Package evaluation to test IterativeLQR on Julia 1.11.8 (29b3528cce*) started at 2026-01-20T11:14:20.197 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.11` Set-up completed after 9.17s ################################################################################ # Installation # Installing IterativeLQR... Resolving package versions... Updating `~/.julia/environments/v1.11/Project.toml` [605048dd] + IterativeLQR v0.2.3 Updating `~/.julia/environments/v1.11/Manifest.toml` ⌅ [47edcb42] + ADTypes v0.2.7 ⌅ [c3fe647b] + AbstractAlgebra v0.27.10 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.43 ⌅ [79e6a3ab] + Adapt v3.7.2 [66dad0bd] + AliasTables v1.1.3 [dce04be8] + ArgCheck v2.5.0 ⌃ [4fba245c] + ArrayInterface v7.7.1 [30b0a656] + ArrayInterfaceCore v0.1.29 ⌅ [15f4f7f2] + AutoHashEquals v0.2.0 [198e06fe] + BangBang v0.4.6 [9718e550] + Baselet v0.1.1 ⌅ [e2ed5e7c] + Bijections v0.1.10 [d360d2e6] + ChainRulesCore v1.26.0 [861a8166] + Combinatorics v1.1.0 [38540f10] + CommonSolve v0.2.6 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.18.1 [b152e2b5] + CompositeTypes v0.1.4 [a33af91c] + CompositionsBase v0.1.2 ⌅ [187b0558] + ConstructionBase v1.5.6 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 ⌅ [864edb3b] + DataStructures v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [244e2a9f] + DefineSingletons v0.1.2 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [31c24e10] + Distributions v0.25.123 [ffbed154] + DocStringExtensions v0.9.5 ⌅ [5b8099bc] + DomainSets v0.5.14 ⌅ [7c1d4256] + DynamicPolynomials v0.4.6 [4e289a0a] + EnumX v1.0.5 [e2ba6199] + ExprTools v0.1.10 [5789e2e9] + FileIO v1.17.1 [1a297f60] + FillArrays v1.16.0 [59287772] + Formatting v0.4.3 ⌅ [f6369f11] + ForwardDiff v0.10.39 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 ⌅ [46192b85] + GPUArraysCore v0.1.5 ⌅ [0b43b601] + Groebner v0.2.11 ⌅ [d5909c97] + GroupsCore v0.4.2 [34004b35] + HypergeometricFunctions v0.3.28 [615f187c] + IfElse v0.1.1 [22cec73e] + InitialValues v0.3.1 [18e54dd8] + IntegerMathUtils v0.1.3 [8197267c] + IntervalSets v0.7.13 [3587e190] + InverseFunctions v0.1.17 [92d709cd] + IrrationalConstants v0.2.6 [605048dd] + IterativeLQR v0.2.3 [82899510] + IteratorInterfaceExtensions v1.0.0 ⌅ [033835bb] + JLD2 v0.4.55 [692b3bcd] + JLLWrappers v1.7.1 [b964fa9f] + LaTeXStrings v1.4.0 ⌃ [2ee39098] + LabelledArrays v1.15.1 ⌅ [984bce1d] + LambertW v0.4.6 ⌅ [23fbe1c1] + Latexify v0.15.21 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.16 ⌅ [e9d8d322] + Metatheory v1.3.5 [128add7d] + MicroCollections v0.2.0 [e1d29d7a] + Missings v1.2.0 ⌅ [102ac46a] + MultivariatePolynomials v0.4.7 [d8a4904e] + MutableArithmetics v1.6.7 [77ba4419] + NaNMath v1.1.3 [bac558e1] + OrderedCollections v1.8.1 [90014a1f] + PDMats v0.11.37 [d96e819e] + Parameters v0.12.3 ⌅ [d236fae5] + PreallocationTools v0.4.24 ⌅ [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.5.1 [27ebfcd6] + Primes v0.5.7 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [fb686558] + RandomExtensions v0.4.4 [3cdcf5f2] + RecipesBase v1.3.4 ⌅ [731186ca] + RecursiveArrayTools v2.38.10 [189a3867] + Reexport v1.2.2 [42d2dcc6] + Referenceables v0.1.3 [ae029012] + Requires v1.3.1 [79098fc4] + Rmath v0.9.0 [7e49a35a] + RuntimeGeneratedFunctions v0.5.16 ⌅ [0bca4576] + SciMLBase v1.98.1 ⌅ [c0aeaf25] + SciMLOperators v0.3.12 [6c6a2e73] + Scratch v1.3.0 [efcf1570] + Setfield v1.1.2 [66db9d55] + SnoopPrecompile v1.0.3 [a2af1166] + SortingAlgorithms v1.2.2 [276daf66] + SpecialFunctions v2.6.1 [171d559e] + SplittablesBase v0.1.15 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 [2913bbd2] + StatsBase v0.34.10 [4c63d2b9] + StatsFuns v1.5.2 ⌅ [2efcf032] + SymbolicIndexingInterface v0.2.2 ⌅ [d1185830] + SymbolicUtils v0.19.11 ⌅ [0c5d862f] + Symbolics v4.14.0 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.1 ⌅ [8ea1fca8] + TermInterface v0.2.3 [ac1d9e8a] + ThreadsX v0.1.12 [a759f4b9] + TimerOutputs v0.5.29 [3bb67fe8] + TranscodingStreams v0.11.3 [28d57a85] + Transducers v0.4.85 [a2a6695c] + TreeViews v0.3.0 [781d530d] + TruncatedStacktraces v1.4.0 [3a884ed6] + UnPack v1.0.2 [700de1a5] + ZygoteRules v0.2.7 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.6.0 [7b1f6079] + FileWatching v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.2.0 [44cfe95a] + Pkg v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.11.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] + LibCURL_jll v8.6.0+0 [e37daf67] + LibGit2_jll v1.7.2+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.6+0 [14a3606d] + MozillaCACerts_jll v2023.12.12 [4536629a] + OpenBLAS_jll v0.3.27+1 [05823500] + OpenLibm_jll v0.8.5+0 [bea87d4a] + SuiteSparse_jll v7.7.0+0 [83775a58] + Zlib_jll v1.2.13+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 [8e850ede] + nghttp2_jll v1.59.0+0 [3f19e933] + p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 8.38s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling project... 5297.4 ms ✓ SciMLOperators 2953.5 ms ? DomainSets 1472.1 ms ✓ Transducers → TransducersReferenceablesExt 1458.1 ms ✓ Transducers → TransducersAdaptExt 1481.7 ms ✓ SciMLOperators → SciMLOperatorsStaticArraysCoreExt 1416.5 ms ✓ SciMLOperators → SciMLOperatorsSparseArraysExt 4923.1 ms ✓ ThreadsX 19141.3 ms ✓ SciMLBase 22347.0 ms ✓ Metatheory 58825.9 ms ✓ SymbolicUtils 5664.8 ms ? Symbolics 7743.4 ms ? IterativeLQR 9 dependencies successfully precompiled in 138 seconds. 181 already precompiled. 3 dependencies failed but may be precompilable after restarting julia 3 dependencies had output during precompilation: ┌ IterativeLQR │ WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/K4CRG/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. │ ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. └ ┌ DomainSets │ WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/K4CRG/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. │ ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. └ ┌ Symbolics │ WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/K4CRG/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. │ ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. └ Precompilation completed after 151.69s ################################################################################ # Testing # Testing IterativeLQR Status `/tmp/jl_H982tE/Project.toml` [6e4b80f9] BenchmarkTools v1.6.3 ⌅ [f6369f11] ForwardDiff v0.10.39 [605048dd] IterativeLQR v0.2.3 ⌅ [0c5d862f] Symbolics v4.14.0 [37e2e46d] LinearAlgebra v1.11.0 [2f01184e] SparseArrays v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_H982tE/Manifest.toml` ⌅ [47edcb42] ADTypes v0.2.7 ⌅ [c3fe647b] AbstractAlgebra v0.27.10 [1520ce14] AbstractTrees v0.4.5 [7d9f7c33] Accessors v0.1.43 ⌅ [79e6a3ab] Adapt v3.7.2 [66dad0bd] AliasTables v1.1.3 [dce04be8] ArgCheck v2.5.0 ⌃ [4fba245c] ArrayInterface v7.7.1 [30b0a656] ArrayInterfaceCore v0.1.29 ⌅ [15f4f7f2] AutoHashEquals v0.2.0 [198e06fe] BangBang v0.4.6 [9718e550] Baselet v0.1.1 [6e4b80f9] BenchmarkTools v1.6.3 ⌅ [e2ed5e7c] Bijections v0.1.10 [d360d2e6] ChainRulesCore v1.26.0 [861a8166] Combinatorics v1.1.0 [38540f10] CommonSolve v0.2.6 [bbf7d656] CommonSubexpressions v0.3.1 [34da2185] Compat v4.18.1 [b152e2b5] CompositeTypes v0.1.4 [a33af91c] CompositionsBase v0.1.2 ⌅ [187b0558] ConstructionBase v1.5.6 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 ⌅ [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [31c24e10] Distributions v0.25.123 [ffbed154] DocStringExtensions v0.9.5 ⌅ [5b8099bc] DomainSets v0.5.14 ⌅ [7c1d4256] DynamicPolynomials v0.4.6 [4e289a0a] EnumX v1.0.5 [e2ba6199] ExprTools v0.1.10 [5789e2e9] FileIO v1.17.1 [1a297f60] FillArrays v1.16.0 [59287772] Formatting v0.4.3 ⌅ [f6369f11] ForwardDiff v0.10.39 [069b7b12] FunctionWrappers v1.1.3 [77dc65aa] FunctionWrappersWrappers v0.1.3 ⌅ [46192b85] GPUArraysCore v0.1.5 ⌅ [0b43b601] Groebner v0.2.11 ⌅ [d5909c97] GroupsCore v0.4.2 [34004b35] HypergeometricFunctions v0.3.28 [615f187c] IfElse v0.1.1 [22cec73e] InitialValues v0.3.1 [18e54dd8] IntegerMathUtils v0.1.3 [8197267c] IntervalSets v0.7.13 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.6 [605048dd] IterativeLQR v0.2.3 [82899510] IteratorInterfaceExtensions v1.0.0 ⌅ [033835bb] JLD2 v0.4.55 [692b3bcd] JLLWrappers v1.7.1 [682c06a0] JSON v1.4.0 [b964fa9f] LaTeXStrings v1.4.0 ⌃ [2ee39098] LabelledArrays v1.15.1 ⌅ [984bce1d] LambertW