost: 9.740976036112503 gradient_norm: 24.387263942641127 max_violation: 0.27926490324135944 step_size: 1.0 iter: 11 cost: 9.317182750501477 gradient_norm: 23.27948171916522 max_violation: 0.270642534988605 step_size: 1.0 iter: 12 cost: 8.99409364960746 gradient_norm: 22.133658624582665 max_violation: 0.2634309744732146 step_size: 1.0 iter: 13 cost: 8.742010825607291 gradient_norm: 21.003710960323513 max_violation: 0.25730926409585564 step_size: 1.0 iter: 14 cost: 8.541448500865746 gradient_norm: 19.918615937273927 max_violation: 0.2520477436399142 step_size: 1.0 iter: 15 cost: 8.379187541400649 gradient_norm: 18.892634093629162 max_violation: 0.24747750308208794 step_size: 1.0 iter: 16 cost: 8.246001295724474 gradient_norm: 17.931443843477687 max_violation: 0.243471404916475 step_size: 1.0 iter: 17 cost: 8.135289721002943 gradient_norm: 17.035806102872616 max_violation: 0.2399318426078958 step_size: 1.0 iter: 18 cost: 8.042229513640368 gradient_norm: 16.203750801407285 max_violation: 0.23678258854916034 step_size: 1.0 iter: 19 cost: 7.963228813262942 gradient_norm: 15.431879152844623 max_violation: 0.23396321467267356 step_size: 1.0 iter: 20 cost: 7.895567773780683 gradient_norm: 14.71613518888006 max_violation: 0.2314251818556059 step_size: 1.0 iter: 21 cost: 7.837155934003607 gradient_norm: 14.05225742418412 max_violation: 0.2291290411089797 step_size: 1.0 iter: 22 cost: 7.786364917793634 gradient_norm: 13.436037151680694 max_violation: 0.22704239307714413 step_size: 1.0 iter: 23 cost: 7.741910858273423 gradient_norm: 12.86345977297741 max_violation: 0.22513837563732508 step_size: 1.0 iter: 24 cost: 7.702770335780684 gradient_norm: 12.330775619639935 max_violation: 0.223394526194177 step_size: 1.0 iter: 25 cost: 7.668119333509148 gradient_norm: 11.834528666306948 max_violation: 0.22179191431193956 step_size: 1.0 iter: 26 cost: 7.637288274827675 gradient_norm: 11.37156056170258 max_violation: 0.2203144723692816 step_size: 1.0 iter: 27 cost: 7.609728473089355 gradient_norm: 10.939000679422454 max_violation: 0.21894847327438605 step_size: 1.0 iter: 28 cost: 7.5849867970528555 gradient_norm: 10.534248743252592 max_violation: 0.21768211877573584 step_size: 1.0 iter: 29 cost: 7.562686328832223 gradient_norm: 10.154954010172425 max_violation: 0.21650521190799044 step_size: 1.0 iter: 30 cost: 7.542511446200534 gradient_norm: 9.798993394781991 max_violation: 0.2154088941268837 step_size: 1.0 iter: 31 cost: 7.5241962083383624 gradient_norm: 9.464449922833648 max_violation: 0.21438543266983068 step_size: 1.0 iter: 32 cost: 7.507515233952561 gradient_norm: 9.149592283243631 max_violation: 0.21342804726960818 step_size: 1.0 iter: 33 cost: 7.492276478169418 gradient_norm: 8.852855866270925 max_violation: 0.21253076796176984 step_size: 1.0 iter: 34 cost: 7.478315469141725 gradient_norm: 8.572825443102449 max_violation: 0.2116883176538611 step_size: 1.0 iter: 35 cost: 7.465490676384057 gradient_norm: 8.308219503864 max_violation: 0.21089601456018237 step_size: 1.0 iter: 36 cost: 7.453679763543525 gradient_norm: 8.057876191788143 max_violation: 0.21014969068297518 step_size: 1.0 iter: 37 cost: 7.442776537525081 gradient_norm: 7.820740728824099 max_violation: 0.20944562333843297 step_size: 1.0 iter: 38 cost: 