Package evaluation of QuasiNewtonMethods on Julia 1.11.5 (32ac370b68*) started at 2025-06-29T11:18:10.121 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.5s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.11/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.11/Manifest.toml` [79e6a3ab] + Adapt v4.3.0 [4fba245c] + ArrayInterface v7.19.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.16.0 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.5 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.172 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.17.0 [1d0040c9] + PolyesterWeave v0.2.2 ⌅ [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.71 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [4536629a] + OpenBLAS_jll v0.3.27+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.14s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 186.86s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_1MBVY1/Project.toml` [4c88cf16] Aqua v0.8.13 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test v1.11.0 Status `/tmp/jl_1MBVY1/Manifest.toml` [79e6a3ab] Adapt v4.3.0 [4c88cf16] Aqua v0.8.13 [4fba245c] ArrayInterface v7.19.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.16.0 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.5 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.172 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [1d0040c9] PolyesterWeave v0.2.2 ⌅ [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.71 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.10 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.11.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.6.0+0 [e37daf67] LibGit2_jll v1.7.2+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.6+0 [14a3606d] MozillaCACerts_jll v2023.12.12 [4536629a] OpenBLAS_jll v0.3.27+1 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.59.0+0 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/1UuaV/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Base.PkgId(Base.UUID("8dfed614-e22c-5e08-85e1-65c5234f0b40"), "Test")]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.11/Test/src/Test.jl:680 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/1UuaV/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/1UuaV/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/1UuaV/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.11/Test/src/Test.jl:1709 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/1UuaV/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [-1.7244983219200094e-11, -3.421518623980546e-11] QuasiNewtonMethods.optimum(state) .- 1 = [2.9543034685275416e-12, 6.573408484200627e-12] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [2.9551916469472417e-12, 5.236255873342088e-12, 1.3182788194399109e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.2025780371516248e-10, 2.3859958453442687e-10, 6.306066779870889e-14] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [-5.0573545351539906e-11, 3.3473446237053395e-11, -9.544554036011732e-11, 7.507594546041219e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.6578516337517613e-11, 3.207301091379122e-11, 4.5327519515581116e-11, 7.196754303606667e-11] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [-2.835623957864186e-10, -2.285192035600403e-10, -5.514099177261755e-10, -4.3585435260951044e-10, -4.517852758567642e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.3042678048691414e-11, -4.6713299894918237e-11, 2.9109159527251904e-11, -1.0030098973601298e-10, 9.563394520739621e-11] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [6.236211547161474e-11, -2.7721602791075384e-11, -3.6736169661821805e-11, 1.3460077497029488e-10, -5.4240945068784185e-11, -6.194145196758427e-11] QuasiNewtonMethods.optimum(state) .- 1 = [2.467714921294828e-11, -1.3657042163828237e-10, 3.827449468474242e-11, 3.730482589503481e-11, -2.692828182659923e-10, 6.817613140697176e-11] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [4.2698955482478596e-10, 1.7025381104929238e-10, 4.509947970632311e-12, 8.706380061340724e-10, 3.533773274000396e-10, 1.6395329538454462e-11, -4.012357113225562e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-4.1434078390523155e-11, -3.0420332919334214e-11, 8.490985692333197e-12, -8.086131764173388e-11, -6.229283755487813e-11, 1.2039924612849973e-11, -7.259515211188727e-11] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [-6.4366290075668076e-12, -2.9987790028940253e-11, -4.470535053258118e-12, 6.080025372057207e-12, -1.4148349158915607e-11, -5.939593261672371e-11, -1.2989831432719257e-11, 1.4134249326502868e-11] QuasiNewtonMethods.optimum(state) .