v0.4.6 ⌅ [23fbe1c1] Latexify v0.15.21 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 ⌅ [e9d8d322] Metatheory v1.3.5 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 ⌅ [102ac46a] MultivariatePolynomials v0.4.7 [d8a4904e] MutableArithmetics v1.6.7 [77ba4419] NaNMath v1.1.3 [bac558e1] OrderedCollections v1.8.1 [90014a1f] PDMats v0.11.37 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.3 ⌅ [d236fae5] PreallocationTools v0.4.24 ⌅ [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.5.1 [27ebfcd6] Primes v0.5.7 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [fb686558] RandomExtensions v0.4.4 [3cdcf5f2] RecipesBase v1.3.4 ⌅ [731186ca] RecursiveArrayTools v2.38.10 [189a3867] Reexport v1.2.2 [42d2dcc6] Referenceables v0.1.3 [ae029012] Requires v1.3.1 [79098fc4] Rmath v0.9.0 [7e49a35a] RuntimeGeneratedFunctions v0.5.16 ⌅ [0bca4576] SciMLBase v1.98.1 ⌅ [c0aeaf25] SciMLOperators v0.3.12 [6c6a2e73] Scratch v1.3.0 [efcf1570] Setfield v1.1.2 [66db9d55] SnoopPrecompile v1.0.3 [a2af1166] SortingAlgorithms v1.2.2 [276daf66] SpecialFunctions v2.6.1 [171d559e] SplittablesBase v0.1.15 [90137ffa] StaticArrays v1.9.16 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 [2913bbd2] StatsBase v0.34.10 [4c63d2b9] StatsFuns v1.5.2 [ec057cc2] StructUtils v2.6.2 ⌅ [2efcf032] SymbolicIndexingInterface v0.2.2 ⌅ [d1185830] SymbolicUtils v0.19.11 ⌅ [0c5d862f] Symbolics v4.14.0 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 ⌅ [8ea1fca8] TermInterface v0.2.3 [ac1d9e8a] ThreadsX v0.1.12 [a759f4b9] TimerOutputs v0.5.29 [3bb67fe8] TranscodingStreams v0.11.3 [28d57a85] Transducers v0.4.85 [a2a6695c] TreeViews v0.3.0 [781d530d] TruncatedStacktraces v1.4.0 [3a884ed6] UnPack v1.0.2 [700de1a5] ZygoteRules v0.2.7 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.11.0 [de0858da] Printf v1.11.0 [9abbd945] Profile v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.6.0+0 [e37daf67] LibGit2_jll v1.7.2+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.6+0 [14a3606d] MozillaCACerts_jll v2023.12.12 [4536629a] OpenBLAS_jll v0.3.27+1 [05823500] OpenLibm_jll v0.8.5+0 [bea87d4a] SuiteSparse_jll v7.7.0+0 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.59.0+0 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... Precompiling Symbolics... 3116.0 ms ? DomainSets 14341.1 ms ✓ SciMLBase Info Given Symbolics was explicitly requested, output will be shown live  WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/K4CRG/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. 5694.9 ms ? Symbolics 1 dependency successfully precompiled in 27 seconds. 177 already precompiled. 2 dependencies failed but may be precompilable after restarting julia 2 dependencies had output during precompilation: ┌ DomainSets │ WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/K4CRG/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. │ ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. └ ┌ Symbolics │ [Output was shown above] └ WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/K4CRG/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. Precompiling DomainSets... Info Given DomainSets was explicitly requested, output will be shown live  WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/K4CRG/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. 2244.9 ms ? DomainSets WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/K4CRG/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/K4CRG/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. WARNING: Wrapping `Vararg` directly in UnionAll is deprecated (wrap the tuple instead). You may need to write `f(x::Vararg{T})` rather than `f(x::Vararg{<:T})` or `f(x::Vararg{T}) where T` instead of `f(x::Vararg{T} where T)`. Precompiling Groebner... 17575.0 ms ✓ AbstractAlgebra 3863.9 ms ✓ Groebner 2 dependencies successfully precompiled in 22 seconds. 27 already precompiled. WARNING: Code.get_symbolify is deprecated, use get_rewrites instead. likely near /home/pkgeval/.julia/packages/Symbolics/UrqtQ/src/build_function.jl:130 Precompiling Distributions... 3722.9 ms ✓ StatsBase 3120.0 ms ✓ StatsFuns 1569.1 ms ✓ PDMats → StatsBaseExt 8751.7 ms ✓ Distributions 4 dependencies successfully precompiled in 20 seconds. 43 already precompiled. Precompiling StatsFunsInverseFunctionsExt... 1411.5 ms ✓ StatsFuns → StatsFunsInverseFunctionsExt 1 dependency successfully precompiled in 2 seconds. 21 already precompiled. Precompiling StatsFunsChainRulesCoreExt... 3899.4 ms ✓ StatsFuns → StatsFunsChainRulesCoreExt 1 dependency successfully precompiled in 4 seconds. 24 already precompiled. Precompiling DistributionsTestExt... 3671.2 ms ✓ Distributions → DistributionsTestExt 1 dependency successfully precompiled in 5 seconds. 49 already precompiled. Precompiling DistributionsChainRulesCoreExt... 4022.7 ms ✓ Distributions → DistributionsChainRulesCoreExt 1 dependency successfully precompiled in 5 seconds. 52 already precompiled. Precompiling Latexify... 5426.1 ms ✓ Latexify 1 dependency successfully precompiled in 6 seconds. 12 already precompiled. Precompiling IterativeLQR... 2600.8 ms ? DomainSets 3388.6 ms ? Symbolics Info Given IterativeLQR was explicitly requested, output will be shown live  ┌ Warning: Module Symbolics with build ID ffffffff-ffff-ffff-7a45-b335735bae1e is missing from the cache. │ This may mean Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] does not support precompilation but is imported by a module that does. └ @ Base loading.jl:2541 1887.9 ms ? IterativeLQR ┌ Warning: Module Symbolics with build ID ffffffff-ffff-ffff-7a45-b335735bae1e is missing from the cache. │ This may mean Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] does not support precompilation but is imported by a module that does. └ @ Base loading.jl:2541 Test Summary: | Pass Total Time Objective | 7 7 40.9s Test Summary: | Pass Total Time Dynamics | 4 4 22.9s Test Summary: | Pass Total Time Constraints | 12 12 18.3s ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University al iter: 1 ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University iter: 1 cost: 40.93119379850421 gradient_norm: 40.66937544307565 max_violation: 6.664886231996002 step_size: 1.0 iter: 2 cost: 14.368173126431966 gradient_norm: 16.626166744252863 max_violation: 3.420124090258306 step_size: 1.0 iter: 3 cost: 9.142677297413186 gradient_norm: 11.243630239048523 max_violation: 3.1349934804130095 step_size: 1.0 iter: 4 cost: 7.28629657383036 gradient_norm: 8.555869385157848 max_violation: 3.127922478493277 step_size: 1.0 iter: 5 cost: 6.422656263431401 gradient_norm: 6.919559406964364 max_violation: 3.1236974036163456 step_size: 1.0 iter: 6 cost: 5.952397973464545 gradient_norm: 5.813750895497282 max_violation: 3.1208854652008586 step_size: 1.0 iter: 7 cost: 5.668465097001299 gradient_norm: 5.014893605397691 max_violation: 3.118879453401311 step_size: 1.0 iter: 8 cost: 5.484022753208111 gradient_norm: 4.410146559189619 max_violation: 3.1173766941584233 step_size: 1.0 iter: 9 cost: 5.357493299297698 gradient_norm: 3.936148639228286 max_violation: 3.116209205633687 step_size: 1.0 iter: 10 cost: 5.266946675167577 gradient_norm: 3.5544957989705526 max_violation: 3.1152762471930715 step_size: 1.0 iter: 11 cost: 5.199928700872923 gradient_norm: 3.2405231871167217 max_violation: 3.1145137354206227 step_size: 1.0 iter: 12 cost: 5.148941355467625 gradient_norm: 2.977651809435354 max_violation: 3.1138789650215224 step_size: 1.0 iter: 13 cost: 5.109251643269326 gradient_norm: 2.754319609982618 max_violation: 3.113342383901629 step_size: 1.0 iter: 14 cost: 5.0777525680256295 gradient_norm: 2.562213992517773 max_violation: 3.11288289370424 step_size: 1.0 iter: 15 cost: 5.052336144849944 gradient_norm: 2.3952034833054254 max_violation: 3.112485030360096 step_size: 1.0 iter: 16 cost: 5.03153134921522 gradient_norm: 2.2486654339153755 max_violation: 3.1121372021280367 step_size: 1.0 iter: 17 cost: 5.014286381407559 gradient_norm: 2.119048248918925 max_violation: 3.1118305496846195 step_size: 1.0 iter: 18 cost: 4.999833063014104 gradient_norm: 2.0035778356455194 max_violation: 3.1115581863406456 step_size: 1.0 iter: 19 cost: 4.987599777310104 gradient_norm: 1.9000556762652494 max_violation: 3.1113146783185437 step_size: 1.0 iter: 20 cost: 4.977154063482835 gradient_norm: 1.806716779803995 max_violation: 3.1110956810498536 