Package evaluation of IterativeLQR on Julia 1.11.4 (8561cc3d68*) started at 2025-03-25T14:17:42.149 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.22s ################################################################################ # Installation # Installing IterativeLQR... Resolving package versions... Updating `~/.julia/environments/v1.11/Project.toml` [605048dd] + IterativeLQR v0.2.3 Updating `~/.julia/environments/v1.11/Manifest.toml` ⌅ [47edcb42] + ADTypes v0.2.7 ⌅ [c3fe647b] + AbstractAlgebra v0.27.10 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 ⌅ [79e6a3ab] + Adapt v3.7.2 [66dad0bd] + AliasTables v1.1.3 [dce04be8] + ArgCheck v2.5.0 ⌃ [4fba245c] + ArrayInterface v7.7.1 [30b0a656] + ArrayInterfaceCore v0.1.29 ⌅ [15f4f7f2] + AutoHashEquals v0.2.0 [198e06fe] + BangBang v0.4.4 [9718e550] + Baselet v0.1.1 [e2ed5e7c] + Bijections v0.1.9 [d360d2e6] + ChainRulesCore v1.25.1 [861a8166] + Combinatorics v1.0.2 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.16.0 [b152e2b5] + CompositeTypes v0.1.4 [a33af91c] + CompositionsBase v0.1.2 ⌅ [187b0558] + ConstructionBase v1.5.6 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [244e2a9f] + DefineSingletons v0.1.2 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [31c24e10] + Distributions v0.25.118 [ffbed154] + DocStringExtensions v0.9.3 ⌅ [5b8099bc] + DomainSets v0.5.14 ⌅ [7c1d4256] + DynamicPolynomials v0.4.6 [4e289a0a] + EnumX v1.0.4 [e2ba6199] + ExprTools v0.1.10 [5789e2e9] + FileIO v1.17.0 [1a297f60] + FillArrays v1.13.0 [59287772] + Formatting v0.4.3 [f6369f11] + ForwardDiff v0.10.38 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 ⌅ [46192b85] + GPUArraysCore v0.1.5 ⌅ [0b43b601] + Groebner v0.2.11 ⌅ [d5909c97] + GroupsCore v0.4.2 [34004b35] + HypergeometricFunctions v0.3.28 [615f187c] + IfElse v0.1.1 [22cec73e] + InitialValues v0.3.1 [18e54dd8] + IntegerMathUtils v0.1.2 [8197267c] + IntervalSets v0.7.10 [3587e190] + InverseFunctions v0.1.17 [92d709cd] + IrrationalConstants v0.2.4 [605048dd] + IterativeLQR v0.2.3 [82899510] + IteratorInterfaceExtensions v1.0.0 ⌅ [033835bb] + JLD2 v0.4.54 [692b3bcd] + JLLWrappers v1.7.0 [b964fa9f] + LaTeXStrings v1.4.0 ⌃ [2ee39098] + LabelledArrays v1.15.1 ⌅ [984bce1d] + LambertW v0.4.6 ⌅ [23fbe1c1] + Latexify v0.15.21 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.15 ⌅ [e9d8d322] + Metatheory v1.3.5 [128add7d] + MicroCollections v0.2.0 [e1d29d7a] + Missings v1.2.0 ⌅ [102ac46a] + MultivariatePolynomials v0.4.7 [d8a4904e] + MutableArithmetics v1.6.4 [77ba4419] + NaNMath v1.1.2 [bac558e1] + OrderedCollections v1.8.0 [90014a1f] + PDMats v0.11.32 [d96e819e] + Parameters v0.12.3 ⌃ [d236fae5] + PreallocationTools v0.4.24 [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [27ebfcd6] + Primes v0.5.7 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [fb686558] + RandomExtensions v0.4.4 [3cdcf5f2] + RecipesBase v1.3.4 ⌅ [731186ca] + RecursiveArrayTools v2.38.10 [189a3867] + Reexport v1.2.2 [42d2dcc6] + Referenceables v0.1.3 [ae029012] + Requires v1.3.1 [79098fc4] + Rmath v0.8.0 [7e49a35a] + RuntimeGeneratedFunctions v0.5.13 ⌅ [0bca4576] + SciMLBase v1.98.1 [c0aeaf25] + SciMLOperators v0.3.13 [6c6a2e73] + Scratch v1.2.1 [efcf1570] + Setfield v1.1.2 [66db9d55] + SnoopPrecompile v1.0.3 [a2af1166] + SortingAlgorithms v1.2.1 [276daf66] + SpecialFunctions v2.5.0 [171d559e] + SplittablesBase v0.1.15 [90137ffa] + StaticArrays v1.9.13 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.0 [2913bbd2] + StatsBase v0.34.4 [4c63d2b9] + StatsFuns v1.3.2 ⌅ [2efcf032] + SymbolicIndexingInterface v0.2.2 ⌅ [d1185830] + SymbolicUtils v0.19.11 ⌅ [0c5d862f] + Symbolics v4.14.0 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.0 ⌅ [8ea1fca8] + TermInterface v0.2.3 [ac1d9e8a] + ThreadsX v0.1.12 [a759f4b9] + TimerOutputs v0.5.28 [3bb67fe8] + TranscodingStreams v0.11.3 [28d57a85] + Transducers v0.4.84 [a2a6695c] + TreeViews v0.3.0 [781d530d] + TruncatedStacktraces v1.4.0 [3a884ed6] + UnPack v1.0.2 [700de1a5] + ZygoteRules v0.2.7 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.6.0 [7b1f6079] + FileWatching v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.2.0 [44cfe95a] + Pkg v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.11.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] + LibCURL_jll v8.6.0+0 [e37daf67] + LibGit2_jll v1.7.2+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.6+0 [14a3606d] + MozillaCACerts_jll v2023.12.12 [4536629a] + OpenBLAS_jll v0.3.27+1 [05823500] + OpenLibm_jll v0.8.1+4 [bea87d4a] + SuiteSparse_jll v7.7.0+0 [83775a58] + Zlib_jll v1.2.13+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 [8e850ede] + nghttp2_jll v1.59.0+0 [3f19e933] + p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 6.31s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 228.82s ################################################################################ # Testing # Testing IterativeLQR Status `/tmp/jl_Y6oM2r/Project.toml` [6e4b80f9] BenchmarkTools v1.6.0 [f6369f11] ForwardDiff v0.10.38 [605048dd] IterativeLQR v0.2.3 ⌅ [0c5d862f] Symbolics v4.14.0 [37e2e46d] LinearAlgebra v1.11.0 [2f01184e] SparseArrays v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_Y6oM2r/Manifest.toml` ⌅ [47edcb42] ADTypes v0.2.7 ⌅ [c3fe647b] AbstractAlgebra v0.27.10 [1520ce14] AbstractTrees v0.4.5 [7d9f7c33] Accessors v0.1.42 ⌅ [79e6a3ab] Adapt v3.7.2 [66dad0bd] AliasTables v1.1.3 [dce04be8] ArgCheck v2.5.0 ⌃ [4fba245c] ArrayInterface v7.7.1 [30b0a656] ArrayInterfaceCore v0.1.29 ⌅ [15f4f7f2] AutoHashEquals v0.2.0 [198e06fe] BangBang v0.4.4 [9718e550] Baselet v0.1.1 [6e4b80f9] BenchmarkTools v1.6.0 [e2ed5e7c] Bijections v0.1.9 [d360d2e6] ChainRulesCore v1.25.1 [861a8166] Combinatorics v1.0.2 [38540f10] CommonSolve v0.2.4 [bbf7d656] CommonSubexpressions v0.3.1 [34da2185] Compat v4.16.0 [b152e2b5] CompositeTypes v0.1.4 [a33af91c] CompositionsBase v0.1.2 ⌅ [187b0558] ConstructionBase v1.5.6 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [31c24e10] Distributions v0.25.118 [ffbed154] DocStringExtensions v0.9.3 ⌅ [5b8099bc] DomainSets v0.5.14 ⌅ [7c1d4256] DynamicPolynomials v0.4.6 [4e289a0a] EnumX v1.0.4 [e2ba6199] ExprTools v0.1.10 [5789e2e9] FileIO v1.17.0 [1a297f60] FillArrays v1.13.0 [59287772] Formatting v0.4.3 [f6369f11] ForwardDiff v0.10.38 [069b7b12] FunctionWrappers v1.1.3 [77dc65aa] FunctionWrappersWrappers v0.1.3 ⌅ [46192b85] GPUArraysCore v0.1.5 ⌅ [0b43b601] Groebner v0.2.11 ⌅ [d5909c97] GroupsCore v0.4.2 [34004b35] HypergeometricFunctions v0.3.28 [615f187c] IfElse v0.1.1 [22cec73e] InitialValues v0.3.1 [18e54dd8] IntegerMathUtils v0.1.2 [8197267c] IntervalSets v0.7.10 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.4 [605048dd] IterativeLQR v0.2.3 [82899510] IteratorInterfaceExtensions v1.0.0 ⌅ [033835bb] JLD2 v0.4.54 [692b3bcd] JLLWrappers v1.7.0 [682c06a0] JSON v0.21.4 [b964fa9f] LaTeXStrings v1.4.0 ⌃ [2ee39098] LabelledArrays v1.15.1 ⌅ [984bce1d] LambertW v0.4.6 ⌅ [23fbe1c1] Latexify v0.15.21 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.15 ⌅ [e9d8d322] Metatheory v1.3.5 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 ⌅ [102ac46a] MultivariatePolynomials v0.4.7 [d8a4904e] MutableArithmetics v1.6.4 [77ba4419] NaNMath v1.1.2 [bac558e1] OrderedCollections v1.8.0 [90014a1f] PDMats v0.11.32 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.1 ⌃ [d236fae5] PreallocationTools v0.4.24 [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [27ebfcd6] Primes v0.5.7 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [fb686558] RandomExtensions v0.4.4 [3cdcf5f2] RecipesBase v1.3.4 ⌅ [731186ca] RecursiveArrayTools v2.38.10 [189a3867] Reexport v1.2.2 [42d2dcc6] Referenceables v0.1.3 [ae029012] Requires v1.3.1 [79098fc4] Rmath v0.8.0 [7e49a35a] RuntimeGeneratedFunctions v0.5.13 ⌅ [0bca4576] SciMLBase v1.98.1 [c0aeaf25] SciMLOperators v0.3.13 [6c6a2e73] Scratch v1.2.1 [efcf1570] Setfield v1.1.2 [66db9d55] SnoopPrecompile v1.0.3 [a2af1166] SortingAlgorithms v1.2.1 [276daf66] SpecialFunctions v2.5.0 [171d559e] SplittablesBase v0.1.15 [90137ffa] StaticArrays v1.9.13 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.0 [2913bbd2] StatsBase v0.34.4 [4c63d2b9] StatsFuns v1.3.2 ⌅ [2efcf032] SymbolicIndexingInterface v0.2.2 ⌅ [d1185830] SymbolicUtils v0.19.11 ⌅ [0c5d862f] Symbolics v4.14.0 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.0 ⌅ [8ea1fca8] TermInterface v0.2.3 [ac1d9e8a] ThreadsX v0.1.12 [a759f4b9] TimerOutputs v0.5.28 [3bb67fe8] TranscodingStreams v0.11.3 [28d57a85] Transducers v0.4.84 [a2a6695c] TreeViews v0.3.0 [781d530d] TruncatedStacktraces v1.4.0 [3a884ed6] UnPack v1.0.2 [700de1a5] ZygoteRules v0.2.7 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.11.0 [de0858da] Printf v1.11.0 [9abbd945] Profile v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.6.0+0 [e37daf67] LibGit2_jll v1.7.2+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.6+0 [14a3606d] MozillaCACerts_jll v2023.12.12 [4536629a] OpenBLAS_jll v0.3.27+1 [05823500] OpenLibm_jll v0.8.1+4 [bea87d4a] SuiteSparse_jll v7.7.0+0 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.59.0+0 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... Precompiling Symbolics... 