Package evaluation to test SimilaritySearch on Julia 1.11.8 (29b3528cce*) started at 2026-01-20T07:07:47.361 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.11` Set-up completed after 8.6s ################################################################################ # Installation # Installing SimilaritySearch... Resolving package versions... Updating `~/.julia/environments/v1.11/Project.toml` [053f045d] + SimilaritySearch v0.13.7 Updating `~/.julia/environments/v1.11/Manifest.toml` [7d9f7c33] + Accessors v0.1.43 [79e6a3ab] + Adapt v4.4.0 [4fba245c] + ArrayInterface v7.22.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [2a0fbf3d] + CPUSummary v0.2.7 [fb6a15b2] + CloseOpenIntervals v0.1.13 [f70d9fcc] + CommonWorldInvalidations v1.0.0 [34da2185] + Compat v4.18.1 [a33af91c] + CompositionsBase v0.1.2 [187b0558] + ConstructionBase v1.6.0 [adafc99b] + CpuId v0.3.1 [9a962f9c] + DataAPI v1.16.0 ⌅ [864edb3b] + DataStructures v0.18.22 [b4f34e82] + Distances v0.10.12 [ffbed154] + DocStringExtensions v0.9.5 [615f187c] + IfElse v0.1.1 [3587e190] + InverseFunctions v0.1.17 [92d709cd] + IrrationalConstants v0.2.6 [10f19ff3] + LayoutPointers v0.1.17 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.16 [d125e4d3] + ManualMemory v0.1.8 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [d96e819e] + Parameters v0.12.3 [f517fe37] + Polyester v0.7.18 [1d0040c9] + PolyesterWeave v0.2.2 ⌅ [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.5.1 [92933f4c] + ProgressMeter v1.11.0 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [431bcebd] + SciMLPublic v1.0.1 ⌅ [0e966ebe] + SearchModels v0.4.1 [053f045d] + SimilaritySearch v0.13.7 [a2af1166] + SortingAlgorithms v1.2.2 [aedffcd0] + Static v1.3.1 [0d7ed370] + StaticArrayInterface v1.8.0 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.33.21 [7792a7ef] + StrideArraysCore v0.5.8 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [4536629a] + OpenBLAS_jll v0.3.27+1 [bea87d4a] + SuiteSparse_jll v7.7.0+0 [8e850b90] + libblastrampoline_jll v5.11.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.59s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling project... 3959.3 ms ✓ SearchModels 17638.3 ms ✓ SimilaritySearch 2 dependencies successfully precompiled in 23 seconds. 85 already precompiled. Precompilation completed after 37.46s ################################################################################ # Testing # Testing SimilaritySearch Status `/tmp/jl_rDNLN9/Project.toml` [7d9f7c33] Accessors v0.1.43 [4c88cf16] Aqua v0.8.14 [b4f34e82] Distances v0.10.12 [f517fe37] Polyester v0.7.18 [92933f4c] ProgressMeter v1.11.0 ⌅ [0e966ebe] SearchModels v0.4.1 [053f045d] SimilaritySearch v0.13.7 [10745b16] Statistics v1.11.1 ⌅ [2913bbd2] StatsBase v0.33.21 [7792a7ef] StrideArraysCore v0.5.8 [ade2ca70] Dates v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_rDNLN9/Manifest.toml` [7d9f7c33] Accessors v0.1.43 [79e6a3ab] Adapt v4.4.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.22.