Package evaluation of QuasiNewtonMethods on Julia 1.12.0-rc2.1 (1fad90817e*) started at 2025-09-11T07:17:07.911 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.69s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.12/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.12/Manifest.toml` [79e6a3ab] + Adapt v4.3.0 [4fba245c] + ArrayInterface v7.20.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.18.0 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.5 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.172 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.17.0 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.72 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.12.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [8e850b90] + libblastrampoline_jll v5.13.1+1 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 4.32s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 220.35s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_LpIsDu/Project.toml` [4c88cf16] Aqua v0.8.14 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test v1.11.0 Status `/tmp/jl_LpIsDu/Manifest.toml` [79e6a3ab] Adapt v4.3.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.20.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.18.0 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.5 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.172 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.72 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.11 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.12.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.12.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.11.1+1 [e37daf67] LibGit2_jll v1.9.0+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.5.20 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.1+0 [83775a58] Zlib_jll v1.3.1+2 [8e850b90] libblastrampoline_jll v5.13.1+1 [8e850ede] nghttp2_jll v1.64.0+1 [3f19e933] p7zip_jll v17.5.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Base.PkgId(Base.UUID("8dfed614-e22c-5e08-85e1-65c5234f0b40"), "Test")]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:680 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1776 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [5.682121440031551e-12, 1.0629497282366174e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.2922996006636822e-12, 1.864064458345638e-12] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [-4.843692114064879e-11, -1.079338840526134e-10, -9.490730423777904e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.657007864253046e-11, -3.164601913852039e-11, 4.526379271396763e-12] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [-4.160671807085237e-12, -3.855804564523169e-12, -7.917888567021691e-12, -7.129297152630443e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.0013101459094287e-11, 8.819167618412393e-12, 2.2190915771602704e-11, 1.872502153332789e-11] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [-4.4753756256454835e-11, -1.1058398641239364e-10, -9.64321955621017e-11, -2.2251311904142312e-10, -2.2980506386716115e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-6.663858354016838e-11, -2.0122614685647022e-10, -1.4918755120163496e-10, -4.1079750712214036e-10, 4.3604009292153023e-10] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [-9.926615085475987e-12, 8.08242361927114e-13, 1.0164535879653158e-11, -1.9025891973001308e-11, 2.1020962748252714e-12, 2.010946964503546e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.9233947767816062e-11, -3.0470292955442346e-11, 1.1601608562727961e-11, 3.5841996037788704e-11, -5.815936621189621e-11, 2.2959412149248237e-11] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [-6.362566029594063e-11, -3.108524548878222e-11, -1.2119194536808209e-12, -1.2591061526734393e-10, -6.195877144676842e-11, -4.796385510985601e-12, -4.42340608586278e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.6834644789298636e-11, -1.2410017458108769e-10, 2.9233349074786474e-10, -2.2900570328943104e-11, -2.2626944762293988e-10, 5.890232745997537e-10, 6.499623061984039e-11] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [7.578315752709841e-11, 6.915601424850593e-11, 3.1846125736478825e-10, 1.5487011673087636e-10, 1.531379467678562e-10, 1.4028866957005448e-10, 6.472693492298731e-10, 3.0495583835943307e-10] QuasiNewtonMethods.optimum(state) .