Package evaluation of JudiLing on Julia 1.11.5 (2d89891cf8*) started at 2025-06-29T17:00:12.235 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.72s ################################################################################ # Installation # Installing JudiLing... Resolving package versions... Updating `~/.julia/environments/v1.11/Project.toml` [b43a184b] + JudiLing v0.12.0 Updating `~/.julia/environments/v1.11/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 ⌅ [15f4f7f2] + AutoHashEquals v0.2.0 [fbb218c0] + BSON v0.3.9 ⌅ [6e4b80f9] + BenchmarkTools v1.5.0 [d1d4a3ce] + BitFlags v0.1.9 [336ed68f] + CSV v0.10.15 [944b1d66] + CodecZlib v0.7.8 [34da2185] + Compat v4.16.0 [f0e56b4a] + ConcurrentUtilities v2.5.0 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 [124859b0] + DataDeps v0.7.13 [a93c6f00] + DataFrames v1.7.0 [2e981812] + DataLoaders v0.1.3 [864edb3b] + DataStructures v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [8bb1440f] + DelimitedFiles v1.9.1 [b4f34e82] + Distances v0.10.12 [31c24e10] + Distributions v0.25.120 ⌅ [ffbed154] + DocStringExtensions v0.8.6 [c5bfea45] + Embeddings v0.4.6 [460bff9d] + ExceptionUnwrapping v0.1.11 [48062228] + FilePathsBase v0.9.24 [1a297f60] + FillArrays v1.13.0 [92fee26a] + GZip v0.6.2 ⌅ [91feb7a0] + GoogleDrive v0.1.3 [cd3eb016] + HTTP v1.10.17 [34004b35] + HypergeometricFunctions v0.3.28 [842dd82b] + InlineStrings v1.4.4 [41ab1584] + InvertedIndices v1.3.1 [92d709cd] + IrrationalConstants v0.2.4 [82899510] + IteratorInterfaceExtensions v1.0.0 [692b3bcd] + JLLWrappers v1.7.0 [682c06a0] + JSON v0.21.4 [b43a184b] + JudiLing v0.12.0 [b964fa9f] + LaTeXStrings v1.4.0 ⌅ [7f8f8fb0] + LearnBase v0.3.0 [2ab3a3ac] + LogExpFunctions v0.3.29 [e6f89c97] + LoggingExtras v1.1.0 ⌃ [9920b226] + MLDataPattern v0.5.4 [66a33bbf] + MLLabelUtils v0.5.7 [dbb5928d] + MappedArrays v0.4.2 [739be429] + MbedTLS v1.1.9 [e1d29d7a] + Missings v1.2.0 [4d8831e6] + OpenSSL v1.5.0 [bac558e1] + OrderedCollections v1.8.1 [90014a1f] + PDMats v0.11.35 [d96e819e] + Parameters v0.12.3 [69de0a69] + Parsers v2.8.3 [2dfb63ee] + PooledArrays v1.4.3 ⌅ [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [08abe8d2] + PrettyTables v2.4.0 [92933f4c] + ProgressMeter v1.10.4 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [3cdcf5f2] + RecipesBase v1.3.4 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [79098fc4] + Rmath v0.8.0 [6c6a2e73] + Scratch v1.3.0 [91c51154] + SentinelArrays v1.4.8 [777ac1f9] + SimpleBufferStream v1.2.0 [a2af1166] + SortingAlgorithms v1.2.1 [276daf66] + SpecialFunctions v2.5.1 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 ⌅ [2913bbd2] + StatsBase v0.33.21 [4c63d2b9] + StatsFuns v1.5.0 [892a3eda] + StringManipulation v0.4.1 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.1 ⌅ [b189fb0b] + ThreadPools v1.2.1 [3bb67fe8] + TranscodingStreams v0.11.3 [5c2747f8] + URIs v1.6.1 [3a884ed6] + UnPack v1.0.2 [ea10d353] + WeakRefStrings v1.4.2 [76eceee3] + WorkerUtilities v1.6.1 [458c3c95] + OpenSSL_jll v3.5.0+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.6.0 [7b1f6079] + FileWatching v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.2.0 [de0858da] + Printf v1.11.0 [9abbd945] + Profile v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.11.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] + LibCURL_jll v8.6.0+0 [e37daf67] + LibGit2_jll v1.7.2+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.6+0 [14a3606d] + MozillaCACerts_jll v2023.12.12 [4536629a] + OpenBLAS_jll v0.3.27+1 [05823500] + OpenLibm_jll v0.8.5+0 [bea87d4a] + SuiteSparse_jll v7.7.0+0 [83775a58] + Zlib_jll v1.2.13+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 [8e850ede] + nghttp2_jll v1.59.0+0 [3f19e933] + p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 4.62s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 646.64s ################################################################################ # Testing # Testing JudiLing ┌ Warning: Could not use exact versions of packages in manifest, re-resolving └ @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:1924 Status `/tmp/jl_HUsLeR/Project.toml` [336ed68f] CSV v0.10.15 [8f4d0f93] Conda v1.10.2 [a93c6f00] DataFrames v1.7.0 [2e981812] DataLoaders v0.1.3 [587475ba] Flux v0.16.4 [b43a184b] JudiLing v0.12.0 [438e738f] PyCall v1.96.4 [1bc83da4] SafeTestsets v0.1.0 [37e2e46d] LinearAlgebra v1.11.0 [2f01184e] SparseArrays v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_HUsLeR/Manifest.toml` [621f4979] AbstractFFTs v1.5.0 [7d9f7c33] Accessors v0.1.42 [79e6a3ab] Adapt v4.3.0 [66dad0bd] AliasTables v1.1.3 [dce04be8] ArgCheck v2.5.0 [a9b6321e] Atomix v1.1.1 ⌅ [15f4f7f2] AutoHashEquals v0.2.0 [fbb218c0] BSON v0.3.9 [198e06fe] BangBang v0.4.4 [9718e550] Baselet v0.1.1 ⌅ [6e4b80f9] BenchmarkTools v1.5.0 [d1d4a3ce] BitFlags v0.1.9 [336ed68f] CSV v0.10.15 [082447d4] ChainRules v1.72.5 [d360d2e6] ChainRulesCore v1.25.2 [944b1d66] CodecZlib v0.7.8 [bbf7d656] CommonSubexpressions v0.3.1 [34da2185] Compat v4.16.0 [a33af91c] CompositionsBase v0.1.2 [f0e56b4a] ConcurrentUtilities v2.5.0 [8f4d0f93] Conda v1.10.2 [187b0558] ConstructionBase v1.6.0 [6add18c4] ContextVariablesX v0.1.3 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [124859b0] DataDeps v0.7.13 [a93c6f00] DataFrames v1.7.0 [2e981812] DataLoaders v0.1.3 [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 [8bb1440f] DelimitedFiles v1.9.1 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [b4f34e82] Distances v0.10.12 [31c24e10] Distributions v0.25.120 ⌅ [ffbed154] DocStringExtensions v0.8.6 [c5bfea45] Embeddings v0.4.6 [f151be2c] EnzymeCore v0.8.12 [460bff9d] ExceptionUnwrapping v0.1.11 [cc61a311] FLoops v0.2.2 [b9860ae5] FLoopsBase v0.1.1 [48062228] FilePathsBase v0.9.24 [1a297f60] FillArrays v1.13.0 [587475ba] Flux v0.16.4 [f6369f11] ForwardDiff v1.0.1 [d9f16b24] Functors v0.5.2 [46192b85] GPUArraysCore v0.2.0 [92fee26a] GZip v0.6.2 ⌅ [91feb7a0] GoogleDrive v0.1.3 [cd3eb016] HTTP v1.10.17 [076d061b] HashArrayMappedTries v0.2.0 [34004b35] HypergeometricFunctions v0.3.28 [7869d1d1] IRTools v0.4.15 [22cec73e] InitialValues v0.3.1 [842dd82b] InlineStrings v1.4.4 [3587e190] InverseFunctions v0.1.17 [41ab1584] InvertedIndices v1.3.1 [92d709cd] IrrationalConstants v0.2.4 [82899510] IteratorInterfaceExtensions v1.0.0 [692b3bcd] JLLWrappers v1.7.0 [682c06a0] JSON v0.21.4 [b43a184b] JudiLing v0.12.0 [b14d175d] JuliaVariables v0.2.4 [63c18a36] KernelAbstractions v0.9.35 [b964fa9f] LaTeXStrings v1.4.0 ⌅ [7f8f8fb0] LearnBase v0.3.0 [2ab3a3ac] LogExpFunctions v0.3.29 [e6f89c97] LoggingExtras v1.1.0 [c2834f40] MLCore v1.0.0 [7e8f7934] MLDataDevices v1.10.0 ⌃ [9920b226] MLDataPattern v0.5.4 [66a33bbf] MLLabelUtils v0.5.7 [d8e11817] MLStyle v0.4.17 [f1d291b0] MLUtils v0.4.8 [1914dd2f] MacroTools v0.5.16 [dbb5928d] MappedArrays v0.4.2 [739be429] MbedTLS v1.1.9 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 [872c559c] NNlib v0.9.30 [77ba4419] NaNMath v1.1.3 [71a1bf82] NameResolution v0.1.5 [0b1bfda6] OneHotArrays v0.2.10 [4d8831e6] OpenSSL v1.5.0 [3bd65402] Optimisers v0.4.6 [bac558e1] OrderedCollections v1.8.1 [90014a1f] PDMats v0.11.35 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.3 [2dfb63ee] PooledArrays v1.4.3 ⌅ [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [8162dcfd] PrettyPrint v0.2.0 [08abe8d2] PrettyTables v2.4.0 [33c8b6b6] ProgressLogging v0.1.5 [92933f4c] ProgressMeter v1.10.4 [43287f4e] PtrArrays v1.3.0 [438e738f] PyCall v1.96.4 [1fd47b50] QuadGK v2.11.2 [c1ae055f] RealDot v0.1.0 [3cdcf5f2] RecipesBase v1.3.4 [189a3867] Reexport v1.2.2 [ae029012] Requires v1.3.1 [79098fc4] Rmath v0.8.0 [1bc83da4] SafeTestsets v0.1.0 [7e506255] ScopedValues v1.3.0 [6c6a2e73] Scratch v1.3.0 [91c51154] SentinelArrays v1.4.8 [efcf1570] Setfield v1.1.2 [605ecd9f] ShowCases v0.1.0 [777ac1f9] SimpleBufferStream v1.2.0 [699a6c99] SimpleTraits v0.9.4 [a2af1166] SortingAlgorithms v1.2.1 [dc90abb0] SparseInverseSubset v0.1.2 [276daf66] SpecialFunctions v2.5.1 [171d559e] SplittablesBase v0.1.15 [90137ffa] StaticArrays v1.9.13 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 ⌅ [2913bbd2] StatsBase v0.33.21 [4c63d2b9] StatsFuns v1.5.0 [892a3eda] StringManipulation v0.4.1 [09ab397b] StructArrays v0.7.1 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 ⌅ [b189fb0b] ThreadPools v1.2.1 [3bb67fe8] TranscodingStreams v0.11.3 [28d57a85] Transducers v0.4.84 [5c2747f8] URIs v1.6.1 [3a884ed6] UnPack v1.0.2 [013be700] UnsafeAtomics v0.3.0 [81def892] VersionParsing v1.3.0 [ea10d353] WeakRefStrings v1.4.2 [76eceee3] WorkerUtilities v1.6.1 [e88e6eb3] Zygote v0.7.10 [700de1a5] ZygoteRules v0.2.7 [458c3c95] OpenSSL_jll v3.5.0+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.2.0 [de0858da] Printf v1.11.0 [9abbd945] Profile v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.6.0+0 [e37daf67] LibGit2_jll v1.7.2+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.6+0 [14a3606d] MozillaCACerts_jll v2023.12.12 [4536629a] OpenBLAS_jll v0.3.27+1 [05823500] OpenLibm_jll v0.8.5+0 [bea87d4a] SuiteSparse_jll v7.7.0+0 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.59.0+0 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... Precompiling JudiLing... 2273.0 ms ✓ ThreadPools 2202.7 ms ✓ LearnBase 9569.3 ms ✓ Distributions 4118.8 ms ✓ GoogleDrive 2307.3 ms ✓ MLLabelUtils 4779.1 ms ✓ Distributions → DistributionsTestExt 29463.1 ms ✓ Embeddings 2871.2 ms ✓ MLDataPattern 4342.8 ms ✓ DataLoaders 147924.4 ms ✓ JudiLing 10 dependencies successfully precompiled in 219 seconds. 114 already precompiled. [ Info: Running `conda config --set pip_interop_enabled true --file /home/pkgeval/.julia/conda/3/x86_64/condarc-julia.yml` in root environment [ Info: Running `pip install -U pyndl` in root environment Collecting pyndl Downloading pyndl-1.2.3.tar.gz (38 kB) Installing build dependencies: started Installing build dependencies: finished with status 'done' Getting requirements to build wheel: started Getting requirements to build wheel: finished with status 'done' Preparing metadata (pyproject.toml): started Preparing metadata (pyproject.toml): finished with status 'done' Collecting Cython>=3.0.0 (from pyndl) Using cached cython-3.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (5.9 kB) Collecting netCDF4>=1.6.0 (from pyndl) Downloading netCDF4-1.7.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (1.8 kB) Requirement already satisfied: numpy>=1.24.1 in /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/site-packages (from pyndl) (2.3.0) Collecting pandas>=1.4.3 (from pyndl) Downloading pandas-2.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (91 kB) Collecting scipy>=1.13.0 (from pyndl) Downloading scipy-1.16.