Package evaluation to test RayTraceHeatTransfer on Julia 1.12.4 (0f21d93eaa*) started at 2026-01-26T21:06:40.979 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.12` Set-up completed after 7.62s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.12/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.12/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.12.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.12.1 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.12.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.15.0+0 [e37daf67] + LibGit2_jll v1.9.0+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.11.4 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [bea87d4a] + SuiteSparse_jll v7.8.3+2 [83775a58] + Zlib_jll v1.3.1+2 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.64.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.25s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling packages... 1284.4 ms ✓ Measurements 7363.3 ms ✓ StatsBase 10923.1 ms ✓ RayTraceHeatTransfer 3 dependencies successfully precompiled in 21 seconds. 57 already precompiled. Precompilation completed after 37.0s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_Z0t48n/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.16 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.12.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.12.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_Z0t48n/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.16 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.12.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.12.1 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.12.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.15.0+0 [e37daf67] LibGit2_jll v1.9.0+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.11.4 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [bea87d4a] SuiteSparse_jll v7.8.3+2 [83775a58] Zlib_jll v1.3.1+2 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.64.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:03:50 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 99%|████████████████████████████████▋| ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:06 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001271557613073087 Iteration 10: d = 1.333356322833961e-5 Iteration 20: d = 1.64702898562445e-7 Iteration 30: d = 2.4761258288728796e-9 Iteration 40: d = 4.0743178366237265e-11 Iteration 50: d = 7.012370350933474e-13 Iteration 60: d = 1.2339812598005267e-14 Converged after 65 iterations. d = 1.6093174875729516e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▋ | ETA: 0:00:02 Bin 1 progress: 76%|█████████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014641360909664865 Iteration 10: d = 1.5958178797170912e-5 Iteration 20: d = 2.13320839218149e-7 Iteration 30: d = 3.397748197707027e-9 Iteration 40: d = 5.7331398351529546e-11 Iteration 50: d = 9.929810321458405e-13 Iteration 60: d = 1.7434380903666946e-14 Converged after 66 iterations. d = 1.5330243768601504e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 74%|████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011677189962995154 Iteration 10: d = 9.008227235644246e-6 Iteration 20: d = 1.1518264045860522e-7 Iteration 30: d = 2.0075742748928318e-9 Iteration 40: d = 3.61905140177147e-11 Iteration 50: d = 6.540435763332063e-13 Iteration 60: d = 1.1835110397971657e-14 Converged after 65 iterations. d = 1.6020743721908655e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 75%|████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012594378530742297 Iteration 10: d = 1.2292265315423552e-5 Iteration 20: d = 1.6376481838481812e-7 Iteration 30: d = 2.6654068173547303e-9 Iteration 40: d = 4.553475240303974e-11 Iteration 50: d = 7.927703234105756e-13 Iteration 60: d = 1.3931374815977155e-14 Converged after 65 iterations. d = 1.843637073522958e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 75%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001323026692701008 Iteration 10: d = 1.2847253553557303e-5 Iteration 20: d = 1.542620177175202e-7 Iteration 30: d = 2.155098333548653e-9 Iteration 40: d = 3.200559714849688e-11 Iteration 50: d = 4.892062155368764e-13 Iteration 60: d = 7.60967570632809e-15 Converged after 63 iterations. d = 2.1866869938036642e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 77%|█████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00113126048462097 Iteration 10: d = 9.362222740620966e-6 Iteration 20: d = 1.088173110594547e-7 Iteration 30: d = 1.5291251220123098e-9 Iteration 40: d = 2.2814826186948377e-11 Iteration 50: d = 3.4698878820921526e-13 Iteration 60: d = 5.282609236101939e-15 Converged after 63 iterations. d = 1.472526208528568e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 74%|████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012051686082626065 Iteration 10: d = 8.153534022964863e-6 Iteration 20: d = 8.155385787491711e-8 Iteration 30: d = 1.207422349558094e-9 Iteration 40: d = 1.939276432639574e-11 Iteration 50: d = 3.112154402351611e-13 Iteration 60: d = 4.932847851544242e-15 Converged after 62 iterations. d = 