Package evaluation of MCMCChains on Julia 1.12.0-rc2.1 (1fad90817e*) started at 2025-09-11T12:15:47.353 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.6s ################################################################################ # Installation # Installing MCMCChains... Resolving package versions... Updating `~/.julia/environments/v1.12/Project.toml` [c7f686f2] + MCMCChains v7.3.0 Updating `~/.julia/environments/v1.12/Manifest.toml` [621f4979] + AbstractFFTs v1.5.0 [80f14c24] + AbstractMCMC v5.7.2 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.3.0 [66dad0bd] + AliasTables v1.1.3 [dce04be8] + ArgCheck v2.5.0 [13072b0f] + AxisAlgorithms v1.1.0 [39de3d68] + AxisArrays v0.4.8 [198e06fe] + BangBang v0.4.4 [9718e550] + Baselet v0.1.1 [d360d2e6] + ChainRulesCore v1.26.0 [34da2185] + Compat v4.18.0 [a33af91c] + CompositionsBase v0.1.2 [88cd18e8] + ConsoleProgressMonitor v0.1.2 [187b0558] + ConstructionBase v1.6.0 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.1 [e2d170a0] + DataValueInterfaces v1.0.0 [244e2a9f] + DefineSingletons v0.1.2 [31c24e10] + Distributions v0.25.120 [ffbed154] + DocStringExtensions v0.9.5 [7a1cc6ca] + FFTW v1.9.0 [1a297f60] + FillArrays v1.14.0 [34004b35] + HypergeometricFunctions v0.3.28 [22cec73e] + InitialValues v0.3.1 [a98d9a8b] + Interpolations v0.16.2 [8197267c] + IntervalSets v0.7.11 [3587e190] + InverseFunctions v0.1.17 [92d709cd] + IrrationalConstants v0.2.4 [c8e1da08] + IterTools v1.10.0 [82899510] + IteratorInterfaceExtensions v1.0.0 [692b3bcd] + JLLWrappers v1.7.1 [5ab0869b] + KernelDensity v0.6.10 [b964fa9f] + LaTeXStrings v1.4.0 [1d6d02ad] + LeftChildRightSiblingTrees v0.2.1 [6fdf6af0] + LogDensityProblems v2.1.2 [2ab3a3ac] + LogExpFunctions v0.3.29 [e6f89c97] + LoggingExtras v1.1.0 [c7f686f2] + MCMCChains v7.3.0 [be115224] + MCMCDiagnosticTools v0.3.15 [e80e1ace] + MLJModelInterface v1.12.0 [1914dd2f] + MacroTools v0.5.16 [128add7d] + MicroCollections v0.2.0 [e1d29d7a] + Missings v1.2.0 [c020b1a1] + NaturalSort v1.0.0 [6fe1bfb0] + OffsetArrays v1.17.0 [bac558e1] + OrderedCollections v1.8.1 [90014a1f] + PDMats v0.11.35 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 ⌅ [08abe8d2] + PrettyTables v2.4.0 [33c8b6b6] + ProgressLogging v0.1.5 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [b3c3ace0] + RangeArrays v0.3.2 [c84ed2f1] + Ratios v0.4.5 [3cdcf5f2] + RecipesBase v1.3.4 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [79098fc4] + Rmath v0.8.0 [30f210dd] + ScientificTypesBase v3.0.0 [efcf1570] + Setfield v1.1.2 [a2af1166] + SortingAlgorithms v1.2.2 [276daf66] + SpecialFunctions v2.5.1 [171d559e] + SplittablesBase v0.1.15 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.3 [64bff920] + StatisticalTraits v3.5.0 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.6 [4c63d2b9] + StatsFuns v1.5.0 [892a3eda] + StringManipulation v0.4.1 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.1 [5d786b92] + TerminalLoggers v0.1.7 [28d57a85] + Transducers v0.4.84 [efce3f68] + WoodburyMatrices v1.0.0 [f5851436] + FFTW_jll v3.3.11+0 [1d5cc7b8] + IntelOpenMP_jll v2025.2.0+0 [856f044c] + MKL_jll v2025.2.0+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [1317d2d5] + oneTBB_jll v2022.0.0+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.6.0 [7b1f6079] + FileWatching v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [4af54fe1] + LazyArtifacts v1.11.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.12.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.12.0 [de0858da] + Printf v1.11.0 [3fa0cd96] + REPL v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [1a1011a3] + SharedArrays v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.12.0 [f489334b] + StyledStrings v1.11.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.11.1+1 [e37daf67] + LibGit2_jll v1.9.0+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.5.20 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.7+0 [458c3c95] + OpenSSL_jll v3.5.1+0 [bea87d4a] + SuiteSparse_jll v7.8.3+2 [83775a58] + Zlib_jll v1.3.1+2 [8e850b90] + libblastrampoline_jll v5.13.1+1 [8e850ede] + nghttp2_jll v1.64.0+1 [3f19e933] + p7zip_jll v17.5.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.74s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Warning: Could not use exact versions of packages in manifest, re-resolving └ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/activate_set.jl:76 Precompiling package dependencies... Precompilation completed after 195.04s ################################################################################ # Testing # Testing MCMCChains Test Could not use exact versions of packages in manifest. Re-resolving dependencies Updating `/tmp/jl_Stk9sk/Project.toml` [a93c6f00] + DataFrames v1.7.1 [e30172f5] + Documenter v1.14.1 [a7f614a8] + MLJBase v1.9.0 [c6f25543] + MLJDecisionTreeInterface v0.4.2 [91a5bcdd] + Plots v1.40.19 [f3b207a7] + StatsPlots v0.15.7 [b8865327] + UnicodePlots v3.8.1 Updating `/tmp/jl_Stk9sk/Manifest.toml` [a4c015fc] + ANSIColoredPrinters v0.0.1 [7d9fca2a] + Arpack v0.5.4 [a9b6321e] + Atomix v1.1.2 [d1d4a3ce] + BitFlags v0.1.9 ⌅ [324d7699] + CategoricalArrays v0.10.8 ⌅ [af321ab8] + CategoricalDistributions v0.1.15 [aaaa29a8] + Clustering v0.15.8 [944b1d66] + CodecZlib v0.7.8 [35d6a980] + ColorSchemes v3.30.0 [3da002f7] + ColorTypes v0.12.1 [c3611d14] + ColorVectorSpace v0.11.0 [5ae59095] + Colors v0.13.1 [ed09eef8] + ComputationalResources v0.3.2 [f0e56b4a] + ConcurrentUtilities v2.5.0 [6add18c4] + ContextVariablesX v0.1.3 [d38c429a] + Contour v0.6.3 [a93c6f00] + DataFrames v1.7.1 ⌅ [864edb3b] ↓ DataStructures v0.19.1 ⇒ v0.18.22 [7806a523] + DecisionTree v0.12.4 [8bb1440f] + DelimitedFiles v1.9.1 [b4f34e82] + Distances v0.10.12 [e30172f5] + Documenter v1.14.1 [460bff9d] + ExceptionUnwrapping v0.1.11 [c87230d0] + FFMPEG v0.4.4 [cc61a311] + FLoops v0.2.2 [b9860ae5] + FLoopsBase v0.1.1 [53c48c17] + FixedPointNumbers v0.8.5 [1fa38f19] + Format v1.3.7 [46192b85] + GPUArraysCore v0.2.0 [28b8d3ca] + GR v0.73.17 [d7ba0133] + Git v1.5.0 [42e2da0e] + Grisu v1.0.2 [cd3eb016] + HTTP v1.10.17 [076d061b] + HashArrayMappedTries v0.2.0 [b5f81e59] + IOCapture v0.2.5 [842dd82b] + InlineStrings v1.4.5 ⌅ [a98d9a8b] ↓ Interpolations v0.16.2 ⇒ v0.15.1 [41ab1584] + InvertedIndices v1.3.1 [1019f520] + JLFzf v0.1.11 [682c06a0] + JSON v0.21.4 [b14d175d] + JuliaVariables v0.2.4 [63c18a36] + KernelAbstractions v0.9.38 [23fbe1c1] + Latexify v0.16.10 [0e77f7df] + LazilyInitializedFields v1.3.0 [92ad9a40] + LearnAPI v1.0.1 [c2834f40] + MLCore v1.0.0 [a7f614a8] + MLJBase v1.9.0 [c6f25543] + MLJDecisionTreeInterface v0.4.2 [d8e11817] + MLStyle v0.4.17 [f1d291b0] + MLUtils v0.4.8 [299715c1] + MarchingCubes v0.1.11 [d0879d2d] + MarkdownAST v0.1.2 [739be429] + MbedTLS v1.1.9 [442fdcdd] + Measures v0.3.2 [6f286f6a] + MultivariateStats v0.10.3 [872c559c] + NNlib v0.9.31 [77ba4419] + NaNMath v1.1.3 [71a1bf82] + NameResolution v0.1.5 [b8a86587] + NearestNeighbors v0.4.22 [510215fc] + Observables v0.5.5 [4d8831e6] + OpenSSL v1.5.0 [d96e819e] + Parameters v0.12.3 [69de0a69] + Parsers v2.8.3 [ccf2f8ad] + PlotThemes v3.3.0 [995b91a9] + PlotUtils v1.4.3 [91a5bcdd] + Plots v1.40.19 [2dfb63ee] + PooledArrays v1.4.3 [8162dcfd] + PrettyPrint v0.2.0 [01d81517] + RecipesPipeline v0.6.12 [2792f1a3] + RegistryInstances v0.1.0 [05181044] + RelocatableFolders v1.0.1 [321657f4] + ScientificTypes v3.1.1 [6e75b9c4] + ScikitLearnBase v0.5.0 [7e506255] + ScopedValues v1.5.0 [6c6a2e73] + Scratch v1.3.0 [91c51154] + SentinelArrays v1.4.8 [605ecd9f] + ShowCases v0.1.0 [992d4aef] + Showoff v1.0.3 [777ac1f9] + SimpleBufferStream v1.2.0 [699a6c99] + SimpleTraits v0.9.5 [860ef19b] + StableRNGs v1.0.3 [c062fc1d] + StatisticalMeasuresBase v0.1.3 [f3b207a7] + StatsPlots v0.15.7 [ab02a1b2] + TableOperations v1.2.0 [62fd8b95] + TensorCore v0.1.1 [3bb67fe8] + TranscodingStreams v0.11.3 [5c2747f8] + URIs v1.6.1 [3a884ed6] + UnPack v1.0.2 [1cfade01] + UnicodeFun v0.4.1 [b8865327] + UnicodePlots v3.8.1 [1986cc42] + Unitful v1.24.0 [45397f5d] + UnitfulLatexify v1.7.0 [013be700] + UnsafeAtomics v0.3.0 [41fe7b60] + Unzip v0.2.0 [cc8bc4a8] + Widgets v0.6.7 ⌅ [68821587] + Arpack_jll v3.5.1+1 [6e34b625] + Bzip2_jll v1.0.9+0 [83423d85] + Cairo_jll v1.18.5+0 [ee1fde0b] + Dbus_jll v1.16.2+0 [2702e6a9] + EpollShim_jll v0.0.20230411+1 [2e619515] + Expat_jll v2.7.1+0 [b22a6f82] + FFMPEG_jll v7.1.1+0 [a3f928ae] + Fontconfig_jll v2.17.1+0 [d7e528f0] + FreeType2_jll v2.13.4+0 [559328eb] + FriBidi_jll v1.0.17+0 [0656b61e] + GLFW_jll v3.4.0+2 [d2c73de3] + GR_jll v0.73.17+0 [b0724c58] + GettextRuntime_jll v0.22.4+0 [61579ee1] + Ghostscript_jll v9.55.1+0 [020c3dae] + Git_LFS_jll v3.7.0+0 [f8c6e375] + Git_jll v2.51.1+0 [7746bdde] + Glib_jll v2.86.0+0 [3b182d85] + Graphite2_jll v1.3.15+0 [2e76f6c2] + HarfBuzz_jll v8.5.1+0 [aacddb02] + JpegTurbo_jll v3.1.3+0 [c1c5ebd0] + LAME_jll v3.100.3+0 [88015f11] + LERC_jll v4.0.1+0 [1d63c593] + LLVMOpenMP_jll v18.1.8+0 [dd4b983a] + LZO_jll v2.10.3+0 [e9f186c6] + Libffi_jll v3.4.7+0 [7e76a0d4] + Libglvnd_jll v1.7.1+1 [94ce4f54] + Libiconv_jll v1.18.0+0 [4b2f31a3] + Libmount_jll v2.41.1+0 [89763e89] + Libtiff_jll v4.7.1+0 [38a345b3] + Libuuid_jll v2.41.1+0 [c8ffd9c3] + MbedTLS_jll v2.28.6+2 [e7412a2a] + Ogg_jll v1.3.6+0 [9bd350c2] + OpenSSH_jll v10.0.1+0 [91d4177d] + Opus_jll v1.5.2+0 [36c8627f] + Pango_jll v1.56.3+0 ⌅ [30392449] + Pixman_jll v0.44.2+0 [c0090381] + Qt6Base_jll v6.8.2+1 [629bc702] + Qt6Declarative_jll v6.8.2+1 [ce943373] + Qt6ShaderTools_jll v6.8.2+1 [e99dba38] + Qt6Wayland_jll v6.8.2+1 [a44049a8] + Vulkan_Loader_jll v1.3.243+0 [a2964d1f] + Wayland_jll v1.24.0+0 [ffd25f8a] + XZ_jll v5.8.1+0 [f67eecfb] + Xorg_libICE_jll v1.1.2+0 [c834827a] + Xorg_libSM_jll v1.2.6+0 [4f6342f7] + Xorg_libX11_jll v1.8.12+0 [0c0b7dd1] + Xorg_libXau_jll v1.0.13+0 [935fb764] + Xorg_libXcursor_jll v1.2.4+0 [a3789734] + Xorg_libXdmcp_jll v1.1.6+0 [1082639a] + Xorg_libXext_jll v1.3.7+0 [d091e8ba] + Xorg_libXfixes_jll v6.0.1+0 [a51aa0fd] + Xorg_libXi_jll v1.8.3+0 [d1454406] + Xorg_libXinerama_jll v1.1.6+0 [ec84b674] + Xorg_libXrandr_jll v1.5.5+0 [ea2f1a96] + Xorg_libXrender_jll v0.9.12+0 [c7cfdc94] + Xorg_libxcb_jll v1.17.1+0 [cc61e674] + Xorg_libxkbfile_jll v1.1.3+0 [e920d4aa] + Xorg_xcb_util_cursor_jll v0.1.5+0 [12413925] + Xorg_xcb_util_image_jll v0.4.1+0 [2def613f] + Xorg_xcb_util_jll v0.4.1+0 [975044d2] + Xorg_xcb_util_keysyms_jll v0.4.1+0 [0d47668e] + Xorg_xcb_util_renderutil_jll v0.3.10+0 [c22f9ab0] + Xorg_xcb_util_wm_jll v0.4.2+0 [35661453] + Xorg_xkbcomp_jll v1.4.7+0 [33bec58e] + Xorg_xkeyboard_config_jll v2.44.0+0 [c5fb5394] + Xorg_xtrans_jll v1.6.0+0 [3161d3a3] + Zstd_jll v1.5.7+1 [35ca27e7] + eudev_jll v3.2.14+0 [214eeab7] + fzf_jll v0.61.1+0 [a4ae2306] + libaom_jll v3.12.1+0 [0ac62f75] + libass_jll v0.17.4+0 [1183f4f0] + libdecor_jll v0.2.2+0 [2db6ffa8] + libevdev_jll v1.13.4+0 [f638f0a6] + libfdk_aac_jll v2.0.4+0 [36db933b] + libinput_jll v1.28.1+0 [b53b4c65] + libpng_jll v1.6.50+0 [f27f6e37] + libvorbis_jll v1.3.8+0 [009596ad] + mtdev_jll v1.1.7+0 [1270edf5] + x264_jll v10164.0.1+0 [dfaa095f] + x265_jll v4.1.0+0 [d8fb68d0] + xkbcommon_jll v1.9.2+0 [efcefdf7] + PCRE2_jll v10.44.0+1 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Test Successfully re-resolved Status `/tmp/jl_Stk9sk/Project.toml` [80f14c24] AbstractMCMC v5.7.2 [a93c6f00] DataFrames v1.7.1 [31c24e10] Distributions v0.25.120 [e30172f5] Documenter v1.14.1 [7a1cc6ca] FFTW v1.9.0 [82899510] IteratorInterfaceExtensions v1.0.0 [5ab0869b] KernelDensity v0.6.10 [c7f686f2] MCMCChains v7.3.0 [be115224] MCMCDiagnosticTools v0.3.15 [a7f614a8] MLJBase v1.9.0 [c6f25543] MLJDecisionTreeInterface v0.4.2 [91a5bcdd] Plots v1.40.19 [10745b16] Statistics v1.11.1 [2913bbd2] StatsBase v0.34.6 [f3b207a7] StatsPlots v0.15.7 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 [b8865327] UnicodePlots v3.8.1 [ade2ca70] Dates v1.11.0 [56ddb016] Logging v1.11.0 [9a3f8284] Random v1.11.0 [9e88b42a] Serialization v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_Stk9sk/Manifest.toml` [a4c015fc] ANSIColoredPrinters v0.0.1 [621f4979] AbstractFFTs v1.5.0 [80f14c24] AbstractMCMC v5.7.2 [1520ce14] AbstractTrees v0.4.5 [7d9f7c33] Accessors v0.1.42 [79e6a3ab] Adapt v4.3.0 [66dad0bd] AliasTables v1.1.3 [dce04be8] ArgCheck v2.5.0 [7d9fca2a] Arpack v0.5.4 [a9b6321e] Atomix v1.1.2 [13072b0f] AxisAlgorithms v1.1.0 [39de3d68] AxisArrays v0.4.8 [198e06fe] BangBang v0.4.4 [9718e550] Baselet v0.1.1 [d1d4a3ce] BitFlags v0.1.9 ⌅ [324d7699] CategoricalArrays v0.10.8 ⌅ [af321ab8] CategoricalDistributions v0.1.15 [d360d2e6] ChainRulesCore v1.26.0 [aaaa29a8] Clustering v0.15.8 [944b1d66] CodecZlib v0.7.8 [35d6a980] ColorSchemes v3.30.0 [3da002f7] ColorTypes v0.12.1 [c3611d14] ColorVectorSpace v0.11.0 [5ae59095] Colors v0.13.1 [34da2185] Compat v4.18.0 [a33af91c] CompositionsBase v0.1.2 [ed09eef8] ComputationalResources v0.3.2 [f0e56b4a] ConcurrentUtilities v2.5.0 [88cd18e8] ConsoleProgressMonitor