step_size: 1.0 iter: 21 cost: 4.968163859023345 gradient_norm: 1.7221277569486562 max_violation: 3.110897679468879 step_size: 1.0 iter: 22 cost: 4.960370775274386 gradient_norm: 1.6451123805576127 max_violation: 3.110717799198555 step_size: 1.0 iter: 23 cost: 4.953571318455942 gradient_norm: 1.5746963507331062 max_violation: 3.110553667041238 step_size: 1.0 iter: 24 cost: 4.947603466793306 gradient_norm: 1.5100657188473394 max_violation: 3.110403306384891 step_size: 1.0 iter: 25 cost: 4.942336926428369 gradient_norm: 1.450535183596509 max_violation: 3.110265057741421 step_size: 1.0 iter: 26 cost: 4.937665957390924 gradient_norm: 1.3955236269860416 max_violation: 3.11013751764547 step_size: 1.0 iter: 27 cost: 4.933504023136228 gradient_norm: 1.344535031145564 max_violation: 3.110019491149408 step_size: 1.0 iter: 28 cost: 4.929779752511874 gradient_norm: 1.2971434434039042 max_violation: 3.109909954512293 step_size: 1.0 iter: 29 cost: 4.926433858723707 gradient_norm: 1.2529810214864294 max_violation: 3.109808025619701 step_size: 1.0 iter: 30 cost: 4.923416764604413 gradient_norm: 1.2117284466672953 max_violation: 3.1097129403286368 step_size: 1.0 iter: 31 cost: 4.920686755021769 gradient_norm: 1.1731071749496087 max_violation: 3.109624033398097 step_size: 1.0 iter: 32 cost: 4.918208526816167 gradient_norm: 1.1368731277306627 max_violation: 3.109540723000991 step_size: 1.0 iter: 33 cost: 4.9159520414370945 gradient_norm: 1.102811519237269 max_violation: 3.109462498056807 step_size: 1.0 iter: 34 cost: 4.913891610159041 gradient_norm: 1.0707325886704984 max_violation: 3.1093889078035395 step_size: 1.0 iter: 35 cost: 4.912005159515447 gradient_norm: 1.0404680576219623 max_violation: 3.1093195531604363 step_size: 1.0 iter: 36 cost: 4.910273637487346 gradient_norm: 1.0118681728878327 max_violation: 3.109254079532878 step_size: 1.0 iter: 37 cost: 4.908680530445637 gradient_norm: 0.9847992248179389 max_violation: 3.1091921707861747 step_size: 1.0 iter: 38 cost: 4.907211467852609 gradient_norm: 0.9591414542916851 max_violation: 3.1091335441726424 step_size: 1.0 iter: 39 cost: 4.905853896963195 gradient_norm: 0.9347872791071455 max_violation: 3.109077946040609 step_size: 1.0 iter: 40 cost: 4.904596813709549 gradient_norm: 0.911639784311471 max_violation: 3.1090251481883087 step_size: 1.0 iter: 41 cost: 4.903430538946569 gradient_norm: 0.8896114317463533 max_violation: 3.108974944752391 step_size: 1.0 iter: 42 cost: 4.902346531525972 gradient_norm: 0.8686229525413202 max_violation: 3.10892714954181 step_size: 1.0 iter: 43 cost: 4.90133723143058 gradient_norm: 0.8486023929879253 max_violation: 3.1088815937444694 step_size: 1.0 iter: 44 cost: 4.900395927568345 gradient_norm: 0.8294842895667437 max_violation: 3.1088381239472285 step_size: 1.0 al iter: 2 iter: 1 cost: 56.16646059046187 gradient_norm: 6.179422555178501 max_violation: 2.93780009575384 step_size: 1.0 iter: 2 cost: 55.762410178223696 gradient_norm: 2.9347078815515326 max_violation: 2.9405536866479993 step_size: 1.0 iter: 3 cost: 55.68830059779336 gradient_norm: 1.9232163293223392 max_violation: 2.9413097188554165 step_size: 1.0 iter: 4 cost: 55.66235428928167 gradient_norm: 1.4300201722803076 max_violation: 2.941648804957678 step_size: 1.0 iter: 5 cost: 55.65033173191121 gradient_norm: 1.1381038553017815 max_violation: 2.9418368637759356 step_size: 1.0 iter: 6 cost: 55.64379362442213 gradient_norm: 0.9451612304551888 max_violation: 2.9419545933212707 step_size: 1.0 iter: 7 cost: 55.639847250326525 gradient_norm: 0.8081625812213229 max_violation: 2.942034341020112 step_size: 1.0 iter: 8 cost: 55.637283477488545 gradient_norm: 0.7058605153704658 max_violation: 2.9420914476515483 step_size: 1.0 iter: 9 cost: 55.63552424908562 gradient_norm: 0.6265567504213498 max_violation: 2.9421340675354375 step_size: 1.0 iter: 10 cost: 55.634264891562246 gradient_norm: 0.5632800301469674 max_violation: 2.9421669098229475 step_size: 1.0 iter: 11 cost: 55.63333243332133 gradient_norm: 0.5116178025867555 max_violation: 2.942192871519865 step_size: 1.0 al iter: 3 iter: 1 cost: 478.30603480880336 gradient_norm: 139.42989340626687 max_violation: 2.26893368901871 step_size: 1.0 iter: 2 cost: 404.1949271098845 gradient_norm: 156.83666834929133 max_violation: 1.7674778280273429 step_size: 1.0 iter: 3 cost: 342.99925378567315 gradient_norm: 110.82635803765329 max_violation: 1.5524197757126759 step_size: 1.0 iter: 4 cost: 311.5645117933437 gradient_norm: 90.48256178482043 max_violation: 1.3957942100842171 step_size: 1.0 iter: 5 cost: 295.5535415418503 gradient_norm: 81.75609851595584 max_violation: 1.3025724733787336 step_size: 1.0 iter: 6 cost: 280.1095741600474 gradient_norm: 74.64511426644756 max_violation: 1.2018910485403371 step_size: 1.0 iter: 7 cost: 267.65614432436985 gradient_norm: 67.4340514045912 max_violation: 1.1129007914438294 step_size: 1.0 iter: 8 cost: 258.03733686557564 gradient_norm: 71.3782251613201 max_violation: 1.0421384558304254 step_size: 1.0 iter: 9 cost: 250.60579416910545 gradient_norm: 74.37479019717374 max_violation: 0.9875524509511533 step_size: 1.0 iter: 10 cost: 244.58548090034367 gradient_norm: 77.30235164172763 max_violation: 0.9438881913851342 step_size: 1.0 iter: 11 cost: 239.69591873479686 gradient_norm: 76.97977778041586 max_violation: 0.907361200293967 step_size: 1.0 iter: 12 cost: 236.0585041969084 gradient_norm: 72.29899776522899 max_violation: 0.8768411570356496 step_size: 1.0 iter: 13 cost: 233.30344181213007 gradient_norm: 66.1796878184515 max_violation: 0.8517854223979016 step_size: 1.0 iter: 14 cost: 231.0708093243443 gradient_norm: 60.327448989449444 max_violation: 0.8310760258393199 step_size: 1.0 iter: 15 cost: 229.21231958799376 gradient_norm: 55.12987199933831 max_violation: 0.8136795846725451 step_size: 1.0 iter: 16 cost: 227.64803751589554 gradient_norm: 65.51109746131041 max_violation: 0.7988332756075884 step_size: 1.0 iter: 17 cost: 226.3194958728341 gradient_norm: 75.5942844748743 max_violation: 0.7859891192590021 step_size: 1.0 iter: 18 cost: 225.18057703149933 gradient_norm: 82.61641261634101 max_violation: 0.7747475144679923 step_size: 1.0 iter: 19 cost: 224.19479414984536 gradient_norm: 87.36681720081232 max_violation: 0.7648105187554712 step_size: 1.0 iter: 20 cost: 223.33346205487402 gradient_norm: 90.43958999745556 max_violation: 0.7559511884872809 step_size: 1.0 iter: 21 cost: 222.5741223549445 gradient_norm: 92.27291820797569 max_violation: 0.7479933928016909 step_size: 1.0 iter: 22 cost: 221.89920830822956 gradient_norm: 93.18885285521145 max_violation: 0.7407982410021434 step_size: 1.0 iter: 23 cost: 221.29494945351092 gradient_norm: 93.4248879281584 max_violation: 0.7342547149431562 step_size: 1.0 iter: 24 cost: 220.75049195395033 gradient_norm: 93.1572320025653 max_violation: 0.7282730246660418 step_size: 1.0 iter: 25 cost: 220.25720437969832 gradient_norm: 92.51750951685335 max_violation: 0.7227797729059486 step_size: 1.0 iter: 26 cost: 219.80814050984344 gradient_norm: 91.60466774341108 max_violation: 0.7177143603517475 step_size: 1.0 iter: 27 cost: 219.39763267239283 gradient_norm: 90.49349362183163 max_violation: 0.7130262724305658 step_size: 1.0 iter: 28 cost: 219.02099007781135 gradient_norm: 89.24075676132881 max_violation: 0.708673011661062 step_size: 1.0 iter: 29 cost: 218.67427810076842 gradient_norm: 87.88968632783556 max_violation: 0.7046185120158186 step_size: 1.0 iter: 30 cost: 218.35415743910158 gradient_norm: 86.47326754020058 max_violation: 0.7008319162032506 step_size: 1.0 iter: 31 cost: 218.05776614591664 gradient_norm: 85.01669150158861 max_violation: 0.6972866266989466 step_size: 1.0 iter: 32 cost: 217.7826317727599 gradient_norm: 83.53919016880067 max_violation: 0.6939595633043023 step_size: 1.0 iter: 33 cost: 217.52660455860425 gradient_norm: 82.05541993204845 max_violation: 0.6908305768008018 step_size: 1.0 iter: 34 cost: 217.28780545316295 gradient_norm: 80.57651085408123 max_violation: 0.6878819811421235 step_size: 1.0 iter: 35 cost: 217.0645847937058 gradient_norm: 79.11086646651461 max_violation: 0.6850981763435691 step_size: 1.0 iter: 36 cost: 216.8554888257425 gradient_norm: 77.66477632683248 max_violation: 0.6824653414339004 step_size: 1.0 iter: 37 cost: 216.65923215658512 gradient_norm: 76.24288727064358 max_violation: 0.6799711821091674 step_size: 1.0 iter: 