2.177436061387914e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 77%|█████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011837505828155368 Iteration 10: d = 8.71096494570984e-6 Iteration 20: d = 8.882956307458276e-8 Iteration 30: d = 1.2456643999077619e-9 Iteration 40: d = 1.913857414650563e-11 Iteration 50: d = 3.000594072524303e-13 Iteration 60: d = 4.720676902290284e-15 Converged after 62 iterations. d = 2.0988183383159882e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 79%|██████████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001163888865267698 Iteration 10: d = 9.991457006400574e-6 Iteration 20: d = 1.1670182178965916e-7 Iteration 30: d = 1.7168320910574544e-9 Iteration 40: d = 2.666228354204786e-11 Iteration 50: d = 4.190004493573813e-13 Iteration 60: d = 6.603881518229062e-15 Converged after 63 iterations. d = 1.8649998726151857e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 77%|█████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012930752599249991 Iteration 10: d = 1.2850723107368013e-5 Iteration 20: d = 1.619912126629213e-7 Iteration 30: d = 2.43575253327333e-9 Iteration 40: d = 3.805734724955832e-11 Iteration 50: d = 5.986593301460954e-13 Iteration 60: d = 9.464868757578633e-15 Converged after 64 iterations. d = 1.822730425018435e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.005896247092824788 Iteration 10: d = 8.031366623483304e-5 Iteration 20: d = 9.55319210774194e-7 Iteration 30: d = 1.2089667690237902e-8 Iteration 40: d = 1.5580283771232353e-10 Iteration 50: d = 2.028479639975658e-12 Iteration 60: d = 2.664204357819555e-14 Converged after 66 iterations. d = 2.0397712760808295e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.003407019645466233 Iteration 10: d = 4.6731006709183824e-5 Iteration 20: d = 6.742594483008997e-7 Iteration 30: d = 1.0344904365122997e-8 Iteration 40: d = 1.6170059343892612e-10 Iteration 50: d = 2.547138180525002e-12 Iteration 60: d = 4.028891267738537e-14 Converged after 67 iterations. d = 2.1967914245135332e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002167684227863468 Iteration 10: d = 2.28277719825932e-5 Iteration 20: d = 3.269822397258964e-7 Iteration 30: d = 5.2121484148865014e-9 Iteration 40: d = 8.471858022388231e-11 Iteration 50: d = 1.382516931608964e-12 Iteration 60: d = 2.263373613384425e-14 Converged after 66 iterations. d = 1.9307893183848243e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0020343805644399003 Iteration 10: d = 2.0864053144971475e-5 Iteration 20: d = 2.98068374222986e-7 Iteration 30: d = 4.972686573228247e-9 Iteration 40: d = 8.740085286105742e-11 Iteration 50: d = 1.5650167284667003e-12 Iteration 60: d = 2.820178548512342e-14 Converged after 67 iterations. d = 1.7134069092805947e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 77%|█████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001323026692701008 Iteration 10: d = 1.2847253553557303e-5 Iteration 20: d = 1.542620177175202e-7 Iteration 30: d = 2.155098333548653e-9 Iteration 40: d = 3.200559714849688e-11 Iteration 50: d = 4.892062155368764e-13 Iteration 60: d = 7.60967570632809e-15 Converged after 63 iterations. d = 2.1866869938036642e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016265821550610026 Iteration 10: d = 1.9165432691683302e-5 Iteration 20: d = 2.216936998550917e-7 Iteration 30: d = 2.9043973993568584e-9 Iteration 40: d = 3.9745084548388335e-11 Iteration 50: d = 5.532465489050557e-13 Iteration 60: d = 7.78999878301488e-15 Converged after 63 iterations. d = 2.132701519230702e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013301514895180792 Iteration 10: d = 1.1858305094914121e-5 Iteration 20: d = 1.5069333813077105e-7 Iteration 30: d = 2.1123634240078843e-9 Iteration 40: d = 2.9985644998049196e-11 Iteration 50: d = 4.271852751096407e-13 Iteration 60: d = 6.080778727330956e-15 Converged after 63 iterations. d = 1.676346211324193e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.594164468986 Iteration 2: convergence error = 4822.039750472181 Iteration 3: convergence error = 1103.5566382976858 Iteration 4: convergence error = 317.9697710081366 Iteration 5: convergence error = 94.2173803866051 Iteration 6: convergence error = 28.220364008031993 Iteration 7: convergence error = 8.492248380387764 Iteration 8: convergence error = 2.5455324868732987 Iteration 9: convergence error = 0.7612292602675552 Iteration 10: convergence error = 0.22733302046412973 Iteration 11: convergence error = 0.06783793971067098 Iteration 12: convergence error = 0.020234424820728236 Iteration 13: convergence error = 0.006033920224354006 Iteration 14: convergence error = 0.0017990595424635103 Iteration 15: convergence error = 0.0005363588309137413 Iteration 16: convergence error = 0.00015989852795428305 Iteration 17: convergence error = 4.7667400394857395e-5 Iteration 18: convergence error = 1.420991634404345e-5 Iteration 19: convergence error = 4.236009544911212e-6 Iteration 20: convergence error = 1.2627617707039462e-6 Iteration 21: convergence error = 3.764221219171304e-7 Iteration 22: convergence error = 1.1208135219931137e-7 Iteration 23: convergence error = 