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 [2a0fbf3d] CPUSummary v0.2.7 [fb6a15b2] CloseOpenIntervals v0.1.13 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.18.1 [a33af91c] CompositionsBase v0.1.2 [187b0558] ConstructionBase v1.6.0 [adafc99b] CpuId v0.3.1 [9a962f9c] DataAPI v1.16.0 ⌅ [864edb3b] DataStructures v0.18.22 [b4f34e82] Distances v0.10.12 [ffbed154] DocStringExtensions v0.9.5 [615f187c] IfElse v0.1.1 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.6 [10f19ff3] LayoutPointers v0.1.17 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 [d125e4d3] ManualMemory v0.1.8 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [d96e819e] Parameters v0.12.3 [f517fe37] Polyester v0.7.18 [1d0040c9] PolyesterWeave v0.2.2 ⌅ [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.5.1 [92933f4c] ProgressMeter v1.11.0 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [431bcebd] SciMLPublic v1.0.1 ⌅ [0e966ebe] SearchModels v0.4.1 [053f045d] SimilaritySearch v0.13.7 [a2af1166] SortingAlgorithms v1.2.2 [aedffcd0] Static v1.3.1 [0d7ed370] StaticArrayInterface v1.8.0 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.33.21 [7792a7ef] StrideArraysCore v0.5.8 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.11.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.6.0+0 [e37daf67] LibGit2_jll v1.7.2+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.6+0 [14a3606d] MozillaCACerts_jll v2023.12.12 [4536629a] OpenBLAS_jll v0.3.27+1 [bea87d4a] SuiteSparse_jll v7.7.0+0 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.59.0+0 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Test Summary: | Pass Total Time test database abstractions | 56 56 9.0s Test Summary: | Pass Total Time heap | 16 16 0.0s Test Summary: | Pass Total Time KnnHeap | 30005 30005 4.2s Test Summary: | Pass Total Time XKnn | 25005 25005 2.8s Test Summary: | Pass Total Time XKnn pop ops | 9603 9603 1.3s [ Info: (MatrixDatabase{Matrix{Float32}}, SubDatabase{MatrixDatabase{Matrix{Float32}}, Vector{Int64}}) 4.739088 seconds (1000 allocations: 78.125 KiB) 4.744948 seconds (1000 allocations: 78.125 KiB) 4.571317 seconds (1000 allocations: 78.125 KiB) 4.591309 seconds (1000 allocations: 78.125 KiB) 4.716510 seconds (1000 allocations: 78.125 KiB) 4.704626 seconds (1000 allocations: 78.125 KiB) 4.767349 seconds (1000 allocations: 78.125 KiB) 4.373973 seconds (1000 allocations: 78.125 KiB) 12.417135 seconds (1000 allocations: 78.125 KiB) 12.630479 seconds (1000 allocations: 78.125 KiB) 25.705365 seconds (1000 allocations: 78.125 KiB) 25.502746 seconds (1000 allocations: 78.125 KiB) 19.457999 seconds (1000 allocations: 78.125 KiB) 19.985892 seconds (1000 allocations: 78.125 KiB) 18.068770 seconds (1000 allocations: 78.125 KiB) 18.314132 seconds (1000 allocations: 78.125 KiB) Test Summary: | Pass Total Time indexing vectors with ExhaustiveSearch | 8000 8000 3m24.3s [ Info: (VectorDatabase{Vector{Vector{Int64}}}, SubDatabase{VectorDatabase{Vector{Vector{Int64}}}, Vector{Int64}}) 3.292441 seconds (1000 allocations: 78.125 KiB) 3.290868 seconds (1000 allocations: 78.125 KiB) 45.191037 seconds (1000 allocations: 78.125 KiB) 44.984885 seconds (1000 allocations: 78.125 KiB) 45.053965 seconds (1000 allocations: 78.125 KiB) 28.633938 seconds (1000 allocations: 78.125 KiB) 4.869689 seconds (1000 allocations: 78.125 KiB) 4.815021 seconds (1000 allocations: 78.125 KiB, 1.01% gc time) Test Summary: | Pass Total Time indexing sequences with ExhaustiveSearch | 4000 4000 3m04.5s [ Info: (VectorDatabase{Vector{Vector{Int64}}}, SubDatabase{VectorDatabase{Vector{Vector{Int64}}}, Vector{Int64}}) 8.724924 seconds (1000 allocations: 78.125 KiB) 8.328960 seconds (1000 allocations: 78.125 