38 cost: 216.47467481284608 gradient_norm: 74.84856749128618 max_violation: 0.6776047215653289 step_size: 1.0 iter: 39 cost: 216.3008029512383 gradient_norm: 73.48418894675468 max_violation: 0.6753561257783054 step_size: 1.0 iter: 40 cost: 216.13671252175115 gradient_norm: 72.15134723707337 max_violation: 0.673216556541568 step_size: 1.0 iter: 41 cost: 215.98159535127778 gradient_norm: 70.8510333913988 max_violation: 0.6711780470767157 step_size: 1.0 iter: 42 cost: 215.83472723367984 gradient_norm: 69.58376850674352 max_violation: 0.6692333961543215 step_size: 1.0 iter: 43 cost: 215.6954576972575 gradient_norm: 68.3497095676245 max_violation: 0.667376077507916 step_size: 1.0 iter: 44 cost: 215.56320118379355 gradient_norm: 67.14873281679611 max_violation: 0.6656001619689769 step_size: 1.0 iter: 45 cost: 215.43742942165207 gradient_norm: 65.98049957052825 max_violation: 0.6639002502482292 step_size: 1.0 iter: 46 cost: 215.3176648132148 gradient_norm: 64.84450825457397 max_violation: 0.6622714146765714 step_size: 1.0 iter: 47 cost: 215.20347468707135 gradient_norm: 63.740135587262934 max_violation: 0.6607091485243815 step_size: 1.0 iter: 48 cost: 215.0944662897248 gradient_norm: 62.666669187176694 max_violation: 0.6592093217607977 step_size: 1.0 iter: 49 cost: 214.99028241148892 gradient_norm: 61.62333338522117 max_violation: 0.657768142309088 step_size: 1.0 iter: 50 cost: 214.89059755765433 gradient_norm: 60.60930963705458 max_violation: 0.6563821220113262 step_size: 1.0 iter: 51 cost: 214.7951145896028 gradient_norm: 59.62375263522582 max_violation: 0.6550480466432163 step_size: 1.0 iter: 52 cost: 214.7035617718997 gradient_norm: 58.66580298947928 max_violation: 0.6537629494244221 step_size: 1.0 iter: 53 cost: 214.61569017087686 gradient_norm: 57.73459716366933 max_violation: 0.6525240875555989 step_size: 1.0 iter: 54 cost: 214.53127135819622 gradient_norm: 56.82927521687233 max_violation: 0.6513289213843723 step_size: 1.0 iter: 55 cost: 214.4500953796004 gradient_norm: 55.9489867852108 max_violation: 0.6501750958615395 step_size: 1.0 iter: 56 cost: 214.37196895471862 gradient_norm: 55.092895653418736 max_violation: 0.6490604239980251 step_size: 1.0 iter: 57 cost: 214.29671387860824 gradient_norm: 54.26018319604845 max_violation: 0.6479828720743597 step_size: 1.0 iter: 58 cost: 214.22416559977097 gradient_norm: 53.45005091297186 max_violation: 0.6469405463892195 step_size: 1.0 iter: 59 cost: 214.15417195286156 gradient_norm: 52.661722240087606 max_violation: 0.6459316813628746 step_size: 1.0 iter: 60 cost: 214.0865920272394 gradient_norm: 51.89444378108301 max_violation: 0.6449546288362153 step_size: 1.0 iter: 61 cost: 214.0212951550475 gradient_norm: 51.14748607788839 max_violation: 0.6440078484271661 step_size: 1.0 iter: 62 cost: 213.95816000464924 gradient_norm: 50.420144015064686 max_violation: 0.6430898988243108 step_size: 1.0 iter: 63 cost: 213.8970737671009 gradient_norm: 49.711736935063705 max_violation: 0.6421994299129201 step_size: 1.0 iter: 64 cost: 213.8379314249288 gradient_norm: 49.021608526646595 max_violation: 0.6413351756418253 step_size: 1.0 iter: 65 cost: 213.780635093839 gradient_norm: 48.3491265369317 max_violation: 0.6404959475509107 step_size: 1.0 iter: 66 cost: 213.72509342916553 gradient_norm: 47.69368234781404 max_violation: 0.6396806288888071 step_size: 1.0 iter: 67 cost: 213.67122108988156 gradient_norm: 47.05469044989983 max_violation: 0.6388881692588253 step_size: 1.0 iter: 68 cost: 213.6189382538718 gradient_norm: 46.43158784043827 max_violation: 0.6381175797385135 step_size: 1.0 iter: 69 cost: 213.5681701789324 gradient_norm: 45.823833366974114 max_violation: 0.6373679284246014 step_size: 1.0 iter: 70 cost: 213.51884680462024 gradient_norm: 45.230907033830135 max_violation: 0.6366383363606136 step_size: 1.0 iter: 71 cost: 213.47090239065088 gradient_norm: 44.65230928545192 max_violation: 0.6359279738092884 step_size: 1.0 iter: 72 cost: 213.42427518804925 gradient_norm: 44.08756027756062 max_violation: 0.6352360568361815 step_size: 1.0 iter: 73 cost: 213.37890713968915 gradient_norm: 43.53619914502462 max_violation: 0.6345618441745118 step_size: 1.0 iter: 74 cost: 213.33474360724205 gradient_norm: 42.99778327329594 max_violation: 0.633904634344566 step_size: 1.0 iter: 75 cost: 213.2917331218951 gradient_norm: 42.47188757894111 max_violation: 0.6332637630038529 step_size: 1.0 iter: 76 cost: 213.24982715648179 gradient_norm: 41.95810380332342 max_violation: 0.6326386005066751 step_size: 1.0 iter: 77 cost: 213.20897991693886 gradient_norm: 41.45603982266028 max_violation: 0.6320285496540761 step_size: 1.0 iter: 78 cost: 213.169148151222 gradient_norm: 40.9653189768881 max_violation: 0.6314330436170059 step_size: 1.0 iter: 79 cost: 213.1302909740151 gradient_norm: 40.4855794188959 max_violation: 0.6308515440173474 step_size: 1.0 iter: 80 cost: 213.09236970574432 gradient_norm: 40.01647348538962 max_violation: 0.6302835391529555 step_size: 1.0 iter: 81 cost: 213.0553477245671 gradient_norm: 39.557667090050735 max_violation: 0.6297285423542589 step_size: 1.0 iter: 82 cost: 213.01919033013783 gradient_norm: 39.10883913938168 max_violation: 0.6291860904611544 step_size: 1.0 iter: 83 cost: 212.98386461808263 gradient_norm: 38.66968097131156 max_violation: 0.6286557424100634 step_size: 1.0 iter: 84 cost: 212.94933936421714 gradient_norm: 38.23989581658087 max_violation: 0.6281370779219189 step_size: 1.0 iter: 85 cost: 212.91558491764192 gradient_norm: 37.81919828230121 max_violation: 0.6276296962828241 step_size: 1.0 iter: 86 cost: 212.88257310193583 gradient_norm: 37.40731385768024 max_violation: 0.6271332152097613 step_size: 1.0 iter: 87 cost: 212.85027712374023 gradient_norm: 37.00397844099302 max_violation: 0.6266472697945491 step_size: 1.0 iter: 88 cost: 212.81867148810412 gradient_norm: 36.60893788751338 max_violation: 0.6261715115198112 step_size: 1.0 iter: 89 cost: 212.7877319200084 gradient_norm: 36.22194757753097 max_violation: 0.6257056073412701 step_size: 1.0 iter: 90 cost: 212.75743529155676 gradient_norm: 35.8427720038624 max_violation: 0.6252492388312283 step_size: 1.0 iter: 91 cost: 212.7277595543556 gradient_norm: 35.47118437812407 max_violation: 0.6248021013785059 step_size: 1.0 iter: 92 cost: 212.698683676662 gradient_norm: 35.10696625507994 max_violation: 0.6243639034405528 step_size: 1.0 iter: 93 cost: 212.67018758490644 gradient_norm: 34.74990717422063 max_violation: 0.6239343658437941 step_size: 1.0 iter: 94 cost: 212.64225210924175 gradient_norm: 34.39980431799292 max_violation: 0.6235132211286243 step_size: 1.0 iter: 95 cost: 212.6148589327962 gradient_norm: 34.056462185792796 max_violation: 0.6231002129357504 step_size: 1.0 iter: 96 cost: 212.58799054434036 gradient_norm: 33.71969228330438 max_violation: 0.6226950954308785 step_size: 1.0 iter: 97 cost: 212.56163019409829 gradient_norm: 33.389312826036786 max_violation: 0.6222976327649627 step_size: 1.0 iter: 98 cost: 212.53576185246533 gradient_norm: 33.06514845699012 max_violation: 0.6219075985674758 step_size: 1.0 iter: 99 cost: 212.5103701714067 gradient_norm: 32.74702997718401 max_violation: 0.6215247754703901 step_size: 1.0 iter: 100 cost: 212.4854404483366 gradient_norm: 32.434794088960636 max_violation: 0.6211489546606703 step_size: 1.0 al iter: 4 iter: 1 cost: 448.0288832389827 gradient_norm: 249.40895617576797 max_violation: 0.36804512810753787 step_size: 1.0 iter: 2 cost: 418.32492126153846 gradient_norm: 478.10188358058736 max_violation: 0.3537171356916793 step_size: 0.125 iter: 3 cost: 393.3666861197531 gradient_norm: 1595.62448987585 max_violation: 0.34064235204974036 step_size: 0.25 iter: 4 cost: 380.7699445718194 gradient_norm: 3667.837982443935 max_violation: 0.3400453760286055 step_size: 0.5 iter: 5 cost: 356.244680452398 gradient_norm: 4632.101332703134 max_violation: 0.3056941196071765 step_size: 1.0 iter: 6 cost: 329.00964425018094 gradient_norm: 3788.404929294382 max_violation: 0.2765544440510941 step_size: 1.0 iter: 7 cost: 313.1529064322135 gradient_norm: 3196.01738783809 max_violation: 0.2562679133709027 step_size: 1.0 iter: 8 cost: 302.7178404852997 gradient_norm: 2756.3531606320107 max_violation: 0.2403801080597665 step_size: 1.0 iter: 9 cost: 295.38755626120525 gradient_norm: 2419.7714833453238 max_violation: 0.2319824305558269 step_size: 1.0 iter: 10 cost: 