3.249647306802217e-8 Iteration 24: convergence error = 9.371660780743696e-9 Iteration 25: convergence error = 2.6889210857916623e-9 Iteration 26: convergence error = 7.748894859105349e-10 Iteration 27: convergence error = 2.248725650133565e-10 Iteration 28: convergence error = 6.389200279954821e-11 Iteration 29: convergence error = 1.9554136088117957e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016265821550610026 Iteration 10: d = 1.9165432691683302e-5 Iteration 20: d = 2.216936998550917e-7 Iteration 30: d = 2.9043973993568584e-9 Iteration 40: d = 3.9745084548388335e-11 Iteration 50: d = 5.532465489050557e-13 Iteration 60: d = 7.78999878301488e-15 Converged after 63 iterations. d = 2.132701519230702e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.674791118285 Iteration 2: convergence error = 4829.8378875005865 Iteration 3: convergence error = 1098.9192579665903 Iteration 4: convergence error = 319.967371288348 Iteration 5: convergence error = 94.81678163182869 Iteration 6: convergence error = 28.25034326969285 Iteration 7: convergence error = 8.425852845552072 Iteration 8: convergence error = 2.5209346261030987 Iteration 9: convergence error = 0.7533501236011944 Iteration 10: convergence error = 0.22482496713041655 Iteration 11: convergence error = 0.06704351150597176 Iteration 12: convergence error = 0.019983792205493955 Iteration 13: convergence error = 0.00595511281517247 Iteration 14: convergence error = 0.0017743511405114987 Iteration 15: convergence error = 0.0005286316516048828 Iteration 16: convergence error = 0.0001574874402194837 Iteration 17: convergence error = 4.691661979450146e-5 Iteration 18: convergence error = 1.3976554555483744e-5 Iteration 19: convergence error = 4.163615358265815e-6 Iteration 20: convergence error = 1.2403254459059099e-6 Iteration 21: convergence error = 3.694901806738926e-7 Iteration 22: convergence error = 1.0992698662448674e-7 Iteration 23: convergence error = 3.183959051966667e-8 Iteration 24: convergence error = 9.164978109765798e-9 Iteration 25: convergence error = 2.630940798553638e-9 Iteration 26: convergence error = 7.596554496558383e-10 Iteration 27: convergence error = 2.1577761799562722e-10 Iteration 28: convergence error = 6.45741238258779e-11 Iteration 29: convergence error = 1.77351466845721e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 12:40:55 Bin 1 ray tracing: 8%|██▍ | ETA: 0:01:06 Bin 1 ray tracing: 16%|████▋ | ETA: 0:00:36 Bin 1 ray tracing: 23%|███████ | ETA: 0:00:25 Bin 1 ray tracing: 31%|█████████▍ | ETA: 0:00:19 Bin 1 ray tracing: 40%|███████████▉ | ETA: 0:00:15 Bin 1 ray tracing: 48%|██████████████▎ | ETA: 0:00:12 Bin 1 ray tracing: 56%|████████████████▊ | ETA: 0:00:09 Bin 1 ray tracing: 63%|███████████████████ | ETA: 0:00:07 Bin 1 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:06 Bin 1 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:04 Bin 1 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 1 ray tracing: 94%|████████████████████████████▍ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 2 ray tracing: 15%|████▋ | ETA: 0:00:11 Bin 2 ray tracing: 23%|███████ | ETA: 0:00:10 Bin 2 ray tracing: 31%|█████████▍ | ETA: 0:00:09 Bin 2 ray tracing: 39%|███████████▋ | ETA: 0:00:08 Bin 2 ray tracing: 46%|█████████████▉ | ETA: 0:00:07 Bin 2 ray tracing: 53%|████████████████ | ETA: 0:00:06 Bin 2 ray tracing: 61%|██████████████████▍ | ETA: 0:00:05 Bin 2 ray tracing: 69%|████████████████████▉ | ETA: 0:00:04 Bin 2 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:03 Bin 2 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 2 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 3 ray tracing: 16%|████▊ | ETA: 0:00:11 Bin 3 ray tracing: 23%|███████ | ETA: 0:00:10 Bin 3 ray tracing: 31%|█████████▎ | ETA: 0:00:09 Bin 3 ray tracing: 38%|███████████▌ | ETA: 0:00:08 Bin 3 ray tracing: 45%|█████████████▋ | ETA: 0:00:08 Bin 3 ray tracing: 53%|███████████████▊ | ETA: 0:00:07 Bin 3 ray tracing: 61%|██████████████████▏ | ETA: 0:00:05 Bin 3 ray tracing: 69%|████████████████████▌ | ETA: 0:00:04 Bin 3 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:03 Bin 3 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:02 Bin 3 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 3 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 4 ray tracing: 18%|█████▎ | ETA: 0:00:09 Bin 4 ray tracing: 27%|████████ | ETA: 0:00:08 Bin 4 ray tracing: 35%|██████████▌ | ETA: 0:00:08 Bin 4 ray tracing: 43%|████████████▉ | ETA: 0:00:07 Bin 4 ray tracing: 51%|███████████████▎ | ETA: 0:00:06 Bin 4 ray tracing: 59%|█████████████████▋ | ETA: 0:00:05 Bin 4 ray tracing: 66%|███████████████████▉ | ETA: 0:00:04 Bin 4 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:03 Bin 4 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:02 Bin 4 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:01 Bin 4 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 4 Energy per ray: 0.00018533358351859177 Processing spectral bin 5/10 Bin 5 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 5 ray tracing: 16%|████▊ | ETA: 0:00:11 Bin 5 ray tracing: 24%|███████▏ | ETA: 0:00:10 Bin 5 ray tracing: 