- 1 = [4.583444734862496e-12, 7.722067429938306e-11, 2.7174462680079614e-10, 1.523254855584355e-10, 1.8885559782688688e-11, 1.5702905642456244e-10, 5.323488316832936e-10, 3.206854781723223e-10] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [5.3924420484463553e-11, -7.967293491617511e-11, -2.931765941127651e-11, -7.987233097139779e-11, 1.1462875093570801e-10, -1.6252887924395054e-10, -6.46964704031916e-11, -1.5430867694732342e-10, 1.907176638837882e-10] QuasiNewtonMethods.optimum(state) .- 1 = [7.124967282834405e-12, 9.18398690430422e-12, -1.1476486427852706e-11, -1.934463700337119e-11, 1.50712775592865e-11, 1.9611867685398465e-11, -2.2771673435784123e-11, -3.825273431345977e-11, 1.219024881038422e-13] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [-7.927214440428543e-12, 2.3498980539216063e-12, 4.645617224241505e-12, 7.97961696719085e-12, 2.7549962311468335e-11, -1.5924705998315858e-11, 4.2374992403892975e-12, 9.438672066153231e-12, 1.6005197167601182e-11, 5.5295767964480547e-11] QuasiNewtonMethods.optimum(state) .- 1 = [7.880585073394286e-12, -1.581179631671148e-11, 3.6917136014835705e-12, 2.9158231384940336e-11, -5.658362667304573e-12, 1.5297541011705107e-11, -3.126920944396261e-11, 9.089839991816007e-12, 5.829203786333892e-11, -1.154687456761394e-11] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [-1.3478662630461713e-11, -2.903122187092322e-12, 2.37698749572246e-12, -6.2129190681048385e-12, 8.282263763703668e-14, -2.6836866062751596e-11, -5.651146217644509e-12, 4.222400207254395e-12, -8.639644555330506e-12, 4.944933351680447e-13, 5.25135490647699e-13] QuasiNewtonMethods.optimum(state) .- 1 = [6.448619416232759e-11, -1.84368076361352e-11, -8.795408845685415e-12, 2.8352209469062473e-11, -1.5668244479627447e-11, 1.2465051213439438e-10, -3.5267455622545185e-11, -1.7700507726203796e-11, 5.586797691137235e-11, -3.305833384814605e-11, -1.2462253451417382e-11] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [-1.8825352388063266e-10, 3.75930397922275e-11, 1.4628698252749928e-10, -5.589217977330918e-11, 3.27824434265267e-11, -6.00677285689244e-11, -3.732564257674653e-10, 7.782552380319885e-11, 2.876403559781693e-10, -1.1776635222560117e-10, 6.164846411138569e-11, -1.150256556670115e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-7.864009443636633e-11, -5.955436144233772e-11, 1.0436318476081397e-11, -3.258515679505081e-11, -1.0172995779100802e-10, 1.642397329248979e-11, -1.6477696984651402e-10, -1.1796397192398445e-10, 1.8351986597053838e-11, -7.28770377378396e-11, -2.0225354724345834e-10, 3.177857976766063e-11] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [1.890909651081074e-11, -3.990696662015125e-12, 2.120303932429124e-12, 1.4234613487928982e-11, -3.918843027861385e-11, -4.6124881691866904e-11, 3.338618270731786e-11, -1.2156942119645464e-11, 2.2466473126314668e-12, 3.277333959772477e-11, -8.141143315043564e-11, -9.423417601794881e-11, -5.069278330438465e-13] QuasiNewtonMethods.optimum(state) .- 1 = [2.574251922737858e-11, 6.264100349540058e-12, 3.689648586657768e-11, 2.3214319355702173e-11, 9.967582315084655e-13, -4.0826453329145806e-11, 5.4142024197290084e-11, 1.500732871306809e-11, 7.834555226793327e-11, 4.615530180274163e-11, 7.1025407777369765e-12, -8.218159486261811e-11, 8.26649859675399e-12] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [-1.2700818174948836e-10, 1.0415734941204846e-10, -1.3342538185412423e-10, 4.684808097010773e-11, 1.2434497875801753e-14, 1.2468470700355283e-11, -1.7945755992343493e-11, -2.5109736512263225e-10, 2.0434609560027184e-10, -2.566661327918496e-10, 9.482192808718537e-11, 3.275824056458987e-12, 2.2460255877376767e-11, -3.8167469185168557e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-3.445654872535897e-11, 3.639955004075546e-11, -5.069278330438465e-12, 3.467581777272244e-11, -5.2642001868719035e-11, 1.5892132054773356e-10, -3.5785929775045133e-11, -6.641309724386701e-11, 7.682321445656726e-11, -1.2043588348831236e-11, 8.04978306234716e-11, -1.0733902655601923e-10, 