Package evaluation of IterativeLQR on Julia 1.11.5 (32ac370b68*) started at 2025-06-29T17:13:40.414 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.76s ################################################################################ # Installation # Installing IterativeLQR... Resolving package versions... Updating `~/.julia/environments/v1.11/Project.toml` [605048dd] + IterativeLQR v0.2.3 Updating `~/.julia/environments/v1.11/Manifest.toml` ⌅ [47edcb42] + ADTypes v0.2.7 ⌅ [c3fe647b] + AbstractAlgebra v0.27.10 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 ⌅ [79e6a3ab] + Adapt v3.7.2 [66dad0bd] + AliasTables v1.1.3 [dce04be8] + ArgCheck v2.5.0 ⌃ [4fba245c] + ArrayInterface v7.7.1 [30b0a656] + ArrayInterfaceCore v0.1.29 ⌅ [15f4f7f2] + AutoHashEquals v0.2.0 [198e06fe] + BangBang v0.4.4 [9718e550] + Baselet v0.1.1 ⌅ [e2ed5e7c] + Bijections v0.1.10 [d360d2e6] + ChainRulesCore v1.25.2 [861a8166] + Combinatorics v1.0.3 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.16.0 [b152e2b5] + CompositeTypes v0.1.4 [a33af91c] + CompositionsBase v0.1.2 ⌅ [187b0558] + ConstructionBase v1.5.6 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [244e2a9f] + DefineSingletons v0.1.2 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [31c24e10] + Distributions v0.25.120 [ffbed154] + DocStringExtensions v0.9.5 ⌅ [5b8099bc] + DomainSets v0.5.14 ⌅ [7c1d4256] + DynamicPolynomials v0.4.6 [4e289a0a] + EnumX v1.0.5 [e2ba6199] + ExprTools v0.1.10 [5789e2e9] + FileIO v1.17.0 [1a297f60] + FillArrays v1.13.0 [59287772] + Formatting v0.4.3 ⌅ [f6369f11] + ForwardDiff v0.10.38 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 ⌅ [46192b85] + GPUArraysCore v0.1.5 ⌅ [0b43b601] + Groebner v0.2.11 ⌅ [d5909c97] + GroupsCore v0.4.2 [34004b35] + HypergeometricFunctions v0.3.28 [615f187c] + IfElse v0.1.1 [22cec73e] + InitialValues v0.3.1 [18e54dd8] + IntegerMathUtils v0.1.2 [8197267c] + IntervalSets v0.7.11 [3587e190] + InverseFunctions v0.1.17 [92d709cd] + IrrationalConstants v0.2.4 [605048dd] + IterativeLQR v0.2.3 [82899510] + IteratorInterfaceExtensions v1.0.0 ⌅ [033835bb] + JLD2 v0.4.54 [692b3bcd] + JLLWrappers v1.7.0 [b964fa9f] + LaTeXStrings v1.4.0 ⌃ [2ee39098] + LabelledArrays v1.15.1 ⌅ [984bce1d] + LambertW v0.4.6 ⌅ [23fbe1c1] + Latexify v0.15.21 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.16 ⌅ [e9d8d322] + Metatheory v1.3.5 [128add7d] + MicroCollections v0.2.0 [e1d29d7a] + Missings v1.2.0 ⌅ [102ac46a] + MultivariatePolynomials v0.4.7 [d8a4904e] + MutableArithmetics v1.6.4 [77ba4419] + NaNMath v1.1.3 [bac558e1] + OrderedCollections v1.8.1 [90014a1f] + PDMats v0.11.35 [d96e819e] + Parameters v0.12.3 ⌃ [d236fae5] + PreallocationTools v0.4.24 ⌅ [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [27ebfcd6] + Primes v0.5.7 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [fb686558] + RandomExtensions v0.4.4 [3cdcf5f2] + RecipesBase v1.3.4 ⌅ [731186ca] + RecursiveArrayTools v2.38.10 [189a3867] + Reexport v1.2.2 [42d2dcc6] + Referenceables v0.1.3 [ae029012] + Requires v1.3.1 [79098fc4] + Rmath v0.8.0 [7e49a35a] + RuntimeGeneratedFunctions v0.5.15 ⌅ [0bca4576] + SciMLBase v1.98.1 ⌅ [c0aeaf25] + SciMLOperators v0.3.12 [6c6a2e73] + Scratch v1.3.0 [efcf1570] + Setfield v1.1.2 [66db9d55] + SnoopPrecompile v1.0.3 [a2af1166] + SortingAlgorithms v1.2.1 [276daf66] + SpecialFunctions v2.5.1 [171d559e] + SplittablesBase v0.1.15 [90137ffa] + StaticArrays v1.9.13 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.5 [4c63d2b9] + StatsFuns v1.5.0 ⌅ [2efcf032] + SymbolicIndexingInterface v0.2.2 ⌅ [d1185830] + SymbolicUtils v0.19.11 ⌅ [0c5d862f] + Symbolics v4.14.0 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.1 ⌅ [8ea1fca8] + TermInterface v0.2.3 [ac1d9e8a] + ThreadsX v0.1.12 [a759f4b9] + TimerOutputs v0.5.29 [3bb67fe8] + TranscodingStreams v0.11.3 [28d57a85] + Transducers v0.4.84 [a2a6695c] + TreeViews v0.3.0 [781d530d] + TruncatedStacktraces v1.4.0 [3a884ed6] + UnPack v1.0.2 [700de1a5] + ZygoteRules v0.2.7 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.6.0 [7b1f6079] + FileWatching v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.2.0 [44cfe95a] + Pkg v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.11.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] + LibCURL_jll v8.6.0+0 [e37daf67] + LibGit2_jll v1.7.2+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.6+0 [14a3606d] + MozillaCACerts_jll v2023.12.12 [4536629a] + OpenBLAS_jll v0.3.27+1 [05823500] + OpenLibm_jll v0.8.5+0 [bea87d4a] + SuiteSparse_jll v7.7.0+0 [83775a58] + Zlib_jll v1.2.13+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 [8e850ede] + nghttp2_jll v1.59.0+0 [3f19e933] + p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 6.86s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 170.23s ################################################################################ # Testing # Testing IterativeLQR Status `/tmp/jl_7SQ0I9/Project.toml` [6e4b80f9] BenchmarkTools v1.6.0 ⌅ [f6369f11] ForwardDiff v0.10.38 [605048dd] IterativeLQR v0.2.3 ⌅ [0c5d862f] Symbolics v4.14.0 [37e2e46d] LinearAlgebra v1.11.0 [2f01184e] SparseArrays v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_7SQ0I9/Manifest.toml` ⌅ [47edcb42] ADTypes v0.2.7 ⌅ [c3fe647b] AbstractAlgebra v0.27.10 [1520ce14] AbstractTrees v0.4.5 [7d9f7c33] Accessors v0.1.42 ⌅ [79e6a3ab] Adapt v3.7.2 [66dad0bd] AliasTables v1.1.3 [dce04be8] ArgCheck v2.5.0 ⌃ [4fba245c] ArrayInterface v7.7.1 [30b0a656] ArrayInterfaceCore v0.1.29 ⌅ [15f4f7f2] AutoHashEquals v0.2.0 [198e06fe] BangBang v0.4.4 [9718e550] Baselet v0.1.1 [6e4b80f9] BenchmarkTools v1.6.0 ⌅ [e2ed5e7c] Bijections v0.1.10 [d360d2e6] ChainRulesCore v1.25.2 [861a8166] Combinatorics v1.0.3 [38540f10] CommonSolve v0.2.4 [bbf7d656] CommonSubexpressions v0.3.1 [34da2185] Compat v4.16.0 [b152e2b5] CompositeTypes v0.1.4 [a33af91c] CompositionsBase v0.1.2 ⌅ [187b0558] ConstructionBase v1.5.6 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [31c24e10] Distributions v0.25.120 [ffbed154] DocStringExtensions v0.9.5 ⌅ [5b8099bc] DomainSets v0.5.14 ⌅ [7c1d4256] DynamicPolynomials v0.4.6 [4e289a0a] EnumX v1.0.5 [e2ba6199] ExprTools v0.1.10 [5789e2e9] FileIO v1.17.0 [1a297f60] FillArrays v1.13.0 [59287772] Formatting v0.4.3 ⌅ [f6369f11] ForwardDiff v0.10.38 [069b7b12] FunctionWrappers v1.1.3 [77dc65aa] FunctionWrappersWrappers v0.1.3 ⌅ [46192b85] GPUArraysCore v0.1.5 ⌅ [0b43b601] Groebner v0.2.11 ⌅ [d5909c97] GroupsCore v0.4.2 [34004b35] HypergeometricFunctions v0.3.28 [615f187c] IfElse v0.1.1 [22cec73e] InitialValues v0.3.1 [18e54dd8] IntegerMathUtils v0.1.2 [8197267c] IntervalSets v0.7.11 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.4 [605048dd] IterativeLQR v0.2.3 [82899510] IteratorInterfaceExtensions v1.0.0 ⌅ [033835bb] JLD2 v0.4.54 [692b3bcd] JLLWrappers v1.7.0 [682c06a0] JSON v0.21.4 [b964fa9f] LaTeXStrings v1.4.0 ⌃ [2ee39098] LabelledArrays v1.15.1 ⌅ [984bce1d] LambertW v0.4.6 ⌅ [23fbe1c1] Latexify v0.15.21 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 ⌅ [e9d8d322] Metatheory v1.3.5 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 ⌅ [102ac46a] MultivariatePolynomials v0.4.7 [d8a4904e] MutableArithmetics v1.6.4 [77ba4419] NaNMath v1.1.3 [bac558e1] OrderedCollections v1.8.1 [90014a1f] PDMats v0.11.35 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.3 ⌃ [d236fae5] PreallocationTools v0.4.24 ⌅ [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [27ebfcd6] Primes v0.5.7 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [fb686558] RandomExtensions v0.4.4 [3cdcf5f2] RecipesBase v1.3.4 ⌅ [731186ca] RecursiveArrayTools v2.38.10 [189a3867] Reexport v1.2.2 [42d2dcc6] Referenceables v0.1.3 [ae029012] Requires v1.3.1 [79098fc4] Rmath v0.8.0 [7e49a35a] RuntimeGeneratedFunctions v0.5.15 ⌅ [0bca4576] SciMLBase v1.98.1 ⌅ [c0aeaf25] SciMLOperators v0.3.12 [6c6a2e73] Scratch v1.3.0 [efcf1570] Setfield v1.1.2 [66db9d55] SnoopPrecompile v1.0.3 [a2af1166] SortingAlgorithms v1.2.1 [276daf66] SpecialFunctions v2.5.1 [171d559e] SplittablesBase v0.1.15 [90137ffa] StaticArrays v1.9.13 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 [2913bbd2] StatsBase v0.34.5 [4c63d2b9] StatsFuns v1.5.0 ⌅ [2efcf032] SymbolicIndexingInterface v0.2.2 ⌅ [d1185830] SymbolicUtils v0.19.11 ⌅ [0c5d862f] Symbolics v4.14.0 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 ⌅ [8ea1fca8] TermInterface v0.2.3 [ac1d9e8a] ThreadsX v0.1.12 [a759f4b9] TimerOutputs v0.5.29 [3bb67fe8] TranscodingStreams v0.11.3 [28d57a85] Transducers v0.4.84 [a2a6695c] TreeViews v0.3.0 [781d530d] TruncatedStacktraces v1.4.0 [3a884ed6] UnPack v1.0.2 [700de1a5] ZygoteRules v0.2.7 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.11.0 [de0858da] Printf v1.11.0 [9abbd945] Profile v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.6.0+0 [e37daf67] LibGit2_jll v1.7.2+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.6+0 [14a3606d] MozillaCACerts_jll v2023.12.12 [4536629a] OpenBLAS_jll v0.3.27+1 [05823500] OpenLibm_jll v0.8.5+0 [bea87d4a] SuiteSparse_jll v7.7.0+0 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.59.0+0 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... Precompiling Symbolics... 