- 1 = [4.025890731895743e-12, 2.468025783741723e-12, -1.0401457473108167e-11, 3.752109734023179e-12, 8.132161610774347e-12, 5.222489107836736e-12, -1.8406498547562933e-11, 5.1600945738528026e-12] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [7.993605777301127e-15, -6.656120099535201e-12, -4.484634885670857e-12, -1.4658829705638254e-11, -1.872946242542639e-13, -1.3819723143626561e-11, -9.668044143040788e-12, -3.0125124617086385e-11, -5.626610288800293e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-1.062933074891248e-10, -3.464439846112555e-11, -3.735944886784637e-11, -6.402633978552785e-11, -1.9967882902705014e-10, -7.200673390883594e-11, -9.313194659910096e-11, -1.0873990596849126e-10, 1.0849765530451805e-11] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [-3.7222891435817473e-11, -4.3997250287475254e-11, -4.4048431568910473e-11, 6.86217749290563e-11, 1.2760237311226774e-11, -7.676936863987294e-11, -7.339295837738291e-11, -9.620770846652249e-11, 1.341919908526279e-10, 2.882027949624444e-11] QuasiNewtonMethods.optimum(state) .- 1 = [9.96078775017395e-11, -8.883616064991884e-11, 1.1653300546754508e-10, 2.4182211788570385e-11, -2.5690782834431047e-11, 1.8804557910812036e-10, -1.8107648713794333e-10, 2.4275337295875943e-10, 4.1961101260312716e-11, -5.2754134394206176e-11] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [-2.849998015364008e-11, -7.505107646466058e-12, 1.4964895989066918e-10, 5.038791606182258e-11, 7.381317779220353e-11, -5.832179184039887e-11, -1.1273093569741377e-11, 2.9087710018416146e-10, 1.0388201410194142e-10, 1.5653478513399932e-10, 1.9338752821340677e-11] QuasiNewtonMethods.optimum(state) .- 1 = [5.850875339774575e-12, 7.410627667070457e-11, -1.5324252977677588e-10, -5.223266263953974e-11, 1.314173214694847e-10, 7.325251516476783e-12, 1.5179546508647945e-10, -3.1970814884374477e-10, -1.0601619582217836e-10, 2.602655868599868e-10, 5.728750807065808e-13] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [-1.9702084408379505e-10, -3.308431306692228e-11, -4.831290922879816e-11, 7.656608680406407e-11, 1.785462888648226e-10, -1.200261001699232e-10, -3.8319747375226143e-10, -9.086431607130407e-11, -8.776546156497034e-11, 1.4906698098116067e-10, 3.6832692451582716e-10, -2.582548619400882e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-1.7380197281369192e-10, 2.3638535573411446e-10, -8.426870312661094e-11, 9.578049464664673e-11, -3.240974155716003e-11, 3.026976447273455e-10, -3.2820479667350355e-10, 4.697773281492346e-10, -1.879522093517494e-10, 2.046856018012022e-10, -4.375866335948331e-11, 6.104350358526744e-10] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [4.015587862227221e-11, -4.882871884603901e-12, 2.8776536709074207e-11, -1.0494238811276091e-10, 1.290079154614432e-13, -8.817502283875456e-12, 8.466294332265534e-11, -8.287148745012018e-12, 5.55056001161347e-11, -2.0677703993499108e-10, -2.2815083156046967e-13, -2.128686116265044e-11, -2.7111646261346323e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-2.246081098888908e-11, -3.799960346384523e-12, 4.111178064647447e-11, -2.617983607677843e-11, 9.676703882632864e-13, -2.7241542355227466e-12, -4.608413650686316e-11, -1.1087464280024051e-11, 7.914668920250278e-11, -4.8587134315880576e-11, 2.34079422511968e-12, -7.007061597619213e-12, 4.427347377600199e-12] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [2.4728219472081037e-10, -8.959721853329938e-11, -2.691025180467932e-11, 1.5134471453848164e-10, -2.426302492253285e-10, 1.5556222976442768e-10, 5.693223670277803e-12, 4.889197935398215e-10, -1.698086116164177e-10, -5.0929704897839656e-11, 2.996860537507473e-10, -5.103143463358606e-10, 3.037601281619118e-10, 1.6213697051625786e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-2.1174173525650986e-11, 2.7699620375187806e-11, 5.3837156954728016e-11, 