3071.0 ms ? DomainSets 7057.3 ms ? SciMLBase Info Given Symbolics was explicitly requested, output will be shown live  WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/kyCuf/src/IntervalSets.jl:296 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. 6446.8 ms ? Symbolics WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/kyCuf/src/IntervalSets.jl:296 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. Precompiling DomainSets... Info Given DomainSets was explicitly requested, output will be shown live  WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/kyCuf/src/IntervalSets.jl:296 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. 2896.9 ms ? DomainSets WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/kyCuf/src/IntervalSets.jl:296 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/kyCuf/src/IntervalSets.jl:296 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. WARNING: Wrapping `Vararg` directly in UnionAll is deprecated (wrap the tuple instead). You may need to write `f(x::Vararg{T})` rather than `f(x::Vararg{<:T})` or `f(x::Vararg{T}) where T` instead of `f(x::Vararg{T} where T)`. Precompiling IntervalSetsRecipesBaseExt... 1345.7 ms ✓ IntervalSets → IntervalSetsRecipesBaseExt 1 dependency successfully precompiled in 1 seconds. 9 already precompiled. Precompiling ArrayInterfaceCore... 2033.9 ms ✓ ArrayInterfaceCore 1 dependency successfully precompiled in 2 seconds. 10 already precompiled. Precompiling SciMLBase... 1122.2 ms ✓ TruncatedStacktraces 4340.0 ms ✓ SciMLOperators 2481.7 ms ✓ ZygoteRules 1429.9 ms ✓ SciMLOperators → SciMLOperatorsStaticArraysCoreExt 1428.5 ms ✓ SciMLOperators → SciMLOperatorsSparseArraysExt Info Given SciMLBase was explicitly requested, output will be shown live  WARNING: Method definition islinear(Any) in module SciMLOperators at /home/pkgeval/.julia/packages/SciMLOperators/2UPBq/src/interface.jl:311 overwritten in module SciMLBase at /home/pkgeval/.julia/packages/SciMLBase/szsYq/src/operators/operators.jl:7. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. 5402.5 ms ? SciMLBase 5 dependencies successfully precompiled in 17 seconds. 63 already precompiled. 1 dependencies failed but may be precompilable after restarting julia 1 dependency had output during precompilation: ┌ SciMLBase │ [Output was shown above] └ WARNING: Method definition islinear(Any) in module SciMLOperators at /home/pkgeval/.julia/packages/SciMLOperators/2UPBq/src/interface.jl:311 overwritten in module SciMLBase at /home/pkgeval/.julia/packages/SciMLBase/szsYq/src/operators/operators.jl:7. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. WARNING: Method definition islinear(Any) in module SciMLOperators at /home/pkgeval/.julia/packages/SciMLOperators/2UPBq/src/interface.jl:311 overwritten in module SciMLBase at /home/pkgeval/.julia/packages/SciMLBase/szsYq/src/operators/operators.jl:7. WARNING: Method definition isconstant(Any) in module SciMLOperators at /home/pkgeval/.julia/packages/SciMLOperators/2UPBq/src/interface.jl:254 overwritten in module SciMLBase at /home/pkgeval/.julia/packages/SciMLBase/szsYq/src/operators/operators.jl:8. Precompiling Groebner... 3982.8 ms ✓ Groebner 1 dependency successfully precompiled in 4 seconds. 28 already precompiled. WARNING: Code.get_symbolify is deprecated, use get_rewrites instead. likely near /home/pkgeval/.julia/packages/Symbolics/UrqtQ/src/build_function.jl:130 Precompiling Distributions... 1632.8 ms ✓ PDMats 4094.3 ms ✓ StatsBase 3306.9 ms ✓ StatsFuns 1170.5 ms ✓ FillArrays → FillArraysPDMatsExt 9223.3 ms ✓ Distributions 5 dependencies successfully precompiled in 20 seconds. 46 already precompiled. Precompiling StatsFunsInverseFunctionsExt... 1593.3 ms ✓ StatsFuns → StatsFunsInverseFunctionsExt 1 dependency successfully precompiled in 2 seconds. 27 already precompiled. Precompiling StatsFunsChainRulesCoreExt... 4278.0 ms ✓ StatsFuns → StatsFunsChainRulesCoreExt 1 dependency successfully precompiled in 5 seconds. 30 already precompiled. Precompiling DistributionsTestExt... 3687.3 ms ✓ Distributions → DistributionsTestExt 1 dependency successfully precompiled in 5 seconds. 53 already precompiled. Precompiling DistributionsChainRulesCoreExt... 3656.5 ms ✓ Distributions → DistributionsChainRulesCoreExt 1 dependency successfully precompiled in 5 seconds. 56 already precompiled. Precompiling Latexify... 5376.7 ms ✓ Latexify 1 dependency successfully precompiled in 6 seconds. 12 already precompiled. Precompiling IterativeLQR... 2829.8 ms ? DomainSets 52458.1 ms ✓ JLD2 5603.4 ms ? SciMLBase 3315.6 ms ? Symbolics Info Given IterativeLQR was explicitly requested, output will be shown live  ┌ Warning: Module Symbolics with build ID ffffffff-ffff-ffff-0022-1a7c665f4b7d is missing from the cache. │ This may mean Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] does not support precompilation but is imported by a module that does. └ @ Base loading.jl:2541 1701.9 ms ? IterativeLQR 1 dependency successfully precompiled in 68 seconds. 180 already precompiled. 3 dependencies precompiled but different versions are currently loaded. Restart julia to access the new versions. Otherwise, loading dependents of these packages may trigger further precompilation to work with the unexpected versions. 4 dependencies failed but may be precompilable after restarting julia 4 dependencies had output during precompilation: ┌ SciMLBase │ WARNING: Method definition islinear(Any) in module SciMLOperators at /home/pkgeval/.julia/packages/SciMLOperators/2UPBq/src/interface.jl:311 overwritten in module SciMLBase at /home/pkgeval/.julia/packages/SciMLBase/szsYq/src/operators/operators.jl:7. │ ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. └ ┌ DomainSets │ WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/kyCuf/src/IntervalSets.jl:296 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. │ ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. └ ┌ Symbolics │ ┌ Warning: Module DomainSets with build ID ffffffff-ffff-ffff-0022-1a7e5a2a94d4 is missing from the cache. │ │ This may mean DomainSets [5b8099bc-c8ec-5219-889f-1d9e522a28bf] does not support precompilation but is imported by a module that does. │ └ @ Base loading.jl:2541 └ ┌ IterativeLQR │ [Output was shown above] └ ┌ Warning: Module Symbolics with build ID ffffffff-ffff-ffff-0022-1a7c665f4b7d is missing from the cache. │ This may mean Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] does not support precompilation but is imported by a module that does. └ @ Base loading.jl:2541 Test Summary: | Pass Total Time Objective | 7 7 38.4s Test Summary: | Pass Total Time Dynamics | 4 4 22.1s Test Summary: | Pass Total Time Constraints | 12 12 18.4s ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University al iter: 1 ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University iter: 1 cost: 9.315609693202388 gradient_norm: 7.541262691891182 max_violation: 3.1179078907705935 step_size: 1.0 iter: 2 cost: 5.986845324659423 gradient_norm: 3.683957521073852 max_violation: 3.112900340070316 step_size: 1.0 iter: 3 cost: 5.372308609612633 gradient_norm: 2.424008478488184 max_violation: 3.110942471310913 step_size: 1.0 iter: 4 cost: 5.157166714617117 gradient_norm: 1.804468946573783 max_violation: 3.109962155006382 step_size: 1.0 iter: 5 cost: 5.0575600861419066 