2253.3 ms ? DomainSets Info Given Symbolics was explicitly requested, output will be shown live  WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/CFJJK/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. 5421.6 ms ? Symbolics WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/CFJJK/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. Precompiling DomainSets... Info Given DomainSets was explicitly requested, output will be shown live  WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/CFJJK/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. 2896.4 ms ? DomainSets WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/CFJJK/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. Precompiling IntervalSetsExt... 1846.9 ms ✓ Accessors → IntervalSetsExt 1 dependency successfully precompiled in 2 seconds. 14 already precompiled. WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/CFJJK/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. WARNING: Wrapping `Vararg` directly in UnionAll is deprecated (wrap the tuple instead). You may need to write `f(x::Vararg{T})` rather than `f(x::Vararg{<:T})` or `f(x::Vararg{T}) where T` instead of `f(x::Vararg{T} where T)`. Precompiling ArrayInterfaceCore... 2049.5 ms ✓ ArrayInterfaceCore 1 dependency successfully precompiled in 2 seconds. 10 already precompiled. Precompiling SciMLBase... 4141.4 ms ✓ SciMLOperators 1454.3 ms ✓ SciMLOperators → SciMLOperatorsStaticArraysCoreExt 1426.0 ms ✓ SciMLOperators → SciMLOperatorsSparseArraysExt 14102.4 ms ✓ SciMLBase 4 dependencies successfully precompiled in 22 seconds. 60 already precompiled. Precompiling Groebner... 4208.9 ms ✓ Groebner 1 dependency successfully precompiled in 5 seconds. 28 already precompiled. WARNING: Code.get_symbolify is deprecated, use get_rewrites instead. likely near /home/pkgeval/.julia/packages/Symbolics/UrqtQ/src/build_function.jl:130 Precompiling Distributions... 9778.2 ms ✓ Distributions 1 dependency successfully precompiled in 13 seconds. 45 already precompiled. Precompiling StatsFunsChainRulesCoreExt... 4087.0 ms ✓ StatsFuns → StatsFunsChainRulesCoreExt 1 dependency successfully precompiled in 4 seconds. 24 already precompiled. Precompiling DistributionsTestExt... 4746.5 ms ✓ Distributions → DistributionsTestExt 1 dependency successfully precompiled in 7 seconds. 48 already precompiled. Precompiling DistributionsChainRulesCoreExt... 4933.8 ms ✓ Distributions → DistributionsChainRulesCoreExt 1 dependency successfully precompiled in 7 seconds. 51 already precompiled. Precompiling Latexify... 5206.5 ms ✓ Latexify 1 dependency successfully precompiled in 5 seconds. 12 already precompiled. Precompiling IterativeLQR... 2880.6 ms ? DomainSets 52394.2 ms ✓ JLD2 3379.1 ms ? Symbolics Info Given IterativeLQR was explicitly requested, output will be shown live  ┌ Warning: Module Symbolics with build ID ffffffff-ffff-ffff-b143-d65c4d063ff7 is missing from the cache. │ This may mean Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] does not support precompilation but is imported by a module that does. └ @ Base loading.jl:2541 1867.1 ms ? IterativeLQR 1 dependency successfully precompiled in 65 seconds. 181 already precompiled. 2 dependencies precompiled but different versions are currently loaded. Restart julia to access the new versions. Otherwise, loading dependents of these packages may trigger further precompilation to work with the unexpected versions. 3 dependencies failed but may be precompilable after restarting julia 3 dependencies had output during precompilation: ┌ DomainSets │ WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/CFJJK/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. │ ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. └ ┌ Symbolics │ ┌ Warning: Module DomainSets with build ID ffffffff-ffff-ffff-dc74-509941831415 is missing from the cache. │ │ This may mean DomainSets [5b8099bc-c8ec-5219-889f-1d9e522a28bf] does not support precompilation but is imported by a module that does. │ └ @ Base loading.jl:2541 └ ┌ IterativeLQR │ [Output was shown above] └ ┌ Warning: Module Symbolics with build ID ffffffff-ffff-ffff-b143-d65c4d063ff7 is missing from the cache. │ This may mean Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] does not support precompilation but is imported by a module that does. └ @ Base loading.jl:2541 Test Summary: | Pass Total Time Objective | 7 7 39.2s Test Summary: | Pass Total Time Dynamics | 4 4 22.5s Test Summary: | Pass Total Time Constraints | 12 12 18.5s ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University al iter: 1 ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University iter: 1 cost: 34.05076151060492 gradient_norm: 6.603620888084041 max_violation: 3.2292156956814626 step_size: 1.0 iter: 2 cost: 12.717321530090274 gradient_norm: 4.725640189304936 max_violation: 3.1831800597988344 step_size: 1.0 iter: 3 cost: 8.353159599676358 gradient_norm: 3.497055146689969 max_violation: 3.157272261705575 step_size: 1.0 iter: 4 cost: 6.832480485255379 gradient_norm: 2.695835017393276 max_violation: 3.144526082792392 step_size: 1.0 iter: 5 cost: 6.129546704250885 gradient_norm: 2.1745114888273416 max_violation: 3.136951356230123 step_size: 1.0 iter: 6 cost: 5.747851956578902 gradient_norm: 1.8154201501129588 max_violation: 3.131925563250164 step_size: 1.0 iter: 7 cost: 5.517725315063792 gradient_norm: 1.555197199981092 max_violation: 3.12834539107269 step_size: 1.0 iter: 8 cost: 5.368365474730674 gradient_norm: 1.358786211703267 max_violation: 3.1256648406995726 step_size: 1.0 iter: 9 cost: 5.26596244817745 gradient_norm: 1.2056512716760792 max_violation: 3.123582411732783 step_size: 1.0 iter: 10 cost: 5.192711733180302 gradient_norm: 1.0830931642297497 max_violation: 3.1219178983165383 step_size: 1.0 iter: 11 cost: 5.138512609422155 gradient_norm: 0.9828836223364682 max_violation: 3.120556922392823 step_size: 1.0 iter: 12 cost: 5.097288366648522 gradient_norm: 0.8994764172541819 max_violation: 3.1194233736763013 step_size: 1.0 iter: 13 cost: 5.065205232431255 gradient_norm: 0.8290058667734659 max_violation: 3.1184646334635873 step_size: 1.0 iter: 14 cost: 5.039747539399416 gradient_norm: 0.76869956318592 max_violation: 3.117643157191253 step_size: 1.0 iter: 15 cost: 5.019209053155681 gradient_norm: 0.7165197308876681 max_violation: 3.1169314356041578 step_size: 1.0 iter: 16 cost: 5.002399421522476 gradient_norm: 0.6709363045054566 max_violation: 3.116308851060538 step_size: 1.0 iter: 17 cost: 4.988467718809914 gradient_norm: 0.6307788247865943 max_violation: 3.1157596462165276 step_size: 1.0 iter: 18 cost: 4.976792592985954 gradient_norm: 0.5951371008531503 max_violation: 3.1152715713405144 step_size: 1.0 iter: 19 cost: 4.96691176057546 gradient_norm: 0.5632929524901091 max_violation: 3.1148349596479057 step_size: 1.0 iter: 20 cost: 4.958475528927057 gradient_norm: 0.5346722894034243 max_violation: 3.1144420805360844 step_size: 1.0 iter: 21 cost: 4.9512154237480654 gradient_norm: 0.5088108149448863 max_violation: 3.1140866779123826 step_size: 1.0 iter: 22 cost: 4.944922561128553 gradient_norm: 0.48532905249069525 max_violation: 3.113763634621766 step_size: 1.0 iter: 23 cost: 4.939432452402162 gradient_norm: 0.4639138738575292 max_violation: 3.113468724536523 step_size: 1.0 iter: 24 cost: 4.934614144583438 