Package evaluation to test QuasiNewtonMethods on Julia 1.11.8 (29b3528cce*) started at 2026-01-20T07:22:44.115 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.11` Set-up completed after 8.63s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.11/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.11/Manifest.toml` [79e6a3ab] + Adapt v4.4.0 [4fba245c] + ArrayInterface v7.22.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.18.1 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.5 [3e5b6fbb] + HostCPUFeatures v0.1.18 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.173 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.17.0 [1d0040c9] + PolyesterWeave v0.2.2 ⌅ [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.5.1 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.72 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [4536629a] + OpenBLAS_jll v0.3.27+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 5.31s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling project... 2688.6 ms ✓ StaticArrayInterface 1094.1 ms ✓ StaticArrayInterface → StaticArrayInterfaceOffsetArraysExt 950.0 ms ✓ CloseOpenIntervals 1110.5 ms ✓ LayoutPointers 12682.6 ms ✓ VectorizationBase 1901.0 ms ✓ StrideArraysCore 2442.4 ms ✓ SLEEFPirates 3254.8 ms ✓ VectorizedRNG 47902.7 ms ✓ LoopVectorization 1687.4 ms ✓ VectorizedRNG → VectorizedRNGStaticArraysExt 15081.2 ms ✓ QuasiNewtonMethods 51996.5 ms ✓ VectorizedStatistics 16009.3 ms ✓ Octavian 16549.5 ms ✓ StrideArrays 14 dependencies successfully precompiled in 176 seconds. 53 already precompiled. Precompilation completed after 192.56s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_Ij6eEl/Project.toml` [4c88cf16] Aqua v0.8.14 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test v1.11.0 Status `/tmp/jl_Ij6eEl/Manifest.toml` [79e6a3ab] Adapt v4.4.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.22.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.18.1 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.5 [3e5b6fbb] HostCPUFeatures v0.1.18 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.173 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [1d0040c9] PolyesterWeave v0.2.2 ⌅ [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.5.1 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.72 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.11 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.11.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.6.0+0 [e37daf67] LibGit2_jll v1.7.2+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.6+0 [14a3606d] MozillaCACerts_jll v2023.12.12 [4536629a] OpenBLAS_jll v0.3.27+1 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.59.0+0 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Base.PkgId(Base.UUID("8dfed614-e22c-5e08-85e1-65c5234f0b40"), "Test")]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.11/Test/src/Test.jl:680 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.11/Test/src/Test.jl:1709 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [6.481459813301171e-11, 1.264737203854338e-10] QuasiNewtonMethods.optimum(state) .- 1 = [4.690692279041286e-12, 8.395284467610509e-12] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [-4.829903144099035e-11, -9.688183588707489e-11, 1.564903762130143e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.5987211554602254e-14, 3.552713678800501e-14, -1.2212453270876722e-15] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [4.9891202280605285e-12, -5.70987701564718e-13, 9.994005623070734e-12, -1.4385159730068153e-12] QuasiNewtonMethods.optimum(state) .