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (61 kB) Requirement already satisfied: setuptools>=69.2.0 in /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/site-packages (from pyndl) (80.1.0) Collecting toml>=0.10.2 (from pyndl) Downloading toml-0.10.2-py2.py3-none-any.whl.metadata (7.1 kB) Collecting xarray>=2022.6.0 (from pyndl) Downloading xarray-2025.6.1-py3-none-any.whl.metadata (12 kB) Collecting cftime (from netCDF4>=1.6.0->pyndl) Downloading cftime-1.6.4.post1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (8.7 kB) Requirement already satisfied: certifi in /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/site-packages (from netCDF4>=1.6.0->pyndl) (2025.6.15) Collecting python-dateutil>=2.8.2 (from pandas>=1.4.3->pyndl) Downloading python_dateutil-2.9.0.post0-py2.py3-none-any.whl.metadata (8.4 kB) Collecting pytz>=2020.1 (from pandas>=1.4.3->pyndl) Downloading pytz-2025.2-py2.py3-none-any.whl.metadata (22 kB) Collecting tzdata>=2022.7 (from pandas>=1.4.3->pyndl) Downloading tzdata-2025.2-py2.py3-none-any.whl.metadata (1.4 kB) Collecting six>=1.5 (from python-dateutil>=2.8.2->pandas>=1.4.3->pyndl) Downloading six-1.17.0-py2.py3-none-any.whl.metadata (1.7 kB) Requirement already satisfied: packaging>=23.2 in /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/site-packages (from xarray>=2022.6.0->pyndl) (25.0) Using cached cython-3.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB) Downloading netCDF4-1.7.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.3 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 9.3/9.3 MB 80.1 MB/s eta 0:00:00 Downloading pandas-2.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.0 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 12.0/12.0 MB 133.3 MB/s eta 0:00:00 Downloading python_dateutil-2.9.0.post0-py2.py3-none-any.whl (229 kB) Downloading pytz-2025.2-py2.py3-none-any.whl (509 kB) Downloading scipy-1.16.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (35.1 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 35.1/35.1 MB 129.1 MB/s eta 0:00:00 Downloading six-1.17.0-py2.py3-none-any.whl (11 kB) Downloading toml-0.10.2-py2.py3-none-any.whl (16 kB) Downloading tzdata-2025.2-py2.py3-none-any.whl (347 kB) Downloading xarray-2025.6.1-py3-none-any.whl (1.3 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.3/1.3 MB 80.2 MB/s eta 0:00:00 Downloading cftime-1.6.4.post1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.4/1.4 MB 83.0 MB/s eta 0:00:00 Building wheels for collected packages: pyndl Building wheel for pyndl (pyproject.toml): started Building wheel for pyndl (pyproject.toml): finished with status 'done' Created wheel for pyndl: filename=pyndl-1.2.3-cp312-cp312-manylinux_2_36_x86_64.whl size=412047 sha256=94fc4e158a8c3c904a4696b7973de5c2dc09493a3c12d880a4ff24fcb3ec0a6d Stored in directory: /home/pkgeval/.cache/pip/wheels/37/dc/89/1716df4b978655ffe855f598b4364aa2b139465240707ecdd2 Successfully built pyndl Installing collected packages: pytz, tzdata, toml, six, scipy, Cython, cftime, python-dateutil, netCDF4, pandas, xarray, pyndl Successfully installed Cython-3.1.2 cftime-1.6.4.post1 netCDF4-1.7.2 pandas-2.3.0 pyndl-1.2.3 python-dateutil-2.9.0.post0 pytz-2025.2 scipy-1.16.0 six-1.17.0 toml-0.10.2 tzdata-2025.2 xarray-2025.6.1 /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=543) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=543) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=543) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=543) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=543) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=543) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=543) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=543) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=543) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=543) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=543) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=543) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=543) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=543) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=543) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=543) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() making adjacency matrix... Test Summary: | Pass Total Time pyndl tests | 13 13 6m49.7s Test Summary: | Pass Total Time input tests | 27 27 17.8s Test Summary: | Pass Total Time cholesky tests | 10 10 15.4s Test Summary: | Pass Total Time frequency tests | 3 3 9.3s 6×7 DataFrame Row │ Data #vo voc oco coo oo# oca │ String15 Int64 Int64 Int64 Int64 Int64 Int64 ─────┼──────────────────────────────────────────────────── 1 │ vocoo 1 1 1 1 1 0 2 │ vocaas 1 1 0 0 0 1 3 │ vocat 1 1 0 0 0 1 4 │ vocaamus 1 1 0 0 0 1 5 │ vocaatis 1 1 0 0 0 1 6 │ vocant 1 1 0 0 0 1 6×7 DataFrame Row │ Data S1 S2 S3 S4 S5 S6 │ String15 Float64 Float64 Float64 Float64 Float64 Float64 ─────┼──────────────────────────────────────────────────────────────────────── 1 │ vocoo 15.2465 -20.8614 15.5945 -9.9225 0.401251 4.89594 2 │ vocaas 20.8716 -21.4455 19.1184 -8.76425 -5.05156 10.7338 3 │ vocat 22.2822 -29.0044 9.79204 -5.54939 -1.81678 4.56271 4 │ vocaamus 16.8365 -17.9527 8.56939 -8.22765 9.02656 -0.0304184 5 │ vocaatis 19.8971 -19.9789 10.4833 -6.74136 1.33763 3.6688 6 │ vocant 19.9549 -26.7096 7.54822 -4.31259 5.78011 -3.90409 6×7 DataFrame Row │ Data #vo voc oco coo oo# oca │ String Float64 Float64 Float64 Float64 Float64 Float64 ─────┼─────────────────────────────────────────────────────────────────────────────────────── 1 │ S1 -0.00141756 -0.00141756 -0.0236324 -0.0132617 -0.0108323 0.0222148 2 │ S2 -0.00273367 -0.00273367 0.00451568 0.000452137 0.00437199 -0.00724935 3 │ S3 -0.00153557 -0.00153557 -0.0191963 -0.00511315 -0.00986019 0.0176608 4 │ S4 -0.0013362 -0.0013362 0.00183685 0.00286875 0.00883363 -0.00317305 5 │ S5 -0.00294256 -0.00294256 -0.0174473 -0.00299004 0.0797393 0.0145048 6 │ S6 0.00229429 0.00229429 0.0123282 -0.00299352 0.0275983 -0.0100339 6×7 DataFrame Row │ Data #vo voc oco coo oo# oca │ String15 Float64 Float64 Float64 Float64 Float64 Float64 ─────┼───────────────────────────────────────────────────────────────────────────── 1 │ vocoo 0.988964 0.988964 0.862193 0.866111 0.869592 0.126771 2 │ vocaas 1.00243 1.00243 -0.0444658 -0.0342458 -0.0382966 1.0469 3 │ vocat 1.00112 1.00112 0.00442709 -0.0183283 0.0107253 0.996696 4 │ vocaamus 0.998892 0.998892 0.00706063 0.016144 0.0557306 0.991831 5 │ vocaatis 1.01126 1.01126 0.0808647 0.0567661 -0.0188942 0.930395 6 │ vocant 0.995767 0.995767 0.00154401 -0.0189361 -0.0530909 0.994223 6×7 DataFrame Row │ Data S1 S2 S3 S4 S5 S6 │ String Float64 Float64 Float64 Float64 Float64 Float64 ─────┼──────────────────────────────────────────────────────────────────────── 1 │ #vo 5.72851 -7.76108 3.5086 -2.02855 -0.436928 1.58815 2 │ voc 5.72851 -7.76108 3.5086 -2.02855 -0.436928 1.58815 3 │ oco 1.42971 -3.03506 1.62397 -1.31801 -0.234167 0.88979 4 │ coo 0.820988 0.0194814 1.38457 -0.821628 -0.0331436 0.074187 5 │ oo# 1.52235 -2.32403 5.54109 -3.70934 1.54308 0.75419 6 │ oca 4.29879 -4.72601 1.88464 -0.710533 -0.202761 0.698355 6×7 DataFrame Row │ Data S1 S2 S3 S4 S5 S6 │ String15 Float64 Float64 Float64 Float64 Float64 Float64 ─────┼────────────────────────────────────────────────────────────────────── 1 │ vocoo 15.2301 -20.8618 15.5668 -9.90607 0.401914 4.89446 2 │ vocaas 21.1856 -21.497 18.7371 -8.27066 -6.04744 10.5006 3 │ vocat 22.2289 -28.9307 9.7931 -5.54923 -1.80306 4.54148 4 │ vocaamus 16.8829 -18.2816 7.88645 -8.25267 8.51863 -1.95841 5 │ vocaatis 19.7887 -19.1196 10.4815 -6.73917 1.86 3.51972 6 │ vocant 20.6622 -26.5988 5.84837 -5.02826 4.97536 -3.94898 6×7 DataFrame Row │ Data #vo voc oco coo oo# oca │ String Int64 Int64 Int64 Int64 Int64 Int64 ─────┼────────────────────────────────────────────────── 1 │ #vo 0 1 0 0 0 0 2 │ voc 0 0 1 0 0 1 3 │ oco 0 0 0 1 0 0 4 │ coo 0 0 0 0 1 0 5 │ oo# 0 0 0 0 0 0 6 │ oca 0 0 0 0 0 0 6×7 DataFrame Row │ Data vocoo vocaas vocat vocaamus vocaatis vocant │ String15 Float64 Float64 Float64 Float64 Float64 Float64 ─────┼────────────────────────────────────────────────────────────────────── 1 │ vocoo 0.942076 0.383369 0.41285 0.371298 0.404084 0.365981 2 │ vocaas 0.322011 0.951319 0.523442 0.633156 0.57495 0.487577 3 │ vocat 0.381475 0.565054 0.964657 0.484204 0.463868 0.538595 4 │ vocaamus 0.292859 0.525276 0.449704 0.975416 0.494743 0.377306 5 │ vocaatis 0.325014 0.574024 0.476682 0.480271 0.947895 0.405188 6 │ vocant 0.330853 0.509106 0.5232 0.442983 0.400525 0.987605 6×7 DataFrame Row │ Data vocoo vocaas vocat vocaamus vocaatis vocant │ String15 Int64 Int64 Int64 Int64 Int64 Int64 ─────┼──────────────────────────────────────────────────────────── 1 │ vocoo 1 0 0 0 0 0 2 │ vocaas 0 1 0 0 0 0 3 │ vocat 0 0 1 0 0 0 4 │ vocaamus 0 0 0 1 0 0 5 │ vocaatis 0 0 0 0 1 0 6 │ vocant 0 0 0 0 0 1 Test Summary: | Total Time display tests | 0 48.6s ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:556 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:556 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:556 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:556 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:556 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:556 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: You set k=1. Note that if there are duplicate vectors in the S/C matrix, it is not guaranteed that eval_SC_loose with k=1 gives the same result as eval_SC. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:728 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: You set k=1. Note that if there are duplicate vectors in the S/C matrix, it is not guaranteed that eval_SC_loose with k=1 gives the same result as eval_SC. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:728 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: You set k=1. Note that if there are duplicate vectors in the S/C matrix, it is not guaranteed that eval_SC_loose with k=1 gives the same result as eval_SC. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:728 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: You set k=1. Note that if there are duplicate vectors in the S/C matrix, it is not guaranteed that eval_SC_loose with k=1 gives the same result as eval_SC. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:728 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: You set k=1. Note that if there are duplicate vectors in the S/C matrix, it is not guaranteed that eval_SC_loose with k=1 gives the same result as eval_SC. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:728 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: You set k=1. Note that if there are duplicate vectors in the S/C matrix, it is not guaranteed that eval_SC_loose with k=1 gives the same result as eval_SC. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:728 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: You set k=1. Note that if there are duplicate vectors in the S/C matrix, it is not guaranteed that eval_SC_loose with k=1 gives the same result as eval_SC. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:728 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: You set k=1. Note that if there are duplicate vectors in the S/C matrix, it is not guaranteed that eval_SC_loose with k=1 gives the same result as eval_SC. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:728 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: You set k=1. Note that if there are duplicate vectors in the S/C matrix, it is not guaranteed that eval_SC_loose with k=1 gives the same result as eval_SC. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:728 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: accuracy_comprehension: This dataset contains homophones/homographs. Note that some of the results on the correctness of comprehended base/inflections may be misleading. See documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:88 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 Test Summary: | Pass Total Time eval tests | 150 150 1m02.9s Test Summary: | Total Time find_path tests | 0 6.0s Test Summary: | Pass Total Time make_adjacency_matrix tests | 7 7 0.8s true Test Summary: | Pass Total Time make_cue_matrix tests | 21 21 7.3s true Test Summary: | Pass Total Time make_semantic_matrix tests | 72 72 7.8s Test Summary: | Total Time make_yt_matrix tests | 0 0.0s Test Summary: | Pass Total Time output_matrix tests | 10 10 16.8s Test Summary: | Total Time preprocess tests | 0 1.0s ┌ Warning: test_combo: test_combo is deprecated. While it will remain in the package it is no longer actively maintained. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/test_combo.jl:132 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: test_combo: test_combo is deprecated. While it will remain in the package it is no longer actively maintained. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/test_combo.jl:132 ┌ Warning: test_combo: test_combo is deprecated. While it will remain in the package it is no longer actively maintained. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/test_combo.jl:132 Test Summary: | Total Time test_combo tests | 0 21.9s Test Summary: | Pass Total Time wh tests | 5 5 5.2s Precompiling Flux... 1387.6 ms ✓ Accessors → StructArraysExt 1833.9 ms ✓ MLDataDevices 1275.4 ms ✓ BangBang → BangBangStructArraysExt 2642.2 ms ✓ ZygoteRules 13105.4 ms ✓ ChainRules 3428.0 ms ✓ LogExpFunctions → LogExpFunctionsChainRulesCoreExt 4299.9 ms ✓ SpecialFunctions → SpecialFunctionsChainRulesCoreExt 2531.6 ms ✓ ForwardDiff → ForwardDiffStaticArraysExt 2096.5 ms ✓ StructArrays → StructArraysGPUArraysCoreExt 13758.9 ms ✓ NNlib 1643.1 ms ✓ MLDataDevices → MLDataDevicesChainRulesCoreExt 953.5 ms ✓ MLDataDevices → MLDataDevicesFillArraysExt 1257.2 ms ✓ MLDataDevices → MLDataDevicesSparseArraysExt 14496.5 ms ✓ MLDataDevices → MLDataDevicesChainRulesExt 72676.5 ms ✓ Zygote 2444.0 ms ✓ NNlib → NNlibEnzymeCoreExt 2637.3 ms ✓ NNlib → NNlibSpecialFunctionsExt 32861.8 ms ✓ NNlib → NNlibForwardDiffExt 2905.9 ms ✓ OneHotArrays 22992.8 ms ✓ MLUtils 6634.6 ms ✓ MLDataDevices → MLDataDevicesZygoteExt 2427.3 ms ✓ MLDataDevices → MLDataDevicesOneHotArraysExt 86803.7 ms ✓ MLDataDevices → MLDataDevicesMLUtilsExt 122469.0 ms ✓ Flux 24 dependencies successfully precompiled in 427 seconds. 131 already precompiled. Precompiling StatsFunsChainRulesCoreExt... 4158.9 ms ✓ StatsFuns → StatsFunsChainRulesCoreExt 1 dependency successfully precompiled in 5 seconds. 30 already precompiled. Precompiling DistributionsChainRulesCoreExt... 5161.7 ms ✓ Distributions → DistributionsChainRulesCoreExt 1 dependency successfully precompiled in 8 seconds. 56 already precompiled. Precompiling StatsFunsInverseFunctionsExt... 1818.9 ms ✓ StatsFuns → StatsFunsInverseFunctionsExt 1 dependency successfully precompiled in 2 seconds. 27 already precompiled. Precompiling BangBangDataFramesExt... 4766.9 ms ✓ BangBang → BangBangDataFramesExt 1 dependency successfully precompiled in 6 seconds. 45 already precompiled. Precompiling TransducersDataFramesExt... 4749.6 ms ✓ Transducers → TransducersDataFramesExt 1 dependency successfully precompiled in 6 seconds. 61 already precompiled. Precompiling ZygoteDistancesExt... 7186.4 ms ✓ Zygote → ZygoteDistancesExt 1 dependency successfully precompiled in 8 seconds. 74 already precompiled. Setting up model... ┌ Warning: No functional GPU backend found! Defaulting to CPU. │ │ 1. If no GPU is available, nothing needs to be done. Set `MLDATADEVICES_SILENCE_WARN_NO_GPU=1` to silence this warning. │ 2. If GPU is available, load the corresponding trigger package. │ a. `CUDA.jl` and `cuDNN.jl` (or just `LuxCUDA.jl`) for NVIDIA CUDA Support. │ b. `AMDGPU.jl` for AMD GPU ROCM Support. │ c. `Metal.jl` for Apple Metal GPU Support. (Experimental) │ d. `oneAPI.jl` for Intel oneAPI GPU Support. (Experimental) └ @ MLDataDevices.Internal ~/.julia/packages/MLDataDevices/gyWcF/src/internal.jl:112 model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up data structures... Setting up optimizer... Training... Progress: 2%|▉ | ETA: 1:32:43 Training loss: 136.2665052702724   Progress: 65%|██████████████████████████▋ | ETA: 0:01:03 Training loss: 10.947032814573426   Progress: 81%|█████████████████████████████████▎ | ETA: 0:00:27 Training loss: 6.774134752560341   Progress: 86%|███████████████████████████████████▎ | ETA: 0:00:19 Training loss: 6.056915641953044   Progress: 91%|█████████████████████████████████████▎ | ETA: 0:00:12 Training loss: 5.446414653872179   Progress: 96%|███████████████████████████████████████▍ | ETA: 0:00:05 Training loss: 4.892915535918288   Progress: 100%|█████████████████████████████████████████| Time: 0:01:56 Training loss: 4.482754494799172 Setting up model... model = Chain(Dense(200 => 1000, relu), Dense(1000 => 33)) Setting up data structures... Setting up optimizer... Training... ┌ Warning: Layer with Float32 parameters got Float64 input. │ The input will be converted, but any earlier layers may be very slow. │ layer = Dense(200 => 1000, relu) # 201_000 parameters │ summary(x) = "200×3 Matrix{Float64}" └ @ Flux ~/.julia/packages/Flux/9PibT/src/layers/stateless.jl:60 Progress: 2%|▉ | ETA: 0:23:00 Training loss: 7.5811825   Progress: 7%|██▉ | ETA: 0:06:16 Training loss: 2.308484   Progress: 12%|████▉ | ETA: 0:03:28 Training loss: 2.565964   Progress: 17%|███████ | ETA: 0:02:19 Training loss: 2.9981523   Progress: 22%|█████████ | ETA: 0:01:42 Training loss: 0.22706257   Progress: 27%|███████████▏ | ETA: 0:01:18 Training loss: 0.86902696   Progress: 32%|█████████████▏ | ETA: 0:01:01 Training loss: 0.28429115   Progress: 37%|███████████████▏ | ETA: 0:00:49 Training loss: 0.124336846   Progress: 42%|█████████████████▎ | ETA: 0:00:40 Training loss: 0.1947911   Progress: 47%|███████████████████▎ | ETA: 0:00:33 Training loss: 0.015245551   Progress: 52%|█████████████████████▍ | ETA: 0:00:27 Training loss: 0.06304679   Progress: 57%|███████████████████████▍ | ETA: 0:00:22 Training loss: 0.027322868   Progress: 62%|█████████████████████████▍ | ETA: 0:00:18 Training loss: 0.0053788233   Progress: 67%|███████████████████████████▌ | ETA: 0:00:15 Training loss: 0.015207298   Progress: 72%|█████████████████████████████▌ | ETA: 0:00:12 Training loss: 0.0049975896   Progress: 77%|███████████████████████████████▋ | ETA: 0:00:09 Training loss: 0.0014226976   Progress: 82%|█████████████████████████████████▋ | ETA: 0:00:07 Training loss: 0.003080451   Progress: 87%|███████████████████████████████████▋ | ETA: 0:00:05 Training loss: 0.001448846   Progress: 92%|█████████████████████████████████████▊ | ETA: 0:00:03 Training loss: 0.00025809451   Progress: 97%|███████████████████████████████████████▊ | ETA: 0:00:01 Training loss: 0.00047823263   Progress: 100%|█████████████████████████████████████████| Time: 0:00:30 Training loss: 0.00021136894 Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up data structures... Setting up optimizer... Training... Progress: 2%|▉ | ETA: 0:02:23 Training loss: 136.2665052702724 Validation loss: 115.66047845446742 Validation accuracy: 0.0       Progress: 5%|██ | ETA: 0:00:58 Training loss: 133.48384257801834 Validation loss: 113.76005568180845 Validation accuracy: 0.0       Progress: 10%|████▏ | ETA: 0:00:28 Training loss: 127.63124253959853 Validation loss: 110.12432906221511 Validation accuracy: 0.0       Progress: 15%|██████▏ | ETA: 0:00:19 Training loss: 119.29161748500255 Validation loss: 105.58002953016154 Validation accuracy: 0.0       Progress: 20%|████████▎ | ETA: 0:00:14 Training loss: 107.98168448359608 Validation loss: 99.97734683329557 Validation accuracy: 0.0       Progress: 25%|██████████▎ | ETA: 0:00:11 Training loss: 93.7922497225252 Validation loss: 93.4853057518416 Validation accuracy: 0.0       Progress: 30%|████████████▎ | ETA: 0:00:08 Training loss: 77.5164189566794 Validation loss: 86.65372108023848 Validation accuracy: 0.0       Progress: 35%|██████████████▍ | ETA: 0:00:07 Training loss: 60.61754172096076 Validation loss: 80.34562345854842 Validation accuracy: 0.0       Progress: 39%|████████████████ | ETA: 0:00:06 Training loss: 47.87754748035555 Validation loss: 76.26134139830205 Validation accuracy: 0.0       Progress: 44%|██████████████████ | ETA: 0:00:05 Training loss: 34.329452295658875 Validation loss: 72.8207970839907 Validation accuracy: 0.0       Progress: 49%|████████████████████▏ | ETA: 0:00:04 Training loss: 24.294027552586996 Validation loss: 71.14719696168751 Validation accuracy: 0.0       Progress: 54%|██████████████████████▏ | ETA: 0:00:04 Training loss: 17.773431847257562 Validation loss: 70.44171201796742 Validation accuracy: 0.0       Progress: 59%|████████████████████████▎ | ETA: 0:00:03 Training loss: 13.847665068473782 Validation loss: 69.86337507627151 Validation accuracy: 0.0       Progress: 64%|██████████████████████████▎ | ETA: 0:00:03 Training loss: 11.349522587968652 Validation loss: 69.06982070436703 Validation accuracy: 0.0       Progress: 69%|████████████████████████████▎ | ETA: 0:00:02 Training loss: 9.543733087898282 Validation loss: 68.17415693485606 Validation accuracy: 0.0       Progress: 74%|██████████████████████████████▍ | ETA: 0:00:02 Training loss: 8.157322318122155 Validation loss: 67.42093681407083 Validation accuracy: 0.0       Progress: 79%|████████████████████████████████▍ | ETA: 0:00:01 Training loss: 7.113125882242806 Validation loss: 66.9647520294688 Validation accuracy: 0.0       Progress: 84%|██████████████████████████████████▌ | ETA: 0:00:01 Training loss: 6.3262308384091765 Validation loss: 66.73915652433196 Validation accuracy: 0.0       Progress: 89%|████████████████████████████████████▌ | ETA: 0:00:01 Training loss: 5.682227675346057 Validation loss: 66.65039689168398 Validation accuracy: 0.0       Progress: 96%|███████████████████████████████████████▍ | ETA: 0:00:00 Training loss: 4.892915535918288 Validation loss: 66.65800686653685 Validation accuracy: 0.0       Progress: 100%|█████████████████████████████████████████| Time: 0:00:05 Training loss: 4.482754494799172 Validation loss: 66.65935106439977 Validation accuracy: 0.0 Setting up model... model = Chain(Dense(200 => 1000, relu), Dense(1000 => 33)) Setting up data structures... Setting up optimizer... Training... Progress: 2%|▉ | ETA: 0:03:03 Training loss: 7.5811825 Validation loss: 23.362167 Validation accuracy: 0.0       Progress: 12%|████▉ | ETA: 0:00:29 Training loss: 2.565964 Validation loss: 12.899682 Validation accuracy: 0.1667       Progress: 17%|███████ | ETA: 0:00:20 Training loss: 2.9981523 Validation loss: 11.494986 Validation accuracy: 0.1667       Progress: 22%|█████████ | ETA: 0:00:15 Training loss: 0.22706257 Validation loss: 11.152906 Validation accuracy: 0.0       Progress: 32%|█████████████▏ | ETA: 0:00:09 Training loss: 0.28429115 Validation loss: 10.112014 Validation accuracy: 0.1667       Progress: 38%|███████████████▋ | ETA: 0:00:07 Training loss: 0.048797842 Validation loss: 10.063402 Validation accuracy: 0.0       Progress: 48%|███████████████████▋ | ETA: 0:00:05 Training loss: 0.031148521 Validation loss: 9.826639 Validation accuracy: 0.3333       Progress: 56%|███████████████████████ | ETA: 0:00:04 Training loss: 0.014791426 Validation loss: 9.822903 Validation accuracy: 0.0       Progress: 66%|███████████████████████████ | ETA: 0:00:03 Training loss: 0.017089667 Validation loss: 9.750951 Validation accuracy: 0.3333       Progress: 74%|██████████████████████████████▍ | ETA: 0:00:02 Training loss: 0.0077873045 Validation loss: 9.799696 Validation accuracy: 0.0       Progress: 81%|█████████████████████████████████▎ | ETA: 0:00:01 Training loss: 0.0036683287 Validation loss: 9.754569 Validation accuracy: 0.0       Progress: 91%|█████████████████████████████████████▎ | ETA: 0:00:01 Training loss: 0.00042934442 Validation loss: 9.768633 Validation accuracy: 0.0       Progress: 100%|█████████████████████████████████████████| Time: 0:00:05 Training loss: 0.00021136894 Validation loss: 9.768948 Validation accuracy: 0.0 Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up data structures... Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up data structures... Setting up optimizer... Training... Progress: 2%|▉ | ETA: 0:00:09 Training loss: 136.1213472638287 Training accuracy: 1.0     Progress: 5%|██ | ETA: 0:00:06 Training loss: 133.1541100449666 Training accuracy: 1.0     Progress: 9%|███▊ | ETA: 0:00:04 Training loss: 128.32016255288048 Training accuracy: 0.6667     Progress: 14%|█████▊ | ETA: 0:00:03 Training loss: 119.99287289820226 Training accuracy: 0.6667     Progress: 19%|███████▊ | ETA: 0:00:03 Training loss: 108.62411371914884 Training accuracy: 0.6667     Progress: 24%|█████████▉ | ETA: 0:00:02 Training loss: 94.27355299135283 Training accuracy: 0.6667     Progress: 28%|███████████▌ | ETA: 0:00:02 Training loss: 81.17271777933631 Training accuracy: 0.6667     Progress: 32%|█████████████▏ | ETA: 0:00:02 Training loss: 67.3983204543683 Training accuracy: 0.6667     Progress: 36%|██████████████▊ | ETA: 0:00:02 Training loss: 53.874136198795554 Training accuracy: 0.6667     Progress: 40%|████████████████▍ | ETA: 0:00:02 Training loss: 41.60115899682283 Training accuracy: 0.6667     Progress: 44%|██████████████████ | ETA: 0:00:02 Training loss: 31.3661387750515 Training accuracy: 0.6667     Progress: 49%|████████████████████▏ | ETA: 0:00:01 Training loss: 22.05147669051846 Training accuracy: 0.6667     Progress: 53%|█████████████████████▊ | ETA: 0:00:01 Training loss: 17.227254838708728 Training accuracy: 0.6667     Progress: 58%|███████████████████████▊ | ETA: 0:00:01 Training loss: 13.477971417963358 Training accuracy: 1.0     Progress: 62%|█████████████████████████▍ | ETA: 0:00:01 Training loss: 11.477471547898434 Training accuracy: 1.0     Progress: 67%|███████████████████████████▌ | ETA: 0:00:01 Training loss: 9.579723855840518 Training accuracy: 1.0     Progress: 72%|█████████████████████████████▌ | ETA: 0:00:01 Training loss: 8.118820029624434 Training accuracy: 1.0     Progress: 77%|███████████████████████████████▋ | ETA: 0:00:01 Training loss: 7.028107372335075 Training accuracy: 1.0     Progress: 82%|█████████████████████████████████▋ | ETA: 0:00:00 Training loss: 6.214182462467888 Training accuracy: 1.0     Progress: 87%|███████████████████████████████████▋ | ETA: 0:00:00 Training loss: 5.548927267289371 Training accuracy: 1.0     Progress: 92%|█████████████████████████████████████▊ | ETA: 0:00:00 Training loss: 4.955227436456474 Training accuracy: 1.0     Progress: 97%|███████████████████████████████████████▊ | ETA: 0:00:00 Training loss: 4.408801973289663 Training accuracy: 1.0     Progress: 100%|█████████████████████████████████████████| Time: 0:00:02 Training loss: 4.102810598396507 Training accuracy: 1.0 Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up data structures... Setting up optimizer... Training... Progress: 4%|█▋ | ETA: 0:00:02 Training loss: 134.49369142400806 Validation loss: 114.36544288026057 Validation accuracy: 0.0 Training accuracy: 1.0         Progress: 7%|██▉ | ETA: 0:00:03 Training loss: 131.37623764238438 Validation loss: 112.45136414497952 Validation accuracy: 0.0 Training accuracy: 1.0         Progress: 10%|████▏ | ETA: 0:00:03 Training loss: 127.54641087773923 Validation loss: 110.27942666589033 Validation accuracy: 0.0 Training accuracy: 1.0         Progress: 14%|█████▊ | ETA: 0:00:03 Training loss: 120.98858253019013 Validation loss: 106.8555291723178 Validation accuracy: 0.0 Training accuracy: 0.6667         Progress: 18%|███████▍ | ETA: 0:00:02 Training loss: 112.57035419226605 Validation loss: 102.74827049587984 Validation accuracy: 0.0 Training accuracy: 0.6667         Progress: 22%|█████████ | ETA: 0:00:02 Training loss: 102.24963264158283 Validation loss: 97.96812474413815 Validation accuracy: 0.0 Training accuracy: 0.6667         Progress: 27%|███████████▏ | ETA: 0:00:02 Training loss: 87.01939707667547 Validation loss: 91.2991951982845 Validation accuracy: 0.0 Training accuracy: 0.3333         Progress: 32%|█████████████▏ | ETA: 0:00:02 Training loss: 70.22017051587338 Validation loss: 84.51139904328707 Validation accuracy: 0.0 Training accuracy: 0.3333         Progress: 37%|███████████████▏ | ETA: 0:00:02 Training loss: 53.50600483900076 Validation loss: 78.47154386618391 Validation accuracy: 0.0 Training accuracy: 0.3333         Progress: 41%|████████████████▊ | ETA: 0:00:02 Training loss: 41.41996016563803 Validation loss: 74.7213665522012 Validation accuracy: 0.0 Training accuracy: 0.3333         Progress: 46%|██████████████████▉ | ETA: 0:00:01 Training loss: 29.163168517104964 Validation loss: 71.73837735704987 Validation accuracy: 0.0 Training accuracy: 0.6667         Progress: 51%|████████████████████▉ | ETA: 0:00:01 Training loss: 20.674238221443776 Validation loss: 70.33669246522322 Validation accuracy: 0.0 Training accuracy: 0.6667         Progress: 55%|██████████████████████▌ | ETA: 0:00:01 Training loss: 16.328264128270202 Validation loss: 69.76488066407786 Validation accuracy: 0.0 Training accuracy: 0.6667         Progress: 60%|████████████████████████▋ | ETA: 0:00:01 Training loss: 12.92559720035456 Validation loss: 69.07833641730579 Validation accuracy: 0.0 Training accuracy: 1.0         Progress: 64%|██████████████████████████▎ | ETA: 0:00:01 Training loss: 11.078013861661095 Validation loss: 68.4463206653876 Validation accuracy: 0.0 Training accuracy: 1.0         Progress: 68%|███████████████████████████▉ | ETA: 0:00:01 Training loss: 9.627027476197219 Validation loss: 67.79385891903331 Validation accuracy: 0.0 Training accuracy: 1.0         Progress: 72%|█████████████████████████████▌ | ETA: 0:00:01 Training loss: 8.44376518843828 Validation loss: 67.20040177020788 Validation accuracy: 0.0 Training accuracy: 1.0         Progress: 77%|███████████████████████████████▋ | ETA: 0:00:01 Training loss: 7.286645662727883 Validation loss: 66.67671398295805 Validation accuracy: 0.0 Training accuracy: 1.0         Progress: 82%|█████████████████████████████████▋ | ETA: 0:00:00 Training loss: 6.430353482446876 Validation loss: 66.43183049775206 Validation accuracy: 0.0 Training accuracy: 1.0         Progress: 87%|███████████████████████████████████▋ | ETA: 0:00:00 Training loss: 5.755434239536527 Validation loss: 66.34852118777928 Validation accuracy: 0.0 Training accuracy: 1.0         Progress: 92%|█████████████████████████████████████▊ | ETA: 0:00:00 Training loss: 5.163006916078981 Validation loss: 66.33488459265305 Validation accuracy: 0.0 Training accuracy: 1.0         Progress: 100%|█████████████████████████████████████████| Time: 0:00:02 Training loss: 4.313025460671513 Validation loss: 66.36638547169328 Validation accuracy: 0.0 Training accuracy: 1.0 Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up data structures... Setting up optimizer... Training... Progress: 3%|█▎ | ETA: 0:00:04 Training loss: 135.36709303400983 Training accuracy: 1.0     Progress: 6%|██▌ | ETA: 0:00:04 Training loss: 132.4684527797079 Training accuracy: 1.0     Progress: 11%|████▌ | ETA: 0:00:03 Training loss: 126.18584994190641 Training accuracy: 1.0     Progress: 16%|██████▌ | ETA: 0:00:03 Training loss: 117.27420305866508 Training accuracy: 0.6667     Progress: 21%|████████▋ | ETA: 0:00:02 Training loss: 105.3576064632318 Training accuracy: 0.6667     Progress: 26%|██████████▋ | ETA: 0:00:02 Training loss: 90.66557981385432 Training accuracy: 0.6667     Progress: 31%|████████████▊ | ETA: 0:00:02 Training loss: 74.13098245001538 Training accuracy: 0.6667     Progress: 36%|██████████████▊ | ETA: 0:00:02 Training loss: 57.32190033082655 Training accuracy: 0.6667     Progress: 41%|████████████████▊ | ETA: 0:00:02 Training loss: 42.07916442778076 Training accuracy: 0.6667     Progress: 46%|██████████████████▉ | ETA: 0:00:01 Training loss: 29.870952580777 Training accuracy: 0.6667     Progress: 51%|████████████████████▉ | ETA: 0:00:01 Training loss: 21.299648690478033 Training accuracy: 0.6667     Progress: 56%|███████████████████████ | ETA: 0:00:01 Training loss: 15.96152919257431 Training accuracy: 1.0     Progress: 61%|█████████████████████████ | ETA: 0:00:01 Training loss: 12.730876500954787 Training accuracy: 1.0     Progress: 66%|███████████████████████████ | ETA: 0:00:01 Training loss: 10.567456292792862 Training accuracy: 1.0     Progress: 71%|█████████████████████████████▏ | ETA: 0:00:01 Training loss: 8.944534006313967 