KiB) 8.230382 seconds (1000 allocations: 78.125 KiB) 8.304908 seconds (1000 allocations: 78.125 KiB) 8.226313 seconds (1000 allocations: 78.125 KiB) 8.125363 seconds (1000 allocations: 78.125 KiB) Test Summary: | Pass Total Time indexing sets with ExhaustiveSearch | 3000 3000 53.4s 0.043027 seconds (1000 allocations: 78.125 KiB) 0.043193 seconds (1000 allocations: 78.125 KiB) 0.041055 seconds (1000 allocations: 78.125 KiB) 0.040255 seconds (1000 allocations: 78.125 KiB) Test Summary: | Pass Total Time Normalized Cosine and Normalized Angle distances | 2000 2000 0.2s 0.050404 seconds (1000 allocations: 78.125 KiB) 0.051661 seconds (1000 allocations: 78.125 KiB) Test Summary: | Pass Total Time Binary hamming distance | 1000 1000 1.7s ExhaustiveSearch allknn: 0.429753 seconds (146.10 k allocations: 7.492 MiB, 3.36% gc time, 99.76% compilation time) ParallelExhaustiveSearch allknn: 1.342774 seconds (596.44 k allocations: 29.583 MiB, 99.90% compilation time) Test Summary: | Pass Total Time allknn | 3 3 1.9s quantile(length.(hsp_knns), 0:0.1:1) = [2.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 5.0, 5.0, 6.0] Test Summary: | Total Time HSP | 0 4.6s [ Info: neardup> starting: 1:100, current elements: 0, n: 100, ϵ: 0.1, timestamp: 2026-01-20T07:17:08.927 LOG add_vertex! sp=1 ep=1 n=1 BeamSearch BeamSearch(bsize=4, Δ=1.0, maxvisits=1000000) 2026-01-20T07:17:09.290 LOG n.size quantiles:[0.0, 0.0, 0.0, 0.0, 0.0] [ Info: neardup> finished current elements: 9, n: 100, ϵ: 0.1, timestamp: 2026-01-20T07:17:10.547 D.map = UInt32[0x00000001, 0x00000002, 0x00000003, 0x00000006, 0x0000000e, 0x00000011, 0x00000013, 0x0000001d, 0x00000020] D.nn = Int32[1, 2, 3, 1, 2, 6, 2, 3, 1, 1, 2, 1, 2, 14, 2, 2, 17, 2, 19, 2, 14, 14, 2, 1, 1, 19, 3, 19, 29, 3, 2, 32, 3, 14, 6, 1, 14, 2, 19, 6, 3, 19, 2, 19, 14, 14, 2, 2, 14, 6, 2, 19, 6, 1, 2, 19, 3, 14, 14, 14, 14, 1, 32, 14, 14, 3, 3, 3, 1, 19, 3, 3, 3, 1, 19, 32, 2, 32, 2, 19, 17, 3, 2, 2, 29, 2, 3, 32, 17, 14, 14, 14, 3, 1, 1, 2, 2, 19, 2, 29] D.dist = Float32[0.0, 0.0, 0.0, 0.04803914, 0.056531906, 0.0, 0.021585166, 0.044174016, 0.064144015, 0.050103962, 0.055961788, 0.013631761, 0.024399579, 0.0, 0.030998588, 0.03281367, 0.0, 0.043511868, 0.0, 0.036752224, 0.020038545, 0.009558499, 0.02684474, 0.007530451, 0.017584682, 0.05379778, 0.02945745, 0.049998164, 0.0, 0.035831094, 0.074436486, 0.0, 0.040326774, 0.029928923, 0.023819149, 0.08244729, 0.009993017, 0.039766014, 0.06497717, 0.030576587, 0.0353508, 0.053747594, 0.015236437, 0.024392784, 0.009640515, 0.03499508, 0.052380085, 0.06324613, 0.007906973, 0.015211105, 0.022139132, 0.048062384, 0.019455314, 0.027607858, 0.021919906, 0.05005622, 0.026073754, 0.016073346, 0.0015266538, 0.019443333, 0.035532296, 0.034063697, 0.014917195, 0.025622904, 0.0202564, 0.055781364, 0.047641873, 0.08181703, 0.017187715, 0.009236813, 0.024267673, 0.037450254, 0.036227882, 0.057956696, 0.039866626, 0.02376926, 0.05614221, 0.06747991, 0.01726365, 0.026480973, 0.077969074, 0.058586538, 0.027904868, 0.00067317486, 0.042372882, 0.021401823, 0.0021539927, 0.02309233, 0.0071529746, 0.08412123, 0.061084628, 0.048891902, 0.03077513, 0.022985816, 0.03178668, 0.023408234, 0.040928602, 0.05879885, 0.030178308, 0.04845941] Test Summary: | Pass Total Time neardup single block | 3 3 19.5s [ Info: neardup> starting: 1:16, current elements: 0, n: 