gradient_norm: 1.4367285580897202 max_violation: 3.1093741797283267 step_size: 1.0 iter: 6 cost: 5.0034413794113926 gradient_norm: 1.193363975510478 max_violation: 3.108982029127952 step_size: 1.0 iter: 7 cost: 4.9708040124963135 gradient_norm: 1.0204515471919484 max_violation: 3.1087016738640862 step_size: 1.0 iter: 8 cost: 4.949618158231786 gradient_norm: 0.8912843728205855 max_violation: 3.1084911795694747 step_size: 1.0 iter: 9 cost: 4.935091485510447 gradient_norm: 0.791133377832798 max_violation: 3.1083272735175256 step_size: 1.0 iter: 10 cost: 4.924699569512877 gradient_norm: 0.7112120475204025 max_violation: 3.108195997705364 step_size: 1.0 iter: 11 cost: 4.917010023074952 gradient_norm: 0.6459550472072351 max_violation: 3.108088469732542 step_size: 1.0 iter: 12 cost: 4.911161010816486 gradient_norm: 0.5916664387416484 max_violation: 3.1079987664615905 step_size: 1.0 iter: 13 cost: 4.906608762999214 gradient_norm: 0.5457957604213713 max_violation: 3.107922785542754 step_size: 1.0 iter: 14 cost: 4.902996445381553 gradient_norm: 0.5065262592152476 max_violation: 3.1078575952144125 step_size: 1.0 iter: 15 cost: 4.900082026569269 gradient_norm: 0.4725288003838515 max_violation: 3.1078010442841935 step_size: 1.0 iter: 16 cost: 4.897696647190768 gradient_norm: 0.44280858302812715 max_violation: 3.1077515183796844 step_size: 1.0 iter: 17 cost: 4.89571959368032 gradient_norm: 0.41660624980973565 max_violation: 3.107707782213133 step_size: 1.0 iter: 18 cost: 4.8940627174013 gradient_norm: 0.3933321319676792 max_violation: 3.107668874403382 step_size: 1.0 iter: 19 cost: 4.892660434225604 gradient_norm: 0.37252136308140904 max_violation: 3.1076340354920213 step_size: 1.0 iter: 20 cost: 4.891463131929166 gradient_norm: 0.35380252356005865 max_violation: 3.1076026575380586 step_size: 1.0 iter: 21 cost: 4.890432720056462 gradient_norm: 0.3368752853712489 max_violation: 3.1075742481008746 step_size: 1.0 iter: 22 cost: 4.8895395619464 gradient_norm: 0.32149418088138615 max_violation: 3.1075484040357 step_size: 1.0 al iter: 2 iter: 1 cost: 56.26758402160154 gradient_norm: 6.726630272870031 max_violation: 2.9377794816135077 step_size: 1.0 iter: 2 cost: 55.7891015697599 gradient_norm: 3.1773734064163888 max_violation: 2.940657121298874 step_size: 1.0 iter: 3 cost: 55.70133510167606 gradient_norm: 2.0784654197958417 max_violation: 2.9414468419735487 step_size: 1.0 iter: 4 cost: 55.670603673584665 gradient_norm: 1.5440362957500442 max_violation: 2.941800524910334 step_size: 1.0 iter: 5 cost: 55.65636251081605 gradient_norm: 1.2281628079745954 max_violation: 2.9419963932174227 step_size: 1.0 iter: 6 cost: 55.64861729709654 gradient_norm: 1.0195734892121404 max_violation: 2.942118842222169 step_size: 1.0 iter: 7 cost: 55.64394203002627 gradient_norm: 0.8715573272982544 max_violation: 2.942201678522157 step_size: 1.0 iter: 8 cost: 55.64090457164346 gradient_norm: 0.7610787444845997 max_violation: 2.9422609233585857 step_size: 1.0 iter: 9 cost: 55.63882021253749 gradient_norm: 0.6754666901199045 max_violation: 2.9423050866607 step_size: 1.0 iter: 10 cost: 55.63732804870561 gradient_norm: 0.6071755360798985 max_violation: 2.9423390795304045 step_size: 1.0 iter: 11 cost: 55.63622317625001 gradient_norm: 0.5514318241066558 max_violation: 2.942365921181873 step_size: 1.0 iter: 12 cost: 55.63538223869644 gradient_norm: 0.505068401613765 max_violation: 2.942387562705708 step_size: 1.0 al iter: 3 iter: 1 cost: 477.6450105314397 gradient_norm: 137.99395608456265 max_violation: 2.2688834540607603 step_size: 1.0 iter: 2 cost: 404.0091034721705 gradient_norm: 155.62913897669492 max_violation: 1.7673846207842212 step_size: 1.0 iter: 3 cost: 343.1007101683221 gradient_norm: 109.89828167099465 max_violation: 1.5530003590794172 step_size: 1.0 iter: 4 cost: 311.653467756436 gradient_norm: 89.86297421405837 max_violation: 1.3962877546948904 step_size: 1.0 iter: 5 cost: 295.6551927182127 gradient_norm: 81.04271525489044 max_violation: 1.30325855170131 step_size: 1.0 iter: 6 cost: 280.26453360074584 gradient_norm: 74.0908905025853 max_violation: 1.2027547924966377 step_size: 1.0 iter: 7 cost: 267.8241625455948 gradient_norm: 67.16870289928565 max_violation: 1.1135957242012364 step_size: 1.0 iter: 8 cost: 258.1998210262256 gradient_norm: 71.11043399895459 max_violation: 1.0428719763860728 step_size: 1.0 iter: 9 cost: 250.7621285299249 gradient_norm: 74.11466311723278 max_violation: 0.988174192402751 step_size: 1.0 iter: 10 cost: 244.73817394417352 gradient_norm: 77.09015590160621 max_violation: 0.9445073713871861 step_size: 1.0 iter: 11 cost: 239.82498226507104 gradient_norm: 76.98192767878483 max_violation: 0.9079756637095695 step_size: 1.0 iter: 12 cost: 236.15163027713896 gradient_norm: 72.47116406877882 max_violation: 0.8773956331354618 step_size: 1.0 iter: 13 cost: 233.3769837957595 gradient_norm: 66.40160036542957 max_violation: 0.8522632689695966 step_size: 1.0 iter: 14 cost: 231.13443956199427 gradient_norm: 60.5520352733962 max_violation: 0.8314895888570355 step_size: 1.0 iter: 15 cost: 229.26980977119518 gradient_norm: 55.343641167276765 max_violation: 0.8140431840429412 step_size: 1.0 iter: 16 cost: 227.70132082213368 gradient_norm: 64.28334283545173 max_violation: 0.7991581318655738 step_size: 1.0 iter: 17 cost: 226.3698484513072 gradient_norm: 74.49616498397606 max_violation: 0.7862835815413955 step_size: 1.0 iter: 18 cost: 225.2289308783431 gradient_norm: 81.63299697248345 max_violation: 0.775017844881257 step_size: 1.0 iter: 19 cost: 224.2418397411607 gradient_norm: 86.48218437546781 max_violation: 0.7650615079156005 step_size: 1.0 iter: 20 cost: 223.37969529710827 gradient_norm: 89.63948404852945 max_violation: 0.7561865670120418 step_size: 1.0 iter: 21 cost: 222.6198750519155 gradient_norm: 91.54525303505731 max_violation: 0.7482160958967663 step_size: 1.0 iter: 22 cost: 221.94467481292145 gradient_norm: 92.5235434065641 max_violation: 0.7410105802444114 step_size: 1.0 iter: 23 cost: 221.34021415962235 gradient_norm: 92.81352192524704 max_violation: 0.7344584970270356 step_size: 1.0 iter: 24 cost: 220.79555812343978 gradient_norm: 92.59275441888968 max_violation: 0.728469643139348 step_size: 1.0 iter: 25 cost: 220.3020222759517 gradient_norm: 91.99396599617302 max_violation: 0.7229702869733186 step_size: 1.0 iter: 26 cost: 219.85263203504962 gradient_norm: 91.11700716820411 max_violation: 0.7178995657430365 step_size: 1.0 iter: 27 cost: 219.44171046842789 gradient_norm: 90.03741637055779 max_violation: 0.7132067641597644 step_size: 1.0 iter: 28 cost: 219.06457049116952 gradient_norm: 88.81259475564357 max_violation: 0.7088492369980357 step_size: 1.0 iter: 29 cost: 218.7172886650973 gradient_norm: 87.48630483524539 max_violation: 0.7047908127192066 step_size: 1.0 iter: 30 cost: 218.39654018237025 gradient_norm: 86.09198268613275 max_violation: 0.7010005604237217 step_size: 1.0 iter: 31 cost: 218.0994781227998 gradient_norm: 84.6552001450955 max_violation: 0.6974518319891079 step_size: 1.0 iter: 32 cost: 217.82364399246683 gradient_norm: 83.19551021296462 max_violation: 0.6941215125987488 step_size: 1.0 iter: 33 cost: 217.56690014545728 gradient_norm: 81.72783973583053 max_violation: 0.6909894291860645 step_size: 1.0 iter: 34 cost: 217.32737757133978 gradient_norm: 80.26354661578677 max_violation: 0.6880378789479829 step_size: 1.0 iter: 35 cost: 217.10343463686462 gradient_norm: 78.8112265210699 max_violation: 0.6852512497309435 step_size: 1.0 iter: 36 cost: 216.89362381849372 gradient_norm: 77.37733135780003 max_violation: 0.6826157113270765 step_size: 1.0 iter: 37 cost: 216.69666442160425 gradient_norm: 75.96664551675214 max_violation: 0.6801189620580206 step_size: 1.0 iter: 38 cost: 216.51141990595104 gradient_norm: 74.58265412741808 max_violation: 0.67775001892951 step_size: 1.0 iter: 39 cost: 216.33687884145203 gradient_norm: 73.22782892763944 max_violation: 0.675499042489561 step_size: 1.0 iter: 40 cost: 216.17213878335696 gradient_norm: 71.90385099953427 max_violation: 0.6733571896083221 step_size: 1.0 iter: 41 cost: 216.01639253315437 gradient_norm: 70.6117849103672 max_violation: 0.6713164889342935 step_size: 1.0 iter: 42 cost: 215.86891637355404 gradient_norm: 69.35221528751683 max_violation: 