Training accuracy: 1.0     Progress: 76%|███████████████████████████████▏ | ETA: 0:00:01 Training loss: 7.70186050904711 Training accuracy: 1.0     Progress: 81%|█████████████████████████████████▎ | ETA: 0:00:00 Training loss: 6.774134752560341 Training accuracy: 1.0     Progress: 86%|███████████████████████████████████▎ | ETA: 0:00:00 Training loss: 6.056915641953044 Training accuracy: 1.0     Progress: 91%|█████████████████████████████████████▎ | ETA: 0:00:00 Training loss: 5.446414653872179 Training accuracy: 1.0     Progress: 96%|███████████████████████████████████████▍ | ETA: 0:00:00 Training loss: 4.892915535918288 Training accuracy: 1.0     Progress: 100%|█████████████████████████████████████████| Time: 0:00:02 Training loss: 4.482754494799172 Training accuracy: 1.0 Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up data structures... Setting up optimizer... Training... Progress: 3%|█▎ | ETA: 0:00:04 Training loss: 135.36709303400983 Training accuracy: 1.0     Progress: 6%|██▌ | ETA: 0:00:04 Training loss: 132.4684527797079 Training accuracy: 1.0     Progress: 10%|████▏ | ETA: 0:00:03 Training loss: 127.63124253959853 Training accuracy: 1.0     Progress: 14%|█████▊ | ETA: 0:00:03 Training loss: 121.18877927654745 Training accuracy: 0.6667     Progress: 19%|███████▊ | ETA: 0:00:03 Training loss: 110.48681725334359 Training accuracy: 0.6667     Progress: 24%|█████████▉ | ETA: 0:00:02 Training loss: 96.83207622425155 Training accuracy: 0.6667     Progress: 29%|███████████▉ | ETA: 0:00:02 Training loss: 80.87493713900922 Training accuracy: 0.6667     Progress: 34%|██████████████ | ETA: 0:00:02 Training loss: 63.96088977036146 Training accuracy: 0.6667     Progress: 39%|████████████████ | ETA: 0:00:02 Training loss: 47.87754748035555 Training accuracy: 0.6667     Progress: 44%|██████████████████ | ETA: 0:00:01 Training loss: 34.329452295658875 Training accuracy: 0.6667     Progress: 49%|████████████████████▏ | ETA: 0:00:01 Training loss: 24.294027552586996 Training accuracy: 0.6667     Progress: 54%|██████████████████████▏ | ETA: 0:00:01 Training loss: 17.773431847257562 Training accuracy: 0.6667     Progress: 59%|████████████████████████▎ | ETA: 0:00:01 Training loss: 13.847665068473782 Training accuracy: 1.0     Progress: 64%|██████████████████████████▎ | ETA: 0:00:01 Training loss: 11.349522587968652 Training accuracy: 1.0     Progress: 69%|████████████████████████████▎ | ETA: 0:00:01 Training loss: 9.543733087898282 Training accuracy: 1.0     Progress: 74%|██████████████████████████████▍ | ETA: 0:00:01 Training loss: 8.157322318122155 Training accuracy: 1.0     Progress: 79%|████████████████████████████████▍ | ETA: 0:00:01 Training loss: 7.113125882242806 Training accuracy: 1.0     Progress: 84%|██████████████████████████████████▌ | ETA: 0:00:00 Training loss: 6.3262308384091765 Training accuracy: 1.0     Progress: 89%|████████████████████████████████████▌ | ETA: 0:00:00 Training loss: 5.682227675346057 Training accuracy: 1.0     Progress: 94%|██████████████████████████████████████▌ | ETA: 0:00:00 Training loss: 5.108680811532662 Training accuracy: 1.0     Progress: 99%|████████████████████████████████████████▋| ETA: 0:00:00 Training loss: 4.5827585391573 Training accuracy: 1.0     Progress: 100%|█████████████████████████████████████████| Time: 0:00:02 Training loss: 4.482754494799172 Training accuracy: 1.0 Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up data structures... Setting up optimizer... Training... Progress: 2%|▉ | ETA: 0:00:18 Training loss: 136.2665052702724 Validation loss: 115.66047845446742 Validation accuracy: 0.0       Progress: 5%|██ | ETA: 0:00:09 Training loss: 133.48384257801834 Validation loss: 113.76005568180845 Validation accuracy: 0.0       Progress: 8%|███▎ | ETA: 0:00:07 Training loss: 130.2244481256631 Validation loss: 111.67203162481937 Validation accuracy: 0.0       Progress: 11%|████▌ | ETA: 0:00:06 Training loss: 126.18584994190641 Validation loss: 109.29665276242196 Validation accuracy: 0.0       Progress: 16%|██████▌ | ETA: 0:00:05 Training loss: 117.27420305866508 Validation loss: 104.54369847893406 Validation accuracy: 0.0       Progress: 20%|████████▎ | ETA: 0:00:04 Training loss: 107.98168448359608 Validation loss: 99.97734683329557 Validation accuracy: 0.0       Progress: 25%|██████████▎ | ETA: 0:00:03 Training loss: 93.7922497225252 Validation loss: 93.4853057518416 Validation accuracy: 0.0       Progress: 30%|████████████▎ | ETA: 0:00:03 Training loss: 77.5164189566794 Validation loss: 86.65372108023848 Validation accuracy: 0.0       Progress: 35%|██████████████▍ | ETA: 0:00:03 Training loss: 60.61754172096076 Validation loss: 80.34562345854842 Validation accuracy: 0.0       Progress: 40%|████████████████▍ | ETA: 0:00:02 Training loss: 44.92076266483825 Validation loss: 75.41757266515356 Validation accuracy: 0.0       Progress: 45%|██████████████████▌ | ETA: 0:00:02 Training loss: 32.02662253311591 Validation loss: 72.36203997988899 Validation accuracy: 0.0       Progress: 50%|████████████████████▌ | ETA: 0:00:02 Training loss: 22.727475472414458 Validation loss: 70.96027941912305 Validation accuracy: 0.0       Progress: 55%|██████████████████████▌ | ETA: 0:00:02 Training loss: 16.82038018830378 Validation loss: 70.33624634140831 Validation accuracy: 0.0       Progress: 60%|████████████████████████▋ | ETA: 0:00:01 Training loss: 13.26558732911634 Validation loss: 69.72084599937997 Validation accuracy: 0.0       Progress: 65%|██████████████████████████▋ | ETA: 0:00:01 Training loss: 10.947032814573426 Validation loss: 68.89339316680457 Validation accuracy: 0.0       Progress: 70%|████████████████████████████▊ | ETA: 0:00:01 Training loss: 9.236278321559821 Validation loss: 68.00280050180626 Validation accuracy: 0.0       Progress: 75%|██████████████████████████████▊ | ETA: 0:00:01 Training loss: 7.922924271112943 Validation loss: 67.30576914473906 Validation accuracy: 0.0       Progress: 80%|████████████████████████████████▊ | ETA: 0:00:01 Training loss: 6.93898635003974 Validation loss: 66.90592304504375 Validation accuracy: 0.0       Progress: 85%|██████████████████████████████████▉ | ETA: 0:00:00 Training loss: 6.1892119805382 Validation loss: 66.7111445374506 Validation accuracy: 0.0       Progress: 90%|████████████████████████████████████▉ | ETA: 0:00:00 Training loss: 5.56314002808457 Validation loss: 66.64598189049576 Validation accuracy: 0.0       Progress: 97%|███████████████████████████████████████▊ | ETA: 0:00:00 Training loss: 4.787791317238355 Validation loss: 66.66052072116635 Validation accuracy: 0.0       Progress: 100%|█████████████████████████████████████████| Time: 0:00:02 Training loss: 4.482754494799172 Validation loss: 66.65935106439977 Validation accuracy: 0.0 Setting up model... model = Chain(Dense(32 => 1000, relu), Dense(1000 => 200)) Setting up data structures... Setting up optimizer... Training... Progress: 0%|▏ | ETA: 0:00:26 Training loss: 129.35717439595174 Validation loss: 115.95596933937058 Validation accuracy: 0.0       Progress: 1%|▎ | ETA: 0:00:33 Training loss: 126.2125394293636 Validation loss: 114.16999937118703 Validation accuracy: 0.0       Progress: 1%|▌ | ETA: 0:00:30 Training loss: 120.91033071922706 Validation loss: 111.42052162801765 Validation accuracy: 0.0       Progress: 2%|▋ | ETA: 0:00:28 Training loss: 111.95908535476019 Validation loss: 107.2218691298836 Validation accuracy: 0.0       Progress: 2%|▉ | ETA: 0:00:27 Training loss: 100.22889155178679 Validation loss: 102.09918042262456 Validation accuracy: 0.0       Progress: 3%|█▏ | ETA: 0:00:26 Training loss: 85.9668035418118 Validation loss: 96.22690844650397 Validation accuracy: 0.0       Progress: 3%|█▎ | ETA: 0:00:25 Training loss: 69.94687099004342 Validation loss: 90.06609470090056 Validation accuracy: 0.0       Progress: 4%|█▌ | ETA: 0:00:25 Training loss: 53.59892428428921 Validation loss: 84.26829722404403 Validation accuracy: 0.0       Progress: 4%|█▋ | ETA: 0:00:24 Training loss: 38.62156593922926 Validation loss: 79.4947265204312 Validation accuracy: 0.0       Progress: 5%|█▉ | ETA: 0:00:24 Training loss: 26.486377593120366 Validation loss: 76.05012241581207 Validation accuracy: 0.0       Progress: 5%|██▏ | ETA: 0:00:24 Training loss: 17.847286042647635 Validation loss: 73.81862916687002 Validation accuracy: 0.0       Progress: 6%|██▎ | ETA: 0:00:23 Training loss: 12.348124412929627 Validation loss: 72.48325378513609 Validation accuracy: 0.0       Progress: 6%|██▌ | ETA: 0:00:23 Training loss: 8.95932210265128 Validation loss: 71.572701270044 Validation accuracy: 0.0       Progress: 6%|██▋ | ETA: 0:00:23 Training loss: 7.112479299653261 Validation loss: 70.91791087769802 Validation accuracy: 0.0       Progress: 7%|██▉ | ETA: 0:00:23 Training loss: 5.430698741609263 Validation loss: 70.18164478644154 Validation accuracy: 0.0       Progress: 8%|███▏ | ETA: 0:00:23 Training loss: 4.2403765055856475 Validation loss: 69.66568806627595 Validation accuracy: 0.0       Progress: 8%|███▎ | ETA: 0:00:23 Training loss: 3.3969005197549094 Validation loss: 69.4329709063924 Validation accuracy: 0.0       Progress: 8%|███▌ | ETA: 0:00:23 Training loss: 2.781026749990539 Validation loss: 69.3851826379782 Validation accuracy: 0.0       Progress: 9%|███▉ | ETA: 0:00:21 Training loss: 1.998214861080342 Validation loss: 69.51553537967271 Validation accuracy: 0.0   Setting up model... model = Chain(Dense(32 => 1000, relu), Dense(1000 => 200)) Setting up data structures... Setting up optimizer... Training... Progress: 8%|███▎ | ETA: 0:00:01 Training loss: 124.32594551906992 Validation loss: 113.24866127177317 Validation accuracy: 0.0       Progress: 19%|███████▊ | ETA: 0:00:01 Training loss: 103.48790585704384 Validation loss: 103.69620893758277 Validation accuracy: 0.0   Setting up model... model = Chain(Dense(32 => 1000, relu), Dense(1000 => 200)) Setting up data structures... Setting up optimizer... Training... Progress: 8%|███▎ | ETA: 0:00:01 Training loss: 124.26587698159236 Validation loss: 113.0557084250126 Validation accuracy: 0.0   Setting up model... model = Chain(Dense(32 => 1000, relu), Dense(1000 => 200)) Setting up data structures... Setting up optimizer... Training... Progress: 0%|▏ | ETA: 0:00:34 Training loss: 129.0013846184279 Validation loss: 115.73939524345538 Validation accuracy: 0.0       Progress: 1%|▍ | ETA: 0:00:31 Training loss: 123.04599951312784 Validation loss: 112.47292797457777 Validation accuracy: 0.0       Progress: 1%|▌ | ETA: 0:00:29 Training loss: 116.61917403941125 Validation loss: 109.3263063768009 Validation accuracy: 0.0       Progress: 2%|▊ | ETA: 0:00:27 Training loss: 106.064033017065 Validation loss: 104.55989523479973 Validation accuracy: 0.0       Progress: 2%|█ | ETA: 0:00:26 Training