Package evaluation to test GeometryOptimization on Julia 1.11.8 (29b3528cce*) started at 2026-01-20T07:34:29.423 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.11` Set-up completed after 8.88s ################################################################################ # Installation # Installing GeometryOptimization... Resolving package versions... Updating `~/.julia/environments/v1.11/Project.toml` [673bf261] + GeometryOptimization v0.1.4 Updating `~/.julia/environments/v1.11/Manifest.toml` [47edcb42] + ADTypes v1.21.0 [79e6a3ab] + Adapt v4.4.0 [66dad0bd] + AliasTables v1.1.3 [4fba245c] + ArrayInterface v7.22.0 [a963bdd2] + AtomsBase v0.5.2 [a3e0e189] + AtomsCalculators v0.2.3 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.18.1 [187b0558] + ConstructionBase v1.6.0 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [e2d170a0] + DataValueInterfaces v1.0.0 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [a0c0ee7d] + DifferentiationInterface v0.7.14 [ffbed154] + DocStringExtensions v0.9.5 [4e289a0a] + EnumX v1.0.5 [e2ba6199] + ExprTools v0.1.10 [1a297f60] + FillArrays v1.16.0 [6a86dc24] + FiniteDiff v2.29.0 [f6369f11] + ForwardDiff v1.3.1 [673bf261] + GeometryOptimization v0.1.4 [92d709cd] + IrrationalConstants v0.2.6 [82899510] + IteratorInterfaceExtensions v1.0.0 [692b3bcd] + JLLWrappers v1.7.1 [b964fa9f] + LaTeXStrings v1.4.0 ⌃ [d3d80556] + LineSearches v7.5.1 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.16 [e1d29d7a] + Missings v1.2.0 ⌅ [d41bc354] + NLSolversBase v7.10.0 [77ba4419] + NaNMath v1.1.3 ⌅ [429524aa] + Optim v1.13.3 [bac558e1] + OrderedCollections v1.8.1 [7b2266bf] + PeriodicTable v1.2.1 [85a6dd25] + PositiveFactorizations v0.2.4 ⌅ [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.5.1 ⌅ [08abe8d2] + PrettyTables v2.4.0 [43287f4e] + PtrArrays v1.3.0 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [efcf1570] + Setfield v1.1.2 [a2af1166] + SortingAlgorithms v1.2.2 [276daf66] + SpecialFunctions v2.6.1 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 [2913bbd2] + StatsBase v0.34.10 [892a3eda] + StringManipulation v0.4.2 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.1 [a759f4b9] + TimerOutputs v0.5.29 [1986cc42] + Unitful v1.27.0 [a7773ee8] + UnitfulAtomic v1.0.0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.11.0 [fa267f1f] + TOML v1.0.3 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [4536629a] + OpenBLAS_jll v0.3.27+1 [05823500] + OpenLibm_jll v0.8.5+0 [bea87d4a] + SuiteSparse_jll v7.7.0+0 [8e850b90] + libblastrampoline_jll v5.11.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 5.8s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling project... 79236.9 ms ✓ OptimizationBase 26302.9 ms ✓ EmpiricalPotentials 11230.6 ms ✓ GeometryOptimization 6375.3 ms ✓ Optimization 65569.7 ms ✓ OptimizationNLopt 142335.5 ms ✓ GeometryOptimization → GeometryOptimizationOptimizationExt 6 dependencies successfully precompiled in 337 seconds. 231 already precompiled. Precompilation completed after 348.53s ################################################################################ # Testing # Testing GeometryOptimization Status `/tmp/jl_QsVuWc/Project.toml` [a963bdd2] AtomsBase v0.5.2 [f5cc8831] AtomsBuilder v0.2.3 [a3e0e189] AtomsCalculators v0.2.3 [ffbed154] DocStringExtensions v0.9.5 [38527215] EmpiricalPotentials v0.2.5 [673bf261] GeometryOptimization v0.1.4 ⌃ [d3d80556] LineSearches v7.5.1 ⌅ [429524aa] Optim v1.13.3 ⌅ [7f7a1694] Optimization v4.8.0 ⌃ [4e6fcdb7] OptimizationNLopt v0.3.4 ⌅ [08abe8d2] PrettyTables v2.4.0 [90137ffa] StaticArrays v1.9.16 ⌅ [f8b46487] TestItemRunner v0.2.3 [a759f4b9] TimerOutputs v0.5.29 [1986cc42] Unitful v1.27.0 [a7773ee8] UnitfulAtomic v1.0.0 [37e2e46d] LinearAlgebra v1.11.0 [de0858da] Printf v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_QsVuWc/Manifest.toml` [47edcb42] ADTypes v1.21.0 [1520ce14] AbstractTrees v0.4.5 [7d9f7c33] Accessors v0.1.43 [79e6a3ab] Adapt v4.4.0 [66dad0bd] AliasTables v1.1.3 [dce04be8] ArgCheck v2.5.0 [4fba245c] ArrayInterface v7.22.0 [a963bdd2] AtomsBase v0.5.2 [f5cc8831] AtomsBuilder v0.2.3 [a3e0e189] AtomsCalculators v0.2.3 [9855a07e] AtomsCalculatorsUtilities v0.1.8 [1692102d] AtomsIO v0.3.0 [198e06fe] BangBang v0.4.6 [9718e550] Baselet v0.1.1 [d1d4a3ce] BitFlags v0.1.9 [8ce10254] Bumper v0.7.1 [fa961155] CEnum v0.5.0 [46823bd8] Chemfiles v0.10.43 [ae650224] ChunkSplitters v3.1.2 [944b1d66] CodecZlib v0.7.8 [38540f10] CommonSolve v0.2.6 [bbf7d656] CommonSubexpressions v0.3.1 [34da2185] Compat v4.18.1 [a33af91c] CompositionsBase v0.1.2 [f0e56b4a] ConcurrentUtilities v2.5.0 [88cd18e8] ConsoleProgressMonitor v0.1.2 [187b0558] ConstructionBase v1.6.0 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [a0c0ee7d] DifferentiationInterface v0.7.14 [ffbed154] DocStringExtensions v0.9.5 [38527215] EmpiricalPotentials v0.2.5 [4e289a0a] EnumX v1.0.5 [460bff9d] ExceptionUnwrapping v0.1.11 [e2ba6199] ExprTools v0.1.10 [55351af7] ExproniconLite v0.10.14 [352459e4] ExtXYZ v0.2.2 [e189563c] ExternalDocstrings v0.1.1 [9aa1b823] FastClosures v0.3.2 [1a297f60] FillArrays v1.16.0 [6a86dc24] FiniteDiff v2.29.0 [41a02a25] Folds v0.2.10 [f6369f11] ForwardDiff v1.3.1 [069b7b12] FunctionWrappers v1.1.3 [77dc65aa] FunctionWrappersWrappers v0.1.3 [46192b85] GPUArraysCore v0.2.0 [673bf261] GeometryOptimization v0.1.4 [cd3eb016] HTTP v1.10.19 [22cec73e] InitialValues v0.3.1 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.6 [82899510] IteratorInterfaceExtensions v1.0.0 [692b3bcd] JLLWrappers v1.7.1 [682c06a0] JSON v1.4.0 [ae98c720] Jieko v0.2.1 [5be7bae1] LBFGSB v0.4.1 [b964fa9f] LaTeXStrings v1.4.0 [1d6d02ad] LeftChildRightSiblingTrees v0.2.1 [9c8b4983] LightXML v0.9.3 ⌃ [d3d80556] LineSearches v7.5.1 [2ab3a3ac] LogExpFunctions v0.3.29 [e6f89c97] LoggingExtras v1.2.0 [1914dd2f] MacroTools v0.5.16 [739be429] MbedTLS v1.1.9 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 [2e0e35c7] Moshi v0.3.7 ⌅ [d41bc354] NLSolversBase v7.10.0 [76087f3c] NLopt v1.2.1 [77ba4419] NaNMath v1.1.3 ⌅ [2fcf5ba9] NeighbourLists v0.5.10 [4d8831e6] OpenSSL v1.6.1 ⌅ [429524aa] Optim v1.13.3 ⌅ [7f7a1694] Optimization v4.8.0 ⌅ [bca83a33] OptimizationBase v2.14.0 ⌃ [4e6fcdb7] OptimizationNLopt v0.3.4 [bac558e1] OrderedCollections v1.8.1 [90014a1f] PDMats v0.11.37 [69de0a69] Parsers v2.8.3 [7b2266bf] PeriodicTable v1.2.1 [85a6dd25] PositiveFactorizations v0.2.4 [d236fae5] PreallocationTools v1.0.0 ⌅ [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.5.1 ⌅ [08abe8d2] PrettyTables v2.4.0 [33c8b6b6] ProgressLogging v0.1.6 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [30e472fa] PubChemCrawler v1.4.0 [3cdcf5f2] RecipesBase v1.3.4 [731186ca] RecursiveArrayTools v3.44.0 [189a3867] Reexport v1.2.2 [42d2dcc6] Referenceables v0.1.3 [ae029012] Requires v1.3.1 [7e49a35a] RuntimeGeneratedFunctions v0.5.16 [0bca4576] SciMLBase v2.134.0 [a6db7da4] SciMLLogging v1.8.0 [c0aeaf25] SciMLOperators v1.14.1 [431bcebd] SciMLPublic v1.0.1 [53ae85a6] SciMLStructures v1.10.0 [efcf1570] Setfield v1.1.2 [777ac1f9] SimpleBufferStream v1.2.0 [a2af1166] SortingAlgorithms v1.2.2 [9f842d2f] SparseConnectivityTracer v1.1.3 [0a514795] SparseMatrixColorings v0.4.23 [276daf66] SpecialFunctions v2.6.1 [171d559e] SplittablesBase v0.1.15 [90137ffa] StaticArrays v1.9.16 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 [2913bbd2] StatsBase v0.34.10 [892a3eda] StringManipulation v0.4.2 [ec057cc2] StructUtils v2.6.2 ⌃ [2efcf032] SymbolicIndexingInterface v0.3.44 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 [5d786b92] TerminalLoggers v0.1.7 ⌅ [f8b46487] TestItemRunner v0.2.3 ⌅ [1c621080] TestItems v0.1.1 [24d252fe] ThreadedScans v0.1.0 [a759f4b9] TimerOutputs v0.5.29 [3bb67fe8] TranscodingStreams v0.11.3 [28d57a85] Transducers v0.4.85 [5c2747f8] URIs v1.6.1 [1986cc42] Unitful v1.27.0 [a7773ee8] UnitfulAtomic v1.0.0 [c4a57d5a] UnsafeArrays v1.0.8 [78a364fa] Chemfiles_jll v0.10.4+0 [81d17ec3] L_BFGS_B_jll v3.0.1+0 [94ce4f54] Libiconv_jll v1.18.0+0 [079eb43e] NLopt_jll v2.10.0+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [02c8fc9c] XML2_jll v2.15.1+0 [6ecdc6fc] extxyz_jll v0.1.3+0 [cdc7adba] libcleri_jll v0.12.1+3 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.11.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.6.0+0 [e37daf67] LibGit2_jll v1.7.2+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.6+0 [14a3606d] MozillaCACerts_jll v2023.12.12 [4536629a] OpenBLAS_jll v0.3.27+1 [05823500] OpenLibm_jll v0.8.5+0 [efcefdf7] PCRE2_jll v10.42.0+1 [bea87d4a] SuiteSparse_jll v7.7.0+0 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.59.0+0 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... Precompiling GeometryOptimization... 8025.4 ms ✓ GeometryOptimization 1 dependency successfully precompiled in 10 seconds. 98 already precompiled. Precompiling AtomsBuilder... 6021.9 ms ✓ Chemfiles 3246.3 ms ✓ PubChemCrawler 4046.2 ms ✓ AtomsIO 9960.3 ms ✓ AtomsBuilder 4 dependencies successfully precompiled in 24 seconds. 62 already precompiled. Precompiling StructUtilsTablesExt... 786.3 ms ✓ StructUtils → StructUtilsTablesExt 1 dependency successfully precompiled in 1 seconds. 11 already precompiled. Precompiling EmpiricalPotentials... 1134.6 ms ✓ BangBang → BangBangTablesExt 1707.7 ms ✓ BangBang → BangBangStaticArraysExt 3305.0 ms ✓ NeighbourLists 14413.6 ms ✓ Transducers 1535.2 ms ✓ Transducers → TransducersReferenceablesExt 1513.1 ms ✓ Transducers → TransducersAdaptExt 9218.2 ms ✓ Folds 13812.2 ms ✓ AtomsCalculatorsUtilities 6199.1 ms ✓ EmpiricalPotentials 9 dependencies successfully precompiled in 54 seconds. 81 already precompiled. Precompiling OptimizationNLopt... 4442.0 ms ✓ SciMLOperators 3476.1 ms ✓ SymbolicIndexingInterface 1260.7 ms ✓ SciMLStructures 2148.5 ms ✓ PreallocationTools 1004.4 ms ✓ SciMLOperators → SciMLOperatorsStaticArraysCoreExt 1381.6 ms ✓ SciMLOperators → SciMLOperatorsSparseArraysExt 8528.9 ms ✓ RecursiveArrayTools 1425.4 ms ✓ PreallocationTools → PreallocationToolsSparseConnectivityTracerExt 1272.9 ms ✓ RecursiveArrayTools → RecursiveArrayToolsStatisticsExt 1839.8 ms ✓ RecursiveArrayTools → RecursiveArrayToolsSparseArraysExt 31656.5 ms ✓ SciMLBase 2810.8 ms ✓ SciMLBase → SciMLBaseDifferentiationInterfaceExt 5661.6 ms ✓ OptimizationBase 6347.7 ms ✓ Optimization 6093.9 ms ✓ OptimizationNLopt 15 dependencies successfully precompiled in 80 seconds. 94 already precompiled. Precompiling SymbolicIndexingInterfacePrettyTablesExt... 1836.3 ms ✓ SymbolicIndexingInterface → SymbolicIndexingInterfacePrettyTablesExt 1 dependency successfully precompiled in 2 seconds. 38 already precompiled. Precompiling RecursiveArrayToolsForwardDiffExt... 1823.9 ms ✓ RecursiveArrayTools → RecursiveArrayToolsForwardDiffExt 1 dependency successfully precompiled in 2 seconds. 43 already precompiled. Precompiling RecursiveArrayToolsTablesExt... 1386.1 ms ✓ RecursiveArrayTools → RecursiveArrayToolsTablesExt 1 dependency successfully precompiled in 2 seconds. 36 already precompiled. Precompiling PreallocationToolsForwardDiffExt... 3000.8 ms ✓ PreallocationTools → PreallocationToolsForwardDiffExt 1 dependency successfully precompiled in 3 seconds. 27 already precompiled. Precompiling SciMLBaseForwardDiffExt... 3575.7 ms ✓ SciMLBase → SciMLBaseForwardDiffExt 1 dependency successfully precompiled in 4 seconds. 70 already precompiled. Precompiling OptimizationFiniteDiffExt... 761.3 ms ✓ OptimizationBase → OptimizationFiniteDiffExt 1 dependency successfully precompiled in 1 seconds. 84 already precompiled. Precompiling OptimizationForwardDiffExt... 1602.7 ms ✓ OptimizationBase → OptimizationForwardDiffExt 1 dependency successfully precompiled in 2 seconds. 99 already precompiled. Precompiling GeometryOptimizationOptimizationExt... 1608.1 ms ✓ PDMats → StatsBaseExt 8086.2 ms ✓ GeometryOptimization → GeometryOptimizationOptimizationExt 2 dependencies successfully precompiled in 11 seconds. 