Package evaluation to test RayTraceHeatTransfer on Julia 1.11.8 (29b3528cce*) started at 2026-01-20T05:17:19.265 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.11` Set-up completed after 8.68s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.11/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.11/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 ⌅ [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.5.1 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.6.0 [7b1f6079] + FileWatching v1.11.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.2.0 [44cfe95a] + Pkg v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.11.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] + LibCURL_jll v8.6.0+0 [e37daf67] + LibGit2_jll v1.7.2+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.6+0 [14a3606d] + MozillaCACerts_jll v2023.12.12 [4536629a] + OpenBLAS_jll v0.3.27+1 [bea87d4a] + SuiteSparse_jll v7.7.0+0 [83775a58] + Zlib_jll v1.2.13+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 [8e850ede] + nghttp2_jll v1.59.0+0 [3f19e933] + p7zip_jll v17.4.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.05s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling project... 1412.8 ms ✓ Measurements 4165.0 ms ✓ StatsBase 5364.3 ms ✓ RayTraceHeatTransfer 3 dependencies successfully precompiled in 12 seconds. 55 already precompiled. Precompilation completed after 28.6s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_CmLz8o/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.16 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.11.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_CmLz8o/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 ⌅ [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.5.1 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.16 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.11.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.6.0+0 [e37daf67] LibGit2_jll v1.7.2+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.6+0 [14a3606d] MozillaCACerts_jll v2023.12.12 [4536629a] OpenBLAS_jll v0.3.27+1 [bea87d4a] SuiteSparse_jll v7.7.0+0 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.59.0+0 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:04:00 Bin 1 progress: 79%|██████████████████████████ | ETA: 0:00:02 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:07 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001154350242084618 Iteration 10: d = 1.2944849237328174e-5 Iteration 20: d = 2.0252562611024697e-7 Iteration 30: d = 3.4582952412299243e-9 Iteration 40: d = 6.006329399689202e-11 Iteration 50: d = 1.0492774019257216e-12 Iteration 60: d = 1.8371199145424492e-14 Converged after 66 iterations. d = 1.6081650737757502e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 32%|██████████▋ | ETA: 0:00:02 Bin 1 progress: 72%|███████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001246428816921871 Iteration 10: d = 1.3979001448038891e-5 Iteration 20: d = 2.2244158203819731e-7 Iteration 30: d = 3.860121823586485e-9 Iteration 40: d = 6.851255842937808e-11 Iteration 50: d = 1.2279714270675019e-12 Iteration 60: d = 2.2093647007362783e-14 Converged after 66 iterations. d = 2.0091956006301985e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 32%|██████████▋ | ETA: 0:00:02 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012475538522431515 Iteration 10: d = 1.1319347631276343e-5 Iteration 20: d = 1.4971898882874185e-7 Iteration 30: d = 2.3095674015962604e-9 Iteration 40: d = 3.752347984506478e-11 Iteration 50: d = 6.288176140953068e-13 Iteration 60: d = 1.0755568785227067e-14 Converged after 64 iterations. d = 2.119798571449738e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 33%|███████████ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011972632887232984 Iteration 10: d = 8.76804579733262e-6 Iteration 20: d = 1.0256782795468025e-7 Iteration 30: d = 1.3950581577818786e-9 Iteration 40: d = 2.0175363125374292e-11 Iteration 50: d = 3.100721725145217e-13 Iteration 60: d = 5.0519956871084785e-15 Converged after 63 iterations. d = 1.471394235755235e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 32%|██████████▊ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014018298592602563 Iteration 10: d = 1.3223935859883706e-5 Iteration 20: d = 1.4375747916393563e-7 Iteration 30: d = 1.82791429055043e-9 Iteration 40: d = 2.5204865656438545e-11 Iteration 50: d = 3.6657105542708275e-13 Iteration 60: d = 5.51551825129665e-15 Converged after 63 iterations. d = 1.5896433125681135e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 34%|███████████▏ | ETA: 0:00:02 Bin 1 progress: 74%|████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012713615448217933 Iteration 10: d = 1.047599066303723e-5 Iteration 20: d = 1.1845873995200768e-7 Iteration 30: d = 1.6591413991388195e-9 Iteration 40: d = 2.4547475619275045e-11 Iteration 50: d = 3.7052063946733744e-13 Iteration 60: d = 5.6706217908942254e-15 Converged after 63 iterations. d = 1.593634330636139e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 31%|██████████▎ | ETA: 0:00:02 Bin 1 progress: 70%|███████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013101730306330987 Iteration 10: d = 1.346367941349486e-5 Iteration 20: d = 1.475202422879067e-7 Iteration 30: d = 1.9601768874567986e-9 Iteration 40: d = 2.813647612146343e-11 Iteration 50: d = 4.1697267477694913e-13 Iteration 60: d = 6.243741881620449e-15 Converged after 63 iterations. d = 1.7616924500246803e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 31%|██████████▎ | ETA: 0:00:02 Bin 1 progress: 66%|█████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011120972686736558 Iteration 10: d = 9.428840070637479e-6 Iteration 20: d = 9.563973894240177e-8 Iteration 30: d = 1.2707353449251891e-9 Iteration 40: d = 1.8657032603736836e-11 Iteration 50: d = 2.823377704157438e-13 Iteration 60: d = 4.310091045443123e-15 Converged after 62 iterations. d = 1.8719711809315076e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 34%|███████████▏ | ETA: 0:00:02 Bin 1 progress: 71%|███████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012684586860354395 Iteration 10: d = 8.555906403119761e-6 Iteration 20: d = 6.771854226372917e-8 Iteration 30: d = 6.600330178356693e-10 Iteration 40: d = 7.329473808689436e-12 Iteration 50: d = 9.138464156914823e-14 Converged after 59 iterations. d = 1.8837762686342083e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 31%|██████████▎ | ETA: 0:00:02 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001393367231805773 Iteration 10: d = 1.208019478894774e-5 Iteration 20: d = 1.0938511698484508e-7 Iteration 30: d = 1.1927082139450216e-9 Iteration 40: d = 1.5025871160395242e-11 Iteration 50: d = 2.0927695889200466e-13 Iteration 60: d = 3.1130590578896392e-15 Converged after 61 iterations. d = 2.0209020520497085e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.004671440987823281 Iteration 10: d = 3.742281611715305e-5 Iteration 20: d = 4.4407219745230496e-7 Iteration 30: d = 6.2877320498907505e-9 Iteration 40: d = 9.098321238013872e-11 Iteration 50: d = 1.3234482947353201e-12 Iteration 60: d = 1.9284585703890714e-14 Converged after 66 iterations. d = 1.5515461106954855e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.003346055250917599 Iteration 10: d = 3.4673242518649245e-5 Iteration 20: d = 4.4903606682453853e-7 Iteration 30: d = 6.642674309720479e-9 Iteration 40: d = 1.0163431884493298e-10 Iteration 50: d = 1.5732142693806763e-12 Iteration 60: d = 2.4507680519636643e-14 Converged after 66 iterations. d = 1.9971311823744425e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002617684950776005 Iteration 10: d = 3.277399251079289e-5 Iteration 20: d = 4.852095750272064e-7 Iteration 30: d = 7.892924620462558e-9 Iteration 40: d = 1.3114010286972687e-10 Iteration 50: d = 2.190003295246683e-12 Iteration 60: d = 3.662890991754352e-14 Converged after 67 iterations. d = 2.103907865308002e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018379758748174532 Iteration 10: d = 1.6710988326256776e-5 Iteration 20: d = 2.833418068697455e-7 Iteration 30: d = 5.166810867060834e-9 Iteration 40: d = 9.557136772862929e-11 Iteration 50: d = 1.7824351801337574e-12 Iteration 60: d = 3.340074148527452e-14 Converged after 67 iterations. d = 2.0632629580928524e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 29%|█████████▍ | ETA: 0:00:03 Bin 1 progress: 61%|████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 95%|███████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014018298592602563 Iteration 10: d = 1.3223935859883706e-5 Iteration 20: d = 1.4375747916393563e-7 Iteration 30: d = 1.82791429055043e-9 Iteration 40: d = 2.5204865656438545e-11 Iteration 50: d = 3.6657105542708275e-13 Iteration 60: d = 5.51551825129665e-15 Converged after 63 iterations. d = 1.5896433125681135e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 31%|██████████▎ | ETA: 0:00:02 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016871783615314455 Iteration 10: d = 1.6698393677519605e-5 Iteration 20: d = 2.0076785575615112e-7 Iteration 30: d = 2.728007339837357e-9 Iteration 40: d = 3.7702866664316656e-11 Iteration 50: d = 5.240485323049589e-13 Iteration 60: d = 7.310416657751953e-15 Converged after 63 iterations. d = 1.9923560394697236e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 33%|███████████ | ETA: 0:00:02 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012645870088071347 Iteration 10: d = 1.584532952781752e-5 Iteration 20: d = 2.1441997522638247e-7 Iteration 30: d = 3.036929027711615e-9 Iteration 40: d = 4.300888742194648e-11 Iteration 50: d = 6.079462253589716e-13 Iteration 60: d = 8.541457220632832e-15 Converged after 64 iterations. d = 1.5315864005953915e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.79254920887 Iteration 2: convergence error = 4826.1315529158555 Iteration 3: convergence error = 1092.5818246164688 Iteration 4: convergence error = 318.66489243525393 Iteration 5: convergence error = 94.35832631358039 Iteration 6: convergence error = 28.091966035563928 Iteration 7: convergence error = 8.436676372394459 Iteration 8: convergence error = 2.5248164510467177 Iteration 9: convergence error = 0.7538102114422145 Iteration 10: convergence error = 0.2247518154208592 Iteration 11: convergence error = 0.06695886174316001 Iteration 12: convergence error = 0.019939851858225666 Iteration 13: convergence error = 0.005936453682579668 Iteration 14: convergence error = 0.0017671365392288862 Iteration 15: convergence error = 0.0005259899496650178 Iteration 16: convergence error = 0.00015655402125958062 Iteration 17: convergence error = 4.659497449210903e-5 Iteration 18: convergence error = 1.3867783991372562e-5 Iteration 19: convergence error = 4.127341071580304e-6 Iteration 20: convergence error = 1.2283817341085523e-6 Iteration 21: convergence error = 3.655886757769622e-7 Iteration 22: convergence error = 1.0864528121601325e-7 Iteration 23: convergence error = 3.143145477224607e-8 Iteration 24: convergence error = 9.052428140421398e-9 Iteration 25: convergence error = 2.593651515780948e-9 Iteration 26: convergence error = 7.366907084360719e-10 Iteration 27: convergence error = 2.15550244320184e-10 Iteration 28: convergence error = 6.048139766789973e-11 Iteration 29: convergence error = 1.7962520360015333e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 31%|██████████▎ | ETA: 0:00:02 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016871783615314455 Iteration 10: d = 1.6698393677519605e-5 Iteration 20: d = 2.0076785575615112e-7 Iteration 30: d = 2.728007339837357e-9 Iteration 40: d = 3.7702866664316656e-11 Iteration 50: d = 5.240485323049589e-13 Iteration 60: d = 7.310416657751953e-15 Converged after 63 iterations. d = 1.9923560394697236e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.932107575381 Iteration 2: convergence error = 4833.895915844928 Iteration 3: convergence error = 1092.180268356445 Iteration 4: convergence error = 320.640037461568 Iteration 5: convergence error = 95.03401752515424 Iteration 6: convergence error = 28.302915421540547 Iteration 7: convergence error = 8.435856857876843 Iteration 8: convergence error = 2.5188507778022995 Iteration 9: convergence error = 0.7521482208023826 Iteration 10: convergence error = 0.2242897065186753 Iteration 11: convergence error = 0.06683076612716832 Iteration 12: convergence error = 0.019904490029375665 Iteration 13: convergence error = 0.005926742546762398 Iteration 14: convergence error = 0.0017644867054968927 Iteration 15: convergence error = 0.0005252725582067796 Iteration 16: convergence error = 0.00015636165539945068 Iteration 17: convergence error = 4.654400140680082e-5 Iteration 18: convergence error = 1.3854485814590589e-5 Iteration 19: convergence error = 4.123943426748156e-6 Iteration 20: convergence error = 1.2275343124201754e-6 Iteration 21: convergence error = 3.6537858250085264e-7 Iteration 22: convergence error = 1.0861162991204765e-7 Iteration 23: convergence error = 3.142076820950024e-8 Iteration 24: convergence error = 9.04196895135101e-9 Iteration 25: convergence error = 2.5968347472371534e-9 Iteration 26: convergence error = 7.47604644857347e-10 Iteration 27: convergence error = 2.1191226551309228e-10 Iteration 28: convergence error = 6.02540239924565e-11 Iteration 29: convergence error = 1.7053025658242404e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 17:04:07 Bin 1 ray tracing: 9%|██▋ | ETA: 0:01:15 Bin 1 ray tracing: 17%|█████▏ | ETA: 0:00:41 Bin 1 ray tracing: 25%|███████▍ | ETA: 0:00:28 Bin 1 ray tracing: 33%|██████████ | ETA: 0:00:20 Bin 1 ray tracing: 42%|████████████▋ | ETA: 0:00:16 Bin 1 ray tracing: 50%|███████████████▏ | ETA: 0:00:12 Bin 1 ray tracing: 58%|█████████████████▌ | ETA: 0:00:10 Bin 1 ray tracing: 66%|███████████████████▉ | ETA: 0:00:07 Bin 1 ray tracing: 74%|██████████████████████▎ | ETA: 0:00:05 Bin 1 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:04 Bin 1 ray tracing: 90%|███████████████████████████ | ETA: 0:00:02 Bin 1 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:18 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 2 ray tracing: 15%|████▋ | ETA: 0:00:11 Bin 2 ray tracing: 24%|███████▏ | ETA: 0:00:10 Bin 2 ray tracing: 32%|█████████▋ | ETA: 0:00:09 Bin 2 ray tracing: 40%|███████████▉ | ETA: 0:00:08 Bin 2 ray tracing: 48%|██████████████▍ | ETA: 0:00:07 Bin 2 ray tracing: 56%|████████████████▊ | ETA: 0:00:06 Bin 2 ray tracing: 64%|███████████████████▏ | ETA: 0:00:05 Bin 2 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:04 Bin 2 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:03 Bin 2 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 2 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 3 ray tracing: 15%|████▋ | ETA: 0:00:11 Bin 3 ray tracing: 24%|███████▏ | ETA: 0:00:10 Bin 3 ray tracing: 32%|█████████▋ | ETA: 0:00:09 Bin 3 ray tracing: 40%|███████████▉ | ETA: 0:00:08 Bin 3 ray tracing: 48%|██████████████▎ | ETA: 0:00:07 Bin 3 ray tracing: 55%|████████████████▋ | ETA: 0:00:06 Bin 3 ray tracing: 63%|███████████████████ | ETA: 0:00:05 Bin 3 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:04 Bin 3 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:03 Bin 3 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 3 ray tracing: 94%|████████████████████████████▍ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 4 ray tracing: 16%|████▋ | ETA: 0:00:11 Bin 4 ray tracing: 23%|███████ | ETA: 0:00:10 Bin 4 ray tracing: 32%|█████████▌ | ETA: 0:00:09 Bin 4 ray tracing: 43%|████████████▊ | ETA: 0:00:07 Bin 4 ray tracing: 54%|████████████████▏ | ETA: 0:00:06 Bin 4 ray tracing: 62%|██████████████████▌ | ETA: 0:00:05 Bin 4 ray tracing: 70%|████████████████████▉ | ETA: 0:00:04 Bin 4 ray tracing: 78%|███████████████████████▎ | ETA: 0:00:03 Bin 4 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:02 Bin 4 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 4 Energy per ray: 0.00018533358351859177 Processing spectral bin 5/10 Bin 5 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 5 ray tracing: 15%|████▋ | ETA: 0:00:11 Bin 5 ray tracing: 23%|███████ | ETA: 0:00:10 Bin 5 ray tracing: 31%|█████████▎ | ETA: 0:00:09 Bin 5 ray tracing: 39%|███████████▋ | ETA: 0:00:08 Bin 5 ray tracing: 47%|██████████████ | ETA: 0:00:07 Bin 5 ray tracing: 54%|████████████████▎ | ETA: 0:00:06 Bin 5 ray tracing: 62%|██████████████████▌ | ETA: 0:00:05 Bin 5 ray tracing: 70%|████████████████████▉ | ETA: 0:00:04 Bin 5 ray tracing: 78%|███████████████████████▎ | ETA: 0:00:03 Bin 5 ray tracing: 86%|█████████████████████████▋ | ETA: 0:00:02 Bin 5 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 6 ray tracing: 16%|████▉ | ETA: 0:00:10 Bin 6 ray tracing: 24%|███████▎ | ETA: 0:00:09 Bin 6 ray tracing: 32%|█████████▋ | ETA: 0:00:09 Bin 6 ray tracing: 40%|████████████ | ETA: 0:00:08 Bin 6 ray tracing: 49%|██████████████▋ | ETA: 0:00:06 Bin 6 ray tracing: 57%|█████████████████▏ | ETA: 0:00:05 Bin 6 ray tracing: 65%|███████████████████▍ | ETA: 0:00:04 Bin 6 ray tracing: 73%|█████████████████████▊ | ETA: 0:00:03 Bin 6 ray tracing: 81%|████████████████████████▏ | ETA: 0:00:02 Bin 6 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:01 Bin 6 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 7 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 7 ray tracing: 26%|███████▊ | ETA: 0:00:09 Bin 7 ray tracing: 36%|██████████▉ | ETA: 0:00:07 Bin 7 ray tracing: 46%|█████████████▉ | ETA: 0:00:06 Bin 7 ray tracing: 55%|████████████████▌ | ETA: 0:00:05 Bin 7 ray tracing: 62%|██████████████████▊ | ETA: 0:00:04 Bin 7 ray tracing: 70%|████████████████████▉ | ETA: 0:00:04 Bin 7 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:03 Bin 7 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:02 Bin 7 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 7%|██▎ | ETA: 0:00:13 Bin 8 ray tracing: 15%|████▌ | ETA: 0:00:11 Bin 8 ray tracing: 23%|███████ | ETA: 0:00:10 Bin 8 ray tracing: 31%|█████████▍ | ETA: 0:00:09 Bin 8 ray tracing: 39%|███████████▉ | ETA: 0:00:08 Bin 8 ray tracing: 48%|██████████████▎ | ETA: 0:00:07 Bin 8 ray tracing: 55%|████████████████▋ | ETA: 0:00:06 Bin 8 ray tracing: 65%|███████████████████▍ | ETA: 0:00:04 Bin 8 ray tracing: 74%|██████████████████████▎ | ETA: 0:00:03 Bin 8 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:02 Bin 8 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 8%|██▍ | ETA: 0:00:11 Bin 9 ray tracing: 16%|████▉ | ETA: 0:00:10 Bin 9 ray tracing: 24%|███████▎ | ETA: 0:00:09 Bin 9 ray tracing: 32%|█████████▋ | ETA: 0:00:09 Bin 9 ray tracing: 40%|████████████ | ETA: 0:00:08 Bin 9 ray tracing: 48%|██████████████▎ | ETA: 0:00:07 Bin 9 ray tracing: 55%|████████████████▋ | ETA: 0:00:06 Bin 9 ray tracing: 63%|██████████████████▉ | ETA: 0:00:05 Bin 9 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:04 Bin 9 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:03 Bin 9 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 9 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 10 ray tracing: 15%|████▌ | ETA: 0:00:11 Bin 10 ray tracing: 23%|██████▊ | ETA: 0:00:10 Bin 10 ray tracing: 31%|████████▉ | ETA: 0:00:09 Bin 10 ray tracing: 38%|███████████ | ETA: 0:00:08 Bin 10 ray tracing: 46%|█████████████▎ | ETA: 0:00:07 Bin 10 ray tracing: 53%|███████████████▌ | ETA: 0:00:06 Bin 10 ray tracing: 61%|█████████████████▋ | ETA: 0:00:05 Bin 10 ray tracing: 68%|███████████████████▉ | ETA: 0:00:04 Bin 10 ray tracing: 76%|██████████████████████ | ETA: 0:00:03 Bin 10 ray tracing: 83%|████████████████████████▏ | ETA: 0:00:02 Bin 10 ray tracing: 91%|██████████████████████████▎ | ETA: 0:00:01 Bin 10 ray tracing: 98%|████████████████████████████▌| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 20%|██████▋ | ETA: 0:00:04 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:03 Bin 1 progress: 64%|█████████████████████▎ | ETA: 0:00:02 Bin 1 progress: 87%|████████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 20%|██████▋ | ETA: 0:00:04 Bin 2 progress: 40%|█████████████▎ | ETA: 0:00:03 Bin 2 progress: 62%|████████████████████▌ | ETA: 0:00:02 Bin 2 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 22%|███████▍ | ETA: 0:00:04 Bin 3 progress: 42%|█████████████▉ | ETA: 0:00:03 Bin 3 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 3 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 22%|███████▍ | ETA: 0:00:04 Bin 4 progress: 42%|█████████████▉ | ETA: 0:00:03 Bin 4 progress: 64%|█████████████████████▎ | ETA: 0:00:02 Bin 4 progress: 87%|████████████████████████████▋ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 22%|███████▍ | ETA: 0:00:04 Bin 5 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 5 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 5 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 20%|██████▋ | ETA: 0:00:04 Bin 6 progress: 40%|█████████████▎ | ETA: 0:00:03 Bin 6 progress: 62%|████████████████████▌ | ETA: 0:00:02 Bin 6 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 20%|██████▋ | ETA: 0:00:04 Bin 7 progress: 40%|█████████████▎ | ETA: 0:00:03 Bin 7 progress: 62%|████████████████████▌ | ETA: 0:00:02 Bin 7 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 20%|██████▋ | ETA: 0:00:04 Bin 8 progress: 40%|█████████████▎ | ETA: 0:00:03 Bin 8 progress: 64%|█████████████████████▎ | ETA: 0:00:02 Bin 8 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 20%|██████▋ | ETA: 0:00:04 Bin 9 progress: 40%|█████████████▎ | ETA: 0:00:03 Bin 9 progress: 60%|███████████████████▊ | ETA: 0:00:02 Bin 9 progress: 82%|███████████████████████████▏ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:05 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 22%|███████▏ | ETA: 0:00:04 Bin 10 progress: 44%|██████████████▎ | ETA: 0:00:03 Bin 10 progress: 69%|██████████████████████ | ETA: 0:00:01 Bin 10 progress: 91%|█████████████████████████████▏ | ETA: 0:00:00 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:04 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016871783615314455 Iteration 10: d = 1.6698393677519605e-5 Iteration 20: d = 2.0076785575615112e-7 Iteration 30: d = 2.728007339837357e-9 Iteration 40: d = 3.7702866664316656e-11 Iteration 50: d = 5.240485323049589e-13 Iteration 60: d = 7.310416657751953e-15 Converged after 63 iterations. d = 1.9923560394697236e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012762252895155732 Iteration 10: d = 1.5975424373799267e-5 Iteration 20: d = 2.150221385033961e-7 Iteration 30: d = 3.0368969387565885e-9 Iteration 40: d = 4.291479228656927e-11 Iteration 50: d = 6.054217516866365e-13 Iteration 60: d = 8.567498171309644e-15 Converged after 64 iterations. d = 1.5359488456794878e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015190285735768127 Iteration 10: d = 8.906569299933566e-6 Iteration 20: d = 6.71860733009015e-8 Iteration 30: d = 8.17693298131804e-10 Iteration 40: d = 1.1231872736376439e-11 Iteration 50: d = 1.576794411723544e-13 Iteration 60: d = 2.2365320041301386e-15 Converged after 61 iterations. d = 1.4617698645149215e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016779895204216144 Iteration 10: d = 2.742888058644028e-5 Iteration 20: d = 3.700257352942089e-7 Iteration 30: d = 5.15607292982787e-9 Iteration 40: d = 7.244209277692207e-11 Iteration 50: d = 1.0211718568461733e-12 Iteration 60: d = 1.4402232931174697e-14 Converged after 65 iterations. d = 1.7154252379264346e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010609504553781718 Iteration 10: d = 9.851448049738976e-6 Iteration 20: d = 1.2051279546271693e-7 Iteration 30: d = 1.6206093675802154e-9 Iteration 40: d = 2.2199589207805202e-11 Iteration 50: d = 3.065470891333385e-13 Iteration 60: d = 4.247095307285227e-15 Converged after 62 iterations. d = 1.7999554201929757e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014452744183875352 Iteration 10: d = 1.769347502600554e-5 Iteration 20: d = 2.0882000503550636e-7 Iteration 30: d = 2.6772001006220765e-9 Iteration 40: d = 3.512098472688311e-11 Iteration 50: d = 4.652503285972559e-13 Iteration 60: d = 6.210713778355278e-15 Converged after 63 iterations. d = 1.7038091981774944e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015074399583664842 Iteration 10: d = 1.545783016336653e-5 Iteration 20: d = 1.6900785602386654e-7 Iteration 30: d = 2.0883806635242264e-9 Iteration 40: d = 2.6923466819843905e-11 Iteration 50: d = 3.5457225217051285e-13 Iteration 60: d = 4.70829469771964e-15 Converged after 62 iterations. d = 1.9843436649599747e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014210608042834047 Iteration 10: d = 1.350456390136233e-5 Iteration 20: d = 1.500590466674911e-7 Iteration 30: d = 1.9465314733487928e-9 Iteration 40: d = 2.6600860467028858e-11 Iteration 50: d = 3.7037757508766297e-13 Iteration 60: d = 5.21430657006767e-15 Converged after 62 iterations. d = 2.1698586004904103e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012965415754216867 Iteration 10: d = 1.357531564785157e-5 Iteration 20: d = 1.5518116992879367e-7 Iteration 30: d = 2.0291504454444578e-9 Iteration 40: d = 2.730091620020366e-11 Iteration 50: d = 3.7041375892190817e-13 Iteration 60: d = 5.057420667722359e-15 Converged after 62 iterations. d = 2.1840843682448778e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0019238033408527971 Iteration 10: d = 1.8760304696997606e-5 Iteration 20: d = 1.6785266006413077e-7 Iteration 30: d = 1.8596444503102289e-9 Iteration 40: d = 2.3204705663643377e-11 Iteration 50: d = 3.0684329750018513e-13 Iteration 60: d = 4.158828051964473e-15 Converged after 62 iterations. d = 1.7518002926306272e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8654.691444909167 Iteration 2: convergence error = 4824.879995127509 Iteration 3: convergence error = 1091.4617032624674 Iteration 4: convergence error = 320.41170833383217 Iteration 5: convergence error = 95.68827652049958 Iteration 6: convergence error = 29.11069828529753 Iteration 7: convergence error = 8.796905771728234 Iteration 8: convergence error = 2.6472476479218585 Iteration 9: convergence error = 0.7946681576618175 Iteration 10: convergence error = 0.23820849642493158 Iteration 11: convergence error = 0.07134677077624474 Iteration 12: convergence error = 0.02135940647690404 Iteration 13: convergence error = 0.006392760514700058 Iteration 14: convergence error = 0.0019130282221340167 Iteration 15: convergence error = 0.0005724217701299494 Iteration 16: convergence error = 0.00017127297564911714 Iteration 17: convergence error = 5.1244676569695e-5 Iteration 18: convergence error = 1.5332088651121012e-5 Iteration 19: convergence error = 4.587220018947846e-6 Iteration 20: convergence error = 1.3724454674957087e-6 Iteration 21: convergence error = 4.106204869458452e-7 Iteration 22: convergence error = 1.2271061677893158e-7 Iteration 23: convergence error = 3.572858986444771e-8 Iteration 24: convergence error = 1.0327767085982487e-8 Iteration 25: convergence error = 2.9751845431746915e-9 Iteration 26: convergence error = 8.62200977280736e-10 Iteration 27: convergence error = 2.4715518520679325e-10 Iteration 28: convergence error = 7.003109203651547e-11 Iteration 29: convergence error = 1.978150976356119e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 980.178544979125 K, F = -4516.337381577734, relative_change = 0.01982145502087498 Iter 2: T = 962.3992063053183 K, F = -3814.9228220840005, relative_change = 0.01813887762069441 Iter 3: T = 946.540822861452 K, F = -3220.9405478670064, relative_change = 0.016477968123796677 Iter 5: T = 920.0628839915958 K, F = -2292.874883191913, relative_change = 0.013309740511711568 Iter 10: T = 878.0373252821324 K, F = -973.3655683102385, relative_change = 0.006988226035040668 Iter 15: T = 858.1495890086273 K, F = -410.1604829292425, relative_change = 0.003275830920782868 Iter 20: T = 849.3249842372205 K, F = -172.12956252377927, relative_change = 0.0014433371937302927 Iter 25: T = 845.5356595754032 K, F = -72.09551582851175, relative_change = 0.0006174808082341539 Iter 30: T = 843.9328031097115 K, F = -30.17061706613596, relative_change = 0.00026074448880536027 Iter 35: T = 843.2592356600529 K, F = -12.621135184600943, relative_change = 0.00010949114666757245 Iter 40: T = 842.9769712251031 K, F = -5.278910170483535, relative_change = 4.586874792534543e-5 Iter 45: T = 842.8588247269456 K, F = -2.2078084920636174, relative_change = 1.919657727849393e-5 Iter 50: T = 842.8093969091383 K, F = -0.9233502913786222, relative_change = 8.030639880710105e-6 Iter 55: T = 842.7887225354943 K, F = -0.3861593402215511, relative_change = 3.358929802206189e-6 Iter 60: T = 842.7800757284539 K, F = -0.1614970112290426, relative_change = 