gradient_norm: 0.44430464167276307 max_violation: 3.113198426703394 step_size: 1.0 iter: 25 cost: 4.930362338139422 gradient_norm: 0.4262826778510305 max_violation: 3.1129497841491203 step_size: 1.0 iter: 26 cost: 4.926591584458991 gradient_norm: 0.40966316454436513 max_violation: 3.1127202953062088 step_size: 1.0 iter: 27 cost: 4.923231958752836 gradient_norm: 0.3942888476580089 max_violation: 3.1125078295921025 step_size: 1.0 iter: 28 cost: 4.920225794695481 gradient_norm: 0.38002509246253535 max_violation: 3.112310561096864 step_size: 1.0 iter: 29 cost: 4.917525193181839 gradient_norm: 0.3667559648394766 max_violation: 3.1121269160038953 step_size: 1.0 iter: 30 cost: 4.915090102350863 gradient_norm: 0.35438109863771194 max_violation: 3.1119555305362137 step_size: 1.0 iter: 31 cost: 4.912886823925658 gradient_norm: 0.34281317138808826 max_violation: 3.111795217049356 step_size: 1.0 iter: 32 cost: 4.910886841020825 gradient_norm: 0.3319758550573053 max_violation: 3.111644936487268 step_size: 1.0 iter: 33 cost: 4.909065890710775 gradient_norm: 0.32180214085480796 max_violation: 3.1115037758503172 step_size: 1.0 iter: 34 cost: 4.907403224646004 gradient_norm: 0.3122329608879769 max_violation: 3.1113709296426935 step_size: 1.0 iter: 35 cost: 4.905881015370745 gradient_norm: 0.3032160471295115 max_violation: 3.1112456845026903 step_size: 1.0 iter: 36 cost: 4.904483876429097 gradient_norm: 0.29470498141201634 max_violation: 3.1111274063965153 step_size: 1.0 iter: 37 cost: 4.903198472000344 gradient_norm: 0.2866584001912623 max_violation: 3.111015529890285 step_size: 1.0 iter: 38 cost: 4.902013197471308 gradient_norm: 0.2790393254693356 max_violation: 3.1109095491171077 step_size: 1.0 iter: 39 cost: 4.900917916587066 gradient_norm: 0.27181459915143397 max_violation: 3.1108090101348043 step_size: 1.0 iter: 40 cost: 4.899903744010194 gradient_norm: 0.2649544026670835 max_violation: 3.110713504430742 step_size: 1.0 iter: 41 cost: 4.898962864539645 gradient_norm: 0.25843184724168183 max_violation: 3.110622663377803 step_size: 1.0 al iter: 2 iter: 1 cost: 56.291502357201324 gradient_norm: 6.843889144331184 max_violation: 2.937630474678736 step_size: 1.0 iter: 2 cost: 55.798388294978935 gradient_norm: 3.227335651304788 max_violation: 2.940514261973796 step_size: 1.0 iter: 3 cost: 55.70792540106937 gradient_norm: 2.109901702609662 max_violation: 2.9413049730781173 step_size: 1.0 iter: 4 cost: 55.67624858355064 gradient_norm: 1.5669151813459212 max_violation: 2.941658810930479 step_size: 1.0 iter: 5 cost: 55.661569048135384 gradient_norm: 1.246131818549896 max_violation: 2.9418546244174864 step_size: 1.0 iter: 6 cost: 55.65358533176086 gradient_norm: 1.0343626817436 max_violation: 2.941976959904959 step_size: 1.0 iter: 7 cost: 55.648766059962824 gradient_norm: 0.8841209492302076 max_violation: 2.9420596700474113 step_size: 1.0 iter: 8 cost: 55.64563502597242 gradient_norm: 0.771998177263856 max_violation: 2.9421187916303566 step_size: 1.0 iter: 9 cost: 55.64348644406839 gradient_norm: 0.6851221038119473 max_violation: 2.9421628397531303 step_size: 1.0 iter: 10 cost: 55.64194829845593 gradient_norm: 0.6158290448545367 max_violation: 2.942196726837923 step_size: 1.0 iter: 11 cost: 55.64080937532629 gradient_norm: 0.5592717401254657 max_violation: 2.9422234719474485 step_size: 1.0 iter: 12 cost: 55.63994251893786 gradient_norm: 0.5122345439623093 max_violation: 2.9422450254839925 step_size: 1.0 al iter: 3 iter: 1 cost: 477.54462578342145 gradient_norm: 137.84801211644304 max_violation: 2.268882875212448 step_size: 1.0 iter: 2 cost: 404.0384157407858 gradient_norm: 154.5986500659875 max_violation: 1.7673237959921777 step_size: 1.0 iter: 3 cost: 343.23668443686313 gradient_norm: 109.17242151715107 max_violation: 1.5533853424211985 step_size: 1.0 iter: 4 cost: 311.75292069064153 gradient_norm: 89.4435350652769 max_violation: 1.3966266292146607 step_size: 1.0 iter: 5 cost: 295.73240376896393 gradient_norm: 80.60350110527251 max_violation: 1.3036682009392146 step_size: 1.0 iter: 6 cost: 280.3561816421159 gradient_norm: 73.79157218168797 max_violation: 1.2032962090193018 step_size: 1.0 iter: 7 cost: 267.901492572945 gradient_norm: 66.9408014063305 max_violation: 1.1139959649384972 step_size: 1.0 iter: 8 cost: 258.26692323370924 gradient_norm: 70.86405382417949 max_violation: 1.0433363899006896 step_size: 1.0 iter: 9 cost: 250.82971311896637 gradient_norm: 73.87504087388014 max_violation: 0.9885727045305845 step_size: 1.0 iter: 10 cost: 244.80867118973265 gradient_norm: 76.88845656499197 max_violation: 0.9449145673094015 step_size: 1.0 iter: 11 cost: 239.88225550150813 gradient_norm: 76.95004245973504 max_violation: 0.9083904743882227 step_size: 1.0 iter: 12 cost: 236.18335290540102 gradient_norm: 72.57974260582237 max_violation: 0.8777723120009804 step_size: 1.0 iter: 13 cost: 233.39435413258587 gradient_norm: 66.55281408022095 max_violation: 0.8525849486083086 step_size: 1.0 iter: 14 cost: 231.14431513311956 gradient_norm: 60.706778231327284 max_violation: 0.8317638013173538 step_size: 1.0 iter: 15 cost: 229.27453560158136 gradient_norm: 55.49091815797325 max_violation: 0.814279845744581 step_size: 1.0 iter: 16 cost: 227.70193045382186 gradient_norm: 63.331487417237135 max_violation: 0.7993650491550182 step_size: 1.0 iter: 17 cost: 226.36698002461867 gradient_norm: 73.65025994935547 max_violation: 0.7864664453954746 step_size: 1.0 iter: 18 cost: 225.2230567872957 gradient_norm: 80.87923454966105 max_violation: 0.7751807812212053 step_size: 1.0 iter: 19 cost: 224.23334157980557 gradient_norm: 85.80629480502158 max_violation: 0.7652075474101006 step_size: 1.0 iter: 20 cost: 223.3689011539908 gradient_norm: 89.02889278237978 max_violation: 0.7563179833692395 step_size: 1.0 iter: 21 cost: 222.60708293206827 gradient_norm: 90.98948310985354 max_violation: 0.7483346438429113 step_size: 1.0 iter: 22 cost: 221.9301665570594 gradient_norm: 92.01406323208845 max_violation: 0.7411176628454581 step_size: 1.0 iter: 23 cost: 221.32426110227618 gradient_norm: 92.34344771377724 max_violation: 0.7345552814380443 step_size: 1.0 iter: 24 cost: 220.77842029291386 gradient_norm: 92.15654345388765 max_violation: 0.7285571369918049 step_size: 1.0 iter: 25 cost: 220.28394385096692 gradient_norm: 91.58714311144881 max_violation: 0.7230493849161044 step_size: 1.0 iter: 26 cost: 219.83383590426843 gradient_norm: 90.73593532159029 max_violation: 0.7179710749454933 step_size: 1.0 iter: 27 cost: 219.42239399427623 gradient_norm: 89.67911142428329 max_violation: 0.7132714168059482 step_size: 1.0 iter: 28 cost: 219.04490345066714 gradient_norm: 88.47458028163805 max_violation: 0.7089076961599243 step_size: 1.0 iter: 29 cost: 218.69741337612604 gradient_norm: 87.16650081758954 max_violation: 0.7048436758365866 step_size: 1.0 iter: 30 cost: 218.37657328586243 gradient_norm: 85.78862142335544 max_violation: 0.7010483626224779 step_size: 1.0 iter: 31 cost: 218.07951334841349 gradient_norm: 84.3667630664091 max_violation: 0.6974950500583956 step_size: 1.0 iter: 32 cost: 217.80375532670024 gradient_norm: 82.92068029367668 max_violation: 0.6941605696666002 step_size: 1.0 iter: 33 cost: 217.54714499576104 gradient_norm: 81.4654653389922 max_violation: 0.6910246998170417 step_size: 1.0 iter: 34 cost: 217.30779968785777 gradient_norm: 80.01261364613563 max_violation: 0.6880696943349531 step_size: 1.0 iter: 35 cost: 217.08406668003224 gradient_norm: 78.57083664071445 max_violation: 0.6852799027159793 step_size: 1.0 iter: 36 cost: 216.87448954258892 gradient_norm: 77.14668466491976 max_violation: 0.6826414610782328 step_size: 1.0 iter: 37 cost: 216.67778049072234 gradient_norm: 75.74502655753794 max_violation: 0.6801420383105334 step_size: 1.0 iter: 38 cost: 216.49279738122578 gradient_norm: 74.36942043990051 max_violation: 0.6777706257602758 step_size: 1.0 iter: 39 cost: 216.31852438606475 gradient_norm: 73.02240154284735 max_violation: 0.6755173616326746 step_size: 1.0 iter: 40 cost: 216.15405563157793 gradient_norm: 71.70570648209787 max_violation: 0.6733733833418962 step_size: 1.0 iter: 41 cost: 215.9985812654665 gradient_norm: 70.42044862885552 max_violation: 0.6713307025796524 step_size: 1.0 iter: 42 cost: 215.8513755342464 gradient_norm: 