v0.1.2 [187b0558] ConstructionBase v1.6.0 [6add18c4] ContextVariablesX v0.1.3 [d38c429a] Contour v0.6.3 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [a93c6f00] DataFrames v1.7.1 ⌅ [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [7806a523] DecisionTree v0.12.4 [244e2a9f] DefineSingletons v0.1.2 [8bb1440f] DelimitedFiles v1.9.1 [b4f34e82] Distances v0.10.12 [31c24e10] Distributions v0.25.120 [ffbed154] DocStringExtensions v0.9.5 [e30172f5] Documenter v1.14.1 [460bff9d] ExceptionUnwrapping v0.1.11 [c87230d0] FFMPEG v0.4.4 [7a1cc6ca] FFTW v1.9.0 [cc61a311] FLoops v0.2.2 [b9860ae5] FLoopsBase v0.1.1 [1a297f60] FillArrays v1.14.0 [53c48c17] FixedPointNumbers v0.8.5 [1fa38f19] Format v1.3.7 [46192b85] GPUArraysCore v0.2.0 [28b8d3ca] GR v0.73.17 [d7ba0133] Git v1.5.0 [42e2da0e] Grisu v1.0.2 [cd3eb016] HTTP v1.10.17 [076d061b] HashArrayMappedTries v0.2.0 [34004b35] HypergeometricFunctions v0.3.28 [b5f81e59] IOCapture v0.2.5 [22cec73e] InitialValues v0.3.1 [842dd82b] InlineStrings v1.4.5 ⌅ [a98d9a8b] Interpolations v0.15.1 [8197267c] IntervalSets v0.7.11 [3587e190] InverseFunctions v0.1.17 [41ab1584] InvertedIndices v1.3.1 [92d709cd] IrrationalConstants v0.2.4 [c8e1da08] IterTools v1.10.0 [82899510] IteratorInterfaceExtensions v1.0.0 [1019f520] JLFzf v0.1.11 [692b3bcd] JLLWrappers v1.7.1 [682c06a0] JSON v0.21.4 [b14d175d] JuliaVariables v0.2.4 [63c18a36] KernelAbstractions v0.9.38 [5ab0869b] KernelDensity v0.6.10 [b964fa9f] LaTeXStrings v1.4.0 [23fbe1c1] Latexify v0.16.10 [0e77f7df] LazilyInitializedFields v1.3.0 [92ad9a40] LearnAPI v1.0.1 [1d6d02ad] LeftChildRightSiblingTrees v0.2.1 [6fdf6af0] LogDensityProblems v2.1.2 [2ab3a3ac] LogExpFunctions v0.3.29 [e6f89c97] LoggingExtras v1.1.0 [c7f686f2] MCMCChains v7.3.0 [be115224] MCMCDiagnosticTools v0.3.15 [c2834f40] MLCore v1.0.0 [a7f614a8] MLJBase v1.9.0 [c6f25543] MLJDecisionTreeInterface v0.4.2 [e80e1ace] MLJModelInterface v1.12.0 [d8e11817] MLStyle v0.4.17 [f1d291b0] MLUtils v0.4.8 [1914dd2f] MacroTools v0.5.16 [299715c1] MarchingCubes v0.1.11 [d0879d2d] MarkdownAST v0.1.2 [739be429] MbedTLS v1.1.9 [442fdcdd] Measures v0.3.2 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 [6f286f6a] MultivariateStats v0.10.3 [872c559c] NNlib v0.9.31 [77ba4419] NaNMath v1.1.3 [71a1bf82] NameResolution v0.1.5 [c020b1a1] NaturalSort v1.0.0 [b8a86587] NearestNeighbors v0.4.22 [510215fc] Observables v0.5.5 [6fe1bfb0] OffsetArrays v1.17.0 [4d8831e6] OpenSSL v1.5.0 [bac558e1] OrderedCollections v1.8.1 [90014a1f] PDMats v0.11.35 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.3 [ccf2f8ad] PlotThemes v3.3.0 [995b91a9] PlotUtils v1.4.3 [91a5bcdd] Plots v1.40.19 [2dfb63ee] PooledArrays v1.4.3 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [8162dcfd] PrettyPrint v0.2.0 ⌅ [08abe8d2] PrettyTables v2.4.0 [33c8b6b6] ProgressLogging v0.1.5 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [b3c3ace0] RangeArrays v0.3.2 [c84ed2f1] Ratios v0.4.5 [3cdcf5f2] RecipesBase v1.3.4 [01d81517] RecipesPipeline v0.6.12 [189a3867] Reexport v1.2.2 [2792f1a3] RegistryInstances v0.1.0 [05181044] RelocatableFolders v1.0.1 [ae029012] Requires v1.3.1 [79098fc4] Rmath v0.8.0 [321657f4] ScientificTypes v3.1.1 [30f210dd] ScientificTypesBase v3.0.0 [6e75b9c4] ScikitLearnBase v0.5.0 [7e506255] ScopedValues v1.5.0 [6c6a2e73] Scratch v1.3.0 [91c51154] SentinelArrays v1.4.8 [efcf1570] Setfield v1.1.2 [605ecd9f] ShowCases v0.1.0 [992d4aef] Showoff v1.0.3 [777ac1f9] SimpleBufferStream v1.2.0 [699a6c99] SimpleTraits v0.9.5 [a2af1166] SortingAlgorithms v1.2.2 [276daf66] SpecialFunctions v2.5.1 [171d559e] SplittablesBase v0.1.15 [860ef19b] StableRNGs v1.0.3 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.3 [c062fc1d] StatisticalMeasuresBase v0.1.3 [64bff920] StatisticalTraits v3.5.0 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 [2913bbd2] StatsBase v0.34.6 [4c63d2b9] StatsFuns v1.5.0 [f3b207a7] StatsPlots v0.15.7 [892a3eda] StringManipulation v0.4.1 [ab02a1b2] TableOperations v1.2.0 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 [62fd8b95] TensorCore v0.1.1 [5d786b92] TerminalLoggers v0.1.7 [3bb67fe8] TranscodingStreams v0.11.3 [28d57a85] Transducers v0.4.84 [5c2747f8] URIs v1.6.1 [3a884ed6] UnPack v1.0.2 [1cfade01] UnicodeFun v0.4.1 [b8865327] UnicodePlots v3.8.1 [1986cc42] Unitful v1.24.0 [45397f5d] UnitfulLatexify v1.7.0 [013be700] UnsafeAtomics v0.3.0 [41fe7b60] Unzip v0.2.0 [cc8bc4a8] Widgets v0.6.7 [efce3f68] WoodburyMatrices v1.0.0 ⌅ [68821587] Arpack_jll v3.5.1+1 [6e34b625] Bzip2_jll v1.0.9+0 [83423d85] Cairo_jll v1.18.5+0 [ee1fde0b] Dbus_jll v1.16.2+0 [2702e6a9] EpollShim_jll v0.0.20230411+1 [2e619515] Expat_jll v2.7.1+0 [b22a6f82] FFMPEG_jll v7.1.1+0 [f5851436] FFTW_jll v3.3.11+0 [a3f928ae] Fontconfig_jll v2.17.1+0 [d7e528f0] FreeType2_jll v2.13.4+0 [559328eb] FriBidi_jll v1.0.17+0 [0656b61e] GLFW_jll v3.4.0+2 [d2c73de3] GR_jll v0.73.17+0 [b0724c58] GettextRuntime_jll v0.22.4+0 [61579ee1] Ghostscript_jll v9.55.1+0 [020c3dae] Git_LFS_jll v3.7.0+0 [f8c6e375] Git_jll v2.51.1+0 [7746bdde] Glib_jll v2.86.0+0 [3b182d85] Graphite2_jll v1.3.15+0 [2e76f6c2] HarfBuzz_jll v8.5.1+0 [1d5cc7b8] IntelOpenMP_jll v2025.2.0+0 [aacddb02] JpegTurbo_jll v3.1.3+0 [c1c5ebd0] LAME_jll v3.100.3+0 [88015f11] LERC_jll v4.0.1+0 [1d63c593] LLVMOpenMP_jll v18.1.8+0 [dd4b983a] LZO_jll v2.10.3+0 [e9f186c6] Libffi_jll v3.4.7+0 [7e76a0d4] Libglvnd_jll v1.7.1+1 [94ce4f54] Libiconv_jll v1.18.0+0 [4b2f31a3] Libmount_jll v2.41.1+0 [89763e89] Libtiff_jll v4.7.1+0 [38a345b3] Libuuid_jll v2.41.1+0 [856f044c] MKL_jll v2025.2.0+0 [c8ffd9c3] MbedTLS_jll v2.28.6+2 [e7412a2a] Ogg_jll v1.3.6+0 [9bd350c2] OpenSSH_jll v10.0.1+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [91d4177d] Opus_jll v1.5.2+0 [36c8627f] Pango_jll v1.56.3+0 ⌅ [30392449] Pixman_jll v0.44.2+0 [c0090381] Qt6Base_jll v6.8.2+1 [629bc702] Qt6Declarative_jll v6.8.2+1 [ce943373] Qt6ShaderTools_jll v6.8.2+1 [e99dba38] Qt6Wayland_jll v6.8.2+1 [f50d1b31] Rmath_jll v0.5.1+0 [a44049a8] Vulkan_Loader_jll v1.3.243+0 [a2964d1f] Wayland_jll v1.24.0+0 [ffd25f8a] XZ_jll v5.8.1+0 [f67eecfb] Xorg_libICE_jll v1.1.2+0 [c834827a] Xorg_libSM_jll v1.2.6+0 [4f6342f7] Xorg_libX11_jll v1.8.12+0 [0c0b7dd1] Xorg_libXau_jll v1.0.13+0 [935fb764] Xorg_libXcursor_jll v1.2.4+0 [a3789734] Xorg_libXdmcp_jll v1.1.6+0 [1082639a] Xorg_libXext_jll v1.3.7+0 [d091e8ba] Xorg_libXfixes_jll v6.0.1+0 [a51aa0fd] Xorg_libXi_jll v1.8.3+0 [d1454406] Xorg_libXinerama_jll v1.1.6+0 [ec84b674] Xorg_libXrandr_jll v1.5.5+0 [ea2f1a96] Xorg_libXrender_jll v0.9.12+0 [c7cfdc94] Xorg_libxcb_jll v1.17.1+0 [cc61e674] Xorg_libxkbfile_jll v1.1.3+0 [e920d4aa] Xorg_xcb_util_cursor_jll v0.1.5+0 [12413925] Xorg_xcb_util_image_jll v0.4.1+0 [2def613f] Xorg_xcb_util_jll v0.4.1+0 [975044d2] Xorg_xcb_util_keysyms_jll v0.4.1+0 [0d47668e] Xorg_xcb_util_renderutil_jll v0.3.10+0 [c22f9ab0] Xorg_xcb_util_wm_jll v0.4.2+0 [35661453] Xorg_xkbcomp_jll v1.4.7+0 [33bec58e] Xorg_xkeyboard_config_jll v2.44.0+0 [c5fb5394] Xorg_xtrans_jll v1.6.0+0 [3161d3a3] Zstd_jll v1.5.7+1 [35ca27e7] eudev_jll v3.2.14+0 [214eeab7] fzf_jll v0.61.1+0 [a4ae2306] libaom_jll v3.12.1+0 [0ac62f75] libass_jll v0.17.4+0 [1183f4f0] libdecor_jll v0.2.2+0 [2db6ffa8] libevdev_jll v1.13.4+0 [f638f0a6] libfdk_aac_jll v2.0.4+0 [36db933b] libinput_jll v1.28.1+0 [b53b4c65] libpng_jll v1.6.50+0 [f27f6e37] libvorbis_jll v1.3.8+0 [009596ad] mtdev_jll v1.1.7+0 [1317d2d5] oneTBB_jll v2022.0.0+0 [1270edf5] x264_jll v10164.0.1+0 [dfaa095f] x265_jll v4.1.0+0 [d8fb68d0] xkbcommon_jll v1.9.2+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [4af54fe1] LazyArtifacts v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.12.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.12.0 [de0858da] Printf v1.11.0 [3fa0cd96] REPL v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [1a1011a3] SharedArrays v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.12.0 [f489334b] StyledStrings v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.11.1+1 [e37daf67] LibGit2_jll v1.9.0+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.5.20 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [458c3c95] OpenSSL_jll v3.5.1+0 [efcefdf7] PCRE2_jll v10.44.0+1 [bea87d4a] SuiteSparse_jll v7.8.3+2 [83775a58] Zlib_jll v1.3.1+2 [8e850b90] libblastrampoline_jll v5.13.1+1 [8e850ede] nghttp2_jll v1.64.0+1 [3f19e933] p7zip_jll v17.5.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ESS/R-hat ┌ Warning: number of draws after splitting must be >4 but is 0. ESS cannot be computed. └ @ MCMCDiagnosticTools ~/.julia/packages/MCMCDiagnosticTools/x6KGX/src/ess_rhat.jl:472 ┌ Warning: number of draws after splitting must be >4 but is 0. ESS cannot be computed. └ @ MCMCDiagnosticTools ~/.julia/packages/MCMCDiagnosticTools/x6KGX/src/ess_rhat.jl:472 ┌ Warning: number of draws after splitting must be >4 but is 0. ESS cannot be computed. └ @ MCMCDiagnosticTools ~/.julia/packages/MCMCDiagnosticTools/x6KGX/src/ess_rhat.jl:472 ┌ Warning: number of draws after splitting must be >4 but is 0. ESS cannot be computed. └ @ MCMCDiagnosticTools ~/.julia/packages/MCMCDiagnosticTools/x6KGX/src/ess_rhat.jl:472 ┌ Warning: number of draws after splitting must be >4 but is 0. ESS cannot be computed. └ @ MCMCDiagnosticTools ~/.julia/packages/MCMCDiagnosticTools/x6KGX/src/ess_rhat.jl:472 ┌ Warning: number of draws after splitting must be >4 but is 0. ESS cannot be computed. └ @ MCMCDiagnosticTools ~/.julia/packages/MCMCDiagnosticTools/x6KGX/src/ess_rhat.jl:472 199.449582 seconds (32.72 M allocations: 8.334 GiB, 4.97% gc time, 29.16% compilation time: 4% of which was recompilation) MCSE 62.335180 seconds (8.86 M allocations: 803.290 MiB, 0.31% gc time, 22.66% compilation time) Tables interfaces Precompiling packages... 12342.1 ms ✓ BangBang → BangBangDataFramesExt 1 dependency successfully precompiled in 13 seconds. 47 already precompiled. Precompiling packages... 7398.8 ms ✓ Transducers → TransducersDataFramesExt 1 dependency successfully precompiled in 9 seconds. 63 already precompiled. 91.449367 seconds (37.65 M allocations: 2.357 GiB, 1.60% gc time, 71.93% compilation time: 15% of which was recompilation) Plotting Precompiling packages... 2408.4 ms ✓ Widgets 4982.4 ms ✓ NearestNeighbors 3846.1 ms ✓ Interpolations → InterpolationsUnitfulExt 7358.5 ms ✓ MultivariateStats 119374.5 ms ✓ Plots 5032.1 ms ✓ Clustering 19638.1 ms ✓ Plots → UnitfulExt 36036.3 ms ✓ StatsPlots 8 dependencies successfully precompiled in 203 seconds. 240 already precompiled. Precompiling packages... 106952.6 ms ✓ UnicodePlots 1 dependency successfully precompiled in 108 seconds. 48 already precompiled. Precompiling packages... 9291.1 ms ✓ UnicodePlots → IntervalSetsExt 1 dependency successfully precompiled in 10 seconds. 66 already precompiled. traceplot ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 4.77039│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 1 │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡀⠀⠀⠀⠀⠀⠀⠀│Chain 2 │⠀⡇⠀⢀⡄⢰⠀⠀⠀⠀⠀⡆⢰⠀⠀⢠⠀⠀⣾⠀⢀⡆⠀⠀⠀⠀⠀⢸⠀⢸⠀⢠⡇⡆⠀⠀⠀⡄⠀⠀│Chain 3 │⠀⡇⢰⣼⣷⣿⠀⡇⣰⢠⢠⣧⣸⠀⡀⣸⡆⠀⣿⢰⢸⣿⠀⠀⠀⢀⡀⢸⢀⢸⡆⢸⣿⡇⠀⠀⢰⣇⢸⠀│ │⠀⡇⢸⣿⣿⣿⣾⣿⣿⣾⣾⣿⣿⣀⣷⣿⣧⡇⣿⢸⣸⣿⣸⣤⣇⣾⣧⣸⣿⢸⣇⣾⣿⣿⠀⡇⢸⣿⣾⠀│ │⠀⣧⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣆⣿⣿⣿⣿⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ Sample value│⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠒⣿⣿⣿⣿⣿⣿⡟⣿⣿⣿⣿⢺⣿⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⣿⣿⣿⣿⣿⡟⣿⣿⣿⠒│ │⠀⣿⣿⠇⡿⢿⠏⠇⡿⢸⠀⢿⠘⢹⢸⡿⡏⣿⡟⣿⠏⣿⡿⡿⠈⡏⣿⣿⣿⡇⣿⣿⢻⢿⣿⡇⢿⣿⡿⠀│ │⠀⡿⠿⠀⡇⢸⠀⠀⠃⠘⠀⠸⠀⠀⠘⠇⠃⢸⡇⠀⠀⠉⠁⠇⠀⠇⢹⠁⡟⠀⣿⡏⢸⢸⣿⡇⢸⣿⠁⠀│ │⠀⡇⠀⠀⠁⠸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⢸⠀⠁⠀⣿⡇⠀⠘⠀⠃⢸⠙⠀⠀│ -2.20176│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠋⠃⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-13.97⠀⠀⠀⠀⠀⠀⠀⠀⠀Iteration⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀514.97⠀ meanplot ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 1.86401│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 1 │⠀⣷⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 2 │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 3 │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Mean│⠀⣿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣀⣀⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⡇⠀⠀⠀⠀⠀⢠⣤⣞⣛⣡⣈⡭⠟⠛⠻⠞⠛⠶⠶⣿⡙⣛⣒⡶⢶⠶⣖⣶⣤⣤⣶⠒⠒⠦⠤⠤⠀│ │⠀⣿⣧⣀⣼⣦⣴⡟⣻⠞⠛⠟⠓⠞⠙⠉⠉⠛⠓⠲⢤⠤⠦⢭⣥⣀⣤⣠⣀⣀⡀⢀⣀⣈⣉⣉⣝⣭⢭⠀│ │⠀⣿⣼⣿⠿⠿⠟⠿⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠉⠉⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⢻⡟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣼⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 0.512867│⠀⡇⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-13.97⠀⠀⠀⠀⠀⠀⠀⠀⠀Iteration⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀514.97⠀ density ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 