100, ϵ: 0.1, timestamp: 2026-01-20T07:17:12.190 LOG add_vertex! sp=1 ep=1 n=1 BeamSearch BeamSearch(bsize=4, Δ=1.0, maxvisits=1000000) 2026-01-20T07:17:12.190 LOG n.size quantiles:[0.0, 0.0, 0.0, 0.0, 0.0] [ Info: neardup> range: 17:32, current elements: 5, n: 100, ϵ: 0.1, timestamp: 2026-01-20T07:17:12.191 [ Info: neardup> range: 33:48, current elements: 9, n: 100, ϵ: 0.1, timestamp: 2026-01-20T07:17:12.191 [ Info: neardup> range: 49:64, current elements: 9, n: 100, ϵ: 0.1, timestamp: 2026-01-20T07:17:12.191 [ Info: neardup> range: 65:80, current elements: 9, n: 100, ϵ: 0.1, timestamp: 2026-01-20T07:17:12.191 [ Info: neardup> range: 81:96, current elements: 9, n: 100, ϵ: 0.1, timestamp: 2026-01-20T07:17:12.191 [ Info: neardup> range: 97:100, current elements: 9, n: 100, ϵ: 0.1, timestamp: 2026-01-20T07:17:12.191 [ Info: neardup> finished current elements: 9, n: 100, ϵ: 0.1, timestamp: 2026-01-20T07:17:12.191 D.map = UInt32[0x00000001, 0x00000002, 0x00000003, 0x00000006, 0x0000000e, 0x00000011, 0x00000013, 0x0000001d, 0x00000020] D.nn = Int32[1, 2, 3, 1, 2, 6, 2, 3, 1, 1, 2, 1, 2, 14, 2, 2, 17, 2, 19, 2, 14, 14, 2, 1, 1, 3, 3, 19, 29, 3, 2, 32, 3, 14, 6, 1, 14, 2, 19, 6, 3, 19, 2, 19, 14, 14, 2, 2, 14, 6, 2, 19, 6, 1, 2, 19, 3, 14, 14, 14, 14, 1, 32, 14, 14, 3, 3, 3, 1, 19, 3, 3, 3, 1, 19, 32, 2, 32, 2, 19, 17, 3, 2, 2, 29, 2, 3, 32, 17, 14, 14, 14, 3, 1, 1, 2, 2, 19, 2, 29] D.dist = Float32[0.0, 0.0, 0.0, 0.04803914, 0.056531906, 0.0, 0.021585166, 0.044174016, 0.064144015, 0.050103962, 0.055961788, 0.013631761, 0.024399579, 0.0, 0.030998588, 0.03281367, 0.0, 0.043511868, 0.0, 0.036752224, 0.020038545, 0.009558499, 0.02684474, 0.007530451, 0.017584682, 0.081044555, 0.02945745, 0.049998164, 0.0, 0.035831094, 0.074436486, 0.0, 0.040326774, 0.029928923, 0.023819149, 0.08244729, 0.009993017, 0.039766014, 0.06497717, 0.030576587, 0.0353508, 0.053747594, 0.015236437, 0.024392784, 0.009640515, 0.03499508, 0.052380085, 0.06324613, 0.007906973, 0.015211105, 0.022139132, 0.048062384, 0.019455314, 0.027607858, 0.021919906, 0.05005622, 0.026073754, 0.016073346, 0.0015266538, 0.019443333, 0.035532296, 0.034063697, 0.014917195, 0.025622904, 0.0202564, 0.055781364, 0.047641873, 0.08181703, 0.017187715, 0.009236813, 0.024267673, 0.037450254, 0.036227882, 0.057956696, 0.039866626, 0.02376926, 0.05614221, 0.06747991, 0.01726365, 0.026480973, 0.077969074, 0.058586538, 0.027904868, 0.00067317486, 0.042372882, 0.021401823, 0.0021539927, 0.02309233, 0.0071529746, 0.08412123, 0.061084628, 0.048891902, 0.03077513, 0.022985816, 0.03178668, 0.023408234, 0.040928602, 0.05879885, 0.030178308, 0.04845941] Test Summary: | Pass Total Time neardup small block | 3 3 0.0s [ Info: neardup> starting: 1:16, current elements: 0, n: 100, ϵ: 0.1, timestamp: 2026-01-20T07:17:12.277 LOG add_vertex! sp=1 ep=1 n=1 BeamSearch BeamSearch(bsize=4, Δ=1.0, maxvisits=1000000) 2026-01-20T07:17:12.277 LOG n.size quantiles:[0.0, 0.0, 0.0, 0.0, 0.0] [ Info: neardup> range: 17:32, current elements: 16, n: 100, ϵ: 0.1, timestamp: 2026-01-20T07:17:12.277 [ Info: neardup> range: 33:48, current elements: 19, n: 100, ϵ: 0.1, timestamp: 2026-01-20T07:17:12.277 [ Info: neardup> range: 49:64, current elements: 19, n: 100, ϵ: 0.1, timestamp: 2026-01-20T07:17:12.277 [ Info: neardup> range: 65:80, current elements: 19, n: 100, ϵ: 0.1, timestamp: 