- 1 = [3.088351796520783e-11, 1.8588464101298996e-11, 5.723466145468592e-11, 4.023315014478612e-11] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [3.650761914997247e-10, 2.3504309609734264e-11, 7.281475422615813e-10, 3.6957770177536986e-11, 4.398150732498607e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-3.563482842139365e-12, 1.8139489910140583e-11, -7.399747481429131e-12, 3.6337599595981374e-11, 5.637712519046545e-13] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [-2.591815650987428e-12, 1.1934897514720433e-12, -4.012679077902703e-12, -5.190514684727532e-12, 3.2078784073519273e-12, -8.012812635627142e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-4.677369602745785e-13, -5.253686374828703e-12, 2.2372326213826454e-11, 6.690203946391193e-13, -1.145150640979864e-11, 4.154943056278171e-11] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [2.3746116184497623e-11, 4.391798036351702e-11, 3.653521929436465e-11, 4.880229553805293e-11, 8.861822387018492e-11, 6.61148913394527e-11, -2.15490958410669e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-6.537681507268189e-11, 8.895195691138724e-11, 1.5151879750874286e-11, -1.3195511350261313e-10, 1.7642287630792453e-10, 3.2596148002994596e-11, -2.5912605394751154e-12] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [-8.729461598022681e-12, 1.1716627668079127e-11, -5.990652418574882e-12, 1.8591128636558096e-11, -2.407429811057682e-11, 2.350319938670964e-11, -7.443268223994437e-12, 3.767364198381529e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-3.592037778332724e-11, 2.0866619543369325e-10, -9.52107281904091e-11, -2.8040914035187825e-10, -7.275013924612495e-11, 4.003726239432126e-10, -1.8815438096453363e-10, -5.693724380861909e-10] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [-5.472061692657348e-10, 3.2125724303000425e-10, 4.2794656707201284e-10, 1.1901124530311336e-10, -1.0843508313485017e-9, 6.279574638057284e-10, 8.473601820213617e-10, 2.3863133691293115e-10, 2.2464252680265417e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-3.517186542012496e-12, 2.326583370404478e-12, -2.883315808333009e-11, -7.350786646043161e-13, -9.016787316795671e-12, 3.4980907059889432e-12, -5.949851722419908e-11, -7.972511539833249e-13, 8.035794252236883e-13] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [-4.1156822394583514e-10, 3.375577595221557e-10, -2.964075651590292e-10, -5.47804135386798e-10, 1.3390755171371893e-10, -8.264225970222583e-10, 6.996583312712801e-10, -5.957067061856947e-10, -1.1170434577323363e-9, 2.880797822513159e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-6.252776074688882e-13, -1.7567058918643852e-11, 5.606071162844728e-11, 1.43642875372052e-11, -2.7913560352033073e-11, 1.894262524615442e-12, -3.4675595728117514e-11, 1.1284928547183881e-10, 3.015365734881925e-11, -5.726596974398035e-11] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [-1.4424572647442346e-11, 2.5867974429161222e-11, 2.029310053330846e-11, 5.007771974874231e-12, -2.9622970743048427e-12, -2.8781643734987483e-11, 5.19448928315569e-11, 3.5082159399735247e-11, 9.715561688494745e-12, -8.805955964419354e-12, -7.674860746931245e-12] QuasiNewtonMethods.optimum(state) .- 1 = [2.6969537714194303e-11, 2.262323661739174e-11, -4.459765889919254e-13, -5.183020679311312e-11, 3.7734926294774596e-11, 5.661093815945151e-11, 4.150302324035238e-11, 5.726530361016557e-13, -9.881429008373743e-11, 8.23083823320303e-11, -3.755018518347697e-11] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [-8.776146476208169e-11, 1.3952172750464342e-10, 1.9923684924094687e-10, -8.278455698729204e-11, -6.342204539322438e-11, -3.0081048763008766e-11, -1.6907275579569614e-10, 3.005826698654346e-10, 3.8570546756488966e-10, -1.521880399479869e-10, -1.1533407562325237e-10, -6.28571639182951e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-8.817169216968068e-12, 4.127276298504512e-11, 5.417000181751064e-12, -2.8878011093524947e-12, -3.147837546180199e-11, -1.405486838024217e-11, -1.6794898805017056e-11, 8.533751483241758e-11, 7.66275931596283e-12, -7.21434023631673e-12, -6.167222288411267e-11, -2.996125569865171e-11] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [6.646549977062932e-11, -5.838685090964191e-11, 8.813172414079418e-12, 3.04876124346265e-11, 6.161560150985679e-11, -1.823430295644357e-11, 1.4208745291455216e-10, -1.119287995621221e-10, 9.446221582720682e-12, 6.220579606974752e-11, 1.258144699534114e-10, -4.446631951537938e-11, -1.3456791236876597e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-3.408151538764059e-11, -8.034295451153639e-11, 1.7893420078962663e-10, 1.27071464461892e-10, -1.026443374740893e-10, 3.080402599664467e-11, -6.556033493865243e-11, -1.6720913542656035e-10, 3.615856503103032e-10, 2.462794412849689e-10, -2.0992529936592064e-10, 