180 already precompiled. ┌ Warning: The selected optimization algorithm requires second order derivatives, but `SecondOrder` ADtype was not provided. │ So a `SecondOrder` with SciMLBase.NoAD() for both inner and outer will be created, this can be suboptimal and not work in some cases so │ an explicit `SecondOrder` ADtype is recommended. └ @ OptimizationBase ~/.julia/packages/OptimizationBase/ivotG/src/cache.jl:49 ┌ Warning: NLopt failed to converge: FORCED_STOP └ @ OptimizationNLopt ~/.julia/packages/OptimizationNLopt/d3GaY/src/OptimizationNLopt.jl:268 Geometry optimisation convergence (in atomic units) ┌─────┬─────────────────┬───────────┬─────────────┬────────┐ │ n │ Energy │ log10(ΔE) │ max(Force) │ Δtime │ ├─────┼─────────────────┼───────────┼─────────────┼────────┤ │ 0 │ -1.254043825837 │ │ 0.0582077 │ 15.6ms │ │ 1 │ -1.272228473314 │ │ 0.0116311 │ 5.76s │ │ 2 │ -1.273752396969 │ -2.82 │ 0.00522406 │ 689ms │ │ 3 │ -1.274196917483 │ -3.35 │ 0.00404813 │ 15.2ms │ │ 4 │ -1.274444440150 │ -3.61 │ 0.00186794 │ 2.20ms │ │ 5 │ -1.274465752476 │ -4.67 │ 0.00015878 │ 2.18ms │ │ 6 │ -1.274465938493 │ -6.73 │ 6.10748e-5 │ 2.12ms │ │ 7 │ -1.274465963362 │ -7.60 │ 2.37726e-5 │ 2.07ms │ │ 8 │ -1.274465976396 │ -7.88 │ 1.88375e-5 │ 2.18ms │ │ 9 │ -1.274465980105 │ -8.43 │ 3.141e-6 │ 2.12ms │ │ 10 │ -1.274465980164 │ -10.23 │ 5.59072e-7 │ 2.17ms │ │ 11 │ -1.274465980168 │ -11.43 │ 2.14564e-7 │ 2.14ms │ │ 12 │ -1.274465980168 │ -12.36 │ 1.46279e-7 │ 2.24ms │ │ 13 │ -1.274465980169 │ -12.48 │ 6.55693e-8 │ 2.11ms │ │ 14 │ -1.274465980169 │ -13.43 │ 8.68498e-9 │ 2.11ms │ ┌ Warning: Geometry optimisation not converged. └ @ GeometryOptimization ~/.julia/packages/GeometryOptimization/y8zYr/src/minimize_energy.jl:184 Geometry optimisation convergence (in atomic units) ┌─────┬─────────────────┬───────────┬─────────────┬─────────────┬──────────┬────────┐ │ n │ Energy │ log10(ΔE) │ max(Force) │ max(Virial) │ Pressure │ Δtime │ ├─────┼─────────────────┼───────────┼─────────────┼─────────────┼──────────┼────────┤ │ 0 │ -5.067664344122 │ │ 0.0418235 │ 0.111111 │ -0.023 │ 4.47ms │ │ 1 │ -5.070708715159 │ │ 0.0346879 │ 0.0896487 │ 0.037 │ 113ms │ │ 2 │ -5.089681398807 │ -1.72 │ 0.00950572 │ 0.355214 │ -0.3 │ 7.17ms │ │ 3 │ -5.093986887636 │ -2.37 │ 0.0100171 │ 0.079759 │ 0.015 │ 30.0ms │ │ 4 │ -5.094512431010 │ -3.28 │ 0.00960114 │ 0.0508478 │ -0.042 │ 7.97ms │ │ 5 │ -5.094691894117 │ -3.75 │ 0.00876056 │ 0.0459267 │ 0.022 │ 7.24ms │ │ 6 │ -5.096252816243 │ -2.81 │ 0.00445084 │ 0.0843002 │ -0.013 │ 7.27ms │ │ 7 │ -5.096587042453 │ -3.48 │ 0.00499739 │ 0.00683755 │ 0.0023 │ 6.92ms │ │ 8 │ -5.096790048489 │ -3.69 │ 0.00376218 │ 0.0654309 │ -0.04 │ 6.99ms │ │ 9 │ -5.096989074663 │ -3.70 │ 0.00271422 │ 0.0675586 │ 0.023 │ 7.25ms │ │ 10 │ -5.097384656753 │ -3.40 │ 0.00252816 │ 0.0152003 │ -0.0027 │ 6.88ms │ │ 11 │ -5.097409120325 │ -4.61 │ 0.0026407 │ 0.00537352 │ 0.00097 │ 6.86ms │ │ 12 │ -5.097674017956 │ -3.58 │ 0.00096541 │ 0.0273057 │ -0.014 │ 6.92ms │ │ 13 │ -5.097692902434 │ -4.72 │ 0.0011002 │ 0.016938 │ 0.0074 │ 7.23ms │ │ 14 │ -5.097707232997 │ -4.84 │ 0.00114564 │ 0.00302384 │ -0.0012 │ 6.75ms │ │ 15 │ -5.097712522926 │ -5.28 │ 0.00104494 │ 0.00789799 │ 0.0021 │ 6.88ms │ │ 16 │ -5.097783686636 │ -4.15 │ 0.000930883 │ 0.0137922 │ -0.0084 │ 7.07ms │ │ 17 │ -5.097788708812 │ -5.30 │ 0.00097892 │ 0.0064024 │ 0.0031 │ 6.73ms │ │ 18 │ -5.097795979368 │ -5.14 │ 0.000954179 │ 0.00553293 │ -0.00098 │ 7.00ms │ │ 19 │ -5.097817012047 │ -4.68 │ 0.000859307 │ 0.0154034 │ 0.007 │ 6.98ms │ │ 20 │ -5.097838281718 │ -4.67 │ 0.00072797 │ 0.00547123 │ -0.0039 │ 7.03ms │ │ 21 │ -5.097839518036 │ -5.91 │ 0.000762407 │ 0.00221574 │ 0.0013 │ 6.69ms │ │ 22 │ -5.097844015699 │ -5.35 │ 0.000596631 │ 0.00634588 │ -0.00086 │ 6.67ms │ │ 23 │ -5.097857069153 │ -4.88 │ 0.000462907 │ 0.00874421 │ 0.0069 │ 7.00ms │ │ 24 │ -5.097859941484 │ -5.54 │ 0.000452184 │ 0.00125013 │ -0.00076 │ 7.05ms │ │ 25 │ -5.097860296879 │ -6.45 │ 0.000402248 │ 0.00172673 │ 0.00068 │ 7.00ms │ │ 26 │ -5.097862597053 │ -5.64 │ 0.000228589 │ 0.00420053 │ -0.00071 │ 7.02ms │ │ 27 │ -5.097864674710 │ -5.68 │ 0.000149053 │ 0.00359385 │ 0.0028 │ 6.82ms │ │ 28 │ -5.097865046086 │ -6.43 │ 0.000167485 │ 0.000191227 │ -0.00012 │ 6.63ms │ │ 29 │ -5.097865195162 │ -6.83 │ 0.000143818 │ 0.00136121 │ 0.00039 │ 6.57ms │ │ 30 │ -5.097865498010 │ -6.52 │ 6.04725e-5 │ 0.00131781 │ -0.00037 │ 7.02ms │ │ 31 │ -5.097865614944 │ -6.93 │ 5.98679e-5 │ 0.00104779 │ 0.00074 │ 6.78ms │ │ 32 │ -5.097865650902 │ -7.44 │ 6.26704e-5 │ 0.000102961 │ -5.3e-5 │ 6.73ms │ │ 33 │ -5.097865795297 │ -6.84 │ 4.92462e-5 │ 0.000966571 │ 0.00052 │ 6.59ms │ │ 34 │ -5.097865859676 │ -7.19 │ 4.59505e-5 │ 0.000839962 │ -0.0003 │ 6.80ms │ │ 35 │ -5.097865885480 │ -7.59 │ 5.33244e-5 │ 0.000328746 │ 0.00023 │ 6.59ms │ │ 36 │ -5.097865894788 │ -8.03 │ 5.45385e-5 │ 9.09475e-5 │ -3.2e-5 │ 6.53ms │ │ 37 │ -5.097865936215 │ -7.38 │ 1.27551e-5 │ 0.000417144 │ 0.00024 │ 6.80ms │ │ 38 │ -5.097865940051 │ -8.42 │ 1.46474e-5 │ 0.000132473 │ -5.9e-5 │ 6.85ms │ │ 39 │ -5.097865941827 │ -8.75 │ 1.47163e-5 │ 4.5685e-5 │ 2.2e-5 │ 6.87ms │ │ 40 │ -5.097865942492 │ -9.18 │ 1.68224e-5 │ 7.18184e-5 │ -1.7e-5 │ 6.57ms │ │ 41 │ -5.097865958188 │ -7.80 │ 1.60389e-5 │ 0.000307436 │ 0.00025 │ 6.81ms │ │ 42 │ -5.097865961374 │ -8.50 │ 1.83029e-5 │ 0.000123315 │ -3.7e-5 │ 6.70ms │ │ 43 │ -5.097865963216 │ -8.73 │ 1.77546e-5 │ 9.35621e-5 │ 3.3e-5 │ 6.51ms │ │ 44 │ -5.097865964724 │ -8.82 │ 1.35293e-5 │ 0.000162025 │ -0.00011 │ 6.63ms │ │ 45 │ -5.097865970119 │ -8.27 │ 6.443e-6 │ 0.000167937 │ 9.9e-5 │ 6.65ms │ │ 46 │ -5.097865971163 │ -8.98 │ 5.50127e-6 │ 3.46248e-5 │ -1.0e-5 │ 6.59ms │ │ 47 │ -5.097865971347 │ -9.73 │ 5.4754e-6 │ 2.09404e-5 │ 1.5e-5 │ 6.48ms │ │ 48 │ -5.097865971407 │ -10.22 │ 5.11438e-6 │ 4.07486e-5 │ -2.3e-5 │ 6.54ms │ │ 49 │ -5.097865971885 │ -9.32 │ 1.6731e-6 │ 2.72852e-5 │ 1.1e-5 │ 6.32ms │ │ 50 │ -5.097865971926 │ -10.39 │ 1.49074e-6 │ 1.99095e-5 │ -7.9e-6 │ 6.24ms │ │ 51 │ -5.097865971943 │ -10.78 │ 1.55528e-6 │ 4.99679e-6 │ 4.9e-6 │ 6.54ms │ │ 52 │ -5.097865971947 │ -11.37 │ 1.6348e-6 │ 5.08662e-6 │ -2.9e-6 │ 6.58ms │ │ 53 │ -5.097865972003 │ -10.26 │ 9.41585e-7 │ 2.45137e-5 │ 1.2e-5 │ 27.6ms │ │ 54 │ -5.097865972018 │ -10.81 │ 9.75635e-7 │ 1.41291e-5 │ -6.6e-6 │ 6.59ms │ │ 55 │ -5.097865972031 │ -10.91 │ 1.13696e-6 │ 2.39775e-6 │ 1.5e-6 │ 6.69ms │ │ 56 │ -5.097865972036 │ -11.27 │ 1.02575e-6 │ 9.6202e-6 │ -6.1e-6 │ 6.64ms │ │ 57 │ -5.097865972062 │ -10.58 │ 4.17621e-7 │ 1.51328e-5 │ 8.9e-6 │ 6.84ms │ │ 58 │ -5.097865972070 │ -11.10 │ 3.65573e-7 │ 7.06418e-6 │ -1.8e-6 │ 6.69ms │ │ 59 │ -5.097865972073 │ -11.54 │ 3.90214e-7 │ 6.38855e-7 │ 5.8e-7 │ 6.61ms │ │ 60 │ -5.097865972073 │ -12.36 │ 3.55504e-7 │ 3.28347e-6 │ -2.5e-6 │ 6.90ms │ │ 61 │ -5.097865972076 │ -11.56 │ 2.57739e-7 │ 6.47681e-6 │ 2.5e-6 │ 7.09ms │ │ 62 │ -5.097865972079 │ -11.49 │ 2.71388e-7 │ 5.4728e-6 │ -1.8e-6 │ 6.86ms │ │ 63 │ -5.097865972082 │ -11.63 │ 3.8774e-7 │ 1.72578e-6 │ 9.5e-7 │ 7.13ms │ │ 64 │ -5.097865972082 │ -12.43 │ 3.82914e-7 │ 1.78245e-6 │ -1.5e-6 │ 6.83ms │ │ 65 │ -5.097865972083 │ -12.06 │ 3.50679e-7 │ 2.84683e-6 │ 6.3e-7 │ 7.16ms │ │ 66 │ -5.097865972085 │ -11.62 │ 2.95979e-7 │ 5.2026e-6 │ 1.7e-6 │ 6.76ms │ │ 67 │ -5.097865972088 │ -11.61 │ 2.32551e-7 │ 4.65712e-6 │ -2.7e-6 │ 6.94ms │ │ 68 │ -5.097865972088 │ -12.24 │ 2.24978e-7 │ 1.50689e-6 │ 6.7e-7 │ 6.90ms │ │ 69 │ -5.097865972089 │ -12.80 │ 2.58165e-7 │ 1.54872e-6 │ -3.8e-7 │ 7.24ms │ │ 70 │ -5.097865972089 │ -12.57 │ 2.03344e-7 │ 1.14706e-6 │ 3.2e-7 │ 7.08ms │ │ 71 │ -5.097865972089 │ -12.28 │ 1.31916e-7 │ 2.96259e-6 │ -1.3e-6 │ 7.46ms │ │ 72 │ -5.097865972090 │ -12.58 │ 1.13229e-7 │ 2.54666e-6 │ 1.0e-6 │ 7.34ms │ │ 73 │ -5.097865972090 │ -12.34 │ 7.98162e-8 │ 7.34184e-7 │ -2.8e-8 │ 6.86ms │ │ 74 │ -5.097865972090 │ -13.30 │ 8.16831e-8 │ 5.79518e-7 │ -9.9e-8 │ 6.79ms │ │ 75 │ -5.097865972090 │ -13.83 │ 7.71674e-8 │ 1.46523e-6 │ 7.4e-7 │ 7.04ms │ │ 76 │ -5.097865972090 │ -12.96 │ 6.40013e-8 │ 1.05705e-6 │ -4.1e-7 │ 6.97ms │ │ 77 │ -5.097865972090 │ -13.60 │ 6.44228e-8 │ 6.917e-7 │ -2.0e-7 │ 7.67ms │ │ 78 │ -5.097865972090 │ -13.46 │ 6.24527e-8 │ 5.16466e-7 │ 4.8e-7 │ 7.04ms │ │ 79 │ -5.097865972090 │ -13.78 │ 6.01817e-8 │ 3.00769e-7 │ 1.9e-7 │ 6.98ms │ │ 80 │ -5.097865972090 │ + -Inf │ 6.01386e-8 │ 2.93379e-7 │ 1.8e-7 │ 8.45ms │ │ 81 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 7.42ms │ │ 82 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 10.9ms │ │ 83 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 8.17ms │ │ 84 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 6.53ms │ │ 85 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 6.69ms │ │ 86 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 25.8ms │ │ 87 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 615μs │ │ 88 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 246μs │ │ 89 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 237μs │ │ 90 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 265μs │ │ 91 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 234μs │ │ 92 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 233μs │ │ 93 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 224μs │ │ 94 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 255μs │ │ 95 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 172μs │ │ 96 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 156μs │ │ 97 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 151μs │ │ 98 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 148μs │ │ 99 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 148μs │ │ 100 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 146μs │ │ 101 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 123μs │ │ 102 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 130μs │ │ 103 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 133μs │ │ 104 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 138μs │ │ 105 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 143μs │ │ 106 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 138μs │ │ 107 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 322μs │ │ 108 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 225μs │ │ 109 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 216μs │ │ 110 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 209μs │ │ 111 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 214μs │ │ 112 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 227μs │ │ 113 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 226μs │ │ 114 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 220μs │ │ 115 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 149μs │ │ 116 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 143μs │ │ 117 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 137μs │ │ 118 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 133μs │ │ 119 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 131μs │ │ 120 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 121μs │ │ 121 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 115μs │ │ 122 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 122μs │ │ 123 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 123μs │ │ 124 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 163μs │ │ 125 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 127μs │ │ 126 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 124μs │ │ 127 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 122μs │ │ 128 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 127μs │ │ 129 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 126μs │ │ 130 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 129μs │ │ 131 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 265μs │ │ 132 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 225μs │ │ 133 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 223μs │ │ 134 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 216μs │ │ 135 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 233μs │ │ 136 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 222μs │ │ 137 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 207μs │ │ 138 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 212μs │ │ 139 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 212μs │ │ 140 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 225μs │ │ 141 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 157μs │ │ 142 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 134μs │ │ 143 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 135μs │ │ 144 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 136μs │ │ 145 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 134μs │ │ 146 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 129μs │ │ 147 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 140μs │ │ 148 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 126μs │ │ 149 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 132μs │ │ 150 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 131μs │ │ 151 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 130μs │ │ 152 