69.16725568107944 max_violation: 0.6693820990026671 step_size: 1.0 iter: 43 cost: 215.71178654032417 gradient_norm: 67.94637789373465 max_violation: 0.6675210292959419 step_size: 1.0 iter: 44 cost: 215.57922741191547 gradient_norm: 66.75777344003222 max_violation: 0.6657415490207481 step_size: 1.0 iter: 45 cost: 215.45316866780294 gradient_norm: 65.60117587771315 max_violation: 0.6640382451587183 step_size: 1.0 iter: 46 cost: 215.33313159699222 gradient_norm: 64.47614756078022 max_violation: 0.6624061776548533 step_size: 1.0 iter: 47 cost: 215.21868250357937 gradient_norm: 63.382121973657945 max_violation: 0.6608408285703935 step_size: 1.0 iter: 48 cost: 215.10942769155733 gradient_norm: 62.318437306606384 max_violation: 0.659338057701043 step_size: 1.0 iter: 49 cost: 215.00500908422762 gradient_norm: 61.2843630843343 max_violation: 0.6578940637120301 step_size: 1.0 iter: 50 cost: 214.90510038929102 gradient_norm: 60.27912127065114 max_violation: 0.656505349999537 step_size: 1.0 iter: 51 cost: 214.8094037342971 gradient_norm: 59.3019029694471 max_violation: 0.655168694616465 step_size: 1.0 iter: 52 cost: 214.7176467084714 gradient_norm: 58.351881607906655 max_violation: 0.6538811237055437 step_size: 1.0 iter: 53 cost: 214.62957975642593 gradient_norm: 57.42822330467606 max_violation: 0.6526398879691127 step_size: 1.0 iter: 54 cost: 214.5449738772291 gradient_norm: 56.53009498185215 max_violation: 0.6514424417763149 step_size: 1.0 iter: 55 cost: 214.46361858901574 gradient_norm: 55.656670666990344 max_violation: 0.6502864245676965 step_size: 1.0 iter: 56 cost: 214.38532012499718 gradient_norm: 54.80713634209722 max_violation: 0.6491696442667125 step_size: 1.0 iter: 57 cost: 214.3098998315179 gradient_norm: 53.98069362574088 max_violation: 0.6480900624490653 step_size: 1.0 iter: 58 cost: 214.23719274288683 gradient_norm: 53.17656251859577 max_violation: 0.6470457810556582 step_size: 1.0 iter: 59 cost: 214.16704631116977 gradient_norm: 52.39398339773841 max_violation: 0.6460350304644322 step_size: 1.0 iter: 60 cost: 214.09931927208015 gradient_norm: 51.632218409303036 max_violation: 0.6450561587612214 step_size: 1.0 iter: 61 cost: 214.03388063062678 gradient_norm: 50.89055238042051 max_violation: 0.6441076220709987 step_size: 1.0 iter: 62 cost: 213.97060875233106 gradient_norm: 50.16829334825084 max_violation: 0.6431879758289751 step_size: 1.0 iter: 63 cost: 213.90939054767702 gradient_norm: 49.46477278537661 max_violation: 0.6422958668864118 step_size: 1.0 iter: 64 cost: 213.85012073903962 gradient_norm: 48.77934558579349 max_violation: 0.64143002635931 step_size: 1.0 iter: 65 cost: 213.79270120070956 gradient_norm: 48.11138986353181 max_violation: 0.6405892631395211 step_size: 1.0 iter: 66 cost: 213.73704036380383 gradient_norm: 47.46030660619999 max_violation: 0.6397724579976445 step_size: 1.0 iter: 67 cost: 213.68305267887166 gradient_norm: 46.8255192175253 max_violation: 0.6389785582155811 step_size: 1.0 iter: 68 cost: 213.630658129887 gradient_norm: 46.206472976809145 max_violation: 0.6382065726939721 step_size: 1.0 iter: 69 cost: 213.57978179407615 gradient_norm: 45.602634437512215 max_violation: 0.6374555674861218 step_size: 1.0 iter: 70 cost: 213.53035344269747 gradient_norm: 45.0134907830943 max_violation: 0.6367246617156019 step_size: 1.0 iter: 71 cost: 213.48230717846334 gradient_norm: 44.4385491546828 max_violation: 0.6360130238395634 step_size: 1.0 iter: 72 cost: 213.43558110579463 gradient_norm: 43.87733596221096 max_violation: 0.6353198682240087 step_size: 1.0 iter: 73 cost: 213.39011703054422 gradient_norm: 43.32939618827669 max_violation: 0.6346444520010475 step_size: 1.0 iter: 74 cost: 213.34586018619734 gradient_norm: 42.794292692216445 max_violation: 0.6339860721813411 step_size: 1.0 iter: 75 cost: 213.3027589839024 gradient_norm: 42.27160552004799 max_violation: 0.6333440629978861 step_size: 1.0 iter: 76 cost: 213.26076478397707 gradient_norm: 41.76093122492767 max_violation: 0.6327177934597512 step_size: 1.0 iter: 77 cost: 213.21983168678796 gradient_norm: 41.26188220146204 max_violation: 0.6321066650966412 step_size: 1.0 iter: 78 cost: 213.17991634114048 gradient_norm: 40.77408603670158 max_violation: 0.6315101098771292 step_size: 1.0 iter: 79 cost: 213.14097776850315 gradient_norm: 40.297184879437125 max_violation: 0.6309275882851262 step_size: 1.0 iter: 80 cost: 213.10297720157982 gradient_norm: 39.83083482944432 max_violation: 0.6303585875407354 step_size: 1.0 iter: 81 cost: 213.06587793588983 gradient_norm: 39.37470534736977 max_violation: 0.6298026199529647 step_size: 1.0 iter: 82 cost: 213.0296451931611 gradient_norm: 38.928478685940576 max_violation: 0.6292592213930552 step_size: 1.0 iter: 83 cost: 212.99424599546137 gradient_norm: 38.49184934261635 max_violation: 0.6287279498782139 step_size: 1.0 iter: 84 cost: 212.9596490490994 gradient_norm: 38.06452353378656 max_violation: 0.6282083842565385 step_size: 1.0 iter: 85 cost: 212.9258246374315 gradient_norm: 37.646218690237404 max_violation: 0.6277001229848218 step_size: 1.0 iter: 86 cost: 212.89274452178762 gradient_norm: 37.23666297369661 max_violation: 0.627202782991628 step_size: 1.0 iter: 87 cost: 212.86038184981058 gradient_norm: 36.835594813822986 max_violation: 0.6267159986187893 step_size: 1.0 iter: 88 cost: 212.8287110705746 gradient_norm: 36.44276246533863 max_violation: 0.6262394206350992 step_size: 1.0 iter: 89 cost: 212.7977078559032 gradient_norm: 36.05792358455187 max_violation: 0.6257727153164789 step_size: 1.0 iter: 90 cost: 212.76734902736746 gradient_norm: 35.680844824765586 max_violation: 0.6253155635874816 step_size: 1.0 iter: 91 cost: 212.7376124884906 gradient_norm: 35.31130144973829 max_violation: 0.6248676602193801 step_size: 1.0 iter: 92 cost: 212.70847716173245 gradient_norm: 34.94907696479919 max_violation: 0.6244287130805688 step_size: 1.0 iter: 93 cost: 212.67992292986384 gradient_norm: 34.59396276461414 max_violation: 0.6239984424352962 step_size: 1.0 iter: 94 cost: 212.65193058137615 gradient_norm: 34.245757797201165 max_violation: 0.6235765802871551 step_size: 1.0 iter: 95 cost: 212.6244817596086 gradient_norm: 33.90426824330935 max_violation: 0.623162869764029 step_size: 1.0 iter: 96 cost: 212.59755891529576 gradient_norm: 33.569307210668875 max_violation: 0.6227570645414557 step_size: 1.0 iter: 97 cost: 212.57114526227176 gradient_norm: 33.24069444219373 max_violation: 0.622358928301654 step_size: 1.0 iter: 98 cost: 212.54522473608705 gradient_norm: 32.91825603792533 max_violation: 0.6219682342256405 step_size: 1.0 iter: 99 cost: 212.5197819553147 gradient_norm: 32.60182418961545 max_violation: 0.6215847645161237 step_size: 1.0 iter: 100 cost: 212.49480218534427 gradient_norm: 32.29123692772743 max_violation: 0.6212083099489911 step_size: 1.0 al iter: 4 iter: 1 cost: 448.0234713893829 gradient_norm: 249.27913564324237 max_violation: 0.3680236333568043 step_size: 1.0 iter: 2 cost: 418.3129657016033 gradient_norm: 476.0809293672587 max_violation: 0.353698440954334 step_size: 0.125 iter: 3 cost: 393.35372273076854 gradient_norm: 1594.3492974323972 max_violation: 0.3406171108073064 step_size: 0.25 iter: 4 cost: 380.7846157319315 gradient_norm: 3669.0167920055387 max_violation: 0.34005720050894883 step_size: 0.5 iter: 5 cost: 356.2305102773578 gradient_norm: 4631.2651822344615 max_violation: 0.3056744451065616 step_size: 1.0 iter: 6 cost: 329.0040847518122 gradient_norm: 3787.761996236287 max_violation: 0.276540887474539 step_size: 1.0 iter: 7 cost: 313.1521047656295 gradient_norm: 3195.5130359103478 max_violation: 0.25625677273510084 step_size: 1.0 iter: 8 cost: 302.7197491566609 gradient_norm: 2755.9327284515975 max_violation: 0.24037089249037225 step_size: 1.0 iter: 9 cost: 295.39105689848105 gradient_norm: 2419.4061883077643 max_violation: 0.2319639269666185 step_size: 1.0 iter: 10 cost: 290.00797137521477 gradient_norm: 2154.7880465824687 max_violation: 0.22964490395498194 step_size: 1.0 iter: 11 cost: 285.91893423118137 gradient_norm: 1941.7900277571948 max_violation: 0.2278531373056989 step_size: 1.0 iter: 12 cost: 282.72818031720516 gradient_norm: 1766.8763849668126 max_violation: 0.22638427048555387 step_size: 1.0 iter: 13 cost: 280.18210893188757 gradient_norm: 