1.4048180812961197e-6 Iter 65: T = 842.7764594365394 K, F = -0.06754007731579525, relative_change = 5.875245589845455e-7 Iter 70: T = 842.7749470436414 K, F = -0.028246084160864493, relative_change = 2.457120363954043e-7 Iter 75: T = 842.7743145399958 K, F = -0.011812852737208557, relative_change = 1.0276010143865895e-7 Iter 80: T = 842.7740500189149 K, F = -0.004940276615005734, relative_change = 4.2975570427652075e-8 Iter 85: T = 842.773939392952 K, F = -0.0020660827729193088, relative_change = 1.7972908832804053e-8 Iter 90: T = 842.7738931278377 K, F = -0.0008640605055385553, relative_change = 7.516487216646637e-9 Iter 95: T = 842.7738737792117 K, F = -0.0003613604242234114, relative_change = 3.1434850786187687e-9 Iter 100: T = 842.7738656873848 K, F = -0.00015112524541160965, relative_change = 1.3146430650020043e-9 Iter 105: T = 842.773862303286 K, F = -6.320238182833116e-5, relative_change = 5.497994350610635e-10 Iter 110: T = 842.7738608880156 K, F = -2.6431992800723947e-5, relative_change = 2.2993270831222246e-10 Iter 115: T = 842.7738602961325 K, F = -1.105417427949007e-5, relative_change = 9.616059817737388e-11 Iter 120: T = 842.7738600486 K, F = -4.622986965241438e-6, relative_change = 4.0215504236288026e-11 Iter 125: T = 842.7738599450789 K, F = -1.9333887759653834e-6, relative_change = 1.6818607783299305e-11 Iter 130: T = 842.7738599017852 K, F = -8.085665379464757e-7, relative_change = 7.033744915043218e-12 Iter 135: T = 842.7738598836793 K, F = -3.38152541079495e-7, relative_change = 2.9415992437812003e-12 Iter 140: T = 842.773859876107 K, F = -1.4142011384166153e-7, relative_change = 1.2302178733356992e-12 Iter 145: T = 842.7738598729403 K, F = -5.914320144739804e-8, relative_change = 5.144885089659026e-13 Converged in 150 iterations to T = 842.7738598716159 K Iter 1: T = 964.3346596424773 K, F = -8126.381726958733, relative_change = 0.03566534035752273 Iter 2: T = 930.5954581254989 K, F = -6894.071354522889, relative_change = 0.03498702569654298 Iter 3: T = 898.7514601076522 K, F = -5847.562245475805, relative_change = 0.03421894845907602 Iter 5: T = 840.6361438910886 K, F = -4204.276394078166, relative_change = 0.03238809792655476 Iter 10: T = 726.5310433330816 K, F = -1833.4494214189724, relative_change = 0.025989206267818636 Iter 15: T = 652.9388778576503 K, F = -791.643254032453, relative_change = 0.01778746153489511 Iter 20: T = 611.3385023651017 K, F = -337.9649261683388, relative_change = 0.010190147574056146 Iter 25: T = 590.5634636222217 K, F = -142.93757727344376, relative_change = 0.005052378966449538 Iter 30: T = 581.0538670865244 K, F = -60.10187913543774, relative_change = 0.0022921557986914014 Iter 35: T = 576.9075196566533 K, F = -25.196006639684395, relative_change = 0.0009939953561107157 Iter 40: T = 575.1415394208611 K, F = -10.548215143170376, relative_change = 0.00042223099327187317 Iter 45: T = 574.3972150291168 K, F = -4.413329041821236, relative_change = 0.00017775071124293234 Iter 50: T = 574.0849062510067 K, F = -1.8460480214300035, relative_change = 7.454386303709822e-5 Iter 55: T = 573.9541149355117 K, F = -0.7720991288210668, relative_change = 3.1211379413932865e-5 Iter 60: T = 573.8993848758025 K, F = -0.32291154571674907, relative_change = 1.3059321844979034e-5 Iter 65: T = 573.8764905839519 K, F = -0.1350472966052136, relative_change = 5.462675812526342e-6 Iter 70: T = 573.8669149505425 K, F = -0.056478712676716725, relative_change = 2.2847507155990494e-6 Iter 75: T = 573.8629101371091 K, F = -0.023620128183196032, relative_change = 9.555440490372769e-7 Iter 80: T = 573.8612352467113 K, F = -0.009878229491093238, relative_change = 3.9962588227348013e-7 Iter 85: T = 573.8605347823687 K, F = -0.0041311952583772404, relative_change = 1.671293570809868e-7 Iter 90: T = 573.8602418389102 K, F = -0.0017277154930351313, relative_change = 6.989567504694359e-8 Iter 95: T = 573.8601193262989 K, F = -0.0007225513050216903, relative_change = 2.923123787191751e-8 Iter 100: T = 573.8600680900341 K, F = -0.0003021795932531268, relative_change = 1.2224858309314656e-8 Iter 105: T = 573.8600466624114 K, F = -0.00012637511595986473, relative_change = 5.112582701034858e-9 Iter 110: T = 573.8600377011229 K, F = -5.285158293194536e-5, relative_change = 2.138143309753226e-9 Iter 115: T = 573.8600339534049 K, F = -2.2103163479170185e-5, relative_change = 8.941971075422222e-10 Iter 120: T = 573.8600323860644 K, F = -9.243807271297477e-6, relative_change = 3.739639278306143e-10 Iter 125: T = 573.8600317305838 K, F = -3.865869643238096e-6, relative_change = 1.5639614302833618e-10 Iter 130: T = 573.8600314564542 K, F = -1.616752914712638e-6, relative_change = 6.540673742276992e-11 Iter 135: T = 573.8600313418098 K, F = -6.761453681947138e-7, relative_change = 2.7353878379775193e-11 Iter 140: T = 573.8600312938642 K, F = -2.8277163111045667e-7, relative_change = 1.143970094829568e-11 Iter 145: T = 573.8600312738128 K, F = -1.1825914253416059e-7, relative_change = 4.784246637136196e-12 Iter 150: T = 573.860031265427 K, F = -4.9457688722220894e-8, relative_change = 2.0008413378942418e-12 Iter 155: T = 573.86003126192 K, F = -2.068375770658548e-8, relative_change = 8.367741904796103e-13 Iter 160: T = 573.8600312604533 K, F = -8.649786942260818e-9, relative_change = 3.4993247209693423e-13 Converged in 163 iterations to T = 573.8600312600239 K Iter 1: T = 963.6161845500727 K, F = -8290.086960209368, relative_change = 0.036383815449927304 Iter 2: T = 929.1135967876967 K, F = -7034.313381490864, relative_change = 0.03580532198977733 Iter 3: T = 896.4589189537031 K, F = -5967.832712304491, relative_change = 0.03514605527988538 Iter 5: T = 836.5750403836091 K, F = -4293.0344075903, relative_change = 0.0335561487944181 Iter 10: T = 717.2656904098344 K, F = -1875.788603295277, relative_change = 0.027784157180368845 Iter 15: T = 638.0493266848675 K, F = -812.0971582076294, relative_change = 0.01984351982839599 Iter 20: T = 591.7648300747284 K, F = -347.63736239884753, relative_change = 0.011858362341207756 Iter 25: T = 568.004247546455 K, F = -147.31918855197415, relative_change = 0.0060603030152468745 Iter 30: T = 556.9372066593475 K, F = -62.01338781208444, relative_change = 0.002796331606435405 Iter 35: T = 552.0681648253011 K, F = -26.01136307772669, relative_change = 0.0012225201531651754 Iter 40: T = 549.985740260023 K, F = -10.892177931485413, relative_change = 0.0005211832528071915 Iter 45: T = 549.1064450606598 K, F = -4.557712443388659, relative_change = 0.00021974819485969275 Iter 50: T = 548.7372185518349 K, F = -1.9065253811102911, relative_change = 9.221695025573556e-5 Iter 55: T = 548.5825402743238 K, F = -0.7974080913161108, relative_change = 3.862171284087386e-5 Iter 60: T = 548.5178057717822 K, F = -0.3334989668630371, relative_change = 1.616178608884882e-5 Iter 65: T = 548.4907249390182 K, F = -0.1394755921025799, relative_change = 6.760754290941988e-6 Iter 70: T = 548.4793979955126 K, F = -0.05833076788848285, relative_change = 2.8277260352392967e-6 Iter 75: T = 548.4746606847812 K, F = -0.02439469538620123, relative_change = 1.182640900375536e-6 Iter 80: T = 548.4726794415337 K, F = -0.010202165473273461, relative_change = 4.946036615131059e-7 Iter 85: T = 548.471850854369 K, F = -0.004266669631114078, relative_change = 2.068507519900119e-7 Iter 90: T = 548.471504327996 K, F = -0.0017843725770078367, relative_change = 8.650773355327154e-8 Iter 95: T = 548.4713594062965 K, F = -0.0007462459882397188, relative_change = 3.617861603358543e-8 Iter 100: T = 548.4712987982706 K, F = -0.0003120889959018769, relative_change = 1.5130337809590893e-8 Iter 105: T = 548.4712734512633 K, F = -0.0001305193474342714, relative_change = 6.327689466118769e-9 Iter 110: T = 548.4712628508408 K, F = -5.458474968569882e-5, relative_change = 2.6463155399404203e-9 Iter 115: T = 548.4712584176174 K, F = -2.2827994327234702e-5, relative_change = 1.1067208113317858e-9 Iter 120: T = 548.4712565635903 K, F = -9.54693921353944e-6, relative_change = 4.62843836857701e-10 Iter 125: T = 548.4712557882141 K, F = -3.9926435121129256e-6, relative_change = 1.9356679805484033e-10 Iter 130: T = 548.4712554639425 K, F = -1.669771391737962e-6, relative_change = 8.095195619430831e-11 Iter 135: T = 548.4712553283282 K, F = -6.983182767872353e-7, relative_change = 3.385507195680941e-11 Iter 140: T = 548.4712552716127 K, F = -2.920446325327397e-7, relative_change = 1.4158575512804192e-11 Iter 145: T = 548.4712552478935 K, F = -1.2213603736710432e-7, relative_change = 5.921260367827498e-12 Iter 150: T = 548.471255237974 K, F = -5.107879696986117e-8, relative_change = 2.4763441051465585e-12 Iter 155: T = 548.4712552338256 K, F = -2.136173396505292e-8, relative_change = 1.035635275693465e-12 Iter 160: T = 548.4712552320906 K, F = -8.933958350887394e-9, relative_change = 4.3312600161723893e-13 Converged in 164 iterations to T = 548.4712552314644 K Iter 1: T = 969.2843391568337 K, F = -6998.592541251901, relative_change = 0.03071566084316636 Iter 2: T = 940.7086220675787 K, F = -5929.354317874422, relative_change = 0.029481253265798726 Iter 3: T = 914.2339563046808 K, F = -5021.78648111721, relative_change = 0.028143322110420817 Iter 5: T = 867.4029808127079 K, F = -3598.096772681223, relative_change = 0.025188292394100514 Iter 10: T = 782.9803791561428 K, F = -1551.764823992639, relative_change = 0.016922902165859746 Iter 15: T = 735.9174102070006 K, F = -661.735029379261, relative_change = 0.009528412983343556 Iter 20: T = 712.6717571734705 K, F = -279.65579087347106, relative_change = 0.004668857214494654 Iter 25: T = 702.1019014914073 K, F = -117.53919823325647, relative_change = 0.0021047070527926066 Iter 30: T = 697.5087158232224 K, F = -49.26514711930584, relative_change = 0.0009099701005171007 Iter 35: T = 695.555414872964 K, F = -20.62285409432689, relative_change = 0.00038602685949346103 Iter 40: T = 694.7326859472968 K, F = -8.62819008787309, relative_change = 0.00016241742442841967 Iter 45: T = 694.387577203646 K, F = -3.609021468247332, relative_change = 6.809719694388334e-5 Iter 50: T = 694.243066839128 K, F = -1.509442678814788, relative_change = 2.8509307130655534e-5 Iter 55: T = 694.1825990159522 K, F = -0.6312856508633823, relative_change = 1.1928231047152712e-5 Iter 60: T = 694.1573050720397 K, F = -0.2640144694698126, relative_change = 4.989455965638861e-6 Iter 65: T = 694.146725866618 K, F = -0.11041457632815227, relative_change = 2.0868122993462526e-6 Iter 70: T = 694.1423013458365 K, F = -0.046176794525342624, relative_change = 8.727582023192698e-7 Iter 75: T = 694.1404509285428 K, F = -0.01931170443929675, relative_change = 3.650028664927216e-7 Iter 80: T = 694.1396770567088 K, F = -0.008076388487176067, relative_change = 1.5264942591914267e-7 Iter 85: T = 694.1393534133524 K, F = -0.0033776426526078707, relative_change = 6.383996476323014e-8 Iter 90: T = 694.1392180616758 K, F = -0.0014125705885166262, relative_change = 2.669866223015434e-8 Iter 95: T = 694.1391614559602 K, F = -0.0005907539044375243, relative_change = 1.116570400636386e-8 Iter 100: T = 694.1391377827691 K, F = -0.0002470603406262706, relative_change = 4.669631571369221e-9 Iter 105: T = 694.139127882357 K, F = -0.00010332358408349229, relative_change = 1.9528958061185223e-9 Iter 110: T = 694.1391237418862 K, F = -4.3211155894340436e-5, relative_change = 8.167243545476175e-10 Iter 115: T = 694.139122010292 K, F = -1.8071421586274283e-5, relative_change = 3.4156388554368777e-10 Iter 120: T = 694.1391212861187 K, F = -7.5576845798286385e-6, relative_change = 1.4284610158078547e-10 Iter 125: T = 694.1391209832607 K, F = -3.160714083016991e-6, relative_change = 5.973994827905283e-11 Iter 130: T = 694.1391208566018 K, F = -1.3218484880006542e-6, relative_change = 2.4983961946703477e-11 Iter 135: T = 694.1391208036315 K, F = -5.528114596087264e-7, relative_change = 1.0448565475514015e-11 Iter 140: T = 694.1391207814788 K, F = -2.311923382736225e-7, relative_change = 4.36971456048673e-12 Iter 145: T = 694.1391207722143 K, F = -9.66881519293139e-8, relative_change = 1.82748108563565e-12 Iter 150: T = 694.1391207683397 K, F = -4.0437191928255345e-8, relative_change = 7.642943001030162e-13 Iter 155: T = 694.1391207667193 K, F = -1.690989614999694e-8, relative_change = 3.1961015655712627e-13 Converged in 158 iterations to T = 694.1391207662449 K Iter 1: T = 980.6761088909323 K, F = -4402.966970966984, relative_change = 0.019323891109067737 Iter 2: T = 963.3718208117064 K, F = -3718.647432404501, relative_change = 0.017645263224364386 Iter 3: T = 947.9625241350323 K, F = -3139.225166905358, relative_change = 0.015995170653518548 Iter 5: T = 922.2943159539722 K, F = -2234.114131911361, relative_change = 0.012866687594862826 Iter 10: T = 881.7368092043354 K, F = -947.9093751552805, relative_change = 0.00669975908999988 Iter 15: T = 862.6379731713253 K, F = -399.3041347124361, relative_change = 0.0031251641217578162 Iter 20: T = 854.1860013130565 K, F = -167.54635824967966, relative_change = 0.0013735854769670295 Iter 25: T = 850.5612711579106 K, F = -70.17070150915278, relative_change = 0.0005869898727365676 Iter 30: T = 849.0288935321332 K, F = -29.36418224944729, relative_change = 0.00024775038447778926 Iter 35: T = 848.3850974920986 K, F = -12.28361676451389, relative_change = 0.00010401356561996872 Iter 40: T = 848.11533631383 K, F = -5.1377106060526145, relative_change = 4.357031989554085e-5 Iter 45: T = 848.0024280586514 K, F = -2.148749201224012, relative_change = 1.8234006386109163e-5 Iter 50: T = 847.955192554919 K, F = -0.8986495993947817, relative_change = 7.627846362941985e-6 Iter 55: T = 847.9354353165148 K, F = -0.375828972417353, relative_change = 3.1904356363880703e-6 Iter 60: T = 847.927172115956 K, F = -0.1571766854597898, relative_change = 1.3343446174352759e-6 Iter 65: T = 847.9237162615246 K, F = -0.06573325803506913, relative_change = 5.580504568300621e-7 Iter 70: T = 847.922270967015 K, F = -0.027490449459633526, relative_change = 2.3338539487868e-7 Iter 75: T = 847.921666524982 K, F = -0.011496837055114728, relative_change = 9.760491427936991e-8 Iter 80: T = 847.921413739649 K, F = -0.004808115043041905, relative_change = 4.081960286270892e-8 Iter 85: T = 847.921308021724 K, F = -0.0020108112199501704, relative_change = 1.7071256286781732e-8 Iter 90: T = 847.9212638092114 K, F = -0.0008409452803264106, relative_change = 7.1394051441893e-9 Iter 95: T = 847.9212453190081 K, F = -0.00035169336134499574, relative_change = 2.9857848216802615e-9 Iter 100: T = 847.9212375861838 K, F = -0.00014708236194005408, relative_change = 1.2486909084863454e-9 Iter 105: T = 847.9212343522244 K, F = -6.15116029538676e-5, relative_change = 5.222174824812666e-10 Iter 110: T = 847.9212329997439 K, F = -2.5724886632216837e-5, relative_change = 2.18397586651944e-10 Iter 115: T = 847.9212324341204 K, F = -1.0758454588755129e-5, relative_change = 9.133647737085767e-11 Iter 120: T = 847.9212321975698 K, F = -4.49931460066999e-6, relative_change = 3.8198009143791044e-11 Iter 125: T = 847.9212320986416 K, F = -1.8816676421451461e-6, relative_change = 1.5974868223142423e-11 Iter 130: T = 847.9212320572685 K, F = -7.8693464011792e-7, relative_change = 6.680870148087829e-12 Iter 135: T = 847.9212320399658 K, F = -3.2910401914776344e-7, relative_change = 2.794007412132948e-12 Iter 140: T = 847.9212320327297 K, F = -1.3763434059121948e-7, relative_change = 1.1684797067727847e-12 Iter 145: T = 847.9212320297034 K, F = -5.7561481803247716e-8, relative_change = 4.886819894736336e-13 Converged in 150 iterations to T = 847.9212320284378 K Iter 1: T = 967.3367047093242 K, F = -7442.362902795588, relative_change = 0.032663295290675846 Iter 2: T = 936.7489926386575 K, F = -6308.658981354962, relative_change = 0.03162054321081308 Iter 3: T = 908.205470892795 K, F = -5346.141622328883, relative_change = 0.030470832603150616 Iter 5: T = 857.1123419481714 K, F = -3835.548776783572, relative_change = 0.02785627920731124 Iter 10: T = 762.1278939410028 K, F = -1660.733630946419, relative_change = 0.01993025323208631 Iter 15: T = 706.552113378747 K, F = -710.9997676699543, relative_change = 0.011932025821333288 Iter 20: T = 677.9868627161645 K, F = -301.32903388476956, relative_change = 0.006106273038899261 Iter 25: T = 664.6713571988942 K, F = -126.8497185693206, relative_change = 0.0028197450537521974 Iter 30: T = 658.8106277015378 K, F = -53.20814606404101, relative_change = 0.001233225065202219 Iter 35: T = 656.3035812497147 K, F = -22.280999352087527, relative_change = 0.0005258364545361158 Iter 40: T = 655.244900322756 K, F = -9.323285482613477, relative_change = 0.00022172639216228905 Iter 45: T = 654.8003313171425 K, F = -3.900008488945205, relative_change = 9.304998552203821e-5 Iter 50: T = 654.6140872909347 K, F = -1.6311878479725843, relative_change = 3.897110787452247e-5 Iter 55: T = 654.5361416811496 K, F = -0.6822098578616781, relative_change = 1.6308084431540136e-5 Iter 60: T = 654.5035340657289 K, F = -0.28531314294090887, relative_change = 6.821969033036838e-6 Iter 65: T = 654.4898954512427 K, F = -0.11932220920814379, relative_change = 2.853332201282646e-6 Iter 70: T = 654.4841913188354 K, F = -0.04990212077771933, relative_change = 1.1933506547042834e-6 Iter 75: T = 654.4818057299 K, F = -0.020869688727502167, relative_change = 4.990827748076623e-7 Iter 80: T = 654.4808080389101 K, F = -0.008727957585370483, relative_change = 2.0872399974385275e-7 Iter 85: T = 654.480390791013 K, F = -0.0036501368874871654, relative_change = 8.729115326370334e-8 Iter 90: T = 654.4802162926776 K, F = -0.0015265309766435697, relative_change = 3.650625242325951e-8 Iter 95: T = 654.4801433153406 K, F = -0.0006384135091559995, relative_change = 1.5267359421393173e-8 Iter 100: T = 654.4801127953381 K, F = -0.00026699215747055804, relative_change = 6.3849935462555595e-9 Iter 105: T = 654.480100031507 K, F = -0.00011165930923018319, relative_change = 2.670280811863081e-9 Iter 110: T = 654.4800946935202 K, F = -4.6697255998595644e-5, relative_change = 1.1167433540603406e-9 Iter 115: T = 654.4800924611103 K, F = -1.9529349664593187e-5, relative_change = 4.670354035767689e-10 Iter 120: T = 654.48009152749 K, F = -8.167408439563317e-6, relative_change = 1.9531981290549352e-10 Iter 125: T = 654.4800911370387 K, F = -3.4157077288821114e-6, relative_change = 8.168507812200555e-11 Iter 130: T = 654.4800909737473 K, F = -1.4284900013983304e-6, relative_change = 3.4161680905152656e-11 Iter 135: T = 654.4800909054569 K, F = -5.974114165030464e-7, relative_change = 1.4286819067570105e-11 Iter 140: T = 654.480090876897 K, F = -2.49844194055715e-7, relative_change = 5.974908911504318e-12 Iter 145: T = 654.480090864953 K, F = -1.0448862081124943e-7, relative_change = 2.4987972766377496e-12 Iter 150: T = 654.4800908599578 K, F = -4.369851158703142e-8, relative_change = 1.0450297927466672e-12 Iter 155: T = 654.4800908578687 K, F = -1.8274594337786e-8, relative_change = 4.370285128728226e-13 Converged in 159 iterations to T = 654.4800908571148 K Iter 1: T = 980.1063208001167 K, F = -4532.793729467705, relative_change = 0.019893679199883278 Iter 2: T = 962.2578977692651 K, F = -3828.8998946646243, relative_change = 0.0182107008720042 Iter 3: T = 946.3340832571554 K, F = -3232.80579804567, relative_change = 0.01654838536428212 Iter 5: T = 919.7378452173314 K, F = -2301.410098895004, relative_change = 0.013374658671491223 Iter 10: T = 877.4966356524326 K, F = -977.0663649660365, relative_change = 0.0070308906330678505 Iter 15: T = 857.4923206007077 K, F = -411.7397275566313, relative_change = 0.0032982400215485898 Iter 20: T = 848.6124678105151 K, F = -172.79648853006327, relative_change = 0.0014537406639363304 Iter 25: T = 844.7987009175508 K, F = -72.37564891943434, relative_change = 0.0006220343097426757 Iter 30: T = 843.1853709674477 K, F = -30.287991735449783, relative_change = 0.00026268608937164256 Iter 35: T = 842.5073780042859 K, F = -12.670261615736983, relative_change = 0.00011030980694374085 Iter 40: T = 842.2232547243368 K, F = -5.2994622807136444, relative_change = 4.621229675433576e-5 Iter 45: T = 842.104329420518 K, F = -2.2164048309498336, relative_change = 1.934045984460261e-5 Iter 50: T = 842.0545756489089 K, F = -0.9269455932182027, relative_change = 8.090849434876901e-6 Iter 55: T = 842.0337649140791 K, F = -0.38766297517776305, relative_change = 3.3841164830995743e-6 Iter 60: T = 842.0250610715661 K, F = -0.16212585575654526, relative_change = 1.4153525587829779e-6 Iter 65: T = 842.0214209254071 K, F = -0.06780306873236897, relative_change = 5.91930396872603e-7 Iter 70: T = 842.0198985561469 K, F = -0.02835607051169209, relative_change = 2.475546443031621e-7 Iter 75: T = 842.0192618802267 K, F = -0.011858850377644226, relative_change = 1.0353070799863705e-7 Iter 80: T = 842.0189956142436 K, F = -0.004959513384090286, relative_change = 4.329784833424298e-8 Iter 85: T = 842.0188842585405 K, F = -0.0020741278192359935, relative_change = 1.8107689471981428e-8 Iter 90: T = 842.01883768824 K, F = -0.0008674250381539572, relative_change = 7.572854103639835e-9 Iter 95: T = 842.0188182119814 K, F = -0.0003627675122144236, relative_change = 3.167058391508891e-9 Iter 100: T = 842.0188100667771 K, F = -0.00015171370635869152, relative_change = 1.3245017064165335e-9 Iter 105: T = 842.0188066603554 K, F = -6.344848622297228e-5, relative_change = 5.539224629574457e-10 Iter 110: T = 842.018805235749 K, F = -2.6534915851250673e-5, relative_change = 2.3165700138919016e-10 Iter 115: T = 842.0188046399616 K, F = -1.1097217497146872e-5, relative_change = 9.68817143504251e-11 Iter 120: T = 842.0188043907962 K, F = -4.640988382043076e-6, relative_change = 4.0517085610139235e-11 Iter 125: T = 842.0188042865922 K, F = -1.9409170071149617e-6, relative_change = 1.6944731189171892e-11 Iter 130: T = 842.0188042430128 K, F = -8.117128962314979e-7, relative_change = 7.086473446518485e-12 Iter 135: T = 842.0188042247875 K, F = -3.394663021794031e-7, relative_change = 2.9636327669531122e-12 Iter 140: T = 842.0188042171654 K, F = -1.4197014963635013e-7, relative_change = 1.2394378608669635e-12 Iter 145: T = 842.0188042139779 K, F = -5.937453373405788e-8, relative_change = 5.18355761905869e-13 Converged in 150 iterations to T = 842.0188042126447 K Iter 1: T = 970.0865229974091 K, F = -6815.814190102937, relative_change = 0.02991347700259082 Iter 2: T = 942.3321285283492 K, F = -5773.241064350964, relative_change = 0.028610225800584605 Iter 3: T = 916.6935821415227 K, F = -4888.407989348996, relative_change = 0.027207547753748514 Iter 5: T = 871.5559079704236 K, F = -3500.683769426105, relative_change = 0.024145666339398405 Iter 10: T = 791.1385019731333 K, F = -1507.4883062537435, relative_change = 0.015841914535518666 Iter 15: T = 747.08443456094 K, F = -641.9699583957354, relative_change = 0.008731514053880271 Iter 20: T = 725.6132917308313 K, F = -271.0529983232125, relative_change = 0.00421860413238081 Iter 25: T = 715.9267539306784 K, F = -113.86742543322846, relative_change = 0.0018876347648382652 Iter 30: T = 711.7338125122624 K, F = -47.71516579088961, relative_change = 0.0008132906496113664 Iter 35: T = 709.953864337939 K, F = -19.971992510086352, relative_change = 0.00034448843393388297 Iter 40: T = 709.2047239535787 K, F = -8.355520660412019, relative_change = 0.00014484627864284305 Iter 45: T = 708.8905851196869 K, F = -3.4949047112625387, relative_change = 6.0713438233816816e-5 Iter 50: T = 708.7590609939969 K, F = -1.4617030935247768, relative_change = 2.541512509493645e-5 Iter 55: T = 708.7040301816661 K, F = -0.6113178296959894, relative_change = 1.0633119332272345e-5 Iter 60: T = 708.6810111133519 K, F = -0.255663240784463, relative_change = 4.4476343396895896e-6 Iter 65: T = 708.6713834723035 K, F = -0.1069219144840936, relative_change = 1.8601827035977647e-6 Iter 70: T = 708.667356939337 K, F = -0.044716107940152794, relative_change = 7.779731700348707e-7 Iter 75: T = 708.665672970938 K, F = -0.018700825470669646, relative_change = 3.253616144911736e-7 Iter 80: T = 708.6649687110057 K, F = -0.00782091118737649, relative_change = 1.3607080257963716e-7 Iter 85: T = 708.6646741803504 K, F = -0.0032707989224578515, relative_change = 5.690655531982536e-8 Iter 90: T = 708.6645510039833 K, F = -0.0013678872528767316, relative_change = 2.379902216272137e-8 Iter 95: T = 708.6644994901328 K, F = -0.0005720667994363327, relative_change = 9.9530389815688e-9 Iter 100: T = 708.6644779464215 K, F = -0.00023924517027351655, relative_change = 4.1624804181761454e-9 Iter 105: T = 708.6644689365834 K, F = -0.00010005518792677304, relative_change = 1.7407991359502862e-9 Iter 110: T = 708.6644651685613 K, F = -4.184427412112779e-5, relative_change = 7.280229999854041e-10 Iter 115: T = 708.6644635927296 K, F = -1.7499776091556285e-5, relative_change = 3.044679323926352e-10 Iter 120: T = 708.6644629336979 K, F = -7.318616760731977e-6, relative_change = 1.273321504985092e-10 Iter 125: T = 708.6644626580829 K, F = -3.060733430260143e-6, relative_change = 5.325183477162813e-11 Iter 130: T = 708.6644625428174 K, F = -1.2800352626740619e-6, relative_change = 2.22705530931421e-11 Iter 135: T = 708.664462494612 K, F = -5.353259896478946e-7, relative_change = 9.313810506710342e-12 Iter 140: T = 708.6644624744521 K, F = -2.2388072673518167e-7, relative_change = 3.895164265366633e-12 Iter 145: T = 708.6644624660208 K, F = -9.362937158918783e-8, relative_change = 1.6290003509546664e-12 Iter 150: T = 708.6644624624946 K, F = -3.915561641587573e-8, relative_change = 6.812446970666698e-13 Iter 155: T = 708.6644624610201 K, F = -1.6375256595146936e-8, relative_change = 2.8490310560242724e-13 Converged in 157 iterations to T = 708.664462460708 K Iter 1: T = 969.3322574240996 K, F = -6987.674318473332, relative_change = 0.030667742575900485 Iter 2: T = 940.8057221082887 K, F = -5920.027070823696, relative_change = 0.029429058093679048 Iter 3: T = 914.3812606248134 K, F = -5013.81562646932, relative_change = 0.028087054385957207 Iter 5: T = 867.6524262673962 K, F = -3592.271565836863, relative_change = 0.02512512106996011 Iter 10: T = 783.474364587505 K, F = -1549.110548200567, relative_change = 0.01685598308316843 Iter 15: T = 736.5983582385926 K, F = -660.5464820071919, relative_change = 0.009478107170567804 Iter 20: T = 713.4644877642229 K, F = -279.1371854103307, relative_change = 0.004640061938809739 Iter 25: T = 702.9507346899853 K, F = -117.31752889734042, relative_change = 0.0020907281023015557 Iter 30: T = 698.3830751517925 K, F = -49.171506202478916, relative_change = 0.0009037239737815645 Iter 35: T = 696.440850820865 K, F = -20.58352024240192, relative_change = 0.0003833393831513514 Iter 40: T = 695.6228277771608 K, F = -8.611709450190313, relative_change = 0.0001612799053730056 Iter 45: T = 695.2797002017531 K, F = -3.6021236415501647, relative_change = 6.76190653029607e-5 Iter 50: T = 695.1360206979049 K, F = -1.506556972478795, relative_change = 2.8308923330505994e-5 Iter 55: T = 695.0759007564446 K, F = -0.6300786470958536, relative_change = 1.184435391637558e-5 Iter 60: T = 695.0507523719093 K, F = -0.2635096568670166, relative_change = 4.954364551845178e-6 Iter 65: T = 695.0402340535985 K, F = -0.11020345255774949, relative_change = 2.0721343770678623e-6 Iter 70: T = 695.0358349987104 K, F = -0.04608849914841118, relative_change = 8.666193221333707e-7 Iter 75: T = 695.0339952319382 K, F = -0.019274778099924617, relative_change = 3.624354438721385e-7 Iter 80: T = 695.033225814346 K, F = -0.008060945420750087, relative_change = 1.5157568689265544e-7 Iter 85: T = 695.0329040338185 K, F = -0.0033711841722809943, relative_change = 6.3390912136945e-8 Iter 90: T = 695.0327694612013 K, F = -0.0014098695743365308, relative_change = 2.6510862691629682e-8 Iter 95: T = 695.032713181298 K, F = -0.0005896243085482533, relative_change = 1.1087163943718328e-8 Iter 100: T = 695.0326896443656 K, F = -0.0002465879306363661, relative_change = 4.6367851777382435e-9 Iter 105: T = 695.0326798009386 K, F = -0.00010312601888540218, relative_change = 1.939159093536598e-9 Iter 110: T = 695.0326756842996 K, F = -4.312853313470644e-5, relative_change = 8.109795227374089e-10 Iter 115: T = 695.032673962672 K, F = -1.80368672126896e-5, relative_change = 3.3916131788315623e-10 Iter 120: T = 695.0326732426668 K, F = -7.543232835693914e-6, relative_change = 1.418413060374402e-10 Iter 125: T = 695.032672941552 K, F = -3.1546699167384062e-6, relative_change = 5.931972561059269e-11 Iter 130: T = 695.0326728156222 K, F = -1.319320731218987e-6, relative_change = 2.480821952893984e-11 Iter 135: T = 695.0326727629568 K, F = -5.51755455879821e-7, relative_change = 