4.108224871401944e-11, -1.0892065027690023e-11, 8.93596308060296e-12, -7.848166561075232e-12, -4.077804760527215e-11, 5.629741117729736e-11, 1.0320477805692008e-10, 8.458411748790695e-11, -2.1975643527127886e-11, 1.3999468251313374e-11, -1.5211942816506507e-11] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [1.486877287959487e-11, -2.190247982980509e-12, -1.463840160198515e-11, -4.333333691874941e-11, -9.349188090368443e-13, 2.3675061910921613e-11, -3.042088803084653e-11, 2.6950663922775675e-11, -3.518962898851896e-12, -3.020295125111261e-11, -7.998768314365634e-11, -5.561107130347409e-13, 4.891087534986127e-11, -6.221079207335833e-11, -5.525579993559404e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-9.834111303064219e-11, -4.750644322371045e-12, 9.064837769301448e-11, 5.913780576349836e-11, 8.959277764120088e-11, -5.870226527093791e-11, 4.2969405811277284e-11, -2.0293444702446095e-10, -1.154421003235484e-11, 1.879172373264737e-10, 1.0960032881257575e-10, 1.7602941326799737e-10, -1.1761303042590043e-10, 8.158229647392545e-11, 4.718447854656915e-13] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [1.2151302186680368e-10, -3.5027425404621226e-11, 3.446887220093231e-11, -1.1261636068127245e-10, 5.4782844927103724e-12, -1.3426149081396943e-11, 8.885114866075128e-12, -2.662392528662849e-11, 2.432456458478782e-10, -6.872302726890211e-11, 6.904188332157446e-11, -2.269539001176213e-10, 9.272360657064382e-12, -2.562206002920675e-11, 1.8309576077513157e-11, -5.1437187842395815e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-3.278211035961931e-11, -6.72193412043498e-11, -2.7325031126679278e-11, -4.294820055150694e-11, 1.5397039199172013e-10, -1.9196200184978807e-11, -1.0525136318051409e-11, 1.6899814880844133e-12, -6.490386006419158e-11, -1.3922218933259956e-10, -5.7122750973803704e-11, -8.571809928525909e-11, 3.156870320708549e-10, -3.3254510256597314e-11, -2.181388403244e-11, 3.4370284396345596e-12] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [-4.367706196717336e-11, -9.18890519230331e-11, -8.689104991077556e-11, -1.7148371611597213e-10, -2.763012041384627e-11, 1.8970180981625617e-10, -5.1111004317760944e-11, -3.8902958632291984e-10, -9.099787590116648e-11, -1.816603534265937e-10, -1.8955736980075244e-10, -3.494499134504281e-10, -6.134182051198422e-11, 3.760474154290705e-10, -1.0326262067650305e-10, -7.565307269530308e-10, 6.094902360587184e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-4.707934042613715e-11, 8.109934945821351e-11, -1.4921686108948506e-10, -4.0964565073409176e-11, -6.777656214040917e-11, -4.0435321757570364e-11, -2.854805281060635e-11, -1.446265329718699e-11, -9.180545212927882e-11, 1.6504797528682502e-10, -3.0629609959476056e-10, -8.631650949553205e-11, -1.395144000326809e-10, -7.084099973297953e-11, -5.7048255008851356e-11, -3.0398350503446636e-11, -3.089584144078117e-11] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [-5.7877036496734036e-12, -4.930367225597365e-11, 5.480504938759623e-12, -5.492173382748433e-11, 1.2971557161733926e-10, 7.678568891833493e-11, -4.893918603698921e-11, 2.670241805446949e-11, -3.7529757079823867e-11, -9.186762461865783e-12, -1.1229384089261885e-10, 1.674349547897691e-11, -1.018899409288565e-10, 2.5961677252439586e-10, 1.627546986071593e-10, -9.299494507786221e-11, 5.24886800690183e-11, -7.054701267605878e-11] QuasiNewtonMethods.optimum(state) .- 1 = [2.41140440948584e-12, -3.3735236826260007e-11, 2.5835777961447093e-11, 4.638511796883904e-11, -3.1008529077780622e-12, -1.2456891074208443e-10, 4.385980467702666e-11, -5.1606274809046226e-11, 4.424816069104054e-11, 1.6015189174822808e-11, -6.290234999539734e-11, 4.9212411923349464e-11, 9.767453512665725e-11, -6.942113550678641e-12, -2.4319524172256024e-10, 8.68509708595866e-11, -1.0465106559109927e-10, 8.771716686339914e-11] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [-1.0208844880565948e-10, -1.9182544441775917e-11, -2.289397560417683e-10, 1.8076806718170246e-10, 9.53499501576971e-11, -1.1618739303997927e-10, -3.0166380504681456e-10, -2.1078705447763468e-10, 