loss: 92.72683914942449 Validation loss: 98.91051736328359 Validation accuracy: 0.0       Progress: 3%|█▏ | ETA: 0:00:25 Training loss: 77.17295888166933 Validation loss: 92.73377145911763 Validation accuracy: 0.0       Progress: 3%|█▍ | ETA: 0:00:25 Training loss: 60.555084609600065 Validation loss: 86.6224521439384 Validation accuracy: 0.0       Progress: 4%|█▌ | ETA: 0:00:24 Training loss: 44.593554542952795 Validation loss: 81.30277305616384 Validation accuracy: 0.0       Progress: 4%|█▊ | ETA: 0:00:24 Training loss: 31.010958676024735 Validation loss: 77.31147298151217 Validation accuracy: 0.0       Progress: 5%|██ | ETA: 0:00:24 Training loss: 20.91550732574291 Validation loss: 74.63942810318065 Validation accuracy: 0.0       Progress: 5%|██▏ | ETA: 0:00:23 Training loss: 14.323269918574995 Validation loss: 73.01050749750085 Validation accuracy: 0.0       Progress: 6%|██▍ | ETA: 0:00:23 Training loss: 10.321557178257706 Validation loss: 71.99410990834848 Validation accuracy: 0.0       Progress: 6%|██▋ | ETA: 0:00:23 Training loss: 7.788710901754861 Validation loss: 71.15285720342526 Validation accuracy: 0.0       Progress: 7%|██▊ | ETA: 0:00:23 Training loss: 6.016476660486529 Validation loss: 70.3977406443881 Validation accuracy: 0.0       Progress: 7%|███ | ETA: 0:00:23 Training loss: 4.7466541869004715 Validation loss: 69.83454854861527 Validation accuracy: 0.0       Progress: 8%|███▎ | ETA: 0:00:22 Training loss: 3.8392988729665456 Validation loss: 69.55298241947357 Validation accuracy: 0.0       Progress: 8%|███▍ | ETA: 0:00:22 Training loss: 3.1750942516982503 Validation loss: 69.49570261530093 Validation accuracy: 0.0   Setting up model... model = Chain(Dense(200 => 1000, relu), Dense(1000 => 33)) Setting up data structures... Setting up optimizer... Training... Progress: 4%|█▋ | ETA: 0:00:03 Training loss: 4.560597 Validation loss: 17.092367 Validation accuracy: 0.0       Progress: 10%|████▏ | ETA: 0:00:02 Training loss: 3.19632 Validation loss: 10.215541 Validation accuracy: 0.3333       Progress: 14%|█████▊ | ETA: 0:00:02 Training loss: 1.1150882 Validation loss: 9.172502 Validation accuracy: 0.1667       Progress: 19%|███████▊ | ETA: 0:00:02 Training loss: 0.5677713 Validation loss: 8.765861 Validation accuracy: 0.3333       Progress: 24%|█████████▉ | ETA: 0:00:02 Training loss: 0.22756395 Validation loss: 8.905837 Validation accuracy: 0.1667       Progress: 29%|███████████▉ | ETA: 0:00:02 Training loss: 0.06749439 Validation loss: 8.696912 Validation accuracy: 0.1667       Progress: 35%|██████████████▍ | ETA: 0:00:02 Training loss: 0.015685182 Validation loss: 8.692489 Validation accuracy: 0.1667       Progress: 41%|████████████████▊ | ETA: 0:00:01 Training loss: 0.012075873 Validation loss: 8.680368 Validation accuracy: 0.1667       Progress: 47%|███████████████████▎ | ETA: 0:00:01 Training loss: 0.0026261052 Validation loss: 8.717478 Validation accuracy: 0.1667       Progress: 53%|█████████████████████▊ | ETA: 0:00:01 Training loss: 0.0011934926 Validation loss: 8.6469345 Validation accuracy: 0.1667       Progress: 59%|████████████████████████▎ | ETA: 0:00:01 Training loss: 0.00072296354 Validation loss: 8.6951 Validation accuracy: 0.1667       Progress: 65%|██████████████████████████▋ | ETA: 0:00:01 Training loss: 0.00028831122 Validation loss: 8.662797 Validation accuracy: 0.1667       Progress: 71%|█████████████████████████████▏ | ETA: 0:00:01 Training loss: 0.00026214911 Validation loss: 8.679011 Validation accuracy: 0.1667       Progress: 77%|███████████████████████████████▋ | ETA: 0:00:00 Training loss: 0.00023100179 Validation loss: 8.690873 Validation accuracy: 0.1667       Progress: 82%|█████████████████████████████████▋ | ETA: 0:00:00 Training loss: 0.00033025703 Validation loss: 8.673367 Validation accuracy: 0.1667       Progress: 88%|████████████████████████████████████▏ | ETA: 0:00:00 Training loss: 0.00029493595 Validation loss: 8.699262 Validation accuracy: 0.1667       Progress: 94%|██████████████████████████████████████▌ | ETA: 0:00:00 Training loss: 0.00027857246 Validation loss: 8.678754 Validation accuracy: 0.1667       Progress: 100%|█████████████████████████████████████████| Time: 0:00:02 Training loss: 0.0001907741 Validation loss: 8.660024 Validation accuracy: 0.1667 Setting up model... model = Chain(Dense(200 => 1000, relu), Dense(1000 => 33)) Setting up data structures... Setting up optimizer... Training... Progress: 1%|▌ | ETA: 0:00:09 Training loss: 2.371625 Validation loss: 13.19169 Validation accuracy: 0.0       Progress: 3%|█▎ | ETA: 0:00:09 Training loss: 2.688343 Validation loss: 10.028243 Validation accuracy: 0.3333       Progress: 5%|█▉ | ETA: 0:00:08 Training loss: 0.55244714 Validation loss: 9.507433 Validation accuracy: 0.0       Progress: 6%|██▌ | ETA: 0:00:08 Training loss: 0.12488964 Validation loss: 8.746422 Validation accuracy: 0.3333       Progress: 7%|███ | ETA: 0:00:08 Training loss: 0.13292287 Validation loss: 8.605852 Validation accuracy: 0.1667       Progress: 9%|███▉ | ETA: 0:00:08 Training loss: 0.017894175 Validation loss: 8.479351 Validation accuracy: 0.1667       Progress: 11%|████▍ | ETA: 0:00:08 Training loss: 0.01615135 Validation loss: 8.449039 Validation accuracy: 0.1667       Progress: 13%|█████▎ | ETA: 0:00:07 Training loss: 0.0073542916 Validation loss: 8.418593 Validation accuracy: 0.1667       Progress: 14%|█████▉ | ETA: 0:00:07 Training loss: 0.0048895925 Validation loss: 8.444726 Validation accuracy: 0.0       Progress: 16%|██████▊ | ETA: 0:00:07 Training loss: 0.003599904 Validation loss: 8.421335 Validation accuracy: 0.1667       Progress: 18%|███████▌ | ETA: 0:00:06 Training loss: 0.0001697066 Validation loss: 8.423922 Validation accuracy: 0.1667       Progress: 20%|████████▍ | ETA: 0:00:06 Training loss: 0.00046270792 Validation loss: 8.435629 Validation accuracy: 0.1667       Progress: 23%|█████████▎ | ETA: 0:00:06 Training loss: 2.938651e-5 Validation loss: 8.431912 Validation accuracy: 0.1667       Progress: 25%|██████████▏ | ETA: 0:00:05 Training loss: 5.11286e-5 Validation loss: 8.430357 Validation accuracy: 0.1667       Progress: 27%|██████████▉ | ETA: 0:00:05 Training loss: 6.9500466e-6 Validation loss: 8.430261 Validation accuracy: 0.1667       Progress: 29%|███████████▊ | ETA: 0:00:05 Training loss: 3.8623916e-6 Validation loss: 8.431604 Validation accuracy: 0.1667       Progress: 31%|████████████▋ | ETA: 0:00:05 Training loss: 2.152495e-6 Validation loss: 8.431694 Validation accuracy: 0.1667       Progress: 33%|█████████████▌ | ETA: 0:00:04 Training loss: 3.8685337e-7 Validation loss: 8.431512 Validation accuracy: 0.1667       Progress: 35%|██████████████▍ | ETA: 0:00:04 Training loss: 5.6775374e-8 Validation loss: 8.431282 Validation accuracy: 0.1667       Progress: 37%|███████████████▎ | ETA: 0:00:04 Training loss: 1.3960127e-8 Validation loss: 8.431312 Validation accuracy: 0.1667       Progress: 39%|████████████████▏ | ETA: 0:00:04 Training loss: 1.807515e-8 Validation loss: 8.431287 Validation accuracy: 0.1667       Progress: 41%|████████████████▉ | ETA: 0:00:04 Training loss: 9.822807e-9 Validation loss: 8.431286 Validation accuracy: 0.1667       Progress: 43%|█████████████████▊ | ETA: 0:00:04 Training loss: 2.52422e-9 Validation loss: 8.43129 Validation accuracy: 0.1667       Progress: 45%|██████████████████▋ | ETA: 0:00:03 Training loss: 7.867624e-10 Validation loss: 8.431291 Validation accuracy: 0.1667       Progress: 48%|███████████████████▌ | ETA: 0:00:03 Training loss: 2.6937727e-10 Validation loss: 8.431296 Validation accuracy: 0.1667       Progress: 50%|████████████████████▍ | ETA: 0:00:03 Training loss: 4.407362e-11 Validation loss: 8.431296 Validation accuracy: 0.1667       Progress: 52%|█████████████████████▏ | ETA: 0:00:03 Training loss: 2.2458695e-11 Validation loss: 8.431299 Validation accuracy: 0.1667       Progress: 54%|██████████████████████ | ETA: 0:00:03 Training loss: 9.328133e-12 Validation loss: 8.431297 Validation accuracy: 0.1667       Progress: 56%|██████████████████████▉ | ETA: 0:00:03 Training loss: 2.8812402e-12 Validation loss: 8.431297 Validation accuracy: 0.1667       Progress: 58%|███████████████████████▊ | ETA: 0:00:02 Training loss: 1.1760649e-12 Validation loss: 8.431298 Validation accuracy: 0.1667       Progress: 60%|████████████████████████▋ | ETA: 0:00:02 Training loss: 6.3069905e-13 Validation loss: 8.431295 Validation accuracy: 0.1667       Progress: 62%|█████████████████████████▍ | ETA: 0:00:02 Training loss: 5.057204e-13 Validation loss: 8.431297 Validation accuracy: 0.1667       Progress: 64%|██████████████████████████▎ | ETA: 0:00:02 Training loss: 3.403277e-13 Validation loss: 8.431295 Validation accuracy: 0.1667       Progress: 66%|███████████████████████████▏ | ETA: 0:00:02 Training loss: 2.6741088e-13 Validation loss: 8.431297 Validation accuracy: 0.1667       Progress: 68%|████████████████████████████ | ETA: 0:00:02 Training loss: 2.3651415e-13 Validation loss: 8.431297 Validation accuracy: 0.1667       Progress: 70%|████████████████████████████▊ | ETA: 0:00:02 Training loss: 1.8213461e-13 Validation loss: 8.431295 Validation accuracy: 0.1667       Progress: 72%|█████████████████████████████▋ | ETA: 0:00:02 Training loss: 2.6726155e-13 Validation loss: 8.431297 Validation accuracy: 0.1667       Progress: 74%|██████████████████████████████▍ | ETA: 0:00:01 Training loss: 2.4051055e-13 Validation loss: 8.431295 Validation accuracy: 0.1667       Progress: 76%|███████████████████████████████▎ | ETA: 0:00:01 Training loss: 2.1504493e-13 Validation loss: 8.431297 Validation accuracy: 0.1667       Progress: 78%|████████████████████████████████ | ETA: 0:00:01 Training loss: 2.602358e-13 Validation loss: 8.431297 Validation accuracy: 0.1667       Progress: 80%|████████████████████████████████▉ | ETA: 0:00:01 Training loss: 4.0231804e-13 Validation loss: 8.431296 Validation accuracy: 0.1667       Progress: 82%|█████████████████████████████████▊ | ETA: 0:00:01 Training loss: 3.483657e-13 Validation loss: 8.431297 Validation accuracy: 0.1667       Progress: 84%|██████████████████████████████████▌ | ETA: 0:00:01 Training loss: 2.777197e-13 Validation loss: 8.431297 Validation accuracy: 0.1667       Progress: 86%|███████████████████████████████████▍ | ETA: 0:00:01 Training loss: 3.1746418e-13 Validation loss: 8.431296 Validation accuracy: 0.1667       Progress: 88%|████████████████████████████████████▏ | ETA: 0:00:01 Training loss: 3.1920465e-13 Validation loss: 8.431295 Validation accuracy: 0.1667       Progress: 90%|█████████████████████████████████████ | ETA: 0:00:01 Training loss: 2.9898938e-13 Validation loss: 8.431295 Validation accuracy: 0.1667       Progress: 92%|█████████████████████████████████████▊ | ETA: 0:00:00 Training loss: 3.437288e-13 