1.0375089359846552e-11 Iter 140: T = 695.0326727409316 K, F = -2.3075120381133019e-7, relative_change = 4.338995354342959e-12 Iter 145: T = 695.0326727317204 K, F = -9.650286358908744e-8, relative_change = 1.8146188184683425e-12 Iter 150: T = 695.0326727278681 K, F = -4.0358763109260565e-8, relative_change = 7.588973871484603e-13 Iter 155: T = 695.032672726257 K, F = -1.68773250930343e-8, relative_change = 3.17357543407006e-13 Converged in 158 iterations to T = 695.0326727257853 K Iter 1: T = 965.2293414806553 K, F = -7922.527619067719, relative_change = 0.03477065851934465 Iter 2: T = 932.4357883770067 K, F = -6719.508221901698, relative_change = 0.03397488212836907 Iter 3: T = 901.5899243297913 K, F = -5697.9395465832695, relative_change = 0.03308095252425433 Iter 5: T = 845.6280392917015 K, F = -4094.0306309361176, relative_change = 0.03098035985350833 Iter 10: T = 737.6370408088081 K, F = -1781.3021798745897, relative_change = 0.023961984574854978 Iter 15: T = 670.2255810291488 K, F = -766.8744414167757, relative_change = 0.01565623875849975 Iter 20: T = 633.4076802852437 K, F = -326.49975720939494, relative_change = 0.008597833899148453 Iter 25: T = 615.5036950981032 K, F = -137.83369843811593, relative_change = 0.004144264376872144 Iter 30: T = 607.4369898204302 K, F = -57.89824917046694, relative_change = 0.0018520971438112446 Iter 35: T = 603.9474533818609 K, F = -24.26084673544329, relative_change = 0.0007975256319693672 Iter 40: T = 602.4665358838918 K, F = -10.15462097497969, relative_change = 0.00033772678386931624 Iter 45: T = 601.8433285522325 K, F = -4.248276462522656, relative_change = 0.00014198816768349454 Iter 50: T = 601.5820113438089 K, F = -1.7769421881888539, relative_change = 5.951277856598301e-5 Iter 55: T = 601.4726050898007 K, F = -0.7431843951686093, relative_change = 2.491205216064134e-5 Iter 60: T = 601.4268290097732 K, F = -0.3108166326462546, relative_change = 1.0422562999263279e-5 Iter 65: T = 601.4076812168144 K, F = -0.12998863489081855, relative_change = 4.359548243779403e-6 Iter 70: T = 601.3996727355874 K, F = -0.054363045644927, relative_change = 1.8233389858169049e-6 Iter 75: T = 601.3963233801757 K, F = -0.022735317970519753, relative_change = 7.625638020596364e-7 Iter 80: T = 601.3949226199917 K, F = -0.009508189020198399, relative_change = 3.1891707792698067e-7 Iter 85: T = 601.3943368018996 K, F = -0.0039764395162053545, relative_change = 1.3337559335540827e-7 Iter 90: T = 601.3940918051733 K, F = -0.0016629947246396548, relative_change = 5.5779381890040197e-8 Iter 95: T = 601.3939893445107 K, F = -0.0006954842934536187, relative_change = 2.3327623891447478e-8 Iter 100: T = 601.3939464942196 K, F = -0.0002908598438831067, relative_change = 9.755894430343558e-9 Iter 105: T = 601.3939285737129 K, F = -0.00012164106133222274, relative_change = 4.080032173799294e-9 Iter 110: T = 601.3939210791423 K, F = -5.087174409573736e-5, relative_change = 1.7063182669512977e-9 Iter 115: T = 601.3939179448234 K, F = -2.1275171655454894e-5, relative_change = 7.13602719432451e-10 Iter 120: T = 601.3939166340137 K, F = -8.897530849760749e-6, relative_change = 2.984371820512414e-10 Iter 125: T = 601.3939160858175 K, F = -3.7210545291710417e-6, relative_change = 1.2481002331045944e-10 Iter 130: T = 601.3939158565552 K, F = -1.5561882476533562e-6, relative_change = 5.219700230000752e-11 Iter 135: T = 601.393915760675 K, F = -6.508163009621981e-7, relative_change = 2.1829402731460704e-11 Iter 140: T = 601.3939157205767 K, F = -2.7217827341941003e-7, relative_change = 9.129287539860025e-12 Iter 145: T = 601.3939157038071 K, F = -1.1382790299219181e-7, relative_change = 3.817966965392843e-12 Iter 150: T = 601.393915696794 K, F = -4.7603952779695646e-8, relative_change = 1.596711477304093e-12 Iter 155: T = 601.393915693861 K, F = -1.990934267448452e-8, relative_change = 6.677906791014793e-13 Iter 160: T = 601.3939156926343 K, F = -8.325209854831428e-9, relative_change = 2.7924063760272493e-13 Converged in 162 iterations to T = 601.3939156923748 K Iter 1: T = 965.2511178102361 K, F = -7917.565861658118, relative_change = 0.03474888218976394 Iter 2: T = 932.4805132091363 K, F = -6715.260415439248, relative_change = 0.03395034100084029 Iter 3: T = 901.6587879043803 K, F = -5694.2997568641, relative_change = 0.03305347926111918 Iter 5: T = 845.748656328677 K, F = -4091.351104430855, relative_change = 0.030946723616520542 Iter 10: T = 737.9017240629097 K, F = -1780.0404989483534, relative_change = 0.023915258434361784 Iter 15: T = 670.6307504341501 K, F = -766.2803097782861, relative_change = 0.015609318935500516 Iter 20: T = 633.9174773472243 K, F = -326.2275261663197, relative_change = 0.008564229987294903 Iter 25: T = 616.0744508862407 K, F = -137.71346036294503, relative_change = 0.004125637806856559 Iter 30: T = 608.0378333858948 K, F = -57.84656931159748, relative_change = 0.0018432076987918166 Iter 35: T = 604.5618690450607 K, F = -24.238963104712585, relative_change = 0.0007935851757087752 Iter 40: T = 603.0868176030782 K, F = -10.145419474187678, relative_change = 0.00033603728129128407 Iter 45: T = 602.4660981484623 K, F = -4.244419457088574, relative_change = 0.00014127412673437114 Iter 50: T = 602.2058275612668 K, F = -1.7753275857622939, relative_change = 5.921283623039501e-5 Iter 55: T = 602.0968601022711 K, F = -0.7425088759475946, relative_change = 2.4786380367396305e-5 Iter 60: T = 602.051267721998 K, F = -0.3105340745882849, relative_change = 1.0369964837443198e-5 Iter 65: T = 602.032196787821 K, F = -0.12987045736218295, relative_change = 4.337543936822717e-6 Iter 70: T = 602.0242204556907 K, F = -0.054313620927187944, relative_change = 1.8141352748414116e-6 Iter 75: T = 602.0208845464362 K, F = -0.022714647705961932, relative_change = 7.5871448203427e-7 Iter 80: T = 602.0194894097742 K, F = -0.00949954442403994, relative_change = 3.1730720817128754e-7 Iter 85: T = 602.0189059435376 K, F = -0.003972824234231398, relative_change = 1.3270231989793445e-7 Iter 90: T = 602.0186619303906 K, F = -0.001661482768672784, relative_change = 5.549780970564804e-8 Iter 95: T = 602.0185598810739 K, F = -0.0006948519768236738, relative_change = 2.3209866892414873e-8 Iter 100: T = 602.0185172028125 K, F = -0.00029059540246095805, relative_change = 9.706647044329567e-9 Iter 105: T = 602.0184993542507 K, F = -0.0001215304691930541, relative_change = 4.059436336944519e-9 Iter 110: T = 602.0184918897685 K, F = -5.082549401497216e-5, relative_change = 1.6977048702026595e-9 Iter 115: T = 602.0184887680327 K, F = -2.125582866358e-5, relative_change = 7.100004718617001e-10 Iter 120: T = 602.0184874624856 K, F = -8.889442012327553e-6, relative_change = 2.969307002045141e-10 Iter 125: T = 602.0184869164901 K, F = -3.7176709057340496e-6, relative_change = 1.2417996859704065e-10 Iter 130: T = 602.0184866881483 K, F = -1.5547748676292272e-6, relative_change = 5.193356256696214e-11 Iter 135: T = 602.0184865926531 K, F = -6.502253204199171e-7, relative_change = 2.171923285436452e-11 Iter 140: T = 602.0184865527158 K, F = -2.7193279827919525e-7, relative_change = 9.083269419000686e-12 Iter 145: T = 602.0184865360135 K, F = -1.1372503289086566e-7, relative_change = 3.798714682839801e-12 Iter 150: T = 602.0184865290283 K, F = -4.756101573688554e-8, relative_change = 1.588662796816598e-12 Iter 155: T = 602.0184865261073 K, F = -1.9891110092373765e-8, relative_change = 6.644153011088883e-13 Iter 160: T = 602.0184865248856 K, F = -8.31883767427044e-9, relative_change = 2.778710193956882e-13 Converged in 162 iterations to T = 602.0184865246271 K Iter 1: T = 973.5867790030079 K, F = -6018.277529624224, relative_change = 0.026413220996992063 Iter 2: T = 949.3664824378263 K, F = -5092.831453413932, relative_change = 0.024877388526150828 Iter 3: T = 927.2711110896537 K, F = -4307.8801475544615, relative_change = 0.02327380601370631 Iter 5: T = 889.1303960403034 K, F = -3078.1648735607027, relative_change = 0.01994195534544675 Iter 10: T = 824.2472160094597 K, F = -1317.8579794405468, relative_change = 0.011942109130725397 Iter 15: T = 790.8922612845754 K, F = -558.5289083788097, relative_change = 0.006112614372571185 Iter 20: T = 775.3422974861876 K, F = -235.12423315841795, relative_change = 0.0028229866392287064 Iter 25: T = 768.4976752329753 K, F = -98.6251287141872, relative_change = 0.0012347095613164042 Iter 30: T = 765.5696665130678 K, F = -41.29950324097007, relative_change = 0.0005264821833988981 Iter 35: T = 764.3332055186659 K, F = -17.281420947173814, relative_change = 0.0002220009892033779 Iter 40: T = 763.8139790824895 K, F = -7.22896542630355, relative_change = 9.31656349270067e-5 Iter 45: T = 763.5964582133399 K, F = -3.0235324007675968, relative_change = 3.901961653427273e-5 Iter 50: T = 763.5054227427291 K, F = -1.2645286193868057, relative_change = 1.6328396370649177e-5 Iter 55: T = 763.4673391254316 K, F = -0.5288499403602906, relative_change = 6.830468113676147e-6 Iter 60: T = 763.4514100900625 K, F = -0.22117293003706484, relative_change = 2.8568873857157094e-6 Iter 65: T = 763.4447480252934 K, F = -0.09249743516441156, relative_change = 1.194837609552721e-6 Iter 70: T = 763.441961808684 K, F = -0.038683580036805276, relative_change = 4.997046605765202e-7 Iter 75: T = 763.4407965688563 K, F = -0.016177943543358997, relative_change = 2.0898408388365333e-7 Iter 80: T = 763.4403092497613 K, F = -0.006765810664169258, relative_change = 8.739992427490434e-8 Iter 85: T = 763.4401054467666 K, F = -0.002829543075389851, relative_change = 3.655174185663295e-8 Iter 90: T = 763.4400202138627 K, F = -0.0011833487506158757, relative_change = 1.528638366623335e-8 Iter 95: T = 763.4399845684343 K, F = -0.000494890587414698, relative_change = 6.392949728333256e-9 Iter 100: T = 763.4399696610886 K, F = -0.00020696915535856064, relative_change = 2.6736081917571457e-9 Iter 105: T = 763.4399634266584 K, F = -8.655697251847005e-5, relative_change = 1.1181349190704884e-9 Iter 110: T = 763.4399608193452 K, F = -3.619915969910181e-5, relative_change = 4.676173851863054e-10 Iter 115: T = 763.4399597289356 K, F = -1.5138920096635644e-5, relative_change = 1.955631660270303e-10 Iter 120: T = 763.4399592729134 K, F = -6.331277370708044e-6, relative_change = 8.178685422928198e-11 Iter 125: T = 763.4399590821995 K, F = -2.6478173194011134e-6, relative_change = 3.4204258746758925e-11 Iter 130: T = 763.4399590024406 K, F = -1.1073495472802009e-6, relative_change = 1.4304638835765841e-11 Iter 135: T = 763.4399589690845 K, F = -4.631072694216698e-7, relative_change = 5.982376792353997e-12 Iter 140: T = 763.4399589551346 K, F = -1.9367787418289595e-7, relative_change = 2.501912831668454e-12 Iter 145: T = 763.4399589493005 K, F = -8.099812698336706e-8, relative_change = 1.0463262987738157e-12 Iter 150: T = 763.4399589468605 K, F = -3.3874813398782067e-8, relative_change = 4.3759170052190283e-13 Converged in 154 iterations to T = 763.4399589459799 K Iter 1: T = 976.3891120176777 K, F = -5379.763286524849, relative_change = 0.023610887982322335 Iter 2: T = 954.9408391612452 K, F = -4549.004990410385, relative_change = 0.021966931618184738 Iter 3: T = 935.5639438127668 K, F = -3844.794201143166, relative_change = 0.020291199783117247 Iter 5: T = 902.6048425416085 K, F = -2742.7243987022825, relative_change = 0.016937486305325922 Iter 10: T = 848.2968434138232 K, F = -1169.630900503689, relative_change = 0.0095394796143228 Iter 15: T = 821.4675589160821 K, F = -494.30419835949493, relative_change = 0.004675222727733829 Iter 20: T = 809.2668239057316 K, F = -207.75731618892746, relative_change = 0.0021078042558634346 Iter 25: T = 803.9646279194442 K, F = -87.07928571598704, relative_change = 0.0009113553807022963 Iter 30: T = 801.7097542206722 K, F = -36.45226274848041, relative_change = 0.00038662314737054193 Iter 35: T = 800.7599923747837 K, F = -15.250908129859715, relative_change = 0.00016266985845254806 Iter 40: T = 800.3615954356678 K, F = -6.379190669871701, relative_change = 6.820331013938971e-5 Iter 45: T = 800.1947709088798 K, F = -2.6680428003488386, relative_change = 2.8553780313731252e-5 Iter 50: T = 800.1249660575747 K, F = -1.115840461752044, relative_change = 1.1946846984335853e-5 Iter 55: T = 800.0957663853294 K, F = -0.46666359828156057, relative_change = 4.997244300260931e-6 Iter 60: T = 800.0835536051594 K, F = -0.1951653029594137, relative_change = 2.090069986086504e-6 Iter 65: T = 800.0784458772298 K, F = -0.08162063763951843, relative_change = 8.741206954242848e-7 Iter 70: T = 800.076309729881 K, F = -0.03413475640095409, relative_change = 3.655726930455214e-7 Iter 75: T = 800.0754163615095 K, F = -0.014275568200085353, relative_change = 1.5288773693332547e-7 Iter 80: T = 800.0750427431311 K, F = -0.005970214053498846, relative_change = 6.393962974497763e-8 Iter 85: T = 800.0748864912787 K, F = -0.0024968149838318077, relative_change = 2.6740343415617845e-8 Iter 90: T = 800.0748211448556 K, F = -0.001044197872795971, relative_change = 1.1183135615393937e-8 Iter 95: T = 800.0747938161954 K, F = -0.0004366960252978336, relative_change = 4.676921678429797e-9 Iter 100: T = 800.0747823870224 K, F = -0.000182631492659735, relative_change = 1.9559446292123333e-9 Iter 105: T = 800.0747776072056 K, F = -7.637867193277526e-5, relative_change = 8.179994327760898e-10 Iter 110: T = 800.0747756082291 K, F = -3.19424705540472e-5, relative_change = 3.4209711224755176e-10 Iter 115: T = 800.0747747722332 K, F = -1.3358725399537086e-5, relative_change = 1.4306912790270646e-10 Iter 120: T = 800.0747744226098 K, F = -5.586777865440595e-6, relative_change = 5.98332112347674e-11 Iter 125: T = 800.074774276393 K, F = -2.336455780738156e-6, relative_change = 2.50229480674399e-11 Iter 130: T = 800.0747742152435 K, F = -9.771326942020764e-7, relative_change = 1.0464884836463345e-11 Iter 135: T = 800.07477418967 K, F = -4.0864941730500703e-7, relative_change = 4.376548974986176e-12 Iter 140: T = 800.074774178975 K, F = -1.7090283732645872e-7, relative_change = 1.830333302574326e-12 Iter 145: T = 800.0747741745021 K, F = -7.147345004732131e-8, relative_change = 7.654655588021865e-13 Iter 150: T = 800.0747741726315 K, F = -2.989105851725071e-8, relative_change = 3.2012692539960014e-13 Converged in 153 iterations to T = 800.0747741720838 K Iter 1: T = 967.3180288565803 K, F = -7446.618213608591, relative_change = 0.032681971143419676 Iter 2: T = 936.7109003853648 K, F = -6312.298012404938, relative_change = 0.031641226109881106 Iter 3: T = 908.1472696470183 K, F = -5349.255466924284, relative_change = 0.030493539390430126 Iter 5: T = 857.0121973074406 K, F = -3837.8322872478543, relative_change = 0.02788284478932944 Iter 10: T = 761.9201812258055 K, F = -1661.7893352022602, relative_change = 0.019962082513528715 Iter 15: T = 706.2530194663711 K, F = -711.4820696067261, relative_change = 0.011959047583406992 Iter 20: T = 677.628082748198 K, F = -301.5432049960829, relative_change = 0.006123146788500378 Iter 25: T = 664.2808898399119 K, F = -126.94226441414247, relative_change = 0.0028283440547042307 Iter 30: T = 658.4053146898274 K, F = -53.24745605843347, relative_change = 0.0012371578692202858 Iter 35: T = 655.8917381787219 K, F = -22.29755281332416, relative_change = 0.0005275462151566726 Iter 40: T = 654.8302664296828 K, F = -9.330228795808354, relative_change = 0.00022245330317155262 Iter 45: T = 654.384519510541 K, F = -3.9029158888685913, relative_change = 9.335610225659854e-5 Iter 50: T = 654.1977809635847 K, F = -1.6324043944466369, relative_change = 3.909950210008579e-5 Iter 55: T = 654.1196282048382 K, F = -0.6827187438037801, relative_change = 1.6361845798556767e-5 Iter 60: T = 654.0869338986298 K, F = -0.28552598467060314, relative_change = 6.8444641271431285e-6 Iter 65: T = 654.0732590187597 K, F = -0.11941122558195505, relative_change = 2.8627419217349888e-6 Iter 70: T = 654.0675397179406 K, F = -0.049939349086631335, relative_change = 1.1972862626591798e-6 Iter 75: T = 654.0651477850802 K, F = -0.020885258156243813, relative_change = 5.00728754378535e-7 Iter 80: T = 654.0641474409301 K, F = -0.00873446892486035, relative_change = 2.094123787840232e-7 Iter 85: T = 654.06372908344 K, F = -0.0036528600092095576, relative_change = 8.757904344085923e-8 Iter 90: T = 654.063554121058 K, F = -0.0015276698188019244, relative_change = 3.6626651851280955e-8 Iter 95: T = 654.0634809496509 K, F = -0.0006388897859577747, relative_change = 1.5317711940949236e-8 Iter 100: T = 654.0634503484858 K, F = -0.00026719134191482974, relative_change = 6.406051576012508e-9 Iter 105: T = 654.0634375507118 K, F = -0.00011174261177682165, relative_change = 2.6790875626254092e-9 Iter 110: T = 654.0634321985294 K, F = -4.673209424976843e-5, relative_change = 1.1204264458015566e-9 Iter 115: T = 654.0634299601829 K, F = -1.95439201082781e-5, relative_change = 4.68575732636654e-10 Iter 120: T = 654.0634290240797 K, F = -8.173502236807906e-6, relative_change = 1.959640033165375e-10 Iter 125: T = 654.0634286325901 K, F = -3.4182564466744836e-6, relative_change = 8.195449149634034e-11 Iter 130: T = 654.0634284688645 K, F = -1.4295553011356432e-6, relative_change = 3.427433831773419e-11 Iter 135: T = 654.0634284003925 K, F = -5.978574064702258e-7, relative_change = 1.433394497509721e-11 Iter 140: T = 654.0634283717567 K, F = -2.5003155235125973e-7, relative_change = 5.994637643360254e-12 Iter 145: T = 654.0634283597808 K, F = -1.0456695331839683e-7, relative_change = 2.50704756569273e-12 Iter 150: T = 654.0634283547723 K, F = -4.373079237618427e-8, relative_change = 1.0484686901290402e-12 Iter 155: T = 654.0634283526778 K, F = -1.828891110777775e-8, relative_change = 4.3848623890458987e-13 Converged in 159 iterations to T = 654.0634283519217 K Iter 1: T = 970.3825798374488 K, F = -6748.357357477143, relative_change = 0.029617420162551165 Iter 2: T = 942.9302261693706 K, F = -5715.642072398314, relative_change = 0.028290237519182162 Iter 3: T = 917.5979468238131 K, F = -4839.2144673349985, relative_change = 0.026865486589044044 Iter 5: T = 873.0764039971251 K, F = -3464.78810795929, relative_change = 0.023768738543484606 Iter 10: T = 794.0911196134815 K, F = -1491.2301671051423, relative_change = 0.015463095708826119 Iter 15: T = 751.0861560454678 K, F = -634.7433656215045, relative_change = 0.008459989627054134 Iter 20: T = 730.2217517006015 K, F = -267.91821091674586, relative_change = 0.0040680193209136906 Iter 25: T = 720.8337344692435 K, F = -112.53207467767051, relative_change = 0.001815748673233597 Iter 30: T = 716.7752695646994 K, F = -47.15200432263089, relative_change = 0.0007814212571530621 Iter 35: T = 715.0534112078997 K, F = -19.735612649918366, relative_change = 0.00033082338483281774 Iter 40: T = 714.3289016961522 K, F = -8.256510711282248, relative_change = 0.0001390708242082304 Iter 45: T = 714.025123759083 K, F = -3.4534705847072678, relative_change = 5.828735705099808e-5 Iter 50: T = 713.8979432498728 K, F = -1.4443701119247414, relative_change = 2.4398625362055982e-5 Iter 55: T = 713.8447308434253 K, F = -0.6040681404807328, relative_change = 1.0207676885393304e-5 Iter 60: T = 713.8224725787784 K, F = -0.25263118904142035, relative_change = 4.269651439935076e-6 Iter 65: T = 713.8131631717149 K, F = -0.10565384884551743, relative_change = 1.7857380186408085e-6 Iter 70: T = 713.8092697379387 K, F = -0.044185783305458415, relative_change = 7.468377450968291e-7 Iter 75: T = 713.807641434949 K, F = -0.01847903659853045, relative_change = 3.1234009859636386e-7 Iter 80: T = 713.8069604552596 K, F = -0.007728156297027611, relative_change = 1.3062499502503274e-7 Iter 85: T = 713.806675660733 K, F = -0.0032320076951070087, relative_change = 5.4629044087860405e-8 Iter 90: T = 713.8065565561405 K, F = -0.0013516642926260092, relative_change = 2.2846538084310756e-8 Iter 95: T = 713.8065067451566 K, F = -0.0005652821631525473, relative_change = 9.55469847811104e-9 Iter 100: T = 713.8064859136045 K, F = -0.00023640775443112272, relative_change = 3.995889615082411e-9 Iter 105: T = 713.8064772016 K, F = -9.886854651630639e-5, relative_change = 1.6711288603485459e-9 Iter 110: T = 713.8064735581355 K, F = -4.134800693678109e-5, relative_change = 6.988860646168785e-10 Iter 115: T = 713.8064720343953 K, F = -1.729223175794825e-5, relative_change = 2.92282526291086e-10 Iter 120: T = 713.8064713971488 K, F = -7.2318169660468e-6, relative_change = 1.222360289338422e-10 Iter 125: T = 713.8064711306447 K, F = -3.0244316356897727e-6, relative_change = 5.112055729859838e-11 Iter 130: T = 713.8064710191895 K, F = -1.2648531230174953e-6, relative_change = 2.1379222408129998e-11 Iter 135: T = 713.8064709725777 K, F = -5.289768033600595e-7, relative_change = 8.941048194048679e-12 Iter 140: T = 713.806470953084 K, F = -2.2122560905390998e-7, relative_change = 3.7392732913840184e-12 Iter 145: T = 713.8064709449316 K, F = -9.25196416146079e-8, relative_change = 1.5638163516251482e-12 Iter 150: T = 713.8064709415222 K, F = -3.869368603304224e-8, relative_change = 6.540213285363966e-13 Iter 155: T = 713.8064709400963 K, F = -1.6183301587702204e-8, relative_change = 2.735387989543436e-13 Converged in 157 iterations to T = 713.8064709397945 K Iter 1: T = 964.3295302050243 K, F = -8127.55047416174, relative_change = 0.035670469794975665 Iter 2: T = 930.5848912107556 K, F = -6895.072403977934, relative_change = 0.034992850407779455 Iter 3: T = 898.7351344504575 K, F = -5848.420530961613, relative_change = 0.034225525324034965 Iter 5: T = 840.60731733672 K, F = -4204.909352308518, relative_change = 0.032396316484759304 Iter 10: T = 726.4660244186232 K, F = -1833.750195014639, relative_change = 0.026001466292656022 Iter 15: T = 652.8359473571228 K, F = -791.7873990788046, relative_change = 0.017800943758687862 Iter 20: T = 611.2051046714685 K, F = -338.03237990494284, relative_change = 0.010200647724121444 Iter 25: T = 590.4112232002446 K, F = -142.96786505259456, relative_change = 0.0050585374962040285 Iter 30: T = 580.891984804165 K, F = -60.11502177544575, relative_change = 0.002295185354122782 Iter 35: T = 576.7412081898594 K, F = -25.201597675857656, relative_change = 0.00099535753755281 Iter 40: T = 574.9732976273987 K, F = -10.550570901537233, relative_change = 0.00042281871275436783 Iter 45: T = 574.2281515962932 K, F = -4.414317388293501, relative_change = 0.0001779997680386979 Iter 50: T = 573.9154966331329 K, F = -1.84646191466291, relative_change = 7.464860107048666e-5 Iter 55: T = 573.7845600860458 K, F = -0.7722723213952261, relative_change = 3.125528408812392e-5 Iter 60: T = 573.7297692092372 K, F = -0.32298399400052713, relative_change = 1.3077701185838037e-5 Iter 65: T = 573.7068494690202 K, F = -0.13507759833276708, relative_change = 5.470365403279889e-6 Iter 70: T = 573.697263190362 K, F = -0.05649138574345508, relative_change = 2.287967142100747e-6 Iter 75: T = 573.6932539245321 K, F = -0.02362542830237266, relative_change = 9.568892928413945e-7 Iter 80: T = 573.6915771720141 K, F = -0.0098804460799794, relative_change = 4.0018849605077283e-7 Iter 85: T = 573.6908759288976 K, F = -0.0041321222641203526, relative_change = 1.6736465177316222e-7 Iter 90: T = 573.6905826597442 K, F = -0.0017281031786672285, relative_change = 6.99940786209371e-8 Iter 95: T = 573.6904600109232 K, F = -0.0007227134397448931, relative_change = 2.9272391506435518e-8 Iter 100: T = 573.6904087176937 K, F = -0.00030224739967010805, relative_change = 1.2242069255238906e-8 Iter 105: T = 573.6903872662477 K, F = -0.00012640347390835416, relative_change = 5.119780546838781e-9 Iter 110: T = 573.690378294996 K, F = -5.286344237981355e-5, relative_change = 2.141153527799033e-9 Iter 115: T = 573.6903745431113 K, F = -2.2108122786523854e-5, relative_change = 8.954559983276952e-10 Iter 120: T = 573.6903729740282 K, F = -9.245880388031313e-6, relative_change = 3.7449037356249196e-10 Iter 125: T = 573.690372317819 K, F = -3.866737839364198e-6, relative_change = 1.5661635723645015e-10 Iter 130: T = 573.6903720433844 K, F = -1.617116388019646e-6, relative_change = 6.549884916362767e-11 Iter 135: T = 573.6903719286125 K, F = -6.762963936091104e-7, relative_change = 2.739236077580408e-11 Iter 140: T = 573.6903718806136 K, F = -2.828352345662921e-7, relative_change = 1.1455812660910136e-11 Iter 145: T = 573.69037186054 K, F = -1.1828571061522908e-7, relative_change = 4.790983498128565e-12 Iter 150: T = 573.6903718521448 K, F = -4.946818826789823e-8, relative_change = 2.0036340184933172e-12 Iter 155: T = 573.690371848634 K, F = -2.0688147417402547e-8, relative_change = 8.379420673713977e-13 Iter 160: T = 573.6903718471657 K, F = -8.652299821054754e-9, relative_change = 3.5044829550863714e-13 Converged in 163 iterations to T = 573.6903718467357 K Iter 1: T = 966.5462198814463 K, F = -7622.475622772751, relative_change = 0.033453780118553704 Iter 2: T = 935.1346164045964 K, F = -6462.717889152261, relative_change = 0.03249881157333874 Iter 3: T = 905.7353762613537 K, F = -5478.000159570237, relative_change = 0.03143851123411168 Iter 5: T = 852.8484262861489 K, F = -3932.3135402203534, relative_change = 0.0289978259034939 Iter 10: T = 753.1962821176461 K, F = -1705.6108123471097, relative_change = 0.02133430420939056 Iter 15: T = 693.5604471777269 K, F = -731.6013181244307, relative_change = 0.013158205407003755 Iter 20: T = 662.2859553544675 K, F = -310.5198350141161, relative_change = 0.006888935363458476 Iter 25: T = 647.5110937289797 K, F = -130.83332509433578, relative_change = 0.0032237815295432038 Iter 30: T = 640.961245688645 K, F = -54.902933260504795, relative_change = 0.001419197564597018 Iter 35: T = 638.1499473346524 K, F = -22.995201400946033, relative_change = 0.0006069200250953947 Iter 40: T = 636.9610200231716 K, F = -9.622952396084157, relative_change = 0.00025624231086316643 Iter 45: T = 636.4614394149734 K, F = -4.025506355822307, relative_change = 0.00010759300294456602 Iter 50: T = 636.2520930858594 K, F = -1.6837030889237687, relative_change = 4.5072225336188055e-5 Iter 55: T = 636.164468975873 K, F = -0.7041777120876834, relative_change = 1.8862988685535124e-5 Iter 60: T = 636.1278107441475 K, F = -0.29450129916650336, relative_change = 7.891046231199432e-6 Iter 65: T = 636.1124775967832 K, F = -0.12316496986258463, relative_change = 3.3005355592715024e-6 Iter 70: T = 636.1060647000724 K, F = -0.051509237862963186, relative_change = 1.3803943727277697e-6 Iter 75: T = 636.1033826816242 K, F = -0.021541809303503745, relative_change = 5.773098282813321e-7 Iter 80: T = 636.1022610175056 K, F = -0.009009047314110508, relative_change = 2.4144003637531013e-7 Iter 85: T = 636.1017919220815 K, F = -0.0037676921215189507, relative_change = 1.0097348643316247e-7 Iter 90: T = 636.1015957404067 K, F = -0.0015756940058235802, relative_change = 4.222838432871454e-8 Iter 95: T = 636.1015136948233 K, F = -0.0006589740806527411, relative_change = 1.7660426279449958e-8 Iter 100: T = 636.1014793823692 K, F = -0.00027559083426192954, relative_change = 7.385803181964484e-9 Iter 105: T = 636.1014650324894 K, F = -0.00011525537922846274, relative_change = 3.0888314567932477e-9 Iter 110: T = 636.1014590311978 K, F = -4.820117585974115e-5, relative_change = 1.291786257042662e-9 Iter 115: T = 636.101456521386 K, F = -2.0158307537210263e-5, relative_change = 5.402404540243849e-10 Iter 120: T = 636.1014554717527 K, F = -8.43044528059389e-6, relative_change = 2.259350202584844e-10 Iter 125: T = 636.1014550327834 K, F = -3.5257121743237363e-6, relative_change = 9.448870464556308e-11 Iter 130: T = 636.1014548492013 K, F = -1.4744954138778965e-6, relative_change = 3.9516317545491715e-11 Iter 135: T = 636.1014547724251 K, F = -6.166519253558711e-7, relative_change = 1.6526204884773e-11 Iter 140: T = 636.1014547403163 K, F = -2.5789080926319485e-7, relative_change = 6.91144578904564e-12 Iter 145: T = 636.101454726888 K, F = -1.0785311999050862e-7, relative_change = 2.890451948242955e-12 Iter 150: T = 636.1014547212721 K, F = -4.5105556567559546e-8, relative_change = 1.2088240365623064e-12 Iter 155: T = 636.1014547189236 K, F = -1.886385742055907e-8, relative_change = 5.05549338217392e-13 Converged in 160 iterations to T = 636.1014547179414 K Iter 1: T = 963.5485029667132 K, F = -8305.50827335966, relative_change = 0.0364514970332869 Iter 2: T = 928.9738194492885 K, F = -7047.527123098739, relative_change = 0.0358826601992231 Iter 3: T = 896.2423507955771 K, F = -5979.16772782307, relative_change = 0.03523400548910541 Iter 5: T = 836.1900259004599 K, F = -4301.406028684167, relative_change = 0.033667959645453 Iter 10: T = 716.3759773915071 K, F = -1879.7993879129267, relative_change = 0.02796169361787185 Iter 15: T = 636.594945952062 