0.430407│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⢀⡤⣤⢶⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⡜⢰⢫⢫⠈⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢰⢁⢧⠃⠀⠣⣜⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⡇⡾⠃⠀⠀⠀⠀⢹⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢸⡼⠁⠀⠀⠀⠀⠀⠀⢿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣷⠃⠀⠀⠀⠀⠀⠀⠀⠘⣧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Density│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣷⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⢹⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⣻⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⡻⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠣⣣⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢠⡟⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⢳⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⡄⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣠⠏⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣄⠱⡄⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⢀⣠⡾⠋⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠦⣝⣦⡀⠀⠀⠀⠀⠀⠀│ -0.00938728│⠤⠶⠶⠿⠯⠤⠤⠤⠤⠤⠤⠤⢼⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠬⠽⠶⠦⠤⠤⠤│ └────────────────────────────────────────┘ ⠀-2.16608⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀4.73471⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 0.419162│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡴⠲⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⡜⠀⠀⠈⢦⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⡜⠀⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⡸⠀⠀⠀⠀⠀⠀⠀⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢠⠃⠀⠀⠀⠀⠀⠀⠀⠸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡜⠀⠀⠀⠀⠀⠀⠀⠀⠀⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Density│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⢾⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠊⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠃⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢠⠃⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⢠⠃⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣠⠃⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⣀⠔⠁⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠳⢤⣀⠀⠀⠀⠀⠀⠀│ -0.0112109│⠤⠶⠶⠯⠥⠤⠤⠤⠤⠤⠤⠤⢼⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠭⠷⠦⠤⠤⠤│ └────────────────────────────────────────┘ ⠀-2.15981⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀4.72844⠀ autocorplot ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 1.03259│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 1 │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 2 │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 3 │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Autocorrelation│⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡇⠀⠀⢀⠜⡄⡠⠻⣠⣀⡀⡠⡀⠀⣤⠀⠀⠀⢀⠀⠀⠀⡰⢄⢠⠚⡄⠀⠀⡰⢲⢦⡔⠒⡆⠀⡜⠀│ │⠒⡗⣷⣲⣖⡺⠖⢳⢓⢶⢿⠞⠻⡶⣷⡺⠛⣷⡶⢶⠚⢻⣷⣲⣓⣲⡳⢖⠞⠶⡶⠷⠓⠚⡗⡻⠚⣾⠞⠒│ -0.118903│⠀⡇⠘⠁⠀⠈⠢⠊⠉⠉⠀⠀⠀⠑⠁⠀⠀⠈⠉⠁⠑⠁⠀⠈⠒⠁⠀⠀⠀⠀⠀⠀⠀⠀⠈⠀⠀⠁⠀⠀│ └────────────────────────────────────────┘ ⠀-0.81⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Lag⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀27.81⠀ ridgelineplot ┌────────────────────────────────────────┐ 3.78235│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⣴⠀⠀⠀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Mean │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⣿⠀⠀⠀⣧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Median │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⣿⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│95% HPDI │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⣿⠀⠀⢸⢹⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⣿⡆⠀⢸⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⢠⢿⡇⠀⢸⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⢸⢸⡇⠀⢸⢸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Parameters│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⢸⢸⡇⠀⡼⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠐⠚⚬⠛⠒⠓⠂⠓⢀⣀⣀⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⢀⣀⡤⠖⠋⠉⢸⡇⠈⠑⠦⣄⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠠⠤⠤⠖⢺⠒⠒⠒⠺⠭⢤⣤⣤⠤⠤⚬⠧⠤⠤⠤⠤⠬⠭⠽⠒⠒⠒⠒⠲⠤⠤⠤⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢀⣠⠴⠚⠉⠀⡏⠉⠙⠲⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠤⠤⠤⠴⠒⠒⢺⠾⠭⢤⣤⣤⠤⠤⚬⠤⠤⠤⠤⠬⠭⠗⠒⠒⠲⠤⠤⠤⠤⠤⠄⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⣸⠖⠋⠉⢸⠈⠙⠲⢤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 0.0956598│⠀⠤⠤⠤⠤⠤⠴⠒⠺⠭⠤⢼⠤⠤⠤⚬⠤⠤⠤⠤⠤⠭⠽⠒⠒⠲⠤⠤⠤⠤⠤⠤⠄⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-3.13502⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀7.49865⠀ forestplot ┌────────────────────────────────────────┐ 1.745│⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⚬⠒⠒⠒⚬⠒⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│95% HPDI │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│80% HPDI │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Median │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Mean │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⚬⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Parameters│⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⚬⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 0.155│⠀⠤⠤⠤⠤⠤⢼⠤⠤⠤⠤⠤⠤⚬⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-1.03466⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀5.25898⠀ histogram ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 111│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⢸⠉⚬⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⢸⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⢸⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⢸⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⡏⚬⢹⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡏⚬⡇⠀⢸⠀⠀⡧⚬⢤⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⡇⠀⢸⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Frequency│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⡇⠀⢸⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⡇⢸⚬⠀⠀⡇⠀⢸⚬⢹⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠉⡇⚬⣿⚬⚬⚬⚬⚬⚬⢸⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⡇⚬⚬⢸⢸⚬⢸⚬⚬⢸⠀⢸⣀⚬⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⚬⣿⚬⢸⢸⢸⚬⣿⢸⚬⠀⢸⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡏⚬⚬⚬⚬⡇⣿⣿⢸⢸⢸⢸⣿⢸⚬⚬⚬⚬⡄⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⚬⚬⚬⡇⡇⣿⣿⢸⢸⢸⢸⣿⢸⢸⚬⚬⚬⚬⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 0│⠀⠀⣀⚬⣠⚬⚬⚬⚬⚬⚬⣿⣇⣇⣇⣿⣿⣸⣸⣸⣸⣿⣸⣸⣸⣿⣇⚬⚬⚬⚬⚬⚬⣆⚬⣀⚬⣀⠀⠀│ └────────────────────────────────────────┘ ⠀-2.9635⠀⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀⠀5.4635⠀ mixeddensity ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 0.430407│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⢀⡤⣤⢶⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⡜⢰⢫⢫⠈⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢰⢁⢧⠃⠀⠣⣜⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⡇⡾⠃⠀⠀⠀⠀⢹⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢸⡼⠁⠀⠀⠀⠀⠀⠀⢿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣷⠃⠀⠀⠀⠀⠀⠀⠀⠘⣧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Density│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣷⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⢹⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⣻⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⡻⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠣⣣⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢠⡟⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⢳⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⡄⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣠⠏⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣄⠱⡄⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⢀⣠⡾⠋⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠦⣝⣦⡀⠀⠀⠀⠀⠀⠀│ -0.00938728│⠤⠶⠶⠿⠯⠤⠤⠤⠤⠤⠤⠤⢼⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠬⠽⠶⠦⠤⠤⠤│ └────────────────────────────────────────┘ ⠀-2.16608⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀4.73471⠀ corner ┌────────────────────────────────────────┐ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡏⚬⢹⠒⚬⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⢸⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⢸⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡤⚬⡇⠀⢸⠀⠀⡏⚬⢹⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⡇⠀⢸⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⡇⠀⢸⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⡇⠀⢸⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⡇⠀⢸⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⚬⠤⡇⠀⡇⠀⢸⠀⠀⡇⠀⢸⚬⢤⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⡇⠀⡇⠀⢸⠀⠀⡇⠀⢸⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⡇⠀⡇⠀⢸⠀⠀⡇⠀⢸⠀⢸⣀⚬⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡤⚬⢼⠀⠀⡇⠀⡇⠀⢸⠀⠀⡇⠀⢸⠀⢸⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⢸⠀⠀⡇⠀⡇⠀⢸⠀⠀⡇⠀⢸⠀⢸⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢀⣀⚬⡇⠀⢸⠀⠀⡇⠀⡇⠀⢸⠀⠀⡇⠀⢸⠀⢸⠀⠀⣇⚬⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⣀⚬⣠⚬⣼⣀⣀⣇⣀⣸⣀⣀⣇⣀⣇⣀⣸⣀⣀⣇⣀⣸⣀⣸⣀⣀⣇⣀⣸⚬⣒⣆⚬⣀⚬⣀⠀⠀│ └────────────────────────────────────────┘ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 300.796│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ param_2│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -9.99085│⠤⠤⠤⠤⚬⠶⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⠶⠶⚬⠤⠤⠤⠤│ │⠀⚬⣤⣤⣤⣤⣤⣤⣤⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⠀│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-2.9635⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀5.4635⠀ ┌────────────────────────────────────────┐ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡏⚬⠉⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⡧⚬⢤⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⢸⠤⚬⢤⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡤⚬⠤⡇⠀⠀⡇⠀⢸⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡖⚬⠒⡇⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⢸⠤⚬⢤⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⢸⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⣀⚬⣀⡇⠀⠀⡇⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⢸⠀⠀⢸⠤⚬⢤⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⠀⡇⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⢸⠀⠀⢸⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⣀⚬⣀⡇⠀⠀⡇⠀⠀⡇⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⢸⠀⠀⢸⠀⠀⢸⣀⚬⣀⠀⠀⠀⠀⠀│ │⠀⠀⣀⚬⣀⣇⣀⣀⣇⣀⣀⣇⣀⣀⣇⣀⣀⣇⣀⣀⣇⣀⣸⣀⣀⣸⣀⣀⣸⣀⣀⣸⣀⣀⣸⣒⚬⣲⠀⠀│ └────────────────────────────────────────┘ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 199.855│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ param_2│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⚬⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -7.0354│⠒⠒⠒⠒⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⠒⠒⠒│ │⠀⚬⚬⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⠀│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-2.3708⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀4.3708⠀ violinplot ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 4.77039│⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⡰⢹⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠏⡿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣿⡀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⡸⠁⢸⠈⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⡇⢳⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠞⡇⠳⡀⠀⠀⠀⠀│ │⠀⠀⠀⢠⠇⠀⢸⠀⠘⡄⠀⠀⠀⠀⠀⠀⠀⣠⠇⠀⡇⠸⣄⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⡇⠀⠹⡀⠀⠀⠀│ │⠀⠀⡠⠋⠀⢰⠚⡆⠀⠙⢆⠀⠀⠀⠀⢠⠞⠁⠀⡤⢧⠀⠈⠳⡄⠀⠀⠀⠀⡔⠉⠀⢠⠧⡄⠀⠉⢢⠀⠀│ │⠀⡞⠁⠀⠀⢸⣀⡇⠀⠀⠈⢳⠀⠀⢠⠋⠀⠀⠀⡇⢸⠀⠀⠀⠙⡄⠀⠀⢀⠇⠀⠀⢸⠀⡇⠀⠀⢸⡀⠀│ │⠀⠙⡄⠀⠀⢸⠀⡇⠀⠀⢠⠎⠀⠀⠸⣄⠀⠀⠀⡏⢹⠀⠀⠀⣠⠇⠀⠀⡏⠀⠀⠀⢸⠉⡇⠀⠀⠀⢹⠀│ │⠀⠀⠳⡀⠀⠘⢲⠃⠀⢀⠜⠀⠀⠀⠀⠘⢦⠀⠀⠓⡞⠀⠀⡴⠃⠀⠀⠀⠙⢆⠀⠀⠸⡤⠇⠀⠀⡰⠋⠀│ │⠒⠒⠒⠚⡖⠒⢺⠒⢲⠓⠒⠒⠒⠒⠒⠒⠚⢳⠒⠒⡗⠒⡞⠓⠒⠒⠒⠒⠒⠒⠛⣖⠒⡗⠒⣲⠛⠒⠒⠒│ │⠀⠀⠀⠀⠱⣄⢸⢠⠞⠀⠀⠀⠀⠀⠀⠀⠀⠈⢧⠀⡇⡼⠁⠀⠀⠀⠀⠀⠀⠀⠀⠘⡄⡇⢰⠃⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠘⣼⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢇⡿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⣇⠏⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀│ -2.20176│⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.516⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3.484⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 5.66907│⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣾⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢰⢻⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡏⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡏⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⣠⠃⢸⠘⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⡸⠁⡏⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠋⡇⠹⣄⠀⠀⠀⠀│ │⠀⠀⠀⣸⠁⠀⢸⠀⠈⢇⠀⠀⠀⠀⠀⠀⢀⡜⠁⠀⡇⠈⢣⡀⠀⠀⠀⠀⠀⣀⠜⠁⠀⡇⠀⠈⠢⡀⠀⠀│ │⠀⠀⡴⠃⠀⢠⠼⡄⠀⠈⢦⠀⠀⠀⠀⢀⡞⠀⠀⡤⢧⠀⠀⢳⡀⠀⠀⠀⢸⠁⠀⠀⢰⠓⡆⠀⠀⠈⡆⠀│ │⠀⠀⡇⠀⠀⢸⠀⡇⠀⠀⢸⠀⠀⠀⢠⠎⠀⠀⠀⡇⢸⠀⠀⠀⠱⡄⠀⠀⡞⠀⠀⠀⢸⣀⡇⠀⠀⠀⢳⠀│ │⠀⡜⠁⠀⠀⢸⠒⡇⠀⠀⠀⢣⠀⠀⢸⡀⠀⠀⠀⡏⢹⠀⠀⠀⢀⡇⠀⠀⣇⠀⠀⠀⢸⠀⡇⠀⠀⠀⡸⠀│ │⠀⠳⡀⠀⠀⢸⣀⡇⠀⠀⢀⠜⠀⠀⠀⢳⡀⠀⠀⠓⡞⠀⠀⢀⡞⠀⠀⠀⠈⢦⡀⠀⠘⡖⠃⠀⢀⡴⠁⠀│ │⠀⠀⠙⢆⠀⠀⢸⠀⠀⡠⠋⠀⠀⠀⠀⠀⠙⢦⠀⠀⡇⠀⡴⠋⠀⠀⠀⠀⠀⠀⠳⡄⠀⡇⠀⢠⠎⠀⠀⠀│ │⠀⠀⠀⠀⢣⡀⢸⢀⡜⠁⠀⠀⠀⠀⠀⠀⠀⠀⢳⡀⣇⡞⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣆⡇⣰⠃⠀⠀⠀⠀│ │⠒⠒⠒⠒⠒⢻⣺⡟⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⢳⡟⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠺⣷⠗⠒⠒⠒⠒⠒│ │⠀⠀⠀⠀⠀⠀⣿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀│ -1.13707│⠀⠀⠀⠀⠀⠀⠛⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.516⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3.484⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 