1620.769683484419 max_violation: 0.22513350229653417 step_size: 1.0 iter: 14 cost: 278.11150337623826 gradient_norm: 1496.938189532452 max_violation: 0.22404104636329292 step_size: 1.0 iter: 15 cost: 276.39971319014415 gradient_norm: 1390.6669992640027 max_violation: 0.22306966905775294 step_size: 1.0 iter: 16 cost: 274.9641013199814 gradient_norm: 1298.4749780932614 max_violation: 0.22219448340532288 step_size: 1.0 iter: 17 cost: 273.7447395470567 gradient_norm: 1217.7395245110815 max_violation: 0.22139789139012755 step_size: 1.0 iter: 18 cost: 272.69726984295636 gradient_norm: 1146.4489873601233 max_violation: 0.2206668804659353 step_size: 1.0 iter: 19 cost: 271.7882585415821 gradient_norm: 1083.035400320627 max_violation: 0.21999147998559065 step_size: 1.0 iter: 20 cost: 270.992093040545 gradient_norm: 1026.2589739035843 max_violation: 0.21936382788121556 step_size: 1.0 iter: 21 cost: 270.2888608131715 gradient_norm: 975.126709837447 max_violation: 0.21877757753007598 step_size: 1.0 iter: 22 cost: 269.6628698497335 gradient_norm: 928.8339956136668 max_violation: 0.21822750420637993 step_size: 1.0 iter: 23 cost: 269.10159732329123 gradient_norm: 886.7219830989369 max_violation: 0.2177092340549085 step_size: 1.0 iter: 24 cost: 268.5949298562044 gradient_norm: 848.2460069966199 max_violation: 0.2172190513742449 step_size: 1.0 iter: 25 cost: 268.1346059304839 gradient_norm: 812.9518549143401 max_violation: 0.21675375781091155 step_size: 1.0 iter: 26 cost: 267.7138007439576 gradient_norm: 780.457708191277 max_violation: 0.2163105671637493 step_size: 1.0 iter: 27 cost: 267.3268130199158 gradient_norm: 750.4402372218477 max_violation: 0.2158870254757015 step_size: 1.0 iter: 28 cost: 266.9688259574457 gradient_norm: 722.62378127081 max_violation: 0.21548094979236465 step_size: 1.0 iter: 29 cost: 266.6357230911687 gradient_norm: 696.7718474135196 max_violation: 0.215090381376577 step_size: 1.0 iter: 30 cost: 266.3239458110149 gradient_norm: 672.6803744862384 max_violation: 0.21471355082155075 step_size: 1.0 iter: 31 cost: 266.030383609456 gradient_norm: 650.1723564514531 max_violation: 0.21434885368415646 step_size: 1.0 iter: 32 cost: 265.7522913386762 gradient_norm: 629.0935251953542 max_violation: 0.21399483607872183 step_size: 1.0 iter: 33 cost: 265.48723014936564 gradient_norm: 609.3088681197206 max_violation: 0.21365019010489394 step_size: 1.0 iter: 34 cost: 265.2330303556208 gradient_norm: 590.6998090879993 max_violation: 0.21331375888172133 step_size: 1.0 iter: 35 cost: 264.98777498161036 gradient_norm: 573.16191741366 max_violation: 0.21298455009876394 step_size: 1.0 iter: 36 cost: 264.7498018006455 gradient_norm: 556.6030323807215 max_violation: 0.2126617552225203 step_size: 1.0 iter: 37 cost: 264.5177190558877 gradient_norm: 540.941704261021 max_violation: 0.21234476902352695 step_size: 1.0 iter: 38 cost: 264.2904262757505 gradient_norm: 526.1058626891888 max_violation: 0.2120332018149096 step_size: 1.0 iter: 39 cost: 264.06712840481487 gradient_norm: 512.0316368483257 max_violation: 0.2117268763017175 step_size: 1.0 iter: 40 cost: 263.8473314450203 gradient_norm: 498.66227488232903 max_violation: 0.21142580371741104 step_size: 1.0 iter: 41 cost: 263.6308126631518 gradient_norm: 485.94714123218716 max_violation: 0.21113013991931595 step_size: 1.0 iter: 42 cost: 263.4175669982171 gradient_norm: 473.8408004831956 max_violation: 0.2108401289114541 step_size: 1.0 iter: 43 cost: 263.2077394888725 gradient_norm: 462.3022121930163 max_violation: 0.21055604527822114 step_size: 1.0 iter: 44 cost: 263.00155712590754 gradient_norm: 451.2940576093024 max_violation: 0.21027814619153684 step_size: 1.0 iter: 45 cost: 262.7992714072695 gradient_norm: 440.7822022809454 max_violation: 0.2100066390333004 step_size: 1.0 iter: 46 cost: 262.60111737164567 gradient_norm: 430.7352803054229 max_violation: 0.20974166522586835 step_size: 1.0 iter: 47 cost: 262.4072893909222 gradient_norm: 421.124375112821 max_violation: 0.20948329708280466 step_size: 1.0 iter: 48 cost: 262.21793057475503 gradient_norm: 411.92276997538096 max_violation: 0.20923154311781955 step_size: 1.0 iter: 49 cost: 262.0331315136518 gradient_norm: 403.1057457712504 max_violation: 0.20898635764955964 step_size: 1.0 iter: 50 cost: 261.85293447362756 gradient_norm: 394.6504099163443 max_violation: 0.20874765171013276 step_size: 1.0 iter: 51 cost: 261.6773401581647 gradient_norm: 386.53554621254585 max_violation: 0.20851530347575853 step_size: 1.0 iter: 52 cost: 261.50631518598897 gradient_norm: 378.7414796278802 max_violation: 0.20828916736259506 step_size: 1.0 iter: 53 cost: 261.3397992445476 gradient_norm: 371.2499527218852 max_violation: 0.20806908151832726 step_size: 1.0 iter: 54 cost: 261.1777114261639 gradient_norm: 364.04401195466386 max_violation: 0.20785487375967682 step_size: 1.0 iter: 55 cost: 261.0199555831077 gradient_norm: 357.10790289883414 max_violation: 0.20764636614939258 step_size: 1.0 iter: 56 cost: 260.86642471576187 gradient_norm: 350.4269737194357 max_violation: 0.20744337844871819 step_size: 1.0 iter: 57 cost: 260.71700449151103 gradient_norm: 343.98758641645577 max_violation: 0.2072457306729758 step_size: 1.0 iter: 58 cost: 260.5715760214997 gradient_norm: 337.77703536884434 max_violation: 0.207053244948328 step_size: 1.0 iter: 59 cost: 260.4300180235697 gradient_norm: 331.7834727023458 max_violation: 0.20686574683259895 step_size: 1.0 iter: 60 cost: 260.29220848779124 gradient_norm: 325.9958400092931 max_violation: 0.20668306622963462 step_size: 1.0 iter: 61 cost: 260.15802594444506 gradient_norm: 320.4038059433059 max_violation: 0.20650503799809128 step_size: 1.0 iter: 62 cost: 260.0273504171736 gradient_norm: 314.997709217359 max_violation: 0.20633150233208264 step_size: 1.0 iter: 63 cost: 259.90006412849164 gradient_norm: 309.76850655815826 max_violation: 0.20616230497269994 step_size: 1.0 iter: 64 cost: 259.7760520114543 gradient_norm: 304.7077251840065 max_violation: 0.20599729729509164 step_size: 1.0 iter: 65 cost: 259.6552020701906 gradient_norm: 299.80741940674386 max_violation: 0.20583633630480014 step_size: 1.0 iter: 66 cost: 259.537405623062 gradient_norm: 295.0601309834996 max_violation: 0.2056792845687676 step_size: 1.0 iter: 67 cost: 259.4225574549813 gradient_norm: 290.45885287683865 max_violation: 0.205526010100042 step_size: 1.0 iter: 68 cost: 259.3105558997636 gradient_norm: 285.99699610699145 max_violation: 0.20537638621053222 step_size: 1.0 iter: 69 cost: 259.201302868866 gradient_norm: 281.6683594118165 max_violation: 0.20523029134246196 step_size: 1.0 iter: 70 cost: 259.0947038393517 gradient_norm: 277.46710145231555 max_violation: 0.2050876088865521 step_size: 1.0 iter: 71 cost: 258.99066781112776 gradient_norm: 273.38771533046656 max_violation: 0.20494822699281512 step_size: 1.0 iter: 72 cost: 258.8891072413433 gradient_norm: 269.4250052048639 max_violation: 0.20481203837838668 step_size: 1.0 iter: 73 cost: 258.7899379621057 gradient_norm: 265.5740648110532 max_violation: 0.20467894013558352 step_size: 1.0 iter: 74 cost: 258.6930790863453 gradient_norm: 261.83025771485507 max_violation: 0.2045488335424981 step_size: 1.0 iter: 75 cost: 258.5984529055824 gradient_norm: 258.1891991396678 max_violation: 0.20442162387780716 step_size: 1.0 iter: 76 cost: 258.5059847825463 gradient_norm: 254.6467392278014 max_violation: 0.20429722024092722 step_size: 1.0 iter: 77 cost: 258.415603040899 gradient_norm: 251.19894760652565 max_violation: 0.20417553537828947 step_size: 1.0 iter: 78 cost: 258.3272388538435 gradient_norm: 247.8420991463254 max_violation: 0.20405648551619837 step_size: 1.0 iter: 79 cost: 258.240826132946 gradient_norm: 244.5726608020728 max_violation: 0.20393999020056874 step_size: 1.0 iter: 80 cost: 258.1563014182126 gradient_norm: 241.3872794500403 max_violation: 0.20382597214359244 step_size: 1.0 iter: 81 cost: 258.07360377017244 gradient_norm: 238.282770627996 max_violation: 0.20371435707739716 step_size: 1.0 iter: 82 cost: 257.99267466455495 gradient_norm: 235.25610810807007 max_violation: 0.20360507361451763 step_size: 1.0 iter: 83 cost: 257.91345788994806 gradient_norm: 232.30441422798236 max_violation: 0.2034980531150654 step_size: 1.0 iter: 84 cost: 257.8358994487413 