K, F = -814.0528116651112, relative_change = 0.020056254519034176 Iter 20: T = 589.8210386683436 K, F = -348.5738256844994, relative_change = 0.012038986863094753 Iter 25: T = 565.7377878426689 K, F = -147.74801982340028, relative_change = 0.006173105170272549 Iter 30: T = 554.4987184793944 K, F = -62.2017202438975, relative_change = 0.00285381996500066 Iter 35: T = 549.5489323454672 K, F = -26.091966695799204, relative_change = 0.00124881358987675 Iter 40: T = 547.4309634028867 K, F = -10.926232936570043, relative_change = 0.0005326143082623431 Iter 45: T = 546.5364721776067 K, F = -4.5720169820017595, relative_change = 0.00022460817905518295 Iter 50: T = 546.1608310360035 K, F = -1.9125187540142354, relative_change = 9.426359178288545e-5 Iter 55: T = 546.0034595606321 K, F = -0.7999165336477237, relative_change = 3.9480134495809267e-5 Iter 60: T = 545.937596881422 K, F = -0.3345483678766458, relative_change = 1.6521225479957293e-5 Iter 65: T = 545.910043907629 K, F = -0.13991452374596514, relative_change = 6.911152706866497e-6 Iter 70: T = 545.8985194523779 K, F = -0.05851434477295861, relative_change = 2.8906378485832465e-6 Iter 75: T = 545.8936995299503 K, F = -0.024471471255325172, relative_change = 1.208953716170164e-6 Iter 80: T = 545.8916837357688 K, F = -0.010234274377695723, relative_change = 5.056084053531271e-7 Iter 85: T = 545.8908406986869 K, F = -0.004280098013677458, relative_change = 2.11453138979636e-7 Iter 90: T = 545.890488129133 K, F = -0.0017899884969569957, relative_change = 8.843251931100328e-8 Iter 95: T = 545.8903406800939 K, F = -0.0007485946352731865, relative_change = 3.698358664428457e-8 Iter 100: T = 545.8902790151028 K, F = -0.0003130712286726345, relative_change = 1.546698652750004e-8 Iter 105: T = 545.8902532260597 K, F = -0.00013093012918194424, relative_change = 6.468480058539956e-9 Iter 110: T = 545.8902424407726 K, F = -5.475654448808265e-5, relative_change = 2.705195905820022e-9 Iter 115: T = 545.8902379302364 K, F = -2.289984031009218e-5, relative_change = 1.1313452531904077e-9 Iter 120: T = 545.8902360438763 K, F = -9.57698652834238e-6, relative_change = 4.731420953264525e-10 Iter 125: T = 545.8902352549779 K, F = -4.005209878921168e-6, relative_change = 1.9787366326192063e-10 Iter 130: T = 545.8902349250512 K, F = -1.6750266770282352e-6, relative_change = 8.275313294892425e-11 Iter 135: T = 545.890234787072 K, F = -7.005164642248651e-7, relative_change = 3.460836353335991e-11 Iter 140: T = 545.8902347293674 K, F = -2.9296443443405096e-7, relative_change = 1.4473635056615509e-11 Iter 145: T = 545.8902347052347 K, F = -1.2252135384027696e-7, relative_change = 6.0530533882912304e-12 Iter 150: T = 545.890234695142 K, F = -5.123939150752932e-8, relative_change = 2.5314344208949873e-12 Iter 155: T = 545.8902346909211 K, F = -2.1429192142985443e-8, relative_change = 1.058689281990232e-12 Iter 160: T = 545.8902346891559 K, F = -8.961634406778884e-9, relative_change = 4.427412023940152e-13 Converged in 164 iterations to T = 545.8902346885188 K Iter 1: T = 976.3482933567533 K, F = -5389.063857245031, relative_change = 0.02365170664324668 Iter 2: T = 954.8600049698408 K, F = -4556.920478786711, relative_change = 0.02200883489337013 Iter 3: T = 935.4442392713969 K, F = -3851.5288179610943, relative_change = 0.0203336254502116 Iter 5: T = 902.4121435783941 K, F = -2747.593081815476, relative_change = 0.0169791686480079 Iter 10: T = 847.9600908924209 K, F = -1171.76980741774, relative_change = 0.009570898743350187 Iter 15: T = 821.0455314216471 K, F = -495.22622220585504, relative_change = 0.004693240191419726 Iter 20: T = 808.8021763420496 K, F = -208.14895400923675, relative_change = 0.002116559649616455 Iter 25: T = 803.4806222327439 K, F = -87.2442489512833, relative_change = 0.000915269316731777 Iter 30: T = 801.2173544552869 K, F = -36.521467998125196, relative_change = 0.0003883075135324285 Iter 35: T = 800.2640274685278 K, F = -15.279889089210874, relative_change = 0.00016338285687713652 Iter 40: T = 799.8641297989394 K, F = -6.39131764489828, relative_change = 6.850301475440934e-5 Iter 45: T = 799.696675929964 K, F = -2.6731156383313652, relative_change = 2.8679387733904687e-5 Iter 50: T = 799.6266075785753 K, F = -1.1179621920125278, relative_change = 1.199942438086973e-5 Iter 55: T = 799.59729765461 K, F = -0.4675509677656535, relative_change = 5.019241001676381e-6 Iter 60: T = 799.5850387566067 K, F = -0.1955364178692527, relative_change = 2.0992707051889577e-6 Iter 65: T = 799.5799117400306 K, F = -0.08177584344520794, relative_change = 8.779687972103768e-7 Iter 70: T = 799.5777675256564 K, F = -0.034199665516497335, relative_change = 3.671820590861149e-7 Iter 75: T = 799.5768707835091 K, F = -0.014302713997866756, relative_change = 1.5356080067570613e-7 Iter 80: T = 799.5764957541688 K, F = -0.005981566756717682, relative_change = 6.422111438853464e-8 Iter 85: T = 799.5763389122337 K, F = -0.0025015628172398996, relative_change = 2.6858063850528624e-8 Iter 90: T = 799.5762733190307 K, F = -0.0010461834733206388, relative_change = 1.1232367745126647e-8 Iter 95: T = 799.5762458871643 K, F = -0.00043752642782890483, relative_change = 4.697511157158394e-9 Iter 100: T = 799.5762344148292 K, F = -0.0001829787772887892, relative_change = 1.964555400280543e-9 Iter 105: T = 799.5762296169615 K, F = -7.652391103107892e-5, relative_change = 8.216005658651033e-10 Iter 110: T = 799.5762276104358 K, F = -3.2003212648734625e-5, relative_change = 3.436031637900706e-10 Iter 115: T = 799.5762267712828 K, F = -1.338412494544805e-5, relative_change = 1.4369893889322954e-10 Iter 120: T = 799.576226420339 K, F = -5.5974000079395125e-6, relative_change = 6.009660300252264e-11 Iter 125: T = 799.5762262735702 K, F = -2.3409008587105262e-6, relative_change = 2.5133131364132624e-11 Iter 130: T = 799.5762262121898 K, F = -9.789944290794494e-7, relative_change = 1.0510994307274835e-11 Iter 135: T = 799.5762261865196 K, F = -4.094278869271051e-7, relative_change = 4.395831131985884e-12 Iter 140: T = 799.5762261757841 K, F = -1.7122786433176884e-7, relative_change = 1.838391572177328e-12 Iter 145: T = 799.5762261712945 K, F = -7.161073389827521e-8, relative_change = 7.688501529427567e-13 Iter 150: T = 799.5762261694168 K, F = -2.994895831331945e-8, relative_change = 3.2154762179422334e-13 Converged in 153 iterations to T = 799.576226168867 K Iter 1: T = 973.5030556627806 K, F = -6037.353972336471, relative_change = 0.02649694433721936 Iter 2: T = 949.1991614976013 K, F = -5109.0915218863975, relative_change = 0.02496540100599153 Iter 3: T = 927.0209876480025 K, F = -4321.738425501519, relative_change = 0.023365142689977903 Iter 5: T = 888.7199598846963 K, F = -3088.2244417653187, relative_change = 0.020036384238172583 Iter 10: T = 823.4977648879656 K, F = -1322.332138891415, relative_change = 0.012022418639421358 Iter 15: T = 789.9242253294267 K, F = -560.4791073379885, relative_change = 0.006162831411939054 Iter 20: T = 774.2588633671495 K, F = -235.95841706511027, relative_change = 0.002848597651909343 Iter 25: T = 767.3603045181572 K, F = -98.9777534069005, relative_change = 0.0012464273898851502 Iter 30: T = 764.4085945796256 K, F = -41.44767711401405, relative_change = 0.0005315773066550534 Iter 35: T = 763.1620083390384 K, F = -17.34351534863491, relative_change = 0.000224167359914369 Iter 40: T = 762.6385091129616 K, F = -7.254956407526588, relative_change = 9.407796548074677e-5 Iter 45: T = 762.419194538256 K, F = -3.0344060703520563, relative_change = 3.9402279441155375e-5 Iter 50: T = 762.3274077281391 K, F = -1.2690768068383536, relative_change = 1.6488626276612606e-5 Iter 55: T = 762.2890096830635 K, F = -0.5307521672794406, relative_change = 6.897512449625639e-6 Iter 60: T = 762.2729491137233 K, F = -0.22196848515145384, relative_change = 2.8849321258854667e-6 Iter 65: T = 762.2662320334871 K, F = -0.09283014950368973, relative_change = 1.206567304136631e-6 Iter 70: T = 762.2634228076348 K, F = -0.03882272579155288, relative_change = 5.046103424690695e-7 Iter 75: T = 762.2622479448713 K, F = -0.01623613607165275, relative_change = 2.1103573072809916e-7 Iter 80: T = 762.2617566013155 K, F = -0.006790147490509102, relative_change = 8.82579530540864e-8 Iter 85: T = 762.2615511152372 K, F = -0.002839721031142828, relative_change = 3.6910580732497864e-8 Iter 90: T = 762.2614651784468 K, F = -0.0011876052954279404, relative_change = 1.543645456160501e-8 Iter 95: T = 762.2614292386444 K, F = -0.0004966707252788138, relative_change = 6.455711197530702e-9 Iter 100: T = 762.261414208188 K, F = -0.00020771362802818327, relative_change = 2.699855763553219e-9 Iter 105: T = 762.2614079222712 K, F = -8.686831933413242e-5, relative_change = 1.1291119608242837e-9 Iter 110: T = 762.2614052934258 K, F = -3.632936873421144e-5, relative_change = 4.722081163187781e-10 Iter 115: T = 762.2614041940112 K, F = -1.5193375604072301e-5, relative_change = 1.974830715138239e-10 Iter 120: T = 762.261403734223 K, F = -6.354051259038762e-6, relative_change = 8.25897809344389e-11 Iter 125: T = 762.261403541934 K, F = -2.657338266209841e-6, relative_change = 3.454000866397962e-11 Iter 130: T = 762.2614034615165 K, F = -1.1113313719279816e-6, relative_change = 1.4445054181594615e-11 Iter 135: T = 762.261403427885 K, F = -4.647741030927577e-7, relative_change = 6.041120832520083e-12 Iter 140: T = 762.2614034138198 K, F = -1.9437414622291982e-7, relative_change = 2.526469733016508e-12 Iter 145: T = 762.2614034079377 K, F = -8.128980932831098e-8, relative_change = 1.056602675145226e-12 Iter 150: T = 762.2614034054776 K, F = -3.399728276676228e-8, relative_change = 4.4189573350458297e-13 Converged in 154 iterations to T = 762.2614034045897 K Iter 1: T = 964.585485728271 K, F = -8069.2307647134285, relative_change = 0.035414514271728995 Iter 2: T = 931.1119526790908 K, F = -6845.123965729244, relative_change = 0.0347025054227386 Iter 3: T = 899.5490479851936 K, F = -5805.5990697257075, relative_change = 0.03389807702831135 Iter 5: T = 842.042845724182 K, F = -4173.33761576122, relative_change = 0.03198829365973115 Iter 10: T = 729.6912871464057 K, F = -1818.7673266247234, relative_change = 0.025398893048418105 Iter 15: T = 657.9167400461207 K, F = -784.6256247598686, relative_change = 0.017146988422437073 Iter 20: T = 617.7603713413997 K, F = -334.69190101389825, relative_change = 0.009697690109687209 Iter 25: T = 597.8701572039004 K, F = -141.47189135803166, relative_change = 0.00476609261596116 Iter 30: T = 588.8107470463882 K, F = -59.46689038397601, relative_change = 0.0021520022077916286 Iter 35: T = 584.8705985819357 K, F = -24.92608575336826, relative_change = 0.0009311221038024439 Iter 40: T = 583.1943634467367 K, F = -10.434525067863811, relative_change = 0.00039513147666695147 Iter 45: T = 582.4882165279101 K, F = -4.365638163460053, relative_change = 0.00016627177533260948 Iter 50: T = 582.1919892342124 K, F = -1.8260776292656122, relative_change = 6.971740938903573e-5 Iter 55: T = 582.0679437172946 K, F = -0.7637427940468782, relative_change = 2.9188355153512867e-5 Iter 60: T = 582.0160384000661 K, F = -0.31941604208424684, relative_change = 1.2212472268978384e-5 Iter 65: T = 581.9943260744434 K, F = -0.13358529790624038, relative_change = 5.108373723230008e-6 Iter 70: T = 581.9852448628435 K, F = -0.055867263332821965, relative_change = 2.1365529442445032e-6 Iter 75: T = 581.9814468416581 K, F = -0.02336440856322186, relative_change = 8.935617017728977e-7 Iter 80: T = 581.9798584375964 K, F = -0.00977128375680042, relative_change = 3.737033776290234e-7 Iter 85: T = 581.979194143458 K, F = -0.004086469145843263, relative_change = 1.5628812541472e-7 Iter 90: T = 581.9789163269132 K, F = -0.001709010476418582, relative_change = 6.536171965907376e-8 Iter 95: T = 581.978800140576 K, F = -0.000714728640330009, relative_change = 2.7335079607872892e-8 Iter 100: T = 581.9787515500375 K, F = -0.00029890806051691143, relative_change = 1.143186157157249e-8 Iter 105: T = 581.9787312288898 K, F = -0.0001250069220012917, relative_change = 4.780941881931003e-9 Iter 110: T = 581.9787227303424 K, F = -5.2279387510345554e-5, relative_change = 1.999447124089713e-9 Iter 115: T = 581.9787191761483 K, F = -2.1863864681836986e-5, relative_change = 8.361927083017225e-10 Iter 120: T = 581.9787176897419 K, F = -9.143729050808957e-6, relative_change = 3.497057708327483e-10 Iter 125: T = 581.9787170681088 K, F = -3.824016348574766e-6, relative_change = 1.4625111748445138e-10 Iter 130: T = 581.9787168081345 K, F = -1.5992494038497007e-6, relative_change = 6.116396783553523e-11 Iter 135: T = 581.9787166994101 K, F = -6.688246875774517e-7, relative_change = 2.5579482234922485e-11 Iter 140: T = 581.9787166539403 K, F = -2.797101541496261e-7, relative_change = 1.0697632809540421e-11 Iter 145: T = 581.9787166349244 K, F = -1.1697795765375218e-7, relative_change = 4.47387132508271e-12 Iter 150: T = 581.9787166269716 K, F = -4.8921385220612734e-8, relative_change = 1.8710190101275294e-12 Iter 155: T = 581.9787166236456 K, F = -2.0459046901066813e-8, relative_change = 7.824648772598429e-13 Iter 160: T = 581.9787166222548 K, F = -8.556225783440397e-9, relative_change = 3.272364636484738e-13 Converged in 163 iterations to T = 581.9787166218475 K Iter 1: T = 966.4438801026981 K, F = -7645.793838710785, relative_change = 0.03355611989730188 Iter 2: T = 934.9253025461234 K, F = -6482.66772895425, relative_change = 0.03261294132591067 Iter 3: T = 905.4145885475134 K, F = -5495.080192578534, relative_change = 0.03156478268182718 Iter 5: T = 852.2925985722513 K, F = -3944.8579688486157, relative_change = 0.02914821916507943 Iter 10: T = 752.0184337521538 K, F = -1711.4503956490937, relative_change = 0.021524979623702756 Iter 15: T = 691.826447605241 K, F = -734.2978299933208, relative_change = 0.013330285190509663 Iter 20: T = 660.1714185023346 K, F = -311.7297383538196, relative_change = 0.007001615187241608 Iter 25: T = 645.1880498629573 K, F = -131.3597596618488, relative_change = 0.0032828354030694515 Iter 30: T = 638.5388236755045 K, F = -55.127353746797894, relative_change = 0.0014465832909900578 Iter 35: T = 635.6834547002346 K, F = -23.08986356013564, relative_change = 0.0006189005166819933 Iter 40: T = 634.4756243576198 K, F = -9.66268733763928, relative_change = 0.00026134965436293994 Iter 45: T = 633.96805305687 K, F = -4.042149914964144, relative_change = 0.00010974627545997166 Iter 50: T = 633.7553498201946 K, F = -1.690668187932415, relative_change = 4.59758060647525e-5 Iter 55: T = 633.6663191547673 K, F = -0.7070913999716726, relative_change = 1.9241413512120373e-5 Iter 60: T = 633.6290722190245 K, F = -0.29571997836359476, relative_change = 8.049402007389629e-6 Iter 65: T = 633.613492787072 K, F = -0.12367466057656579, relative_change = 3.3667782865144877e-6 Iter 70: T = 633.6069768769385 K, F = -0.05172240089503016, relative_change = 1.4081007503341226e-6 Iter 75: T = 633.604251774551 K, F = -0.021630957380554983, relative_change = 5.888974697294628e-7 Iter 80: T = 633.6031120917777 K, F = -0.00904633023474688, relative_change = 2.462862144381074e-7 Iter 85: T = 633.6026354606607 K, F = -0.003783284307427026, relative_change = 1.0300023138323302e-7 Iter 90: T = 633.6024361274558 K, F = -0.001582214847936858, relative_change = 4.307599595776318e-8 Iter 95: T = 633.6023527638627 K, F = -0.0006617011750965629, relative_change = 1.801490804847359e-8 Iter 100: T = 633.6023179002009 K, F = -0.0002767313398866489, relative_change = 7.534051828556003e-9 Iter 105: T = 633.602303319799 K, F = -0.00011573235253503622, relative_change = 3.150830831540912e-9 Iter 110: T = 633.6022972221006 K, F = -4.840065255212744e-5, relative_change = 1.3177151589423113e-9 Iter 115: T = 633.6022946719702 K, F = -2.0241730906422895e-5, relative_change = 5.510842264162938e-10 Iter 120: T = 633.6022936054752 K, F = -8.465334361829058e-6, relative_change = 2.3047002734578293e-10 Iter 125: T = 633.6022931594542 K, F = -3.5403041856452155e-6, relative_change = 9.638532517885512e-11 Iter 130: T = 633.6022929729229 K, F = -1.4805976904508356e-6, relative_change = 4.0309499571201665e-11 Iter 135: T = 633.6022928949133 K, F = -6.192032393492752e-7, relative_change = 1.6857903322858098e-11 Iter 140: T = 633.6022928622888 K, F = -2.5895851973878337e-7, relative_change = 7.050185486827826e-12 Iter 145: T = 633.6022928486448 K, F = -1.0829897967301605e-7, relative_change = 2.9484563611864364e-12 Iter 150: T = 633.6022928429387 K, F = -4.529200120506616e-8, relative_change = 1.2330816917469096e-12 Iter 155: T = 633.6022928405523 K, F = -1.8941280099937785e-8, relative_change = 5.156792609837178e-13 Converged in 160 iterations to T = 633.6022928395544 K Iter 1: T = 966.981245783363 K, F = -7523.354557204588, relative_change = 0.033018754216637095 Iter 2: T = 936.023575703059 K, F = -6377.927059493604, relative_change = 0.032014757489143224 Iter 3: T = 907.0964229258066 K, F = -5405.4194612383235, relative_change = 0.030904299344730598 Iter 5: T = 855.2013733016616 K, F = -3879.0328318711854, relative_change = 0.028365236717521815 Iter 10: T = 758.1474113926437 K, F = -1680.864321458107, relative_change = 0.020546965225053608 Iter 15: T = 700.7957409120379 K, F = -720.2154124144903, relative_change = 0.012461895962342848 Iter 20: T = 671.0600632262074 K, F = -305.42928041775394, relative_change = 0.006440190528545975 Iter 25: T = 657.1194175553627 K, F = -128.62372958765266, relative_change = 0.002990821699131441 Iter 30: T = 650.964854737581 K, F = -53.962175018345185, relative_change = 0.0013116732631772872 Iter 35: T = 648.3283633745106 K, F = -22.59861763669253, relative_change = 0.0005599815042372574 Iter 40: T = 647.2143227012258 K, F = -9.456527391146496, relative_change = 0.00023625066985556294 Iter 45: T = 646.746381406886 K, F = -3.9558045195333085, relative_change = 9.916776718714909e-5 Iter 50: T = 646.5503238446003 K, F = -1.6545351945976314, relative_change = 4.15373153174162e-5 Iter 55: T = 646.4682672478915 K, F = -0.6919762374625995, relative_change = 1.7382650378430196e-5 Iter 60: T = 646.4339391682727 K, F = -0.2893979517526985, relative_change = 7.27160132356882e-6 Iter 65: T = 646.4195808249839 K, F = -0.12103059366470453, relative_change = 3.041415091703697e-6 Iter 70: T = 646.413575656631 K, F = -0.05061659956505399, relative_change = 1.2720163902548983e-6 Iter 75: T = 646.4110641644367 K, F = -0.02116849438884627, relative_change = 5.319829885935211e-7 Iter 80: T = 646.4100138180754 K, F = -0.00885292204691518, relative_change = 2.2248348304914064e-7 Iter 85: T = 646.4095745488763 K, F = -0.003702398581422739, relative_change = 9.30455721523133e-8 Iter 90: T = 646.4093908409353 K, F = -0.0015483874518161245, relative_change = 3.891282587140488e-8 Iter 95: T = 646.4093140120252 K, F = -0.0006475541508881855, relative_change = 1.627381838128911e-8 Iter 100: T = 646.4092818812478 K, F = -0.00027081488425939604, relative_change = 6.805906931987198e-9 Iter 105: T = 646.4092684437712 K, F = -0.00011325802012912556, relative_change = 2.8463118735055887e-9 Iter 110: T = 646.4092628240578 K, F = -4.736585732034726e-5, relative_change = 1.1903616849052574e-9 Iter 115: T = 646.4092604738264 K, F = -1.9808967437751068e-5, relative_change = 4.978234871614616e-10 Iter 120: T = 646.4092594909315 K, F = -8.284345660081183e-6, relative_change = 2.0819570167746563e-10 Iter 125: T = 646.4092590798731 K, F = -3.4646114256409177e-6, relative_change = 8.706990733868712e-11 Iter 130: T = 646.4092589079636 K, F = -1.4489413386886696e-6, relative_change = 3.641366166631999e-11 Iter 135: T = 646.4092588360691 K, F = -6.059643157252381e-7, relative_change = 1.5228621751061305e-11 Iter 140: T = 646.4092588060018 K, F = -2.534207246274178e-7, relative_change = 6.368771658553172e-12 Iter 145: T = 646.4092587934275 K, F = -1.0598406491313384e-7, relative_change = 2.6635087163132217e-12 Iter 150: T = 646.4092587881687 K, F = -4.432422795463964e-8, relative_change = 1.113921867427633e-12 Iter 155: T = 646.4092587859694 K, F = -1.853710585031365e-8, relative_change = 4.658600616112511e-13 Converged in 160 iterations to T = 646.4092587850496 K Iter 1: T = 974.463859417405 K, F = -5818.433922884992, relative_change = 0.025536140582595006 Iter 2: T = 951.1165956502061 K, F = -4922.535703213547, relative_change = 0.02395908636484204 Iter 3: T = 929.8830690512068 K, F = -4162.782109890764, relative_change = 0.02232484081984037 Iter 5: T = 893.4021270217362 K, F = -2972.9151567503745, relative_change = 0.018969500004610947 Iter 10: T = 831.9858581763929 K, F = -1271.152368178686, relative_change = 0.011132702363925677 Iter 15: T = 800.8315985265511 K, F = -538.2146400700144, relative_change = 0.005614544478349265 Iter 20: T = 786.4315333686131 K, F = -226.44718063334267, relative_change = 0.0025712862306870397 Iter 25: T = 780.1214236916231 K, F = -94.95986246936116, relative_change = 0.0011200613697640506 Iter 30: T = 777.4276896597289 K, F = -39.75986711754403, relative_change = 0.0004767304888762438 Iter 35: T = 776.2911981409965 K, F = -16.63630899773538, relative_change = 0.00020086548220472658 Iter 40: T = 775.814137728825 K, F = -6.9589564825739405, relative_change = 8.426801078438014e-5 Iter 45: T = 775.6143144167261 K, F = -2.910573577408206, relative_change = 3.5288216973778664e-5 Iter 50: T = 775.5306913836879 K, F = -1.2172812556435202, relative_change = 1.4766072321705166e-5 Iter 55: T = 775.4957096827756 K, F = -0.5090893671824824, relative_change = 6.1767688798482046e-6 Iter 60: T = 775.4810782465936 K, F = -0.21290861913961745, relative_change = 2.583447145801627e-6 Iter 65: T = 775.4749589129115 K, F = -0.08904116610528934, relative_change = 1.0804719416187347e-6 Iter 70: T = 775.4723996833517 K, F = -0.037238120819715226, relative_change = 4.5187387674707333e-7 Iter 75: T = 775.4713293740427 K, F = -0.015573434148828946, relative_change = 1.889803822839318e-7 Iter 80: T = 775.4708817563434 K, F = -0.006512997425273226, relative_change = 7.90340854906381e-8 Iter 85: T = 775.4706945570023 K, F = -0.0027238135273182085, relative_change = 3.3053039107862526e-8 Iter 90: T = 775.4706162679544 K, F = -0.0011391313853759133, relative_change = 1.3823182809899568e-8 Iter 95: T = 775.4705835265312 K, F = -0.0004763983566873353, relative_change = 5.781021384528287e-9 Iter 100: T = 775.4705698336755 K, F = -0.00019923548370326394, relative_change = 2.417692404915802e-9 Iter 105: T = 775.4705641071596 K, F = -8.332266004273947e-5, relative_change = 1.0111078894239212e-9 Iter 110: T = 775.4705617122621 K, F = -3.4846530677867804e-5, relative_change = 4.2285739062402317e-10 Iter 115: T = 775.4705607106873 K, F = -1.457323535136723e-5, relative_change = 1.7684401263619254e-10 Iter 120: T = 775.4705602918168 K, F = -6.094700729875058e-6, relative_change = 7.395827416995687e-11 Iter 125: T = 775.4705601166402 K, F = -2.5488769229697894e-6, relative_change = 3.0930237078448347e-11 Iter 130: T = 775.4705600433792 K, F = -1.065970957281337e-6, relative_change = 1.2935396819344006e-11 Iter 135: T = 775.4705600127406 K, F = -4.4580092228851953e-7, relative_change = 5.4097269666929285e-12 Iter 140: T = 775.4705599999272 K, F = -1.86439525484694e-7, relative_change = 2.2624155274819706e-12 Iter 145: T = 775.4705599945685 K, F = -7.797144607746276e-8, relative_change = 9.461717404240067e-13 Iter 150: T = 775.4705599923275 K, F = -3.260989578368623e-8, relative_change = 3.957161679221282e-13 Converged in 154 iterations to T = 775.4705599915185 K Iter 1: T = 970.3542923015324 K, F = -6754.802699444102, relative_change = 0.029645707698467628 Iter 2: T = 942.873104435836 K, F = -5721.145130938318, relative_change = 0.028320777352893588 Iter 3: T = 917.5116155576145 K, F = -4843.914057475811, relative_change = 0.026898093453833774 Iter 5: T = 872.9314051046339 K, F = -3468.2165609537037, relative_change = 0.023804573131639053 Iter 10: T = 793.8103222502201 K, F = -1492.7817157805607, relative_change = 0.015498844026657308 Iter 15: T = 750.7064675006787 K, F = -635.4323329422776, relative_change = 0.008485445451891685 Iter 20: T = 729.7851281790367 K, F = -268.21684674317015, relative_change = 0.00408207681733938 Iter 25: T = 720.3691728295839 K, F = -112.65923157149975, relative_change = 0.001822444449579414 Iter 30: T = 716.2981390601985 K, F = -47.205619288522286, relative_change = 0.000784386628095285 Iter 35: T = 714.5708545725915 K, F = -19.758114738291905, relative_change = 0.00033209430723420694 Iter 40: T = 713.8440449022149 K, F = -8.265935544727396, relative_change = 0.00013960786813184745 Iter 45: T = 713.5392995169921 K, F = -3.4574146639236054, relative_change = 5.851293335236905e-5 Iter 50: T = 713.4117134415595 K, F = -1.4460200118590762, relative_change = 2.4493135960172334e-5 Iter 55: T = 713.3583312526887 K, F = -0.6047582252055862, relative_change = 1.0247232471166e-5 Iter 60: T = 713.3360019532718 K, F = -0.2529198041664715, relative_change = 4.286199331604322e-6 Iter 65: T = 713.326662833416 K, F = -0.10577455349033626, relative_change = 1.7926594671815095e-6 Iter 70: T = 713.322756972485 K, F = -0.044236263839464884, relative_change = 7.497325389014122e-7 Iter 75: T = 713.3211234721516 K, F = -0.018500148231796354, relative_change = 3.135507641504029e-7 Iter 80: T = 713.3204403188431 K, F = -0.007736985446366695, relative_change = 1.3113131474858078e-7 Iter 85: T = 713.3201546152783 K, F = -0.0032357001522136386, relative_change = 5.484079389312674e-8 Iter 90: T = 713.3200351305144 K, F = -0.0013532085233370905, relative_change = 2.2935094544018703e-8 Iter 95: T = 713.319985160538 K, F = -0.0005659279789977933, relative_change = 9.591733874468616e-9 Iter 100: T = 713.3199642624934 K, F = -0.0002366778427815852, relative_change = 4.0113782722309076e-9 Iter 105: T = 713.3199555226809 K, F = -9.898150200604583e-5, relative_change = 1.6776064248153157e-9 Iter 110: T = 713.3199518675868 K, F = -4.1395246840325584e-5, relative_change = 7.01595069209053e-10 Iter 115: T = 713.3199503389827 K, F = -1.731198584065119e-5, relative_change = 2.9341542701248927e-10 Iter 120: T = 713.3199496997023 K, F = -7.240079824555323e-6, relative_change = 1.2270984634256138e-10 Iter 125: T = 713.3199494323475 K, F = -3.027886909867661e-6, relative_change = 5.131870740642885e-11 Iter 130: T = 713.3199493205367 K, F = -1.2662993874590356e-6, relative_change = 2.1462111940398862e-11 Iter 135: T = 713.3199492737759 K, F = -5.295808795935386e-7, relative_change = 8.975700561370222e-12 Iter 140: T = 713.31994925422 K, F = -2.2147674116901328e-7, relative_change = 3.7537399609789305e-12 Iter 145: T = 713.3199492460415 K, F = -9.26231517039966e-8, relative_change = 1.5698408060680346e-12 Iter 150: T = 713.3199492426212 K, F = -3.873599319081933e-8, relative_change = 6.565242237733754e-13 Iter 155: T = 713.3199492411907 K, F = -1.6198766661368325e-8, relative_change = 2.745478257431887e-13 Converged in 157 iterations to T = 713.319949240888 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 6%|█▊ | ETA: 0:00:17 Bin 1 ray tracing: 12%|███▌ | ETA: 0:00:16 Bin 1 ray tracing: 17%|█████▏ | ETA: 0:00:15 Bin 1 ray tracing: 23%|██████▉ | ETA: 0:00:14 Bin 1 ray tracing: 28%|████████▌ | ETA: 0:00:13 Bin 1 ray tracing: 34%|██████████▎ | ETA: 0:00:12 Bin 1 ray tracing: 40%|████████████ | ETA: 0:00:11 Bin 1 ray tracing: 45%|█████████████▋ | ETA: 0:00:10 Bin 1 ray tracing: 51%|███████████████▎ | ETA: 0:00:09 Bin 1 ray tracing: 57%|█████████████████ | ETA: 0:00:08 Bin 1 ray tracing: 62%|██████████████████▊ | ETA: 0:00:07 Bin 1 ray tracing: 68%|████████████████████▌ | ETA: 0:00:06 Bin 1 ray tracing: 74%|██████████████████████▎ | ETA: 0:00:05 Bin 1 ray tracing: 80%|████████████████████████ | ETA: 0:00:04 Bin 1 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:03 Bin 1 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:02 Bin 1 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 2 ray tracing: 12%|███▊ | ETA: 0:00:14 Bin 2 ray tracing: 18%|█████▌ | ETA: 0:00:14 Bin 2 ray tracing: 25%|███████▍ | ETA: 0:00:12 Bin 2 ray tracing: 31%|█████████▎ | ETA: 0:00:11 Bin 2 ray tracing: 37%|███████████ | ETA: 0:00:10 Bin 2 ray tracing: 43%|████████████▉ | ETA: 0:00:10 Bin 2 ray tracing: 49%|██████████████▌ | ETA: 0:00:09 Bin 2 ray tracing: 54%|████████████████▎ | ETA: 0:00:08 Bin 2 ray tracing: 60%|██████████████████ | ETA: 0:00:07 Bin 2 ray tracing: 66%|███████████████████▋ | ETA: 0:00:06 Bin 2 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:05 Bin 2 ray tracing: 77%|███████████████████████ | ETA: 0:00:04 Bin 2 ray tracing: 82%|████████████████████████▊ | ETA: 0:00:03 Bin 2 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:02 Bin 2 