0.6693697349247794 step_size: 1.0 iter: 43 cost: 215.72905995255803 gradient_norm: 68.12535423172581 max_violation: 0.6675103972083556 step_size: 1.0 iter: 44 cost: 215.59623755523918 gradient_norm: 66.93112600147683 max_violation: 0.6657325426913396 step_size: 1.0 iter: 45 cost: 215.46992054993433 gradient_norm: 65.76923391352588 max_violation: 0.6640307683238169 step_size: 1.0 iter: 46 cost: 215.3496308328731 gradient_norm: 64.6392132780163 max_violation: 0.6624001428325013 step_size: 1.0 iter: 47 cost: 215.23493512482034 gradient_norm: 63.54047332887127 max_violation: 0.6608361560356535 step_size: 1.0 iter: 48 cost: 215.12543999711292 gradient_norm: 62.472330454798815 max_violation: 0.6593346745995312 step_size: 1.0 iter: 49 cost: 215.0207875238886 gradient_norm: 61.43403453312169 max_violation: 0.657891903291365 step_size: 1.0 iter: 50 cost: 214.92065147328918 gradient_norm: 60.42478978062397 max_violation: 0.6565043509414483 step_size: 1.0 iter: 51 cost: 214.82473396368252 gradient_norm: 59.443771235464624 max_violation: 0.6551688004549696 step_size: 1.0 iter: 52 cost: 214.7327625220025 gradient_norm: 58.49013775050489 max_violation: 0.653882282318814 step_size: 1.0 iter: 53 cost: 214.64448749057823 gradient_norm: 57.56304219624299 max_violation: 0.6526420511345954 step_size: 1.0 iter: 54 cost: 214.55967973661106 gradient_norm: 56.66163942884602 max_violation: 0.6514455647802118 step_size: 1.0 iter: 55 cost: 214.47812862502826 gradient_norm: 55.78509246614218 max_violation: 0.6502904658613198 step_size: 1.0 iter: 56 cost: 214.39964022100617 gradient_norm: 54.93257722606108 max_violation: 0.649174565163325 step_size: 1.0 iter: 57 cost: 214.3240356931565 gradient_norm: 54.10328611164224 max_violation: 0.648095826855787 step_size: 1.0 iter: 58 cost: 214.25114989238 gradient_norm: 53.29643067091612 max_violation: 0.6470523552358158 step_size: 1.0 iter: 59 cost: 214.18083008479496 gradient_norm: 52.51124351556793 max_violation: 0.6460423828263901 step_size: 1.0 iter: 60 cost: 214.1129348200549 gradient_norm: 51.74697964655687 max_violation: 0.6450642596703293 step_size: 1.0 iter: 61 cost: 214.04733291885628 gradient_norm: 51.002917306661075 max_violation: 0.6441164436817499 step_size: 1.0 iter: 62 cost: 213.9839025655609 gradient_norm: 50.27835845661894 max_violation: 0.6431974919348713 step_size: 1.0 iter: 63 cost: 213.92253049369015 gradient_norm: 49.57262895347206 max_violation: 0.6423060527853903 step_size: 1.0 iter: 64 cost: 213.8631112536085 gradient_norm: 48.88507849448554 max_violation: 0.6414408587328784 step_size: 1.0 iter: 65 cost: 213.805546553075 gradient_norm: 48.21508037823252 max_violation: 0.6406007199439814 step_size: 1.0 iter: 66 cost: 213.7497446624964 gradient_norm: 47.56203112436928 max_violation: 0.6397845183660062 step_size: 1.0 iter: 67 cost: 213.69561987773702 gradient_norm: 46.925349986058464 max_violation: 0.6389912023689641 step_size: 1.0 iter: 68 cost: 213.64309203419768 gradient_norm: 46.30447838217731 max_violation: 0.6382197818614075 step_size: 1.0 iter: 69 cost: 213.5920860666457 gradient_norm: 45.6988792714157 max_violation: 0.6374693238318496 step_size: 1.0 iter: 70 cost: 213.54253160993082 gradient_norm: 45.10803648610749 max_violation: 0.6367389482730412 step_size: 1.0 iter: 71 cost: 213.49436263628908 gradient_norm: 44.53145403990907 max_violation: 0.6360278244512374 step_size: 1.0 iter: 72 cost: 213.44751712544485 gradient_norm: 43.96865542088138 max_violation: 0.6353351674868097 step_size: 1.0 iter: 73 cost: 213.4019367641512 gradient_norm: 43.41918287906401 max_violation: 0.6346602352162658 step_size: 1.0 iter: 74 cost: 213.3575666721904 gradient_norm: 42.882596715617694 max_violation: 0.6340023253089955 step_size: 1.0 iter: 75 cost: 213.31435515219246 gradient_norm: 42.35847457935624 max_violation: 0.6333607726149046 step_size: 1.0 iter: 76 cost: 213.2722534609187 gradient_norm: 41.84641077489708 max_violation: 0.6327349467216159 step_size: 1.0 iter: 77 cost: 213.23121559992 gradient_norm: 41.34601558585012 max_violation: 0.6321242497021693 step_size: 1.0 iter: 78 cost: 213.19119812370187 gradient_norm: 40.85691461552161 max_violation: 0.6315281140360787 step_size: 1.0 iter: 79 cost: 213.15215996372962 gradient_norm: 40.37874814695643 max_violation: 0.6309460006883607 step_size: 1.0 iter: 80 cost: 213.11406226678335 gradient_norm: 39.91117052366414 max_violation: 0.6303773973326936 step_size: 1.0 iter: 81 cost: 213.07686824632907 gradient_norm: 39.45384955165749 max_violation: 0.6298218167062419 step_size: 1.0 iter: 82 cost: 213.040543045708 gradient_norm: 39.00646592354267 max_violation: 0.6292787950848742 step_size: 1.0 iter: 83 cost: 213.00505361207382 gradient_norm: 38.568712664619866 max_violation: 0.6287478908686368 step_size: 1.0 iter: 84 cost: 212.97036858010617 gradient_norm: 38.14029460096624 max_violation: 0.6282286832682562 step_size: 1.0 iter: 85 cost: 212.93645816464095 gradient_norm: 37.720927849480745 max_violation: 0.6277207710843764 step_size: 1.0 iter: 86 cost: 212.90329406142388 gradient_norm: 37.31033932917015 max_violation: 0.62722377157194 step_size: 1.0 iter: 87 cost: 212.87084935529234 gradient_norm: 36.90826629355954 max_violation: 0.626737319382896 step_size: 1.0 iter: 88 cost: 212.8390984351395 gradient_norm: 36.51445588340131 max_violation: 0.6262610655809722 step_size: 1.0 iter: 89 cost: 212.8080169150897 gradient_norm: 36.128664699228715 max_violation: 0.6257946767228524 step_size: 1.0 iter: 90 cost: 212.77758156136056 gradient_norm: 35.750658392958705 max_violation: 0.625337834000598 step_size: 1.0 iter: 91 cost: 212.74777022434068 gradient_norm: 35.38021127806264 max_violation: 0.624890232440583 step_size: 1.0 iter: 92 cost: 212.718561775454 gradient_norm: 35.01710595738852 max_violation: 0.6244515801546595 step_size: 1.0 iter: 93 cost: 212.68993604842063 gradient_norm: 34.66113296802805 max_violation: 0.6240215976396142 step_size: 1.0 iter: 94 cost: 212.6618737845621 gradient_norm: 34.31209044256852 max_violation: 0.623600017121309 step_size: 1.0 iter: 95 cost: 212.63435658182806 gradient_norm: 33.96978378597531 max_violation: 0.6231865819402356 step_size: 1.0 iter: 96 cost: 212.6073668472525 gradient_norm: 33.634025367390706 max_violation: 0.6227810459754424 step_size: 1.0 iter: 97 cost: 212.5808877525693 gradient_norm: 33.304634226305055 max_violation: 0.622383173104065 step_size: 1.0 iter: 98 cost: 212.5549031927479 gradient_norm: 32.98143579223101 max_violation: 0.6219927366939322 step_size: 1.0 iter: 99 cost: 212.52939774722458 gradient_norm: 32.66426161761606 max_violation: 0.6216095191269013 step_size: 1.0 iter: 100 cost: 212.50435664362277 gradient_norm: 32.35294912285012 max_violation: 0.6212333113507555 step_size: 1.0 al iter: 4 iter: 1 cost: 448.02998298572027 gradient_norm: 249.13395731352432 max_violation: 0.3679572506168123 step_size: 1.0 iter: 2 cost: 418.3479042595148 gradient_norm: 480.737562514752 max_violation: 0.3536388036256639 step_size: 0.125 iter: 3 cost: 393.44124249454023 gradient_norm: 1601.361154262758 max_violation: 0.34084786245516296 step_size: 0.25 iter: 4 cost: 380.98219339924685 gradient_norm: 3681.301481067244 max_violation: 0.3403236805191594 step_size: 0.5 iter: 5 cost: 356.3793906616685 gradient_norm: 4640.965547869443 max_violation: 0.30585956659564095 step_size: 1.0 iter: 6 cost: 329.1132142233709 gradient_norm: 3795.595841942484 max_violation: 0.27669466858143865 step_size: 1.0 iter: 7 cost: 313.23724074754296 gradient_norm: 3202.031711312526 max_violation: 0.2563872543115622 step_size: 1.0 iter: 8 cost: 302.78827670675435 gradient_norm: 2761.505522688235 max_violation: 0.24048475330095043 step_size: 1.0 iter: 9 cost: 295.44755501656743 gradient_norm: 2424.2685853293847 max_violation: 0.2319254538335458 step_size: 1.0 iter: 10 cost: 290.0555497852835 gradient_norm: 2159.0995149489595 max_violation: 0.22961078874639673 step_size: 1.0 iter: 11 cost: 285.9597585087462 gradient_norm: 1945.6629023175315 max_violation: 0.22782218764413598 step_size: 1.0 iter: 12 cost: 282.7637845206628 gradient_norm: 1770.3922495785523 max_violation: 0.22635570260110205 step_size: 1.0 iter: 13 cost: 280.2135999155463 gradient_norm: 1623.9894058665332 max_violation: 