32%|█████████▌ | ETA: 0:00:09 Bin 5 ray tracing: 39%|███████████▉ | ETA: 0:00:08 Bin 5 ray tracing: 47%|██████████████▏ | ETA: 0:00:07 Bin 5 ray tracing: 55%|████████████████▌ | ETA: 0:00:06 Bin 5 ray tracing: 63%|██████████████████▉ | ETA: 0:00:05 Bin 5 ray tracing: 71%|█████████████████████▏ | ETA: 0:00:04 Bin 5 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:03 Bin 5 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 5 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 6 ray tracing: 16%|████▊ | ETA: 0:00:11 Bin 6 ray tracing: 24%|███████▏ | ETA: 0:00:10 Bin 6 ray tracing: 32%|█████████▌ | ETA: 0:00:09 Bin 6 ray tracing: 40%|███████████▉ | ETA: 0:00:08 Bin 6 ray tracing: 47%|██████████████▏ | ETA: 0:00:07 Bin 6 ray tracing: 55%|████████████████▍ | ETA: 0:00:06 Bin 6 ray tracing: 63%|██████████████████▊ | ETA: 0:00:05 Bin 6 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:04 Bin 6 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:03 Bin 6 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 6 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 7 ray tracing: 15%|████▌ | ETA: 0:00:11 Bin 7 ray tracing: 23%|██████▉ | ETA: 0:00:10 Bin 7 ray tracing: 30%|█████████▏ | ETA: 0:00:09 Bin 7 ray tracing: 38%|███████████▌ | ETA: 0:00:08 Bin 7 ray tracing: 46%|█████████████▉ | ETA: 0:00:07 Bin 7 ray tracing: 54%|████████████████▎ | ETA: 0:00:06 Bin 7 ray tracing: 62%|██████████████████▋ | ETA: 0:00:05 Bin 7 ray tracing: 70%|█████████████████████ | ETA: 0:00:04 Bin 7 ray tracing: 78%|███████████████████████▎ | ETA: 0:00:03 Bin 7 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:02 Bin 7 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 8%|██▌ | ETA: 0:00:12 Bin 8 ray tracing: 16%|████▉ | ETA: 0:00:11 Bin 8 ray tracing: 24%|███████▎ | ETA: 0:00:10 Bin 8 ray tracing: 32%|█████████▋ | ETA: 0:00:09 Bin 8 ray tracing: 40%|████████████ | ETA: 0:00:08 Bin 8 ray tracing: 47%|██████████████▎ | ETA: 0:00:07 Bin 8 ray tracing: 55%|████████████████▌ | ETA: 0:00:06 Bin 8 ray tracing: 63%|██████████████████▉ | ETA: 0:00:05 Bin 8 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:04 Bin 8 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:03 Bin 8 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 8 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 9 ray tracing: 15%|████▋ | ETA: 0:00:11 Bin 9 ray tracing: 23%|███████ | ETA: 0:00:10 Bin 9 ray tracing: 31%|█████████▍ | ETA: 0:00:09 Bin 9 ray tracing: 39%|███████████▊ | ETA: 0:00:08 Bin 9 ray tracing: 48%|██████████████▍ | ETA: 0:00:07 Bin 9 ray tracing: 56%|████████████████▉ | ETA: 0:00:06 Bin 9 ray tracing: 64%|███████████████████▎ | ETA: 0:00:05 Bin 9 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:04 Bin 9 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:02 Bin 9 ray tracing: 90%|██████████████████████████▉ | ETA: 0:00:01 Bin 9 ray tracing: 98%|█████████████████████████████▎| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 10 ray tracing: 16%|████▋ | ETA: 0:00:11 Bin 10 ray tracing: 24%|██████▉ | ETA: 0:00:10 Bin 10 ray tracing: 32%|█████████▍ | ETA: 0:00:09 Bin 10 ray tracing: 41%|███████████▊ | ETA: 0:00:08 Bin 10 ray tracing: 49%|██████████████▏ | ETA: 0:00:07 Bin 10 ray tracing: 56%|████████████████▍ | ETA: 0:00:06 Bin 10 ray tracing: 64%|██████████████████▋ | ETA: 0:00:05 Bin 10 ray tracing: 72%|████████████████████▉ | ETA: 0:00:04 Bin 10 ray tracing: 80%|███████████████████████▏ | ETA: 0:00:03 Bin 10 ray tracing: 88%|█████████████████████████▌ | ETA: 0:00:02 Bin 10 ray tracing: 98%|████████████████████████████▎| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 20%|██████▋ | ETA: 0:00:04 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:03 Bin 1 progress: 64%|█████████████████████▎ | ETA: 0:00:02 Bin 1 progress: 87%|████████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 20%|██████▋ | ETA: 0:00:04 Bin 2 progress: 40%|█████████████▎ | ETA: 0:00:03 Bin 2 progress: 62%|████████████████████▌ | ETA: 0:00:02 Bin 2 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 22%|███████▍ | ETA: 0:00:04 Bin 3 progress: 42%|█████████████▉ | ETA: 0:00:03 Bin 3 progress: 64%|█████████████████████▎ | ETA: 0:00:02 Bin 3 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 22%|███████▍ | ETA: 0:00:04 Bin 4 progress: 42%|█████████████▉ | ETA: 0:00:03 Bin 4 progress: 64%|█████████████████████▎ | ETA: 0:00:02 Bin 4 progress: 87%|████████████████████████████▋ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 22%|███████▍ | ETA: 0:00:04 Bin 5 progress: 42%|█████████████▉ | ETA: 0:00:03 Bin 5 progress: 64%|█████████████████████▎ | ETA: 0:00:02 Bin 5 progress: 87%|████████████████████████████▋ | ETA: 0:00:01 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 20%|██████▋ | ETA: 0:00:04 Bin 6 progress: 42%|█████████████▉ | ETA: 0:00:03 Bin 6 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 6 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 22%|███████▍ | ETA: 0:00:04 Bin 7 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 7 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 7 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 20%|██████▋ | ETA: 0:00:04 