3.120543823342814e-10, -7.969380710903806e-11] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [-6.01219074525261e-11, 3.515032709344723e-11, -3.4523384151441405e-11, 3.1525893007255945e-12, 2.2621682305157265e-11, 3.454259100976742e-11, 4.2553294221647775e-11, -1.2226553103289461e-10, 6.89890367056023e-11, -7.458500483892294e-11, 7.044809180456468e-12, 3.980349383425619e-11, 6.849654177187858e-11, 8.457945455120353e-11, 3.3852920466870273e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.237112634555615e-10, -4.532207942276045e-11, -6.620282100300301e-11, -1.898634582886416e-10, -1.1616618778020893e-10, -4.026778910315443e-12, 4.1393999339334187e-11, 2.5811064396918937e-10, -9.268841250076321e-11, -1.246009961874961e-10, -3.8678449332252285e-10, -2.212852123761877e-10, -1.2872924948226228e-11, 8.129186213068351e-11, 5.000888592121555e-12] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [2.367044338313917e-10, -1.7874068891643446e-10, 5.447686746151703e-11, 7.553957459549565e-12, 1.092379520173381e-10, -2.973432611241833e-11, 6.689648834878881e-11, -4.3323900023040096e-11, 4.6479797788379074e-10, -3.615225896425045e-10, 1.0225309488021139e-10, 1.7651879957725214e-11, 2.1950707917994805e-10, -6.276523745185614e-11, 1.2324452569600908e-10, -8.444367427529187e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-7.038936100656201e-11, 9.819700608204585e-12, -8.377631921518969e-12, 4.5448755869870183e-11, 6.251177353533421e-11, -1.243850578092065e-10, 3.020916850005051e-11, -2.915789831803295e-11, -1.384996561881735e-10, 2.4209079185766313e-11, -1.935962501420363e-11, 9.547185264580094e-11, 1.2793255343979126e-10, -2.412423594222446e-10, 5.4112492264835055e-11, -5.680711456790277e-11] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [-3.8551717373991323e-10, -1.349048650567397e-10, 2.7070590213895684e-10, 5.115485812723364e-11, -2.4124102715461504e-10, 3.527298453320782e-10, -2.3447377373031486e-10, -3.534317283282462e-11, -7.724307860002e-10, -2.745940141934966e-10, 5.324731766620516e-10, 1.0623768531559108e-10, -4.833672351267637e-10, 7.04050817645907e-10, -4.829641131465223e-10, -8.03239696978153e-11, -3.8116176881430874e-12] QuasiNewtonMethods.optimum(state) .- 1 = [7.722733563753081e-11, 4.9568571469649214e-11, -4.694256094950333e-11, 2.6655344598225383e-11, -1.8214763031210168e-11, -2.925382158736056e-11, -4.9837356463910965e-11, -1.4030998585212728e-12, 1.494246948396949e-10, 1.0166667507860438e-10, -9.215717078348007e-11, 5.3017590317949725e-11, -3.5525582475770534e-11, -5.942446534845658e-11, -1.000159954855917e-10, -5.466516128649346e-12, 1.1035616864774056e-12] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [-6.880152003674311e-11, 6.842237887383362e-11, -2.2239432517778823e-11, -3.582589780393164e-11, -1.947999539453349e-10, -1.7595480628074256e-10, -1.3861789494029608e-10, -5.227074328928438e-11, 2.5534463432563825e-11, -1.382481906730959e-10, 1.397584270534935e-10, -6.763856141844826e-11, -9.133649392367715e-11, -3.714124563458654e-10, -3.4826286299249887e-10, -2.829905199064342e-10, -9.873346584754472e-11, 5.913580736205404e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-2.938171927979738e-11, 2.83630896547038e-11, 4.0817571544948805e-11, -1.0481615575486103e-11, 3.8451686279472597e-11, 9.317036031575299e-11, -1.1115108833337217e-11, 1.5511147921642987e-11, -3.572564466480799e-11, -6.193656698627592e-11, 5.4580340247412096e-11, 7.914802147013233e-11, -2.0002999256973908e-11, 8.013345542678962e-11, 1.873186050715958e-10, -2.695832446164559e-11, 3.0839109044222823e-11, -6.343603420333466e-11] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [-3.028322037579301e-11, 1.347633116211e-11, -2.1756707546671805e-11, -1.2496670365180762e-12, -9.24971210736203e-12, -7.398304191497118e-12, 5.3224091800530005e-12, 1.6402657010416988e-11, 8.488454383837052e-11, -6.077416347949338e-11, 2.8064217616474707e-11, -4.4338532845245027e-11, -1.8272050539280826e-12, -1.8746337815400693e-11, -1.420452644396164e-11, 1.1164402735630574e-11, 3.319966523918083e-11, 1.6978973782499907e-10, -4.0144554347421035e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-3.1847968706699703e-10, 4.281894838698008e-10, 1.68314917559087e-10, 5.198730335109758e-11, 4.89119855728859e-12, -3.023605810170693e-10, 