0.22510677494090814 step_size: 1.0 iter: 14 cost: 278.1396949365236 gradient_norm: 1499.9082826910412 max_violation: 0.2240157697509666 step_size: 1.0 iter: 15 cost: 276.42521455993676 gradient_norm: 1393.4237649381403 max_violation: 0.2230455526052899 step_size: 1.0 iter: 16 cost: 274.98737624264277 gradient_norm: 1301.0472769428652 max_violation: 0.222171304159684 step_size: 1.0 iter: 17 cost: 273.7661463360795 gradient_norm: 1220.1506752304945 max_violation: 0.22137547403570812 step_size: 1.0 iter: 18 cost: 272.7170890110214 gradient_norm: 1148.718099542515 max_violation: 0.22064508413052586 step_size: 1.0 iter: 19 cost: 271.8067121740753 gradient_norm: 1085.178330292977 max_violation: 0.2199701892142789 step_size: 1.0 iter: 20 cost: 271.00935858930814 gradient_norm: 1028.28902374862 max_violation: 0.21934294626259954 step_size: 1.0 iter: 21 cost: 270.3050810499116 gradient_norm: 977.0551477515343 max_violation: 0.2187570230652729 step_size: 1.0 iter: 22 cost: 269.67816012746687 gradient_norm: 930.6704495131264 max_violation: 0.21820720585517872 step_size: 1.0 iter: 23 cost: 269.1160509162244 gradient_norm: 888.4747426912367 max_violation: 0.21768912909698157 step_size: 1.0 iter: 24 cost: 268.60862190297104 gradient_norm: 849.9222586666383 max_violation: 0.21719908334845472 step_size: 1.0 iter: 25 cost: 268.1475963447954 gradient_norm: 814.5578665699107 max_violation: 0.2167338748767058 step_size: 1.0 iter: 26 cost: 267.7261363510851 gradient_norm: 781.9989763591948 max_violation: 0.21629072078400524 step_size: 1.0 iter: 27 cost: 267.3385291096214 gradient_norm: 751.9216053652187 max_violation: 0.21586716936183992 step_size: 1.0 iter: 28 cost: 266.9799474039721 gradient_norm: 724.0495359956016 max_violation: 0.21546103908705572 step_size: 1.0 iter: 29 cost: 266.6462651735593 gradient_norm: 698.14579764144 max_violation: 0.21507037208166757 step_size: 1.0 iter: 30 cost: 266.3339148698492 gradient_norm: 674.0059175508595 max_violation: 0.21469339951126942 step_size: 1.0 iter: 31 cost: 266.0397776973742 gradient_norm: 651.4525342987131 max_violation: 0.21432851757537463 step_size: 1.0 iter: 32 cost: 265.7611010575238 gradient_norm: 630.3310732890333 max_violation: 0.21397427355586585 step_size: 1.0 iter: 33 cost: 265.495439904613 gradient_norm: 610.5062591643258 max_violation: 0.2136293618039966 step_size: 1.0 iter: 34 cost: 265.240620273432 gradient_norm: 591.85929315064 max_violation: 0.21329262940449834 step_size: 1.0 iter: 35 cost: 264.9947236833772 gradient_norm: 574.2855593094952 max_violation: 0.21296309032714067 step_size: 1.0 iter: 36 cost: 264.7560900645587 gradient_norm: 557.6927462365408 max_violation: 0.21263994502092354 step_size: 1.0 iter: 37 cost: 264.5233340920364 gradient_norm: 541.9992840777671 max_violation: 0.21232259987446866 step_size: 1.0 iter: 38 cost: 264.2953659588099 gradient_norm: 527.1330068738196 max_violation: 0.21201067872624924 step_size: 1.0 iter: 39 cost: 264.0714045202297 gradient_norm: 513.029964635853 max_violation: 0.2117040183008152 step_size: 1.0 iter: 40 cost: 263.85097103826257 gradient_norm: 499.633333701786 max_violation: 0.21140264252504481 step_size: 1.0 iter: 41 cost: 263.63385704300845 gradient_norm: 486.89240611018363 max_violation: 0.21110671692845218 step_size: 1.0 iter: 42 cost: 263.420068665134 gradient_norm: 474.76166850991143 max_violation: 0.21081649113741863 step_size: 1.0 iter: 43 cost: 263.20975786397247 gradient_norm: 463.1999958619381 max_violation: 0.21053224120785563 step_size: 1.0 iter: 44 cost: 263.0031541461784 gradient_norm: 452.1699801415891 max_violation: 0.21025422232973545 step_size: 1.0 iter: 45 cost: 262.800507818579 gradient_norm: 441.6373964869888 max_violation: 0.20998263756327118 step_size: 1.0 iter: 46 cost: 262.6020501186842 gradient_norm: 431.570791010858 max_violation: 0.20971762280307127 step_size: 1.0 iter: 47 cost: 262.4079701158064 gradient_norm: 421.94116426836774 max_violation: 0.20945924453182396 step_size: 1.0 iter: 48 cost: 262.218405012109 gradient_norm: 412.7217233099971 max_violation: 0.20920750572149327 step_size: 1.0 iter: 49 cost: 262.03343950267356 gradient_norm: 403.88767999894503 max_violation: 0.2089623557530782 step_size: 1.0 iter: 50 cost: 261.85311033568274 gradient_norm: 395.41607982050573 max_violation: 0.20872370144094532 step_size: 1.0 iter: 51 cost: 261.6774132528049 gradient_norm: 387.2856512210728 max_violation: 0.20849141745809785 step_size: 1.0 iter: 52 cost: 261.50631052328066 gradient_norm: 379.47666971125943 max_violation: 0.2082653553644369 step_size: 1.0 iter: 53 cost: 261.3397380828178 gradient_norm: 371.97083357828893 max_violation: 0.20804535100683585 step_size: 1.0 iter: 54 cost: 261.17761181920446 gradient_norm: 364.75114952385997 max_violation: 0.20783123036265794 step_size: 1.0 iter: 55 cost: 261.0198328626157 gradient_norm: 357.8018272751577 max_violation: 0.20762281403085048 step_size: 1.0 iter: 56 cost: 260.8662919070188 gradient_norm: 351.1081825429919 max_violation: 0.20741992061063863 step_size: 1.0 iter: 57 cost: 260.7168726666022 gradient_norm: 344.656547824424 max_violation: 0.20722236919597803 step_size: 1.0 iter: 58 cost: 260.5714545970361 gradient_norm: 338.43419056831965 max_violation: 0.2070299811828309 step_size: 1.0 iter: 59 cost: 260.42991501056616 gradient_norm: 332.4292382298536 max_violation: 0.2068425815503998 step_size: 1.0 iter: 60 cost: 260.29213070107966 gradient_norm: 326.6306097229828 max_violation: 0.20665999974412985 step_size: 1.0 iter: 61 cost: 260.15797917820504 gradient_norm: 321.02795279027896 max_violation: 0.20648207025971832 step_size: 1.0 iter: 62 cost: 260.0273395922929 gradient_norm: 315.6115868090801 max_violation: 0.20630863300423652 step_size: 1.0 iter: 63 cost: 259.9000934165506 gradient_norm: 310.37245058071363 max_violation: 0.2061395334922569 step_size: 1.0 iter: 64 cost: 259.77612493933685 gradient_norm: 305.3020546680386 max_violation: 0.20597462292077262 step_size: 1.0 iter: 65 cost: 259.6553216086397 gradient_norm: 300.3924378739591 max_violation: 0.20581375815592873 step_size: 1.0 iter: 66 cost: 259.5375742618838 gradient_norm: 295.636127487924 max_violation: 0.2056568016563931 step_size: 1.0 iter: 67 cost: 259.4227772671281 gradient_norm: 291.0261029504051 max_violation: 0.20550362135201672 step_size: 1.0 iter: 68 cost: 259.3108285961304 gradient_norm: 286.5557626251499 max_violation: 0.20535409049171927 step_size: 1.0 iter: 69 cost: 259.2016298452944 gradient_norm: 282.21889338362496 max_violation: 0.20520808747108754 step_size: 1.0 iter: 70 cost: 259.09508621708665 gradient_norm: 278.0096427476437 max_violation: 0.20506549564742782 step_size: 1.0 iter: 71 cost: 258.99110647174194 gradient_norm: 273.92249334809185 max_violation: 0.20492620314806942 step_size: 1.0 iter: 72 cost: 258.8896028569755 gradient_norm: 269.9522394890614 max_violation: 0.20479010267615116 step_size: 1.0 iter: 73 cost: 258.79049102171587 gradient_norm: 266.0939656207291 max_violation: 0.20465709131703758 step_size: 1.0 iter: 74 cost: 258.69368991856896 gradient_norm: 262.34302655130114 max_violation: 0.2045270703475799 step_size: 1.0 iter: 75 cost: 258.5991216986797 gradient_norm: 258.69502923441667 max_violation: 0.20439994504983217 step_size: 1.0 iter: 76 cost: 258.50671160184623 gradient_norm: 255.14581599774277 max_violation: 0.20427562453031411 step_size: 1.0 iter: 77 cost: 258.41638784409884 gradient_norm: 251.69144907599062 max_violation: 0.20415402154555107 step_size: 1.0 iter: 78 cost: 258.32808150443816 gradient_norm: 248.3281963392719 max_violation: 0.20403505233435082 step_size: 1.0 iter: 79 cost: 258.2417264120558 gradient_norm: 245.05251811048964 max_violation: 0.20391863645701713 step_size: 1.0 iter: 80 cost: 258.1572590350029 gradient_norm: 241.8610549757115 max_violation: 0.20380469664164336 step_size: 1.0 iter: 81 cost: 258.0746183710581 gradient_norm: 238.75061650302834 max_violation: 0.20369315863741333 step_size: 1.0 iter: 82 cost: 257.9937458413347 gradient_norm: 235.71817079478885 max_violation: 0.20358395107480431 step_size: 1.0 iter: 83 cost: 257.9145851870104 gradient_norm: 232.76083479972186 max_violation: 0.20347700533253388 step_size: 1.0 iter: 84 cost: 257.83708236944545 gradient_norm: 229.8758653229698 