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 133μs │ │ 153 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 144μs │ │ 154 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 161μs │ │ 155 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 144μs │ │ 156 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 145μs │ │ 157 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 140μs │ │ 158 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 139μs │ │ 159 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 141μs │ │ 160 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 145μs │ │ 161 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 172μs │ │ 162 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 153μs │ │ 163 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 142μs │ │ 164 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 137μs │ │ 165 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 140μs │ │ 166 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 134μs │ │ 167 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 138μs │ │ 168 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 159μs │ │ 169 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 123μs │ │ 170 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 127μs │ │ 171 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 123μs │ │ 172 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 119μs │ │ 173 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 123μs │ │ 174 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 134μs │ │ 175 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 144μs │ │ 176 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 167μs │ │ 177 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 131μs │ │ 178 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 127μs │ │ 179 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 132μs │ │ 180 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 135μs │ │ 181 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 129μs │ │ 182 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 128μs │ │ 183 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 161μs │ │ 184 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 245μs │ │ 185 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 233μs │ │ 186 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 236μs │ │ 187 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 244μs │ │ 188 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 226μs │ │ 189 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 235μs │ │ 190 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 227μs │ │ 191 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 227μs │ │ 192 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 195μs │ │ 193 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 156μs │ │ 194 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 159μs │ │ 195 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 151μs │ │ 196 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 147μs │ │ 197 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 144μs │ │ 198 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 313μs │ │ 199 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 218μs │ │ 200 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 212μs │ │ 201 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 147μs │ │ 202 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 124μs │ │ 203 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 151μs │ │ 204 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 142μs │ │ 205 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 136μs │ │ 206 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 146μs │ │ 207 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 141μs │ │ 208 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 133μs │ │ 209 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 131μs │ │ 210 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 166μs │ │ 211 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 133μs │ │ 212 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 122μs │ │ 213 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 128μs │ │ 214 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 125μs │ │ 215 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 135μs │ │ 216 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 136μs │ │ 217 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 143μs │ │ 218 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 182μs │ │ 219 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 163μs │ │ 220 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 151μs │ │ 221 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 156μs │ │ 222 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 150μs │ │ 223 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 142μs │ │ 224 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 455μs │ │ 225 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 261μs │ │ 226 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 229μs │ │ 227 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 233μs │ │ 228 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 227μs │ │ 229 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 208μs │ │ 230 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 215μs │ │ 231 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 221μs │ │ 232 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 232μs │ │ 233 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 216μs │ │ 234 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 203μs │ │ 235 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 214μs │ │ 236 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 222μs │ │ 237 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 152μs │ │ 238 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 132μs │ │ 239 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 126μs │ │ 240 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 131μs │ │ 241 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 135μs │ │ 242 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 139μs │ │ 243 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 229μs │ │ 244 