6.55969│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢀⢶⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⡿⡄⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⡼⢸⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡎⣷⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⡇⢣⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⡸⠀⢸⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⢀⡎⠀⡇⢱⡀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠁⡇⠘⡆⠀⠀⠀⠀│ │⠀⠀⠀⡰⠃⠀⢸⠀⠘⢆⠀⠀⠀⠀⠀⠀⣠⠞⠀⠀⡇⠀⠳⣄⠀⠀⠀⠀⠀⢀⡴⠃⠀⡇⠀⠙⢦⡀⠀⠀│ │⠀⠀⡼⠁⠀⢰⠚⡆⠀⠈⢧⠀⠀⠀⢀⡞⠁⠀⠀⡖⢳⠀⠀⠈⢳⡀⠀⠀⡴⠋⠀⠀⢰⠓⡆⠀⠀⠙⢦⠀│ │⠀⡞⠁⠀⠀⢸⣀⡇⠀⠀⠈⢳⠀⠀⢸⠀⠀⠀⠀⣇⣸⠀⠀⠀⠀⡇⠀⠀⣇⠀⠀⠀⢸⠤⡇⠀⠀⠀⡸⠀│ │⠀⠳⡄⠀⠀⢸⠀⡇⠀⠀⢠⠞⠀⠀⠘⣆⠀⠀⠀⡇⢸⠀⠀⠀⣰⠃⠀⠀⠘⡆⠀⠀⢸⠀⡇⠀⠀⢰⠃⠀│ │⠀⠀⠱⡀⠀⠘⢲⠃⠀⢀⡞⠀⠀⠀⠀⠈⠧⡀⠀⠉⡏⠀⢀⠼⠁⠀⠀⠀⠀⠳⡀⠀⠘⡖⠃⠀⢠⠞⠀⠀│ │⠀⠀⠀⠙⣆⠀⢸⠀⣠⠋⠀⠀⠀⠀⠀⠀⠀⠸⡄⠀⡇⢠⠇⠀⠀⠀⠀⠀⠀⠀⠹⣄⠀⡇⠀⣠⠇⠀⠀⠀│ │⠀⠀⠀⠀⠈⢦⢸⡴⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⢧⠀⡇⡼⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢣⡇⡜⠁⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠈⣿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢧⡿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣿⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠿⠀⠀⠀⠀⠀⠀│ -0.392045│⠉⠉⠉⠉⠉⠉⚬⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠙⚬⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉│ └────────────────────────────────────────┘ ⠀0.516⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3.484⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_4⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 2.03│⠀⢤⠤⠤⠤⢴⠶⡦⠤⠤⠤⡤⠀⠀⠀⣤⠤⠤⠤⡶⢶⠤⠤⠤⣤⠀⠀⠀⡤⠤⠤⠤⢴⠶⡦⠤⠤⠤⢤⠀│ │⠀⠈⠣⣄⠀⢸⠀⡇⠀⣀⠔⠁⠀⠀⠀⠈⠢⡀⠀⡇⢸⠀⢀⠔⠁⠀⠀⠀⠘⠦⡀⠀⢸⠀⡇⠀⢀⠔⠁⠀│ │⠀⠀⠀⠈⠳⣼⠀⣇⠞⠁⠀⠀⠀⠀⠀⠀⠀⠈⢦⡇⢸⡴⠁⠀⠀⠀⠀⠀⠀⠀⠈⠢⣸⠀⣇⠔⠁⠀⠀⠀│ │⠀⠀⠀⠀⠀⢹⣤⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣧⣼⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⣠⡏⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢸⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣿⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢸⢹⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡏⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢸⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢸⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡧⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢸⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢸⣸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣇⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢸⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣿⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⣸⠋⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡟⢻⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠙⣇⠀⠀⠀⠀⠀│ │⠀⠀⠀⢀⠔⢹⠀⡏⠢⡀⠀⠀⠀⠀⠀⠀⠀⡠⠊⡇⢸⠑⢄⠀⠀⠀⠀⠀⠀⠀⢀⠔⢹⠀⡏⠢⡀⠀⠀⠀│ │⠀⢀⠔⠁⠀⢸⠀⡇⠀⠈⠲⡄⠀⠀⠀⡴⠊⠀⠀⡇⢸⠀⠀⠑⢦⠀⠀⠀⢠⠖⠁⠀⢸⠀⡇⠀⠈⠢⡀⠀│ 0.97│⠀⠃⠀⠀⠀⠸⠤⠇⠀⠀⠀⠘⠀⠀⠘⠀⠀⠀⠀⠧⠼⠀⠀⠀⠀⠃⠀⠀⠃⠀⠀⠀⠸⠤⠇⠀⠀⠀⠘⠀│ └────────────────────────────────────────┘ ⠀0.516⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3.484⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Chain 1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 5.71189│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠠⚬⠀⠀⠀⠀⠀⠀⠀⠀⢰⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⡇⠀⠀⠀⠀⠀⠀⠀⢀⢿⢱⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⡞⢸⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢠⚬⠀⠀⠀⠀⠀⠀⠀⢀⡎⣿⡀⠀⠀⠀⠀⠀⡼⠁⣸⡀⠈⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⣸⣧⠀⠀⠀⠀⠀⠀⢀⠎⠀⡇⠹⡄⠀⠀⠀⡼⠁⠀⡇⡇⠀⠈⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⢰⠃⡏⣆⠀⠀⠀⠀⢀⡞⠀⢀⣇⠀⢳⡀⠀⠐⣇⠀⠀⡏⡇⠀⠀⣸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⡏⠀⡇⠸⡄⠀⠀⠀⢸⠀⠀⢸⢸⠀⠀⡇⠀⠀⠸⡄⠀⢧⠇⠀⢰⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⢀⡜⠀⢰⢳⠀⠱⡄⠀⠀⡏⠀⠀⢸⢹⠀⠀⢹⡄⠀⠀⠙⣄⢸⠀⣰⠃⠀⠀⠀⠙⠻⢭⡏⣯⠽⠛⠋⠀│ │⠀⡏⠀⠀⢸⢼⠀⠀⢘⠆⠀⠳⡀⠀⠘⡞⠀⢀⠞⠀⠀⠀⠀⠘⣾⣰⠃⠀⠀⠀⢀⡤⠖⠚⣇⡏⠓⠢⢤⠀│ │⠀⢹⡀⠀⢸⢸⠀⠀⡎⠀⠀⠀⠙⣆⠀⡇⣠⠋⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⣀⣀⣱⣄⣈⣏⣀⣞⣁⣀⣀⣀⣀⣈⣆⣷⣃⣀⣀⣀⣀⣀⣀⣀⚬⣇⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀│ │⠀⠀⠀⢣⠀⡇⣸⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⚬⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢳⡿⠁⠀⠀⠀⠀⠀⠀⠀⠘⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -2.22918│⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.486⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀4.514⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Chain 2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 6.60471│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⚬⠀⠀⠀⠀⠀⠀⠀⠀⣸⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⢰⢻⠘⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢀⚬⠀⠀⠀⠀⠀⠀⠀⠀⡞⣷⠀⠀⠀⠀⠀⠀⡠⠋⢸⠀⠹⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⡴⠃⡏⢦⠀⠀⠀⠀⡞⠁⠀⡏⡇⠀⠈⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⢀⠏⡟⡆⠀⠀⠀⠀⠀⡼⠁⢀⣇⠈⢧⠀⠀⠐⡇⠀⠀⡗⡇⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⣸⠀⡇⢧⠀⠀⠀⠀⡼⠁⠀⢸⢸⠀⠈⢣⠀⠀⠹⣄⠀⢧⠇⠀⣠⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⢀⡞⠁⢠⢧⠈⠳⡄⠀⠀⣇⠀⠀⢸⢹⠀⠀⢸⠃⠀⠀⠈⢇⢸⠀⡼⠁⠀⠀⠀⠙⠻⢭⡏⣯⠭⠛⠃⠀│ │⠀⡎⠀⠀⢸⣸⠀⠀⠹⡄⠀⠘⢆⠀⠈⡏⠀⣰⠃⠀⠀⠀⠀⠸⣸⢠⠇⠀⠀⠀⢀⠤⠒⠊⣇⡏⠓⠲⢤⠀│ │⠀⠳⡀⠀⢸⣸⠀⢀⡞⠀⠀⠀⠈⠳⡀⣇⡞⠁⠀⠀⠀⠀⠀⠀⢹⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠤⠤⠽⡤⠤⡧⢤⠾⠤⠤⠤⠤⠤⠤⢷⡿⠤⠤⠤⠤⠤⠤⠤⠤⚬⡧⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤│ │⠀⠀⠀⠹⡄⣇⡞⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢱⡿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -1.938│⠀⠀⠀⠀⠘⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.486⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀4.514⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Chain 3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 6.06323│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⚬⠀⠀⠀⠀⠀⠀⠀⢠⢻⠸⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⣧⠀⠀⠀⠀⠀⠀⢀⡞⢸⠀⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⢠⠇⡟⡄⠀⠀⠀⠀⡰⠋⠀⡼⡄⠀⠑⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢸⣇⠀⠀⠀⠀⠀⢀⡴⠃⠀⡇⠈⢦⡀⠀⠈⡇⠀⠀⣇⡇⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⢠⠏⡟⣆⠀⠀⠀⠀⡞⠀⠀⢰⢳⠀⠀⢱⠀⠀⢳⠀⠀⡇⡇⠀⠀⡎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⣠⠏⠀⡇⠘⣆⠀⠀⠀⡇⠀⠀⢸⢼⠀⠀⢸⡄⠀⠈⢆⠀⢹⠁⠀⡼⠁⠀⢠⣤⠤⠤⡤⡤⠤⠤⣤⠀│ │⠀⢰⠁⠀⢰⢳⠀⠈⡇⠀⠀⢣⡀⠀⢸⣸⠀⠀⡼⠀⠀⠀⠈⢧⢸⢀⡼⠁⠀⠀⠀⠈⠉⣓⡧⣷⡚⠉⠀⠀│ │⠀⡜⠀⠀⢸⢼⠀⠀⢱⡀⠀⠀⠳⡀⠀⡇⢀⡞⠀⠀⠀⠀⠀⠀⢻⡞⠀⠀⠀⠀⠠⠚⠉⠁⠧⠇⠈⠙⠲⠀│ │⠀⢧⡀⠀⢸⣸⠀⠀⡴⠃⠀⠀⠀⠹⡄⣇⠎⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠒⠒⠻⣖⠒⡗⢲⠞⠓⠒⠒⠒⠒⠒⢳⡟⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒│ │⠀⠀⠀⠸⡄⣇⡏⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢱⡿⠀⠀⠀⠀⠀⠀⠀⠀⠈⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -1.86122│⠀⠀⠀⠀⠘⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.486⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀4.514⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 4.77039│⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⡰⢹⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠏⡿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣿⡀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⡸⠁⢸⠈⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⡇⢳⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠞⡇⠳⡀⠀⠀⠀⠀│ │⠀⠀⠀⢠⠇⠀⢸⠀⠘⡄⠀⠀⠀⠀⠀⠀⠀⣠⠇⠀⡇⠸⣄⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⡇⠀⠹⡀⠀⠀⠀│ │⠀⠀⡠⠋⠀⢰⠚⡆⠀⠙⢆⠀⠀⠀⠀⢠⠞⠁⠀⡤⢧⠀⠈⠳⡄⠀⠀⠀⠀⡔⠉⠀⢠⠧⡄⠀⠉⢢⠀⠀│ │⠀⡞⠁⠀⠀⢸⣀⡇⠀⠀⠈⢳⠀⠀⢠⠋⠀⠀⠀⡇⢸⠀⠀⠀⠙⡄⠀⠀⢀⠇⠀⠀⢸⠀⡇⠀⠀⢸⡀⠀│ │⠀⠙⡄⠀⠀⢸⠀⡇⠀⠀⢠⠎⠀⠀⠸⣄⠀⠀⠀⡏⢹⠀⠀⠀⣠⠇⠀⠀⡏⠀⠀⠀⢸⠉⡇⠀⠀⠀⢹⠀│ │⠀⠀⠳⡀⠀⠘⢲⠃⠀⢀⠜⠀⠀⠀⠀⠘⢦⠀⠀⠓⡞⠀⠀⡴⠃⠀⠀⠀⠙⢆⠀⠀⠸⡤⠇⠀⠀⡰⠋⠀│ │⠒⠒⠒⠚⡖⠒⢺⠒⢲⠓⠒⠒⠒⠒⠒⠒⠚⢳⠒⠒⡗⠒⡞⠓⠒⠒⠒⠒⠒⠒⠛⣖⠒⡗⠒⣲⠛⠒⠒⠒│ │⠀⠀⠀⠀⠱⣄⢸⢠⠞⠀⠀⠀⠀⠀⠀⠀⠀⠈⢧⠀⡇⡼⠁⠀⠀⠀⠀⠀⠀⠀⠀⠘⡄⡇⢰⠃⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠘⣼⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢇⡿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⣇⠏⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀│ -2.20176│⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.516⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3.484⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Chain 1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 5.71189│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠠⚬⠀⠀⠀⠀⠀⠀⠀⠀⢰⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⡇⠀⠀⠀⠀⠀⠀⠀⢀⢿⢱⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⡞⢸⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢠⚬⠀⠀⠀⠀⠀⠀⠀⢀⡎⣿⡀⠀⠀⠀⠀⠀⡼⠁⣸⡀⠈⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⣸⣧⠀⠀⠀⠀⠀⠀⢀⠎⠀⡇⠹⡄⠀⠀⠀⡼⠁⠀⡇⡇⠀⠈⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⢰⠃⡏⣆⠀⠀⠀⠀⢀⡞⠀⢀⣇⠀⢳⡀⠀⠐⣇⠀⠀⡏⡇⠀⠀⣸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⡏⠀⡇⠸⡄⠀⠀⠀⢸⠀⠀⢸⢸⠀⠀⡇⠀⠀⠸⡄⠀⢧⠇⠀⢰⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⢀⡜⠀⢰⢳⠀⠱⡄⠀⠀⡏⠀⠀⢸⢹⠀⠀⢹⡄⠀⠀⠙⣄⢸⠀⣰⠃⠀⠀⠀⠙⠻⢭⡏⣯⠽⠛⠋⠀│ │⠀⡏⠀⠀⢸⢼⠀⠀⢘⠆⠀⠳⡀⠀⠘⡞⠀⢀⠞⠀⠀⠀⠀⠘⣾⣰⠃⠀⠀⠀⢀⡤⠖⠚⣇⡏⠓⠢⢤⠀│ │⠀⢹⡀⠀⢸⢸⠀⠀⡎⠀⠀⠀⠙⣆⠀⡇⣠⠋⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⣀⣀⣱⣄⣈⣏⣀⣞⣁⣀⣀⣀⣀⣈⣆⣷⣃⣀⣀⣀⣀⣀⣀⣀⚬⣇⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀│ │⠀⠀⠀⢣⠀⡇⣸⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⚬⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢳⡿⠁⠀⠀⠀⠀⠀⠀⠀⠘⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -2.22918│⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.486⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀4.514⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 4.72844│⠀⠀⠀⠀⠀⠀⣶⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⡸⠉⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠏⠹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⢿⡀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⡸⠁⠀⠈⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⡎⠀⠀⢱⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠞⠀⠳⡄⠀⠀⠀⠀│ │⠀⠀⠀⢠⠇⠀⠀⠀⠘⡄⠀⠀⠀⠀⠀⠀⠀⣠⠇⠀⠀⠸⣄⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⠀⠀⠹⡀⠀⠀⠀│ │⠀⠀⡠⠋⠀⠀⠀⠀⠀⠙⢆⠀⠀⠀⠀⢠⠞⠁⠀⠀⠀⠀⠈⠳⡄⠀⠀⠀⠀⡔⠁⠀⠀⠀⠀⠀⠈⢢⠀⠀│ │⠀⡞⠁⠀⠀⠀⠀⠀⠀⠀⠈⢳⠀⠀⢠⠋⠀⠀⠀⠀⠀⠀⠀⠀⠙⡄⠀⠀⢀⠇⠀⠀⠀⠀⠀⠀⠀⢸⡀⠀│ │⠀⠙⡄⠀⠀⠀⠀⠀⠀⠀⢠⠎⠀⠀⠸⣄⠀⠀⠀⠀⠀⠀⠀⠀⣠⠇⠀⠀⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⠀│ │⠀⠀⠳⡀⠀⠀⠀⠀⠀⢀⠜⠀⠀⠀⠀⠘⢆⠀⠀⠀⠀⠀⠀⡰⠃⠀⠀⠀⠙⢄⠀⠀⠀⠀⠀⠀⠀⡠⠋⠀│ │⠒⠒⠒⠚⡖⠒⠒⠒⢲⠓⠒⠒⠒⠒⠒⠒⠚⢳⠒⠒⠒⠒⡞⠓⠒⠒⠒⠒⠒⠒⠳⣖⠒⠒⠒⣲⠚⠒⠒⠒│ │⠀⠀⠀⠀⠱⡄⠀⢀⠞⠀⠀⠀⠀⠀⠀⠀⠀⠈⢧⠀⠀⡼⠁⠀⠀⠀⠀⠀⠀⠀⠀⠸⡄⠀⢠⠃⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠸⣤⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢇⡸⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⣀⡏⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢿⠀⠀⠀⠀⠀⠀│ -2.15981│⠀⠀⠀⠀⠀⠀⠻⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.516⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3.484⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 4.77039│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠗⚬⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠴⠋⠀⡇⠙⠦⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠔⠉⠀⠀⠀⠀⡇⠀⠀⠀⠉⠢⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⠴⠊⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠑⠦⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⡠⠤⠒⠒⠉⠁⠀⠀⠀⠀⠀⠀⠀⢠⠤⠤⠧⠤⡄⠀⠀⠀⠀⠀⠀⠀⠈⠉⠒⠒⠤⢄⠀⠀⠀⠀│ │⠀⡠⠖⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠲⢄⠀│ │⠀⠣⣄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠉⠉⠉⠉⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣠⠜⠀│ │⠀⠀⠀⠉⠓⠤⢄⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠒⠒⡖⠒⠃⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⡠⠤⠚⠉⠀⠀⠀│ │⠒⠒⠒⠒⠒⠒⠒⠒⠚⠛⠒⢶⡒⠒⠒⠒⠒⠒⠒⠒⡗⠒⠒⠒⠒⠒⠒⢒⡶⠒⠛⠓⠒⠒⠒⠒⠒⠒⠒⠒│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠓⠦⣄⡀⠀⠀⠀⡇⠀⠀⢀⣠⠴⠚⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠲⣄⠀⡇⣠⠖⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠨⢧⚬⠅⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -2.20176│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.576⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀1.424⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 4.77039│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠗⚬⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠴⠋⠀⡇⠙⠦⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠔⠉⠀⠀⠀⠀⡇⠀⠀⠀⠉⠢⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⠴⠊⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠑⠦⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⡠⠤⠒⠒⠉⠁⠀⠀⠀⠀⠀⠀⠀⢠⠤⠤⠧⠤⡄⠀⠀⠀⠀⠀⠀⠀⠈⠉⠒⠒⠤⢄⠀⠀⠀⠀│ │⠀⡠⠖⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠲⢄⠀│ │⠀⠣⣄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠉⠉⠉⠉⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣠⠜⠀│ │⠀⠀⠀⠉⠓⠤⢄⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠒⠒⡖⠒⠃⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⡠⠤⠚⠉⠀⠀⠀│ │⠒⠒⠒⠒⠒⠒⠒⠒⠚⠛⠒⢶⡒⠒⠒⠒⠒⠒⠒⠒⡗⠒⠒⠒⠒⠒⠒⢒⡶⠒⠛⠓⠒⠒⠒⠒⠒⠒⠒⠒│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠓⠦⣄⡀⠀⠀⠀⡇⠀⠀⢀⣠⠴⠚⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠲⣄⠀⡇⣠⠖⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠨⢧⚬⠅⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -2.20176│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.576⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀1.424⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 5.66907│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠋⚬⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠁⠀⡇⠈⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⠤⠚⠁⠀⠀⠀⡇⠀⠀⠈⠓⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⢀⣀⠤⠒⠉⠁⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠈⠉⠒⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⡠⠖⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠤⠤⠧⠤⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠲⢄⠀⠀⠀⠀│ │⠀⢀⡠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠳⢄⡀⠀│ │⠀⣏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠉⠉⠉⠉⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣹⠀│ │⠀⠀⠉⠲⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⠤⠤⡤⠤⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⠤⠖⠉⠀⠀│ │⠀⠀⠀⠀⠀⠀⠈⠉⠒⠢⢄⣀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⣀⡠⠴⠒⠉⠁⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠓⠢⢄⡀⠀⠀⠀⡇⠀⠀⢀⡠⠔⠚⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠛⠓⢖⠒⡗⡲⠚⠛⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⡦⢷⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -1.13707│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.576⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀1.424⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 6.55969│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡜⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⠉⡏⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠴⠊⠀⠀⡇⠀⠑⠦⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡤⠋⠁⠀⠀⠀⠀⡇⠀⠀⠀⠈⠙⢤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⢀⣀⠤⠒⠊⠁⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠈⠑⠒⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⣠⠤⠒⠒⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠒⠒⠓⠒⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠑⠒⠤⣄⠀⠀│ │⠀⡞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣀⣀⣀⣀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢳⠀│ │⠀⠉⠒⠤⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠤⠒⠉⠀│ │⠀⠀⠀⠀⠀⠑⠢⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠉⡏⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⣀⠤⠔⠊⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠙⠢⣄⡀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⢀⣠⠔⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠑⠢⢄⡀⠀⠀⡇⠀⢀⡠⠔⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⠀⡇⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠠⣧⚬⠄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -0.392045│⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠙⚬⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉│ └────────────────────────────────────────┘ ⠀0.576⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀1.424⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_4⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 2.03│⠀⠀⢤⡤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⢴⠶⠶⠶⠶⡦⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⢤⡤⠀⠀│ │⠀⠀⠀⠈⠑⠒⠢⠤⣀⣀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⣀⣀⠤⠔⠒⠉⠁⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠉⠒⠢⠤⣀⡀⢸⠀⠀⠀⠀⡇⠀⣀⠤⠔⠒⠋⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⢺⢄⠀⠀⡠⡗⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢳⡞⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢸⡇⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢸⡇⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢸⡇⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢸⡇⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢸⡇⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⡼⢧⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⢼⠊⠀⠀⠑⡧⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣀⠤⠤⠒⠊⠁⠀⢸⠀⠀⠀⠀⡇⠀⠉⠑⠒⠤⠤⣀⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⢀⣀⠤⠔⠒⠉⠉⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠉⠉⠒⠢⠤⢄⡀⠀⠀│ 0.97│⠀⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⠤⠤⠤⠤⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠀│ └────────────────────────────────────────┘ ⠀0.576⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀1.424⠀ plot() with violinplot seriestype ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 4.77039│⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⡰⢹⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠏⡿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣿⡀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⡸⠁⢸⠈⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⡇⢳⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠞⡇⠳⡀⠀⠀⠀⠀│ │⠀⠀⠀⢠⠇⠀⢸⠀⠘⡄⠀⠀⠀⠀⠀⠀⠀⣠⠇⠀⡇⠸⣄⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⡇⠀⠹⡀⠀⠀⠀│ │⠀⠀⡠⠋⠀⢰⠚⡆⠀⠙⢆⠀⠀⠀⠀⢠⠞⠁⠀⡤⢧⠀⠈⠳⡄⠀⠀⠀⠀⡔⠉⠀⢠⠧⡄⠀⠉⢢⠀⠀│ │⠀⡞⠁⠀⠀⢸⣀⡇⠀⠀⠈⢳⠀⠀⢠⠋⠀⠀⠀⡇⢸⠀⠀⠀⠙⡄⠀⠀⢀⠇⠀⠀⢸⠀⡇⠀⠀⢸⡀⠀│ │⠀⠙⡄⠀⠀⢸⠀⡇⠀⠀⢠⠎⠀⠀⠸⣄⠀⠀⠀⡏⢹⠀⠀⠀⣠⠇⠀⠀⡏⠀⠀⠀⢸⠉⡇⠀⠀⠀⢹⠀│ │⠀⠀⠳⡀⠀⠘⢲⠃⠀⢀⠜⠀⠀⠀⠀⠘⢦⠀⠀⠓⡞⠀⠀⡴⠃⠀⠀⠀⠙⢆⠀⠀⠸⡤⠇⠀⠀⡰⠋⠀│ │⠒⠒⠒⠚⡖⠒⢺⠒⢲⠓⠒⠒⠒⠒⠒⠒⠚⢳⠒⠒⡗⠒⡞⠓⠒⠒⠒⠒⠒⠒⠛⣖⠒⡗⠒⣲⠛⠒⠒⠒│ │⠀⠀⠀⠀⠱⣄⢸⢠⠞⠀⠀⠀⠀⠀⠀⠀⠀⠈⢧⠀⡇⡼⠁⠀⠀⠀⠀⠀⠀⠀⠀⠘⡄⡇⢰⠃⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠘⣼⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢇⡿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⣇⠏⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀│ -2.20176│⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.516⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3.484⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 5.66907│⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣾⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢰⢻⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡏⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡏⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⣠⠃⢸⠘⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⡸⠁⡏⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠋⡇⠹⣄⠀⠀⠀⠀│ │⠀⠀⠀⣸⠁⠀⢸⠀⠈⢇⠀⠀⠀⠀⠀⠀⢀⡜⠁⠀⡇⠈⢣⡀⠀⠀⠀⠀⠀⣀⠜⠁⠀⡇⠀⠈⠢⡀⠀⠀│ │⠀⠀⡴⠃⠀⢠⠼⡄⠀⠈⢦⠀⠀⠀⠀⢀⡞⠀⠀⡤⢧⠀⠀⢳⡀⠀⠀⠀⢸⠁⠀⠀⢰⠓⡆⠀⠀⠈⡆⠀│ │⠀⠀⡇⠀⠀⢸⠀⡇⠀⠀⢸⠀⠀⠀⢠⠎⠀⠀⠀⡇⢸⠀⠀⠀⠱⡄⠀⠀⡞⠀⠀⠀⢸⣀⡇⠀⠀⠀⢳⠀│ │⠀⡜⠁⠀⠀⢸⠒⡇⠀⠀⠀⢣⠀⠀⢸⡀⠀⠀⠀⡏⢹⠀⠀⠀⢀⡇⠀⠀⣇⠀⠀⠀⢸⠀⡇⠀⠀⠀⡸⠀│ │⠀⠳⡀⠀⠀⢸⣀⡇⠀⠀⢀⠜⠀⠀⠀⢳⡀⠀⠀⠓⡞⠀⠀⢀⡞⠀⠀⠀⠈⢦⡀⠀⠘⡖⠃⠀⢀⡴⠁⠀│ │⠀⠀⠙⢆⠀⠀⢸⠀⠀⡠⠋⠀⠀⠀⠀⠀⠙⢦⠀⠀⡇⠀⡴⠋⠀⠀⠀⠀⠀⠀⠳⡄⠀⡇⠀⢠⠎⠀⠀⠀│ │⠀⠀⠀⠀⢣⡀⢸⢀⡜⠁⠀⠀⠀⠀⠀⠀⠀⠀⢳⡀⣇⡞⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣆⡇⣰⠃⠀⠀⠀⠀│ │⠒⠒⠒⠒⠒⢻⣺⡟⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⢳⡟⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠺⣷⠗⠒⠒⠒⠒⠒│ │⠀⠀⠀⠀⠀⠀⣿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀│ -1.13707│⠀⠀⠀⠀⠀⠀⠛⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.516⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3.484⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 6.55969│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢀⢶⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⡿⡄⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⡼⢸⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡎⣷⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⡇⢣⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⡸⠀⢸⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⢀⡎⠀⡇⢱⡀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠁⡇⠘⡆⠀⠀⠀⠀│ │⠀⠀⠀⡰⠃⠀⢸⠀⠘⢆⠀⠀⠀⠀⠀⠀⣠⠞⠀⠀⡇⠀⠳⣄⠀⠀⠀⠀⠀⢀⡴⠃⠀⡇⠀⠙⢦⡀⠀⠀│ │⠀⠀⡼⠁⠀⢰⠚⡆⠀⠈⢧⠀⠀⠀⢀⡞⠁⠀⠀⡖⢳⠀⠀⠈⢳⡀⠀⠀⡴⠋⠀⠀⢰⠓⡆⠀⠀⠙⢦⠀│ │⠀⡞⠁⠀⠀⢸⣀⡇⠀⠀⠈⢳⠀⠀⢸⠀⠀⠀⠀⣇⣸⠀⠀⠀⠀⡇⠀⠀⣇⠀⠀⠀⢸⠤⡇⠀⠀⠀⡸⠀│ │⠀⠳⡄⠀⠀⢸⠀⡇⠀⠀⢠⠞⠀⠀⠘⣆⠀⠀⠀⡇⢸⠀⠀⠀⣰⠃⠀⠀⠘⡆⠀⠀⢸⠀⡇⠀⠀⢰⠃⠀│ │⠀⠀⠱⡀⠀⠘⢲⠃⠀⢀⡞⠀⠀⠀⠀⠈⠧⡀⠀⠉⡏⠀⢀⠼⠁⠀⠀⠀⠀⠳⡀⠀⠘⡖⠃⠀⢠⠞⠀⠀│ │⠀⠀⠀⠙⣆⠀⢸⠀⣠⠋⠀⠀⠀⠀⠀⠀⠀⠸⡄⠀⡇⢠⠇⠀⠀⠀⠀⠀⠀⠀⠹⣄⠀⡇⠀⣠⠇⠀⠀⠀│ │⠀⠀⠀⠀⠈⢦⢸⡴⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⢧⠀⡇⡼⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢣⡇⡜⠁⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠈⣿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢧⡿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣿⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠿⠀⠀⠀⠀⠀⠀│ -0.392045│⠉⠉⠉⠉⠉⠉⚬⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠙⚬⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉│ └────────────────────────────────────────┘ ⠀0.516⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3.484⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_4⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 2.03│⠀⢤⠤⠤⠤⢴⠶⡦⠤⠤⠤⡤⠀⠀⠀⣤⠤⠤⠤⡶⢶⠤⠤⠤⣤⠀⠀⠀⡤⠤⠤⠤⢴⠶⡦⠤⠤⠤⢤⠀│ │⠀⠈⠣⣄⠀⢸⠀⡇⠀⣀⠔⠁⠀⠀⠀⠈⠢⡀⠀⡇⢸⠀⢀⠔⠁⠀⠀⠀⠘⠦⡀⠀⢸⠀⡇⠀⢀⠔⠁⠀│ │⠀⠀⠀⠈⠳⣼⠀⣇⠞⠁⠀⠀⠀⠀⠀⠀⠀⠈⢦⡇⢸⡴⠁⠀⠀⠀⠀⠀⠀⠀⠈⠢⣸⠀⣇⠔⠁⠀⠀⠀│ │⠀⠀⠀⠀⠀⢹⣤⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣧⣼⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⣠⡏⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢸⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣿⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢸⢹⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡏⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢸⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢸⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡧⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢸⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢸⣸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣇⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢸⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣿⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⣸⠋⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡟⢻⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠙⣇⠀⠀⠀⠀⠀│ │⠀⠀⠀⢀⠔⢹⠀⡏⠢⡀⠀⠀⠀⠀⠀⠀⠀⡠⠊⡇⢸⠑⢄⠀⠀⠀⠀⠀⠀⠀⢀⠔⢹⠀⡏⠢⡀⠀⠀⠀│ │⠀⢀⠔⠁⠀⢸⠀⡇⠀⠈⠲⡄⠀⠀⠀⡴⠊⠀⠀⡇⢸⠀⠀⠑⢦⠀⠀⠀⢠⠖⠁⠀⢸⠀⡇⠀⠈⠢⡀⠀│ 0.97│⠀⠃⠀⠀⠀⠸⠤⠇⠀⠀⠀⠘⠀⠀⠘⠀⠀⠀⠀⠧⠼⠀⠀⠀⠀⠃⠀⠀⠃⠀⠀⠀⠸⠤⠇⠀⠀⠀⠘⠀│ └────────────────────────────────────────┘ ⠀0.516⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3.484⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 4.77039│⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⡰⢹⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠏⡿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣿⡀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⡸⠁⢸⠈⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⡇⢳⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠞⡇⠳⡀⠀⠀⠀⠀│ │⠀⠀⠀⢠⠇⠀⢸⠀⠘⡄⠀⠀⠀⠀⠀⠀⠀⣠⠇⠀⡇⠸⣄⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⡇⠀⠹⡀⠀⠀⠀│ │⠀⠀⡠⠋⠀⢰⠚⡆⠀⠙⢆⠀⠀⠀⠀⢠⠞⠁⠀⡤⢧⠀⠈⠳⡄⠀⠀⠀⠀⡔⠉⠀⢠⠧⡄⠀⠉⢢⠀⠀│ │⠀⡞⠁⠀⠀⢸⣀⡇⠀⠀⠈⢳⠀⠀⢠⠋⠀⠀⠀⡇⢸⠀⠀⠀⠙⡄⠀⠀⢀⠇⠀⠀⢸⠀⡇⠀⠀⢸⡀⠀│ │⠀⠙⡄⠀⠀⢸⠀⡇⠀⠀⢠⠎⠀⠀⠸⣄⠀⠀⠀⡏⢹⠀⠀⠀⣠⠇⠀⠀⡏⠀⠀⠀⢸⠉⡇⠀⠀⠀⢹⠀│ │⠀⠀⠳⡀⠀⠘⢲⠃⠀⢀⠜⠀⠀⠀⠀⠘⢦⠀⠀⠓⡞⠀⠀⡴⠃⠀⠀⠀⠙⢆⠀⠀⠸⡤⠇⠀⠀⡰⠋⠀│ │⠒⠒⠒⠚⡖⠒⢺⠒⢲⠓⠒⠒⠒⠒⠒⠒⠚⢳⠒⠒⡗⠒⡞⠓⠒⠒⠒⠒⠒⠒⠛⣖⠒⡗⠒⣲⠛⠒⠒⠒│ │⠀⠀⠀⠀⠱⣄⢸⢠⠞⠀⠀⠀⠀⠀⠀⠀⠀⠈⢧⠀⡇⡼⠁⠀⠀⠀⠀⠀⠀⠀⠀⠘⡄⡇⢰⠃⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠘⣼⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢇⡿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⣇⠏⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀│ -2.20176│⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.516⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3.484⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 4.72844│⠀⠀⠀⠀⠀⠀⣶⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⡸⠉⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠏⠹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⢿⡀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⡸⠁⠀⠈⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⡎⠀⠀⢱⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠞⠀⠳⡄⠀⠀⠀⠀│ │⠀⠀⠀⢠⠇⠀⠀⠀⠘⡄⠀⠀⠀⠀⠀⠀⠀⣠⠇⠀⠀⠸⣄⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⠀⠀⠹⡀⠀⠀⠀│ │⠀⠀⡠⠋⠀⠀⠀⠀⠀⠙⢆⠀⠀⠀⠀⢠⠞⠁⠀⠀⠀⠀⠈⠳⡄⠀⠀⠀⠀⡔⠁⠀⠀⠀⠀⠀⠈⢢⠀⠀│ │⠀⡞⠁⠀⠀⠀⠀⠀⠀⠀⠈⢳⠀⠀⢠⠋⠀⠀⠀⠀⠀⠀⠀⠀⠙⡄⠀⠀⢀⠇⠀⠀⠀⠀⠀⠀⠀⢸⡀⠀│ │⠀⠙⡄⠀⠀⠀⠀⠀⠀⠀⢠⠎⠀⠀⠸⣄⠀⠀⠀⠀⠀⠀⠀⠀⣠⠇⠀⠀⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⠀│ │⠀⠀⠳⡀⠀⠀⠀⠀⠀⢀⠜⠀⠀⠀⠀⠘⢆⠀⠀⠀⠀⠀⠀⡰⠃⠀⠀⠀⠙⢄⠀⠀⠀⠀⠀⠀⠀⡠⠋⠀│ │⠒⠒⠒⠚⡖⠒⠒⠒⢲⠓⠒⠒⠒⠒⠒⠒⠚⢳⠒⠒⠒⠒⡞⠓⠒⠒⠒⠒⠒⠒⠳⣖⠒⠒⠒⣲⠚⠒⠒⠒│ │⠀⠀⠀⠀⠱⡄⠀⢀⠞⠀⠀⠀⠀⠀⠀⠀⠀⠈⢧⠀⠀⡼⠁⠀⠀⠀⠀⠀⠀⠀⠀⠸⡄⠀⢠⠃⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠸⣤⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢇⡸⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⣀⡏⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢿⠀⠀⠀⠀⠀⠀│ -2.15981│⠀⠀⠀⠀⠀⠀⠻⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.516⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3.484⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 4.77039│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠗⚬⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠴⠋⠀⡇⠙⠦⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠔⠉⠀⠀⠀⠀⡇⠀⠀⠀⠉⠢⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⠴⠊⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠑⠦⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⡠⠤⠒⠒⠉⠁⠀⠀⠀⠀⠀⠀⠀⢠⠤⠤⠧⠤⡄⠀⠀⠀⠀⠀⠀⠀⠈⠉⠒⠒⠤⢄⠀⠀⠀⠀│ │⠀⡠⠖⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠲⢄⠀│ │⠀⠣⣄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠉⠉⠉⠉⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣠⠜⠀│ │⠀⠀⠀⠉⠓⠤⢄⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠒⠒⡖⠒⠃⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⡠⠤⠚⠉⠀⠀⠀│ │⠒⠒⠒⠒⠒⠒⠒⠒⠚⠛⠒⢶⡒⠒⠒⠒⠒⠒⠒⠒⡗⠒⠒⠒⠒⠒⠒⢒⡶⠒⠛⠓⠒⠒⠒⠒⠒⠒⠒⠒│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠓⠦⣄⡀⠀⠀⠀⡇⠀⠀⢀⣠⠴⠚⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠲⣄⠀⡇⣠⠖⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠨⢧⚬⠅⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -2.20176│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.576⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀1.424⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 5.66907│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠋⚬⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠁⠀⡇⠈⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⠤⠚⠁⠀⠀⠀⡇⠀⠀⠈⠓⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⢀⣀⠤⠒⠉⠁⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠈⠉⠒⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⡠⠖⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠤⠤⠧⠤⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠲⢄⠀⠀⠀⠀│ │⠀⢀⡠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠳⢄⡀⠀│ │⠀⣏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠉⠉⠉⠉⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣹⠀│ │⠀⠀⠉⠲⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⠤⠤⡤⠤⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⠤⠖⠉⠀⠀│ │⠀⠀⠀⠀⠀⠀⠈⠉⠒⠢⢄⣀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⣀⡠⠴⠒⠉⠁⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠓⠢⢄⡀⠀⠀⠀⡇⠀⠀⢀⡠⠔⠚⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠛⠓⢖⠒⡗⡲⠚⠛⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⡦⢷⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -1.13707│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.576⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀1.424⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 