1.6526713331188603e-10, -5.355482723956584e-11, 6.799005802804459e-12, -6.362641524759738e-10, 8.626108716214276e-10, 3.384172941878205e-10, 1.0484368928587173e-10, 1.0404788142182042e-11, -6.047756739846477e-10, 3.3168401358807387e-10, -1.0895484514605869e-10, 1.5235146477721173e-11, 3.7265746044568004e-12] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [-2.567244195006424e-10, 1.3841638946132662e-10, 3.9018943631674574e-10, -8.529177364380303e-11, 9.701484060542498e-11, 1.150481931944114e-10, -3.8857494999433584e-10, -2.0663171174106765e-10, -1.2219381062550383e-10, -1.6069912067706582e-10, -5.290561322368603e-10, 2.7826807524888864e-10, 7.846783223186549e-10, -1.8078116781339304e-10, 1.9124968275718857e-10, 2.2503110486127298e-10, -7.62395924169823e-10, -4.004623299636023e-10, -2.576707736068329e-10, -3.3833513768399825e-10] QuasiNewtonMethods.optimum(state) .- 1 = [7.072564756072097e-11, -1.3515855101786656e-12, -2.0992652061124772e-11, 4.958744526106784e-11, 1.1813217071221516e-11, 3.993516628497673e-11, 7.293921022721861e-11, -1.0809020345448062e-11, -5.045408535409024e-11, -1.845057440164055e-11, 1.4185563834701043e-10, -1.1616263506653013e-12, -4.385580787413801e-11, 1.0130363214955196e-10, 2.1622481582994624e-11, 7.96160914973143e-11, 1.4726087016470046e-10, -2.053357484044227e-11, -9.685774404744052e-11, -3.5764391448367405e-11] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [-4.169908862650118e-11, 1.2440937169344579e-11, 2.2582824499295384e-11, 5.769584809911521e-11, -1.1274869926580777e-11, -2.6436186573164377e-11, -3.131161996350329e-12, 2.5162094630104548e-12, -1.3595569114954742e-11, 2.0909718401185273e-11, -8.574430054864024e-11, 2.1290080809421852e-11, 4.694866717613877e-11, 1.145514794131941e-10, -2.2529977883323227e-11, -5.168854233517095e-11, -1.1922685061449556e-11, 1.5651924201165457e-12, -3.3648639430339244e-11, 4.572608958142155e-11, 1.4408474413585282e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.3503198559305929e-11, -3.6226577293518858e-12, 6.367129046225273e-12, -3.0335178813345465e-11, 1.0797363003689497e-11, -3.094324796393266e-11, 1.8643087074110554e-11, -5.561329174952334e-12, 1.4521051028282272e-11, -2.329625381491951e-11, -2.6955659926386488e-11, -8.044676036433884e-12, 1.3986145575017872e-11, -6.119982298713467e-11, 2.2055468562598435e-11, -6.406475350217988e-11, 3.388134217630068e-11, -1.1787681941655137e-11, 2.858557834883868e-11, -4.8387183149145585e-11, -1.3750112159982564e-12] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [-2.6861624036200737e-11, -3.7421066245713064e-11, -8.270018003742052e-11, -4.0522252220398514e-11, -7.843814486818701e-11, 7.318012862356227e-11, -7.1611161445162e-11, 3.272515591845604e-11, -3.427258477017858e-11, 8.84956552482663e-11, -2.973210566636908e-11, -5.5627946693448393e-11, -7.787592792851683e-11, -1.800994908762732e-10, -8.001688200920398e-11, -1.4092971234447305e-10, 1.4818235527513934e-10, -1.4675027859567535e-10, 5.973488370614177e-11, -7.467992890752839e-11, 1.7112666839125268e-10, -6.258582541107671e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-4.225741978558517e-11, -3.047084806695466e-11, 4.626965477427802e-12, 4.4218406713980585e-11, -1.6698309401874667e-11, -6.070455249584938e-11, -2.968103540723632e-11, -6.710343392057894e-11, -4.706335321458255e-11, 1.4364953671019975e-11, 2.5435209494162336e-11, -8.749068136637561e-11, -6.414146991318148e-11, 1.1402434552110208e-11, 9.25290954967295e-11, -3.647826485320138e-11, -1.218227740906741e-10, -5.4470872257184055e-11, -1.2353318368241162e-10, -9.510170428939091e-11, 2.5559110383710504e-11, 4.8412385211804576e-11] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [1.0127809701998558e-10, 5.824762894235391e-11, 9.341460938117052e-11, 1.429367735283904e-11, -6.723077650150344e-11, 9.777245679742919e-11, 9.152612001628313e-11, 1.127409277046354e-10, 2.904942952852707e-11, 1.693978290973064e-11, -3.343259002974719e-11, 2.0141111001237277e-10, 1.1130207866472119e-10, 1.8777490673471675e-10, 2.704925172736239e-11, -1.3982959234937198e-10, 1.8107559895952363e-10, 1.9664048167555848e-10, 2.1434609642767555e-10, 5.926437118830563e-11, 3.56192852990489e-11, -6.801625929142574e-11, -4.77118344832661e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.5338064152103925e-10, 