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 221μs │ │ 245 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 222μs │ │ 246 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 209μs │ │ 247 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 220μs │ │ 248 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 195μs │ │ 249 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 154μs │ │ 250 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 148μs │ │ 251 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 150μs │ │ 252 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 154μs │ │ 253 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 150μs │ │ 254 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 164μs │ │ 255 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 154μs │ │ 256 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 147μs │ │ 257 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 149μs │ │ 258 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 149μs │ │ 259 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 212μs │ │ 260 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 227μs │ │ 261 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 212μs │ │ 262 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 212μs │ │ 263 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 243μs │ │ 264 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 239μs │ │ 265 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 165μs │ │ 266 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 146μs │ │ 267 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 145μs │ │ 268 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 140μs │ │ 269 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 123μs │ │ 270 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 121μs │ │ 271 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 135μs │ │ 272 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 127μs │ │ 273 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 130μs │ │ 274 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 134μs │ │ 275 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 131μs │ │ 276 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 126μs │ │ 277 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 124μs │ │ 278 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 131μs │ │ 279 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 151μs │ │ 280 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 133μs │ │ 281 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 134μs │ │ 282 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 129μs │ │ 283 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 130μs │ │ 284 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 129μs │ │ 285 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 121μs │ │ 286 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 125μs │ │ 287 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 378μs │ │ 288 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 218μs │ │ 289 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 210μs │ │ 290 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 215μs │ │ 291 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 235μs │ │ 292 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 209μs │ │ 293 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 219μs │ │ 294 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 243μs │ │ 295 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 262μs │ │ 296 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 255μs │ │ 297 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 247μs │ │ 298 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 249μs │ │ 299 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 261μs │ │ 300 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 190μs │ │ 301 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 175μs │ │ 302 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 178μs │ │ 303 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 172μs │ │ 304 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 354μs │ │ 305 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 256μs │ │ 306 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 214μs │ │ 307 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 198μs │ │ 308 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 225μs │ │ 309 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 205μs │ │ 310 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 167μs │ │ 311 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 158μs │ │ 312 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 154μs │ │ 313 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 152μs │ │ 314 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 246μs │ │ 315 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 154μs │ │ 316 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 146μs │ │ 317 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 146μs │ │ 318 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 141μs │ │ 319 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 140μs │ │ 320 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 169μs │ │ 321 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 138μs │ │ 322 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 143μs │ │ 323 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 145μs │ │ 324 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 139μs │ │ 325 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 130μs │ │ 326 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 129μs │ │ 327 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 439μs │ │ 328 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 210μs │ │ 329 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 229μs │ │ 330 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 236μs │ │ 331 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 214μs │ │ 332 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 219μs │ │ 333 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 220μs │ │ 334 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 233μs │ │ 335 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 256μs │ │ 336 