6.27742302583556e-11, -6.139533326177116e-13] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [1.5120793506184782e-11, 3.8679281999520754e-11, 2.7126301205271375e-11, 3.050049102171215e-11, -1.449215192295128e-10, 2.871569648732475e-11, -1.9214296820280197e-11, 2.7093216559137545e-11, 7.378431199356328e-11, 5.202083208644126e-11, 6.291456244866822e-11, -2.9348556918051827e-10, 5.863998175925644e-11, -3.539835091714849e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-3.0044411403196136e-11, -7.555223113797638e-11, -6.691780463086161e-11, 3.677658177991816e-11, 1.450062292462917e-11, -4.117750584953228e-11, -5.825828708339031e-11, -5.5635052120805994e-11, -1.5100798389511283e-10, -1.3471557203104112e-10, 7.726508322036807e-11, 3.1418645463077155e-11, -7.503497823080352e-11, -1.1388590070993132e-10] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [3.5158542743829457e-12, -7.630007736736388e-12, 1.2216672118370298e-11, 6.557177023580607e-11, -3.0895286329268856e-12, -7.054801187678095e-12, -4.383937657337356e-12, 6.746603276042151e-12, -1.2744694188882022e-11, 1.9365176129326755e-11, 1.3129342057993654e-10, -5.598299601672352e-12, -1.2408185590118137e-11, -1.0260681193585697e-11, -2.5646151868841116e-13] QuasiNewtonMethods.optimum(state) .- 1 = [6.462341772817126e-11, 2.269961996148595e-12, 3.450595364995479e-11, -4.717992663216819e-11, -1.5287771049088406e-13, 8.760703273935633e-11, 4.105116246932994e-11, 1.4200551845533482e-10, 4.596989455762923e-12, 6.621103665338524e-11, -9.840372960923105e-11, 5.17452747317293e-12, 1.8909029897429264e-10, 7.271583335466403e-11, -1.9025891973001308e-12] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [-4.10441680642748e-11, 4.0205838658380344e-11, 6.689093723366568e-12, 2.0321966331948715e-11, 6.818656750340324e-11, -2.6101121264332505e-11, 8.444356325298941e-13, 3.7454706003359206e-11, -7.834066728662492e-11, 8.646505733622689e-11, 6.305178601451189e-12, 4.0079717322782926e-11, 1.2910672531063483e-10, -4.940825526489334e-11, 1.8411938640383596e-12, 7.165512627693715e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-6.521605477871617e-11, 5.024269889020161e-11, 2.100319917985871e-12, -2.6334490144108713e-11, -4.0593861605486836e-11, 9.368572584378398e-11, -2.4726776182149024e-11, 2.4203083981433338e-11, -1.3735945714188347e-10, 1.0829248608956732e-10, -2.4754642780067115e-12, -4.743094805803594e-11, -7.990363926069222e-11, 1.81169301782802e-10, -4.9388049205845164e-11, 4.8715920186737094e-11] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [-3.585509666947928e-11, 7.536571366983935e-11, -6.895817250551772e-12, -6.702227661747884e-11, -2.5841107031965294e-11, 9.761902397542599e-11, -2.267894760876743e-10, 1.1020495627178661e-10, -7.629341602921613e-11, 1.4171153139841408e-10, -1.4388157332234641e-11, -1.352333800497263e-10, -5.103795164274061e-11, 1.9093637781963935e-10, -4.740459136343134e-10, 2.2174218017312342e-10, 7.684741731850409e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-4.0370484732932255e-11, 7.7999828818065e-12, 3.2229330315658444e-11, 2.7899904608830184e-11, 2.6360247318280017e-11, 3.058420183776889e-11, -4.263689401540205e-11, 2.259370468493671e-11, -8.034184428851177e-11, 1.5679235687571236e-11, 6.63047394766636e-11, 5.6463056452571436e-11, 5.4760862511216146e-11, 6.270894914450764e-11, -8.656353411851114e-11, 4.683919918591073e-11, -1.5512036100062687e-12] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [1.9030865772151628e-10, 6.52562448522076e-11, -8.972300680198941e-11, 1.111539749132362e-10, -1.4375034496083572e-10, -2.501876483762544e-11, -1.273305905158395e-10, 1.010431738279749e-10, -8.72324434908478e-11, 3.856632790899539e-10, 1.2749179489901508e-10, -1.71793579362145e-10, 2.2475399319432654e-10, -2.909184004806775e-10, -4.493894145696231e-11, -2.591368231108504e-10, 1.8296342219059625e-10, -1.6986378970074156e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-4.2065240180022556e-11, -1.619937517460812e-11, 8.672840223766798e-11, -6.27609075820601e-13, -8.239009474664272e-11, -4.640843265235617e-11, 1.1918044329206623e-10, 4.1305625586574024e-11, 1.084909939663703e-10, -7.941458601834483e-11, -3.132805126426774e-11, 