290.00347092115453 gradient_norm: 2155.1130429952086 max_violation: 0.229661443865961 step_size: 1.0 iter: 11 cost: 285.9137648437476 gradient_norm: 1942.0832651135906 max_violation: 0.2278683583977319 step_size: 1.0 iter: 12 cost: 282.7225423292225 gradient_norm: 1767.1434664343005 max_violation: 0.22639857745486847 step_size: 1.0 iter: 13 cost: 280.17613281603036 gradient_norm: 1621.0146686666917 max_violation: 0.22514716158035641 step_size: 1.0 iter: 14 cost: 278.1052792121665 gradient_norm: 1497.1642100688994 max_violation: 0.2240542410288211 step_size: 1.0 iter: 15 cost: 276.39330603148676 gradient_norm: 1390.8765637580532 max_violation: 0.2230825294900738 step_size: 1.0 iter: 16 cost: 274.95755981127377 gradient_norm: 1298.670143436227 max_violation: 0.2222071053025383 step_size: 1.0 iter: 17 cost: 273.73810108410174 gradient_norm: 1217.9220035924695 max_violation: 0.2214103468104116 step_size: 1.0 iter: 18 cost: 272.6905638457622 gradient_norm: 1146.620222872325 max_violation: 0.22067922489470737 step_size: 1.0 iter: 19 cost: 271.7815086363604 gradient_norm: 1083.1966184436474 max_violation: 0.22000375702500818 step_size: 1.0 iter: 20 cost: 270.9853185800517 gradient_norm: 1026.4112249366785 max_violation: 0.2193760724651792 step_size: 1.0 iter: 21 cost: 270.2820779797175 gradient_norm: 975.2708997818204 max_violation: 0.218789818194566 step_size: 1.0 iter: 22 cost: 269.6560924869551 gradient_norm: 928.9709111747061 max_violation: 0.2182397647371519 step_size: 1.0 iter: 23 cost: 269.0948375881531 gradient_norm: 886.8523117531229 max_violation: 0.21772153471451405 step_size: 1.0 iter: 24 cost: 268.5881987506938 gradient_norm: 848.3703532703502 max_violation: 0.21723140983810252 step_size: 1.0 iter: 25 cost: 268.1279137528497 gradient_norm: 813.0707537038195 max_violation: 0.21676618989709073 step_size: 1.0 iter: 26 cost: 267.70715748632375 gradient_norm: 780.5716357315869 max_violation: 0.2163230874114963 step_size: 1.0 iter: 27 cost: 267.32022872939905 gradient_norm: 750.5496201619197 max_violation: 0.21589964760681246 step_size: 1.0 iter: 28 cost: 266.9623110689806 gradient_norm: 722.7290041738712 max_violation: 0.21549368707323246 step_size: 1.0 iter: 29 cost: 266.6292887305332 gradient_norm: 696.8732589115634 max_violation: 0.21510324688454974 step_size: 1.0 iter: 30 cost: 266.31760405408517 gradient_norm: 672.7782922168992 max_violation: 0.21472655760544335 step_size: 1.0 iter: 31 cost: 266.02414766760523 gradient_norm: 650.2670708326896 max_violation: 0.21436201479529382 step_size: 1.0 iter: 32 cost: 265.7461756203422 gradient_norm: 629.1853020257208 max_violation: 0.2140081644369758 step_size: 1.0 iter: 33 cost: 265.4812501271614 gradient_norm: 609.397949959856 max_violation: 0.21366369815822628 step_size: 1.0 iter: 34 cost: 265.22720215497634 gradient_norm: 590.7864154057513 max_violation: 0.2133274580252813 step_size: 1.0 iter: 35 cost: 264.98211461567996 gradient_norm: 573.2462435991872 max_violation: 0.2129984498510713 step_size: 1.0 iter: 36 cost: 264.7443240262366 gradient_norm: 556.6852479711797 max_violation: 0.21267586221952106 step_size: 1.0 iter: 37 cost: 264.5124359288375 gradient_norm: 541.0219510405246 max_violation: 0.2123590859811424 step_size: 1.0 iter: 38 cost: 264.28534562654295 gradient_norm: 526.1842536004773 max_violation: 0.21204772669707594 step_size: 1.0 iter: 39 cost: 264.0622525777916 gradient_norm: 512.1082566779909 max_violation: 0.2117416019591145 step_size: 1.0 iter: 40 cost: 263.84265666098344 gradient_norm: 498.73718329151586 max_violation: 0.2114407181821072 step_size: 1.0 iter: 41 cost: 263.62632922263236 gradient_norm: 486.0203779692665 max_violation: 0.21114522735639696 step_size: 1.0 iter: 42 cost: 263.4132602852716 gradient_norm: 473.9123918647444 max_violation: 0.21085537102045793 step_size: 1.0 iter: 43 cost: 263.2035914941018 gradient_norm: 462.37217757293234 max_violation: 0.21057142281517072 step_size: 1.0 iter: 44 cost: 262.9975481041384 gradient_norm: 451.362414734066 max_violation: 0.21029364030206077 step_size: 1.0 iter: 45 cost: 262.79538134288777 gradient_norm: 440.8489709644296 max_violation: 0.21002223221257177 step_size: 1.0 iter: 46 cost: 262.5973270719616 gradient_norm: 430.8004844096995 max_violation: 0.20975734186755357 step_size: 1.0 iter: 47 cost: 262.40358117403514 gradient_norm: 421.1880431803935 max_violation: 0.20949904368161132 step_size: 1.0 iter: 48 cost: 262.2142886116144 gradient_norm: 411.9849349760705 max_violation: 0.20924734823136681 step_size: 1.0 iter: 49 cost: 262.02954191944707 gradient_norm: 403.1664443712021 max_violation: 0.20900221172133282 step_size: 1.0 iter: 50 cost: 261.84938524069116 gradient_norm: 394.7096815695114 max_violation: 0.20876354683072496 step_size: 1.0 iter: 51 cost: 261.6738210025701 gradient_norm: 386.5934322555127 max_violation: 0.20853123313214406 step_size: 1.0 iter: 52 cost: 261.50281735726026 gradient_norm: 378.7980224729743 max_violation: 0.20830512620293096 step_size: 1.0 iter: 53 cost: 261.33631532888035 gradient_norm: 371.3051951843837 max_violation: 0.20808506514473635 step_size: 1.0 iter: 54 cost: 261.17423515988787 gradient_norm: 364.09799671891466 max_violation: 0.20787087855244746 step_size: 1.0 iter: 55 cost: 261.01648168432365 gradient_norm: 357.16067210864105 max_violation: 0.20766238912131563 step_size: 1.0 iter: 56 cost: 260.86294873680276 gradient_norm: 350.47856867503054 max_violation: 0.20745941712612037 step_size: 1.0 iter: 57 cost: 260.7135226919983 gradient_norm: 344.03804735982203 max_violation: 0.20726178299939813 step_size: 1.0 iter: 58 cost: 260.5680852603327 gradient_norm: 337.82640133571533 max_violation: 0.20706930920692024 step_size: 1.0 iter: 59 cost: 260.4265156676183 gradient_norm: 331.8317814297927 max_violation: 0.20688182158366875 step_size: 1.0 iter: 60 cost: 260.28869233498443 gradient_norm: 326.043127882388 max_violation: 0.20669915026044672 step_size: 1.0 iter: 61 cost: 260.15449415906266 gradient_norm: 320.4501079721288 max_violation: 0.20652113028241192 step_size: 1.0 iter: 62 cost: 260.0238014754113 gradient_norm: 315.04305903912524 max_violation: 0.20634760199753677 step_size: 1.0 iter: 63 cost: 259.8964967726067 gradient_norm: 309.81293645405185 max_violation: 0.20617841127434833 step_size: 1.0 iter: 64 cost: 259.7724652110651 gradient_norm: 304.7512661074232 max_violation: 0.20601340959396275 step_size: 1.0 iter: 65 cost: 259.6515949895591 gradient_norm: 299.85010102066025 max_violation: 0.20585245405039654 step_size: 1.0 iter: 66 cost: 259.53377759335166 gradient_norm: 295.10198170428 max_violation: 0.205695407284757 step_size: 1.0 iter: 67 cost: 259.41890795067644 gradient_norm: 290.49989991878385 max_violation: 0.20554213737251237 step_size: 1.0 iter: 68 cost: 259.30688451857964 gradient_norm: 286.0372655317816 max_violation: 0.20539251767830757 step_size: 1.0 iter: 69 cost: 259.19760931457625 gradient_norm: 281.70787617646744 max_violation: 0.20524642668909232 step_size: 1.0 iter: 70 cost: 259.0909879070756 gradient_norm: 277.5058894580088 max_violation: 0.20510374783365748 step_size: 1.0 iter: 71 cost: 258.98692937470304 gradient_norm: 273.4257974709358 max_violation: 0.20496436929454642 step_size: 1.0 iter: 72 cost: 258.88534624244664 gradient_norm: 269.4624034125365 max_violation: 0.2048281838167929 step_size: 1.0 iter: 73 cost: 258.7861544008694 gradient_norm: 265.61080010317437 max_violation: 0.20469508851671137 step_size: 1.0 iter: 74 cost: 258.6892730132412 gradient_norm: 261.8663502367804 max_violation: 0.2045649846931159 step_size: 1.0 iter: 75 cost: 258.59462441439456 gradient_norm: 258.2246682068836 max_violation: 0.2044377776426427 step_size: 1.0 iter: 76 cost: 258.50213400426486 gradient_norm: 254.68160336617072 max_violation: 0.20431337648030823 step_size: 1.0 iter: 77 cost: 258.41173013841666 gradient_norm: 251.23322459095172 max_violation: 0.20419169396615677 step_size: 1.0 iter: 78 cost: 258.32334401733294 gradient_norm: 247.87580603661732 max_violation: 0.20407264633839617 step_size: 1.0 iter: 79 cost: 258.2369095758321 gradient_norm: 244.60581397834974 max_violation: 0.20395615315337867 step_size: 1.0 iter: 80 cost: 258.1523633736477 gradient_norm: 241.41989464458354 max_violation: 0.20384213713249544 step_size: 1.0 iter: 81 cost: 258.06964448796657 gradient_norm: 238.31486295803344 max_violation: 