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 6%|█▊ | ETA: 0:00:18 Bin 3 ray tracing: 12%|███▌ | ETA: 0:00:16 Bin 3 ray tracing: 17%|█████▎ | ETA: 0:00:15 Bin 3 ray tracing: 23%|███████ | ETA: 0:00:14 Bin 3 ray tracing: 29%|████████▋ | ETA: 0:00:13 Bin 3 ray tracing: 34%|██████████▎ | ETA: 0:00:12 Bin 3 ray tracing: 40%|███████████▉ | ETA: 0:00:11 Bin 3 ray tracing: 45%|█████████████▋ | ETA: 0:00:10 Bin 3 ray tracing: 51%|███████████████▎ | ETA: 0:00:09 Bin 3 ray tracing: 57%|█████████████████ | ETA: 0:00:08 Bin 3 ray tracing: 62%|██████████████████▋ | ETA: 0:00:07 Bin 3 ray tracing: 68%|████████████████████▍ | ETA: 0:00:06 Bin 3 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:05 Bin 3 ray tracing: 79%|███████████████████████▉ | ETA: 0:00:04 Bin 3 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:03 Bin 3 ray tracing: 91%|███████████████████████████▏ | ETA: 0:00:02 Bin 3 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 4 ray tracing: 12%|███▌ | ETA: 0:00:15 Bin 4 ray tracing: 17%|█████▎ | ETA: 0:00:14 Bin 4 ray tracing: 23%|███████ | ETA: 0:00:13 Bin 4 ray tracing: 29%|████████▊ | ETA: 0:00:12 Bin 4 ray tracing: 35%|██████████▋ | ETA: 0:00:11 Bin 4 ray tracing: 41%|████████████▍ | ETA: 0:00:10 Bin 4 ray tracing: 47%|██████████████▎ | ETA: 0:00:09 Bin 4 ray tracing: 53%|████████████████ | ETA: 0:00:08 Bin 4 ray tracing: 59%|█████████████████▊ | ETA: 0:00:07 Bin 4 ray tracing: 65%|███████████████████▍ | ETA: 0:00:06 Bin 4 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:05 Bin 4 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:04 Bin 4 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:03 Bin 4 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 4 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 4 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 4 Energy per ray: 0.00018533358351859177 Processing spectral bin 5/10 Bin 5 ray tracing: 6%|█▊ | ETA: 0:00:17 Bin 5 ray tracing: 11%|███▍ | ETA: 0:00:16 Bin 5 ray tracing: 17%|█████▏ | ETA: 0:00:15 Bin 5 ray tracing: 23%|██████▉ | ETA: 0:00:14 Bin 5 ray tracing: 28%|████████▌ | ETA: 0:00:13 Bin 5 ray tracing: 34%|██████████▏ | ETA: 0:00:12 Bin 5 ray tracing: 39%|███████████▊ | ETA: 0:00:11 Bin 5 ray tracing: 45%|█████████████▍ | ETA: 0:00:10 Bin 5 ray tracing: 50%|███████████████ | ETA: 0:00:09 Bin 5 ray tracing: 56%|████████████████▊ | ETA: 0:00:08 Bin 5 ray tracing: 61%|██████████████████▍ | ETA: 0:00:07 Bin 5 ray tracing: 67%|████████████████████ | ETA: 0:00:06 Bin 5 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:05 Bin 5 ray tracing: 78%|███████████████████████▎ | ETA: 0:00:04 Bin 5 ray tracing: 83%|█████████████████████████ | ETA: 0:00:03 Bin 5 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:02 Bin 5 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:18 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 6%|█▊ | ETA: 0:00:17 Bin 6 ray tracing: 11%|███▌ | ETA: 0:00:15 Bin 6 ray tracing: 17%|█████▎ | ETA: 0:00:14 Bin 6 ray tracing: 23%|██████▉ | ETA: 0:00:14 Bin 6 ray tracing: 29%|████████▋ | ETA: 0:00:13 Bin 6 ray tracing: 34%|██████████▎ | ETA: 0:00:12 Bin 6 ray tracing: 40%|████████████ | ETA: 0:00:10 Bin 6 ray tracing: 46%|█████████████▊ | ETA: 0:00:09 Bin 6 ray tracing: 52%|███████████████▋ | ETA: 0:00:08 Bin 6 ray tracing: 58%|█████████████████▍ | ETA: 0:00:07 Bin 6 ray tracing: 64%|███████████████████▏ | ETA: 0:00:06 Bin 6 ray tracing: 70%|████████████████████▉ | ETA: 0:00:05 Bin 6 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:04 Bin 6 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:03 Bin 6 ray tracing: 88%|██████████████████████████▎ | ETA: 0:00:02 Bin 6 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 6 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 7 ray tracing: 12%|███▋ | ETA: 0:00:15 Bin 7 ray tracing: 18%|█████▍ | ETA: 0:00:14 Bin 7 ray tracing: 24%|███████▎ | ETA: 0:00:13 Bin 7 ray tracing: 30%|█████████ | ETA: 0:00:12 Bin 7 ray tracing: 36%|██████████▉ | ETA: 0:00:11 Bin 7 ray tracing: 42%|████████████▋ | ETA: 0:00:10 Bin 7 ray tracing: 48%|██████████████▌ | ETA: 0:00:09 Bin 7 ray tracing: 54%|████████████████▎ | ETA: 0:00:08 Bin 7 ray tracing: 60%|██████████████████▏ | ETA: 0:00:07 Bin 7 ray tracing: 66%|████████████████████ | ETA: 0:00:06 Bin 7 ray tracing: 73%|█████████████████████▊ | ETA: 0:00:05 Bin 7 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:04 Bin 7 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:03 Bin 7 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 7 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 6%|█▉ | ETA: 0:00:16 Bin 8 ray tracing: 12%|███▋ | ETA: 0:00:15 Bin 8 ray tracing: 18%|█████▌ | ETA: 0:00:13 Bin 8 ray tracing: 25%|███████▍ | ETA: 0:00:12 Bin 8 ray tracing: 31%|█████████▎ | ETA: 0:00:11 Bin 8 ray tracing: 37%|███████████▏ | ETA: 0:00:10 Bin 8 ray tracing: 43%|████████████▉ | ETA: 0:00:09 Bin 8 ray tracing: 49%|██████████████▊ | ETA: 0:00:08 Bin 8 ray tracing: 55%|████████████████▌ | ETA: 0:00:07 Bin 8 ray tracing: 61%|██████████████████▎ | ETA: 0:00:06 Bin 8 ray tracing: 67%|████████████████████ | ETA: 0:00:06 Bin 8 ray tracing: 73%|█████████████████████▊ | ETA: 0:00:05 Bin 8 ray tracing: 79%|███████████████████████▌ | ETA: 0:00:04 Bin 8 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:03 Bin 8 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:02 Bin 8 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 6%|█▉ | ETA: 0:00:16 Bin 9 ray tracing: 12%|███▋ | ETA: 0:00:14 Bin 9 ray tracing: 18%|█████▌ | ETA: 0:00:14 Bin 9 ray tracing: 24%|███████▎ | ETA: 0:00:13 Bin 9 ray tracing: 30%|█████████▏ | ETA: 0:00:11 Bin 9 ray tracing: 37%|███████████ | ETA: 0:00:11 Bin 9 ray tracing: 42%|████████████▊ | ETA: 0:00:10 Bin 9 ray tracing: 48%|██████████████▌ | ETA: 0:00:09 Bin 9 ray tracing: 55%|████████████████▍ | ETA: 0:00:08 Bin 9 ray tracing: 61%|██████████████████▎ | ETA: 0:00:07 Bin 9 ray tracing: 67%|████████████████████ | ETA: 0:00:06 Bin 9 ray tracing: 73%|█████████████████████▊ | ETA: 0:00:05 Bin 9 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:04 Bin 9 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:03 Bin 9 ray tracing: 91%|███████████████████████████▏ | ETA: 0:00:02 Bin 9 ray tracing: 96%|█████████████████████████████ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 10 ray tracing: 12%|███▌ | ETA: 0:00:15 Bin 10 ray tracing: 18%|█████▎ | ETA: 0:00:14 Bin 10 ray tracing: 24%|██████▉ | ETA: 0:00:13 Bin 10 ray tracing: 30%|████████▋ | ETA: 0:00:12 Bin 10 ray tracing: 35%|██████████▎ | ETA: 0:00:11 Bin 10 ray tracing: 41%|███████████▉ | ETA: 0:00:10 Bin 10 ray tracing: 47%|█████████████▋ | ETA: 0:00:09 Bin 10 ray tracing: 53%|███████████████▎ | ETA: 0:00:08 Bin 10 ray tracing: 59%|█████████████████ | ETA: 0:00:07 Bin 10 ray tracing: 65%|██████████████████▉ | ETA: 0:00:06 Bin 10 ray tracing: 71%|████████████████████▊ | ETA: 0:00:05 Bin 10 ray tracing: 78%|██████████████████████▌ | ETA: 0:00:04 Bin 10 ray tracing: 84%|████████████████████████▍ | ETA: 0:00:03 Bin 10 ray tracing: 90%|██████████████████████████▏ | ETA: 0:00:02 Bin 10 ray tracing: 97%|████████████████████████████ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 980.1415120167555 K, F = -4524.7753772810565, relative_change = 0.01985848798324444 Iter 2: T = 962.326754386481 K, F = -3822.0895004170075, relative_change = 0.018175699541200564 Iter 3: T = 946.4348288879936 K, F = -3227.024336642875, relative_change = 0.016514063883237926 Iter 5: T = 919.8962563814964 K, F = -2297.251133608544, relative_change = 0.013343007949348371 Iter 10: T = 877.7602045427079 K, F = -975.2629708513449, relative_change = 0.007010076809872049 Iter 15: T = 857.8127590717633 K, F = -410.970132435135, relative_change = 0.003287303741420447 Iter 20: T = 848.959863337313 K, F = -172.47147604489078, relative_change = 0.0014486625302017652 Iter 25: T = 845.1580237514814 K, F = -72.23913049189684, relative_change = 0.000619811470576106 Iter 30: T = 843.5498048869053 K, F = -30.23079078889909, relative_change = 0.00026173824217393446 Iter 35: T = 842.8739716285532 K, F = -12.646320472164415, relative_change = 0.00010991014858282033 Iter 40: T = 842.5907554954854 K, F = -5.289446462077919, relative_change = 4.604457998169392e-5 Iter 45: T = 842.4722102629812 K, F = -2.2122155092773856, relative_change = 1.927021776039866e-5 Iter 50: T = 842.4226155629897 K, F = -0.9251934661441061, relative_change = 8.061455676173394e-6 Iter 55: T = 842.4018713750385 K, F = -0.38693019673561024, relative_change = 3.371820567819273e-6 Iter 60: T = 842.3931953669393 K, F = -0.16181939591931882, relative_change = 1.410209718837749e-6 Iter 65: T = 842.3895668621142 K, F = -0.06767490301764689, relative_change = 5.897795050866144e-7 Iter 70: T = 842.3880493615125 K, F = -0.028302469982668388, relative_change = 2.4665509910555626e-7 Iter 75: T = 842.3874147217434 K, F = -0.01183643397951939, relative_change = 1.0315450455779915e-7 Iter 80: T = 842.3871493073065 K, F = -0.004950138576318874, relative_change = 4.3140515060823494e-8 Iter 85: T = 842.3870383077308 K, F = -0.0020702071632059393, relative_change = 1.8041890738647943e-8 Iter 90: T = 842.3869918863671 K, F = -0.0008657853760276613, relative_change = 7.545336299442853e-9 Iter 95: T = 842.3869724723958 K, F = -0.0003620817858704939, relative_change = 3.155550114069069e-9 Iter 100: T = 842.3869643532406 K, F = -0.00015142692962788473, relative_change = 1.319688826213194e-9 Iter 105: T = 842.3869609577127 K, F = -6.332854866220039e-5, relative_change = 5.519096230712367e-10 Iter 110: T = 842.3869595376625 K, F = -2.6484755822009376e-5, relative_change = 2.308152015002089e-10 Iter 115: T = 842.3869589437804 K, F = -1.1076236845042331e-5, relative_change = 9.652963633176416e-11 Iter 120: T = 842.386958695412 K, F = -4.632214354094444e-6, relative_change = 4.0369845272798214e-11 Iter 125: T = 842.3869585915413 K, F = -1.9372468074152494e-6, relative_change = 1.6883146577049756e-11 Iter 130: T = 842.3869585481015 K, F = -8.101821420414268e-7, relative_change = 7.0607543701683996e-12 Iter 135: T = 842.3869585299343 K, F = -3.3882741612423217e-7, relative_change = 2.9528880423722893e-12 Iter 140: T = 842.3869585223365 K, F = -1.4170248996414614e-7, relative_change = 1.234940173949962e-12 Iter 145: T = 842.3869585191591 K, F = -5.925975044007714e-8, relative_change = 5.164499687798799e-13 Converged in 150 iterations to T = 842.3869585178303 K Iter 1: T = 964.2899506866585 K, F = -8136.568705071245, relative_change = 0.035710049313341534 Iter 2: T = 930.5033492087708 K, F = -6902.796743569713, relative_change = 0.03503780315643506 Iter 3: T = 898.6091431624945 K, F = -5855.0433690067, relative_change = 0.03427629365697257 Iter 5: T = 840.3848071230734 K, F = -4209.793698313472, relative_change = 0.032459789708448955 Iter 10: T = 725.9637955339398 K, F = -1836.0717200151344, relative_change = 0.026096324276836252 Iter 15: T = 652.0401637221555 K, F = -792.9005141352948, relative_change = 0.01790550989888445 Iter 20: T = 610.1729199434659 K, F = -338.5535844928843, relative_change = 0.010282275133003864 Iter 25: T = 589.2325865662751 K, F = -143.2020094275104, relative_change = 0.005106491588864637 Iter 30: T = 579.6383294904641 K, F = -60.216652759297595, relative_change = 0.002318796479296003 Iter 35: T = 575.4530728537525 K, F = -25.244838962307828, relative_change = 0.0010059783551728402 Iter 40: T = 573.6701314619272 K, F = -10.568791611747718, relative_change = 0.00042740197923256645 Iter 45: T = 572.9185868941498 K, F = -4.42196200947567, relative_change = 0.0001799421676291186 Iter 50: T = 572.6032358813765 K, F = -1.8496633169208117, relative_change = 7.546548331204923e-5 Iter 55: T = 572.4711682651348 K, F = -0.7736119467632732, relative_change = 3.1597714272637526e-5 Iter 60: T = 572.4159037385641 K, F = -0.32354437462111885, relative_change = 1.3221049908718853e-5 Iter 65: T = 572.392785803196 K, F = -0.13531197953152038, relative_change = 5.530340121532495e-6 Iter 70: T = 572.383116617853 K, F = -0.05658941084258948, relative_change = 2.3130535848847637e-6 Iter 75: T = 572.3790726761148 K, F = -0.023666424283937698, relative_change = 9.67381494924095e-7 Iter 80: T = 572.3773814211332 K, F = -0.009897591214426682, relative_change = 4.0457659183699885e-7 Iter 85: T = 572.3766741128109 K, F = -0.004139292586435639, relative_change = 1.6919982886501487e-7 Iter 90: T = 572.3763783070981 K, F = -0.001731101896614018, relative_change = 7.076157560949328e-8 Iter 95: T = 572.3762545974545 K, F = -0.0007239675397595624, relative_change = 2.9593368604061203e-8 Iter 100: T = 572.3762028605757 K, F = -0.0003027718798332968, relative_change = 1.2376305851575715e-8 Iter 105: T = 572.3761812235904 K, F = -0.00012662281777925388, relative_change = 5.1759199154321185e-9 Iter 110: T = 572.3761721747438 K, F = -5.2955175035562796e-5, relative_change = 2.1646317032642887e-9 Iter 115: T = 572.3761683904079 K, F = -2.2146486309104763e-5, relative_change = 9.052748453270249e-10 Iter 120: T = 572.3761668077534 K, F = -9.261924536152488e-6, relative_change = 3.7859673517713246e-10 Iter 125: T = 572.3761661458684 K, F = -3.8734479274049605e-6, relative_change = 1.5833369636553796e-10 Iter 130: T = 572.3761658690603 K, F = -1.619922307516397e-6, relative_change = 6.621704800777963e-11 Iter 135: T = 572.3761657532958 K, F = -6.77471360177595e-7, relative_change = 2.7692780953643027e-11 Iter 140: T = 572.3761657048817 K, F = -2.833271515179092e-7, relative_change = 1.1581473711756446e-11 Iter 145: T = 572.3761656846343 K, F = -1.184911229690222e-7, relative_change = 4.843523886155334e-12 Iter 150: T = 572.3761656761667 K, F = -4.955462301614588e-8, relative_change = 2.0256285386693487e-12 Iter 155: T = 572.3761656726253 K, F = -2.0724303717578607e-8, relative_change = 8.471407610534588e-13 Iter 160: T = 572.3761656711443 K, F = -8.667746687063271e-9, relative_change = 3.543087201023585e-13 Converged in 163 iterations to T = 572.3761656707107 K Iter 1: T = 963.573614183103 K, F = -8299.786658818293, relative_change = 0.036426385816897035 Iter 2: T = 929.0256833195026 K, F = -7042.624507329242, relative_change = 0.03585396108307656 Iter 3: T = 896.3227141368421 K, F = -5974.962103895231, relative_change = 0.03520136178131202 Iter 5: T = 836.3329236473062 K, F = -4298.299778942752, relative_change = 0.033626439356176145 Iter 10: T = 716.7064278058992 K, F = -1878.3108466320177, relative_change = 0.02789564649842465 Iter 15: T = 637.135647089088 K, F = -813.3266145023383, relative_change = 0.019976907792364773 Iter 20: T = 590.5443952870294 K, F = -348.2258273850511, relative_change = 0.011971433643865883 Iter 25: T = 566.5818163516681 K, F = -147.5885561907856, relative_change = 0.006130830944967335 Iter 30: T = 555.4071697340808 K, F = -62.13165827038644, relative_change = 0.0028322498833293994 Iter 35: T = 550.4876433800815 K, F = -26.061974755867425, relative_change = 0.0012389423783293353 Iter 40: T = 548.3829996142936 K, F = -10.913560113875013, relative_change = 0.000528321691115211 Iter 45: T = 547.4942060604557 K, F = -4.56669363617283, relative_change = 0.0002227829420063083 Iter 50: T = 547.1209702069999 K, F = -1.9102883170466993, relative_change = 9.349490965005375e-5 Iter 55: T = 546.964608624643 K, F = -0.798983008392796, relative_change = 3.9157720173772246e-5 Iter 60: T = 546.8991689929728 K, F = -0.3341578285146177, relative_change = 1.6386222623103998e-5 Iter 65: T = 546.8717930650812 K, F = -0.13975117311984486, relative_change = 6.854663943168207e-6 Iter 70: T = 546.8603426739609 K, F = -0.05844602567104404, relative_change = 2.8670085055829913e-6 Iter 75: T = 546.8555537297851 K, F = -0.024442898705568206, relative_change = 1.1990707562387412e-6 Iter 80: T = 546.853550891734 K, F = -0.0102223248763334, relative_change = 5.014750784217694e-7 Iter 85: T = 546.8527132731755 K, F = -0.004275100569423512, relative_change = 2.0972450521684505e-7 Iter 90: T = 546.8523629697327 K, F = -0.0017878985026593963, relative_change = 8.770957929533411e-8 Iter 95: T = 546.8522164684118 K, F = -0.0007477205737254355, relative_change = 3.668124365001888e-8 Iter 100: T = 546.8521551997684 K, F = -0.00031270568601363125, relative_change = 1.5340542952562868e-8 Iter 105: T = 546.8521295764825 K, F = -0.0001307772541274399, relative_change = 6.41559978414897e-9 Iter 110: T = 546.8521188605173 K, F = -5.469261023854921e-5, relative_change = 2.6830807353858676e-9 Iter 115: T = 546.8521143789723 K, F = -2.2873102399761924e-5, relative_change = 1.122096431932267e-9 Iter 120: T = 546.8521125047366 K, F = -9.565804428401936e-6, relative_change = 4.69274128415819e-10 Iter 125: T = 546.852111720909 K, F = -4.0005336802984015e-6, relative_change = 1.9625604755801142e-10 Iter 130: T = 546.8521113931029 K, F = -1.673071246238722e-6, relative_change = 8.207663708066607e-11 Iter 135: T = 546.8521112560104 K, F = -6.99698417261363e-7, relative_change = 3.432543190083939e-11 Iter 140: T = 546.8521111986768 K, F = -2.926223729715627e-7, relative_change = 1.435531236504004e-11 Iter 145: T = 546.8521111746991 K, F = -1.2237806870651902e-7, relative_change = 6.0035580514202885e-12 Iter 150: T = 546.8521111646713 K, F = -5.117988260971984e-8, relative_change = 2.5107553958545624e-12 Iter 155: T = 546.8521111604775 K, F = -2.140379098958256e-8, relative_change = 1.050015767535069e-12 Iter 160: T = 546.8521111587237 K, F = -8.95084675822666e-9, relative_change = 4.3910586837845795e-13 Converged in 164 iterations to T = 546.8521111580907 K Iter 1: T = 969.3493683801597 K, F = -6983.775570858297, relative_change = 0.030650631619840298 Iter 2: T = 940.840391493263 K, F = -5916.6964959856405, relative_change = 0.029410424989018 Iter 3: T = 914.4338492639216 K, F = -5010.969452123855, relative_change = 0.028066973386878108 Iter 5: T = 867.7414572650127 K, F = -3590.1916582006943, relative_change = 0.025102591211109103 Iter 10: T = 783.6505507455993 K, F = -1548.1630381837826, relative_change = 0.016832161888173134 Iter 15: T = 736.8410744382794 K, F = -660.1223182811128, relative_change = 0.009460231357948093 Iter 20: T = 713.746931965639 K, F = -278.9521496181608, relative_change = 0.004629841961322503 Iter 25: T = 703.2531029184297 K, F = -117.23844899880284, relative_change = 0.002085769900752799 Iter 30: T = 698.6945051427408 K, F = -49.13810227535597, relative_change = 0.0009015092015274897 Iter 35: T = 696.7562123174481 K, F = -20.569489343499534, relative_change = 0.0003823865758508755 Iter 40: T = 695.9398594397705 K, F = -8.605830666425486, relative_change = 0.00016087663681185253 Iter 45: T = 695.597434978642 K, F = -3.5996631413464275, relative_change = 6.744956412335733e-5 Iter 50: T = 695.4540503422488 K, F = -1.505527624370201, relative_change = 2.8237886518491335e-5 Iter 55: T = 695.3940538612114 K, F = -0.6296481022940462, relative_change = 1.1814619283314448e-5 Iter 60: T = 695.3689571344046 K, F = -0.263329587540349, relative_change = 4.941924588098029e-6 Iter 65: T = 695.3584604243665 K, F = -0.11012814360358808, relative_change = 2.0669310333865116e-6 Iter 70: T = 695.3540704070848 K, F = -0.04605700372953514, relative_change = 8.644430813587368e-7 Iter 75: T = 695.3522344200819 K, F = -0.01926160628487894, relative_change = 3.6152528945540154e-7 Iter 80: T = 695.351466583258 K, F = -0.008055436802781424, relative_change = 1.5119504519165367e-7 Iter 85: T = 695.3511454638307 K, F = -0.0033688804011842155, relative_change = 6.323172248872798e-8 Iter 90: T = 695.3510111676942 K, F = -0.0014089061098546685, relative_change = 2.6444287555777208e-8 Iter 95: T = 695.3509550034186 K, F = -0.0005892213759211007, relative_change = 1.1059321399712722e-8 Iter 100: T = 695.350931514843 K, F = -0.00024641941822978186, relative_change = 4.62514106750695e-9 Iter 105: T = 695.3509216916394 K, F = -0.00010305554522027638, relative_change = 1.934289391298672e-9 Iter 110: T = 695.3509175834581 K, F = -4.309906047650358e-5, relative_change = 8.089429600459452e-10 Iter 115: T = 695.3509158653676 K, F = -1.802454091581751e-5, relative_change = 3.383095940429254e-10 Iter 120: T = 695.3509151468417 K, F = -7.538077750002259e-6, relative_change = 1.414851034444815e-10 Iter 125: T = 695.3509148463455 K, F = -3.152513831650161e-6, relative_change = 5.917075430785633e-11 Iter 130: T = 695.3509147206744 K, F = -1.3184181479886092e-6, relative_change = 2.4745901379898333e-11 Iter 135: T = 695.3509146681173 K, F = -5.513790158895304e-7, relative_change = 1.0349046526607485e-11 Iter 140: T = 695.3509146461373 K, F = -2.3059334686159616e-7, relative_change = 4.3280959321710426e-12 Iter 145: T = 695.3509146369449 K, F = -9.643648846147101e-8, relative_change = 1.8100538420986675e-12 Iter 150: T = 695.3509146331005 K, F = -4.032910727591599e-8, relative_change = 7.569526508036139e-13 Iter 155: T = 695.3509146314929 K, F = -1.686580186621711e-8, relative_change = 3.1656077441431903e-13 Converged in 158 iterations to T = 695.3509146310221 K Iter 1: T = 980.8928738129963 K, F = -4353.576877278033, relative_change = 0.019107126187003755 Iter 2: T = 963.7950614163913 K, F = -3676.7129665911975, relative_change = 0.017430866155792587 Iter 3: T = 948.5804979874132 K, F = -3103.639968192217, relative_change = 0.015786098142709638 Iter 5: T = 923.2622085037254 K, F = -2208.5364544612507, relative_change = 0.012675926262583783 Iter 10: T = 883.3348172669062 K, F = -936.8404572539505, relative_change = 0.0065769952631287406 Iter 15: T = 864.572097410823 K, F = -394.58705546642943, relative_change = 0.0030614889839789866 Iter 20: T = 856.2782396381072 K, F = -165.55575279108436, relative_change = 0.0013442088925682126 Iter 25: T = 852.7232127966763 K, F = -69.3348608277808, relative_change = 0.0005741684762429299 Iter 30: T = 851.2206559216987 K, F = -29.014020906315896, relative_change = 0.00024229009325550072 Iter 35: T = 850.5894519431997 K, F = -12.137068342405907, relative_change = 0.00010171247867992502 Iter 40: T = 850.3249782836308 K, F = -5.076403532709632, relative_change = 4.260488626344339e-5 Iter 45: T = 850.2142850887657 K, F = -2.1231065602392007, relative_change = 1.7829707874684635e-5 Iter 50: T = 850.1679766082233 K, F = -0.887924964606385, relative_change = 7.458668848856904e-6 Iter 55: T = 850.1486071772682 K, F = -0.37134370127264893, relative_change = 3.1196669452602816e-6 Iter 60: T = 850.1405061825861 K, F = -0.1553008738665913, relative_change = 1.3047453955109682e-6 Iter 65: T = 850.1371181681181 K, F = -0.06494876814007733, relative_change = 5.456711996894843e-7 Iter 70: T = 850.1357012457084 K, F = -0.027162365878995454, relative_change = 2.2820815268206123e-7 Iter 75: T = 850.1351086693344 K, F = -0.011359628487371154, relative_change = 9.54397141754719e-8 Iter 80: T = 850.1348608463807 K, F = -0.004750732765986587, relative_change = 3.9914087606970887e-8 Iter 85: T = 850.1347572037853 K, F = -0.001986813261652731, relative_change = 1.6692558500472515e-8 Iter 90: T = 850.1347138592008 K, F = -0.0008309090494187377, relative_change = 6.981029143881181e-9 Iter 95: T = 850.1346957319755 K, F = -0.0003474960894631618, relative_change = 2.9195500709854228e-9 Iter 100: T = 850.1346881509529 K, F = -0.0001453270138274121, relative_change = 1.2209907518849132e-9 Iter 105: T = 850.1346849804788 K, F = -6.077749269151056e-5, relative_change = 5.10632922691999e-10 Iter 110: T = 850.1346836545486 K, F = -2.541786965570836e-5, relative_change = 2.1355275764931508e-10 Iter 115: T = 850.1346831000287 K, F = -1.0630056568761148e-5, relative_change = 8.931031325701463e-11 Iter 120: T = 850.1346828681219 K, F = -4.4456163204031895e-6, relative_change = 3.7350637237263916e-11 Iter 125: T = 850.1346827711358 K, F = -1.8592110904158687e-6, relative_change = 1.5620493092180132e-11 Iter 130: T = 850.134682730575 K, F = -7.775441421831175e-7, relative_change = 6.532675588697603e-12 Iter 135: T = 850.134682713612 K, F = -3.251813316396124e-7, relative_change = 2.7320688717937787e-12 Iter 140: T = 850.1346827065179 K, F = -1.3599437198585917e-7, relative_change = 1.1425809365595567e-12 Iter 145: T = 850.134682703551 K, F = -5.68737603678926e-8, relative_change = 4.778350268395467e-13 Converged in 150 iterations to T = 850.1346827023102 K Iter 1: T = 967.293957703724 K, F = -7452.102848684487, relative_change = 0.03270604229627602 Iter 2: T = 936.6618001218625 K, F = -6316.98838221118, relative_change = 0.0316678888955119 Iter 3: T = 908.0722433900826 K, F = -5353.268976943848, relative_change = 0.030522817016836103 Iter 5: T = 856.8830796652265 K, F = -3840.7756722666463, relative_change = 0.02791711343804551 Iter 10: T = 761.6522315569495 K, F = -1663.1503424188236, relative_change = 0.020003199253041656 Iter 15: T = 705.8669809132269 K, F = -712.104008872575, relative_change = 0.011994005925100538 Iter 20: T = 677.164827984741 K, F = -301.81944956051615, relative_change = 0.0061450010657889634 Iter 25: T = 663.7766105944949 K, F = -127.0616514573342, relative_change = 0.0028394884119805545 Iter 30: T = 657.8818077199916 K, F = -53.29817125597938, relative_change = 0.0012422564283535496 Iter 35: T = 655.3597720598907 K, F = -22.31890980091074, relative_change = 0.00052976309657476 Iter 40: T = 654.2946847356868 K, F = -9.339187081821418, relative_change = 0.00022339587646645116 Iter 45: T = 653.8474117484091 K, F = -3.9066670517075903, relative_change = 9.37530490351257e-5 Iter 50: T = 653.660032506237 K, F = -1.6339740020728566, relative_change = 3.926599490273482e-5 Iter 55: T = 653.5816113660803 K, F = -0.6833753173410246, relative_change = 1.643156016280299e-5 Iter 60: T = 653.5488047433221 K, F = -0.28580059692945675, relative_change = 6.873634408488378e-6 Iter 65: T = 653.535082877984 K, F = -0.11952607614599531, relative_change = 2.8749438895384335e-6 Iter 70: T = 653.529343924946 K, F = -0.04998738174042894, relative_change = 1.2023897275271882e-6 Iter 75: T = 653.5269437728845 K, F = -0.020905346120315804, relative_change = 5.028631641059129e-7 Iter 80: T = 653.5259399912949 K, F = -0.008742869973074219, relative_change = 2.103050283313983e-7 Iter 85: T = 653.5255201962141 K, F = -0.0036563734323755703, relative_change = 8.795236259089193e-8 Iter 90: T = 653.5253446326124 K, F = -0.0015291391745772542, relative_change = 3.678277879364168e-8 Iter 95: T = 653.5252712097675 K, F = -0.000639504288484527, relative_change = 1.5383006173823937e-8 Iter 100: T = 653.5252405034483 K, F = -0.0002674483346961076, relative_change = 6.433358428131561e-9 Iter 105: T = 653.5252276616974 K, F = -0.00011185008873759728, relative_change = 2.6905076047822613e-9 Iter 110: T = 653.5252222911236 K, F = -4.677704363675872e-5, relative_change = 1.1252024739406777e-9 Iter 115: T = 653.5252200450852 K, F = -1.956271762032502e-5, relative_change = 4.705731040743231e-10 Iter 120: T = 653.5252191057652 K, F = -8.18136205832376e-6, relative_change = 1.967992914075897e-10 Iter 125: T = 653.5252187129305 K, F = -3.4215440037899114e-6, relative_change = 8.230383065711186e-11 Iter 130: T = 653.5252185486422 K, F = -1.430930476276071e-6, relative_change = 3.4420442821145037e-11 Iter 135: T = 653.525218479935 K, F = -5.984334488506882e-7, relative_change = 1.4395069963386557e-11 Iter 140: T = 653.5252184512007 K, F = -2.5027088373930084e-7, relative_change = 6.020162958636462e-12 Iter 145: T = 653.5252184391837 K, F = -1.0466635613770592e-7, relative_change = 2.5177060586368334e-12 Iter 150: T = 653.5252184341581 K, F = -4.377299289703984e-8, relative_change = 1.052941303130712e-12 Iter 155: T = 653.5252184320564 K, F = -1.8306409776958077e-8, relative_change = 4.4035314221782874e-13 Converged in 159 iterations to T = 653.5252184312978 K Iter 1: T = 980.1913329227183 K, F = -4513.4236364655335, relative_change = 0.019808667077281714 Iter 2: T = 962.4242228709368 K, F = -3812.4481121763483, relative_change = 0.018126165224093386 Iter 3: T = 946.5774181353064 K, F = -3218.8397987297794, relative_change = 0.016465509033385443 Iter 5: T = 920.120404954731 K, F = -2291.3637988577466, relative_change = 0.013298262304128892 Iter 10: T = 878.1329609440076 K, F = -972.7104602584702, relative_change = 0.006980693125785794 Iter 15: T = 858.2658105384676 K, F = -409.8809537987679, relative_change = 0.0032718777133650054 Iter 20: T = 849.4509567341927 K, F = -172.01152133758026, relative_change = 0.001441502692825855 Iter 25: T = 845.6659449448504 K, F = -72.04593542240272, relative_change = 0.0006166780200689714 Iter 30: T = 844.0649363435635 K, F = -30.14984328574415, relative_change = 0.0002604022109044041 Iter 35: T = 843.3921496626887 K, F = -12.612440487821681, relative_change = 0.00010934683309226007 Iter 40: T = 843.110213167011 