gradient_norm: 229.42495091960353 max_violation: 0.20339322956040595 step_size: 1.0 iter: 85 cost: 257.75994746151514 gradient_norm: 226.61511137530067 max_violation: 0.20329053943305464 step_size: 1.0 iter: 86 cost: 257.68555207500737 gradient_norm: 223.8724123043729 max_violation: 0.20318992160259652 step_size: 1.0 iter: 87 cost: 257.6126653736805 gradient_norm: 221.19448672577155 max_violation: 0.20309131721734008 step_size: 1.0 iter: 88 cost: 257.54124129491504 gradient_norm: 218.57907726016094 max_violation: 0.20299466960146972 step_size: 1.0 iter: 89 cost: 257.47123554776385 gradient_norm: 216.02402987814526 max_violation: 0.20289992415737101 step_size: 1.0 iter: 90 cost: 257.4026055352356 gradient_norm: 213.52728807003956 max_violation: 0.2028070282729706 step_size: 1.0 iter: 91 cost: 257.335310280001 gradient_norm: 211.08688740485715 max_violation: 0.20271593123372478 step_size: 1.0 iter: 92 cost: 257.2693103534372 gradient_norm: 208.70095044776062 max_violation: 0.2026265841391104 step_size: 1.0 iter: 93 cost: 257.2045678079017 gradient_norm: 206.36768201141535 max_violation: 0.2025389398233175 step_size: 1.0 iter: 94 cost: 257.1410461121135 gradient_norm: 204.08536471156435 max_violation: 0.2024529527799479 step_size: 1.0 iter: 95 cost: 257.0787100895363 gradient_norm: 201.8523548085605 max_violation: 0.20236857909049988 step_size: 1.0 iter: 96 cost: 257.01752585962373 gradient_norm: 199.6670783117071 max_violation: 0.2022857763564163 step_size: 1.0 iter: 97 cost: 256.9574607818316 gradient_norm: 197.52802732769575 max_violation: 0.20220450363454123 step_size: 1.0 iter: 98 cost: 256.89848340225376 gradient_norm: 195.43375663540905 max_violation: 0.20212472137575288 step_size: 1.0 iter: 99 cost: 256.84056340276965 gradient_norm: 193.38288047090433 max_violation: 0.2020463913666357 step_size: 1.0 iter: 100 cost: 256.7836715526019 gradient_norm: 191.37406950822043 max_violation: 0.201969476673991 step_size: 1.0 al iter: 5 iter: 1 cost: 573.0901435008913 gradient_norm: 28612.37119945268 max_violation: 0.15189163807363654 step_size: 0.5 iter: 2 cost: 532.3617407119398 gradient_norm: 25638.385262906162 max_violation: 0.14770612013514983 step_size: 0.25 iter: 3 cost: 438.6149114224126 gradient_norm: 19501.080450236776 max_violation: 0.13516971348489823 step_size: 1.0 iter: 4 cost: 367.207094458034 gradient_norm: 14315.030914080578 max_violation: 0.10207670138634228 step_size: 1.0 iter: 5 cost: 333.92493541440444 gradient_norm: 11255.330818374778 max_violation: 0.08311096308232688 step_size: 1.0 iter: 6 cost: 314.59861512972077 gradient_norm: 9252.814170467083 max_violation: 0.06959695157715534 step_size: 1.0 iter: 7 cost: 302.59431800754476 gradient_norm: 7850.8529863866925 max_violation: 0.05977827026362775 step_size: 1.0 iter: 8 cost: 294.6348658655606 gradient_norm: 6815.8950377422 max_violation: 0.052352153502613186 step_size: 1.0 iter: 9 cost: 289.0825088600523 gradient_norm: 6020.9720079972985 max_violation: 0.04654915031381718 step_size: 1.0 iter: 10 cost: 285.0505704790328 gradient_norm: 5391.460991886106 max_violation: 0.04189369913522073 step_size: 1.0 iter: 11 cost: 282.0261213142617 gradient_norm: 4880.707893211842 max_violation: 0.0380780164699171 step_size: 1.0 iter: 12 cost: 279.69592442374227 gradient_norm: 4458.069947897033 max_violation: 0.03489473585138231 step_size: 1.0 iter: 13 cost: 277.85993955200155 gradient_norm: 4102.598303922959 max_violation: 0.032199282778364646 step_size: 1.0 iter: 14 cost: 276.38554100475125 gradient_norm: 3799.489332588188 max_violation: 0.02988788190586361 step_size: 1.0 iter: 15 cost: 275.1819602705041 gradient_norm: 3537.987132001259 max_violation: 0.02788416122639209 step_size: 1.0 iter: 16 cost: 274.1853583616946 gradient_norm: 3310.089645387649 max_violation: 0.026130691063429634 step_size: 1.0 iter: 17 cost: 273.34976145444335 gradient_norm: 3109.720981461234 max_violation: 0.024583467207462684 step_size: 1.0 iter: 18 cost: 272.64136840885584 gradient_norm: 2932.1851645445886 max_violation: 0.02320821181417082 step_size: 1.0 iter: 19 cost: 272.03486907432216 gradient_norm: 2773.7957095588804 max_violation: 0.021977831235547696 step_size: 1.0 iter: 20 cost: 271.51100051598655 gradient_norm: 2631.6183833767614 max_violation: 0.02087063032596226 step_size: 1.0 iter: 21 cost: 271.05488712627164 gradient_norm: 2503.288773512035 max_violation: 0.019869033418371207 step_size: 1.0 iter: 22 cost: 270.6548897194596 gradient_norm: 2386.880465973291 max_violation: 0.018958652045779956 step_size: 1.0 iter: 23 cost: 270.3017926231615 gradient_norm: 2280.808182144246 max_violation: 0.01812759460651514 step_size: 1.0 iter: 24 cost: 269.98821981181635 gradient_norm: 2183.7555200381034 max_violation: 0.017365947832368 step_size: 1.0 iter: 25 cost: 269.7082091222122 gradient_norm: 2094.620307128352 max_violation: 0.01666538220972935 step_size: 1.0 iter: 26 cost: 269.45689741120776 gradient_norm: 2012.4727541211041 max_violation: 0.016018848138209862 step_size: 1.0 iter: 27 cost: 269.23028476965544 gradient_norm: 1936.5230439967647 max_violation: 0.015420339400361471 step_size: 1.0 iter: 28 cost: 269.02505586462513 gradient_norm: 1866.0959650772634 max_violation: 0.014864707177023373 step_size: 1.0 iter: 29 cost: 268.83844309975433 gradient_norm: 1800.6108651472598 max_violation: 0.014347512448533273 step_size: 1.0 iter: 30 cost: 268.6681207530896 gradient_norm: 1739.5656688650956 max_violation: 0.013864907851605546 step_size: 1.0 iter: 31 cost: 268.512122316687 gradient_norm: 1682.5240293053228 max_violation: 0.013413542358527986 step_size: 1.0 iter: 32 cost: 268.3687753931169 gradient_norm: 1629.1049195864762 max_violation: 0.012990483798614227 step_size: 1.0 iter: 33 cost: 268.2366500048996 gradient_norm: 1578.9741406821431 max_violation: 0.012593155445111304 step_size: 1.0 iter: 34 cost: 268.1145172428845 gradient_norm: 1531.8373462852935 max_violation: 0.012219283777773704 step_size: 1.0 iter: 35 cost: 268.00131595095104 gradient_norm: 1487.4342777908073 max_violation: 0.01186685518982944 step_size: 1.0 iter: 36 cost: 267.8961257063822 gradient_norm: 1445.5339714232452 max_violation: 0.011534079902907446 step_size: 1.0 iter: 37 cost: 267.79814476878033 gradient_norm: 1405.930751561328 max_violation: 0.011219361728309729 step_size: 1.0 iter: 38 cost: 267.70667197748367 gradient_norm: 1368.44086386346 max_violation: 0.010921272599154763 step_size: 1.0 iter: 39 cost: 267.6210918074476 gradient_norm: 1332.8996321220432 max_violation: 0.010638531017961417 step_size: 1.0 iter: 40 cost: 267.5408619673265 gradient_norm: 1299.159046231335 max_violation: 0.010369983735197597 step_size: 1.0 iter: 41 cost: 267.465503055807 gradient_norm: 1267.0857069277927 max_violation: 0.010114590107865862 step_size: 1.0 iter: 42 cost: 267.3945898935949 gradient_norm: 1236.559067221529 max_violation: 0.009871408691635275 step_size: 1.0 iter: 43 cost: 267.327744226835 gradient_norm: 1207.4699217494754 max_violation: 0.00963958570332435 step_size: 1.0 iter: 44 cost: 267.2646285585999 gradient_norm: 1179.7191042174504 max_violation: 0.009418345056275812 step_size: 1.0 iter: 45 cost: 267.204940912726 gradient_norm: 1153.2163602575442 max_violation: 0.009206979724173281 step_size: 1.0 iter: 46 cost: 267.1484103717298 gradient_norm: 1127.8793687526324 max_violation: 0.00900484423124881 step_size: 1.0 iter: 47 cost: 267.09479326021585 gradient_norm: 1103.6328893047944 max_violation: 0.008811348101090188 step_size: 1.0 iter: 48 cost: 267.04386986877546 gradient_norm: 1080.408017292091 max_violation: 0.00862595012445666 step_size: 1.0 iter: 49 cost: 266.9954416322572 gradient_norm: 1058.141531001607 max_violation: 0.00844815332903548 step_size: 1.0 iter: 50 cost: 266.94932869146453 gradient_norm: 1036.7753178236314 max_violation: 0.008277500552860362 step_size: 1.0 iter: 51 cost: 266.9053677795998 gradient_norm: 1016.2558685846124 max_violation: 0.008113570538734294 step_size: 1.0 iter: 52 cost: 266.86341038468964 gradient_norm: 996.5338307331879 max_violation: 0.007955974479237016 step_size: 1.0 iter: 53 cost: 266.8233211473835 gradient_norm: 977.5636125802149 max_violation: 0.007804352953185711 step_size: 1.0 iter: 54 cost: 266.78497646006565 gradient_norm: 959.3030318667456 