Bin 8 progress: 40%|█████████████▎ | ETA: 0:00:03 Bin 8 progress: 62%|████████████████████▌ | ETA: 0:00:02 Bin 8 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 22%|███████▍ | ETA: 0:00:04 Bin 9 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 9 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 9 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 22%|███████▏ | ETA: 0:00:04 Bin 10 progress: 42%|█████████████▌ | ETA: 0:00:03 Bin 10 progress: 64%|████████████████████▋ | ETA: 0:00:02 Bin 10 progress: 87%|███████████████████████████▊ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:04 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016265821550610026 Iteration 10: d = 1.9165432691683302e-5 Iteration 20: d = 2.216936998550917e-7 Iteration 30: d = 2.9043973993568584e-9 Iteration 40: d = 3.9745084548388335e-11 Iteration 50: d = 5.532465489050557e-13 Iteration 60: d = 7.78999878301488e-15 Converged after 63 iterations. d = 2.132701519230702e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001327336678622153 Iteration 10: d = 1.1805564543399633e-5 Iteration 20: d = 1.4961262724990937e-7 Iteration 30: d = 2.0935247784374027e-9 Iteration 40: d = 2.9689496062400595e-11 Iteration 50: d = 4.2267478482069943e-13 Iteration 60: d = 6.068167179168728e-15 Converged after 63 iterations. d = 1.641526996268695e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013440928597846 Iteration 10: d = 1.1800609839022206e-5 Iteration 20: d = 1.13876169456658e-7 Iteration 30: d = 1.394919983065664e-9 Iteration 40: d = 1.8769089367775025e-11 Iteration 50: d = 2.6074884059725725e-13 Iteration 60: d = 3.663279786315448e-15 Converged after 62 iterations. d = 1.5526600221190662e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017431025215396262 Iteration 10: d = 2.243024615839273e-5 Iteration 20: d = 2.693033925842661e-7 Iteration 30: d = 3.507178219964281e-9 Iteration 40: d = 4.6680886000633415e-11 Iteration 50: d = 6.269856937264775e-13 Iteration 60: d = 8.408211092181944e-15 Converged after 64 iterations. d = 1.504574348235853e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015146766719854807 Iteration 10: d = 1.920490560700342e-5 Iteration 20: d = 2.4728287060907853e-7 Iteration 30: d = 3.3376571950731536e-9 Iteration 40: d = 4.5238968603593585e-11 Iteration 50: d = 6.14245052941972e-13 Iteration 60: d = 8.37158610628898e-15 Converged after 64 iterations. d = 1.5602271513824338e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001391447540174645 Iteration 10: d = 1.5449553733438467e-5 Iteration 20: d = 1.9654208099588246e-7 Iteration 30: d = 2.6923952978652322e-9 Iteration 40: d = 3.7453895214027875e-11 Iteration 50: d = 5.24049715461202e-13 Iteration 60: d = 7.337695637262784e-15 Converged after 63 iterations. d = 2.038902493393065e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015792605627776117 Iteration 10: d = 1.3023786204225399e-5 Iteration 20: d = 1.2665264469340359e-7 Iteration 30: d = 1.5461016353331631e-9 Iteration 40: d = 2.033589974182882e-11 Iteration 50: d = 2.7539138591224084e-13 Iteration 60: d = 3.7614827070775165e-15 Converged after 62 iterations. d = 1.5894151091071865e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013276370149377932 Iteration 10: d = 1.159114092430015e-5 Iteration 20: d = 1.2753540677601003e-7 Iteration 30: d = 1.7294932388861779e-9 Iteration 40: d = 2.4330248769973308e-11 Iteration 50: d = 3.44565961436441e-13 Iteration 60: d = 4.847949371672533e-15 Converged after 62 iterations. d = 2.0873354197433963e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013063037985359665 Iteration 10: d = 8.328288708857577e-6 Iteration 20: d = 8.650606924648008e-8 Iteration 30: d = 1.173806674419345e-9 Iteration 40: d = 1.6480495703741282e-11 Iteration 50: d = 2.327532050762714e-13 Iteration 60: d = 3.2702897571921827e-15 Converged after 61 iterations. d = 2.1429189376382324e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001343730548048462 Iteration 10: d = 1.6159957496228584e-5 Iteration 20: d = 2.070534243667841e-7 Iteration 30: d = 2.830922370428254e-9 Iteration 40: d = 3.9245318870765236e-11 Iteration 50: d = 5.469788253116408e-13 Iteration 60: d = 7.603217462412214e-15 Converged after 63 iterations. d = 2.1193875240979225e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.047316062039 Iteration 2: convergence error = 4804.111352948252 Iteration 3: convergence error = 1087.4543337796176 Iteration 4: convergence error = 322.19086662027075 Iteration 5: convergence error = 96.0615067051292 Iteration 6: convergence error = 28.77122159294845 Iteration 7: convergence error = 8.682444867379445 Iteration 8: convergence error = 2.61289023571112 Iteration 9: convergence error = 0.7844729469420599 Iteration 10: convergence error = 0.23520555477898597 Iteration 11: convergence error = 0.07046669296460095 Iteration 12: convergence error = 0.021102380209185867 Iteration 13: convergence error = 0.006317886547094531 Iteration 14: convergence error = 0.001891259353442365 Iteration 15: convergence error = 0.0005661028510530741 Iteration 16: convergence error = 0.00016944136632446316 Iteration 17: convergence