1.6939760705270146e-10, -1.9194867917349256e-10, -3.787015145917394e-11, -4.437302747462013e-10, 3.562026229531057e-10, 2.0197332695204295e-10, -2.4325330638674814e-10, -6.236936522796555e-10, -4.1972836317683004e-10, 3.3184877068492824e-10, 6.77480294086763e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-6.447931077957492e-11, -3.592115493944448e-11, 2.3583268671245605e-10, -1.1040945935292257e-11, 1.4838086315194232e-10, 3.676103865757341e-11, 7.238076804583216e-11, 1.985798192549737e-10, 3.4031666373834923e-11, -1.2259926407409694e-10, -7.918288247310556e-11, 4.879361359400036e-10, -1.8536283619141614e-11, 2.8539570706698214e-10, 7.121458978076589e-11, 1.4516987612012144e-10, 4.1472825174082573e-10, 7.183964534362985e-11, 3.1470381856024687e-12] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [-3.987954411144301e-11, -2.941225041297457e-11, 6.334333058077846e-11, -3.267741632839716e-11, -6.814704356372658e-11, 7.673861546209082e-12, 1.3099987761222565e-10, 9.992828786664631e-11, 9.767187059139815e-11, 7.2311046039885696e-12, -8.277156737790392e-11, -5.789535517664035e-11, 1.2626943934890278e-10, -7.080303010553735e-11, -1.3758905126337595e-10, 1.8608670160347174e-11, 2.598024018141132e-10, 2.0419443913510804e-10, 2.0303625447581908e-10, 1.3492762462874452e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-2.586015845906786e-10, -1.5906165273804618e-10, 6.393574558671844e-11, -6.8833827526759706e-15, 2.8319568912138493e-12, 2.8504798521566954e-10, 1.369100388615152e-10, 1.7696688558999085e-10, 2.6351809623292866e-11, 2.5472801645776144e-10, -5.153407700575485e-10, -3.0887947755076084e-10, 1.324595988450028e-10, -2.376854268959505e-11, 2.4350077509893708e-11, 5.947342618384255e-10, 2.915594432550961e-10, 3.6997760410883984e-10, 5.341926900825911e-11, 5.031715044623297e-10] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [2.88971069295485e-11, 1.9557022667981983e-11, 8.485900870880414e-11, -5.6544213755671535e-11, -4.0596082051536087e-11, -4.336164760587735e-11, -3.8983483108268047e-11, -4.146072374311416e-11, -9.378942067428397e-12, 4.763522909456697e-12, 5.359690469219913e-11, 3.886935218133658e-11, 1.7552559405942247e-10, -1.1697420809753112e-10, -6.90479895482099e-11, -8.750067337359724e-11, -7.792499978620526e-11, -8.308509436005806e-11, -2.5601964992461035e-11, 1.627031842588167e-11, -7.460254636271202e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-4.792372054751581e-10, -6.241684946672876e-11, -4.530165131910735e-11, 4.4441250679483346e-10, 1.932281001870706e-10, 2.2077117911578625e-10, 2.6232127581238274e-10, 4.729949765192032e-11, -1.7595480628074256e-11, -2.8528612805445164e-10, -9.608853712705923e-10, -1.4061329878245488e-10, -7.553657699332916e-11, 8.889242675280684e-10, 3.744797805182998e-10, 4.4993453407471407e-10, 5.21628740202118e-10, 8.884004643050503e-11, -4.699807210073459e-11, -5.696472182847856e-10, 2.0323742688788116e-12] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [-1.7518209105560345e-11, 5.2732485045225985e-11, -4.159450561758149e-12, 9.78754854941144e-11, 6.940359398299734e-11, 2.2423929380011032e-10, -2.0718760040949746e-11, -6.3298255525978675e-12, 3.706619455812188e-10, 1.177857811285321e-11, 7.979594762730358e-11, -1.994571174890325e-11, 9.715805937560162e-11, -2.1673773886732306e-12, 2.0142509882248305e-10, 1.4409407000925967e-10, 4.4712433755478287e-10, -5.5146553989970926e-11, -1.9751311697291385e-11, 7.526288481329857e-10, 1.957944917307941e-11, 1.560414020218559e-10] QuasiNewtonMethods.optimum(state) .