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 239μs │ │ 337 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 236μs │ │ 338 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 163μs │ │ 339 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 149μs │ │ 340 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 171μs │ │ 341 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 155μs │ │ 342 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 154μs │ │ 343 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 153μs │ │ 344 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 149μs │ │ 345 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 140μs │ │ 346 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 376μs │ │ 347 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 222μs │ │ 348 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 213μs │ │ 349 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 210μs │ │ 350 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 165μs │ │ 351 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 143μs │ │ 352 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 145μs │ │ 353 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 146μs │ │ 354 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 146μs │ │ 355 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 151μs │ │ 356 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 139μs │ │ 357 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 177μs │ │ 358 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 145μs │ │ 359 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 145μs │ │ 360 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 149μs │ │ 361 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 142μs │ │ 362 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 151μs │ │ 363 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 167μs │ │ 364 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 145μs │ │ 365 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 150μs │ │ 366 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 146μs │ │ 367 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 147μs │ │ 368 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 149μs │ │ 369 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 147μs │ │ 370 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 443μs │ │ 371 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 228μs │ │ 372 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 209μs │ │ 373 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 235μs │ │ 374 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 223μs │ │ 375 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 201μs │ │ 376 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 204μs │ │ 377 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 206μs │ │ 378 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 228μs │ │ 379 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 219μs │ │ 380 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 208μs │ │ 381 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 204μs │ │ 382 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 144μs │ │ 383 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 136μs │ │ 384 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 135μs │ │ 385 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 136μs │ │ 386 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 143μs │ │ 387 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 140μs │ │ 388 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 135μs │ │ 389 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 133μs │ │ 390 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 136μs │ │ 391 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 329μs │ │ 392 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 229μs │ │ 393 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 220μs │ │ 394 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 219μs │ │ 395 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 160μs │ │ 396 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 133μs │ │ 397 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 134μs │ │ 398 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 124μs │ │ 399 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 126μs │ │ 400 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 127μs │ │ 401 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 125μs │ │ 402 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 138μs │ │ 403 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 133μs │ │ 404 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 140μs │ │ 405 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 134μs │ │ 406 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 127μs │ │ 407 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 126μs │ │ 408 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 122μs │ │ 409 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 127μs │ │ 410 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 147μs │ │ 411 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 128μs │ │ 412 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 144μs │ │ 413 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 136μs │ │ 414 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 127μs │ │ 415 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 125μs │ │ 416 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 138μs │ │ 417 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 358μs │ │ 418 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 232μs │ │ 419 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 230μs │ │ 420 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 234μs │ │ 421 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 247μs │ │ 422 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 233μs │ │ 423 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 230μs │ │ 424 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 224μs │ │ 425 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 244μs │ │ 426 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 229μs │ │ 427 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 228μs │ │ 428 