2026-01-20T07:17:12.277 [ Info: neardup> range: 81:96, current elements: 19, n: 100, ϵ: 0.1, timestamp: 2026-01-20T07:17:12.278 [ Info: neardup> range: 97:100, current elements: 19, n: 100, ϵ: 0.1, timestamp: 2026-01-20T07:17:12.278 [ Info: neardup> finished current elements: 19, n: 100, ϵ: 0.1, timestamp: 2026-01-20T07:17:12.278 D.map = UInt32[0x00000001, 0x00000002, 0x00000003, 0x00000004, 0x00000005, 0x00000006, 0x00000007, 0x00000008, 0x00000009, 0x0000000a, 0x0000000b, 0x0000000c, 0x0000000d, 0x0000000e, 0x0000000f, 0x00000010, 0x00000013, 0x0000001c, 0x0000001d] D.nn = Int32[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 11, 2, 19, 13, 5, 14, 13, 12, 10, 8, 8, 28, 29, 11, 16, 5, 13, 5, 6, 8, 14, 15, 19, 6, 3, 19, 15, 19, 14, 14, 9, 13, 14, 6, 13, 28, 6, 1, 13, 9, 3, 14, 14, 14, 9, 4, 5, 14, 14, 13, 4, 8, 16, 19, 3, 4, 13, 1, 28, 15, 7, 2, 13, 19, 11, 3, 15, 2, 29, 7, 3, 5, 11, 10, 14, 10, 13, 12, 10, 7, 13, 19, 16, 29] D.dist = Float32[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05335951, 0.043511868, 0.0, 0.017419994, 0.017496645, 0.009558499, 0.012435377, 0.0036364794, 0.01129818, 0.039806962, 0.025036395, 0.0, 0.0, 0.009805858, 0.019604325, 0.08153355, 0.023670733, 0.014862418, 0.023819149, 0.008739114, 0.009993017, 0.008389771, 0.06497717, 0.030576587, 0.0353508, 0.053747594, 0.00754416, 0.024392784, 0.009640515, 0.03499508, 0.022265494, 0.026657462, 0.007906973, 0.015211105, 0.018835485, 0.02028203, 0.019455314, 0.027607858, 0.007523954, 0.0403893, 0.026073754, 0.016073346, 0.0015266538, 0.019443333, 0.0062668324, 0.0087682605, 0.04728037, 0.025622904, 0.0202564, 0.022193313, 0.0031253695, 0.03166467, 0.013130605, 0.009236813, 0.024267673, 0.0038090944, 0.012364805, 0.057956696, 0.036876023, 0.03396243, 0.016498625, 0.06793362, 0.0025024414, 0.026480973, 0.041543007, 0.058586538, 0.022059202, 0.00067317486, 0.042372882, 0.012841463, 0.0021539927, 0.020248294, 0.0657323, 0.03381419, 0.061084628, 0.023513973, 0.010564387, 0.021769524, 0.0051059127, 0.0075660944, 0.019580245, 0.05879885, 0.005286634, 0.04845941] Test Summary: | Pass Total Time neardup small block with filterblocks=false | 3 3 0.1s [ Info: neardup> starting: 1:16, current elements: 0, n: 100, ϵ: 0.1, timestamp: 2026-01-20T07:17:18.838 LOG append_items! ExhaustiveSearch{SimilaritySearch.DistanceWithIdentifiers{CosineDistance, MatrixDatabase{Matrix{Float32}}}, VectorDatabase{Vector{UInt32}}} sp=0 ep=5 n=5 2026-01-20T07:17:18.838 [ Info: neardup> range: 17:32, current elements: 5, n: 100, ϵ: 0.1, timestamp: 2026-01-20T07:17:18.841 [ Info: neardup> range: 33:48, current elements: 9, n: 100, ϵ: 0.1, timestamp: 2026-01-20T07:17:18.841 [ Info: neardup> range: 49:64, current elements: 9, n: 100, ϵ: 0.1, timestamp: 2026-01-20T07:17:18.841 [ Info: neardup> range: 65:80, current elements: 9, n: 100, ϵ: 0.1, timestamp: 2026-01-20T07:17:18.841 [ Info: neardup> range: 81:96, current elements: 9, n: 100, ϵ: 0.1, timestamp: 2026-01-20T07:17:18.841 [ Info: neardup> range: 97:100, current elements: 9, n: 100, ϵ: 0.1, timestamp: 2026-01-20T07:17:18.841 [ Info: neardup> finished current elements: 9, n: 100, ϵ: 0.1, timestamp: 2026-01-20T07:17:18.841 D.map = UInt32[0x00000001, 0x00000002, 0x00000003, 0x00000006, 0x0000000e, 0x00000011, 0x00000013, 0x0000001d, 0x00000020] D.nn = Int32[1, 2, 3, 1, 2, 6, 2, 3, 1, 1, 2, 1, 2, 14, 2, 2, 17, 