error = 5.071446980764449e-5 Iteration 18: convergence error = 1.517880355095258e-5 Iteration 19: convergence error = 4.5429660531226546e-6 Iteration 20: convergence error = 1.3596886674349662e-6 Iteration 21: convergence error = 4.069438546139281e-7 Iteration 22: convergence error = 1.2167606655566487e-7 Iteration 23: convergence error = 3.553418537194375e-8 Iteration 24: convergence error = 1.0298208508174866e-8 Iteration 25: convergence error = 2.972683432744816e-9 Iteration 26: convergence error = 8.574261300964281e-10 Iteration 27: convergence error = 2.4715518520679325e-10 Iteration 28: convergence error = 7.048583938740194e-11 Iteration 29: convergence error = 2.0236257114447653e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 979.9450245938802 K, F = -4569.545223490976, relative_change = 0.0200549754061197 Iter 2: T = 961.9421999979013 K, F = -3860.116471815136, relative_change = 0.018371259758617437 Iter 3: T = 945.8720362195589 K, F = -3259.3076121076424, relative_change = 0.016705955699185922 Iter 5: T = 919.0109004940354 K, F = -2320.4768535771714, relative_change = 0.013520199792489378 Iter 10: T = 876.2857066265337 K, F = -985.3365169663124, relative_change = 0.007126914064967226 Iter 15: T = 856.019101901666 K, F = -415.26975947304817, relative_change = 0.0033487941557094245 Iter 20: T = 847.0147736982653 K, F = -174.2874528749606, relative_change = 0.001477238289236371 Iter 25: T = 843.145900769485 K, F = -73.00194902468394, relative_change = 0.0006323245279779972 Iter 30: T = 841.508950846654 K, F = -30.55041660771973, relative_change = 0.0002670748325459076 Iter 35: T = 840.8209761102756 K, F = -12.780099255089935, relative_change = 0.00011216046832219217 Iter 40: T = 840.5326599658359 K, F = -5.345413248133445, relative_change = 4.69889547226455e-5 Iter 45: T = 840.4119779253094 K, F = -2.2356248014586324, relative_change = 1.9665739640471865e-5 Iter 50: T = 840.3614888990382 K, F = -0.9349840918847923, relative_change = 8.22696804338797e-6 Iter 55: T = 840.3403705727675 K, F = -0.3910248548632107, relative_change = 3.441057387089324e-6 Iter 60: T = 840.3315380744901 K, F = -0.16353184860850822, relative_change = 1.4391684575143154e-6 Iter 65: T = 840.3278441199187 K, F = -0.06839107428949465, relative_change = 6.018909331472042e-7 Iter 70: T = 840.3262992468068 K, F = -0.028601981904064155, relative_change = 2.517203370051696e-7 Iter 75: T = 840.3256531594145 K, F = -0.011961693539099594, relative_change = 1.0527286400722792e-7 Iter 80: T = 840.325382957425 K, F = -0.005002523634854317, relative_change = 4.402644114216597e-8 Iter 85: T = 840.3252699556342 K, F = -0.0020921152222663775, relative_change = 1.8412396101094994e-8 Iter 90: T = 840.3252226969197 K, F = -0.0008749475877252166, relative_change = 7.700286148277897e-9 Iter 95: T = 840.3252029327582 K, F = -0.00036591353642778657, relative_change = 3.220352042890691e-9 Iter 100: T = 840.3251946671493 K, F = -0.00015302941311823304, relative_change = 1.3467897663706198e-9 Iter 105: T = 840.3251912103727 K, F = -6.399872804063733e-5, relative_change = 5.632435746679635e-10 Iter 110: T = 840.3251897647075 K, F = -2.6765033549258632e-5, relative_change = 2.355552017581327e-10 Iter 115: T = 840.3251891601129 K, F = -1.119345395061977e-5, relative_change = 9.851197488276492e-11 Iter 120: T = 840.3251889072643 K, F = -4.681235321823962e-6, relative_change = 4.1198877409861126e-11 Iter 125: T = 840.32518880152 K, F = -1.9577479362098416e-6, relative_change = 1.722985744716138e-11 Iter 130: T = 840.3251887572965 K, F = -8.187527362757407e-7, relative_change = 7.205724839812616e-12 Iter 135: T = 840.3251887388017 K, F = -3.424128804940807e-7, relative_change = 3.0135264157158067e-12 Iter 140: T = 840.325188731067 K, F = -1.432000238388298e-7, relative_change = 1.2602827731412373e-12 Iter 145: T = 840.3251887278323 K, F = -5.988962925584929e-8, relative_change = 5.270799963503865e-13 Converged in 150 iterations to T = 840.3251887264794 K Iter 1: T = 964.3073475159823 K, F = -8132.604820961155, relative_change = 0.03569265248401771 Iter 2: T = 930.5391916055305 K, F = -6899.401558391681, relative_change = 0.03501804274066478 Iter 3: T = 898.6645258958913 K, F = -5852.132320191451, relative_change = 0.03425397446682865 Iter 5: T = 840.4826270144293 K, F = -4207.646751895033, relative_change = 0.03243187804747741 Iter 10: T = 726.1846621902812 K, F = -1835.0511590854514, relative_change = 0.026054573979538097 Iter 15: T = 652.3902834337738 K, F = -792.4110641320586, relative_change = 0.017859431686955068 Iter 20: T = 610.6272347318303 K, F = -338.32433586257065, relative_change = 0.010246263632184387 Iter 25: T = 589.7515049199259 K, F = -143.09899719936274, relative_change = 0.005085318637327474 Iter 30: T = 580.1903577074127 K, F = -60.17193350912418, relative_change = 0.00230836694370247 Iter 35: T = 576.0203230800972 K, F = -25.225810738513104, relative_change = 0.0010012859244252575 Iter 40: T = 574.2440182180991 K, F = -10.560773372417454, relative_change = 0.0004253768366286441 Iter 45: T = 573.4952989348335 K, F = -4.418597856347691, relative_change = 0.00017908387284500978 