max_violation: 0.20337225541103576 step_size: 1.0 iter: 85 cost: 257.76118547386324 gradient_norm: 227.0606506797172 max_violation: 0.20326963781220808 step_size: 1.0 iter: 86 cost: 257.6868446166698 gradient_norm: 224.31270293245709 max_violation: 0.20316909142521178 step_size: 1.0 iter: 87 cost: 257.6140118564753 gradient_norm: 221.6296506726766 max_violation: 0.20307055741800628 step_size: 1.0 iter: 88 cost: 257.5426411087787 gradient_norm: 219.00923229916972 max_violation: 0.20297397913441273 step_size: 1.0 iter: 89 cost: 257.4726880642969 gradient_norm: 216.44928975418907 max_violation: 0.20287930199638504 step_size: 1.0 iter: 90 cost: 257.40411011085087 gradient_norm: 213.94776268285318 max_violation: 0.20278647341127076 step_size: 1.0 iter: 91 cost: 257.33686625872946 gradient_norm: 211.50268298019174 max_violation: 0.20269544268376727 step_size: 1.0 iter: 92 cost: 257.2709170694291 gradient_norm: 209.11216970178504 max_violation: 0.20260616093236905 step_size: 1.0 iter: 93 cost: 257.20622458764956 gradient_norm: 206.77442430289753 max_violation: 0.20251858101002984 step_size: 1.0 iter: 94 cost: 257.1427522764356 gradient_norm: 204.4877261880432 max_violation: 0.20243265742882777 step_size: 1.0 iter: 95 cost: 257.080464955338 gradient_norm: 202.25042854346225 max_violation: 0.2023483462884479 step_size: 1.0 iter: 96 cost: 257.0193287414708 gradient_norm: 200.06095443476167 max_violation: 0.20226560520820547 step_size: 1.0 iter: 97 cost: 256.9593109933428 gradient_norm: 197.91779314833414 max_violation: 0.2021843932624936 step_size: 1.0 iter: 98 cost: 256.90038025733713 gradient_norm: 195.81949675906725 max_violation: 0.2021046709194061 step_size: 1.0 iter: 99 cost: 256.84250621672646 gradient_norm: 193.76467691048495 max_violation: 0.2020263999824019 step_size: 1.0 iter: 100 cost: 256.78565964309996 gradient_norm: 191.7520017894499 max_violation: 0.2019495435348322 step_size: 1.0 al iter: 5 iter: 1 cost: 573.6624533219425 gradient_norm: 28679.497922697115 max_violation: 0.1522125721978153 step_size: 0.5 iter: 2 cost: 532.9633519833923 gradient_norm: 25700.977481026788 max_violation: 0.14805036467577037 step_size: 0.25 iter: 3 cost: 438.99682657683934 gradient_norm: 19541.248643038998 max_violation: 0.1354225275571887 step_size: 1.0 iter: 4 cost: 367.4230351040556 gradient_norm: 14344.489757777355 max_violation: 0.10226779601242084 step_size: 1.0 iter: 5 cost: 334.0674595454773 gradient_norm: 11278.344636511289 max_violation: 0.08326532823995647 step_size: 1.0 iter: 6 cost: 314.6990935475556 gradient_norm: 9271.69532679423 max_violation: 0.06972585971560155 step_size: 1.0 iter: 7 cost: 302.6690596414557 gradient_norm: 7866.849482674921 max_violation: 0.0598887050159414 step_size: 1.0 iter: 8 cost: 294.6927709729562 gradient_norm: 6829.766280871655 max_violation: 0.05244861134146073 step_size: 1.0 iter: 9 cost: 289.1288161848293 gradient_norm: 6033.213544842321 max_violation: 0.04663467815955602 step_size: 1.0 iter: 10 cost: 285.0885563169513 gradient_norm: 5402.413715627582 max_violation: 0.04197045138616107 step_size: 1.0 iter: 11 cost: 282.05793685942325 gradient_norm: 4890.616182445411 max_violation: 0.038147570470234426 step_size: 1.0 iter: 12 cost: 279.72303932960006 gradient_norm: 4467.114884137867 max_violation: 0.034958280173425005 step_size: 1.0 iter: 13 cost: 277.88339144146187 gradient_norm: 4110.91775349173 max_violation: 0.03225773485322525 step_size: 1.0 iter: 14 cost: 276.40608303760257 gradient_norm: 3807.1906608612317 max_violation: 0.029941964446158598 step_size: 1.0 iter: 15 cost: 275.2001521860658 gradient_norm: 3545.155568157347 max_violation: 0.02793445356911617 step_size: 1.0 iter: 16 cost: 274.2016247080324 gradient_norm: 3316.7939670318883 max_violation: 0.026177664673927514 step_size: 1.0 iter: 17 cost: 273.36443000499315 gradient_norm: 3116.0174865763897 max_violation: 0.02462751085437792 step_size: 1.0 iter: 18 cost: 272.6546962010144 gradient_norm: 2938.12051423432 max_violation: 0.02324964981617572 step_size: 1.0 iter: 19 cost: 272.04706048193935 gradient_norm: 2779.4090057805292 max_violation: 0.022016936945281396 step_size: 1.0 iter: 20 cost: 271.52222005819164 gradient_norm: 2636.942715909029 max_violation: 0.020907636266878638 step_size: 1.0 iter: 21 cost: 271.06526871688027 gradient_norm: 2508.3523908141415 max_violation: 0.019904139023180223 step_size: 1.0 iter: 22 cost: 270.66454345874666 gradient_norm: 2391.7076745117074 max_violation: 0.01899202964608293 step_size: 1.0 iter: 23 cost: 270.3108098607573 gradient_norm: 2285.4200463519596 max_violation: 0.018159394126962103 step_size: 1.0 iter: 24 cost: 269.99667697282223 gradient_norm: 2188.170413649536 max_violation: 0.017396300511397844 step_size: 1.0 iter: 25 cost: 269.7161706346515 gradient_norm: 2098.8543521869783 max_violation: 0.01669440357912544 step_size: 1.0 iter: 26 cost: 269.46441797170024 gradient_norm: 2016.5401740543277 max_violation: 0.016046640432094583 step_size: 1.0 iter: 27 cost: 269.23741111512606 gradient_norm: 1940.4364501321672 max_violation: 0.015446993519416474 step_size: 1.0 iter: 28 cost: 269.0318281712331 gradient_norm: 1869.866591138811 max_violation: 0.014890304303295299 step_size: 1.0 iter: 29 cost: 268.8448960972627 gradient_norm: 1804.248760629986 max_violation: 0.014372125382532852 step_size: 1.0 iter: 30 cost: 268.67428461993023 gradient_norm: 1743.0798596604416 max_violation: 0.013888602127238636 step_size: 1.0 iter: 31 cost: 268.5180234043714 gradient_norm: 1685.9226520146642 max_violation: 0.013436377178717152 step_size: 1.0 iter: 32 cost: 268.37443681673426 gradient_norm: 1632.395334503913 max_violation: 0.013012512824958189 step_size: 1.0 iter: 33 cost: 268.24209212769057 gradient_norm: 1582.1630274198517 max_violation: 0.012614427468344402 step_size: 1.0 iter: 34 cost: 268.11975807635264 gradient_norm: 1534.930785115729 max_violation: 0.012239843289748364 step_size: 1.0 iter: 35 cost: 268.00637148719244 gradient_norm: 1490.437819195129 max_violation: 0.01188674287392999 step_size: 1.0 iter: 36 cost: 267.9010101956379 gradient_norm: 1448.4526958495287 max_violation: 0.011553333056526727 step_size: 1.0 iter: 37 cost: 267.8028709524605 gradient_norm: 1408.7693209973029 max_violation: 0.01123801462839047 step_size: 1.0 iter: 38 cost: 267.71125128473307 gradient_norm: 1371.2035665201824 max_violation: 0.010939356819602009 step_size: 1.0 iter: 39 cost: 267.62553452176405 gradient_norm: 1335.5904213181086 max_violation: 0.010656075706504398 step_size: 1.0 iter: 40 cost: 267.54517736839813 gradient_norm: 1301.7815743518374 max_violation: 0.010387015855687687 step_size: 1.0 iter: 41 cost: 267.4696995407648 gradient_norm: 1269.643355189426 max_violation: 0.010131134653075469 step_size: 1.0 iter: 42 cost: 267.39867508107596 gradient_norm: 1239.0549718450645 max_violation: 0.009887488870743422 step_size: 1.0 iter: 43 cost: 267.331725046631 gradient_norm: 1209.9069970546554 max_violation: 0.009655223107642108 step_size: 1.0 iter: 44 cost: 267.2685113291692 gradient_norm: 1182.100063059276 max_violation: 0.00943355980616667 step_size: 1.0 iter: 45 cost: 267.20873140843526 gradient_norm: 1155.5437321641887 max_violation: 0.0092217905996691 step_size: 1.0 iter: 46 cost: 267.15211388138397 gradient_norm: 1130.1555160652908 max_violation: 0.009019268788444723 step_size: 1.0 iter: 47 cost: 267.0984146381622 gradient_norm: 1105.8600215889483 max_violation: 0.008825402776263092 step_size: 1.0 iter: 48 cost: 267.04741357965815 gradient_norm: 1082.5882042251508 max_violation: 0.008639650327289083 step_size: 1.0 iter: 49 cost: 266.99891179031863 gradient_norm: 1060.2767139220302 max_violation: 0.008461513526281661 step_size: 1.0 iter: 50 cost: 266.9527290951678 gradient_norm: 1038.8673201326928 max_violation: 0.008290534343823097 step_size: 1.0 iter: 51 cost: 266.9087019421855 gradient_norm: 1018.3064050906363 max_violation: 0.00812629072312221 step_size: 1.0 iter: 52 cost: 266.8666815612461 gradient_norm: 998.5445161163473 max_violation: 0.007968393118752193 step_size: 1.0 iter: 53 cost: 266.8265323588484 gradient_norm: 979.5359690203937 max_violation: 0.007816481427051714 step_size: 1.0 iter: 54 cost: 266.7881305145947 gradient_norm: 961.2384959846905 max_violation: 