Validation loss: 8.431296 Validation accuracy: 0.1667       Progress: 94%|██████████████████████████████████████▋ | ETA: 0:00:00 Training loss: 2.3404583e-13 Validation loss: 8.431296 Validation accuracy: 0.1667       Progress: 96%|███████████████████████████████████████▌ | ETA: 0:00:00 Training loss: 2.592157e-13 Validation loss: 8.431295 Validation accuracy: 0.1667       Progress: 98%|████████████████████████████████████████▍| ETA: 0:00:00 Training loss: 3.0749784e-13 Validation loss: 8.431296 Validation accuracy: 0.1667       Progress: 100%|█████████████████████████████████████████| Time: 0:00:05 Training loss: 2.7676104e-13 Validation loss: 8.431295 Validation accuracy: 0.1667 Setting up model... model = Chain(Dense(200 => 1000, relu), Dense(1000 => 33)) Setting up data structures... Setting up optimizer... Training... Progress: 5%|██ | ETA: 0:00:02 Training loss: 52.860466 Validation loss: 44.584724 Validation accuracy: 0.0       Progress: 10%|████▏ | ETA: 0:00:02 Training loss: 47.286404 Validation loss: 41.801083 Validation accuracy: 0.0       Progress: 15%|██████▏ | ETA: 0:00:02 Training loss: 42.13684 Validation loss: 39.198555 Validation accuracy: 0.0       Progress: 20%|████████▎ | ETA: 0:00:02 Training loss: 37.41176 Validation loss: 36.77913 Validation accuracy: 0.0       Progress: 24%|█████████▉ | ETA: 0:00:02 Training loss: 33.924965 Validation loss: 34.975044 Validation accuracy: 0.0       Progress: 29%|███████████▉ | ETA: 0:00:02 Training loss: 29.926607 Validation loss: 32.887634 Validation accuracy: 0.0       Progress: 34%|██████████████ | ETA: 0:00:02 Training loss: 26.31805 Validation loss: 30.977829 Validation accuracy: 0.0       Progress: 39%|████████████████ | ETA: 0:00:02 Training loss: 23.08317 Validation loss: 29.236883 Validation accuracy: 0.0       Progress: 44%|██████████████████ | ETA: 0:00:01 Training loss: 20.198547 Validation loss: 27.65979 Validation accuracy: 0.0       Progress: 49%|████████████████████▏ | ETA: 0:00:01 Training loss: 17.63769 Validation loss: 26.240067 Validation accuracy: 0.0       Progress: 54%|██████████████████████▏ | ETA: 0:00:01 Training loss: 15.368069 Validation loss: 24.96125 Validation accuracy: 0.0       Progress: 59%|████████████████████████▎ | ETA: 0:00:01 Training loss: 13.363939 Validation loss: 23.809978 Validation accuracy: 0.0       Progress: 64%|██████████████████████████▎ | ETA: 0:00:01 Training loss: 11.607238 Validation loss: 22.777729 Validation accuracy: 0.0       Progress: 69%|████████████████████████████▎ | ETA: 0:00:01 Training loss: 10.073651 Validation loss: 21.853775 Validation accuracy: 0.0       Progress: 74%|██████████████████████████████▍ | ETA: 0:00:01 Training loss: 8.734393 Validation loss: 21.0276 Validation accuracy: 0.0       Progress: 79%|████████████████████████████████▍ | ETA: 0:00:01 Training loss: 7.570599 Validation loss: 20.291487 Validation accuracy: 0.0       Progress: 84%|██████████████████████████████████▌ | ETA: 0:00:00 Training loss: 6.5606503 Validation loss: 19.634026 Validation accuracy: 0.0       Progress: 89%|████████████████████████████████████▌ | ETA: 0:00:00 Training loss: 5.6883245 Validation loss: 19.047949 Validation accuracy: 0.0       Progress: 94%|██████████████████████████████████████▌ | ETA: 0:00:00 Training loss: 4.9383698 Validation loss: 18.521194 Validation accuracy: 0.0       Progress: 99%|████████████████████████████████████████▋| ETA: 0:00:00 Training loss: 4.2949667 Validation loss: 18.05464 Validation accuracy: 0.0       Progress: 100%|█████████████████████████████████████████| Time: 0:00:02 Training loss: 4.177827 Validation loss: 17.968048 Validation accuracy: 0.0 Setting up model... model = Chain(Dense(200 => 1000, relu), Dense(1000 => 33)) Setting up data structures... Setting up optimizer... Training... Progress: 6%|██▌ | ETA: 0:00:02 Training loss: 0.19461608 Validation loss: 249.20517 Validation accuracy: 0.0       Progress: 8%|███▎ | ETA: 0:00:03 Training loss: 0.22502066 Validation loss: 432.59848 Validation accuracy: 0.0       Progress: 19%|███████▊ | ETA: 0:00:02 Training loss: 0.35649437 Validation loss: 1517.1202 Validation accuracy: 0.0       Progress: 29%|███████████▉ | ETA: 0:00:01 Training loss: 0.41285497 Validation loss: 2122.99 Validation accuracy: 0.0       Progress: 40%|████████████████▍ | ETA: 0:00:01 Training loss: 0.43764535 Validation loss: 2422.4297 Validation accuracy: 0.0       Progress: 49%|████████████████████▏ | ETA: 0:00:01 Training loss: 0.44501838 Validation loss: 2522.9404 Validation accuracy: 0.0       Progress: 58%|███████████████████████▊ | ETA: 0:00:01 Training loss: 0.44747022 Validation loss: 2566.4568 Validation accuracy: 0.0       Progress: 67%|███████████████████████████▌ | ETA: 0:00:01 Training loss: 0.44773683 Validation loss: 2584.8777 Validation accuracy: 0.0       Progress: 77%|███████████████████████████████▋ | ETA: 0:00:00 Training loss: 0.4469156 Validation loss: 2593.0864 Validation accuracy: 0.0       Progress: 87%|███████████████████████████████████▋ | ETA: 0:00:00 Training loss: 0.44557247 Validation loss: 2596.1936 Validation accuracy: 0.0       Progress: 97%|███████████████████████████████████████▊ | ETA: 0:00:00 Training loss: 0.44397813 Validation loss: 2597.3823 Validation accuracy: 0.0       Progress: 100%|█████████████████████████████████████████| Time: 0:00:01 Training loss: 0.44346893 Validation loss: 2597.5679 Validation accuracy: 0.0 Setting up model... model = Chain(Dense(200 => 200, relu), Dense(200 => 33)) Setting up data structures... Setting up optimizer... Training... Progress: 15%|██████▏ | ETA: 0:00:01 Training loss: 3.9142122 Validation loss: 26.208878 Validation accuracy: 0.1667       Progress: 31%|████████████▊ | ETA: 0:00:01 Training loss: 0.65953875 Validation loss: 23.69393 Validation accuracy: 0.1667       Progress: 46%|██████████████████▉ | ETA: 0:00:00 Training loss: 0.14774592 Validation loss: 23.354965 Validation accuracy: 0.1667       Progress: 67%|███████████████████████████▌ | ETA: 0:00:00 Training loss: 0.02272475 Validation loss: 23.185318 Validation accuracy: 0.1667       Progress: 100%|█████████████████████████████████████████| Time: 0:00:00 Training loss: 0.0005761981 Validation loss: 23.222952 Validation accuracy: 0.1667 ┌ Warning: `Flux.params(m...)` is deprecated. Use `Flux.trainable(model)` for parameter collection, │ and the explicit `gradient(m -> loss(m, x, y), model)` for gradient computation. └ @ Flux ~/.julia/packages/Flux/9PibT/src/deprecations.jl:93 Setting up model... model = Chain(Dense(200 => 500), Dense(500 => 500), Dense(500 => 33)) Setting up data structures... Setting up optimizer... Training... Progress: 2%|▉ | ETA: 0:03:13 Training loss: 299.4347 Validation loss: 91.30579 Validation accuracy: 0.1667       Progress: 4%|█▋ | ETA: 0:01:37 Training loss: 32.32986 Validation loss: 69.95957 Validation accuracy: 0.3333       Progress: 11%|████▌ | ETA: 0:00:34 Training loss: 20.59612 Validation loss: 52.317017 Validation accuracy: 0.3333       Progress: 16%|██████▌ | ETA: 0:00:23 Training loss: 1.6595192 Validation loss: 42.598343 Validation accuracy: 0.3333       Progress: 24%|█████████▉ | ETA: 0:00:14 Training loss: 1.8805728 Validation loss: 41.647125 Validation accuracy: 0.3333       Progress: 31%|████████████▊ | ETA: 0:00:10 Training loss: 2.887811 Validation loss: 41.80809 Validation accuracy: 0.3333       Progress: 39%|████████████████ | ETA: 0:00:07 Training loss: 0.5651631 Validation loss: 41.690212 Validation accuracy: 0.3333       Progress: 45%|██████████████████▌ | ETA: 0:00:06 Training loss: 0.46892768 Validation loss: 41.536415 Validation accuracy: 0.3333       Progress: 53%|█████████████████████▊ | ETA: 0:00:04 Training loss: 0.22962157 Validation loss: 41.47722 Validation accuracy: 0.3333       Progress: 60%|████████████████████████▋ | ETA: 0:00:03 Training loss: 0.027647486 Validation loss: 41.169388 Validation accuracy: 0.3333       Progress: 66%|███████████████████████████ | ETA: 0:00:03 Training loss: 0.065153345 Validation loss: 41.362827 Validation accuracy: 0.3333       Progress: 74%|██████████████████████████████▍ | ETA: 0:00:02 Training loss: 0.005717308 Validation loss: 41.16881 Validation accuracy: 0.3333       Progress: 82%|█████████████████████████████████▋ | ETA: 0:00:01 Training loss: 0.006874571 Validation loss: 41.23211 Validation accuracy: 0.3333       Progress: 89%|████████████████████████████████████▌ | ETA: 0:00:01 Training loss: 0.0059965225 Validation loss: 41.265907 Validation accuracy: 0.3333       Progress: 96%|███████████████████████████████████████▍ | ETA: 0:00:00 Training loss: 0.0006138918 Validation loss: 41.268658 Validation accuracy: 0.3333       Progress: 100%|█████████████████████████████████████████| Time: 0:00:05 Training loss: 0.0018686217 Validation loss: 41.273216 Validation accuracy: 0.3333 Setting up model... model = Chain(Dense(200 => 1000, relu), Dense(1000 => 33), σ) Setting up data structures... Setting up optimizer... Training... Progress: 2%|▉ | ETA: 0:43:18 Training loss: 0.39982933 Validation loss: 1.9066198 Validation accuracy: 0.0       Progress: 12%|████▉ | ETA: 0:06:30 Training loss: 0.0063018384 Validation loss: 3.7745562 Validation accuracy: 0.0       Progress: 22%|█████████ | ETA: 0:03:09 Training loss: 0.0003009053 Validation loss: 3.9533677 Validation accuracy: 0.0       Progress: 33%|█████████████▌ | ETA: 0:01:48 Training loss: 3.559128e-5 Validation loss: 3.9912286 Validation accuracy: 0.0       Progress: 44%|██████████████████ | ETA: 0:01:08 Training loss: 1.9394434e-5 Validation loss: 4.0042925 Validation accuracy: 0.0       Progress: 53%|█████████████████████▊ | ETA: 0:00:48 Training loss: 1.3787648e-5 Validation loss: 4.0107856 Validation accuracy: 0.0       Progress: 63%|█████████████████████████▉ | ETA: 0:00:32 Training loss: 9.789024e-6 Validation loss: 4.016986 Validation accuracy: 0.0       Progress: 74%|██████████████████████████████▍ | ETA: 0:00:19 Training loss: 7.3367764e-6 Validation loss: 4.0228148 Validation accuracy: 0.0       Progress: 85%|██████████████████████████████████▉ | ETA: 0:00:10 Training loss: 5.9746494e-6 Validation loss: 4.0261426 Validation accuracy: 0.0       Progress: 95%|███████████████████████████████████████ | ETA: 0:00:03 Training loss: 5.205702e-6 Validation loss: 4.028597 Validation accuracy: 0.0       Progress: 100%|█████████████████████████████████████████| Time: 0:00:54 Training loss: 4.923299e-6 Validation loss: 4.0296454 Validation accuracy: 0.0 Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up data structures... Setting up optimizer... Training... Progress: 3%|█▎ | ETA: 0:00:03 Training loss: 135.33196816308538   Progress: 8%|███▎ | ETA: 0:00:03 Training loss: 130.13941916840923   Progress: 13%|█████▍ | ETA: 0:00:02 Training