max_violation: 0.007658373202327651 step_size: 1.0 iter: 55 cost: 266.74826323878506 gradient_norm: 941.7130030409119 max_violation: 0.007517726705561167 step_size: 1.0 iter: 56 cost: 266.7130778438612 gradient_norm: 924.7572582875378 max_violation: 0.00738212701285601 step_size: 1.0 iter: 57 cost: 266.679325128878 gradient_norm: 908.4020982001841 max_violation: 0.007251307807524143 step_size: 1.0 iter: 58 cost: 266.64691760076545 gradient_norm: 892.6161684386618 max_violation: 0.0071250211688614895 step_size: 1.0 iter: 59 cost: 266.6157746763165 gradient_norm: 877.3702593057812 max_violation: 0.007003036011734687 step_size: 1.0 iter: 60 cost: 266.5858220225881 gradient_norm: 862.6371255076594 max_violation: 0.006885136682115323 step_size: 1.0 iter: 61 cost: 266.5569909704886 gradient_norm: 848.3913238009327 max_violation: 0.006771121690974158 step_size: 1.0 iter: 62 cost: 266.5292179923445 gradient_norm: 834.6090664747964 max_violation: 0.006660802570770508 step_size: 1.0 iter: 63 cost: 266.5024442355317 gradient_norm: 821.2680888758559 max_violation: 0.006554002840748252 step_size: 1.0 iter: 64 cost: 266.47661510536756 gradient_norm: 808.3475294825552 max_violation: 0.006450557069576646 step_size: 1.0 iter: 65 cost: 266.4516798913423 gradient_norm: 795.8278211028085 max_violation: 0.006350310024325956 step_size: 1.0 iter: 66 cost: 266.4275914315938 gradient_norm: 783.6905920578722 max_violation: 0.006253115897025707 step_size: 1.0 iter: 67 cost: 266.4043058111752 gradient_norm: 771.9185762660494 max_violation: 0.006158837600417022 step_size: 1.0 iter: 68 cost: 266.3817820902644 gradient_norm: 760.495531337459 max_violation: 0.006067346126036988 step_size: 1.0 iter: 69 cost: 266.3599820589134 gradient_norm: 749.4061638208686 max_violation: 0.005978519957991035 step_size: 1.0 iter: 70 cost: 266.338870015425 gradient_norm: 738.6360609246785 max_violation: 0.005892244537184954 step_size: 1.0 iter: 71 cost: 266.31841256574097 gradient_norm: 728.1716280326976 max_violation: 0.005808411770725663 step_size: 1.0 iter: 72 cost: 266.2985784415955 gradient_norm: 718.0000314787135 max_violation: 0.005726919582368262 step_size: 1.0 iter: 73 cost: 266.2793383354194 gradient_norm: 708.1091460386968 max_violation: 0.0056476714997950594 step_size: 1.0 iter: 74 cost: 266.2606647502581 gradient_norm: 698.4875067337831 max_violation: 0.0055705762755775545 step_size: 1.0 iter: 75 cost: 266.24253186313035 gradient_norm: 689.1242644914082 max_violation: 0.00549554753829351 step_size: 1.0 iter: 76 cost: 266.22491540046707 gradient_norm: 680.0091453492681 max_violation: 0.005422503471370965 step_size: 1.0 iter: 77 cost: 266.2077925244142 gradient_norm: 671.1324128503757 max_violation: 0.005351366516900047 step_size: 1.0 iter: 78 cost: 266.1911417289091 gradient_norm: 662.4848333452225 max_violation: 0.005282063102211687 step_size: 1.0 iter: 79 cost: 266.1749427445851 gradient_norm: 654.0576439606062 max_violation: 0.00521452338736228 step_size: 1.0 iter: 80 cost: 266.15917645164063 gradient_norm: 645.8425229770706 max_violation: 0.0051486810314969045 step_size: 1.0 iter: 81 cost: 266.1438247999167 gradient_norm: 637.8315624149285 max_violation: 0.005084472976531362 step_size: 1.0 iter: 82 cost: 266.12887073549274 gradient_norm: 630.017242638692 max_violation: 0.005021839246686199 step_size: 1.0 iter: 83 cost: 266.1142981332083 gradient_norm: 622.3924088127037 max_violation: 0.004960722762552661 step_size: 1.0 iter: 84 cost: 266.1000917345535 gradient_norm: 614.950249049724 max_violation: 0.004901069168457561 step_size: 1.0 iter: 85 cost: 266.086237090441 gradient_norm: 607.6842741046939 max_violation: 0.004842826671976663 step_size: 1.0 iter: 86 cost: 266.072720508423 gradient_norm: 600.5882984982461 max_violation: 0.004785945894686061 step_size: 1.0 iter: 87 cost: 266.05952900396545 gradient_norm: 593.6564229552064 max_violation: 0.0047303797332596265 step_size: 1.0 iter: 88 cost: 266.0466502554036 gradient_norm: 586.8830180344544 max_violation: 0.004676083229951833 step_size: 1.0 iter: 89 cost: 266.0340725622823 gradient_norm: 580.2627088800105 max_violation: 0.004623013451895863 step_size: 1.0 iter: 90 cost: 266.0217848067793 gradient_norm: 573.7903609938177 max_violation: 0.004571129378455052 step_size: 1.0 iter: 91 cost: 266.00977641795083 gradient_norm: 567.4610669517735 max_violation: 0.004520391796016154 step_size: 1.0 iter: 92 cost: 265.9980373385564 gradient_norm: 561.2701339748229 max_violation: 0.0044707631995059005 step_size: 1.0 iter: 93 cost: 265.9865579942763 gradient_norm: 555.2130723449125 max_violation: 0.004422207700590874 step_size: 1.0 iter: 94 cost: 265.97532926508234 gradient_norm: 549.2855845177519 max_violation: 0.004374690941352233 step_size: 1.0 iter: 95 cost: 265.9643424586263 gradient_norm: 543.4835549623256 max_violation: 0.004328180013719929 step_size: 1.0 iter: 96 cost: 265.95358928546756 gradient_norm: 537.8030406269531 max_violation: 0.004282643383839546 step_size: 1.0 iter: 97 cost: 265.9430618359866 gradient_norm: 532.2402619873342 max_violation: 0.004238050821031125 step_size: 1.0 iter: 98 cost: 265.9327525588734 gradient_norm: 526.7915946687382 max_violation: 0.004194373331304568 step_size: 1.0 iter: 99 cost: 265.9226542410475 gradient_norm: 521.4535615632914 max_violation: 0.004151583094764266 step_size: 1.0 iter: 100 cost: 265.9127599889091 gradient_norm: 516.2228254197706 max_violation: 0.004109653406765168 step_size: 1.0 Test Summary: | Pass Total Time Solve: acrobot | 1 1 6m04.2s ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University al iter: 1 ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University iter: 1 cost: 261.2537798738653 gradient_norm: 885.6763002794513 max_violation: 1.1807656674637883 step_size: 1.0 iter: 2 cost: 69.99469960068207 gradient_norm: 376.08357134305186 max_violation: 0.766429330514935 step_size: 1.0 iter: 3 cost: 34.54977364243712 gradient_norm: 193.82532155965612 max_violation: 0.5197983639867401 step_size: 1.0 iter: 4 cost: 22.539037764763805 gradient_norm: 111.7024513072441 max_violation: 0.4196158004810382 step_size: 1.0 iter: 5 cost: 17.035664625358486 gradient_norm: 69.14467761180012 max_violation: 0.37323467952446965 step_size: 1.0 iter: 6 cost: 14.062954292496705 gradient_norm: 45.607762506571646 max_violation: 0.34188493819304266 step_size: 1.0 iter: 7 cost: 12.272616098482587 gradient_norm: 31.744197515746393 max_violation: 0.3195794259745215 step_size: 1.0 iter: 8 cost: 11.110324366994146 gradient_norm: 28.481409161315987 max_violation: 0.30283107541267995 step_size: 1.0 iter: 9 cost: 10.312569004061332 gradient_norm: 25.725116998667954 max_violation: 0.28976177042682494 step_size: 1.0 iter: 10 cost: 9.740976036112503 gradient_norm: 24.387263942641127 max_violation: 0.27926490324135944 step_size: 1.0 iter: 11 cost: 9.317182750501477 gradient_norm: 23.27948171916522 max_violation: 0.270642534988605 step_size: 1.0 iter: 12 cost: 8.99409364960746 gradient_norm: 22.133658624582665 max_violation: 0.2634309744732146 step_size: 1.0 iter: 13 cost: 8.742010825607291 gradient_norm: 21.003710960323513 max_violation: 0.25730926409585564 step_size: 1.0 iter: 14 cost: 8.541448500865746 gradient_norm: 19.918615937273927 max_violation: 0.2520477436399142 step_size: 1.0 iter: 15 cost: 8.379187541400649 gradient_norm: 18.892634093629162 max_violation: 0.24747750308208794 step_size: 1.0 iter: 16 cost: 8.246001295724474 gradient_norm: 17.931443843477687 max_violation: 0.243471404916475 step_size: 1.0 iter: 17 cost: 8.135289721002943 gradient_norm: 17.035806102872616 max_violation: 0.2399318426078958 step_size: 1.0 iter: 18 cost: 8.042229513640368 gradient_norm: 16.203750801407285 max_violation: 0.23678258854916034 step_size: 1.0 iter: 19 cost: 7.963228813262942 gradient_norm: 15.431879152844623 max_violation: 0.23396321467267356 step_size: 1.0 iter: 20 cost: 7.895567773780683 gradient_norm: 14.71613518888006 max_violation: 0.2314251818556059 step_size: 1.0 iter: 21 cost: 7.837155934003607 gradient_norm: 14.05225742418412 max_violation: 0.2291290411089797 step_size: 1.0 iter: 22 cost: 7.786364917793634 gradient_norm: 13.436037151680694 max_violation: 0.22704239307714413 step_size: 1.0 iter: 23 cost: 7.741910858273423 gradient_norm: 