0.00767022225790992 step_size: 1.0 iter: 55 cost: 266.75136275078944 gradient_norm: 943.612932180593 max_violation: 0.0075293065042153495 step_size: 1.0 iter: 56 cost: 266.71612525102927 gradient_norm: 926.6229362521324 max_violation: 0.0073934471718520856 step_size: 1.0 iter: 57 cost: 266.68232270739946 gradient_norm: 910.2347404527736 max_violation: 0.007262377438072343 step_size: 1.0 iter: 58 cost: 266.649867479008 gradient_norm: 894.416926879354 max_violation: 0.007135848911108855 step_size: 1.0 iter: 59 cost: 266.61867884711006 gradient_norm: 879.1402266193587 max_violation: 0.007013630066622145 step_size: 1.0 iter: 60 cost: 266.5886823542905 gradient_norm: 864.37733915364 max_violation: 0.006895504840656264 step_size: 1.0 iter: 61 cost: 266.5598092169731 gradient_norm: 850.1027696741021 max_violation: 0.006781271361135377 step_size: 1.0 iter: 62 cost: 266.5319958020226 gradient_norm: 836.2926822584141 max_violation: 0.006670740802114938 step_size: 1.0 iter: 63 cost: 266.50518315953093 gradient_norm: 822.9247671447065 max_violation: 0.006563736347272253 step_size: 1.0 iter: 64 cost: 266.4793166049413 gradient_norm: 809.9781205394579 max_violation: 0.0064600922505875236 step_size: 1.0 iter: 65 cost: 266.4543453446051 gradient_norm: 797.4331356112606 max_violation: 0.006359652983847441 step_size: 1.0 iter: 66 cost: 266.43022213965054 gradient_norm: 785.2714034656211 max_violation: 0.006262272461669105 step_size: 1.0 iter: 67 cost: 266.40690300370585 gradient_norm: 773.4756230510772 max_violation: 0.006167813335958061 step_size: 1.0 iter: 68 cost: 266.38434693061566 gradient_norm: 762.0295190774272 max_violation: 0.006076146352700373 step_size: 1.0 iter: 69 cost: 266.36251564876113 gradient_norm: 750.9177671257498 max_violation: 0.0059871497647450145 step_size: 1.0 iter: 70 cost: 266.34137339903606 gradient_norm: 740.1259252186702 max_violation: 0.005900708794909115 step_size: 1.0 iter: 71 cost: 266.3208867338801 gradient_norm: 729.6403712150604 max_violation: 0.0058167151445157605 step_size: 1.0 iter: 72 cost: 266.3010243351086 gradient_norm: 719.4482454622256 max_violation: 0.005735066542925993 step_size: 1.0 iter: 73 cost: 266.2817568485311 gradient_norm: 709.5373981937154 max_violation: 0.0056556663341348345 step_size: 1.0 iter: 74 cost: 266.26305673360065 gradient_norm: 699.8963412213069 max_violation: 0.005578423096912255 step_size: 1.0 iter: 75 cost: 266.2448981265349 gradient_norm: 690.5142035124252 max_violation: 0.005503250295309292 step_size: 1.0 iter: 76 cost: 266.22725671554025 gradient_norm: 681.3806903108721 max_violation: 0.005430065956883445 step_size: 1.0 iter: 77 cost: 266.21010962691304 gradient_norm: 672.4860454538544 max_violation: 0.005358792375940946 step_size: 1.0 iter: 78 cost: 266.1934353209398 gradient_norm: 663.8210166080407 max_violation: 0.00528935583963086 step_size: 1.0 iter: 79 cost: 266.1772134966372 gradient_norm: 655.3768231715072 max_violation: 0.005221686374932588 step_size: 1.0 iter: 80 cost: 266.1614250044696 gradient_norm: 647.1451265829446 max_violation: 0.005155717514507163 step_size: 1.0 iter: 81 cost: 266.14605176628726 gradient_norm: 639.1180028631131 max_violation: 0.0050913860800687605 step_size: 1.0 iter: 82 cost: 266.1310767018062 gradient_norm: 631.2879171664742 max_violation: 0.005028631981515597 step_size: 1.0 iter: 83 cost: 266.116483661006 gradient_norm: 623.6477001842475 max_violation: 0.004967398030613301 step_size: 1.0 iter: 84 cost: 266.1022573619178 gradient_norm: 616.1905262490716 max_violation: 0.004907629768030053 step_size: 1.0 iter: 85 cost: 266.0883833333002 gradient_norm: 608.9098929914068 max_violation: 0.004849275302574063 step_size: 1.0 iter: 86 cost: 266.07484786176764 gradient_norm: 601.7996024222347 max_violation: 0.004792285161646648 step_size: 1.0 iter: 87 cost: 266.06163794297794 gradient_norm: 594.8537433299209 max_violation: 0.004736612152025921 step_size: 1.0 iter: 88 cost: 266.0487412365225 gradient_norm: 588.0666748947685 max_violation: 0.004682211230244926 step_size: 1.0 iter: 89 cost: 266.03614602418884 gradient_norm: 581.4330113917135 max_violation: 0.004629039381519706 step_size: 1.0 iter: 90 cost: 266.0238411713226 gradient_norm: 574.9476079417716 max_violation: 0.0045770555069549745 step_size: 1.0 iter: 91 cost: 266.0118160910092 gradient_norm: 568.6055471938043 max_violation: 0.004526220318065599 step_size: 1.0 iter: 92 cost: 266.00006071085664 gradient_norm: 562.4021268877439 max_violation: 0.004476496238255079 step_size: 1.0 iter: 93 cost: 265.9885654421438 gradient_norm: 556.3328482236772 max_violation: 0.0044278473106472704 step_size: 1.0 iter: 94 cost: 265.9773211511595 gradient_norm: 550.3934049698504 max_violation: 0.004380239111741235 step_size: 1.0 iter: 95 cost: 265.96631913254225 gradient_norm: 544.5796732788098 max_violation: 0.004333638670669382 step_size: 1.0 iter: 96 cost: 265.9555510844634 gradient_norm: 538.8877021238146 max_violation: 0.004288014393326822 step_size: 1.0 iter: 97 cost: 265.9450090855105 gradient_norm: 533.3137043460134 max_violation: 0.004243335991353847 step_size: 1.0 iter: 98 cost: 265.93468557313497 gradient_norm: 527.8540482454551 max_violation: 0.004199574415389984 step_size: 1.0 iter: 99 cost: 265.9245733235407 gradient_norm: 522.5052496820072 max_violation: 0.004156701792369488 step_size: 1.0 iter: 100 cost: 265.91466543290767 gradient_norm: 517.2639646645988 max_violation: 0.004114691366681744 step_size: 1.0 Test Summary: | Pass Total Time Solve: acrobot | 1 1 6m06.8s ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University al iter: 1 ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University iter: 1 cost: 261.2537798738653 gradient_norm: 885.6763002794513 max_violation: 1.1807656674637883 step_size: 1.0 iter: 2 cost: 69.99469960068207 gradient_norm: 376.08357134305186 max_violation: 0.766429330514935 step_size: 1.0 iter: 3 cost: 34.54977364243712 gradient_norm: 193.82532155965612 max_violation: 0.5197983639867401 step_size: 1.0 iter: 4 cost: 22.539037764763805 gradient_norm: 111.7024513072441 max_violation: 0.4196158004810382 step_size: 1.0 iter: 5 cost: 17.035664625358486 gradient_norm: 69.14467761180012 max_violation: 0.37323467952446965 step_size: 1.0 iter: 6 cost: 14.062954292496705 gradient_norm: 45.607762506571646 max_violation: 0.34188493819304266 step_size: 1.0 iter: 7 cost: 12.272616098482587 gradient_norm: 31.744197515746393 max_violation: 0.3195794259745215 step_size: 1.0 iter: 8 cost: 11.110324366994146 gradient_norm: 28.481409161315987 max_violation: 0.30283107541267995 step_size: 1.0 iter: 9 cost: 10.312569004061332 gradient_norm: 25.725116998667954 max_violation: 0.28976177042682494 step_size: 1.0 iter: 10 cost: 9.740976036112503 gradient_norm: 24.387263942641127 max_violation: 0.27926490324135944 step_size: 1.0 iter: 11 cost: 9.317182750501477 gradient_norm: 23.27948171916522 max_violation: 0.270642534988605 step_size: 1.0 iter: 12 cost: 8.99409364960746 gradient_norm: 22.133658624582665 max_violation: 0.2634309744732146 step_size: 1.0 iter: 13 cost: 8.742010825607291 gradient_norm: 21.003710960323513 max_violation: 0.25730926409585564 step_size: 1.0 iter: 14 cost: 8.541448500865746 gradient_norm: 19.918615937273927 max_violation: 0.2520477436399142 step_size: 1.0 iter: 15 cost: 8.379187541400649 gradient_norm: 18.892634093629162 max_violation: 0.24747750308208794 step_size: 1.0 iter: 16 cost: 8.246001295724474 gradient_norm: 17.931443843477687 max_violation: 0.243471404916475 step_size: 1.0 iter: 17 cost: 8.135289721002943 gradient_norm: 17.035806102872616 max_violation: 0.2399318426078958 step_size: 1.0 iter: 18 cost: 8.042229513640368 gradient_norm: 16.203750801407285 max_violation: 0.23678258854916034 step_size: 1.0 iter: 19 cost: 7.963228813262942 gradient_norm: 15.431879152844623 max_violation: 0.23396321467267356 step_size: 1.0 iter: 20 cost: 7.895567773780683 gradient_norm: 14.71613518888006 max_violation: 0.2314251818556059 step_size: 1.0 iter: 21 cost: 7.837155934003607 gradient_norm: 14.05225742418412 max_violation: 0.2291290411089797 step_size: 1.0 iter: 22 cost: 7.786364917793634 gradient_norm: 13.436037151680694 max_violation: 0.22704239307714413 step_size: 1.0 iter: 23 cost: 7.741910858273423 gradient_norm: 