6.55969│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡜⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⠉⡏⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠴⠊⠀⠀⡇⠀⠑⠦⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡤⠋⠁⠀⠀⠀⠀⡇⠀⠀⠀⠈⠙⢤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⢀⣀⠤⠒⠊⠁⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠈⠑⠒⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⣠⠤⠒⠒⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠒⠒⠓⠒⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠑⠒⠤⣄⠀⠀│ │⠀⡞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣀⣀⣀⣀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢳⠀│ │⠀⠉⠒⠤⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠤⠒⠉⠀│ │⠀⠀⠀⠀⠀⠑⠢⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠉⡏⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⣀⠤⠔⠊⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠙⠢⣄⡀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⢀⣠⠔⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠑⠢⢄⡀⠀⠀⡇⠀⢀⡠⠔⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⠀⡇⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠠⣧⚬⠄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -0.392045│⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠙⚬⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉│ └────────────────────────────────────────┘ ⠀0.576⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀1.424⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_4⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 2.03│⠀⠀⢤⡤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⢴⠶⠶⠶⠶⡦⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⢤⡤⠀⠀│ │⠀⠀⠀⠈⠑⠒⠢⠤⣀⣀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⣀⣀⠤⠔⠒⠉⠁⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠉⠒⠢⠤⣀⡀⢸⠀⠀⠀⠀⡇⠀⣀⠤⠔⠒⠋⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⢺⢄⠀⠀⡠⡗⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢳⡞⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢸⡇⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢸⡇⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢸⡇⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢸⡇⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢸⡇⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⡼⢧⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⢼⠊⠀⠀⠑⡧⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣀⠤⠤⠒⠊⠁⠀⢸⠀⠀⠀⠀⡇⠀⠉⠑⠒⠤⠤⣀⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⢀⣀⠤⠔⠒⠉⠉⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠉⠉⠒⠢⠤⢄⡀⠀⠀│ 0.97│⠀⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⠤⠤⠤⠤⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠀│ └────────────────────────────────────────┘ ⠀0.576⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀1.424⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 4.77039│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 0.430407│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⢀⡤⣤⢶⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⡜⢰⢫⢫⠈⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⢀⡄⢰⠀⠀⠀⠀⠀⡆⢰⠀⠀⢠⠀⠀⣾⠀⢀⡆⠀⠀⠀⠀⠀⢸⠀⢸⠀⢠⡇⡆⠀⠀⠀⡄⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢰⢁⢧⠃⠀⠣⣜⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⢰⣼⣷⣿⠀⡇⣰⢠⢠⣧⣸⠀⡀⣸⡆⠀⣿⢰⢸⣿⠀⠀⠀⢀⡀⢸⢀⢸⡆⢸⣿⡇⠀⠀⢰⣇⢸⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⡇⡾⠃⠀⠀⠀⠀⢹⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⢸⣿⣿⣿⣾⣿⣿⣾⣾⣿⣿⣀⣷⣿⣧⡇⣿⢸⣸⣿⣸⣤⣇⣾⣧⣸⣿⢸⣇⣾⣿⣿⠀⡇⢸⣿⣾⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢸⡼⠁⠀⠀⠀⠀⠀⠀⢿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣧⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣆⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣷⠃⠀⠀⠀⠀⠀⠀⠀⠘⣧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Sample value│⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ Density│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣷⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⢹⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⣻⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⡻⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠣⣣⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠒⣿⣿⣿⣿⣿⣿⡟⣿⣿⣿⣿⢺⣿⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⣿⣿⣿⣿⣿⡟⣿⣿⣿⠒│ │⠀⠀⠀⠀⠀⠀⠀⠀⢠⡟⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⢳⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⠇⡿⢿⠏⠇⡿⢸⠀⢿⠘⢹⢸⡿⡏⣿⡟⣿⠏⣿⡿⡿⠈⡏⣿⣿⣿⡇⣿⣿⢻⢿⣿⡇⢿⣿⡿⠀│ │⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⡄⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡿⠿⠀⡇⢸⠀⠀⠃⠘⠀⠸⠀⠀⠘⠇⠃⢸⡇⠀⠀⠉⠁⠇⠀⠇⢹⠁⡟⠀⣿⡏⢸⢸⣿⡇⢸⣿⠁⠀│ │⠀⠀⠀⠀⠀⠀⣠⠏⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣄⠱⡄⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠁⠸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⢸⠀⠁⠀⣿⡇⠀⠘⠀⠃⢸⠙⠀⠀│ │⠀⠀⠀⢀⣠⡾⠋⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠦⣝⣦⡀⠀⠀⠀⠀⠀⠀│ -2.20176│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠋⠃⠀⠀⠀⠀⠀⠀⠀⠀│ -0.00938728│⠤⠶⠶⠿⠯⠤⠤⠤⠤⠤⠤⠤⢼⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠬⠽⠶⠦⠤⠤⠤│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-13.97⠀⠀⠀⠀⠀⠀⠀⠀⠀Iteration⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀514.97⠀ ⠀-2.16608⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀4.73471⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 5.66907│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 0.430876│⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⢢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⢀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡄⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⣠⢇⠖⠛⢷⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⣷⠀⢀⡄⠀⡇⣷⠀⢸⠀⣧⣀⠀⠀⠀⠀⠀⠀⠀⡀⠀⠀⠀⢀⠀⠀⠀⡄⡄⣀⢸⡇⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⣰⢏⠎⠱⡀⠀⠹⡒⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡆⡀⣿⡄⢸⣇⡀⡇⣿⠀⢸⡄⣿⣿⡇⢀⠀⣶⠀⠀⢸⣇⠀⢀⡆⢸⠀⠀⣤⣿⡇⣿⢸⡇⡇⡀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⢰⢏⠎⠀⠀⠑⣄⠀⢱⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣷⣿⣧⣿⡇⢸⣿⣷⡇⣿⠀⣼⡇⣿⣿⡇⣼⡄⣿⣷⢸⣸⣿⡇⣿⡇⣸⣧⡄⣿⣿⣧⣿⣼⡇⡇⣧⢰⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⢀⡟⡜⠀⠀⠀⠀⠀⠉⠪⣆⠘⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣧⣿⣿⣿⣧⣿⣿⣿⡇⣿⣿⣷⣿⣧⣿⣿⣼⣿⣿⣷⣿⣧⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣾⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⣼⣹⠀⠀⠀⠀⠀⠀⠀⠀⠙⣦⢹⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡇⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⢰⣏⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢯⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Sample value│⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ Density│⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⢀⢷⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣾⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⣎⡟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⡜⡼⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠹⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡿⣿⣿⣿⣿⢿⣿⣿⢹⣿⣿⣿⣿⣿⡿⣿⣿⣿⡿⣿⣿⣿⣿⣿⣿⡏⣿⣿⣿⣿⢿⢹⡿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⡰⡱⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢻⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⣿⣿⢻⠙⢸⣿⣿⠸⣿⣿⡿⣿⣿⡇⢿⢹⣿⠁⢻⡟⠹⢹⣿⣿⡇⠃⡟⡏⡿⠀⢸⡇⢿⢸⢹⢿⢻⠀│ │⠀⠀⠀⠀⠀⠀⢸⢠⡳⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢻⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠒⡗⠟⠗⠚⠒⠚⣿⣿⠒⡗⡗⡗⣿⣿⡗⠚⠒⡟⠒⠚⡗⠒⠚⠒⠚⠗⠒⠒⠒⠓⠒⢺⡗⠺⢺⢺⢺⠚⠒│ │⠀⠀⠀⠀⠀⠀⣸⣷⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⡟⢹⠀⠃⠃⡇⠀⡟⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠈⠈⠀⠀│ │⠀⠀⠀⣀⣤⣾⣿⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠙⠦⣄⡀⠀⠀⠀⠀⠀│ -1.13707│⠀⡇⠀⠀⠀⠀⠀⠁⠸⠀⠀⠀⠃⠀⠁⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠀⠀⠀⠀⠀⠀⠀│ -0.00977269│⠤⠾⠿⠿⠭⠥⢼⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠬⠽⠿⠦⠤⠤⠤│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-13.97⠀⠀⠀⠀⠀⠀⠀⠀⠀Iteration⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀514.97⠀ ⠀-1.1268⠀⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀5.63376⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 6.55969│⠀⡇⠀⠀⠀⠀⠀⠀⢰⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 0.414692│⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⢦⣤⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⠀⢸⣄⡆⠀⠀⠀⠀⠀⠀⡀⠀⠀⢠⠀⠀⠀⠀⡄⢀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⡠⠋⢫⢣⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⢰⡆⠀⠀⠀⣾⣿⡇⠀⠀⡀⢰⢀⢀⡇⡇⠀⢸⠀⠀⢠⡀⡇⣸⡆⣤⡀⠀⠀⢀⢀⠀⠀⠀⠀⢠⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⡜⠀⠀⠀⢣⢻⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⢸⢸⣿⣀⢠⡀⣿⣿⣿⠀⠀⣷⢸⣾⣼⣧⣇⢸⣾⡀⡆⢸⣧⡇⣿⡇⣿⣇⢠⡄⣾⢸⠀⣠⡄⠀⣼⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣼⠋⠀⠀⠀⠀⠘⡄⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣼⣿⣿⢸⡇⣿⣿⣿⣾⣶⣿⣿⣿⣿⣿⣿⣸⣿⣷⡇⣼⣿⣇⣿⣷⣿⣿⢸⣷⣿⣿⢰⣿⣷⣴⣿⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣼⠇⠀⠀⠀⠀⠀⠀⠘⡼⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣾⣿⣿⣿⣼⣿⣿⣿⣿⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⡹⠀⠀⠀⠀⠀⠀⠀⠀⠸⣧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⢧⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Sample value│⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ Density│⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⢀⠎⡜⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡜⡸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢧⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⣸⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣗⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⡿⣿⣿⣿⡇⣿⣿⣿⣿⡏⡇⢹⣿⣿⣿⣿⡏⣿⣿⣿⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢿⣿⣿⣿⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⢀⢼⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⢾⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⢻⠏⠀⢻⣿⣿⠃⣿⡟⣿⡿⠃⠇⠸⠟⡿⡇⢿⠁⣿⠻⠁⢸⠛⢿⠁⡇⢻⣿⢻⣿⣿⢹⢸⣿⡟⣿⠀│ │⠀⠀⡇⠀⠀⠀⠀⢠⢊⡟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢻⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⢸⠘⡟⠀⢻⠁⠉⡇⠀⠀⠀⠀⠇⠃⢸⠀⣿⠀⠀⠘⠀⠸⠀⠀⢸⡏⢸⢸⢻⠈⢸⡟⡇⠉⠀│ │⠀⠀⡇⠀⠀⠀⢠⢃⡾⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢫⣷⣄⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠸⠀⠁⠀⠸⠀⠀⠇⠀⠀⠀⠀⠀⠀⠀⠀⠸⠀⠀⠀⠀⠀⠀⠀⠸⡇⠘⢸⠀⠀⠘⠃⡇⠀⠀│ │⠀⠀⡇⢀⣀⣠⡷⠛⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⠛⢷⣤⢄⡀⠀⠀⠀│ -0.392045│⠉⡏⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠏⠉⠙⠉⠉⠉⠉⠉⠉⠉│ -0.00790231│⠤⠶⡯⠿⠯⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠭⠭⠶⠦⠤│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-13.97⠀⠀⠀⠀⠀⠀⠀⠀⠀Iteration⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀514.97⠀ ⠀-0.372442⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀6.54008⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_4⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_4⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 2.03│⠀⣷⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⠀│ 268│⠀⠀⡯⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡏⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⢻⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⢹⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ Sample value│⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ Frequency│⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ 0.97│⠀⡿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠀│ 0│⠀⠀⣇⣸⚬⣀⚬⣀⚬⚬⣀⚬⣀⚬⚬⣀⚬⣀⚬⚬⣀⚬⣀⚬⣀⚬⚬⣀⚬⣀⚬⚬⣀⚬⣀⚬⣇⣸⠀⠀│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-13.97⠀⠀⠀⠀⠀⠀⠀⠀⠀Iteration⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀514.97⠀ ⠀0.93511⠀⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀2.11489⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 4.77039│⠀⡇⠀⠀⠀⠀⢰⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 0.419162│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡴⠲⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⢸⠀⠀⠀⠀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⡜⠀⠀⠈⢦⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⢰⠀⢸⢰⠀⠀⠀⣷⠀⠀⢠⡆⠀⠀⠀⢰⠀⠀⢸⠀⠀⠀⠀⡀⠀⢰⠀⡄⠀⠀⠀⢸⢠⠀⡄⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⡜⠀⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣇⠀⣷⣼⢀⣾⢸⡇⡀⡀⣿⠀⣾⣾⡇⣦⡀⢰⢸⠀⠀⣸⠀⡇⢠⡇⣿⢀⢸⢀⡇⣰⠀⠀⢸⢸⠀⡇⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⡸⠀⠀⠀⠀⠀⠀⠀⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣸⣿⢸⣿⣷⣧⣿⡇⣿⣿⣿⣿⣷⣿⣾⣸⣴⣿⢰⡇⣾⣿⣿⣾⣾⣼⡇⣿⡆⣆⢸⣿⡄⣧⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢠⠃⠀⠀⠀⠀⠀⠀⠀⠸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡇⣿⣿⣿⣿⣿⣿⣿⣿⡇⣿⣾⣿⣷⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡜⠀⠀⠀⠀⠀⠀⠀⠀⠀⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Sample value│⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ Density│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⢾⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠊⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠃⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠒⣿⣿⢺⣿⣿⣿⣿⢿⣿⣿⣿⣿⣿⣿⣿⢿⢻⣿⣿⣿⣿⣿⣿⣿⢻⣿⢿⣿⢻⣿⣿⣿⣿⢿⣿⡗⣿⣿⠒│ │⠀⠀⠀⠀⠀⠀⠀⠀⢠⠃⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡿⠟⠸⢿⠁⢿⢻⠈⣿⢿⡿⠹⣿⣿⠏⢸⢸⢻⣿⢻⢿⣿⢹⣿⢸⣿⢸⢿⠀⢻⣿⡿⢻⢸⣿⡇⢿⡿⠀│ │⠀⠀⠀⠀⠀⠀⠀⢠⠃⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠸⠀⢸⠈⠀⠏⢸⡇⠀⡇⢻⠀⠘⠀⠘⡇⠈⠘⠁⠈⣿⢸⠹⢸⠘⠀⠘⠏⠀⠸⢸⡇⠁⢸⡇⠀│ │⠀⠀⠀⠀⠀⠀⣠⠃⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⢸⠀⠀⠀⢸⡇⠀⠃⠈⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⢸⠀⠸⠀⠀⠀⠀⠀⠀⢸⠁⠀⠘⠁⠀│ │⠀⠀⠀⠀⣀⠔⠁⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠳⢤⣀⠀⠀⠀⠀⠀⠀│ -2.20176│⠀⡇⠀⠀⠀⠀⠸⠀⠀⠀⠘⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -0.0112109│⠤⠶⠶⠯⠥⠤⠤⠤⠤⠤⠤⠤⢼⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠭⠷⠦⠤⠤⠤│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-43.97⠀⠀⠀⠀⠀⠀⠀⠀⠀Iteration⠀⠀⠀⠀⠀⠀⠀⠀⠀1544.97⠀ ⠀-2.15981⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀4.72844⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 5.66907│⠀⡇⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 0.408394│⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⡰⠲⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡄⠀⠀⠀⠀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⡜⠀⠀⠈⢦⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡆⡄⡇⢠⠀⠀⠀⠀⡀⡄⡇⠀⢸⢀⡇⠀⡇⠀⠀⠀⠀⠀⣄⡇⠀⠀⠀⡆⡇⠀⠀⢀⠀⠀⢀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⡸⠀⠀⠀⠀⠀⠑⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣇⡇⣧⡇⢸⠀⡆⠀⢀⣧⡇⣇⠀⣸⣾⡇⢠⡇⣰⢸⣀⣶⠀⣿⡇⣴⣧⢀⡇⡇⡇⠀⢸⠀⠀⣼⢸⡀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⢰⠁⠀⠀⠀⠀⠀⠀⠀⢱⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⡇⣿⡇⢸⢠⣷⣿⣸⣿⣧⣿⢠⣿⣿⡇⣼⡇⣿⣿⣿⣿⣄⣿⡇⣿⣿⢸⣧⣧⣇⣤⢸⣿⡄⣿⣼⡇⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⢀⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣧⢸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡇⣿⣷⣿⣿⣿⣿⣿⣿⡇⣿⣿⣸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⡜⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⢠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Sample value│⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ Density│⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢱⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⣸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢻⣿⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⢠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⢿⣿⣿⡏⣿⢻⣿⡏⣿⣿⢻⣿⣿⣿⡟⣿⡇⣿⣿⣿⢿⣿⣿⣿⣿⣿⡿⡏⣿⡿⣿⢸⣿⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⢀⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⡿⢿⣿⠘⢻⠿⠇⣿⢸⣿⡇⢹⢹⢸⣿⢸⡏⡇⣿⠃⡿⡇⣿⢸⡏⢹⣿⣿⢿⡇⠇⢹⠃⢸⠘⢹⠀│ │⠀⠀⠀⠀⠀⠀⢸⢀⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠒⡗⠛⡗⢺⣿⠒⢺⠒⠒⠒⢺⢿⡗⠒⢺⢺⠒⠒⡗⠓⠓⠒⠓⡗⣿⠺⠗⢺⢺⣿⠚⠓⠒⠺⠒⢺⠒⠚⠒│ │⠀⠀⠀⠀⠀⠀⢸⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⡇⢸⢸⠀⠀⠀⠀⠀⠀⠀⠁⠀⠘⠘⠀⠀⡇⠀⠀⠀⠀⠀⠈⠀⠀⢸⠘⠘⠀⠀⠀⠀⠀⢸⠀⠀⠀│ │⠀⠀⠀⠀⣠⠴⢻⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⠢⢄⡀⠀⠀⠀⠀⠀│ -1.13707│⠀⡇⠀⠁⠘⠈⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠸⠀⠀⠀⠀⠀⠀⠀⠘⠀⠀⠀│ -0.0104675│⠤⠶⠯⠭⠤⠤⢼⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠭⠷⠦⠤⠤⠤│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-43.97⠀⠀⠀⠀⠀⠀⠀⠀⠀Iteration⠀⠀⠀⠀⠀⠀⠀⠀⠀1544.97⠀ ⠀-1.10587⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀5.63787⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 6.55969│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 0.413161│⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡴⠢⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣷⠀⠀⡀⡄⢠⡀⠀⠀⠀⠀⠀⠀⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡜⠀⠀⠈⠱⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⢰⠀⠀⡀⠀⢀⠀⡄⢀⠀⢠⢰⠀⣿⠀⢀⡇⡇⣼⡇⡀⠀⠀⡄⠀⢰⡇⣰⠀⡇⠀⢠⠀⠀⡀⠀⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠁⠀⠀⠀⠀⢳⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡇⢸⡇⠀⡇⠀⢸⡄⡇⣼⢠⣸⢸⣠⣿⠀⣾⣇⡇⣿⡇⡇⡆⠀⣿⢀⢸⡇⣿⣾⣿⡆⢸⢀⡄⣇⠀⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡴⠁⠀⠀⠀⠀⠀⠈⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣧⡇⣼⣷⢰⣷⣾⣾⡇⣧⣿⣿⣿⣼⣿⣿⣆⣿⣿⣿⣿⣷⣿⣇⢠⣿⢸⢸⣿⣿⣿⣿⣧⣸⣾⣧⣿⡄⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡸⠀⠀⠀⠀⠀⠀⠀⠀⢱⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣼⣿⣿⣿⣧⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣾⣿⣼⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣧⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Sample value│⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ Density│⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⡸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡜⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⡼⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⡟⣿⡏⢻⣿⣿⡇⣿⣿⢹⣿⡿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡟⣿⣿⣿⢹⡿⣿⣿⣿⡟⣿⢿⣿⣿⣿⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⢰⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⢸⠃⣿⠇⠘⣿⡇⠃⣿⢸⢸⣿⠃⣿⡟⡟⠿⣿⡿⢹⠇⡟⠁⣿⡟⠁⢸⡇⠁⢿⣿⡇⢻⠘⢸⣿⡇⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⢠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⢸⠀⢹⠀⠀⠏⡇⠀⠘⢸⢸⡇⠀⢸⠃⠁⠀⠃⠇⠘⠀⡇⠀⠈⠁⠀⠘⡇⠀⠸⡟⡇⠸⠀⢸⡏⠃⠀│ │⠀⠀⡇⠀⠀⠀⠀⡠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⢄⡀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠸⠀⠸⠀⠀⠀⠇⠀⠀⢸⠘⡇⠀⠈⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠇⠀⠀⠀⠀⠀⠀⠘⠀⠀⠀│ │⠀⠀⡇⠀⣀⡠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠲⢄⡀⠀⠀⠀⠀│ -0.392045│⠉⡏⠉⠉⠉⠉⠉⠉⠉⠉⠉⠙⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠏⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉│ -0.0103763│⠤⠶⡷⠭⠥⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠬⠶⠦⠤⠤│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-43.97⠀⠀⠀⠀⠀⠀⠀⠀⠀Iteration⠀⠀⠀⠀⠀⠀⠀⠀⠀1544.97⠀ ⠀-0.356535⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀6.52418⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_4⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_4⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 2.03│⠀⣷⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⠀│ 775│⠀⠀⡏⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⣀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ Sample value│⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ Frequency│⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ 0.97│⠀⡿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠀│ 0│⠀⠀⣇⣸⚬⣀⚬⣀⚬⚬⣀⚬⣀⚬⚬⣀⚬⣀⚬⚬⣀⚬⣀⚬⣀⚬⚬⣀⚬⣀⚬⚬⣀⚬⣀⚬⣇⣸⠀⠀│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-43.97⠀⠀⠀⠀⠀⠀⠀⠀⠀Iteration⠀⠀⠀⠀⠀⠀⠀⠀⠀1544.97⠀ ⠀0.93511⠀⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀2.11489⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 0.430407│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⢀⡤⣤⢶⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 1.03259│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⡜⢰⢫⢫⠈⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢰⢁⢧⠃⠀⠣⣜⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⡇⡾⠃⠀⠀⠀⠀⢹⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢸⡼⠁⠀⠀⠀⠀⠀⠀⢿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣷⠃⠀⠀⠀⠀⠀⠀⠀⠘⣧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Density│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣷⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Autocorrelation│⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⢹⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⣻⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⡻⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠣⣣⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢠⡟⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⢳⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⡄⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣠⠏⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣄⠱⡄⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡇⠀⠀⢀⠜⡄⡠⠻⣠⣀⡀⡠⡀⠀⣤⠀⠀⠀⢀⠀⠀⠀⡰⢄⢠⠚⡄⠀⠀⡰⢲⢦⡔⠒⡆⠀⡜⠀│ │⠀⠀⠀⢀⣠⡾⠋⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠦⣝⣦⡀⠀⠀⠀⠀⠀⠀│ │⠒⡗⣷⣲⣖⡺⠖⢳⢓⢶⢿⠞⠻⡶⣷⡺⠛⣷⡶⢶⠚⢻⣷⣲⣓⣲⡳⢖⠞⠶⡶⠷⠓⠚⡗⡻⠚⣾⠞⠒│ -0.00938728│⠤⠶⠶⠿⠯⠤⠤⠤⠤⠤⠤⠤⢼⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠬⠽⠶⠦⠤⠤⠤│ -0.118903│⠀⡇⠘⠁⠀⠈⠢⠊⠉⠉⠀⠀⠀⠑⠁⠀⠀⠈⠉⠁⠑⠁⠀⠈⠒⠁⠀⠀⠀⠀⠀⠀⠀⠀⠈⠀⠀⠁⠀⠀│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-2.16608⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀4.73471⠀ ⠀-0.81⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Lag⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀27.81⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 0.430876│⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⢢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 1.03303│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⣠⢇⠖⠛⢷⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⣰⢏⠎⠱⡀⠀⠹⡒⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⢰⢏⠎⠀⠀⠑⣄⠀⢱⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⢀⡟⡜⠀⠀⠀⠀⠀⠉⠪⣆⠘⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⣼⣹⠀⠀⠀⠀⠀⠀⠀⠀⠙⣦⢹⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⢰⣏⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢯⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Density│⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⢀⢷⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣾⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Autocorrelation│⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⣎⡟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡿⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⡜⡼⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠹⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⡰⡱⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢻⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⢠⡳⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢻⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣸⣷⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⣇⢀⠀⠀⠀⢀⡤⣤⠀⠀⡤⣀⣀⡄⠀⢠⣀⠀⠀⠀⢀⡀⣀⣠⣳⣀⠀⡀⠀⢀⡀⠀⡠⣤⡆⠀⣀⠀│ │⠀⠀⠀⣀⣤⣾⣿⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠙⠦⣄⡀⠀⠀⠀⠀⠀│ │⠒⡗⢻⠛⠛⠻⣟⠿⠞⠚⢷⡾⠾⠶⠛⠻⣶⠛⠻⣛⠟⢟⡷⠛⢖⡞⠲⣳⢿⡾⠶⣷⣾⠟⣖⠟⠿⣿⡞⠒│ -0.00977269│⠤⠾⠿⠿⠭⠥⢼⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠬⠽⠿⠦⠤⠤⠤│ -0.134064│⠀⡇⠀⠑⠢⠜⠈⠀⠀⠀⠈⠀⠀⠀⠀⠀⠈⠀⠀⠀⠀⠀⠁⠀⠈⠀⠀⠈⠁⠀⠀⠀⠀⠀⠈⠀⠀⠋⠀⠀│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-1.1268⠀⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀5.63376⠀ ⠀-0.81⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Lag⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀27.81⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 0.414692│⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⢦⣤⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 1.03299│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⡠⠋⢫⢣⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⡜⠀⠀⠀⢣⢻⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣼⠋⠀⠀⠀⠀⠘⡄⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣼⠇⠀⠀⠀⠀⠀⠀⠘⡼⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⡹⠀⠀⠀⠀⠀⠀⠀⠀⠸⣧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⢧⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Density│⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⢀⠎⡜⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Autocorrelation│⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡜⡸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢧⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡏⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⣸⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣗⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⢀⢼⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⢾⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⠀⠀⠀⠀⢠⢊⡟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢻⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⠀⠀⠀⢠⢃⡾⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢫⣷⣄⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⣇⠔⡄⣀⡠⡀⠀⠀⢀⠤⢢⠀⠀⡀⠀⠀⠀⣀⣀⠤⠒⠢⣀⠀⠀⢀⣀⢄⡦⡀⠀⠀⣠⣀⡀⠀⠀⠀│ │⠀⠀⡇⢀⣀⣠⡷⠛⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⠛⢷⣤⢄⡀⠀⠀⠀│ │⠒⡗⠚⠛⠻⣞⣛⣛⢿⡖⡻⢶⣒⣗⠺⠞⢲⡚⡶⡷⠾⠓⠒⡷⢞⢷⠒⢳⠓⠓⠛⠳⢶⢾⠛⠛⢞⣒⠖⠒│ -0.00790231│⠤⠶⡯⠿⠯⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠭⠭⠶⠦⠤│ -0.13258│⠀⡇⠀⠀⠀⠁⠀⠀⠀⠈⠀⠀⠋⠀⠑⠔⠁⠈⠀⠀⠀⠀⠀⠀⠀⠀⠋⠁⠀⠀⠀⠀⠀⠁⠀⠀⠀⠁⠀⠀│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-0.372442⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀6.54008⠀ ⠀-0.81⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Lag⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀27.81⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_4⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_4⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 268│⠀⠀⡯⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 1.03281│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡏⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⢻⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⢹⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Frequency│⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ Autocorrelation│⠀⣿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⡿⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⡇⣿⢤⣠⠳⡀⠀⣠⣒⡲⡤⢄⠜⡄⠀⢀⣠⣰⣽⡤⡀⠀⠀⡠⠤⢄⠀⢠⢢⣀⣠⡊⠑⡴⡀⠀⣀⡀⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠒⡗⢻⠺⠻⡒⠾⠛⡗⠛⠲⡚⠚⢖⡷⡲⡷⣶⠟⠒⠓⠚⢳⣖⡷⢖⢻⠻⠛⠳⡻⠛⠳⡲⠛⠓⠾⠲⡓⠒│ 0│⠀⠀⣇⣸⚬⣀⚬⣀⚬⚬⣀⚬⣀⚬⚬⣀⚬⣀⚬⚬⣀⚬⣀⚬⣀⚬⚬⣀⚬⣀⚬⚬⣀⚬⣀⚬⣇⣸⠀⠀│ -0.126566│⠀⡇⠀⠀⠀⠉⠑⠉⠀⠀⠀⠘⠤⠒⠁⠁⠈⠀⠀⠀⠀⠀⠀⠋⠀⠀⠁⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀0.93511⠀⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀2.11489⠀ ⠀-0.81⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Lag⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀27.81⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Chain 1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Chain 1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 5.71189│⠀⡇⠀⠀⠀⠀⠀⠀⢰⠀⡆⠀⠀⠀⠀⠀⢀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⣠⠀⠀⠀⢀⠀⠀⠀⠀⠀⢠⠀│ 