loss: 122.78921984408221   Progress: 18%|███████▍ | ETA: 0:00:02 Training loss: 112.60239292227845   Progress: 23%|█████████▍ | ETA: 0:00:02 Training loss: 99.43726102222382   Progress: 28%|███████████▌ | ETA: 0:00:02 Training loss: 83.72956161694948   Progress: 33%|█████████████▌ | ETA: 0:00:02 Training loss: 66.69962191989026   Progress: 38%|███████████████▋ | ETA: 0:00:02 Training loss: 50.095712301721555   Progress: 43%|█████████████████▋ | ETA: 0:00:01 Training loss: 35.774255217729554   Progress: 48%|███████████████████▋ | ETA: 0:00:01 Training loss: 25.008041992360983   Progress: 53%|█████████████████████▊ | ETA: 0:00:01 Training loss: 18.01171160590189   Progress: 58%|███████████████████████▊ | ETA: 0:00:01 Training loss: 13.896588559213788   Progress: 63%|█████████████████████████▉ | ETA: 0:00:01 Training loss: 11.340939385423454   Progress: 68%|███████████████████████████▉ | ETA: 0:00:01 Training loss: 9.488460841826337   Progress: 73%|█████████████████████████████▉ | ETA: 0:00:01 Training loss: 8.055084350962472   Progress: 78%|████████████████████████████████ | ETA: 0:00:01 Training loss: 6.977868440421696   Progress: 83%|██████████████████████████████████ | ETA: 0:00:00 Training loss: 6.173659580727615   Progress: 88%|████████████████████████████████████▏ | ETA: 0:00:00 Training loss: 5.522939059141304   Progress: 93%|██████████████████████████████████████▏ | ETA: 0:00:00 Training loss: 4.944699663371199   Progress: 98%|████████████████████████████████████████▏| ETA: 0:00:00 Training loss: 4.4125713096352435   Progress: 100%|█████████████████████████████████████████| Time: 0:00:02 Training loss: 4.211690263599279 Setting up model... model = Chain(Dense(200 => 1000, relu), Dense(1000 => 33)) Setting up data structures... Setting up optimizer... Training... Progress: 5%|██ | ETA: 0:00:02 Training loss: 7.911422   Progress: 10%|████▏ | ETA: 0:00:02 Training loss: 7.334908   Progress: 14%|█████▊ | ETA: 0:00:02 Training loss: 1.1006185   Progress: 19%|███████▊ | ETA: 0:00:02 Training loss: 1.073467   Progress: 24%|█████████▉ | ETA: 0:00:02 Training loss: 1.3232522   Progress: 29%|███████████▉ | ETA: 0:00:02 Training loss: 0.062901184   Progress: 34%|██████████████ | ETA: 0:00:02 Training loss: 0.43303326   Progress: 39%|████████████████ | ETA: 0:00:01 Training loss: 0.12945007   Progress: 44%|██████████████████ | ETA: 0:00:01 Training loss: 0.055727486   Progress: 49%|████████████████████▏ | ETA: 0:00:01 Training loss: 0.099893145   Progress: 54%|██████████████████████▏ | ETA: 0:00:01 Training loss: 0.012169151   Progress: 59%|████████████████████████▎ | ETA: 0:00:01 Training loss: 0.01982338   Progress: 64%|██████████████████████████▎ | ETA: 0:00:01 Training loss: 0.020535626   Progress: 69%|████████████████████████████▎ | ETA: 0:00:01 Training loss: 0.0024874364   Progress: 74%|██████████████████████████████▍ | ETA: 0:00:01 Training loss: 0.003814346   Progress: 79%|████████████████████████████████▍ | ETA: 0:00:00 Training loss: 0.004671381   Progress: 84%|██████████████████████████████████▌ | ETA: 0:00:00 Training loss: 0.0011338764   Progress: 89%|████████████████████████████████████▌ | ETA: 0:00:00 Training loss: 0.0003716756   Progress: 94%|██████████████████████████████████████▌ | ETA: 0:00:00 Training loss: 0.0008212495   Progress: 99%|████████████████████████████████████████▋| ETA: 0:00:00 Training loss: 0.000521733   Progress: 100%|█████████████████████████████████████████| Time: 0:00:02 Training loss: 0.00052282447 Making fac C ========== Timestep 1 Calculating Yt... Calculating Mt... Auto mode: Sparsity: 0.0101010101010101 Returning a sparse matrix format Calculating Ythat... Sparsity: 0.030303030303030304 Finding paths... ========== Timestep 2 average 1.0 of paths currently Calculating Yt... Calculating Mt... Auto mode: Sparsity: 0.0101010101010101 Returning a sparse matrix format Calculating Ythat... Sparsity: 0.030303030303030304 Finding paths... ========== Timestep 3 average 1.0 of paths currently Calculating Yt... Calculating Mt... Auto mode: Sparsity: 0.0202020202020202 Returning a sparse matrix format Calculating Ythat... Sparsity: 0.06060606060606061 Finding paths... ========== Timestep 4 average 1.0 of paths currently Calculating Yt... Calculating Mt... Auto mode: Sparsity: 0.030303030303030304 Returning a sparse matrix format Calculating Ythat... Sparsity: 0.09090909090909091 Finding paths... ========== Timestep 5 average 1.0 of paths currently Calculating Yt... Calculating Mt... Auto mode: Sparsity: 0.030303030303030304 Returning a sparse matrix format Calculating Ythat... Sparsity: 0.09090909090909091 Finding paths... ========== Timestep 6 average 0.3333333333333333 of paths currently Calculating Yt... Calculating Mt... Auto mode: Sparsity: 0.0101010101010101 Returning a sparse matrix format Calculating Ythat... Sparsity: 0.030303030303030304 Finding paths... ========== Timestep 7 average 0.0 of paths currently Calculating Yt... Calculating Mt... Auto mode: Sparsity: 0.0 Returning a sparse matrix format Calculating Ythat... Sparsity: 0.0 Finding paths... Evaluating paths... average 1.0 of paths to evaluate Progress: 67%|███████████████████████████▍ | ETA: 0:00:01 Progress: 100%|█████████████████████████████████████████| Time: 0:00:01 Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up optimizer... Setting up data for evaluation... Setting up data loader... Training... Progress: 67%|███████████████████████████▍ | ETA: 0:00:05 Step loss: 131.14099893438816 Overall loss: 135.85572493843063 Overall accuracy: 0.3333       Progress: 100%|█████████████████████████████████████████| Time: 0:00:10 Step loss: 146.49485746489026 Overall loss: 135.1610744416433 Overall accuracy: 0.3333 Done! Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up optimizer... Setting up data for evaluation... Setting up data loader... Training... Progress: 50%|████████████████████▌ | ETA: 0:00:00 Step loss: 146.49485746489026 Overall loss: 135.1610744416433 Overall accuracy: 0.3333       Progress: 100%|█████████████████████████████████████████| Time: 0:00:00 Step loss: 144.39176453339 Overall loss: 132.97095160544072 Overall accuracy: 0.6667 Done! Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up optimizer... Setting up data for evaluation... Setting up data loader... Training... Progress: 33%|█████████████▋ | ETA: 0:00:00 Step loss: 145.65858509349266 Overall loss: 134.1443622338372 Overall accuracy: 0.3333       Progress: 75%|██████████████████████████████▊ | ETA: 0:00:00 Step loss: 140.70036382302956 Overall loss: 130.01272937505908 Overall accuracy: 0.6667       Progress: 100%|█████████████████████████████████████████| Time: 0:00:00 Step loss: 136.7197594604057 Overall loss: 126.98830851273253 Overall accuracy: 0.6667 Done! Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up optimizer... Setting up data for evaluation... Setting up data loader... Training... Progress: 56%|██████████████████████▊ | ETA: 0:00:00 Step loss: 129.1634043054313 Overall loss: 133.49724543761405 Overall accuracy: 1.0       Progress: 100%|█████████████████████████████████████████| Time: 0:00:00 Step loss: 125.3289995899268 Overall loss: 130.24475423530154 Overall accuracy: 0.3333 Done! Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up optimizer... Setting up data for evaluation... Setting up data loader... Training... Progress: 80%|████████████████████████████████▊ | ETA: 0:00:00 Step loss: 127.25452932074396 Overall loss: 131.33763075062595 Overall accuracy: 0.6667   Done! Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up optimizer... Setting up data for evaluation... Setting up data loader... Training... Progress: 67%|███████████████████████████▍ | ETA: 0:00:00 Step loss: 136.2665052695647 Overall loss: 135.36709303725198 Overall accuracy: 1.0       Progress: 100%|█████████████████████████████████████████| Time: 0:00:00 Step loss: 135.36709303725198 Overall loss: 134.44507860114422 Overall accuracy: 1.0 Done! Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up optimizer... Setting up data for evaluation... Setting up data loader... Training... Progress: 33%|█████████████▋ | ETA: 0:00:00 Step loss: 146.49485746489026 Overall loss: 135.1610744416433 Overall accuracy: 0.3333       Progress: 89%|████████████████████████████████████▌ | ETA: 0:00:00 Step loss: 126.37263619471189 Overall loss: 131.33763075062595 Overall accuracy: 0.6667       Progress: 100%|█████████████████████████████████████████| Time: 0:00:00 Step loss: 142.00239555793692 Overall loss: 130.4477443735128 Overall accuracy: 0.6667 Done! Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up optimizer... Setting up data for evaluation... Setting up data loader... Training... Progress: 44%|██████████████████▎ | ETA: 0:00:00 Step loss: 145.65858509349266 Overall loss: 134.1443622338372 Overall accuracy: 0.3333       Progress: 100%|█████████████████████████████████████████| Time: 0:00:00 Step loss: 140.70036382302956 Overall loss: 130.01272937505908 Overall accuracy: 0.6667 Done! WARNING: Method definition compute_target_corr(Any, Any, Any, Any, Any, Any, Any) in module ##deep learning tests#258 at /home/pkgeval/.julia/packages/JudiLing/TmEZc/test/deep_learning_tests.jl:619 overwritten at /home/pkgeval/.julia/packages/JudiLing/TmEZc/test/deep_learning_tests.jl:666. Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up optimizer... Setting up data for evaluation... Setting up data loader... Training... Progress: 60%|████████████████████████▋ | ETA: 0:00:00 Step loss: 137.822301324285 Overall loss: 137.14627030622287 Overall accuracy: 1.0   Done! WARNING: Method definition compute_target_corr(Any, Any, Any, Any, Any, Any, Any) in module ##deep learning tests#258 at /home/pkgeval/.julia/packages/JudiLing/TmEZc/test/deep_learning_tests.jl:666 overwritten at /home/pkgeval/.julia/packages/JudiLing/TmEZc/test/deep_learning_tests.jl:691. Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up optimizer... Setting up data for evaluation... Setting up data loader... Training... Progress: 33%|█████████████▋ | ETA: 0:00:00 Step loss: 147.07400355839548 Overall loss: 135.57267106773455 Overall accuracy: 0.6667       Progress: 78%|███████████████████████████████▉ | ETA: 0:00:00 Step loss: 128.24459519503844 Overall loss: 132.74668750892215 Overall accuracy: 0.6667       Progress: 100%|█████████████████████████████████████████| Time: 0:00:00 Step loss: 142.87674765216178 Overall loss: 131.10236280057742 Overall accuracy: 0.6667 Done! Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up optimizer... Setting up data for evaluation... Setting up data loader... Training... Done! Test Summary: | Pass Total Time deep learning tests | 96 96 13m14.0s Testing JudiLing tests passed Testing completed after 1413.06s PkgEval succeeded after 2147.46s