K, F = -5.275272738913451, relative_change = 4.5808187988075816e-5 Iter 45: T = 842.9922040653855 K, F = -2.2062870633857568, relative_change = 1.917121417561777e-5 Iter 50: T = 842.9428337519975 K, F = -0.9227139747332156, relative_change = 8.020026384369415e-6 Iter 55: T = 842.9221834350125 K, F = -0.38589321852742187, relative_change = 3.3544900010188286e-6 Iter 60: T = 842.9135466900881 K, F = -0.16138571482414243, relative_change = 1.4029611091614896e-6 Iter 65: T = 842.9099346065041 K, F = -0.06749353163004623, relative_change = 5.867479170670458e-7 Iter 70: T = 842.908423973621 K, F = -0.028226618167174866, relative_change = 2.4538722955031303e-7 Iter 75: T = 842.9077922060418 K, F = -0.011804711821761016, relative_change = 1.0262426231192297e-7 Iter 80: T = 842.9075279927939 K, F = -0.004936871987895719, relative_change = 4.2918760718302334e-8 Iter 85: T = 842.9074174955706 K, F = -0.0020646589165977947, relative_change = 1.794915029845876e-8 Iter 90: T = 842.9073712842968 K, F = -0.0008634650324192972, relative_change = 7.506551113775652e-9 Iter 95: T = 842.9073519581876 K, F = -0.00036111139077421583, relative_change = 3.139329685345496e-9 Iter 100: T = 842.9073438757774 K, F = -0.0001510210965700587, relative_change = 1.3129052290611269e-9 Iter 105: T = 842.907340495617 K, F = -6.315882847340859e-5, relative_change = 5.490726768024767e-10 Iter 110: T = 842.9073390819934 K, F = -2.6413775888523006e-5, relative_change = 2.2962874863150128e-10 Iter 115: T = 842.9073384907992 K, F = -1.1046557954808023e-5, relative_change = 9.603349778631967e-11 Iter 120: T = 842.9073382435547 K, F = -4.619802609351353e-6, relative_change = 4.0162357006861687e-11 Iter 125: T = 842.9073381401541 K, F = -1.9320573192427304e-6, relative_change = 1.6796383399888055e-11 Iter 130: T = 842.9073380969107 K, F = -8.08008732144927e-7, relative_change = 7.024441937467028e-12 Iter 135: T = 842.9073380788258 K, F = -3.3791858045084666e-7, relative_change = 2.937702717530763e-12 Iter 140: T = 842.9073380712624 K, F = -1.4132001102673541e-7, relative_change = 1.2285686685193767e-12 Iter 145: T = 842.9073380680994 K, F = -5.910090350447206e-8, relative_change = 5.137950230865905e-13 Converged in 150 iterations to T = 842.9073380667766 K Iter 1: T = 970.0105943878034 K, F = -6833.114596028377, relative_change = 0.02998940561219664 Iter 2: T = 942.178642994754 K, F = -5788.01471963805, relative_change = 0.028692420014870823 Iter 3: T = 916.4613492790378 K, F = -4901.027214786825, relative_change = 0.02729556003729051 Iter 5: T = 871.1649005430914 K, F = -3509.8946314929963, relative_change = 0.024243010648685167 Iter 10: T = 790.376293919306 K, F = -1511.6650324098614, relative_change = 0.015940761005217487 Iter 15: T = 746.04804567678 K, F = -643.8290688146066, relative_change = 0.008803013144096327 Iter 20: T = 724.4173303162811 K, F = -271.8603263972987, relative_change = 0.004258493174699796 Iter 25: T = 714.6519891075726 K, F = -114.21154314348914, relative_change = 0.0019067364459478572 Iter 30: T = 710.4234829752287 K, F = -47.86033521666079, relative_change = 0.0008217713109180808 Iter 35: T = 708.6281590623554 K, F = -20.0329336980896, relative_change = 0.00034812710424162954 Iter 40: T = 707.8724967956381 K, F = -8.381047926539074, relative_change = 0.00014638455801134454 Iter 45: T = 707.5556141315916 K, F = -3.5055877362401806, relative_change = 6.135969328607115e-5 Iter 50: T = 707.422939630936 K, F = -1.4661721287807215, relative_change = 2.5685911398258308e-5 Iter 55: T = 707.3674272140908 K, F = -0.6131870554603057, relative_change = 1.0746455612577033e-5 Iter 60: T = 707.3442066447574 K, F = -0.25644501214541854, relative_change = 4.4950487180465776e-6 Iter 65: T = 707.3344947181312 K, F = -0.10724886739509742, relative_change = 1.8800147259908385e-6 Iter 70: T = 707.3304329332273 K, F = -0.04485284473812312, relative_change = 7.862676419542438e-7 Iter 75: T = 707.3287342215747 K, F = -0.018758010639216005, relative_change = 3.288305462277735e-7 Iter 80: T = 707.3280237957549 K, F = -0.007844826744376587, relative_change = 1.3752156605063644e-7 Iter 85: T = 707.3277266864374 K, F = -0.0032808006999953676, relative_change = 5.751328450906241e-8 Iter 90: T = 707.3276024316405 K, F = -0.001372070116538393, relative_change = 2.4052764003424364e-8 Iter 95: T = 707.3275504667773 K, F = -0.0005738161231139127, relative_change = 1.0059156927852475e-8 Iter 100: T = 707.3275287344469 K, F = -0.00023997675754861003, relative_change = 4.206860210274119e-9 Iter 105: T = 707.3275196457262 K, F = -0.00010036114779066185, relative_change = 1.759359320628863e-9 Iter 110: T = 707.3275158447144 K, F = -4.1972230036435576e-5, relative_change = 7.357850885237598e-10 Iter 115: T = 707.3275142550859 K, F = -1.7553288910066023e-5, relative_change = 3.0771413292931694e-10 Iter 120: T = 707.3275135902843 K, F = -7.340994715776539e-6, relative_change = 1.2868971994284817e-10 Iter 125: T = 707.3275133122563 K, F = -3.0700915867321044e-6, relative_change = 5.381957657396901e-11 Iter 130: T = 707.3275131959817 K, F = -1.283949471853063e-6, relative_change = 2.250799854643422e-11 Iter 135: T = 707.3275131473544 K, F = -5.369647232411623e-7, relative_change = 9.413143958625835e-12 Iter 140: T = 707.3275131270178 K, F = -2.2456693771211178e-7, relative_change = 3.936722138023667e-12 Iter 145: T = 707.3275131185128 K, F = -9.391682054271655e-8, relative_change = 1.6463885127135248e-12 Iter 150: T = 707.3275131149559 K, F = -3.927823544191966e-8, relative_change = 6.885586123879607e-13 Iter 155: T = 707.3275131134682 K, F = -1.642617564190374e-8, relative_change = 2.8795551988754606e-13 Converged in 157 iterations to T = 707.3275131131534 K Iter 1: T = 969.3309663551347 K, F = -6987.968489765075, relative_change = 0.030669033644865236 Iter 2: T = 940.8031061281328 K, F = -5920.278373128399, relative_change = 0.02943046412132276 Iter 3: T = 914.3772924164842 K, F = -5014.030380513551, relative_change = 0.02808856979692993 Iter 5: T = 867.6457077242353 K, F = -3592.4285047585554, relative_change = 0.02512682160226505 Iter 10: T = 783.4610663921511 K, F = -1549.1820467537223, relative_change = 0.01685778204959291 Iter 15: T = 736.5800352326133 K, F = -660.578491666157, relative_change = 0.009479457816306366 Iter 20: T = 713.4431631704288 K, F = -279.1511500908214, relative_change = 0.004640834391476378 Iter 25: T = 702.9279044460542 K, F = -117.32349729505974, relative_change = 0.002091102924006301 Iter 30: T = 698.3595600404686 K, F = -49.174027344085296, relative_change = 0.000903891416632489 Iter 35: T = 696.4170385606405 K, F = -20.58457922501145, relative_change = 0.00038341142069586086 Iter 40: T = 695.5988892806588 K, F = -8.612153153204243, relative_change = 0.00016131039521371523 Iter 45: T = 695.2557085612303 K, F = -3.602309348841857, relative_change = 6.76318808294992e-5 Iter 50: T = 695.1120067701057 K, F = -1.5066346630126293, relative_change = 2.831429424735054e-5 Iter 55: T = 695.0518774969916 K, F = -0.6301111426755388, relative_change = 1.1846602080756077e-5 Iter 60: T = 695.026725207947 K, F = -0.263523247689694, relative_change = 4.955305108185296e-6 Iter 65: T = 695.0162052563913 K, F = -0.11020913653819414, relative_change = 2.072527789685692e-6 Iter 70: T = 695.0118055184025 K, F = -0.04609087628132014, relative_change = 8.667838626222237e-7 Iter 75: T = 695.0099654659393 K, F = -0.019275772250921697, relative_change = 3.6250425855509543e-7 Iter 80: T = 695.009195928866 K, F = -0.008061361189359517, relative_change = 1.5160446637862548e-7 Iter 85: T = 695.0088740983697 K, F = -0.0033713580527454656, relative_change = 6.340294813617848e-8 Iter 90: T = 695.0087395048548 K, F = -0.001409942291691113, relative_change = 2.6515896270956662e-8 Iter 95: T = 695.008683216212 K, F = -0.0005896547216879267, relative_change = 1.1089269083604042e-8 Iter 100: T = 695.0086596756245 K, F = -0.0002466006493510031, relative_change = 4.637665564705289e-9 Iter 105: T = 695.0086498306688 K, F = -0.00010313133707118283, relative_change = 1.93952726439524e-9 Iter 110: T = 695.0086457133906 K, F = -4.313075728890059e-5, relative_change = 8.11133496674701e-10 Iter 115: T = 695.0086439914958 K, F = -1.803779846609732e-5, relative_change = 3.3922573203851603e-10 Iter 120: T = 695.0086432713787 K, F = -7.543623021688539e-6, relative_change = 1.4186825843455278e-10 Iter 125: T = 695.0086429702171 K, F = -3.154833519869449e-6, relative_change = 5.933100537386373e-11 Iter 130: T = 695.0086428442678 K, F = -1.3193884894624475e-6, relative_change = 2.4812924400933474e-11 Iter 135: T = 695.0086427915942 K, F = -5.517844809954653e-7, relative_change = 1.0377069928105376e-11 Iter 140: T = 695.0086427695655 K, F = -2.3076334465521597e-7, relative_change = 4.339823694156603e-12 Iter 145: T = 695.0086427603528 K, F = -9.650802634819655e-8, relative_change = 1.8149668443850876e-12 Iter 150: T = 695.0086427565001 K, F = -4.036096712400905e-8, relative_change = 7.590437802036275e-13 Iter 155: T = 695.0086427548888 K, F = -1.6880869480040417e-8, relative_change = 3.1746808603536264e-13 Converged in 158 iterations to T = 695.0086427544171 K Iter 1: T = 965.2373234216469 K, F = -7920.708926220012, relative_change = 0.034762676578353115 Iter 2: T = 932.4521822860378 K, F = -6717.951216505318, relative_change = 0.03396588625415959 Iter 3: T = 901.6151669571507 K, F = -5696.60539955668, relative_change = 0.033070881182653014 Iter 5: T = 845.672255339031 K, F = -4093.048450762008, relative_change = 0.030968027350615525 Iter 10: T = 737.7340884840914 K, F = -1780.8396800907785, relative_change = 0.02394484376734722 Iter 15: T = 670.3741738990411 K, F = -766.6566215876775, relative_change = 0.015639015841980273 Iter 20: T = 633.5946817965149 K, F = -326.3999384130833, relative_change = 0.008585491879447384 Iter 25: T = 615.7130833204817 K, F = -137.7896062598605, relative_change = 0.004137420705470833 Iter 30: T = 607.6574301580137 K, F = -57.87929668963644, relative_change = 0.0018488304031830897 Iter 35: T = 604.1728797196147 K, F = -24.252821159508734, relative_change = 0.0007960774424746168 Iter 40: T = 602.6941173549003 K, F = -10.151246386164846, relative_change = 0.0003371058365451165 Iter 45: T = 602.0718240662316 K, F = -4.246861924104698, relative_change = 0.00014172572995025808 Iter 50: T = 601.8108913888467 K, F = -1.7763500390933933, relative_change = 5.9402537351541496e-5 Iter 55: T = 601.7016463497807 K, F = -0.7429366509168012, relative_change = 2.4865862442067e-5 Iter 60: T = 601.6559377618494 K, F = -0.31071300545070124, relative_change = 1.0403230918137829e-5 Iter 65: T = 601.6368182071643 K, F = -0.12994529368122965, relative_change = 4.35146071270003e-6 Iter 70: T = 601.6288215376685 K, F = -0.05434491929574525, relative_change = 1.8199562246810337e-6 Iter 75: T = 601.6254771224395 K, F = -0.022727737220163524, relative_change = 7.611490106332217e-7 Iter 80: T = 601.6240784283647 K, F = -0.009505018643432117, relative_change = 3.1832538121138066e-7 Iter 85: T = 601.6234934743558 K, F = -0.003975113624932025, relative_change = 1.3312813630047728e-7 Iter 90: T = 601.6232488390012 K, F = -0.0016624402205977495, relative_change = 5.5675891965618146e-8 Iter 95: T = 601.6231465294691 K, F = -0.0006952523943627442, relative_change = 2.3284343134536545e-8 Iter 100: T = 601.6231037423825 K, F = -0.0002907628615104185, relative_change = 9.737793908299811e-9 Iter 105: T = 601.6230858483085 K, F = -0.00012160050144682799, relative_change = 4.072462293709557e-9 Iter 110: T = 601.6230783647926 K, F = -5.085478207000893e-5, relative_change = 1.7031524725279772e-9 Iter 115: T = 601.6230752350968 K, F = -2.1268077694536203e-5, relative_change = 7.122787382831537e-10 Iter 120: T = 601.6230739262206 K, F = -8.894563688854884e-6, relative_change = 2.97883464527927e-10 Iter 125: T = 601.6230733788329 K, F = -3.7198130372062543e-6, relative_change = 1.245784322290569e-10 Iter 130: T = 601.6230731499089 K, F = -1.5556705982855412e-6, relative_change = 5.2100200362730646e-11 Iter 135: T = 601.6230730541702 K, F = -6.506004559536649e-7, relative_change = 2.1788940521410496e-11 Iter 140: T = 601.623073014131 K, F = -2.720881931428387e-7, relative_change = 9.112372124233554e-12 Iter 145: T = 601.6230729973862 K, F = -1.137906781578657e-7, relative_change = 3.810907749445866e-12 Iter 150: T = 601.6230729903833 K, F = -4.75887030892963e-8, relative_change = 1.5937698969288714e-12 Iter 155: T = 601.6230729874546 K, F = -1.990189052447633e-8, relative_change = 6.665244470121675e-13 Iter 160: T = 601.6230729862298 K, F = -8.323122802078586e-9, relative_change = 2.7874562048770663e-13 Converged in 162 iterations to T = 601.6230729859706 K Iter 1: T = 965.1837789127375 K, F = -7932.909093508994, relative_change = 0.034816221087262504 Iter 2: T = 932.3422002182452 K, F = -6728.39605459052, relative_change = 0.0340262439257814 Iter 3: T = 901.4458069374281 K, F = -5705.555376189225, relative_change = 0.033138469194663504 Iter 5: T = 845.3755378908844 K, F = -4099.637583196394, relative_change = 0.03105083190533014 Iter 10: T = 737.0824035875384 K, F = -1783.9431264665711, relative_change = 0.024060132779790973 Iter 15: T = 669.3755749090584 K, F = -768.118816111162, relative_change = 0.015755104607838705 Iter 20: T = 632.337130033081 K, F = -327.07031614047685, relative_change = 0.008668838889551148 Iter 25: T = 614.3043998298208 K, F = -138.08582901593357, relative_change = 0.004183693663506535 Iter 30: T = 606.174076349622 K, F = -58.006649085657145, relative_change = 0.0018709324826289035 Iter 35: T = 602.6558265037344 K, F = -24.306754540605517, relative_change = 0.0008058785269245679 Iter 40: T = 601.1624954715838 K, F = -10.173925194821416, relative_change = 0.0003413088477247633 Iter 45: T = 600.5340228001279 K, F = -4.256368449583437, relative_change = 0.00014350219388670524 Iter 50: T = 600.2704904194402 K, F = -1.780329657151864, relative_change = 6.0148787391349625e-5 Iter 55: T = 600.1601554380196 K, F = -0.744601654904193, relative_change = 2.517853516891248e-5 Iter 60: T = 600.1139905467893 K, F = -0.3114094491408823, relative_change = 1.0534096396599883e-5 Iter 65: T = 600.0946800771866 K, F = -0.13023657560119412, relative_change = 4.406208075694259e-6 Iter 70: T = 600.0866035501924 K, F = -0.054466740521382784, relative_change = 1.8428553500501609e-6 Iter 75: T = 600.0832257350498 K, F = -0.022778684949574357, relative_change = 7.70726244864113e-7 Iter 80: T = 600.0818130722855 K, F = -0.009526325704596939, relative_change = 3.2233079056029033e-7 Iter 85: T = 600.0812222763255 K, F = -0.003984024509928297, relative_change = 1.3480326297866596e-7 Iter 90: T = 600.0809751977837 K, F = -0.0016661668618955794, relative_change = 5.637645285039028e-8 Iter 95: T = 600.0808718664791 K, F = -0.0006968109202570849, relative_change = 2.357732655428894e-8 Iter 100: T = 600.0808286520746 K, F = -0.0002914146556385888, relative_change = 9.860323158898521e-9 Iter 105: T = 600.0808105792912 K, F = -0.00012187308962768872, relative_change = 4.123705507459035e-9 Iter 110: T = 600.080803021037 K, F = -5.096878254567949e-5, relative_change = 1.724583027621935e-9 Iter 115: T = 600.0807998600845 K, F = -2.1315753226669454e-5, relative_change = 7.212412249527497e-10 Iter 120: T = 600.0807985381365 K, F = -8.914502476142783e-6, relative_change = 3.016316939307884e-10 Iter 125: T = 600.0807979852821 K, F = -3.728151710902239e-6, relative_change = 1.2614598781394393e-10 Iter 130: T = 600.0807977540717 K, F = -1.5591568015005386e-6, relative_change = 5.275573273151643e-11 Iter 135: T = 600.0807976573768 K, F = -6.520581437574613e-7, relative_change = 2.2063082526889553e-11 Iter 140: T = 600.0807976169377 K, F = -2.7269800195739435e-7, relative_change = 9.227027653337805e-12 Iter 145: T = 600.0807976000258 K, F = -1.1404563204919782e-7, relative_change = 3.858855559073514e-12 Iter 150: T = 600.080797592953 K, F = -4.769514749813908e-8, relative_change = 1.6138161696096938e-12 Iter 155: T = 600.080797589995 K, F = -1.9946914453505826e-8, relative_change = 6.749251185542604e-13 Iter 160: T = 600.080797588758 K, F = -8.341729140770582e-9, relative_change = 2.8225129969150927e-13 Converged in 162 iterations to T = 600.0807975884962 K Iter 1: T = 973.4613378835288 K, F = -6046.859408022846, relative_change = 0.02653866211647116 Iter 2: T = 949.1157716025946 K, F = -5117.193881982692, relative_change = 0.025009279088438828 Iter 3: T = 926.8963038962205 K, F = -4328.644247106864, relative_change = 0.023410703278964762 Iter 5: T = 888.51527173647 K, F = -3093.237772767514, relative_change = 0.02008354226444654 Iter 10: T = 823.1236121069844 K, F = -1324.5625773329978, relative_change = 0.012062641336680807 Iter 15: T = 789.4405770055882 K, F = -561.4515977304258, relative_change = 0.006188037431897713 Iter 20: T = 773.7173269872468 K, F = -236.37447401556244, relative_change = 0.0028614691666940307 Iter 25: T = 766.7916909504615 K, F = -99.15364614826755, relative_change = 0.0012523201576614164 Iter 30: T = 763.82807828993 K, F = -41.521591211299835, relative_change = 0.0005341403018103207 Iter 35: T = 762.5764063597275 K, F = -17.37449075553229, relative_change = 0.0002252572382120373 Iter 40: T = 762.0507608595974 K, F = -7.267921960815351, relative_change = 9.453697272437059e-5 Iter 45: T = 761.8305452591545 K, F = -3.039830400494261, relative_change = 3.959480703141786e-5 Iter 50: T = 761.738381026806 K, F = -1.2713456736917352, relative_change = 1.6569242802823555e-5 Iter 55: T = 761.6998250336537 K, F = -0.5317010952748553, relative_change = 6.931244615403528e-6 Iter 60: T = 761.6836983900578 K, F = -0.22236534880661218, relative_change = 2.8990423605259003e-6 Iter 65: T = 761.6769536735447 K, F = -0.09299612448432171, relative_change = 1.212468904613543e-6 Iter 70: T = 761.6741328893058 K, F = -0.03889213883586107, relative_change = 5.070785552943486e-7 Iter 75: T = 761.6729531925881 K, F = -0.016265165493267175, relative_change = 2.1206798308740068e-7 Iter 80: T = 761.6724598273976 K, F = -0.006802287953448505, relative_change = 8.868965619268626e-8 Iter 85: T = 761.6722534958445 K, F = -0.002844798320717712, relative_change = 3.709112465462921e-8 Iter 90: T = 761.6721672054657 K, F = -0.0011897286770375937, relative_change = 1.5511960249230333e-8 Iter 95: T = 761.6721311177885 K, F = -0.0004975587495051892, relative_change = 6.48728860119579e-9 Iter 100: T = 761.672116025489 K, F = -0.00020808501358238196, relative_change = 2.713061855284129e-9 Iter 105: T = 761.6721097137089 K, F = -8.702363766954768e-5, relative_change = 1.1346349125289643e-9 Iter 110: T = 761.672107074047 K, F = -3.63943251262544e-5, relative_change = 4.745178860984887e-10 Iter 115: T = 761.6721059701088 K, F = -1.5220541259131082e-5, relative_change = 1.9844904633737394e-10 Iter 120: T = 761.6721055084287 K, F = -6.365411097219997e-6, relative_change = 8.29937479835938e-11 Iter 125: T = 761.6721053153485 K, F = -2.662091544092249e-6, relative_change = 3.4708984480640595e-11 Iter 130: T = 761.6721052346 K, F = -1.113318929713003e-6, relative_change = 1.4515717747825835e-11 Iter 135: T = 761.6721052008301 K, F = -4.656019856330573e-7, relative_change = 6.0706297425892814e-12 Iter 140: T = 761.6721051867072 K, F = -1.9472079282323307e-7, relative_change = 2.5388161412379388e-12 Iter 145: T = 761.6721051808007 K, F = -8.143485630274228e-8, relative_change = 1.0617670801911367e-12 Iter 150: T = 761.6721051783306 K, F = -3.405753323804106e-8, relative_change = 4.440502417145924e-13 Converged in 154 iterations to T = 761.6721051774391 K Iter 1: T = 976.4913856367102 K, F = -5356.460145140948, relative_change = 0.02350861436328976 Iter 2: T = 955.1433274356908 K, F = -4529.173019317123, relative_change = 0.02186200361317029 Iter 3: T = 935.863731334887 K, F = -3827.9215913733597, relative_change = 0.02018502935320139 Iter 5: T = 903.0872111003655 K, F = -2730.5278265604957, relative_change = 0.01683330660449239 Iter 10: T = 849.1389455033618 K, F = -1164.2742159876307, relative_change = 0.00946117391151948 Iter 15: T = 822.5221979951832 K, F = -491.99562042753746, relative_change = 0.004630404203340237 Iter 20: T = 810.427561653206 K, F = -206.77686499252303, relative_change = 0.0020860477065886476 Iter 25: T = 805.1735267605128 K, F = -86.66633493156488, relative_change = 0.0009016342577886826 Iter 30: T = 802.9395309190563 K, F = -36.279027386219624, relative_change = 0.0003824405508192852 Iter 35: T = 801.9986352683823 K, F = -15.17836364766997, relative_change = 0.00016089951242816638 Iter 40: T = 801.6039703242676 K, F = -6.348834874444562, relative_change = 6.745918464353087e-5 Iter 45: T = 801.4387108028395 K, F = -2.6553446905609412, relative_change = 2.8241919375133335e-5 Iter 50: T = 801.3695611996968 K, F = -1.1105294432193993, relative_change = 1.181630752721249e-5 Iter 55: T = 801.3406356904137 K, F = -0.4644423763597755, relative_change = 4.94263092162328e-6 Iter 60: T = 801.3285375912817 K, F = -0.19423634558524638, relative_change = 2.06722648121491e-6 Iter 65: T = 801.3234778283228 K, F = -0.08123213380203931, relative_change = 8.645666500367311e-7 Iter 70: T = 801.3213617411956 K, F = -0.03397227897150612, relative_change = 3.6157696891642654e-7 Iter 75: T = 801.3204767623704 K, F = -0.014207618114487897, relative_change = 1.5121665845657733e-7 Iter 80: T = 801.3201066526219 K, F = -0.005941796502273999, relative_change = 6.324076146731285e-8 Iter 85: T = 801.3199518681241 K, F = -0.0024849304214228374, relative_change = 2.6448067770878228e-8 Iter 90: T = 801.3198871353669 K, F = -0.0010392276056664373, relative_change = 1.106090234107497e-8 Iter 95: T = 801.3198600633493 K, F = -0.0004346174000662284, relative_change = 4.625802244789997e-9 Iter 100: T = 801.3198487415073 K, F = -0.00018176218899212948, relative_change = 1.934565892418109e-9 Iter 105: T = 801.3198440065775 K, F = -7.601511538979366e-5, relative_change = 8.09058553343836e-10 Iter 110: T = 801.3198420263734 K, F = -3.1790432331035845e-5, relative_change = 3.383579879166959e-10 Iter 115: T = 801.3198411982283 K, F = -1.3295137862856521e-5, relative_change = 1.4150534574816344e-10 Iter 120: T = 801.3198408518881 K, F = -5.560185096786796e-6, relative_change = 5.917922207951294e-11 Iter 125: T = 801.3198407070446 K, F = -2.3253360517117017e-6, relative_change = 2.474946001558507e-11 Iter 130: T = 801.3198406464693 K, F = -9.72483285677228e-7, relative_change = 1.0350519524108859e-11 Iter 135: T = 801.3198406211359 K, F = -4.0670359879868556e-7, relative_change = 4.3287052873029676e-12 Iter 140: T = 801.3198406105413 K, F = -1.7009000785606077e-7, relative_change = 1.8103344021175692e-12 Iter 145: T = 801.3198406061105 K, F = -7.11333649761059e-8, relative_change = 7.571001928990223e-13 Iter 150: T = 801.3198406042574 K, F = -2.9749592123096136e-8, relative_change = 3.166365311535178e-13 Converged in 153 iterations to T = 801.3198406037147 K Iter 1: T = 967.3065764082473 K, F = -7449.227664855347, relative_change = 0.03269342359175264 Iter 2: T = 936.6875402041422 K, F = -6314.529564845339, relative_change = 0.031653910922220856 Iter 3: T = 908.1115756096523 K, F = -5351.164979681732, relative_change = 0.030507467397572135 Iter 5: T = 856.9507722911496 K, F = -3839.2326494205176, relative_change = 0.027899144946122657 Iter 10: T = 761.7927299182838 K, F = -1662.4368233657008, relative_change = 0.01998163184824048 Iter 15: T = 706.0694278414607 K, F = -711.7779298497559, relative_change = 0.01197566154701246 Iter 20: T = 677.4077940628656 K, F = -301.6746068904377, relative_change = 0.006133529588535518 Iter 25: T = 664.0411085066848 K, F = -126.99905091558905, relative_change = 0.002833637634546808 Iter 30: T = 658.1563984381894 K, F = -53.2715781914505, relative_change = 0.0012395794611775742 Iter 35: T = 655.6388032837144 K, F = -22.307710921395003, relative_change = 0.0005285990920406561 Iter 40: T = 654.575613944259 K, F = -9.334489640327112, relative_change = 0.0002229009570323367 Iter 45: T = 654.1291420691783 K, F = -3.9047000570849737, relative_change = 9.354462169078988e-5 Iter 50: T = 653.9420991624448 K, F = -1.6331509473864019, relative_change = 3.917857322150777e-5 Iter 55: T = 653.8638189103862 K, F = -0.6830310299577853, relative_change = 1.639495464988257e-5 Iter 60: T = 653.8310712487762 K, F = -0.2856565985139262, relative_change = 6.858317713378105e-6 Iter 65: T = 653.8173740487076 K, F = -0.1194658519592613, relative_change = 2.8685368940716725e-6 Iter 70: T = 653.811645412207 K, F = -0.049962194858821196, relative_change = 1.199710005723461e-6 Iter 75: T = 653.8092495748591 K, F = -0.02089481259504694, relative_change = 5.017424305190739e-7 Iter 80: T = 653.8082475977718 K, F = -0.00873846471455153, relative_change = 2.0983631682519438e-7 Iter 85: T = 653.807828557362 K, F = -0.003654531097760094, relative_change = 8.775634054124571e-8 Iter 90: T = 653.807653309374 K, F = -0.001528368689170445, relative_change = 3.670079983862207e-8 Iter 95: T = 653.8075800185227 K, F = -0.0006391820627614786, relative_change = 1.5348721569592518e-8 Iter 100: T = 653.8075493674047 K, F = -0.00026731357570053405, relative_change = 6.419020182220657e-9 Iter 105: T = 653.8075365487396 K, F = -0.00011179373061492859, relative_change = 2.6845111707021224e-9 Iter 110: T = 653.8075311878205 K, F = -4.6753473034732984e-5, relative_change = 1.122694670266281e-9 Iter 115: T = 653.80752894582 K, F = -1.9552860253346793e-5, relative_change = 4.695243139900759e-10 Iter 120: T = 653.8075280081887 K, F = -8.177240206685976e-6, relative_change = 1.963606896814e-10 Iter 125: T = 653.8075276160602 K, F = -3.419820217731573e-6, relative_change = 8.212040266453502e-11 Iter 130: T = 653.8075274520672 K, F = -1.4302094559215384e-6, relative_change = 3.434372834752886e-11 Iter 135: T = 653.8075273834834 K, F = -5.98130755313786e-7, relative_change = 1.436295928684248e-11 Iter 140: T = 653.8075273548009 K, F = -2.5014467630590786e-7, relative_change = 6.006743125034149e-12 Iter 145: T = 653.8075273428054 K, F = -1.0461331678701669e-7, relative_change = 2.5120875276348258e-12 Iter 150: T = 653.8075273377888 K, F = -4.3749804945480975e-8, relative_change = 1.0505673916043346e-12 Iter 155: T = 653.8075273356908 K, F = -1.8296980652809935e-8, relative_change = 4.393667871869379e-13 Converged in 159 iterations to T = 653.8075273349335 K Iter 1: T = 970.3786522315098 K, F = -6749.252266226472, relative_change = 0.029621347768490215 Iter 2: T = 942.9222953725533 K, F = -5716.4061441126905, relative_change = 0.028294477414375345 Iter 3: T = 917.5859610810614 K, F = -4839.866976467291, relative_change = 0.026870012954229038 Iter 5: T = 873.0562750454561 K, F = -3465.2641180036308, relative_change = 0.02377371176387702 Iter 10: T = 794.0521485984332 K, F = -1491.445569579461, relative_change = 0.015468053640467423 Iter 15: T = 751.0334711694185 K, F = -634.8390069113423, relative_change = 0.00846351802414513 Iter 20: T = 730.1611744767503 K, F = -267.9596642257594, relative_change = 0.004069967072639655 Iter 25: T = 720.7692853679739 K, F = -112.54972450281689, relative_change = 0.0018166762300868232 Iter 30: T = 716.70907877809 K, F = -47.1594461300626, relative_change = 0.0007818320082726592 Iter 35: T = 714.9864685544328 K, F = -19.738735934896418, relative_change = 0.00033099942076294847 Iter 40: T = 714.2616403305942 K, F = -8.25781887145012, relative_change = 0.00013914520908620302 Iter 45: T = 713.9577283443213 K, F = -3.4540180192660515, relative_change = 5.831860094700463e-5 Iter 50: T = 713.8304916402575 K, F = -1.4445991163692538, relative_change = 2.4411715701487953e-5 Iter 55: T = 713.777255708966 K, F = -0.6041639235161058, relative_change = 1.0213155587192649e-5 Iter 60: T = 713.7549876018358 K, F = -0.2526712485139777, relative_change = 4.271943427637438e-6 Iter 65: T = 713.7456740778083 K, F = -0.10567060252057947, relative_change = 1.786696682836678e-6 Iter 70: T = 713.7417789221428 K, F = -0.04419278994767706, relative_change = 7.472386921990967e-7 Iter 75: T = 713.7401498990164 K, F = -0.018481966868636346, relative_change = 3.12507783344027e-7 Iter 80: T = 713.7394686181534 K, F = -0.007729381773119881, relative_change = 1.306951234784961e-7 Iter 85: T = 713.7391836976718 K, F = -0.0032325202031650013, relative_change = 5.4658372747379956e-8 Iter 90: T = 713.7390645404033 K, F = -0.0013518786292275875, relative_change = 2.2858803693384393e-8 Iter 95: T = 713.7390147073895 K, F = -0.0005653718015582454, relative_change = 9.559828110525851e-9 Iter 100: T = 713.7389938666244 K, F = -0.0002364452406322659, relative_change = 3.99803486132357e-9 Iter 105: T = 713.7389851507668 