- 1 = [5.7208904280514616e-11, -5.687095239181872e-11, -1.7405632490863354e-11, -1.3278789179338446e-10, -2.6966207045120427e-11, 1.147466566209232e-10, 4.920086560389336e-11, -5.594558150079365e-11, 4.9536819091144935e-11, -2.8354429915111723e-11, -1.1801226662555564e-10, 1.2652656700140597e-10, -1.178402930790412e-10, -3.093947320564894e-11, -2.6290203347656416e-10, -5.362288391097536e-11, 2.417719358049908e-10, 9.227796304855929e-11, -1.012765427077511e-10, 9.978129433818594e-11, -4.776778972370721e-11, -2.3312618502302485e-10] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [-7.896905351856276e-11, -1.48275169919998e-10, -1.292830287269453e-10, 7.767564369487445e-12, -2.2581936320875684e-12, 2.14608331106092e-10, 2.738476112540411e-11, -6.272649066829672e-11, -2.0905621678224406e-10, 2.3042678876095124e-10, 2.4525936836994333e-11, -1.5716938861487506e-10, -2.8045887834338146e-10, -2.5290669558586387e-10, 1.3748113758538238e-11, -6.431410959351069e-12, 4.314437695995821e-10, 6.179057265853771e-11, -1.236846181029705e-10, -4.257745267466362e-10, 4.663114339109597e-10, 4.7621018239851765e-11, -1.8877566176911387e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.5458434532433785e-10, -1.249238490430571e-10, -2.210049920847723e-10, 7.047695760320494e-12, 4.9606985186301245e-11, -8.372980087045789e-11, 2.2008617150959253e-11, 1.1094125618171802e-10, -3.232769607564023e-11, -1.6360934829151574e-10, 5.445577322404915e-11, 3.230167244794302e-10, -2.4018542710280144e-10, -4.354392402206031e-10, 4.8687720521911615e-12, 9.783174270694417e-11, -1.7874313140708864e-10, 4.2793768528781584e-11, 2.377731345148959e-10, -5.668887581578019e-11, -3.4090541500830795e-10, 1.0954437357213465e-10, 3.8981262662218796e-11] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [-2.2150281608901423e-11, 3.5214497984270565e-11, -6.879219416333626e-11, -3.6622815891007576e-11, -6.57680576665598e-11, 6.072031766279906e-12, 1.720512621261605e-11, -2.3385737790704297e-12, 3.2313263176320106e-11, 7.772071874967423e-11, 3.185363084412529e-11, -5.419031889886128e-11, -4.080813464923949e-11, 6.73407996032438e-11, -1.375008995552207e-10, -6.908362770730037e-11, -1.3188450331824697e-10, 1.1195044891110228e-11, 3.611733134789574e-11, -5.33650901246574e-12, 6.709877098387551e-11, 1.594477883060108e-10, 6.851119671580364e-11, -1.0824086071892225e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-6.776301741950874e-11, -1.40373046519926e-10, -6.828282383963824e-11, -1.9090173886127104e-11, 5.189249030479459e-11, 7.356870668218107e-11, -5.619504861442692e-12, 1.5779710871299812e-10, 4.296518696378371e-11, 5.867129004855087e-11, 1.6292966975584022e-11, -2.3741786314701585e-11, -1.234929936089202e-10, -2.858392411653199e-10, -1.4420165062034584e-10, -4.157774124990965e-11, 9.895972929996333e-11, 1.4146572802076207e-10, -1.202526966892492e-11, 3.0945579432284376e-10, 7.049139050252506e-11, 1.2270229277078215e-10, 3.923372737801856e-11, -4.7276293990705653e-11] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 148 1 149 3m21.2s Method ambiguity | 1 1 9.3s Unbound type parameters | 1 1 0.1s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.4s Stale dependencies | 1 1 7.1s Compat bounds | 3 1 4 9.1s julia | 1 1 0.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") deps | 1 1 0.6s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras | 1 1 8.4s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") weakdeps | 1 1 0.0s Piracy | 1 1 0.2s Persistent tasks | 1 1 27.6s RNG of the outermost testset: Random.Xoshiro(0x4398e3c299d996a0, 0x2dfeb0490e73853f, 0xcdb941d9a6b21a2c, 0x9886577f19ddd1af, 0xfddfa257bbbf6502) ERROR: LoadError: Some tests did not pass: 148 passed, 1 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 230.15s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.12/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2427 [3] test @ /opt/julia/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2280 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.12/Pkg/src/API.jl:483 [5] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.12/Pkg/src/API.jl:164 [6] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.12/Pkg/src/API.jl:152 [7] test @ /opt/julia/share/julia/stdlib/v1.12/Pkg/src/API.jl:152 [inlined] [8] #test#81 @ /opt/julia/share/julia/stdlib/v1.12/Pkg/src/API.jl:151 [inlined] [9] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 [10] include(mod::Module, _path::String) @ Base ./Base.jl:305 [11] exec_options(opts::Base.JLOptions) @ Base ./client.jl:321 [12] _start() @ Base ./client.jl:554 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 479.88s: package has test failures