2, 19, 2, 14, 14, 2, 1, 1, 3, 3, 19, 29, 3, 2, 32, 3, 14, 6, 1, 14, 2, 19, 6, 3, 19, 2, 19, 14, 14, 2, 2, 14, 6, 2, 19, 6, 1, 2, 19, 3, 14, 14, 14, 14, 1, 32, 14, 14, 3, 3, 3, 1, 19, 3, 3, 3, 1, 19, 32, 2, 32, 2, 19, 17, 3, 2, 2, 29, 2, 3, 32, 17, 14, 14, 14, 3, 1, 1, 2, 2, 19, 2, 29] D.dist = Float32[0.0, 0.0, 0.0, 0.04803914, 0.056531906, 0.0, 0.021585166, 0.044174016, 0.064144015, 0.050103962, 0.055961788, 0.013631761, 0.024399579, 0.0, 0.030998588, 0.03281367, 0.0, 0.043511868, 0.0, 0.036752224, 0.020038545, 0.009558499, 0.02684474, 0.007530451, 0.017584682, 0.081044555, 0.02945745, 0.049998164, 0.0, 0.035831094, 0.074436486, 0.0, 0.040326774, 0.029928923, 0.023819149, 0.08244729, 0.009993017, 0.039766014, 0.06497717, 0.030576587, 0.0353508, 0.053747594, 0.015236437, 0.024392784, 0.009640515, 0.03499508, 0.052380085, 0.06324613, 0.007906973, 0.015211105, 0.022139132, 0.048062384, 0.019455314, 0.027607858, 0.021919906, 0.05005622, 0.026073754, 0.016073346, 0.0015266538, 0.019443333, 0.035532296, 0.034063697, 0.014917195, 0.025622904, 0.0202564, 0.055781364, 0.047641873, 0.08181703, 0.017187715, 0.009236813, 0.024267673, 0.037450254, 0.036227882, 0.057956696, 0.039866626, 0.02376926, 0.05614221, 0.06747991, 0.01726365, 0.026480973, 0.077969074, 0.058586538, 0.027904868, 0.00067317486, 0.042372882, 0.021401823, 0.0021539927, 0.02309233, 0.0071529746, 0.08412123, 0.061084628, 0.048891902, 0.03077513, 0.022985816, 0.03178668, 0.023408234, 0.040928602, 0.05879885, 0.030178308, 0.04845941] Test Summary: | Pass Total Time neardup small block with filterblocks=false | 3 3 6.6s computing farthest point 1, dmax: Inf, imax: 15, n: 30 computing farthest point 2, dmax: 1.1448392, imax: 26, n: 30 computing farthest point 3, dmax: 1.0001801, imax: 6, n: 30 computing farthest point 4, dmax: 0.93736196, imax: 20, n: 30 computing farthest point 5, dmax: 0.91499513, imax: 22, n: 30 computing farthest point 6, dmax: 0.72576624, imax: 24, n: 30 computing farthest point 7, dmax: 0.6899008, imax: 28, n: 30 computing farthest point 8, dmax: 0.64454114, imax: 17, n: 30 computing farthest point 9, dmax: 0.5922393, imax: 23, n: 30 computing farthest point 10, dmax: 0.5288897, imax: 3, n: 30 Test Summary: | Pass Total Time farthest first traversal | 3 3 1.7s Test Summary: | Pass Total Time AdjacencyList | 15 15 1.1s LOG add_vertex! sp=1 ep=1 n=1 BeamSearch BeamSearch(bsize=4, Δ=1.0, maxvisits=1000000) 2026-01-20T07:17:27.055 LOG n.size quantiles:[0.0, 0.0, 0.0, 0.0, 0.0] LOG add_vertex! sp=295 ep=299 n=294 BeamSearch BeamSearch(bsize=2, Δ=0.94, maxvisits=120) 2026-01-20T07:17:35.184 LOG n.size quantiles:[4.0, 4.0, 4.0, 5.0, 5.0] (i, j, d) = (97, 248, -1.1920929f-7) (i, j, d, :parallel) = (97, 248, -1.1920929f-7, :parallel) [ Info: NOTE: the exact method will be faster on small datasets due to the preprocessing step of the approximation method [ Info: ("closestpair computation time", :approx => 8.177769618, :exact => 0.074803927) Test Summary: | Pass Total Time closestpair | 4 4 8.5s 3.096707 seconds (1.00 k allocations: 140.711 KiB) SEARCH Exhaustive 1: 0.003568 seconds SEARCH Exhaustive 2: 0.003707 seconds SEARCH Exhaustive 3: 0.003584 seconds typeof(seq) = ExhaustiveSearch{SqL2Distance, MatrixDatabase{Matrix{Float32}}} typeof(ectx) = GenericContext{KnnSorted} typeof(q) = SubArray{Float32, 