K, F = -9.88842231780529e-5, relative_change = 1.6720260193401677e-9 Iter 110: T = 713.738981505691 K, F = -4.135456216969313e-5, relative_change = 6.992612514428862e-10 Iter 115: T = 713.7389799812768 K, F = -1.729497214542075e-5, relative_change = 2.9243941549741183e-10 Iter 120: T = 713.7389793437485 K, F = -7.232963968206718e-6, relative_change = 1.2230165775269595e-10 Iter 125: T = 713.7389790771266 K, F = -3.024911709781364e-6, relative_change = 5.114801054532343e-11 Iter 130: T = 713.7389789656222 K, F = -1.2650552115855973e-6, relative_change = 2.1390725931436077e-11 Iter 135: T = 713.7389789189897 K, F = -5.29061572329681e-7, relative_change = 8.945863385594616e-12 Iter 140: T = 713.7389788994874 K, F = -2.2125994125765658e-7, relative_change = 3.74126814528832e-12 Iter 145: T = 713.7389788913313 K, F = -9.2533387729965e-8, relative_change = 1.5646402775883708e-12 Iter 150: T = 713.7389788879203 K, F = -3.869874332096401e-8, relative_change = 6.54354217205475e-13 Iter 155: T = 713.7389788864938 K, F = -1.618387268642607e-8, relative_change = 2.736519182379582e-13 Converged in 157 iterations to T = 713.738978886192 K Iter 1: T = 964.2946319505153 K, F = -8135.502074648429, relative_change = 0.035705368049484675 Iter 2: T = 930.5129941431235 K, F = -6901.883139716088, relative_change = 0.03503248559940684 Iter 3: T = 898.6240466206478 K, F = -5854.260037120222, relative_change = 0.034270287167608014 Iter 5: T = 840.411131900247 K, F = -4209.21597095921, relative_change = 0.032452277099008164 Iter 10: T = 726.0232458924331 K, F = -1835.7970762077985, relative_change = 0.026085081104442426 Iter 15: T = 652.1344290181229 K, F = -792.7687800271801, relative_change = 0.01789309271234469 Iter 20: T = 610.2952672782475 K, F = -338.4918722084421, relative_change = 0.010272564284569163 Iter 25: T = 589.3723538767609 K, F = -143.1742752643402, relative_change = 0.005100779439422819 Iter 30: T = 579.7870273702406 K, F = -60.20461190394176, relative_change = 0.002315982024182317 Iter 35: T = 575.6058771311442 K, F = -25.239715316221208, relative_change = 0.0010047119281390326 Iter 40: T = 573.8247261846329 K, F = -10.566632535341645, relative_change = 0.0004268553896325368 Iter 45: T = 573.0739438638657 K, F = -4.421056134508874, relative_change = 0.00017971050697368176 Iter 50: T = 572.7589140386285 K, F = -1.8492839525012976, relative_change = 7.536805509456112e-5 Iter 55: T = 572.626981171711 K, F = -0.7734532012646973, relative_change = 3.155687272282204e-5 Iter 60: T = 572.5717730735154 K, F = -0.3234779694534608, relative_change = 1.3203952667339476e-5 Iter 65: T = 572.5486787502364 K, F = -0.13528420531313193, relative_change = 5.523186906398712e-6 Iter 70: T = 572.5390194420381 K, F = -0.05657779484513256, relative_change = 2.3100615096194404e-6 Iter 75: T = 572.53497963144 K, F = -0.023661566250260918, relative_change = 9.661300831968548e-7 Iter 80: T = 572.5332901042206 K, F = -0.009895559511095886, relative_change = 4.0405322071219796e-7 Iter 85: T = 572.5325835184813 K, F = -0.004138442901138628, relative_change = 1.6898094604890158e-7 Iter 90: T = 572.5322880149633 K, F = -0.0017307465472875538, relative_change = 7.067003570595649e-8 Iter 95: T = 572.5321644317017 K, F = -0.000723818928339226, relative_change = 2.9555085438495715e-8 Iter 100: T = 572.5321127476776 K, F = -0.00030270972923818196, relative_change = 1.2360295379803061e-8 Iter 105: T = 572.5320911327966 K, F = -0.0001265968257896377, relative_change = 5.16922414781325e-9 Iter 110: T = 572.5320820931943 K, F = -5.2944305161783944e-5, relative_change = 2.1618314645468167e-9 Iter 115: T = 572.5320783127245 K, F = -2.2141940906605928e-5, relative_change = 9.041037727579e-10 Iter 120: T = 572.5320767316869 K, F = -9.260024076584994e-6, relative_change = 3.7810699833635044e-10 Iter 125: T = 572.532076070478 K, F = -3.872652020286971e-6, relative_change = 1.58128837131808e-10 Iter 130: T = 572.5320757939526 K, F = -1.6195894814163836e-6, relative_change = 6.61313747206238e-11 Iter 135: T = 572.5320756783063 K, F = -6.773318487196534e-7, relative_change = 2.7656938288951376e-11 Iter 140: T = 572.5320756299418 K, F = -2.8326871437389656e-7, relative_change = 1.1566480109549471e-11 Iter 145: T = 572.5320756097151 K, F = -1.1846603925613763e-7, relative_change = 4.837227047724966e-12 Iter 150: T = 572.532075601256 K, F = -4.954383825417352e-8, relative_change = 2.02298309264729e-12 Iter 155: T = 572.5320755977184 K, F = -2.0720254956252404e-8, relative_change = 8.460532516279533e-13 Iter 160: T = 572.532075596239 K, F = -8.66639587870921e-9, relative_change = 3.5386786642577956e-13 Converged in 163 iterations to T = 572.5320755958058 K Iter 1: T = 966.4428236478622 K, F = -7646.034552950104, relative_change = 0.03355717635213783 Iter 2: T = 934.9231414260145 K, F = -6482.873676982783, relative_change = 0.03261411999819692 Iter 3: T = 905.4112758536114 K, F = -5495.256520780242, relative_change = 0.03156608737632631 Iter 5: T = 852.2868561648394 K, F = -3944.9874853852834, relative_change = 0.02914977483852826 Iter 10: T = 752.0062483519 K, F = -1711.510713979939, relative_change = 0.021526959106986134 Iter 15: T = 691.808482314705 K, F = -734.3257028464482, relative_change = 0.01333207881223466 Iter 20: T = 660.1494861296213 K, F = -311.7422537110129, relative_change = 0.007002793443258452 Iter 25: T = 645.1639391248285 K, F = -131.3652078345437, relative_change = 0.0032834541030452506 Iter 30: T = 638.5136734525428 K, F = -55.129676926234566, relative_change = 0.0014468704851286777 Iter 35: T = 635.6578432403022 K, F = -23.090843613516288, relative_change = 0.0006190262112022364 Iter 40: T = 634.4498150110434 K, F = -9.663098742266472, relative_change = 0.0002614032487453841 Iter 45: T = 633.9421600505116 K, F = -4.042322241726226, relative_change = 0.00010976887284706261 Iter 50: T = 633.7294216665593 K, F = -1.6907403049908698, relative_change = 4.598528895945276e-5 Iter 55: T = 633.640376274021 K, F = -0.7071215685953331, relative_change = 1.9245385059705834e-5 Iter 60: T = 633.6031231742983 K, F = -0.29573259671340246, relative_change = 8.051063952357109e-6 Iter 65: T = 633.5875411636334 K, F = -0.12367993798068722, relative_change = 3.3674735061809887e-6 Iter 70: T = 633.5810241749006 K, F = -0.05172460801470741, relative_change = 1.4083915300413495e-6 Iter 75: T = 633.5782986214034 K, F = -0.021631880430969364, relative_change = 5.890190825773878e-7 Iter 80: T = 633.5771587499662 K, F = -0.009046716267312627, relative_change = 2.4633707532993654e-7 Iter 85: T = 633.576682039947 K, F = -0.003783445750833836, relative_change = 1.0302150217168164e-7 Iter 90: T = 633.576482673744 K, F = -0.0015822823660760488, relative_change = 4.3084891698672076e-8 Iter 95: T = 633.5763992963506 K, F = -0.0006617294112458705, relative_change = 1.801862833812736e-8 Iter 100: T = 633.5763644269173 K, F = -0.000276743147903713, relative_change = 7.535607680505353e-9 Iter 105: T = 633.5763498441019 K, F = -0.00011573728982428033, relative_change = 3.1514814812922e-9 Iter 110: T = 633.576343745394 K, F = -4.840271742095892e-5, relative_change = 1.3179872694330617e-9 Iter 115: T = 633.5763411948413 K, F = -2.024259489752378e-5, relative_change = 5.511980382121239e-10 Iter 120: T = 633.5763401281698 K, F = -8.465695146231411e-6, relative_change = 2.305176099077066e-10 Iter 125: T = 633.5763396820751 K, F = -3.540454920236691e-6, relative_change = 9.640522069804115e-11 Iter 130: T = 633.5763394955129 K, F = -1.4806609604511856e-6, relative_change = 4.0317826405721326e-11 Iter 135: T = 633.5763394174903 K, F = -6.192303564356294e-7, relative_change = 1.6861403587594135e-11 Iter 140: T = 633.5763393848604 K, F = -2.589694856336422e-7, relative_change = 7.051639135306341e-12 Iter 145: T = 633.5763393712141 K, F = -1.083035515159203e-7, relative_change = 2.9490639044673325e-12 Iter 150: T = 633.5763393655071 K, F = -4.5293713890615095e-8, relative_change = 1.2333303466985285e-12 Iter 155: T = 633.5763393631204 K, F = -1.8941865687072124e-8, relative_change = 5.157796914554441e-13 Converged in 160 iterations to T = 633.5763393621222 K Iter 1: T = 963.5316705567469 K, F = -8309.343553982202, relative_change = 0.03646832944325305 Iter 2: T = 928.9390519115714 K, F = -7050.813452890297, relative_change = 0.03590190099842516 Iter 3: T = 896.1884740046003 K, F = -5981.986888949925, relative_change = 0.03525589524907679 Iter 5: T = 836.0942066258065 K, F = -4303.488332366853, relative_change = 0.03369581526207569 Iter 10: T = 716.154240395925 K, F = -1880.7974833696896, relative_change = 0.028006083824092188 Iter 15: T = 636.231777287607 K, F = -814.5399978647375, relative_change = 0.020109720610585267 Iter 20: T = 589.3347150675111 K, F = -348.8074618742245, relative_change = 0.012084629604107253 Iter 25: T = 565.1699345750334 K, F = -147.85515045571267, relative_change = 0.006201726694539874 Iter 30: T = 553.8872799131897 K, F = -62.24880898532185, relative_change = 0.0028684412553255487 Iter 35: T = 548.9170065366485 K, F = -26.11212864569509, relative_change = 0.0012555086984860184 Iter 40: T = 546.7900127435817 K, F = -10.93475302255384, relative_change = 0.0005355265207310535 Iter 45: T = 545.8916620251341 K, F = -4.575596082023253, relative_change = 0.0002258466026769851 Iter 50: T = 545.5143914818626 K, F = -1.9140183939203388, relative_change = 9.478516768888134e-5 Iter 55: T = 545.3563358612514 K, F = -0.8005441964972408, relative_change = 3.9698907534797487e-5 Iter 60: T = 545.2901865880302 K, F = -0.3348109508472803, relative_change = 1.6612831939065597e-5 Iter 65: T = 545.2625136737229 K, F = -0.1400243542884315, relative_change = 6.949483406017873e-6 Iter 70: T = 545.2509390433037 K, F = -0.058560279878410365, relative_change = 2.9066716669299545e-6 Iter 75: T = 545.246098134465 K, F = -0.02449068233053997, relative_change = 1.2156598561749588e-6 Iter 80: T = 545.2440735630685 K, F = -0.010242308761039237, relative_change = 5.084130991783918e-7 Iter 85: T = 545.2432268551723 K, F = -0.00428345810312139, relative_change = 2.126261139697823e-7 Iter 90: T = 545.2428727504263 K, F = -0.0017913937289461557, relative_change = 8.892307469940023e-8 Iter 95: T = 545.2427246593492 K, F = -0.0007491823200958814, relative_change = 3.7188743312595945e-8 Iter 100: T = 545.2426627258495 K, F = -0.0003133170054857859, relative_change = 1.5552785591750526e-8 Iter 105: T = 545.2426368245128 K, F = -0.0001310329153385581, relative_change = 6.504362236777134e-9 Iter 110: T = 545.2426259922632 K, F = -5.479953038295404e-5, relative_change = 2.7202022393221534e-9 Iter 115: T = 545.2426214620868 K, F = -2.291781764304779e-5, relative_change = 1.137621087321219e-9 Iter 120: T = 545.2426195675129 K, F = -9.584504889581513e-6, relative_change = 4.757667254413711e-10 Iter 125: T = 545.2426187751795 K, F = -4.008353863743652e-6, relative_change = 1.9897130079511631e-10 Iter 130: T = 545.2426184438162 K, F = -1.676341832901329e-6, relative_change = 8.321219317777136e-11 Iter 135: T = 545.2426183052361 K, F = -7.010661136619412e-7, relative_change = 3.480032998404e-11 Iter 140: T = 545.2426182472802 K, F = -2.931940646655473e-7, relative_change = 1.4553905838624556e-11 Iter 145: T = 545.2426182230424 K, F = -1.2261754747666664e-7, relative_change = 6.086631537210173e-12 Iter 150: T = 545.2426182129059 K, F = -5.127960253648034e-8, relative_change = 2.5454761774709626e-12 Iter 155: T = 545.2426182086666 K, F = -2.144568367334898e-8, relative_change = 1.0645456322184522e-12 Iter 160: T = 545.2426182068938 K, F = -8.968704057199517e-9, relative_change = 4.451988976581083e-13 Converged in 164 iterations to T = 545.2426182062538 K Iter 1: T = 976.3724477935957 K, F = -5383.560245833686, relative_change = 0.023627552206404268 Iter 2: T = 954.9078398751932 K, F = -4552.236468676457, relative_change = 0.02198403689791553 Iter 3: T = 935.5150782539642 K, F = -3847.543571467664, relative_change = 0.02030851649910377 Iter 5: T = 902.5261855629037 K, F = -2744.7119785129407, relative_change = 0.01695449602035971 Iter 10: T = 848.159409691212 K, F = -1170.5040413062218, relative_change = 0.009552294965287417 Iter 15: T = 821.2953427500044 K, F = -494.68057034150183, relative_change = 0.004682569359797907 Iter 20: T = 809.0772271354738 K, F = -207.9171797168067, relative_change = 0.0021113736453816857 Iter 25: T = 803.7671376542437 K, F = -87.14662163577341, relative_change = 0.0009129508777700377 Iter 30: T = 801.5088413353907 K, F = -36.48051131117191, relative_change = 0.000387309746011306 Iter 35: T = 800.5576258608905 K, F = -15.262737702997791, relative_change = 0.0001629604936574334 Iter 40: T = 800.1586170284899 K, F = -6.38414070607289, relative_change = 6.832547610060456e-5 Iter 45: T = 799.9915359007647 K, F = -2.6701134503913426, relative_change = 2.8604980422017666e-5 Iter 50: T = 799.9216236130509 K, F = -1.116706517421208, relative_change = 1.1968278562734704e-5 Iter 55: T = 799.8923789881018 K, F = -0.467025807997581, relative_change = 5.00621058297344e-6 Iter 60: T = 799.880147404409 K, F = -0.19531678599426316, relative_change = 2.0938203771309635e-6 Iter 65: T = 799.8750318119627 K, F = -0.08168399010851934, relative_change = 8.756892559896369e-7 Iter 70: T = 799.872892375464 K, F = -0.034161251239587354, relative_change = 3.662287016895873e-7 Iter 75: T = 799.8719976315105 K, F = -0.014286648670391422, relative_change = 1.5316209069410016e-7 Iter 80: T = 799.8716234378438 K, F = -0.005974848042260561, relative_change = 6.405436832540005e-8 Iter 85: T = 799.8714669453984 K, F = -0.002498752973575713, relative_change = 2.6788328554598578e-8 Iter 90: T = 799.8714014983562 K, F = -0.001045008362921207, relative_change = 1.1203203585969837e-8 Iter 95: T = 799.871374127616 K, F = -0.0004370349830714604, relative_change = 4.685314358218123e-9 Iter 100: T = 799.8713626808446 K, F = -0.00018277325202609163, relative_change = 1.9594545826674693e-9 Iter 105: T = 799.8713578936679 K, F = -7.643795434542078e-5, relative_change = 8.194673046496238e-10 Iter 110: T = 799.8713558916133 K, F = -3.196726452014964e-5, relative_change = 3.4271100829249966e-10 Iter 115: T = 799.8713550543303 K, F = -1.3369091658388399e-5, relative_change = 1.4332583578267407e-10 Iter 120: T = 799.8713547041685 K, F = -5.591113194092223e-6, relative_change = 5.994056990897302e-11 Iter 125: T = 799.8713545577267 K, F = -2.3382703433494356e-6, relative_change = 2.506786255944263e-11 Iter 130: T = 799.8713544964829 K, F = -9.778933821591451e-7, relative_change = 1.048368807328587e-11 Iter 135: T = 799.8713544708701 K, F = -4.089671280516072e-7, relative_change = 4.384408240812216e-12 Iter 140: T = 799.8713544601585 K, F = -1.7103468530343946e-7, relative_change = 1.833609188419442e-12 Iter 145: T = 799.8713544556788 K, F = -7.152837899759845e-8, relative_change = 7.668333047975306e-13 Iter 150: T = 799.8713544538053 K, F = -2.991452152656393e-8, relative_change = 3.207041977657273e-13 Converged in 153 iterations to T = 799.8713544532569 K Iter 1: T = 973.5424118810868 K, F = -6028.386620557989, relative_change = 0.02645758811891322 Iter 2: T = 949.2778204951503 K, F = -5101.447985703027, relative_change = 0.02492402086422942 Iter 3: T = 927.1385816450519 K, F = -4315.223833750817, relative_change = 0.023322191219584624 Iter 5: T = 888.9129540083228 K, F = -3083.495415239166, relative_change = 0.019991960332270197 Iter 10: T = 823.8503010573189 K, F = -1320.2286008630747, relative_change = 0.01198459867042598 Iter 15: T = 790.3797051072763 K, F = -559.5621211349406, relative_change = 0.0061391646073123895 Iter 20: T = 774.7687175310648 K, F = -235.56615576939046, relative_change = 0.0028365220517845933 Iter 25: T = 767.8955798266384 K, F = -98.81193149097173, relative_change = 0.0012409012253797762 Iter 30: T = 764.9550420434529 K, F = -41.377997131716505, relative_change = 0.0005291741954484538 Iter 35: T = 763.71322885325 K, F = -17.314314734586734, relative_change = 0.00022314554961226968 Iter 40: T = 763.191743872175 K, F = -7.242733808853502, relative_change = 9.364763958077123e-5 Iter 45: T = 762.9732748805245 K, F = -3.029292578451475, relative_change = 3.9221784556812186e-5 Iter 50: T = 762.8818422660181 K, F = -1.266937958294099, relative_change = 1.6413048610312045e-5 Iter 55: T = 762.8435924483879 K, F = -0.5298576183528363, relative_change = 6.865888758014493e-6 Iter 60: T = 762.8275938867973 K, F = -0.22159436414974898, relative_change = 2.8717038838444035e-6 Iter 65: T = 762.8209027419626 K, F = -0.09267368589143343, relative_change = 1.2010345991109093e-6 Iter 70: T = 762.8181043631333 K, F = -0.03875729053648569, relative_change = 5.022964123637102e-7 Iter 75: T = 762.816934036817 K, F = -0.016208770215912494, relative_change = 2.1006800237672257e-7 Iter 80: T = 762.8164445904735 K, F = -0.0067787027542393075, relative_change = 8.785323485471357e-8 Iter 85: T = 762.816239897835 K, F = -0.0028349347054485996, relative_change = 3.6741322300917125e-8 Iter 90: T = 762.8161542928709 K, F = -0.0011856035967869882, relative_change = 1.536566858559285e-8 Iter 95: T = 762.8161184918423 K, F = -0.0004958335898399557, relative_change = 6.426107628388846e-9 Iter 100: T = 762.8161035194229 K, F = -0.0002073635308701416, relative_change = 2.687475232432542e-9 Iter 105: T = 762.816097257778 K, F = -8.67219063193092e-5, relative_change = 1.1239342977680297e-9 Iter 110: T = 762.8160946390832 K, F = -3.626813543811114e-5, relative_change = 4.700427346599969e-10 Iter 115: T = 762.8160935439138 K, F = -1.516776800902786e-5, relative_change = 1.9657749471440133e-10 Iter 120: T = 762.8160930859009 K, F = -6.343343342374297e-6, relative_change = 8.221107714594254e-11 Iter 125: T = 762.8160928943544 K, F = -2.6528620390431357e-6, relative_change = 3.438165557792915e-11 Iter 130: T = 762.8160928142473 K, F = -1.1094584200233015e-6, relative_change = 1.4378816814803383e-11 Iter 135: T = 762.8160927807456 K, F = -4.6399003861274934e-7, relative_change = 6.013409470867072e-12 Iter 140: T = 762.8160927667348 K, F = -1.9404460249727862e-7, relative_change = 2.5148592715881474e-12 Iter 145: T = 762.8160927608753 K, F = -8.115252514429017e-8, relative_change = 1.0517539661132007e-12 Iter 150: T = 762.8160927584248 K, F = -3.3938488575024905e-8, relative_change = 4.398500219155218e-13 Converged in 154 iterations to T = 762.8160927575403 K Iter 1: T = 964.6054921690954 K, F = -8064.672278140543, relative_change = 0.035394507830904566 Iter 2: T = 931.1531308174634 K, F = -6841.220089841895, relative_change = 0.03467983711808251 Iter 3: T = 899.6126041671745 K, F = -5802.252535581285, relative_change = 0.03387254534879706 Iter 5: T = 842.1548036021788 K, F = -4170.870920001333, relative_change = 0.031956578868204195 Iter 10: T = 729.9417556533483 K, F = -1817.5983872273978, relative_change = 0.025352572065601552 Iter 15: T = 658.309195999609 K, F = -784.0684509626302, relative_change = 0.017097442185256384 Iter 20: T = 618.2642710562619 K, F = -334.43292536490276, relative_change = 0.009660106142490636 Iter 25: T = 598.4416827968688 K, F = -141.3562389043933, relative_change = 0.004744446688524981 Iter 30: T = 589.4164739715692 K, F = -59.416866423231745, relative_change = 0.0021414590684777027 Iter 35: T = 585.4919428525067 K, F = -24.904838423737097, relative_change = 0.0009264038097932871 Iter 40: T = 583.8224953930735 K, F = -10.425578921497758, relative_change = 0.0003930999706010835 Iter 45: T = 583.1192341769402 K, F = -4.361885996000728, relative_change = 0.00016541165310767346 Iter 50: T = 582.8242221101079 K, F = -1.8245065239616305, relative_change = 6.935583053447874e-5 Iter 55: T = 582.700686295866 K, F = -0.7630854046741833, relative_change = 2.9036810421556216e-5 Iter 60: T = 582.6489944022181 K, F = -0.3191410554167141, relative_change = 1.2149036923576482e-5 Iter 65: T = 582.6273713783992 K, F = -0.1334702849446784, relative_change = 5.0818342323162235e-6 Iter 70: T = 582.6183275218456 K, F = -0.05581916174537396, relative_change = 2.125452049892427e-6 Iter 75: T = 582.6145451243801 K, F = -0.023344291590759625, relative_change = 8.889188668832711e-7 Iter 80: T = 582.6129632545883 K, F = -0.009762870544278657, relative_change = 3.717616347266419e-7 Iter 85: T = 582.6123016932023 K, F = -0.004082950630293458, relative_change = 1.554760559122747e-7 Iter 90: T = 582.6120250195347 K, F = -0.0017075389894814497, relative_change = 6.50221008441195e-8 Iter 95: T = 582.6119093111637 K, F = -0.0007141132459376198, relative_change = 2.719304664870733e-8 Iter 100: T = 582.6118609205167 K, F = -0.00029865069610579553, relative_change = 1.137246167672823e-8 Iter 105: T = 582.611840682966 K, F = -0.00012489928909070747, relative_change = 4.756100126522739e-9 Iter 110: T = 582.6118322193798 K, F = -5.2234374423199004e-5, relative_change = 1.989058014610112e-9 Iter 115: T = 582.6118286798069 K, F = -2.1845039069101624e-5, relative_change = 8.318478353855407e-10 Iter 120: T = 582.6118271995151 K, F = -9.135855591979603e-6, relative_change = 3.4788867927735055e-10 Iter 125: T = 582.6118265804396 K, F = -3.8207248571064945e-6, relative_change = 1.454912370016029e-10 Iter 130: T = 582.6118263215347 K, F = -1.5978732313959298e-6, relative_change = 6.084619076063184e-11 Iter 135: T = 582.6118262132577 K, F = -6.682500421906212e-7, relative_change = 2.5446617904341334e-11 Iter 140: T = 582.6118261679749 K, F = -2.7946978764514796e-7, relative_change = 1.0642065777253517e-11 Iter 145: T = 582.6118261490369 K, F = -1.168767334025489e-7, relative_change = 4.450605896878699e-12 Iter 150: T = 582.6118261411169 K, F = -4.887941001952001e-8, relative_change = 1.8613027944034116e-12 Iter 155: T = 582.6118261378048 K, F = -2.0441831227735463e-8, relative_change = 7.784144197473355e-13 Iter 160: T = 582.6118261364196 K, F = -8.549180807726486e-9, relative_change = 3.2554840824669187e-13 Converged in 163 iterations to T = 582.611826136014 K Iter 1: T = 966.4722973922641 K, F = -7639.318932251351, relative_change = 0.03352770260773588 Iter 2: T = 934.9834310833908 K, F = -6477.128032060573, relative_change = 0.032581240449246776 Iter 3: T = 905.5036866032405 K, F = -5490.3372713789395, relative_change = 0.03152969721184396 Iter 5: T = 852.4470267874029 K, F = -3941.374294249425, relative_change = 0.029106397806860557 Iter 10: T = 752.346002162824 K, F = -1709.8281878065814, relative_change = 0.021471819780799012 Iter 15: T = 692.3091891874776 K, F = -733.5483684543755, relative_change = 0.013282172128807584 Iter 20: T = 660.7605699119079 K, F = -311.3932878575278, relative_change = 0.006970038124306494 Iter 25: T = 645.8355958042922 K, F = -131.2133171144043, relative_change = 0.0032662635570852618 Iter 30: T = 639.2142251013023 K, F = -55.06491324181083, relative_change = 0.00143889295262448 Iter 35: T = 636.3712140442118 K, F = -23.063523419005445, relative_change = 0.0006155351582509803 Iter 40: T = 635.1686852893922 K, F = -9.651630502483075, relative_change = 0.00025991479128194153 Iter 45: T = 634.6633552503762 K, F = -4.037518523107475, relative_change = 0.00010914129783394889 Iter 50: T = 634.4515936035477 K, F = -1.6887300012763171, relative_change = 4.57219323340088e-5 Iter 55: T = 634.3629574728315 K, F = -0.7062806021294676, relative_change = 1.913508865096512e-5 Iter 60: T = 634.3258756678063 K, F = -0.2953808536196055, relative_change = 8.004909082684148e-6 Iter 65: T = 634.3103653185301 K, F = -0.12353282766497109, relative_change = 3.348166158996718e-6 Iter 70: T = 634.3038783036277 K, F = -0.05166308347225512, relative_change = 1.4003161219509216e-6 Iter 75: T = 634.3011652862763 K, F = -0.02160614991554577, relative_change = 5.856417027308612e-7 Iter 80: T = 634.3000306577326 K, F = -0.009035955419899822, relative_change = 2.449245888855493e-7 Iter 85: T = 634.2995561403764 K, F = -0.0037789454286397683, relative_change = 1.0243077893447753e-7 Iter 90: T = 634.2993576911753 K, F = -0.0015804002754224444, relative_change = 4.283784336837e-8 Iter 95: T = 634.2992746972836 K, F = -0.0006609422983465674, relative_change = 1.7915309640281242e-8 Iter 100: T = 634.2992399882355 K, F = -0.0002764139666665555, relative_change = 7.492398510794313e-9 Iter 105: T = 634.2992254724951 K, F = -0.00011559962323881567, relative_change = 3.1334109119558557e-9 Iter 110: T = 634.2992194018387 K, F = -4.8345143543016e-5, relative_change = 1.3104299389225868e-9 Iter 115: T = 634.2992168630177 K, F = -2.0218515808356763e-5, relative_change = 5.48037444902173e-10 Iter 120: T = 634.2992158012524 K, F = -8.455625492231889e-6, relative_change = 2.2919582578004546e-10 Iter 125: T = 634.2992153572095 K, F = -3.536243809609818e-6, relative_change = 9.58524385391738e-11 Iter 130: T = 634.2992151715054 K, F = -1.478899011420065e-6, relative_change = 4.008662423392658e-11 Iter 135: T = 634.2992150938417 K, F = -6.184918008855789e-7, relative_change = 1.6764666307073093e-11 Iter 140: T = 634.2992150613619 K, F = -2.5866155273224223e-7, relative_change = 7.011207930119074e-12 Iter 145: T = 634.2992150477784 K, F = -1.0817538920182557e-7, relative_change = 2.9321719392831315e-12 Iter 150: T = 634.2992150420977 K, F = -4.524074442846526e-8, relative_change = 1.226283004941045e-12 Iter 155: T = 634.299215039722 K, F = -1.892004125592095e-8, relative_change = 5.128413632100814e-13 Converged in 160 iterations to T = 634.2992150387282 K Iter 1: T = 966.8536417839346 K, F = -7552.429249857063, relative_change = 0.03314635821606538 Iter 2: T = 935.7629544520822 K, F = -6402.796330011725, relative_change = 0.032156560195074735 Iter 3: T = 906.6976221712928 K, F = -5426.705325087492, relative_change = 0.031060571635696022 Iter 5: T = 854.5128261067874 K, F = -3894.654180568671, relative_change = 0.02854967440183688 Iter 10: T = 756.7043430479064 K, F = -1688.1104096969038, relative_change = 0.020774102732716036 Iter 15: T = 698.6957129220626 K, F = -723.5426294835145, relative_change = 0.01266045238069313 Iter 20: T = 668.5213614015582 K, F = -306.9139151968008, relative_change = 0.0065669879111717915 Iter 25: T = 654.3443476546419 K, F = -129.26729385271523, relative_change = 0.003056289414344385 Iter 30: T = 648.0781569913837 K, F = -54.23598814576672, relative_change = 0.0013418086210973204 Iter 35: T = 645.3923788163289 K, F = -22.71400828529048, relative_change = 0.00057312064401304 Iter 40: T = 644.25723873336 K, F = -9.504943822827444, relative_change = 0.00024184381002642825 Iter 45: T = 643.7803857135575 K, F = -3.9760809830588246, relative_change = 0.00010152439834744639 Iter 50: T = 643.5805856328054 K, F = -1.6630200026053141, relative_change = 4.252597495871261e-5 Iter 55: T = 643.4969611401814 K, F = -0.6955255531305079, relative_change = 1.779666166731564e-5 Iter 60: T = 643.4619768692527 K, F = -0.29088246985509625, relative_change = 7.444840725693057e-6 Iter 65: T = 643.4473440151529 K, F = -0.1216514634414596, relative_change = 3.113882493119983e-6 Iter 70: T = 643.441224028444 K, F = -0.050876259369355414, relative_change = 1.3023260295941067e-6 Iter 75: T = 643.4386645152781 K, F = -0.02127708803359052, relative_change = 5.446593501735362e-7 Iter 80: T = 643.4375940855246 K, F = -0.00889833734797879, relative_change = 2.2778497776937156e-7 Iter 85: T = 643.4371464171326 K, F = -0.0037213918265613377, relative_change = 9.526273608533834e-8 Iter 90: T = 643.4369591965351 K, F = -0.0015563306588332049, relative_change = 3.9840073045380496e-8 Iter 95: T = 643.4368808985877 K, F = -0.0006508760948351622, relative_change = 1.666160467748732e-8 Iter 100: T = 643.4368481534409 K, F = -0.00027220416139789316, relative_change = 6.968083885171031e-9 Iter 105: T = 643.4368344590278 K, F = -0.00011383903274053697, relative_change = 2.914136234538072e-9 Iter 110: T = 643.4368287318601 K, F = -4.76088425279686e-5, relative_change = 1.2187266145414327e-9 Iter 115: T = 643.4368263366903 K, F = -1.9910586093574434e-5, relative_change = 5.096860231196344e-10 Iter 120: T = 643.4368253350016 K, F = -8.326844587680515e-6, relative_change = 2.1315677572425858e-10 Iter 125: T = 643.4368249160834 K, F = -3.4823858154342524e-6, relative_change = 8.914470862648045e-11 Iter 130: T = 643.4368247408869 K, F = -1.4563748261253728e-6, relative_change = 3.728136874403146e-11 Iter 135: T = 643.4368246676177 K, F = -6.090745426901023e-7, relative_change = 1.5591544308242413e-11 Iter 140: T = 643.4368246369755 K, F = -2.5472269554738247e-7, relative_change = 6.52058149943584e-12 Iter 145: T = 643.4368246241605 K, F = -1.0652672488564718e-7, relative_change = 2.7269505375562355e-12 Iter 150: T = 643.4368246188012 K, F = -4.4550871824977634e-8, relative_change = 1.1404464373325345e-12 Iter 155: T = 643.4368246165599 