0.2037305240159788 step_size: 1.0 iter: 82 cost: 257.98869440848006 gradient_norm: 235.28769210393966 max_violation: 0.20362124242354707 step_size: 1.0 iter: 83 cost: 257.909456935383 gradient_norm: 232.335503862329 max_violation: 0.2035142237216876 step_size: 1.0 iter: 84 cost: 257.83187808060416 gradient_norm: 229.45555963246147 max_violation: 0.20340940189743462 step_size: 1.0 iter: 85 cost: 257.7559059724539 gradient_norm: 226.6452521011047 max_violation: 0.20330671343836615 step_size: 1.0 iter: 86 cost: 257.68149076381013 gradient_norm: 223.90209749387745 max_violation: 0.2032060972185974 step_size: 1.0 iter: 87 cost: 257.6085845438875 gradient_norm: 221.22372836983496 max_violation: 0.2031074943905029 step_size: 1.0 iter: 88 cost: 257.5371412535918 gradient_norm: 218.60788691066017 max_violation: 0.20301084828191263 step_size: 1.0 iter: 89 cost: 257.46711660443333 gradient_norm: 216.05241866804784 max_violation: 0.20291610429851303 step_size: 1.0 iter: 90 cost: 257.3984680009385 gradient_norm: 213.5552667323904 max_violation: 0.2028232098311964 step_size: 1.0 iter: 91 cost: 257.3311544664748 gradient_norm: 211.11446629072736 max_violation: 0.20273211416811598 step_size: 1.0 iter: 92 cost: 257.2651365723978 gradient_norm: 208.72813954429463 max_violation: 0.20264276841119155 step_size: 1.0 iter: 93 cost: 257.200376370414 gradient_norm: 206.39449095690844 max_violation: 0.20255512539683407 step_size: 1.0 iter: 94 cost: 257.13683732804407 gradient_norm: 204.11180281145417 max_violation: 0.20246913962066593 step_size: 1.0 iter: 95 cost: 257.07448426707765 gradient_norm: 201.87843104973254 max_violation: 0.20238476716603238 step_size: 1.0 iter: 96 cost: 257.01328330488076 gradient_norm: 199.69280137673934 max_violation: 0.20230196563606784 step_size: 1.0 iter: 97 cost: 256.9532017984632 gradient_norm: 197.55340560713518 max_violation: 0.202220694089164 step_size: 1.0 iter: 98 cost: 256.8942082911597 gradient_norm: 195.4587982408553 max_violation: 0.20214091297761438 step_size: 1.0 iter: 99 cost: 256.83627246183244 gradient_norm: 193.40759324686536 max_violation: 0.20206258408930866 step_size: 1.0 iter: 100 cost: 256.7793650764552 gradient_norm: 191.39846104267727 max_violation: 0.20198567049225735 step_size: 1.0 al iter: 5 iter: 1 cost: 572.6314644969193 gradient_norm: 28559.17086816261 max_violation: 0.1516375474195193 step_size: 0.5 iter: 2 cost: 531.8792111169356 gradient_norm: 25588.620971913224 max_violation: 0.1474315892115231 step_size: 0.25 iter: 3 cost: 438.3162937379726 gradient_norm: 19469.638113108565 max_violation: 0.13497115903573226 step_size: 1.0 iter: 4 cost: 367.0386582214908 gradient_norm: 14291.99851810908 max_violation: 0.10192630513675366 step_size: 1.0 iter: 5 cost: 333.8137402727122 gradient_norm: 11237.350333619186 max_violation: 0.08298897872681868 step_size: 1.0 iter: 6 cost: 314.52018762738896 gradient_norm: 9238.071668662631 max_violation: 0.06949468983807466 step_size: 1.0 iter: 7 cost: 302.5359311707043 gradient_norm: 7838.368916108689 max_violation: 0.059690319011494464 step_size: 1.0 iter: 8 cost: 294.5895815733829 gradient_norm: 6805.073717966813 max_violation: 0.05227503016327584 step_size: 1.0 iter: 9 cost: 289.0462456589546 gradient_norm: 6011.4249731029095 max_violation: 0.04648049497560158 step_size: 1.0 iter: 10 cost: 285.0207769918483 gradient_norm: 5382.921176723993 max_violation: 0.041831842995509405 step_size: 1.0 iter: 11 cost: 282.00112300482704 gradient_norm: 4872.983956104304 max_violation: 0.038021737597470795 step_size: 1.0 iter: 12 cost: 279.67457772037864 gradient_norm: 4451.020181874327 max_violation: 0.03484311341981833 step_size: 1.0 iter: 13 cost: 277.8414373509605 gradient_norm: 4096.114871337606 max_violation: 0.03215160598555328 step_size: 1.0 iter: 14 cost: 276.3692976725816 gradient_norm: 3793.488288485376 max_violation: 0.029843590791389374 step_size: 1.0 iter: 15 cost: 275.1675407154397 gradient_norm: 3532.401863596396 max_violation: 0.02784280690600427 step_size: 1.0 iter: 16 cost: 274.1724326811698 gradient_norm: 3304.86641566409 max_violation: 0.026091908227778127 step_size: 1.0 iter: 17 cost: 273.33807502217564 gradient_norm: 3104.815816777158 max_violation: 0.024546954620205508 step_size: 1.0 iter: 18 cost: 272.6307216049877 gradient_norm: 2927.5616280005956 max_violation: 0.0231737181758786 step_size: 1.0 iter: 19 cost: 272.02510322090154 gradient_norm: 2769.4232741782857 max_violation: 0.021945144737061495 step_size: 1.0 iter: 20 cost: 271.5019879110186 gradient_norm: 2627.471221315928 max_violation: 0.02083957079458032 step_size: 1.0 iter: 21 cost: 271.046523849083 gradient_norm: 2499.3448399164336 max_violation: 0.019839446321984866 step_size: 1.0 iter: 22 cost: 270.64709034889086 gradient_norm: 2383.1207955101045 max_violation: 0.018930403851861732 step_size: 1.0 iter: 23 cost: 270.29448630124807 gradient_norm: 2277.2163416507674 max_violation: 0.018100569145007572 step_size: 1.0 iter: 24 cost: 269.98134726975786 gradient_norm: 2180.317177476797 max_violation: 0.017340043412625183 step_size: 1.0 iter: 25 cost: 269.7017204052194 gradient_norm: 2091.322888449245 max_violation: 0.016640509311690477 step_size: 1.0 iter: 26 cost: 269.45075011814544 gradient_norm: 2009.3051673632494 max_violation: 0.01599492754587295 step_size: 1.0 iter: 27 cost: 269.22444267664696 gradient_norm: 1933.475455423234 max_violation: 0.015397300679623416 step_size: 1.0 iter: 28 cost: 269.0194878385325 gradient_norm: 1863.159616007753 max_violation: 0.014842487424494899 step_size: 1.0 iter: 29 cost: 268.8331222327982 gradient_norm: 1797.777920931364 max_violation: 0.014326055255447057 step_size: 1.0 iter: 30 cost: 268.66302366788887 gradient_norm: 1736.8290934386011 max_violation: 0.01384416243978559 step_size: 1.0 iter: 31 cost: 268.5072286038991 gradient_norm: 1679.8774803383737 max_violation: 0.013393462855508798 step_size: 1.0 iter: 32 cost: 268.36406715309306 gradient_norm: 1626.542660269337 max_violation: 0.01297102862564592 step_size: 1.0 iter: 33 cost: 268.2321114716235 gradient_norm: 1576.490965093639 max_violation: 0.012574286797712886 step_size: 1.0 iter: 34 cost: 268.11013447349615 gradient_norm: 1529.4285159095857 max_violation: 0.012200967182515843 step_size: 1.0 iter: 35 cost: 267.99707656789184 gradient_norm: 1485.095467232594 max_violation: 0.011849059124238948 step_size: 1.0 iter: 36 cost: 267.8920186820881 gradient_norm: 1443.2612217888377 max_violation: 0.01151677546816987 step_size: 1.0 iter: 37 cost: 267.79416024494014 gradient_norm: 1403.7204302157263 max_violation: 0.011202522366004386 step_size: 1.0 iter: 38 cost: 267.70280111257796 gradient_norm: 1366.289629578756 max_violation: 0.010904873845328678 step_size: 1.0 iter: 39 cost: 267.61732664752725 gradient_norm: 1330.8044047322735 max_violation: 0.010622550288506338 step_size: 1.0 iter: 40 cost: 267.5371953360444 gradient_norm: 1297.1169801556548 max_violation: 0.010354400138193776 step_size: 1.0 iter: 41 cost: 267.46192846040407 gradient_norm: 1265.0941679560979 max_violation: 0.010099384278685175 step_size: 1.0 iter: 42 cost: 267.39110144421727 gradient_norm: 1234.6156120937892 max_violation: 0.00985656264759871 step_size: 1.0 iter: 43 cost: 267.3243365670467 gradient_norm: 1205.572280155555 max_violation: 0.009625082715354338 step_size: 1.0 iter: 44 cost: 267.26129680530426 gradient_norm: 1177.8651628583486 max_violation: 0.009404169535031759 step_size: 1.0 iter: 45 cost: 267.2016806040452 gradient_norm: 1151.404148700991 max_violation: 0.009193117118839855 step_size: 1.0 iter: 46 cost: 267.1452174216514 gradient_norm: 1126.1070468485357 max_violation: 0.008991280939316448 step_size: 1.0 iter: 47 cost: 267.0916639189918 gradient_norm: 1101.8987359554128 max_violation: 0.008798071387746464 step_size: 1.0 iter: 48 cost: 267.0408006882432 gradient_norm: 1078.7104204023717 max_violation: 0.008612948050310432 step_size: 1.0 iter: 49 cost: 266.99242943539406 gradient_norm: 1056.4789784730876 max_violation: 0.008435414685271314 step_size: 1.0 iter: 50 cost: 266.946370545565 gradient_norm: 1035.146389454678 max_violation: 0.008265014802826376 step_size: 1.0 iter: 51 cost: 266.9024609726003 gradient_norm: 1014.6592287746804 max_violation: 0.008101327765257516 step_size: 1.0 iter: 52 cost: 266.8605524042128 gradient_norm: 994.9682218991531 max_violation: 0.007943965337026682 