Iter 50: T = 573.1811383945939 K, F = -1.8482544738946662, relative_change = 7.510451863872473e-5 Iter 55: T = 573.0495702201241 K, F = -0.7730224155491384, relative_change = 3.144639983327598e-5 Iter 60: T = 572.9945148420713 K, F = -0.32329776671100946, relative_change = 1.315770620474707e-5 Iter 65: T = 572.9714844234633 K, F = -0.13520883484583104, relative_change = 5.503838137702464e-6 Iter 70: T = 572.9618518471369 K, F = -0.05654627269853052, relative_change = 2.301968233133359e-6 Iter 75: T = 572.9578232172073 K, F = -0.02364838308126091, relative_change = 9.627451350794378e-7 Iter 80: T = 572.9561383660658 K, F = -0.009890046112286777, relative_change = 4.0263755245065633e-7 Iter 85: T = 572.9554337359514 K, F = -0.004136137124437056, relative_change = 1.683888892169796e-7 Iter 90: T = 572.9551390503049 K, F = -0.0017297822428386511, relative_change = 7.042242917246152e-8 Iter 95: T = 572.955015809088 K, F = -0.0007234156455604435, relative_change = 2.945153324526196e-8 Iter 100: T = 572.9549642681111 K, F = -0.00030254107195704094, relative_change = 1.2316988593660354e-8 Iter 105: T = 572.9549427130542 K, F = -0.00012652629067627652, relative_change = 5.151112700515644e-9 Iter 110: T = 572.9549336984711 K, F = -5.2914806845660856e-5, relative_change = 2.1542570524130648e-9 Iter 115: T = 572.9549299284647 K, F = -2.2129605102838568e-5, relative_change = 9.00936093225756e-10 Iter 120: T = 572.9549283518029 K, F = -9.254865479479957e-6, relative_change = 3.7678225250302295e-10 Iter 125: T = 572.954927692424 K, F = -3.870494730662255e-6, relative_change = 1.575748166349579e-10 Iter 130: T = 572.9549274166638 K, F = -1.6186866279022105e-6, relative_change = 6.589965028113075e-11 Iter 135: T = 572.9549273013378 K, F = -6.769541367468435e-7, relative_change = 2.7560023133413473e-11 Iter 140: T = 572.954927253107 K, F = -2.8311053912322137e-7, relative_change = 1.1525940366022183e-11 Iter 145: T = 572.9549272329364 K, F = -1.184003870502437e-7, relative_change = 4.820293179159319e-12 Iter 150: T = 572.9549272245007 K, F = -4.9516560629569994e-8, relative_change = 2.0159084393329635e-12 Iter 155: T = 572.9549272209728 K, F = -2.0708237680189256e-8, relative_change = 8.430696836302602e-13 Iter 160: T = 572.9549272194974 K, F = -8.66078325723052e-9, relative_change = 3.525960979160624e-13 Converged in 163 iterations to T = 572.9549272190654 K Iter 1: T = 963.6059517605005 K, F = -8292.418511047284, relative_change = 0.03639404823949948 Iter 2: T = 929.0924658592552 K, F = -7036.311139384419, relative_change = 0.03581701196239956 Iter 3: T = 896.4261827076726 K, F = -5969.546396163408, relative_change = 0.03515934565390292 Iter 5: T = 836.5168573018676 K, F = -4294.299998084435, relative_change = 0.03357303358068493 Iter 10: T = 717.1313663285277 K, F = -1876.3947416363362, relative_change = 0.02781090148831011 Iter 15: T = 637.8300404188973 K, F = -812.3924986712077, relative_change = 0.019875454292790858 Iter 20: T = 591.4721377810105 K, F = -347.7786441218773, relative_change = 0.01188537693099166 Iter 25: T = 567.6632931473529 K, F = -147.38382730897388, relative_change = 0.006077127053876852 Iter 30: T = 556.5705690077511 K, F = -62.041759603294615, relative_change = 0.0028048919936421134 Iter 35: T = 551.6894842124012 K, F = -26.023502314748097, relative_change = 0.0012264323305849097 Iter 40: T = 549.6017606851394 K, F = -10.89730608231057, relative_change = 0.0005228834679419588 Iter 45: T = 548.7202005229077 K, F = -4.559866360187201, relative_change = 0.00022047094162705146 Iter 50: T = 548.3500179987477 K, F = -1.907427815922557, relative_change = 9.252129444719261e-5 Iter 55: T = 548.1949383508985 K, F = -0.7977857889188851, relative_change = 3.874936027786967e-5 Iter 60: T = 548.1300357175139 K, F = -0.3336569750995235, relative_change = 1.621523417482044e-5 Iter 65: T = 548.1028845225846 K, F = -0.13954168189052218, relative_change = 6.783118197995156e-6 Iter 70: T = 548.0915281444072 K, F = -0.0583584089760637, relative_change = 2.837080862059488e-6 Iter 75: T = 548.0867785222792 K, F = -0.024406255489355128, relative_change = 1.1865535459372686e-6 Iter 80: T = 548.0847921300025 K, F = -0.010207000092848278, relative_change = 4.96240036963749e-7 Iter 85: T = 548.0839613894074 K, F = -0.004268691534165814, relative_change = 2.0753511426729403e-7 Iter 90: T = 548.0836139624364 K, F = -0.0017852181633681574, relative_change = 8.679394392240553e-8 Iter 95: T = 548.0834686640948 K, F = -0.0007465996230283656, relative_change = 3.629831296188225e-8 Iter 100: T = 548.0834078985523 K, F = -0.0003122368905925377, relative_change = 1.518039656821983e-8 Iter 105: T = 548.0833824856696 K, F = -0.00013058119864786666, relative_change = 6.348624640878649e-9 Iter 110: T = 548.0833718576973 K, F = -5.461061703607162e-5, relative_change = 2.655070902747655e-9 Iter 115: T = 548.0833674129522 K, F = -2.283881242043373e-5, relative_change = 1.1103824117558427e-9 Iter 120: T = 548.0833655541065 K, F = -9.551463561796592e-6, relative_change = 4.643751663420325e-10 Iter 125: T = 548.0833647767151 K, F = -3.9945363499716e-6, relative_change = 1.9420725237572778e-10 