7.432688449752018 gradient_norm: 7.595854208610376 max_violation: 0.2087804773531028 step_size: 1.0 iter: 39 cost: 7.423334538118871 gradient_norm: 7.382343627146472 max_violation: 0.2081512560379437 step_size: 1.0 iter: 40 cost: 7.414643722894794 gradient_norm: 7.179413023837764 max_violation: 0.20755525942109987 step_size: 1.0 iter: 41 cost: 7.406553388595878 gradient_norm: 6.986335612818852 max_violation: 0.20699004851539815 step_size: 1.0 iter: 42 cost: 7.399008198200706 gradient_norm: 6.802446793745567 max_violation: 0.20645341462638545 step_size: 1.0 iter: 43 cost: 7.391959097146254 gradient_norm: 6.627137941422962 max_violation: 0.2059433528896557 step_size: 1.0 iter: 44 cost: 7.385362473123337 gradient_norm: 6.45985088395812 max_violation: 0.20545803937275675 step_size: 1.0 iter: 45 cost: 7.379179444392276 gradient_norm: 6.300072989008616 max_violation: 0.2049958111936343 step_size: 1.0 iter: 46 cost: 7.373375254601611 gradient_norm: 6.147332786703153 max_violation: 0.2045551492013793 step_size: 1.0 iter: 47 cost: 7.367918756251549 gradient_norm: 6.001196066353447 max_violation: 0.2041346628427032 step_size: 1.0 iter: 48 cost: 7.362781968245788 gradient_norm: 5.861262391436014 max_violation: 0.20373307689846154 step_size: 1.0 iter: 49 cost: 7.357939695613454 gradient_norm: 5.727161984084324 max_violation: 0.20334921982621523 step_size: 1.0 iter: 50 cost: 7.353369201599009 gradient_norm: 5.598552936261505 max_violation: 0.2029820134865652 step_size: 1.0 iter: 51 cost: 7.349049924024784 gradient_norm: 5.475118710010506 max_violation: 0.20263046406533292 step_size: 1.0 iter: 52 cost: 7.34496322921335 gradient_norm: 5.35656589373689 max_violation: 0.20229365403219823 step_size: 1.0 iter: 53 cost: 7.341092197882067 gradient_norm: 5.242622185541038 max_violation: 0.2019707350005815 step_size: 1.0 iter: 54 cost: 7.337421438340977 gradient_norm: 5.133034578164165 max_violation: 0.20166092137318348 step_size: 1.0 iter: 55 cost: 7.333936923079356 gradient_norm: 5.0275677230832505 max_violation: 0.2013634846738297 step_size: 1.0 iter: 56 cost: 7.330625845447401 gradient_norm: 4.926002454107622 max_violation: 0.20107774848119497 step_size: 1.0 iter: 57 cost: 7.327476493652688 gradient_norm: 4.828134453115053 max_violation: 0.20080308389097912 step_size: 1.0 iter: 58 cost: 7.324478139716949 gradient_norm: 4.733773042605958 max_violation: 0.2005389054433122 step_size: 1.0 iter: 59 cost: 7.321620941393538 gradient_norm: 4.64274009160189 max_violation: 0.20028466746088736 step_size: 1.0 iter: 60 cost: 7.318895855341548 gradient_norm: 4.554869022929657 max_violation: 0.20003986075024294 step_size: 1.0 iter: 61 cost: 7.316294560101643 gradient_norm: 4.47000391137999 max_violation: 0.19980400962503886 step_size: 1.0 iter: 62 cost: 7.313809387626099 gradient_norm: 4.387998663338512 max_violation: 0.1995766692150367 step_size: 1.0 iter: 63 cost: 7.3114332622926375 gradient_norm: 4.318891416810995 max_violation: 0.19935742302960957 step_size: 1.0 iter: 64 cost: 7.309159646479266 gradient_norm: 4.2614430161156545 max_violation: 0.19914588074805462 step_size: 1.0 iter: 65 cost: 7.306982491904377 gradient_norm: 4.205440961225905 max_violation: 0.19894167621241277 step_size: 1.0 iter: 66 cost: 7.304896196042877 gradient_norm: 