1, Matrix{Float32}, Tuple{Base.Slice{Base.OneTo{Int64}}, Int64}, true} typeof(res) = KnnSorted{Vector{IdWeight}} [ Info: ===================== minrecall ============================== LOG add_vertex! sp=1 ep=1 n=1 BeamSearch BeamSearch(bsize=4, Δ=1.0, maxvisits=1000000) 2026-01-20T07:17:49.732 LOG n.size quantiles:[0.0, 0.0, 0.0, 0.0, 0.0] LOG add_vertex! sp=295 ep=299 n=294 BeamSearch BeamSearch(bsize=8, Δ=1.075, maxvisits=182) 2026-01-20T07:17:54.123 LOG n.size quantiles:[5.0, 5.0, 6.0, 6.0, 6.0] LOG add_vertex! sp=25255 ep=25259 n=25254 BeamSearch BeamSearch(bsize=4, Δ=1.3370568, maxvisits=508) 2026-01-20T07:17:55.152 LOG n.size quantiles:[4.0, 5.0, 6.0, 7.0, 7.0] LOG add_vertex! sp=41495 ep=41499 n=41494 BeamSearch BeamSearch(bsize=14, Δ=1.1287501, maxvisits=416) 2026-01-20T07:17:56.152 LOG n.size quantiles:[5.0, 5.0, 6.0, 8.0, 10.0] LOG add_vertex! sp=56820 ep=56824 n=56819 BeamSearch BeamSearch(bsize=14, Δ=1.1, maxvisits=516) 2026-01-20T07:17:57.205 LOG n.size quantiles:[6.0, 6.0, 8.0, 8.0, 9.0] LOG add_vertex! sp=71185 ep=71189 n=71184 BeamSearch BeamSearch(bsize=14, Δ=1.1, maxvisits=516) 2026-01-20T07:17:58.205 LOG n.size quantiles:[4.0, 6.0, 6.0, 8.0, 10.0] LOG add_vertex! sp=84190 ep=84194 n=84189 BeamSearch BeamSearch(bsize=14, Δ=1.1, maxvisits=516) 2026-01-20T07:17:59.205 LOG n.size quantiles:[5.0, 5.0, 6.0, 6.0, 7.0] LOG add_vertex! sp=96995 ep=96999 n=96994 BeamSearch BeamSearch(bsize=16, Δ=0.9, maxvisits=398) 2026-01-20T07:18:00.205 LOG n.size quantiles:[5.0, 6.0, 7.0, 7.0, 8.0] quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [1.0, 6.0, 7.0, 9.0, 10.0, 11.0, 13.0, 15.0, 18.0, 23.0, 83.0] [ Info: minrecall: queries per second: 16907.872687641287, recall: 0.903625 graph.algo = Base.RefValue{BeamSearch}(BeamSearch BeamSearch(bsize=6, Δ=1.1287501, maxvisits=766)) quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [1.0, 6.0, 7.0, 9.0, 10.0, 11.0, 13.0, 15.0, 18.0, 23.0, 83.0] [ Info: ===================== rebuild ============================== (graph.algo, length(B.queries), B.ksearch) = (Base.RefValue{BeamSearch}(BeamSearch BeamSearch(bsize=14, Δ=1.155, maxvisits=552)), 1000, 8) [ Info: rebuild: queries per second: 20437.558313463258, recall: 0.90175 graph.algo = Base.RefValue{BeamSearch}(BeamSearch BeamSearch(bsize=14, Δ=1.155, maxvisits=552)) quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [2.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 18.0, 19.0, 30.0] [ Info: ===================== matrixhints ============================== (graph.algo, length(B.queries), B.ksearch) = (Base.RefValue{BeamSearch}(BeamSearch BeamSearch(bsize=10, Δ=1.1025, maxvisits=802)), 1000, 8) 1.379682 seconds (657.97 k allocations: 33.339 MiB, 1.05% gc time, 95.99% compilation time) [ Info: matrixhints: queries per second: 20090.10573141385, recall: 0.899125 graph.algo = Base.RefValue{BeamSearch}(BeamSearch BeamSearch(bsize=10, Δ=1.1025, maxvisits=802)) quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [1.0, 6.0, 7.0, 9.0, 10.0, 11.0, 13.0, 15.0, 18.0, 23.0, 83.0] 2.004236 seconds (1.00 k allocations: 140.711 KiB) SEARCH Exhaustive 1: 0.001699 seconds SEARCH Exhaustive 2: 0.001691 seconds SEARCH Exhaustive 3: 0.001804 seconds typeof(seq) = ExhaustiveSearch{SqL2Distance, StrideMatrixDatabase{StrideArraysCore.StrideArray{Float32, 2, (1, 