1.62413│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⢸⠀⠀⠀⢸⡄⣿⠀⠀⠀⠀⠀⣼⡄⠀⠀⠀⠀⠀⢸⣧⠀⠀⠀⣿⠀⠀⡄⢸⠀⢀⢠⡄⠀⣼⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⡇⠀⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⢰⢸⢀⠀⣇⣼⣷⣿⡀⡇⠀⣷⣦⣿⡇⣾⡀⣧⢰⢀⣼⣿⣧⠀⢰⣿⠀⢰⣿⣿⡇⢸⣿⣷⢸⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⠀⢰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣇⡇⣿⣼⢸⢰⣿⣿⣿⣿⣧⣇⡄⣿⣿⣿⡇⣿⣧⣿⣸⣼⣿⣿⣿⡆⣸⣿⠀⣿⣿⣿⣧⢸⣿⣿⣾⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣇⣿⣿⣿⣇⣿⣿⣿⣿⣿⣿⣿⣿⣧⣿⣿⣧⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣏⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Sample value│⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ Density│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⠀⡜⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢹⣿⣿⢿⣿⣿⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⣀⣿⣿⣿⣟⣿⣿⣿⣻⣿⣏⣿⣿⣻⣟⣿⣸⣿⣿⣸⣿⣿⣸⣿⣿⣿⣿⣸⣿⣿⣿⣿⣿⣿⣹⣿⣿⣿⣿⣀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢀⡇⠀⠀⡇⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠻⡇⡇⡟⠇⡇⢸⠁⠃⣿⣿⠘⡇⢹⠈⣿⣿⠀⠘⡟⠈⠟⠻⡟⡇⢸⢸⡇⣿⡿⠏⡿⠘⡏⡟⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢀⣠⠔⠚⣁⡿⠻⢍⡗⢤⣤⣴⡊⠁⠉⠓⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠁⠀⠀⠀⠃⠀⠀⠀⢸⠃⠀⠁⠀⠀⢻⡇⠀⠀⠃⠀⠀⠀⡇⠃⠈⠀⠀⣿⡇⠀⠀⠀⠁⠁⢿⠃⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⡷⠋⠀⣠⠖⠁⢇⠀⣸⠕⠯⣀⡀⠈⠑⠦⣄⠀⠉⠳⢄⡀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⠀⠀⠀⠀⠸⠀⠀│ │⠀⠀⠀⠀⠀⠀⢀⡴⠚⠉⠀⣇⡤⠊⠁⠀⢀⣼⠚⢹⠀⠀⠀⠉⠑⠦⣀⠀⠙⠦⣄⠀⠈⠑⠲⢄⡀⠀⠀⠀│ -2.22918│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠏⠃⠀⠀⠀⠀⠀⠀⠀⠀│ -0.0453546│⠤⠤⠤⠴⠶⠾⠵⠶⠶⠶⠽⡷⠶⠶⠶⠮⠭⠬⠦⠯⠤⠤⠤⠤⠤⠤⠤⠭⠶⠶⠶⠭⠵⠶⠶⠶⠬⠭⠶⠤│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-13.97⠀⠀⠀⠀⠀⠀⠀⠀⠀Iteration⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀514.97⠀ ⠀-2.19426⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀5.70209⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Chain 2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Chain 2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 6.60471│⠀⡇⠀⠀⠀⠀⠀⠀⢰⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 1.6971│⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⢰⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⠀⣸⢠⡇⠀⠀⠀⠀⠀⠀⡄⠀⠀⢰⠀⠀⠀⠀⡆⢠⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⢸⡇⠀⠀⠀⣿⢸⡇⠀⠀⠀⠀⣰⢠⡇⠀⠀⢸⠀⠀⢸⠀⡇⢸⡇⠀⡆⠀⠀⡀⠀⠀⡀⠀⠀⢸⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠘⡄⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⣸⡇⢰⢸⡇⣿⣾⣇⡄⠀⠀⡆⣿⣼⡇⣴⠀⢸⡇⡆⢸⣄⡇⢸⣧⡄⡇⢰⡀⣷⣆⠀⡇⠀⡀⢸⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⡇⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣷⣇⣿⣷⣸⣸⣇⣿⣿⣿⡇⠀⣇⡇⣿⣿⣇⣿⢰⣼⣇⣿⣿⣿⣧⣾⣿⡇⡇⣼⣷⣿⣿⣤⡇⢸⣿⣼⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⡇⠀⠀⢠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣾⣿⣧⣿⣿⣿⣿⣼⣿⣿⣿⣿⣿⣿⣿⣿⣿⣧⣿⣿⣿⣿⣿⣷⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Sample value│⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ Density│⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⢸⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⢿⣿⣿⣿⡟⡟⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡟⣿⣿⣿⣿⣿⣿⣿⣿⡇⣿⡿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⢀⢸⠀⠀⣎⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠤⣿⣿⢿⣿⡿⣿⢼⠥⣿⣿⠧⠥⣿⢽⢿⣿⢼⡧⣿⡿⣿⣿⣿⠽⣿⡧⣿⣿⡯⣿⢿⣿⣿⡯⠧⢽⠤⡿⠤│ │⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢀⡤⠊⠉⢹⠷⢮⡏⠉⢓⣦⡒⠉⠉⠓⠦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⡟⠈⡿⠇⠙⠘⠀⢸⠃⠀⠀⢻⠘⠸⡟⢸⡇⡟⠃⢹⣿⠟⠀⡇⠃⣿⠉⠃⠀⢸⢻⢹⡇⠀⢸⠀⡇⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⣸⠔⠉⠀⢀⠔⢹⠀⠀⣗⣴⠋⠀⠈⠳⢤⡀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠃⠀⡇⠀⠀⠀⠀⠘⠀⠀⠀⠀⠀⠀⠁⠸⠃⠀⠀⠈⠁⠀⠀⠁⠀⠁⠀⠀⠀⠈⢸⢸⡇⠀⢸⠀⠁⠀│ │⠀⠀⠀⠀⢀⡠⠖⠋⢸⠀⣠⠔⠋⣀⡬⡖⢚⠏⠈⠑⠒⠤⢤⡀⠉⠢⣄⡀⠉⠒⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀│ -1.938│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠀⠀⠸⠀⠀⠀│ -0.0475492│⠤⠶⠶⠮⠭⠤⠶⠶⢾⠯⠴⠶⠯⠥⠤⠷⠾⠤⠤⠤⠤⠤⠤⠬⠽⠶⠶⠬⠭⠷⠶⠾⠯⠶⠶⠶⠶⠦⠤⠤│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-13.97⠀⠀⠀⠀⠀⠀⠀⠀⠀Iteration⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀514.97⠀ ⠀-1.89955⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀6.58456⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Chain 3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Chain 3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 6.06323│⠀⡇⠀⠀⠀⠀⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 1.57932│⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢲⠀⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⢀⠀⠀⠀⠀⠀⣾⡇⣀⠀⠀⡄⢸⠀⠀⡄⡇⢀⡀⠀⡀⠀⠀⠀⣴⠀⠀⠀⠀⠀⠀⢠⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣧⣼⠀⠀⡄⠀⠀⣿⡇⣿⢀⢰⣿⣼⢸⠀⣷⡇⢸⡇⡄⡇⠀⠀⠀⣿⢀⠀⢰⢸⣄⠀⢸⠀⣦⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⠀⣆⡇⠀⣤⣿⡇⣿⢸⣸⣿⣿⣾⡆⣿⡇⣾⣿⣿⡇⡇⣷⢰⣿⣸⠀⣸⣸⣿⢸⣿⣠⣿⡆⣧⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣼⣿⣿⣷⣿⣿⣇⣿⣾⣿⣿⣿⣿⣇⣿⣧⣿⣿⣿⣧⣧⣿⣾⣿⣿⣦⣿⣿⣿⣿⣿⣿⣿⣇⣿⡇⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠈⡆⠀⠀⢠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Sample value│⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ Density│⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⡟⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡏⣿⣿⣿⣿⢻⣿⣿⡿⡿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⣀⣀⡀⢣⠀⠀⣜⣀⡀⠀⠀⠀⢀⣀⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠒⣿⣿⡟⠿⣿⡗⡿⣿⠓⢻⣿⢻⡗⣿⣿⡟⡗⣿⣿⣿⢻⣿⣿⠟⢿⢿⡗⣿⣿⣿⠒⢺⢺⢻⡗⡗⣿⢻⠒│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⡠⠊⠁⠀⠈⢻⡶⠺⣏⠀⣉⡽⠖⠺⣍⠀⠈⠳⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⠀⠀⢿⠇⠇⣿⠀⠀⠁⠘⠀⢸⡿⠁⠀⡇⢹⠇⠀⠟⡿⠀⠀⢸⠇⣿⡇⣿⠀⢸⠸⢸⡇⠃⡿⠸⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⣠⡟⠁⠀⠀⢀⠔⢻⠀⢀⡿⠻⣅⠀⠀⠀⠈⠢⡀⠀⠈⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡏⠻⠀⠀⢸⠀⠀⠛⠀⠀⠀⠀⠀⠘⠇⠀⠀⠁⠈⠀⠀⠀⠃⠀⠀⢸⠀⡟⠀⠁⠀⠈⠀⠸⡇⠀⡇⠀⠀│ │⠀⠀⠀⠀⢀⡠⠔⠊⠁⡇⣀⡤⠚⠁⠀⣸⡜⢁⠇⠀⠀⠙⠢⣀⠀⠀⠉⠢⣄⡀⠈⠓⠦⢤⣀⡀⠀⠀⠀⠀│ -1.86122│⠀⡇⠀⠀⠀⠘⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⠀⠁⠀⠀⠀⠀⠀⠀⠃⠀⠁⠀⠀│ -0.044031│⠤⠶⠶⠯⠥⠤⠶⠶⠾⡯⠵⠶⠶⠶⠭⠥⠷⠼⠤⠤⠤⠤⠤⠬⠭⠶⠶⠶⠶⠭⠭⠷⠶⠦⠤⠬⠭⠶⠶⠤│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-13.97⠀⠀⠀⠀⠀⠀⠀⠀⠀Iteration⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀514.97⠀ ⠀-1.849⠀⠀⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀6.02805⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 5.66907│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 1 │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⢀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡄⠀⠀⠀⠀│Chain 2 │⠀⡇⠀⠀⣷⠀⢀⡄⠀⡇⣷⠀⢸⠀⣧⣀⠀⠀⠀⠀⠀⠀⠀⡀⠀⠀⠀⢀⠀⠀⠀⡄⡄⣀⢸⡇⠀⠀⠀⠀│Chain 3 │⠀⡇⡆⡀⣿⡄⢸⣇⡀⡇⣿⠀⢸⡄⣿⣿⡇⢀⠀⣶⠀⠀⢸⣇⠀⢀⡆⢸⠀⠀⣤⣿⡇⣿⢸⡇⡇⡀⠀⠀│ │⠀⣷⣿⣧⣿⡇⢸⣿⣷⡇⣿⠀⣼⡇⣿⣿⡇⣼⡄⣿⣷⢸⣸⣿⡇⣿⡇⣸⣧⡄⣿⣿⣧⣿⣼⡇⡇⣧⢰⠀│ │⠀⣿⣿⣿⣿⣧⣿⣿⣿⣧⣿⣿⣿⡇⣿⣿⣷⣿⣧⣿⣿⣼⣿⣿⣷⣿⣧⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣾⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡇⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ Sample value│⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⡿⣿⣿⣿⣿⢿⣿⣿⢹⣿⣿⣿⣿⣿⡿⣿⣿⣿⡿⣿⣿⣿⣿⣿⣿⡏⣿⣿⣿⣿⢿⢹⡿⣿⣿⣿⣿⣿⠀│ │⠀⡇⣿⣿⢻⠙⢸⣿⣿⠸⣿⣿⡿⣿⣿⡇⢿⢹⣿⠁⢻⡟⠹⢹⣿⣿⡇⠃⡟⡏⡿⠀⢸⡇⢿⢸⢹⢿⢻⠀│ │⠒⡗⠟⠗⠚⠒⠚⣿⣿⠒⡗⡗⡗⣿⣿⡗⠚⠒⡟⠒⠚⡗⠒⠚⠒⠚⠗⠒⠒⠒⠓⠒⢺⡗⠺⢺⢺⢺⠚⠒│ │⠀⡇⠀⠀⠀⠀⠀⡟⢹⠀⠃⠃⡇⠀⡟⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠈⠈⠀⠀│ -1.13707│⠀⡇⠀⠀⠀⠀⠀⠁⠸⠀⠀⠀⠃⠀⠁⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-13.97⠀⠀⠀⠀⠀⠀⠀⠀⠀Iteration⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀514.97⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Chain 2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 6.60471│⠀⡇⠀⠀⠀⠀⠀⠀⢰⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│param_1 │⠀⡇⠀⠀⠀⠀⠀⠀⣸⢠⡇⠀⠀⠀⠀⠀⠀⡄⠀⠀⢰⠀⠀⠀⠀⡆⢠⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│param_2 │⠀⡇⠀⢸⡇⠀⠀⠀⣿⢸⡇⠀⠀⠀⠀⣰⢠⡇⠀⠀⢸⠀⠀⢸⠀⡇⢸⡇⠀⡆⠀⠀⡀⠀⠀⡀⠀⠀⢸⠀│param_3 │⠀⡇⠀⣸⡇⢰⢸⡇⣿⣾⣇⡄⠀⠀⡆⣿⣼⡇⣴⠀⢸⡇⡆⢸⣄⡇⢸⣧⡄⡇⢰⡀⣷⣆⠀⡇⠀⡀⢸⠀│param_4 │⠀⣷⣇⣿⣷⣸⣸⣇⣿⣿⣿⡇⠀⣇⡇⣿⣿⣇⣿⢰⣼⣇⣿⣿⣿⣧⣾⣿⡇⡇⣼⣷⣿⣿⣤⡇⢸⣿⣼⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣾⣿⣧⣿⣿⣿⣿⣼⣿⣿⣿⣿⣿⣿⣿⣿⣿⣧⣿⣿⣿⣿⣿⣷⣿⣿⣿⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ Sample value│⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⣿⣿⣿⣿⣿⣿⢿⣿⣿⣿⡟⡟⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡟⣿⣿⣿⣿⣿⣿⣿⣿⡇⣿⡿⣿⠀│ │⠤⣿⣿⢿⣿⡿⣿⢼⠥⣿⣿⠧⠥⣿⢽⢿⣿⢼⡧⣿⡿⣿⣿⣿⠽⣿⡧⣿⣿⡯⣿⢿⣿⣿⡯⠧⢽⠤⡿⠤│ │⠀⣿⡟⠈⡿⠇⠙⠘⠀⢸⠃⠀⠀⢻⠘⠸⡟⢸⡇⡟⠃⢹⣿⠟⠀⡇⠃⣿⠉⠃⠀⢸⢻⢹⡇⠀⢸⠀⡇⠀│ │⠀⡇⠃⠀⡇⠀⠀⠀⠀⠘⠀⠀⠀⠀⠀⠀⠁⠸⠃⠀⠀⠈⠁⠀⠀⠁⠀⠁⠀⠀⠀⠈⢸⢸⡇⠀⢸⠀⠁⠀│ -1.938│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠀⠀⠸⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-13.97⠀⠀⠀⠀⠀⠀⠀⠀⠀Iteration⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀514.97⠀ energyplot ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Energy Plot⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 11.1822│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Marginal Energy │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Energy Transition │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Density│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -0.325694│⠤⠤⠤⠤⠤⠤⠶⠶⠾⠭⠭⠭⠭⠭⠭⠭⠭⠭⠭⢿⠽⠭⠭⠭⠭⠭⠭⠭⠭⠭⠽⠶⠶⠶⠤⠤⠤⠤⠤⠤│ └────────────────────────────────────────┘ ⠀-2.70819⠀⠀Standardized Energy⠀⠀⠀⠀2.73402⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Energy Plot⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 14.1333│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Marginal Energy │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Marginal Energy │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Energy Transition │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Energy Transition │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Density│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 0│⠀⠀⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⠀⠀│ └────────────────────────────────────────┘ ⠀-2.02248⠀⠀Standardized Energy⠀⠀⠀⠀2.02248⠀ 494.240555 seconds (76.80 M allocations: 4.370 GiB, 0.42% gc time, 28.41% compilation time: <1% of which was recompilation) Display Chains MCMC chain (10×3×1 Array{Float64, 3}): Iterations = 1:1:10 Number of chains = 1 Samples per chain = 10 parameters = param_1, param_2, param_3 Summary Statistics parameters mean std mcse ess_bulk ess_tail rhat ess_per_sec Symbol Float64 Float64 Float64 Float64 Float64 Float64 Missing param_1 0.6218 0.2894 0.0915 10.0000 10.0000 1.0093 missing param_2 0.4174 0.3279 0.1037 10.0000 10.0000 1.0246 missing param_3 0.4296 0.2980 0.0942 10.0000 10.0000 0.9661 missing Quantiles parameters 2.5% 25.0% 50.0% 75.0% 97.5% Symbol Float64 Float64 Float64 Float64 Float64 param_1 0.0971 0.4783 0.7094 0.7668 0.9686 param_2 0.0973 0.1155 0.3502 0.6813 0.9276 param_3 0.0937 0.1821 0.3872 0.6419 0.8855 12.546879 seconds (7.82 M allocations: 432.872 MiB, 1.09% gc time, 99.83% compilation time: 38% of which was recompilation) Diagnostics ┌ Warning: Section mapping does not contain all parameter names, [:param_2, :param_3, :param_4] assigned to :parameters. └ @ MCMCChains ~/.julia/packages/MCMCChains/IfVbJ/src/chains.jl:717 92.710424 seconds (46.94 M allocations: 2.771 GiB, 2.47% gc time, 99.18% compilation time: 2% of which was recompilation) Missing values 7.642775 seconds (4.68 M allocations: 268.532 MiB, 1.01% gc time, 98.00% compilation time) Sections 7.830940 seconds (3.37 M allocations: 206.149 MiB, 1.11% gc time, 98.10% compilation time: 1% of which was recompilation) Accessing parameters ┌ Warning: `MvNormal(μ::AbstractVector{<:Real}, σ::Real)` is deprecated, use `MvNormal(μ, σ ^ 2 * I)` instead. │ caller = ip:0x0 └ @ Core :-1 6.317649 seconds (1.94 M allocations: 109.106 MiB, 95.68% compilation time: <1% of which was recompilation) Serialization 3.393358 seconds (1.90 M allocations: 103.275 MiB, 2.41% gc time, 98.38% compilation time) Sampling 7.528495 seconds (3.31 M allocations: 184.782 MiB, 99.24% compilation time) Array 12.937778 seconds (6.63 M allocations: 375.350 MiB, 1.36% gc time, 98.18% compilation time: <1% of which was recompilation) Summary compact display: (2 x 8) verbose display: parameters mean std mcse ess_bulk ess_tail rhat ess_per_sec Symbol Float64 Float64 Float64 Float64 Float64 Float64 Missing a 0.4974 0.2900 0.0046 3959.0580 3694.7112 0.9995 missing b 0.4956 0.2925 0.0045 4150.2818 3771.8912 1.0002 missing 8.084903 seconds (2.39 M allocations: 147.673 MiB, 1.39% gc time, 97.68% compilation time) Model statistics 4.115832 seconds (1.99 M allocations: 108.928 MiB, 99.06% compilation time) Concatenation 10.156066 seconds (6.77 M allocations: 369.278 MiB, 2.01% gc time, 97.26% compilation time: <1% of which was recompilation) Rstar Precompiling packages... 16302.6 ms ✓ FLoops 14614.9 ms ✓ NNlib 10391.2 ms ✓ ScientificTypes 3255.2 ms ✓ NNlib → NNlibSpecialFunctionsExt 24882.3 ms ✓ MLUtils 9755.3 ms ✓ CategoricalDistributions 21872.5 ms ✓ StatisticalMeasuresBase 20588.0 ms ✓ MLJBase 8 dependencies successfully precompiled in 125 seconds. 139 already precompiled. Precompiling packages... 16523.1 ms ✓ CategoricalDistributions → UnivariateFiniteDisplayExt 1 dependency successfully precompiled in 19 seconds. 79 already precompiled. Precompiling packages... 3872.2 ms ✓ NNlib → NNlibFFTWExt 1 dependency successfully precompiled in 4 seconds. 58 already precompiled. 215.478125 seconds (52.05 M allocations: 2.986 GiB, 0.70% gc time, 28.49% compilation time: 21% of which was recompilation) ┌ Warning: Unable to determine HTML(edit_link = ...) from remote HEAD branch, defaulting to "master". │ Calling `git remote` failed with an exception. Set JULIA_DEBUG=Documenter to see the error. │ Unless this is due to a configuration error, the relevant variable should be set explicitly. └ @ Documenter ~/.julia/packages/Documenter/eoWm2/src/utilities/utilities.jl:665 Test Summary: | Pass Total Time MCMCChains | 36560 36560 22m42.1s Testing MCMCChains tests passed Testing completed after 1380.27s PkgEval succeeded after 1618.27s