K, F = -1.8630504416972116e-8, relative_change = 4.769175443270227e-13 Converged in 160 iterations to T = 643.4368246156225 K Iter 1: T = 974.4005613846452 K, F = -5832.856439861267, relative_change = 0.02559943861535472 Iter 2: T = 950.990458284368 K, F = -4934.8231076525135, relative_change = 0.024025133018202523 Iter 3: T = 929.695073014685 K, F = -4173.248785149326, relative_change = 0.022392848513013323 Iter 5: T = 893.0955348704036 K, F = -2980.5028028460324, relative_change = 0.019038670430999532 Iter 10: T = 831.4341084758798 K, F = -1274.5131376975392, relative_change = 0.011189232273721357 Iter 15: T = 800.1262675539807 K, F = -539.6738118543697, relative_change = 0.005648861199921829 Iter 20: T = 785.6466475584574 K, F = -227.06974252754122, relative_change = 0.0025884941908171305 Iter 25: T = 779.2997284266573 K, F = -95.22268364742197, relative_change = 0.001127869988389884 Iter 30: T = 776.5898958439058 K, F = -39.87023825581495, relative_change = 0.0004801133319621011 Iter 35: T = 775.446541305059 K, F = -16.68254937637422, relative_change = 0.00020230153709834437 Iter 40: T = 774.9665873245054 K, F = -6.978309232683833, relative_change = 8.487237508259673e-5 Iter 45: T = 774.76554975765 K, F = -2.9186696712628617, relative_change = 3.554163664716758e-5 Iter 50: T = 774.6814181833233 K, F = -1.2206675843416241, relative_change = 1.4872172507636366e-5 Iter 55: T = 774.6462236772596 K, F = -0.5105056482777768, relative_change = 6.221161742162395e-6 Iter 60: T = 774.6315032211731 K, F = -0.2135009384521831, relative_change = 2.6020163578234725e-6 Iter 65: T = 774.6253466544114 K, F = -0.0892888835022625, relative_change = 1.088238435323434e-6 Iter 70: T = 774.6227718528521 K, F = -0.037341719614849556, relative_change = 4.5512202696856884e-7 Iter 75: T = 774.6216950310278 K, F = -0.01561676047560645, relative_change = 1.9033881669953202e-7 Iter 80: T = 774.6212446896959 K, F = -0.00653111702386866, relative_change = 7.960220232623408e-8 Iter 85: T = 774.6210563512956 K, F = -0.0027313913633091325, relative_change = 3.3290632955461475e-8 Iter 90: T = 774.6209775858788 K, F = -0.0011423005263089259, relative_change = 1.3922547485352856e-8 Iter 95: T = 774.6209446452324 K, F = -0.0004777237301486492, relative_change = 5.822576906291783e-9 Iter 100: T = 774.6209308690591 K, F = -0.00019978976944623472, relative_change = 2.4350714079690696e-9 Iter 105: T = 774.6209251076987 K, F = -8.355446670471611e-5, relative_change = 1.0183759691486099e-9 Iter 110: T = 774.6209226982289 K, F = -3.494347644017459e-5, relative_change = 4.2589700605668916e-10 Iter 115: T = 774.62092169056 K, F = -1.4613778461125548e-5, relative_change = 1.7811520679615326e-10 Iter 120: T = 774.6209212691407 K, F = -6.11165676989156e-6, relative_change = 7.448990794213859e-11 Iter 125: T = 774.6209210928982 K, F = -2.555969228046351e-6, relative_change = 3.11525859312514e-11 Iter 130: T = 774.6209210191914 K, F = -1.0689377034633907e-6, relative_change = 1.3028393813190402e-11 Iter 135: T = 774.6209209883664 K, F = -4.47043145834769e-7, relative_change = 5.4486375938051595e-12 Iter 140: T = 774.620920975475 K, F = -1.869584171920735e-7, relative_change = 2.2786808610376637e-12 Iter 145: T = 774.6209209700837 K, F = -7.818936420544986e-8, relative_change = 9.529852168919617e-13 Iter 150: T = 774.6209209678289 K, F = -3.269947512762883e-8, relative_change = 3.9854674243554623e-13 Converged in 154 iterations to T = 774.6209209670151 K Iter 1: T = 970.342093126272 K, F = -6757.58229313161, relative_change = 0.02965790687372809 Iter 2: T = 942.848468698803 K, F = -5723.518384483401, relative_change = 0.028333950080315817 Iter 3: T = 917.4743795411907 K, F = -4845.940832794993, relative_change = 0.026912160331161436 Iter 5: T = 872.8688551644752 K, F = -3469.6951867373027, relative_change = 0.02382003870498592 Iter 10: T = 793.6891412662329 K, F = -1493.450952513679, relative_change = 0.015514289524147691 Iter 15: T = 750.5425523651223 K, F = -635.7295522755693, relative_change = 0.00849645467974747 Iter 20: T = 729.5965930516688 K, F = -268.3456923138779, relative_change = 0.004088160289284866 Iter 25: T = 720.1685518687245 K, F = -112.71409658539868, relative_change = 0.0018253430445253581 Iter 30: T = 716.092079838352 K, F = -47.22875352249837, relative_change = 0.0007856705302817877 Iter 35: T = 714.3624473812743 K, F = -19.76782426205622, relative_change = 0.0003326446090690414 Iter 40: T = 713.634642359347 K, F = -8.270002331198146, relative_change = 0.00013984041157777624 Iter 45: T = 713.3294783218837 K, F = -3.459116526181249, relative_change = 5.861061050333137e-5 Iter 50: T = 713.2017167410663 K, F = -1.4467319411165618, relative_change = 2.4534060349927766e-5 Iter 55: T = 713.148261080065 K, F = -0.6050559958229093, relative_change = 1.0264360620355525e-5 Iter 60: T = 713.1259010408223 K, F = -0.2530443412222151, relative_change = 4.293364817895208e-6 Iter 65: T = 713.1165490629463 K, F = -0.10582663739464837, relative_change = 1.7956565597567097e-6 Iter 70: T = 713.1126378242427 K, F = -0.04425804612886297, relative_change = 7.509860288929933e-7 Iter 75: T = 713.1110020747915 K, F = -0.018509257876244134, relative_change = 3.1407500088716625e-7 Iter 80: T = 713.110317980863 K, F = -0.00774079521462212, relative_change = 1.3135055896837826e-7 Iter 85: T = 713.1100318839174 K, F = -0.0032372934420283883, relative_change = 5.4932484789910925e-8 Iter 90: T = 713.1099122346366 K, F = -0.0013538748562068603, relative_change = 2.2973440835532954e-8 Iter 95: T = 713.1098621958572 K, F = -0.0005662066471885385, relative_change = 9.607770759576592e-9 Iter 100: T = 713.1098412690384 K, F = -0.00023679438369472727, relative_change = 4.0180850664011666e-9 Iter 105: T = 713.1098325171922 K, F = -9.903024043433906e-5, relative_change = 1.6804112802576429e-9 Iter 110: T = 713.1098288570655 K, F = -4.141562931458953e-5, relative_change = 7.027680845232147e-10 Iter 115: T = 713.1098273263568 K, F = -1.732051190883599e-5, relative_change = 2.939060278204178e-10 Iter 120: T = 713.1098266861962 K, F = -7.24364652104903e-6, relative_change = 1.2291503832227646e-10 Iter 125: T = 713.1098264184733 K, F = -3.0293796949854013e-6, relative_change = 5.1404540639223336e-11 Iter 130: T = 713.1098263065084 K, F = -1.2669228617312456e-6, relative_change = 2.1497994420809285e-11 Iter 135: T = 713.1098262596832 K, F = -5.298416192456301e-7, relative_change = 8.990706949948814e-12 Iter 140: T = 713.1098262401005 K, F = -2.215861950594089e-7, relative_change = 3.760022753649032e-12 Iter 145: T = 713.1098262319107 K, F = -9.267025569137388e-8, relative_change = 1.5724908761201126e-12 Iter 150: T = 713.1098262284856 K, F = -3.875498988392678e-8, relative_change = 6.576205875697011e-13 Iter 155: T = 713.1098262270532 K, F = -1.620682454905875e-8, relative_change = 2.750082380259702e-13 Converged in 157 iterations to T = 713.1098262267501 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 33%|███████████ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016871783615314455 Iteration 10: d = 1.6698393677519605e-5 Iteration 20: d = 2.0076785575615112e-7 Iteration 30: d = 2.728007339837357e-9 Iteration 40: d = 3.7702866664316656e-11 Iteration 50: d = 5.240485323049589e-13 Iteration 60: d = 7.310416657751953e-15 Converged after 63 iterations. d = 1.9923560394697236e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.932107575381 Iteration 2: convergence error = 4833.895915844928 Iteration 3: convergence error = 1092.180268356445 Iteration 4: convergence error = 320.640037461568 Iteration 5: convergence error = 95.03401752515424 Iteration 6: convergence error = 28.302915421540547 Iteration 7: convergence error = 8.435856857876843 Iteration 8: convergence error = 2.5188507778022995 Iteration 9: convergence error = 0.7521482208023826 Iteration 10: convergence error = 0.2242897065186753 Iteration 11: convergence error = 0.06683076612716832 Iteration 12: convergence error = 0.019904490029375665 Iteration 13: convergence error = 0.005926742546762398 Iteration 14: convergence error = 0.0017644867054968927 Iteration 15: convergence error = 0.0005252725582067796 Iteration 16: convergence error = 0.00015636165539945068 Iteration 17: convergence error = 4.654400140680082e-5 Iteration 18: convergence error = 1.3854485814590589e-5 Iteration 19: convergence error = 4.123943426748156e-6 Iteration 20: convergence error = 1.2275343124201754e-6 Iteration 21: convergence error = 3.6537858250085264e-7 Iteration 22: convergence error = 1.0861162991204765e-7 Iteration 23: convergence error = 3.142076820950024e-8 Iteration 24: convergence error = 9.04196895135101e-9 Iteration 25: convergence error = 2.5968347472371534e-9 Iteration 26: convergence error = 7.47604644857347e-10 Iteration 27: convergence error = 2.1191226551309228e-10 Iteration 28: convergence error = 6.02540239924565e-11 Iteration 29: convergence error = 1.7053025658242404e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018083863603448734 Iteration 10: d = 1.623754525664623e-5 Iteration 20: d = 1.4450945077207046e-7 Iteration 30: d = 1.6580260707009417e-9 Iteration 40: d = 2.0518918635786124e-11 Iteration 50: d = 2.5962928434650374e-13 Iteration 60: d = 3.33091257635876e-15 Converged after 61 iterations. d = 2.186674408823641e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12270.571301884014 Iteration 2: convergence error = 8313.422815427046 Iteration 3: convergence error = 1945.8116279250457 Iteration 4: convergence error = 476.59665206524437 Iteration 5: convergence error = 121.02979539380976 Iteration 6: convergence error = 32.2022889101745 Iteration 7: convergence error = 8.742627806633664 Iteration 8: convergence error = 2.3870877844090046 Iteration 9: convergence error = 0.6525568171859959 Iteration 10: convergence error = 0.17841234586535393 Iteration 11: convergence error = 0.04877604047965178 Iteration 12: convergence error = 0.013334085402675555 Iteration 13: convergence error = 0.0036450636268909875 Iteration 14: convergence error = 0.0009964132352706656 Iteration 15: convergence error = 0.00027237694825998915 Iteration 16: convergence error = 7.445598953381705e-5 Iteration 17: convergence error = 2.0352994852146367e-5 Iteration 18: convergence error = 5.563606464420445e-6 Iteration 19: convergence error = 1.5208463537419448e-6 Iteration 20: convergence error = 4.1573707676434424e-7 Iteration 21: convergence error = 1.1451402315287851e-7 Iteration 22: convergence error = 3.060972630919423e-8 Iteration 23: convergence error = 8.15566636447329e-9 Iteration 24: convergence error = 2.1680079953512177e-9 Iteration 25: convergence error = 5.757101462222636e-10 Iteration 26: convergence error = 1.5370460459962487e-10 Iteration 27: convergence error = 4.1154635255225e-11 Iteration 28: convergence error = 1.1141310096718371e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018083863603448734 Iteration 10: d = 1.623754525664623e-5 Iteration 20: d = 1.4450945077207046e-7 Iteration 30: d = 1.6580260707009417e-9 Iteration 40: d = 2.0518918635786124e-11 Iteration 50: d = 2.5962928434650374e-13 Iteration 60: d = 3.33091257635876e-15 Converged after 61 iterations. d = 2.186674408823641e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10995.183423559976 Iteration 2: convergence error = 5736.843613987587 Iteration 3: convergence error = 2019.7818661960341 Iteration 4: convergence error = 895.7552036112206 Iteration 5: convergence error = 408.3856340249313 Iteration 6: convergence error = 192.28727758337573 Iteration 7: convergence error = 90.62695772783854 Iteration 8: convergence error = 42.73626612056569 Iteration 9: convergence error = 20.153576459180385 Iteration 10: convergence error = 9.502177873789151 Iteration 11: convergence error = 4.479065451303086 Iteration 12: convergence error = 2.110847571688737 Iteration 13: convergence error = 0.994610345959245 Iteration 14: convergence error = 0.4685933813484553 Iteration 15: convergence error = 0.22075100204210685 Iteration 16: convergence error = 0.10388870893939384 Iteration 17: convergence error = 0.04843391989652446 Iteration 18: convergence error = 0.022072523828683188 Iteration 19: convergence error = 0.010021877450526517 Iteration 20: convergence error = 0.004540707157048018 Iteration 21: convergence error = 0.002054779838090326 Iteration 22: convergence error = 0.000929174869270355 Iteration 23: convergence error = 0.00041999880704679526 Iteration 24: convergence error = 0.0001897978354463703 Iteration 25: convergence error = 8.575714218750363e-5 Iteration 26: convergence error = 3.874456069752341e-5 Iteration 27: convergence error = 1.750361252561561e-5 Iteration 28: convergence error = 7.907338840595912e-6 Iteration 29: convergence error = 3.572106379579054e-6 Iteration 30: convergence error = 1.6136659723997582e-6 Iteration 31: convergence error = 7.289504537766334e-7 Iteration 32: convergence error = 3.2929301596595906e-7 Iteration 33: convergence error = 1.487483132223133e-7 Iteration 34: convergence error = 6.719255907228217e-8 Iteration 35: convergence error = 3.0354840419022366e-8 Iteration 36: convergence error = 1.371608959743753e-8 Iteration 37: convergence error = 6.197296897880733e-9 Iteration 38: convergence error = 2.7939677238464355e-9 Iteration 39: convergence error = 1.2651071301661432e-9 Iteration 40: convergence error = 5.70253178011626e-10 Iteration 41: convergence error = 2.5693225325085223e-10 Iteration 42: convergence error = 1.1823431123048067e-10 Iteration 43: convergence error = 5.4569682106375694e-11 Iteration 44: convergence error = 2.3646862246096134e-11 Iteration 45: convergence error = 1.0459189070388675e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 34%|███████████▍ | ETA: 0:00:02 Bin 1 progress: 75%|████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018083863603448734 Iteration 10: d = 1.623754525664623e-5 Iteration 20: d = 1.4450945077207046e-7 Iteration 30: d = 1.6580260707009417e-9 Iteration 40: d = 2.0518918635786124e-11 Iteration 50: d = 2.5962928434650374e-13 Iteration 60: d = 3.33091257635876e-15 Converged after 61 iterations. d = 2.186674408823641e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.787973787545 Iteration 2: convergence error = 7352.443498100116 Iteration 3: convergence error = 1734.5714449642792 Iteration 4: convergence error = 503.02853248811607 Iteration 5: convergence error = 155.92052930446926 Iteration 6: convergence error = 48.32884537577729 Iteration 7: convergence error = 14.954968603204634 Iteration 8: convergence error = 4.620065134694414 Iteration 9: convergence error = 1.4256429218571611 Iteration 10: convergence error = 0.43960799767000935 Iteration 11: convergence error = 0.13550036449623803 Iteration 12: convergence error = 0.041755378274956456 Iteration 13: convergence error = 0.012865479553965997 Iteration 14: convergence error = 0.003963751707033225 Iteration 15: convergence error = 0.001221147498654318 Iteration 16: convergence error = 0.00037620028388118953 Iteration 17: convergence error = 0.0001158948325610254 Iteration 18: convergence error = 3.5703054891200736e-5 Iteration 19: convergence error = 1.0998788184224395e-5 Iteration 20: convergence error = 3.3883102332765702e-6 Iteration 21: convergence error = 1.0438047866045963e-6 Iteration 22: convergence error = 3.213931449863594e-7 Iteration 23: convergence error = 9.772338671609759e-8 Iteration 24: convergence error = 2.8997874323977157e-8 Iteration 25: convergence error = 8.585629984736443e-9 Iteration 26: convergence error = 2.5324879970867187e-9 Iteration 27: convergence error = 7.430571713484824e-10 Iteration 28: convergence error = 2.2600943339057267e-10 Iteration 29: convergence error = 6.866684998385608e-11 Iteration 30: convergence error = 2.2737367544323206e-11 Iteration 31: convergence error = 7.275957614183426e-12 Converged after 31 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 75%|████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018083863603448734 Iteration 10: d = 1.623754525664623e-5 Iteration 20: d = 1.4450945077207046e-7 Iteration 30: d = 1.6580260707009417e-9 Iteration 40: d = 2.0518918635786124e-11 Iteration 50: d = 2.5962928434650374e-13 Iteration 60: d = 3.33091257635876e-15 Converged after 61 iterations. d = 2.186674408823641e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.7285841336 Iteration 2: convergence error = 5519.006139444768 Iteration 3: convergence error = 937.9370977399899 Iteration 4: convergence error = 170.2857965758642 Iteration 5: convergence error = 30.812951782513665 Iteration 6: convergence error = 5.590556205542498 Iteration 7: convergence error = 1.0156833561113672 Iteration 8: convergence error = 0.1849603184496118 Iteration 9: convergence error = 0.03371690799394855 Iteration 10: convergence error = 0.00614276567239358 Iteration 11: convergence error = 0.0011188001603841258 Iteration 12: convergence error = 0.00020373976622067858 Iteration 13: convergence error = 3.709926249939599e-5 Iteration 14: convergence error = 6.755186859663809e-6 Iteration 15: convergence error = 1.2299797162995674e-6 Iteration 16: convergence error = 2.2395443011191674e-7 Iteration 17: convergence error = 4.077264748048037e-8 Iteration 18: convergence error = 7.406470103887841e-9 Iteration 19: convergence error = 1.3665157894138247e-9 Iteration 20: convergence error = 2.473825588822365e-10 Iteration 21: convergence error = 4.229150363244116e-11 Iteration 22: convergence error = 8.640199666842818e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 34%|███████████▍ | ETA: 0:00:02 Bin 1 progress: 72%|███████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018083863603448734 Iteration 10: d = 1.623754525664623e-5 Iteration 20: d = 1.4450945077207046e-7 Iteration 30: d = 1.6580260707009417e-9 Iteration 40: d = 2.0518918635786124e-11 Iteration 50: d = 2.5962928434650374e-13 Iteration 60: d = 3.33091257635876e-15 Converged after 61 iterations. d = 2.186674408823641e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.4846096635342 Iteration 2: convergence error = 2713.1260932057703 Iteration 3: convergence error = 204.7233482875546 Iteration 4: convergence error = 19.219865341600467 Iteration 5: convergence error = 1.5836180394027495 Iteration 6: convergence error = 0.1285755560297247 Iteration 7: convergence error = 0.010452896071139724 Iteration 8: convergence error = 0.0008521476097436667 Iteration 9: convergence error = 6.96936031271316e-5 Iteration 10: convergence error = 5.701041919065629e-6 Iteration 11: convergence error = 4.6624611970652314e-7 Iteration 12: convergence error = 3.812682230647203e-8 Iteration 13: convergence error = 3.118740986678555e-9 Iteration 14: convergence error = 2.537169448999376e-10 Iteration 15: convergence error = 2.05773176276125e-11 Converged after 15 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346354 Iteration 2: convergence error = 858.4060420534047 Iteration 3: convergence error = 199.1210673771193 Iteration 4: convergence error = 59.26562926814245 Iteration 5: convergence error = 17.98548291103714 Iteration 6: convergence error = 5.463033078097283 Iteration 7: convergence error = 1.6609896110641102 Iteration 8: convergence error = 0.5052487627319806 Iteration 9: convergence error = 0.15371874094319082 Iteration 10: convergence error = 0.046771316975991795 Iteration 11: convergence error = 0.01423126902614058 Iteration 12: convergence error = 0.0043302365119188835 Iteration 13: convergence error = 0.0013175920918229167 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198904039451008 Iteration 16: convergence error = 3.7118539353286906e-5 Iteration 17: convergence error = 1.129434190261236e-5 Iteration 18: convergence error = 3.4366170211797e-6 Iteration 19: convergence error = 1.0456856216478627e-6 Iteration 20: convergence error = 3.1818092338653514e-7 Iteration 21: convergence error = 9.681662049842998e-8 Iteration 22: convergence error = 2.9460125006153248e-8 Iteration 23: convergence error = 8.963866093836259e-9 Iteration 24: convergence error = 2.731098902586382e-9 Iteration 25: convergence error = 8.290044206660241e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.685230229981244e-11 Iteration 28: convergence error = 2.4556356947869062e-11 Iteration 29: convergence error = 8.412825991399586e-12 Converged after 29 iterations Energy conservation errors by band: [1.3167035141224952e-25, 1.3490152568003479e-25, 1.308625578453032e-25, 8.825144718888503e-26, 1.0945602832122583e-25, 2.871441691192078e-19, -2.398081733190338e-14, 1.6768808563938364e-12, 4.874323167314287e-12, 3.893774191965349e-12, 2.7711166694643907e-13, 8.171241461241152e-14, 5.10702591327572e-15, 3.2612801348363973e-16, 1.734723475976807e-17, 1.026603932072212e-18, 4.121344683984205e-20, 1.5120861597469346e-21, 3.2447451997099625e-23, 4.356922941010974e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 33%|███████████ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016871783615314455 Iteration 10: d = 1.6698393677519605e-5 Iteration 20: d = 2.0076785575615112e-7 Iteration 30: d = 2.728007339837357e-9 Iteration 40: d = 3.7702866664316656e-11 Iteration 50: d = 5.240485323049589e-13 Iteration 60: d = 7.310416657751953e-15 Converged after 63 iterations. d = 1.9923560394697236e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.407329705786 Iteration 2: convergence error = 3615.78277641813 Iteration 3: convergence error = 590.1790285484611 Iteration 4: convergence error = 104.7487397837881 Iteration 5: convergence error = 18.610302890791445 Iteration 6: convergence error = 3.2752952206265036 Iteration 7: convergence error = 0.5742161708085405 Iteration 8: convergence error = 0.1005104438743274 Iteration 9: convergence error = 0.01758193549949283 Iteration 10: convergence error = 0.0030747480061563692 Iteration 11: convergence error = 0.000537659825567971 Iteration 12: convergence error = 9.40130321396282e-5 Iteration 13: convergence error = 1.643849645915907e-5 Iteration 14: convergence error = 2.8743036182277137e-6 Iteration 15: convergence error = 5.025699465477373e-7 Iteration 16: convergence error = 8.78794708114583e-8 Iteration 17: convergence error = 1.537637217552401e-8 Iteration 18: convergence error = 2.668002707650885e-9 Iteration 19: convergence error = 4.718003765447065e-10 Iteration 20: convergence error = 8.071765478234738e-11 Iteration 21: convergence error = 1.3869794202037156e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.4924275130231 Iteration 2: convergence error = 871.3046026617826 Iteration 3: convergence error = 207.7529958122509 Iteration 4: convergence error = 62.495505504908806 Iteration 5: convergence error = 18.9793153091847 Iteration 6: convergence error = 5.766215594046912 Iteration 7: convergence error = 1.753306153066319 Iteration 8: convergence error = 0.5333443699001919 Iteration 9: convergence error = 0.16226812526349477 Iteration 10: convergence error = 0.04937275063105062 Iteration 11: convergence error = 0.015022831427359051 Iteration 12: convergence error = 0.004571091656089266 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318630911264 Iteration 15: convergence error = 0.00012877429946911434 Iteration 16: convergence error = 3.918314246220689e-5 Iteration 17: convergence error = 1.1922557064281136e-5 Iteration 18: convergence error = 3.6277685921959346e-6 Iteration 19: convergence error = 1.103850422623509e-6 Iteration 20: convergence error = 3.3587821235414594e-7 Iteration 21: convergence error = 1.022023070618161e-7 Iteration 22: convergence error = 3.10986933982349e-8 Iteration 23: convergence error = 9.464201866649091e-9 Iteration 24: convergence error = 2.8816202757298015e-9 Iteration 25: convergence error = 8.780034477240406e-10 Iteration 26: convergence error = 2.6784618967212737e-10 Iteration 27: convergence error = 8.208189683500677e-11 Iteration 28: convergence error = 2.580691216280684e-11 Iteration 29: convergence error = 7.73070496506989e-12 Converged after 29 iterations Energy conservation errors by band: [1.5004765506027821e-25, 1.5428857128674637e-25, 1.1955344790805478e-25, 1.3530542246350794e-25, 1.4984570666854163e-25, 6.107107549703505e-19, 5.417888360170764e-14, -1.7337242752546445e-12, 8.206768598029157e-12, 3.950617610826157e-12, 7.531752999057062e-13, 8.43769498715119e-14, 5.662137425588298e-15, 3.0184188481996443e-16, 2.1033522146218786e-17, 8.029872339970767e-19, 3.8195891965248606e-20, 1.2523514474052839e-21, 2.3658657988723706e-23, 8.491874715467811e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729989 Iteration 2: convergence error = 2115.11561101764 Iteration 3: convergence error = 714.8959934551624 Iteration 4: convergence error = 296.01907471324057 Iteration 5: convergence error = 115.88799395378692 Iteration 6: convergence error = 44.115249236189584 Iteration 7: convergence error = 16.599581025125644 Iteration 8: convergence error = 6.215983404933013 Iteration 9: convergence error = 2.3231245670035605 Iteration 10: convergence error = 0.8675636398236293 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.1209078441361271 Iteration 13: convergence error = 0.04513241840777482 Iteration 14: convergence error = 0.016846741615609062 Iteration 15: convergence error = 0.006288407473221014 Iteration 16: convergence error = 0.002347277755916366 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782302062085 Iteration 19: convergence error = 0.00012207719169055053 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985380100203e-6 Iteration 23: convergence error = 2.3698873974353774e-6 Iteration 24: convergence error = 8.846077435009647e-7 Iteration 25: convergence error = 3.3019978218362667e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7175352695630863e-8 Iteration 29: convergence error = 6.410118658095598e-9 Iteration 30: convergence error = 2.3951542971190065e-9 Iteration 31: convergence error = 8.942606655182317e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.2505552149377763e-10 Iteration 34: convergence error = 4.7975845518521965e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.4580673883381005e-25, 2.1406529524077376e-25, 2.4718483148557272e-25, 2.003328046026864e-25, 1.704444426256727e-25, 1.0672615135404184e-19, 2.1760371282653068e-14, 3.609557097661309e-12, 1.0931699989669141e-11, 6.66489086142974e-12, 1.8474111129762605e-13, 2.3092638912203256e-14, 1.8596235662471372e-15, 9.302454639925628e-17, 7.684282897491013e-18, 3.4220131069073734e-19, 1.1329065669526267e-20, 3.8381180422460484e-22, 2.0679515313825692e-23, 1.2073675392798577e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238238 Iteration 2: convergence error = 864.8522700482433 Iteration 3: convergence error = 203.4324449469076 Iteration 4: convergence error = 60.87736397590561 Iteration 5: convergence error = 18.481426659698172 Iteration 6: convergence error = 5.614330618626809 Iteration 7: convergence error = 1.7070587705937896 Iteration 8: convergence error = 0.5192694771485549 Iteration 9: convergence error = 0.15798519284203394 Iteration 10: convergence error = 0.048069526692643194 Iteration 11: convergence error = 0.014626287390456127 Iteration 12: convergence error = 0.004450431969644342 Iteration 13: convergence error = 0.001354164904114441 Iteration 14: convergence error = 0.00041204191495580744 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.814885042174865e-5 Iteration 17: convergence error = 1.1607844157879299e-5 Iteration 18: convergence error = 3.5320088045409648e-6 Iteration 19: convergence error = 1.074714077731187e-6 Iteration 20: convergence error = 3.270126853749389e-7 Iteration 21: convergence error = 9.950383628165582e-8 Iteration 22: convergence error = 3.0278101803560276e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8028352971887216e-9 Iteration 25: convergence error = 8.537881512893364e-10 Iteration 26: convergence error = 2.617071004351601e-10 Iteration 27: convergence error = 8.01492205937393e-11 Iteration 28: convergence error = 2.4783730623312294e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [1.4580673883381005e-25, 1.3934439029823953e-25, 1.262177448353619e-25, 1.3944536449410781e-25, 9.956055712613346e-26, -2.710505431213761e-20, 4.241051954068098e-14, 2.5437429940211587e-12, 9.389822253069724e-12, 4.035882739117369e-12, 3.694822225952521e-13, 5.240252676230739e-14, 4.274358644806853e-15, 4.822531263215524e-16, 2.699663409488906e-17, 9.774760211314626e-19, 4.690444945420688e-20, 1.4661776357502416e-21, 5.336607420674143e-23, 3.0586016040091688e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 11m51.1s Testing RayTraceHeatTransfer tests passed Testing completed after 713.24s PkgEval succeeded after 802.56s