9.22302234585004e-11, -1.1516509967890443e-10, -3.309719165400793e-11, -3.047984087345412e-11, 2.912359242657203e-11, 1.4937273640214244e-10, 4.905629236162667e-10, 1.1173639791195455e-10, 7.083600372936871e-11, 1.7540013885763983e-10, -3.216581445641964e-10, 1.9378809668069152e-10, -2.2989976589116168e-10, -8.044831467657332e-11, -5.28381782771703e-11, 5.6095350586815584e-11, 2.9799673839647767e-10, 9.903389219800829e-10, 2.362146034329271e-10, 1.505975344429089e-10, 3.4771829859892023e-10, 2.3290258610586534e-11] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [-2.3960966544223083e-10, 1.946909300443167e-11, 3.4752423161421575e-11, -6.700673349513409e-11, 1.6820522752425404e-10, 5.047318119011379e-10, 2.0742185746769337e-10, 1.7604584456876182e-10, -5.163303118393969e-11, -3.602274034619768e-11, -1.085632694852734e-10, -4.221889504663068e-11, -4.963183197759236e-10, 2.4033441903270614e-11, 7.078337915800148e-11, -1.3615186755799868e-10, 3.297637718446822e-10, 1.0284459950327118e-9, 4.364657524291715e-10, 3.503304313312583e-10, -1.1350065332038639e-10, -6.573031008372254e-11, -2.1549440010204535e-10, -8.857181654775559e-11] QuasiNewtonMethods.jl: Test Failed at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:47 Expression: abs(optimize!(state, Rosenbrock(), x, QuasiNewtonMethods.BackTracking{3}())) < eps() Evaluated: 2.587599821494319e-16 < 2.220446049250313e-16 Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.11/Test/src/Test.jl:680 [inlined] [2] macro expansion @ ~/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:47 [inlined] [3] macro expansion @ /opt/julia/share/julia/stdlib/v1.11/Test/src/Test.jl:1709 [inlined] [4] top-level scope @ ~/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:36 QuasiNewtonMethods.optimum(state) .- 1 = [-6.968342569635411e-10, 2.58643351180865e-9, -1.6007195569045507e-11, -6.864635748726755e-9, -2.9943569845869433e-10, -7.444644900544972e-11, 2.1617596601686273e-11, -7.137251900601882e-10, -5.841996442157438e-9, -1.6945297387493952e-9, -1.1415314249418884e-9, 1.2850212227633051e-8, -1.390924819766326e-9, 5.184046525386066e-9, -3.3770541918443087e-11, -1.376003289088601e-8, -5.993917584490305e-10, -1.5038426059987842e-10, 5.430300653586073e-11, -1.4388331637249507e-9, -1.1708612968064358e-8, -3.4060464448870675e-9, -2.2829478307784257e-9, 2.574533519705824e-8] QuasiNewtonMethods.jl: Test Failed at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:49 Expression: all((x->begin #= /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:49 =# x ≈ 1 end), QuasiNewtonMethods.optimum(state)) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.11/Test/src/Test.jl:680 [inlined] [2] macro expansion @ ~/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:49 [inlined] [3] macro expansion @ /opt/julia/share/julia/stdlib/v1.11/Test/src/Test.jl:1709 [inlined] [4] top-level scope @ ~/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:36 Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 146 3 149 3m56.3s Method ambiguity | 1 1 9.1s Unbound type parameters | 1 1 0.2s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.4s Stale dependencies | 1 1 5.7s Compat bounds | 3 1 4 10.7s julia | 1 1 0.0s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") deps | 1 1 0.6s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras | 1 1 10.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") weakdeps | 1 1 0.0s Piracy | 1 1 0.3s Persistent tasks | 1 1 18.3s ERROR: LoadError: Some tests did not pass: 146 passed, 3 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 253.0s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.11/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{Pkg.Types.PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:2128 [3] test @ /opt/julia/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:2011 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{Pkg.Types.PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.11/Pkg/src/API.jl:481 [5] test(pkgs::Vector{Pkg.Types.PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.11/Pkg/src/API.jl:159 [6] test @ /opt/julia/share/julia/stdlib/v1.11/Pkg/src/API.jl:147 [inlined] [7] #test#74 @ /opt/julia/share/julia/stdlib/v1.11/Pkg/src/API.jl:146 [inlined] [8] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 475.01s: package has test failures