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 343μs │ │ 429 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 190μs │ │ 430 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 149μs │ │ 431 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 144μs │ │ 432 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 145μs │ │ 433 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 142μs │ │ 434 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 142μs │ │ 435 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 143μs │ │ 436 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 306μs │ │ 437 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 226μs │ │ 438 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 159μs │ │ 439 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 148μs │ │ 440 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 143μs │ │ 441 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 153μs │ │ 442 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 146μs │ │ 443 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 154μs │ │ 444 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 144μs │ │ 445 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 143μs │ │ 446 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 144μs │ │ 447 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 142μs │ │ 448 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 163μs │ │ 449 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 146μs │ │ 450 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 139μs │ │ 451 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 141μs │ │ 452 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 144μs │ │ 453 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 145μs │ │ 454 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 164μs │ │ 455 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 145μs │ │ 456 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 143μs │ │ 457 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 142μs │ │ 458 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 137μs │ │ 459 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 142μs │ │ 460 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 143μs │ │ 461 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 281μs │ │ 462 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 241μs │ │ 463 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 227μs │ │ 464 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 207μs │ │ 465 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 216μs │ │ 466 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 201μs │ │ 467 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 204μs │ │ 468 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 202μs │ │ 469 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 202μs │ │ 470 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 213μs │ │ 471 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 211μs │ │ 472 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 215μs │ │ 473 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 202μs │ │ 474 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 201μs │ │ 475 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 216μs │ │ 476 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 195μs │ │ 477 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 194μs │ │ 478 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 152μs │ │ 479 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 129μs │ │ 480 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 127μs │ │ 481 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 279μs │ │ 482 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 157μs │ │ 483 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 133μs │ │ 484 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 125μs │ │ 485 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 133μs │ │ 486 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 137μs │ │ 487 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 165μs │ │ 488 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 141μs │ │ 489 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 130μs │ │ 490 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 122μs │ │ 491 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 127μs │ │ 492 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 125μs │ │ 493 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 129μs │ │ 494 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 131μs │ │ 495 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 150μs │ │ 496 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 126μs │ │ 497 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 124μs │ │ 498 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 128μs │ │ 499 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 133μs │ │ 500 │ -5.097865972090 │ + -Inf │ 6.01321e-8 │ 2.9207e-7 │ 1.8e-7 │ 132μs │ ┌ Warning: Geometry optimisation not converged. └ @ GeometryOptimization ~/.julia/packages/GeometryOptimization/y8zYr/src/minimize_energy.jl:184 ┌ Warning: Geometry optimisation not converged. └ @ GeometryOptimization ~/.julia/packages/GeometryOptimization/y8zYr/src/minimize_energy.jl:184 ┌ Warning: Geometry optimisation not converged. └ @ GeometryOptimization ~/.julia/packages/GeometryOptimization/y8zYr/src/minimize_energy.jl:184 Test Summary: | Pass Total Time Package | 76 76 5m19.0s test/dofmgr.jl | 18 18 2m38.7s DofManager | 18 18 2m38.6s Fixed cell getter / setter (no clamped) | 4 4 12.3s Variable cell getter / setter (no clamped) | 6 6 2.9s eval_objective / eval_gradient agrees with raw energy | 8 8 25.4s test/nlopt.jl | 2 2 2m14.2s Test NLopt solver via Optimization.jl interface | 2 2 2m14.2s test/calculator_interface.jl | 8 8 12.3s Test GeometryOptimization with AtomsCalculators interface | 8 8 12.3s minimize_energy! with fixed cell | 4 4 9.0s minimize_energy! with variable cell | 4 4 1.3s test/minimization.jl | 48 48 13.7s Test silicon StillingerWeber fixed cell minimisation | 36 36 9.3s Test silicon StillingerWeber variable cell minimisation | 12 12 4.4s Testing GeometryOptimization tests passed Testing completed after 353.39s PkgEval succeeded after 736.85s