12.86345977297741 max_violation: 0.22513837563732508 step_size: 1.0 iter: 24 cost: 7.702770335780684 gradient_norm: 12.330775619639935 max_violation: 0.223394526194177 step_size: 1.0 iter: 25 cost: 7.668119333509148 gradient_norm: 11.834528666306948 max_violation: 0.22179191431193956 step_size: 1.0 iter: 26 cost: 7.637288274827675 gradient_norm: 11.37156056170258 max_violation: 0.2203144723692816 step_size: 1.0 iter: 27 cost: 7.609728473089355 gradient_norm: 10.939000679422454 max_violation: 0.21894847327438605 step_size: 1.0 iter: 28 cost: 7.5849867970528555 gradient_norm: 10.534248743252592 max_violation: 0.21768211877573584 step_size: 1.0 iter: 29 cost: 7.562686328832223 gradient_norm: 10.154954010172425 max_violation: 0.21650521190799044 step_size: 1.0 iter: 30 cost: 7.542511446200534 gradient_norm: 9.798993394781991 max_violation: 0.2154088941268837 step_size: 1.0 iter: 31 cost: 7.5241962083383624 gradient_norm: 9.464449922833648 max_violation: 0.21438543266983068 step_size: 1.0 iter: 32 cost: 7.507515233952561 gradient_norm: 9.149592283243631 max_violation: 0.21342804726960818 step_size: 1.0 iter: 33 cost: 7.492276478169418 gradient_norm: 8.852855866270925 max_violation: 0.21253076796176984 step_size: 1.0 iter: 34 cost: 7.478315469141725 gradient_norm: 8.572825443102449 max_violation: 0.2116883176538611 step_size: 1.0 iter: 35 cost: 7.465490676384057 gradient_norm: 8.308219503864 max_violation: 0.21089601456018237 step_size: 1.0 iter: 36 cost: 7.453679763543525 gradient_norm: 8.057876191788143 max_violation: 0.21014969068297518 step_size: 1.0 iter: 37 cost: 7.442776537525081 gradient_norm: 7.820740728824099 max_violation: 0.20944562333843297 step_size: 1.0 iter: 38 cost: 7.432688449752018 gradient_norm: 7.595854208610376 max_violation: 0.2087804773531028 step_size: 1.0 iter: 39 cost: 7.423334538118871 gradient_norm: 7.382343627146472 max_violation: 0.2081512560379437 step_size: 1.0 iter: 40 cost: 7.414643722894794 gradient_norm: 7.179413023837764 max_violation: 0.20755525942109987 step_size: 1.0 iter: 41 cost: 7.406553388595878 gradient_norm: 6.986335612818852 max_violation: 0.20699004851539815 step_size: 1.0 iter: 42 cost: 7.399008198200706 gradient_norm: 6.802446793745567 max_violation: 0.20645341462638545 step_size: 1.0 iter: 43 cost: 7.391959097146254 gradient_norm: 6.627137941422962 max_violation: 0.2059433528896557 step_size: 1.0 iter: 44 cost: 7.385362473123337 gradient_norm: 6.45985088395812 max_violation: 0.20545803937275675 step_size: 1.0 iter: 45 cost: 7.379179444392276 gradient_norm: 6.300072989008616 max_violation: 0.2049958111936343 step_size: 1.0 iter: 46 cost: 7.373375254601611 gradient_norm: 6.147332786703153 max_violation: 0.2045551492013793 step_size: 1.0 iter: 47 cost: 7.367918756251549 gradient_norm: 6.001196066353447 max_violation: 0.2041346628427032 step_size: 1.0 iter: 48 cost: 7.362781968245788 gradient_norm: 5.861262391436014 max_violation: 0.20373307689846154 step_size: 1.0 iter: 49 cost: 7.357939695613454 gradient_norm: 5.727161984084324 max_violation: 0.20334921982621523 step_size: 1.0 iter: 50 cost: 7.353369201599009 gradient_norm: 5.598552936261505 max_violation: 0.2029820134865652 step_size: 1.0 iter: 51 cost: 7.349049924024784 gradient_norm: 5.475118710010506 max_violation: 0.20263046406533292 step_size: 1.0 iter: 52 cost: 7.34496322921335 gradient_norm: 5.35656589373689 max_violation: 0.20229365403219823 step_size: 1.0 iter: 53 cost: 7.341092197882067 gradient_norm: 5.242622185541038 max_violation: 0.2019707350005815 step_size: 1.0 iter: 54 cost: 7.337421438340977 gradient_norm: 5.133034578164165 max_violation: 0.20166092137318348 step_size: 1.0 iter: 55 cost: 7.333936923079356 gradient_norm: 5.0275677230832505 max_violation: 0.2013634846738297 step_size: 1.0 iter: 56 cost: 7.330625845447401 gradient_norm: 4.926002454107622 max_violation: 0.20107774848119497 step_size: 1.0 iter: 57 cost: 7.327476493652688 gradient_norm: 4.828134453115053 max_violation: 0.20080308389097912 step_size: 1.0 iter: 58 cost: 7.324478139716949 gradient_norm: 4.733773042605958 max_violation: 0.2005389054433122 step_size: 1.0 iter: 59 cost: 7.321620941393538 gradient_norm: 4.64274009160189 max_violation: 0.20028466746088736 step_size: 1.0 iter: 60 cost: 7.318895855341548 gradient_norm: 4.554869022929657 max_violation: 0.20003986075024294 step_size: 1.0 iter: 61 cost: 7.316294560101643 gradient_norm: 4.47000391137999 max_violation: 0.19980400962503886 step_size: 1.0 iter: 62 cost: 7.313809387626099 gradient_norm: 4.387998663338512 max_violation: 0.1995766692150367 step_size: 1.0 iter: 63 cost: 7.3114332622926375 gradient_norm: 4.318891416810995 max_violation: 0.19935742302960957 step_size: 1.0 iter: 64 cost: 7.309159646479266 gradient_norm: 4.2614430161156545 max_violation: 0.19914588074805462 step_size: 1.0 iter: 65 cost: 7.306982491904377 gradient_norm: 4.205440961225905 max_violation: 0.19894167621241277 step_size: 1.0 iter: 66 cost: 7.304896196042877 gradient_norm: 4.150833848380019 max_violation: 0.1987444656016777 step_size: 1.0 iter: 67 cost: 7.302895563020863 gradient_norm: 4.09757253229489 max_violation: 0.19855392576839925 step_size: 1.0 iter: 68 cost: 7.300975768469271 gradient_norm: 4.0456100154202375 max_violation: 0.19836975272122537 step_size: 1.0 iter: 69 cost: 7.299132327884227 gradient_norm: 3.994901342440709 max_violation: 0.19819166023870682 step_size: 1.0 iter: 70 cost: 7.297361068098634 gradient_norm: 3.945403499836873 max_violation: 0.1980193786011526 step_size: 1.0 iter: 71 cost: 7.295658101519613 gradient_norm: 3.8970753204244346 max_violation: 0.1978526534292424 step_size: 1.0 iter: 72 cost: 7.294019802828746 gradient_norm: 3.8498773926640872 max_violation: 0.19769124461888232 step_size: 1.0 iter: 73 cost: 7.292442787879104 gradient_norm: 3.803771974568054 max_violation: 0.19753492536320216 step_size: 1.0 iter: 74 cost: 7.290923894554755 gradient_norm: 3.7587229120288264 max_violation: 0.19738348125356087 step_size: 1.0 iter: 75 cost: 7.289460165386733 gradient_norm: 3.714695561357109 max_violation: 0.1972367094521399 step_size: 1.0 iter: 76 cost: 7.28804883174277 gradient_norm: 3.671656715862188 max_violation: 0.19709441792968274 step_size: 1.0 iter: 77 cost: 7.286687299430009 gradient_norm: 3.62957453626189 max_violation: 0.1969564247623623 step_size: 1.0 iter: 78 cost: 7.285373135567649 gradient_norm: 3.588418484737847 max_violation: 0.19682255748258193 step_size: 1.0 iter: 79 cost: 7.284104056602718 gradient_norm: 3.548159262458899 max_violation: 0.19669265247897094 step_size: 1.0 iter: 80 cost: 7.282877917356494 gradient_norm: 3.508768750404913 max_violation: 0.19656655444127047 step_size: 1.0 iter: 81 cost: 7.281692701001064 gradient_norm: 3.470219953278031 max_violation: 0.19644411584615984 step_size: 1.0 iter: 82 cost: 7.28054650987663 gradient_norm: 3.432486946391343 max_violation: 0.19632519648074798 step_size: 1.0 iter: 83 cost: 7.2794375570698175 gradient_norm: 3.3955448253297504 max_violation: 0.19620966300036713 step_size: 1.0 iter: 84 cost: 7.2783641586813435 gradient_norm: 3.3593696582735255 max_violation: 0.19609738851796976 step_size: 1.0 iter: 85 cost: 7.277324726719402 gradient_norm: 3.323938440791899 max_violation: 0.1959882522223797 step_size: 1.0 iter: 86 cost: 7.276317762561029 gradient_norm: 3.2892290530176655 max_violation: 0.19588213902326235 step_size: 1.0 iter: 87 cost: 7.275341850930356 gradient_norm: 3.25522021904111 max_violation: 0.19577893922049228 step_size: 1.0 al iter: 2 iter: 1 cost: 7.269944849743791 gradient_norm: 0.48354130657668726 max_violation: 0.0481756108564424 step_size: 1.0 iter: 2 cost: 7.253994869618226 gradient_norm: 0.13733625988558718 max_violation: 0.0017963190921093108 step_size: 1.0 iter: 3 cost: 7.252163371769252 gradient_norm: 0.12093728810343407 max_violation: 0.001811038634711104 step_size: 1.0 iter: 4 cost: 7.251086984969248 gradient_norm: 0.114766263279237 max_violation: 0.0018202529338060547 step_size: 1.0 iter: 5 cost: 7.250360358028719 gradient_norm: 0.1096676429055452 max_violation: 0.0018264790512261264 step_size: 1.0 Test Summary: | Pass Total Time Solve: car | 3 3 41.2s Testing IterativeLQR tests passed Testing completed after 749.31s PkgEval succeeded after 1047.08s