4.150833848380019 max_violation: 0.1987444656016777 step_size: 1.0 iter: 67 cost: 7.302895563020863 gradient_norm: 4.09757253229489 max_violation: 0.19855392576839925 step_size: 1.0 iter: 68 cost: 7.300975768469271 gradient_norm: 4.0456100154202375 max_violation: 0.19836975272122537 step_size: 1.0 iter: 69 cost: 7.299132327884227 gradient_norm: 3.994901342440709 max_violation: 0.19819166023870682 step_size: 1.0 iter: 70 cost: 7.297361068098634 gradient_norm: 3.945403499836873 max_violation: 0.1980193786011526 step_size: 1.0 iter: 71 cost: 7.295658101519613 gradient_norm: 3.8970753204244346 max_violation: 0.1978526534292424 step_size: 1.0 iter: 72 cost: 7.294019802828746 gradient_norm: 3.8498773926640872 max_violation: 0.19769124461888232 step_size: 1.0 iter: 73 cost: 7.292442787879104 gradient_norm: 3.803771974568054 max_violation: 0.19753492536320216 step_size: 1.0 iter: 74 cost: 7.290923894554755 gradient_norm: 3.7587229120288264 max_violation: 0.19738348125356087 step_size: 1.0 iter: 75 cost: 7.289460165386733 gradient_norm: 3.714695561357109 max_violation: 0.1972367094521399 step_size: 1.0 iter: 76 cost: 7.28804883174277 gradient_norm: 3.671656715862188 max_violation: 0.19709441792968274 step_size: 1.0 iter: 77 cost: 7.286687299430009 gradient_norm: 3.62957453626189 max_violation: 0.1969564247623623 step_size: 1.0 iter: 78 cost: 7.285373135567649 gradient_norm: 3.588418484737847 max_violation: 0.19682255748258193 step_size: 1.0 iter: 79 cost: 7.284104056602718 gradient_norm: 3.548159262458899 max_violation: 0.19669265247897094 step_size: 1.0 iter: 80 cost: 7.282877917356494 gradient_norm: 3.508768750404913 max_violation: 0.19656655444127047 step_size: 1.0 iter: 81 cost: 7.281692701001064 gradient_norm: 3.470219953278031 max_violation: 0.19644411584615984 step_size: 1.0 iter: 82 cost: 7.28054650987663 gradient_norm: 3.432486946391343 max_violation: 0.19632519648074798 step_size: 1.0 iter: 83 cost: 7.2794375570698175 gradient_norm: 3.3955448253297504 max_violation: 0.19620966300036713 step_size: 1.0 iter: 84 cost: 7.2783641586813435 gradient_norm: 3.3593696582735255 max_violation: 0.19609738851796976 step_size: 1.0 iter: 85 cost: 7.277324726719402 gradient_norm: 3.323938440791899 max_violation: 0.1959882522223797 step_size: 1.0 iter: 86 cost: 7.276317762561029 gradient_norm: 3.2892290530176655 max_violation: 0.19588213902326235 step_size: 1.0 iter: 87 cost: 7.275341850930356 gradient_norm: 3.25522021904111 max_violation: 0.19577893922049228 step_size: 1.0 al iter: 2 iter: 1 cost: 7.269944849743791 gradient_norm: 0.48354130657668726 max_violation: 0.0481756108564424 step_size: 1.0 iter: 2 cost: 7.253994869618226 gradient_norm: 0.13733625988558718 max_violation: 0.0017963190921093108 step_size: 1.0 iter: 3 cost: 7.252163371769252 gradient_norm: 0.12093728810343407 max_violation: 0.001811038634711104 step_size: 1.0 iter: 4 cost: 7.251086984969248 gradient_norm: 0.114766263279237 max_violation: 0.0018202529338060547 step_size: 1.0 iter: 5 cost: 7.250360358028719 gradient_norm: 0.1096676429055452 max_violation: 0.0018264790512261264 step_size: 1.0 Test Summary: | Pass Total Time Solve: car | 3 3 43.8s Testing IterativeLQR tests passed Testing completed after 806.1s PkgEval succeeded after 1078.7s