step_size: 1.0 iter: 53 cost: 266.82050966213285 gradient_norm: 976.0278491936235 max_violation: 0.007792568625652141 step_size: 1.0 iter: 54 cost: 266.7822093032966 gradient_norm: 957.7959950667228 max_violation: 0.007646805362547582 step_size: 1.0 iter: 55 cost: 266.74553839354695 gradient_norm: 940.2336357169811 max_violation: 0.007506367480585863 step_size: 1.0 iter: 56 cost: 266.7103934298282 gradient_norm: 923.3045606234635 max_violation: 0.007370968951335821 step_size: 1.0 iter: 57 cost: 266.6766793905546 gradient_norm: 906.9751236116234 max_violation: 0.007240343850166586 step_size: 1.0 iter: 58 cost: 266.64430889690715 gradient_norm: 891.2140198628008 max_violation: 0.007114244621416965 step_size: 1.0 iter: 59 cost: 266.61320147041386 gradient_norm: 875.9920857996248 max_violation: 0.006992440520192544 step_size: 1.0 iter: 60 cost: 266.58328287430527 gradient_norm: 861.2821191486674 max_violation: 0.006874716210106158 step_size: 1.0 iter: 61 cost: 266.5544845279337 gradient_norm: 847.0587168334532 max_violation: 0.006760870498924598 step_size: 1.0 iter: 62 cost: 266.52674298508435 gradient_norm: 833.2981286878526 max_violation: 0.0066507151967331035 step_size: 1.0 iter: 63 cost: 266.4999994682682 gradient_norm: 819.9781252025763 max_violation: 0.006544074082843965 step_size: 1.0 iter: 64 cost: 266.47419945220304 gradient_norm: 807.0778777774069 max_violation: 0.006440781969720755 step_size: 1.0 iter: 65 cost: 266.4492922905655 gradient_norm: 794.5778500922762 max_violation: 0.006340683853199525 step_size: 1.0 iter: 66 cost: 266.42523088094487 gradient_norm: 782.4596994557244 max_violation: 0.0062436341402610784 step_size: 1.0 iter: 67 cost: 266.40197136352543 gradient_norm: 770.7061870250299 max_violation: 0.006149495945759753 step_size: 1.0 iter: 68 cost: 266.3794728496702 gradient_norm: 759.3010960287457 max_violation: 0.00605814045143882 step_size: 1.0 iter: 69 cost: 266.35769717702 gradient_norm: 748.229157138373 max_violation: 0.005969446320620242 step_size: 1.0 iter: 70 cost: 266.33660868816696 gradient_norm: 737.4759802909955 max_violation: 0.005883299163163658 step_size: 1.0 iter: 71 cost: 266.31617403032396 gradient_norm: 727.0279923092986 max_violation: 0.005799591045636321 step_size: 1.0 iter: 72 cost: 266.29636197372145 gradient_norm: 716.8723797580786 max_violation: 0.0057182200423504526 step_size: 1.0 iter: 73 cost: 266.27714324674355 gradient_norm: 706.997036534093 max_violation: 0.005639089823366361 step_size: 1.0 iter: 74 cost: 266.2584903860462 gradient_norm: 697.3905157309161 max_violation: 0.0055621092758958435 step_size: 1.0 iter: 75 cost: 266.24037760009827 gradient_norm: 688.0419853773526 max_violation: 0.005487192155986698 step_size: 1.0 iter: 76 cost: 266.2227806447961 gradient_norm: 678.9411877073786 max_violation: 0.005414256767856562 step_size: 1.0 iter: 77 cost: 266.2056767099082 gradient_norm: 670.0784016005052 max_violation: 0.005343225668017149 step_size: 1.0 iter: 78 cost: 266.1890443153031 gradient_norm: 661.444407966635 max_violation: 0.0052740253924904446 step_size: 1.0 iter: 79 cost: 266.17286321597106 gradient_norm: 653.03045773749 max_violation: 0.005206586204430597 step_size: 1.0 iter: 80 cost: 266.1571143150145 gradient_norm: 644.8282423049534 max_violation: 0.005140841860944989 step_size: 1.0 iter: 81 cost: 266.1417795838292 gradient_norm: 636.8298661497655 max_violation: 0.005076729397091806 step_size: 1.0 iter: 82 cost: 266.1268419887965 gradient_norm: 629.0278214793552 max_violation: 0.005014188925654861 step_size: 1.0 iter: 83 cost: 266.11228542389784 gradient_norm: 621.4149647333004 max_violation: 0.004953163451582698 step_size: 1.0 iter: 84 cost: 266.09809464868033 gradient_norm: 613.9844947514172 max_violation: 0.0048935986994849134 step_size: 1.0 iter: 85 cost: 266.08425523110924 gradient_norm: 606.7299325114373 max_violation: 0.004835442953482483 step_size: 1.0 iter: 86 cost: 266.07075349485024 gradient_norm: 599.6451022749686 max_violation: 0.004778646908113027 step_size: 1.0 iter: 87 cost: 266.057576470606 gradient_norm: 592.7241140542167 max_violation: 0.004723163529643859 step_size: 1.0 iter: 88 cost: 266.0447118511353 gradient_norm: 585.9613472753399 max_violation: 0.004668947926799283 step_size: 1.0 iter: 89 cost: 266.03214794964316 gradient_norm: 579.351435545339 max_violation: 0.004615957230172607 step_size: 1.0 iter: 90 cost: 266.01987366125303 gradient_norm: 572.8892524516646 max_violation: 0.004564150479784312 step_size: 1.0 iter: 91 cost: 266.0078784272985 gradient_norm: 566.5698982914782 max_violation: 0.004513488519956588 step_size: 1.0 iter: 92 cost: 265.99615220219533 gradient_norm: 560.3886876793413 max_violation: 0.004463933901122319 step_size: 1.0 iter: 93 cost: 265.98468542269075 gradient_norm: 554.341137962016 max_violation: 0.004415450787995656 step_size: 1.0 iter: 94 cost: 265.9734689792735 gradient_norm: 548.4229583595009 max_violation: 0.0043680048734703325 step_size: 1.0 iter: 95 cost: 265.96249418960053 gradient_norm: 542.6300398207421 max_violation: 0.004321563298166131 step_size: 1.0 iter: 96 cost: 265.9517527737471 gradient_norm: 536.9584454951081 max_violation: 0.004276094574834688 step_size: 1.0 iter: 97 cost: 265.94123683115794 gradient_norm: 531.4044018126091 max_violation: 0.004231568517569451 step_size: 1.0 iter: 98 cost: 265.9309388191567 gradient_norm: 525.9642901012649 max_violation: 0.0041879561752657946 step_size: 1.0 iter: 99 cost: 265.9208515328923 gradient_norm: 520.6346387218144 max_violation: 0.004145229769169645 step_size: 1.0 iter: 100 cost: 265.9109680866163 gradient_norm: 515.4121156763941 max_violation: 0.004103362634171104 step_size: 1.0 Test Summary: | Pass Total Time Solve: acrobot | 1 1 6m14.9s ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University al iter: 1 ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University iter: 1 cost: 261.2537798738653 gradient_norm: 885.6763002794513 max_violation: 1.1807656674637883 step_size: 1.0 iter: 2 cost: 69.99469960068207 gradient_norm: 376.08357134305186 max_violation: 0.766429330514935 step_size: 1.0 iter: 3 cost: 34.54977364243712 gradient_norm: 193.82532155965612 max_violation: 0.5197983639867401 step_size: 1.0 iter: 4 cost: 22.539037764763805 gradient_norm: 111.7024513072441 max_violation: 0.4196158004810382 step_size: 1.0 iter: 5 cost: 17.035664625358486 gradient_norm: 69.14467761180012 max_violation: 0.37323467952446965 step_size: 1.0 iter: 6 cost: 14.062954292496705 gradient_norm: 45.607762506571646 max_violation: 0.34188493819304266 step_size: 1.0 iter: 7 cost: 12.272616098482587 gradient_norm: 31.744197515746393 max_violation: 0.3195794259745215 step_size: 1.0 iter: 8 cost: 11.110324366994146 gradient_norm: 28.481409161315987 max_violation: 0.30283107541267995 step_size: 1.0 iter: 9 cost: 10.312569004061332 gradient_norm: 25.725116998667954 max_violation: 0.28976177042682494 step_size: 1.0 iter: 10 cost: 9.740976036112503 gradient_norm: 24.387263942641127 max_violation: 0.27926490324135944 step_size: 1.0 iter: 11 cost: 9.317182750501477 gradient_norm: 23.27948171916522 max_violation: 0.270642534988605 step_size: 1.0 iter: 12 cost: 8.99409364960746 gradient_norm: 22.133658624582665 max_violation: 0.2634309744732146 step_size: 1.0 iter: 13 cost: 8.742010825607291 gradient_norm: 21.003710960323513 max_violation: 0.25730926409585564 step_size: 1.0 iter: 14 cost: 8.541448500865746 gradient_norm: 19.918615937273927 max_violation: 0.2520477436399142 step_size: 1.0 iter: 15 cost: 8.379187541400649 gradient_norm: 18.892634093629162 max_violation: 0.24747750308208794 step_size: 1.0 iter: 16 cost: 8.246001295724474 gradient_norm: 17.931443843477687 max_violation: 0.243471404916475 step_size: 1.0 iter: 17 cost: 8.135289721002943 gradient_norm: 17.035806102872616 max_violation: 0.2399318426078958 step_size: 1.0 iter: 18 cost: 8.042229513640368 gradient_norm: 16.203750801407285 max_violation: 0.23678258854916034 step_size: 1.0 iter: 19 cost: 7.963228813262942 gradient_norm: 15.431879152844623 max_violation: 0.23396321467267356 step_size: 1.0 iter: 20 cost: 7.895567773780683 gradient_norm: 14.71613518888006 max_violation: 0.2314251818556059 step_size: 1.0 iter: 21 cost: 7.837155934003607 gradient_norm: 14.05225742418412 max_violation: 0.2291290411089797 step_size: 1.0 iter: 22 cost: 7.786364917793634 gradient_norm: 