1.699966833967892e-10, -1.6480150577535824e-12, -1.6716450446097042e-10, -8.807010676292748e-11, 2.382487540586453e-10, 7.773603982741406e-11, 2.1747670331251356e-10] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [3.314748475702345e-11, -2.2052359938129484e-11, -1.9638735082594394e-11, -5.5880078342340767e-11, -2.5353052990340075e-12, 2.102606977416599e-11, 1.4558576566514603e-11, -5.293843141629395e-11, -4.75104400265991e-11, 6.579692346520005e-11, -4.35208535876086e-11, -4.3668513249883745e-11, -1.1202749838901127e-10, -1.738331700806839e-11, 4.354516747184789e-11, 2.992672776258587e-11, -1.0424983098999974e-10, -9.26440035797782e-11, -1.2405854121766424e-11] QuasiNewtonMethods.optimum(state) .- 1 = [8.081668667614395e-10, 1.2843615060376123e-10, 6.405318497826329e-10, 9.385203725287283e-11, -1.3525769393396558e-10, -1.7788270856300414e-10, 3.122921921061561e-10, 9.782041843209299e-11, 5.513898226894298e-10, 1.6120813572939596e-9, 2.5546631476913717e-10, 1.2823824224739155e-9, 1.8534329626618273e-10, -2.718543168356291e-10, -3.5402281106655664e-10, 6.257956375321783e-10, 1.8557644310135402e-10, 1.1113359121850408e-9, 2.2441604130563064e-11] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [3.664255565638541e-10, -1.2191636589165e-10, -1.3924617014993146e-10, 1.2550893657703455e-10, -1.855513520609975e-10, 1.8691026504313868e-10, -3.594557984598623e-11, -1.1371781294400307e-10, 3.7277270159563614e-10, -5.042175565961315e-10, 7.476721464172442e-10, -2.399702658806291e-10, -2.7497004673193715e-10, 2.5006308135289146e-10, -3.5375391504999243e-10, 3.7927394558323613e-10, -4.8410941921872563e-11, -2.381906893944574e-10, 7.436768978408281e-10, -1.016853046209576e-9] QuasiNewtonMethods.optimum(state) .- 1 = [-1.136857274985914e-11, -5.956546367258397e-11, 6.34625685336232e-11, 1.207032251926421e-10, -8.876122059575664e-12, -1.5178303058860365e-11, 8.493117320540478e-11, -6.50234310839437e-11, 1.4436274398121896e-10, -2.2313495495751567e-10, -2.319877623335742e-11, -1.1595191473645627e-10, 1.4000645087719477e-10, 2.414048960730497e-10, -1.673239324873066e-11, -2.7188140627742996e-11, 1.6615686604382063e-10, -1.3958800781921354e-10, 2.8367419524499837e-10, -4.497715533346991e-10] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [-3.364719614040723e-11, 4.37732072811059e-11, -6.788958284431601e-11, -6.984635092521785e-11, -4.5075054799781356e-13, 4.496403249731884e-13, 5.1460613548215406e-11, 1.2336576205029814e-11, -2.1512791548161658e-11, -1.8307799720673756e-11, -6.326017487623403e-11, 8.273626228572084e-11, -1.4443091167493094e-10, -1.377674641034332e-10, 1.4139800441625994e-12, 1.8427037673518498e-11, 9.104250686675641e-11, 1.9206414236805358e-11, -3.545297388996005e-11, -3.208833199153105e-11, 2.2771340368876736e-11] QuasiNewtonMethods.optimum(state) .- 1 = [2.270139631832535e-11, -5.987410567342977e-11, -2.266742349377182e-11, -6.57233156786674e-11, -1.1069700711630048e-11, -2.1085355683680973e-12, 3.6699088212799325e-11, -4.9501513998961855e-12, 6.333156221671743e-12, -3.746114529690203e-11, 4.52351489599323e-11, -1.2380241276588322e-10, -4.782152451809907e-11, -1.2402256999166639e-10, -2.20742313317146e-11, -6.8616223813933175e-12, 7.246470090649382e-11, -3.668065851059055e-12, 9.986678151108208e-12, -8.252454275492482e-11, -6.747380432159389e-12] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [-7.428846426904556e-11, -2.5992097363314315e-11, 1.1236345187626284e-11, -1.7274626173957586e-11, 5.674616332385085e-11, -1.4504841772122745e-11, -2.2736035276693656e-11, 1.424860229803926e-12, -3.9878877977628235e-11, -2.1176393971700236e-12, -6.937095342607336e-11, -1.4466905451371304e-10, -5.3606341587908446e-11, 2.227951156896779e-11, -3.5718539237450386e-11, 1.1443890279849711e-10, -2.452049674417367e-11, -4.813482945564829e-11, 2.497779760801677e-12, -8.296707765254041e-11, -5.192735130776782e-12, -1.325780596417303e-10] QuasiNewtonMethods.optimum(state) .