12.86345977297741 max_violation: 0.22513837563732508 step_size: 1.0 iter: 24 cost: 7.702770335780684 gradient_norm: 12.330775619639935 max_violation: 0.223394526194177 step_size: 1.0 iter: 25 cost: 7.668119333509148 gradient_norm: 11.834528666306948 max_violation: 0.22179191431193956 step_size: 1.0 iter: 26 cost: 7.637288274827675 gradient_norm: 11.37156056170258 max_violation: 0.2203144723692816 step_size: 1.0 iter: 27 cost: 7.609728473089355 gradient_norm: 10.939000679422454 max_violation: 0.21894847327438605 step_size: 1.0 iter: 28 cost: 7.5849867970528555 gradient_norm: 10.534248743252592 max_violation: 0.21768211877573584 step_size: 1.0 iter: 29 cost: 7.562686328832223 gradient_norm: 10.154954010172425 max_violation: 0.21650521190799044 step_size: 1.0 iter: 30 cost: 7.542511446200534 gradient_norm: 9.798993394781991 max_violation: 0.2154088941268837 step_size: 1.0 iter: 31 cost: 7.5241962083383624 gradient_norm: 9.464449922833648 max_violation: 0.21438543266983068 step_size: 1.0 iter: 32 cost: 7.507515233952561 gradient_norm: 9.149592283243631 max_violation: 0.21342804726960818 step_size: 1.0 iter: 33 cost: 7.492276478169418 gradient_norm: 8.852855866270925 max_violation: 0.21253076796176984 step_size: 1.0 iter: 34 cost: 7.478315469141725 gradient_norm: 8.572825443102449 max_violation: 0.2116883176538611 step_size: 1.0 iter: 35 cost: 7.465490676384057 gradient_norm: 8.308219503864 max_violation: 0.21089601456018237 step_size: 1.0 iter: 36 cost: 7.453679763543525 gradient_norm: 8.057876191788143 max_violation: 0.21014969068297518 step_size: 1.0 iter: 37 cost: 7.442776537525081 gradient_norm: 7.820740728824099 max_violation: 0.20944562333843297 step_size: 1.0 iter: 38 cost: 7.432688449752018 gradient_norm: 7.595854208610376 max_violation: 0.2087804773531028 step_size: 1.0 iter: 39 cost: 7.423334538118871 gradient_norm: 7.382343627146472 max_violation: 0.2081512560379437 step_size: 1.0 iter: 40 cost: 7.414643722894794 gradient_norm: 7.179413023837764 max_violation: 0.20755525942109987 step_size: 1.0 iter: 41 cost: 7.406553388595878 gradient_norm: 6.986335612818852 max_violation: 0.20699004851539815 step_size: 1.0 iter: 42 cost: 7.399008198200706 gradient_norm: 6.802446793745567 max_violation: 0.20645341462638545 step_size: 1.0 iter: 43 cost: 7.391959097146254 gradient_norm: 6.627137941422962 max_violation: 0.2059433528896557 step_size: 1.0 iter: 44 cost: 7.385362473123337 gradient_norm: 6.45985088395812 max_violation: 0.20545803937275675 step_size: 1.0 iter: 45 cost: 7.379179444392276 gradient_norm: 6.300072989008616 max_violation: 0.2049958111936343 step_size: 1.0 iter: 46 cost: 7.373375254601611 gradient_norm: 6.147332786703153 max_violation: 0.2045551492013793 step_size: 1.0 iter: 47 cost: 7.367918756251549 gradient_norm: 6.001196066353447 max_violation: 0.2041346628427032 step_size: 1.0 iter: 48 cost: 7.362781968245788 gradient_norm: 5.861262391436014 max_violation: 0.20373307689846154 step_size: 1.0 iter: 49 cost: 7.357939695613454 gradient_norm: 5.727161984084324 max_violation: 0.20334921982621523 step_size: 1.0 iter: 50 cost: 7.353369201599009 gradient_norm: 5.598552936261505 max_violation: 0.2029820134865652 step_size: 1.0 iter: 51 cost: 7.349049924024784 gradient_norm: 5.475118710010506 max_violation: 0.20263046406533292 step_size: 1.0 iter: 52 cost: 7.34496322921335 gradient_norm: 5.35656589373689 max_violation: 0.20229365403219823 step_size: 1.0 iter: 53 cost: 7.341092197882067 gradient_norm: 5.242622185541038 max_violation: 0.2019707350005815 step_size: 1.0 iter: 54 cost: 7.337421438340977 gradient_norm: 5.133034578164165 max_violation: 0.20166092137318348 step_size: 1.0 iter: 55 cost: 7.333936923079356 gradient_norm: 5.0275677230832505 max_violation: 0.2013634846738297 step_size: 1.0 iter: 56 cost: 7.330625845447401 gradient_norm: 4.926002454107622 max_violation: 0.20107774848119497 step_size: 1.0 iter: 57 cost: 7.327476493652688 gradient_norm: 4.828134453115053 max_violation: 0.20080308389097912 step_size: 1.0 iter: 58 cost: 7.324478139716949 gradient_norm: 4.733773042605958 max_violation: 0.2005389054433122 step_size: 1.0 iter: 59 cost: 7.321620941393538 gradient_norm: 4.64274009160189 max_violation: 0.20028466746088736 step_size: 1.0 iter: 60 cost: 7.318895855341548 gradient_norm: 4.554869022929657 max_violation: 0.20003986075024294 step_size: 1.0 iter: 61 cost: 7.316294560101643 gradient_norm: 4.47000391137999 max_violation: 0.19980400962503886 step_size: 1.0 iter: 62 cost: 7.313809387626099 gradient_norm: 4.387998663338512 max_violation: 0.1995766692150367 step_size: 1.0 iter: 63 cost: 7.3114332622926375 gradient_norm: 4.318891416810995 max_violation: 0.19935742302960957 step_size: 1.0 iter: 64 cost: 7.309159646479266 gradient_norm: 4.2614430161156545 max_violation: 0.19914588074805462 step_size: 1.0 iter: 65 cost: 7.306982491904377 gradient_norm: 4.205440961225905 max_violation: 0.19894167621241277 step_size: 1.0 iter: 66 cost: 7.304896196042877 gradient_norm: 4.150833848380019 max_violation: 0.1987444656016777 step_size: 1.0 iter: 67 cost: 7.302895563020863 gradient_norm: 4.09757253229489 max_violation: 0.19855392576839925 step_size: 1.0 iter: 68 cost: 7.300975768469271 gradient_norm: 4.0456100154202375 max_violation: 0.19836975272122537 step_size: 1.0 iter: 69 cost: 7.299132327884227 gradient_norm: 3.994901342440709 max_violation: 0.19819166023870682 step_size: 1.0 iter: 70 cost: 7.297361068098634 gradient_norm: 3.945403499836873 max_violation: 0.1980193786011526 step_size: 1.0 iter: 71 cost: 7.295658101519613 gradient_norm: 3.8970753204244346 max_violation: 0.1978526534292424 step_size: 1.0 iter: 72 cost: 7.294019802828746 gradient_norm: 3.8498773926640872 max_violation: 0.19769124461888232 step_size: 1.0 iter: 73 cost: 7.292442787879104 gradient_norm: 3.803771974568054 max_violation: 0.19753492536320216 step_size: 1.0 iter: 74 cost: 7.290923894554755 gradient_norm: 3.7587229120288264 max_violation: 0.19738348125356087 step_size: 1.0 iter: 75 cost: 7.289460165386733 gradient_norm: 3.714695561357109 max_violation: 0.1972367094521399 step_size: 1.0 iter: 76 cost: 7.28804883174277 gradient_norm: 3.671656715862188 max_violation: 0.19709441792968274 step_size: 1.0 iter: 77 cost: 7.286687299430009 gradient_norm: 3.62957453626189 max_violation: 0.1969564247623623 step_size: 1.0 iter: 78 cost: 7.285373135567649 gradient_norm: 3.588418484737847 max_violation: 0.19682255748258193 step_size: 1.0 iter: 79 cost: 7.284104056602718 gradient_norm: 3.548159262458899 max_violation: 0.19669265247897094 step_size: 1.0 iter: 80 cost: 7.282877917356494 gradient_norm: 3.508768750404913 max_violation: 0.19656655444127047 step_size: 1.0 iter: 81 cost: 7.281692701001064 gradient_norm: 3.470219953278031 max_violation: 0.19644411584615984 step_size: 1.0 iter: 82 cost: 7.28054650987663 gradient_norm: 3.432486946391343 max_violation: 0.19632519648074798 step_size: 1.0 iter: 83 cost: 7.2794375570698175 gradient_norm: 3.3955448253297504 max_violation: 0.19620966300036713 step_size: 1.0 iter: 84 cost: 7.2783641586813435 gradient_norm: 3.3593696582735255 max_violation: 0.19609738851796976 step_size: 1.0 iter: 85 cost: 7.277324726719402 gradient_norm: 3.323938440791899 max_violation: 0.1959882522223797 step_size: 1.0 iter: 86 cost: 7.276317762561029 gradient_norm: 3.2892290530176655 max_violation: 0.19588213902326235 step_size: 1.0 iter: 87 cost: 7.275341850930356 gradient_norm: 3.25522021904111 max_violation: 0.19577893922049228 step_size: 1.0 al iter: 2 iter: 1 cost: 7.269944849743791 gradient_norm: 0.48354130657668726 max_violation: 0.0481756108564424 step_size: 1.0 iter: 2 cost: 7.253994869618226 gradient_norm: 0.13733625988558718 max_violation: 0.0017963190921093108 step_size: 1.0 iter: 3 cost: 7.252163371769252 gradient_norm: 0.12093728810343407 max_violation: 0.001811038634711104 step_size: 1.0 iter: 4 cost: 7.251086984969248 gradient_norm: 0.114766263279237 max_violation: 0.0018202529338060547 step_size: 1.0 iter: 5 cost: 7.250360358028719 gradient_norm: 0.1096676429055452 max_violation: 0.0018264790512261264 step_size: 1.0 Test Summary: | Pass Total Time Solve: car | 3 3 40.5s Testing IterativeLQR tests passed Testing completed after 731.31s PkgEval succeeded after 927.02s