2), Tuple{Int64, Int64}, Tuple{Nothing, Nothing}, Tuple{Static.StaticInt{1}, Static.StaticInt{1}}, Matrix{Float32}}}} typeof(ectx) = GenericContext{KnnSorted} typeof(q) = StrideArraysCore.StrideArray{Float32, 1, (1,), Tuple{Int64}, Tuple{Nothing}, Tuple{Static.StaticInt{1}}, Matrix{Float32}} typeof(res) = KnnSorted{Vector{IdWeight}} [ Info: ===================== minrecall ============================== LOG add_vertex! sp=1 ep=1 n=1 BeamSearch BeamSearch(bsize=4, Δ=1.0, maxvisits=1000000) 2026-01-20T07:18:44.400 LOG n.size quantiles:[0.0, 0.0, 0.0, 0.0, 0.0] LOG add_vertex! sp=295 ep=299 n=294 BeamSearch BeamSearch(bsize=8, Δ=1.075, maxvisits=182) 2026-01-20T07:18:48.555 LOG n.size quantiles:[5.0, 5.0, 6.0, 6.0, 6.0] LOG add_vertex! sp=26545 ep=26549 n=26544 BeamSearch BeamSearch(bsize=4, Δ=1.3370568, maxvisits=508) 2026-01-20T07:18:49.555 LOG n.size quantiles:[5.0, 5.0, 6.0, 7.0, 9.0] LOG add_vertex! sp=43910 ep=43914 n=43909 BeamSearch BeamSearch(bsize=14, Δ=1.1287501, maxvisits=416) 2026-01-20T07:18:50.555 LOG n.size quantiles:[5.0, 7.0, 9.0, 9.0, 11.0] LOG add_vertex! sp=58820 ep=58824 n=58819 BeamSearch BeamSearch(bsize=14, Δ=1.1, maxvisits=516) 2026-01-20T07:18:51.555 LOG n.size quantiles:[6.0, 8.0, 9.0, 9.0, 13.0] LOG add_vertex! sp=72990 ep=72994 n=72989 BeamSearch BeamSearch(bsize=14, Δ=1.1, maxvisits=516) 2026-01-20T07:18:52.555 LOG n.size quantiles:[6.0, 6.0, 6.0, 8.0, 9.0] LOG add_vertex! sp=85225 ep=85229 n=85224 BeamSearch BeamSearch(bsize=16, Δ=0.9, maxvisits=398) 2026-01-20T07:18:53.581 LOG n.size quantiles:[4.0, 6.0, 6.0, 7.0, 7.0] LOG add_vertex! sp=99305 ep=99309 n=99304 BeamSearch BeamSearch(bsize=16, Δ=0.9, maxvisits=398) 2026-01-20T07:18:54.581 LOG n.size quantiles:[5.0, 6.0, 7.0, 8.0, 8.0] quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [1.0, 6.0, 7.0, 9.0, 10.0, 11.0, 13.0, 15.0, 18.0, 23.0, 83.0] [ Info: minrecall: queries per second: 17625.900795895788, recall: 0.903625 graph.algo = Base.RefValue{BeamSearch}(BeamSearch BeamSearch(bsize=6, Δ=1.1287501, maxvisits=766)) quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [1.0, 6.0, 7.0, 9.0, 10.0, 11.0, 13.0, 15.0, 18.0, 23.0, 83.0] [ Info: ===================== rebuild ============================== (graph.algo, length(B.queries), B.ksearch) = (Base.RefValue{BeamSearch}(BeamSearch BeamSearch(bsize=14, Δ=1.155, maxvisits=552)), 1000, 8) [ Info: rebuild: queries per second: 19615.714808220884, recall: 0.90175 graph.algo = Base.RefValue{BeamSearch}(BeamSearch BeamSearch(bsize=14, Δ=1.155, maxvisits=552)) quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [2.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 18.0, 19.0, 30.0] [ Info: ===================== matrixhints ============================== (graph.algo, length(B.queries), B.ksearch) = (Base.RefValue{BeamSearch}(BeamSearch BeamSearch(bsize=10, Δ=1.1025, maxvisits=802)), 1000, 8) 1.195745 seconds (639.11 k allocations: 32.331 MiB, 95.45% compilation time) [ Info: matrixhints: queries per second: 18762.01402115327, recall: 0.899125 graph.algo = Base.RefValue{BeamSearch}(BeamSearch BeamSearch(bsize=10, Δ=1.1025, maxvisits=802)) quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [1.0, 6.0, 7.0, 9.0, 10.0, 11.0, 13.0, 15.0, 18.0, 23.0, 83.0] Test Summary: | Pass Total Time vector indexing with SearchGraph | 18 18 1m45.0s Testing SimilaritySearch tests passed Testing completed after 637.83s PkgEval succeeded after 700.14s