13.436037151680694 max_violation: 0.22704239307714413 step_size: 1.0 iter: 23 cost: 7.741910858273423 gradient_norm: 12.86345977297741 max_violation: 0.22513837563732508 step_size: 1.0 iter: 24 cost: 7.702770335780684 gradient_norm: 12.330775619639935 max_violation: 0.223394526194177 step_size: 1.0 iter: 25 cost: 7.668119333509148 gradient_norm: 11.834528666306948 max_violation: 0.22179191431193956 step_size: 1.0 iter: 26 cost: 7.637288274827675 gradient_norm: 11.37156056170258 max_violation: 0.2203144723692816 step_size: 1.0 iter: 27 cost: 7.609728473089355 gradient_norm: 10.939000679422454 max_violation: 0.21894847327438605 step_size: 1.0 iter: 28 cost: 7.5849867970528555 gradient_norm: 10.534248743252592 max_violation: 0.21768211877573584 step_size: 1.0 iter: 29 cost: 7.562686328832223 gradient_norm: 10.154954010172425 max_violation: 0.21650521190799044 step_size: 1.0 iter: 30 cost: 7.542511446200534 gradient_norm: 9.798993394781991 max_violation: 0.2154088941268837 step_size: 1.0 iter: 31 cost: 7.5241962083383624 gradient_norm: 9.464449922833648 max_violation: 0.21438543266983068 step_size: 1.0 iter: 32 cost: 7.507515233952561 gradient_norm: 9.149592283243631 max_violation: 0.21342804726960818 step_size: 1.0 iter: 33 cost: 7.492276478169418 gradient_norm: 8.852855866270925 max_violation: 0.21253076796176984 step_size: 1.0 iter: 34 cost: 7.478315469141725 gradient_norm: 8.572825443102449 max_violation: 0.2116883176538611 step_size: 1.0 iter: 35 cost: 7.465490676384057 gradient_norm: 8.308219503864 max_violation: 0.21089601456018237 step_size: 1.0 iter: 36 cost: 7.453679763543525 gradient_norm: 8.057876191788143 max_violation: 0.21014969068297518 step_size: 1.0 iter: 37 cost: 7.442776537525081 gradient_norm: 7.820740728824099 max_violation: 0.20944562333843297 step_size: 1.0 iter: 38 cost: 7.432688449752018 gradient_norm: 7.595854208610376 max_violation: 0.2087804773531028 step_size: 1.0 iter: 39 cost: 7.423334538118871 gradient_norm: 7.382343627146472 max_violation: 0.2081512560379437 step_size: 1.0 iter: 40 cost: 7.414643722894794 gradient_norm: 7.179413023837764 max_violation: 0.20755525942109987 step_size: 1.0 iter: 41 cost: 7.406553388595878 gradient_norm: 6.986335612818852 max_violation: 0.20699004851539815 step_size: 1.0 iter: 42 cost: 7.399008198200706 gradient_norm: 6.802446793745567 max_violation: 0.20645341462638545 step_size: 1.0 iter: 43 cost: 7.391959097146254 gradient_norm: 6.627137941422962 max_violation: 0.2059433528896557 step_size: 1.0 iter: 44 cost: 7.385362473123337 gradient_norm: 6.45985088395812 max_violation: 0.20545803937275675 step_size: 1.0 iter: 45 cost: 7.379179444392276 gradient_norm: 6.300072989008616 max_violation: 0.2049958111936343 step_size: 1.0 iter: 46 cost: 7.373375254601611 gradient_norm: 6.147332786703153 max_violation: 0.2045551492013793 step_size: 1.0 iter: 47 cost: 7.367918756251549 gradient_norm: 6.001196066353447 max_violation: 0.2041346628427032 step_size: 1.0 iter: 48 cost: 7.362781968245788 gradient_norm: 5.861262391436014 max_violation: 0.20373307689846154 step_size: 1.0 iter: 49 cost: 7.357939695613454 gradient_norm: 5.727161984084324 max_violation: 0.20334921982621523 step_size: 1.0 iter: 50 cost: 7.353369201599009 gradient_norm: 5.598552936261505 max_violation: 0.2029820134865652 step_size: 1.0 iter: 51 cost: 7.349049924024784 gradient_norm: 5.475118710010506 max_violation: 0.20263046406533292 step_size: 1.0 iter: 52 cost: 7.34496322921335 gradient_norm: 5.35656589373689 max_violation: 0.20229365403219823 step_size: 1.0 iter: 53 cost: 7.341092197882067 gradient_norm: 5.242622185541038 max_violation: 0.2019707350005815 step_size: 1.0 iter: 54 cost: 7.337421438340977 gradient_norm: 5.133034578164165 max_violation: 0.20166092137318348 step_size: 1.0 iter: 55 cost: 7.333936923079356 gradient_norm: 5.0275677230832505 max_violation: 0.2013634846738297 step_size: 1.0 iter: 56 cost: 7.330625845447401 gradient_norm: 4.926002454107622 max_violation: 0.20107774848119497 step_size: 1.0 iter: 57 cost: 7.327476493652688 gradient_norm: 4.828134453115053 max_violation: 0.20080308389097912 step_size: 1.0 iter: 58 cost: 7.324478139716949 gradient_norm: 4.733773042605958 max_violation: 0.2005389054433122 step_size: 1.0 iter: 59 cost: 7.321620941393538 gradient_norm: 4.64274009160189 max_violation: 0.20028466746088736 step_size: 1.0 iter: 60 cost: 7.318895855341548 gradient_norm: 4.554869022929657 max_violation: 0.20003986075024294 step_size: 1.0 iter: 61 cost: 7.316294560101643 gradient_norm: 4.47000391137999 max_violation: 0.19980400962503886 step_size: 1.0 iter: 62 cost: 7.313809387626099 gradient_norm: 4.387998663338512 max_violation: 0.1995766692150367 step_size: 1.0 iter: 63 cost: 7.3114332622926375 gradient_norm: 4.318891416810995 max_violation: 0.19935742302960957 step_size: 1.0 iter: 64 cost: 7.309159646479266 gradient_norm: 4.2614430161156545 max_violation: 0.19914588074805462 step_size: 1.0 iter: 65 cost: 7.306982491904377 gradient_norm: 4.205440961225905 max_violation: 0.19894167621241277 step_size: 1.0 iter: 66 cost: 7.304896196042877 gradient_norm: 4.150833848380019 max_violation: 0.1987444656016777 step_size: 1.0 iter: 67 cost: 7.302895563020863 gradient_norm: 4.09757253229489 max_violation: 0.19855392576839925 step_size: 1.0 iter: 68 cost: 7.300975768469271 gradient_norm: 4.0456100154202375 max_violation: 0.19836975272122537 step_size: 1.0 iter: 69 cost: 7.299132327884227 gradient_norm: 3.994901342440709 max_violation: 0.19819166023870682 step_size: 1.0 iter: 70 cost: 7.297361068098634 gradient_norm: 3.945403499836873 max_violation: 0.1980193786011526 step_size: 1.0 iter: 71 cost: 7.295658101519613 gradient_norm: 3.8970753204244346 max_violation: 0.1978526534292424 step_size: 1.0 iter: 72 cost: 7.294019802828746 gradient_norm: 3.8498773926640872 max_violation: 0.19769124461888232 step_size: 1.0 iter: 73 cost: 7.292442787879104 gradient_norm: 3.803771974568054 max_violation: 0.19753492536320216 step_size: 1.0 iter: 74 cost: 7.290923894554755 gradient_norm: 3.7587229120288264 max_violation: 0.19738348125356087 step_size: 1.0 iter: 75 cost: 7.289460165386733 gradient_norm: 3.714695561357109 max_violation: 0.1972367094521399 step_size: 1.0 iter: 76 cost: 7.28804883174277 gradient_norm: 3.671656715862188 max_violation: 0.19709441792968274 step_size: 1.0 iter: 77 cost: 7.286687299430009 gradient_norm: 3.62957453626189 max_violation: 0.1969564247623623 step_size: 1.0 iter: 78 cost: 7.285373135567649 gradient_norm: 3.588418484737847 max_violation: 0.19682255748258193 step_size: 1.0 iter: 79 cost: 7.284104056602718 gradient_norm: 3.548159262458899 max_violation: 0.19669265247897094 step_size: 1.0 iter: 80 cost: 7.282877917356494 gradient_norm: 3.508768750404913 max_violation: 0.19656655444127047 step_size: 1.0 iter: 81 cost: 7.281692701001064 gradient_norm: 3.470219953278031 max_violation: 0.19644411584615984 step_size: 1.0 iter: 82 cost: 7.28054650987663 gradient_norm: 3.432486946391343 max_violation: 0.19632519648074798 step_size: 1.0 iter: 83 cost: 7.2794375570698175 gradient_norm: 3.3955448253297504 max_violation: 0.19620966300036713 step_size: 1.0 iter: 84 cost: 7.2783641586813435 gradient_norm: 3.3593696582735255 max_violation: 0.19609738851796976 step_size: 1.0 iter: 85 cost: 7.277324726719402 gradient_norm: 3.323938440791899 max_violation: 0.1959882522223797 step_size: 1.0 iter: 86 cost: 7.276317762561029 gradient_norm: 3.2892290530176655 max_violation: 0.19588213902326235 step_size: 1.0 iter: 87 cost: 7.275341850930356 gradient_norm: 3.25522021904111 max_violation: 0.19577893922049228 step_size: 1.0 al iter: 2 iter: 1 cost: 7.269944849743791 gradient_norm: 0.48354130657668726 max_violation: 0.0481756108564424 step_size: 1.0 iter: 2 cost: 7.253994869618226 gradient_norm: 0.13733625988558718 max_violation: 0.0017963190921093108 step_size: 1.0 iter: 3 cost: 7.252163371769252 gradient_norm: 0.12093728810343407 max_violation: 0.001811038634711104 step_size: 1.0 iter: 4 cost: 7.251086984969248 gradient_norm: 0.114766263279237 max_violation: 0.0018202529338060547 step_size: 1.0 iter: 5 cost: 7.250360358028719 gradient_norm: 0.1096676429055452 max_violation: 0.0018264790512261264 step_size: 1.0 Test Summary: | Pass Total Time Solve: car | 3 3 38.7s Testing IterativeLQR tests passed Testing completed after 690.05s PkgEval succeeded after 883.6s