- 1 = [1.0915690573654047e-10, -9.363942954365712e-11, 2.4066637571706906e-10, -2.1689317009077058e-10, -8.924272432153657e-11, 3.193378894650323e-11, 7.089662190651325e-12, 1.0396661309641786e-10, -3.2385982784433054e-11, 7.252376477140388e-11, -6.106193328747622e-11, 2.1533419491959194e-10, -1.899744805911041e-10, 4.775024819991813e-10, -4.4993397896320175e-10, -1.9194079659001773e-10, 4.9562354220711313e-11, 2.194400217092607e-11, 1.9880541657357753e-10, -6.754163894839849e-11, 1.4187562236145368e-10, -1.0962131202774117e-10] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [-3.762112843475052e-11, 1.699222984541393e-10, -5.563427496468876e-11, 4.448685864133495e-11, 8.117972960519637e-11, 5.123923507710515e-11, -5.236866496005632e-11, 4.302824763158242e-11, -2.0193502425769339e-10, -6.469402791253742e-11, 8.061107337198337e-12, -7.801170820442849e-11, 3.2230951241274397e-10, -1.1460010718167268e-10, 8.269740447985896e-11, 1.5090217964086605e-10, 1.1017431411630696e-10, -1.1067524674501783e-10, 8.04587507730048e-11, -4.037825629410463e-10, -1.3772916140908364e-10, 2.3238744262243927e-11, -9.446887716535457e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-1.2321144104987525e-11, -6.098122007358597e-12, 1.0795808691455022e-11, 2.7522650825062556e-11, 1.0289835650212353e-10, 2.634137352686139e-11, 1.1279643885586665e-11, -1.3791745523406007e-11, 9.843681425536488e-12, 1.758593271006248e-11, 2.8300251031510015e-11, -2.435451840199221e-11, -1.3558487665932262e-11, 1.9906298831529057e-11, 5.434230843093246e-11, 2.0741475204033577e-10, 4.9690473957753056e-11, 2.484745742492578e-11, -2.5013990878619552e-11, 2.399747067727276e-11, 3.328781694733607e-11, 5.5214943728287835e-11, 2.036149027162537e-12] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [6.906741845114084e-11, -9.911571563492316e-11, -5.5134230514397586e-11, -1.1160672386267834e-10, -1.4527079539305987e-10, -8.268297158053883e-11, 2.7395863355650363e-12, -8.989764488376295e-11, -1.8482992913959606e-12, 4.579780998881233e-11, 2.4340973681091782e-11, 8.742562229713258e-11, 1.3390888398134848e-10, -2.0164103720077264e-10, -1.2049772291078398e-10, -2.2243606956351414e-10, -2.8351199166110064e-10, -1.6269263714008275e-10, 6.874056879269119e-12, -1.8641221899429183e-10, -4.529598918168176e-12, 9.16580145116086e-11, 4.7511106160413874e-11, 1.7384893524763356e-10] QuasiNewtonMethods.optimum(state) .- 1 = [8.772982340587987e-12, -1.6758705534414275e-10, -1.8813628432923224e-10, 2.0190071836623247e-10, -1.1096157326306866e-10, -1.9865664668827776e-10, 1.6449352990832722e-10, -1.5507284345517292e-10, -1.1766809748792184e-10, -1.0739920064395392e-10, -2.2196322557732628e-10, -2.457466452554513e-10, 1.0654144233512852e-11, -3.405753457030869e-10, -3.8103142863121775e-10, 3.978841700558178e-10, -2.1755197643358315e-10, -4.012475907089197e-10, 3.355911104563347e-10, -3.1141267342604806e-10, -2.3313417862880215e-10, -2.1628510094018338e-10, -4.53277082534953e-10, -4.881809401169335e-10] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 148 1 149 4m04.9s Method ambiguity | 1 1 9.5s Unbound type parameters | 1 1 0.2s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.5s Stale dependencies | 1 1 6.2s Compat bounds | 3 1 4 10.9s julia | 1 1 0.0s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") deps | 1 1 0.6s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras | 1 1 10.2s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") weakdeps | 1 1 0.0s Piracy | 1 1 0.2s Persistent tasks | 1 1 20.2s ERROR: LoadError: Some tests did not pass: 148 passed, 1 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 263.28s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.11/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{Pkg.Types.PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:2128 [3] test @ /opt/julia/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:2011 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{Pkg.Types.PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.11/Pkg/src/API.jl:481 [5] test(pkgs::Vector{Pkg.Types.PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.11/Pkg/src/API.jl:159 [6] test @ /opt/julia/share/julia/stdlib/v1.11/Pkg/src/API.jl:147 [inlined] [7] #test#74 @ /opt/julia/share/julia/stdlib/v1.11/Pkg/src/API.jl:146 [inlined] [8] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:223 in expression starting at /PkgEval.jl/scripts/evaluate.jl:214 PkgEval failed after 482.2s: package has test failures