Iter 130: T = 548.0833644516008 K, F = -1.670562724681579e-6, relative_change = 8.121978852445608e-11 Iter 135: T = 548.0833643156341 K, F = -6.986492080696127e-7, relative_change = 3.396708196636355e-11 Iter 140: T = 548.0833642587712 K, F = -2.9218320460322467e-7, relative_change = 1.4205427774371304e-11 Iter 145: T = 548.0833642349904 K, F = -1.2219455489126396e-7, relative_change = 5.94088194304345e-12 Iter 150: T = 548.083364225045 K, F = -5.1102991588392044e-8, relative_change = 2.4845365676020988e-12 Iter 155: T = 548.0833642208859 K, F = -2.1372357161819622e-8, relative_change = 1.0390859958651334e-12 Iter 160: T = 548.0833642191463 K, F = -8.938073170483563e-9, relative_change = 4.345532217756065e-13 Converged in 164 iterations to T = 548.0833642185185 K Iter 1: T = 969.4026139314111 K, F = -6971.643521356066, relative_change = 0.03059738606858888 Iter 2: T = 940.9482625531244 K, F = -5906.332668315295, relative_change = 0.02935245992672756 Iter 3: T = 914.5974541888564 K, F = -5002.113145650424, relative_change = 0.028004524173060256 Iter 5: T = 868.0183591678331 K, F = -3583.720092782259, relative_change = 0.025032576472846766 Iter 10: T = 784.1981012893586 K, F = -1545.2155862117331, relative_change = 0.016758285641926635 Iter 15: T = 737.5948769181224 K, F = -658.8032518831974, relative_change = 0.009404898472100496 Iter 20: T = 714.6237319795848 K, F = -278.376864176068, relative_change = 0.004598247518700185 Iter 25: T = 704.1915375096081 K, F = -116.99262093488007, relative_change = 0.002070452469367801 Iter 30: T = 699.660960612986 K, F = -49.03427002273233, relative_change = 0.0008946692935717585 Iter 35: T = 697.7348225532926 K, F = -20.52587729371144, relative_change = 0.00037944442898393805 Iter 40: T = 696.9236327924216 K, F = -8.587557973163996, relative_change = 0.00015963147106081677 Iter 45: T = 696.583381848987 K, F = -3.5920153510226656, relative_change = 6.692621156513666e-5 Iter 50: T = 696.4409087148936 K, F = -1.5023281857435562, relative_change = 2.8018555326884563e-5 Iter 55: T = 696.3812938757395 K, F = -0.6283098764250277, relative_change = 1.1722811911831195e-5 Iter 60: T = 696.3563568333227 K, F = -0.26276989357285635, relative_change = 4.903515564937362e-6 Iter 65: T = 696.3459269187135 K, F = -0.10989406731695445, relative_change = 2.0508654569064987e-6 Iter 70: T = 696.3415648384414 K, F = -0.04595910925381341, relative_change = 8.57723834327383e-7 Iter 75: T = 696.339740535443 K, F = -0.019220665475191412, relative_change = 3.5871514470173396e-7 Iter 80: T = 696.3389775850816 K, F = -0.008038314839261207, relative_change = 1.5001979594319788e-7 Iter 85: T = 696.3386585092438 K, F = -0.0033617197863331505, relative_change = 6.274021691101774e-8 Iter 90: T = 696.3385250677632 K, F = -0.0014059114537344763, relative_change = 2.623873363941475e-8 Iter 95: T = 696.3384692609152 K, F = -0.0005879689763872431, relative_change = 1.0973356256106838e-8 Iter 100: T = 696.3384459218203 K, F = -0.0002458956503287313, relative_change = 4.589189416169197e-9 Iter 105: T = 696.3384361611311 K, F = -0.00010283649796682948, relative_change = 1.919253955611088e-9 Iter 110: T = 696.3384320790942 K, F = -4.3007452147358904e-5, relative_change = 8.026549580186546e-10 Iter 115: T = 696.3384303719375 K, F = -1.7986229387978447e-5, relative_change = 3.356798796954526e-10 Iter 120: T = 696.3384296579843 K, F = -7.522055390229987e-6, relative_change = 1.4038532514594173e-10 Iter 125: T = 696.3384293594006 K, F = -3.1458145633989076e-6, relative_change = 5.871084142863249e-11 Iter 130: T = 696.3384292345293 K, F = -1.3156169041961263e-6, relative_change = 2.4553569179735533e-11 Iter 135: T = 696.3384291823065 K, F = -5.502066251494853e-7, relative_change = 1.0268594448347507e-11 Iter 140: T = 696.3384291604664 K, F = -2.301027658413446e-7, relative_change = 4.2944448071280875e-12 Iter 145: T = 696.3384291513325 K, F = -9.623242236411755e-8, relative_change = 1.7960011259043078e-12 Iter 150: T = 696.3384291475127 K, F = -4.02449659153703e-8, relative_change = 7.510982506954391e-13 Iter 155: T = 696.3384291459153 K, F = -1.6831780413895103e-8, relative_change = 3.1413421623190167e-13 Converged in 157 iterations to T = 696.3384291455772 K Iter 1: T = 980.6305875803392 K, F = -4413.339044887548, relative_change = 0.01936941241966075 Iter 2: T = 963.2829018882169 K, F = -3727.4544290941067, relative_change = 0.01769033712779343 Iter 3: T = 947.8326404440749 K, F = -3146.6992719962227, relative_change = 0.01603917334550065 Iter 5: T = 922.0907301946796 K, F = -2239.4871839208613, relative_change = 0.012906920841936583 Iter 10: T = 881.4001763065817 K, F = -950.2355003608376, relative_change = 0.006725760906686142 Iter 15: T = 862.230179879503 K, F = -400.29569142847333, relative_change = 0.0031386846725179403 Iter 20: T = 853.7446836398973 K, F = -167.96485494335025, relative_change = 0.0013798309833116475 Iter 25: T = 850.105164106805 K, F = -70.34643703922549, relative_change = 0.0005897172586706243 Iter 30: T = 848.5664572494293 K, F = -29.43780585902117, relative_change = 0.0002489121888331945 Iter 35: T = 847.9199882794529 K, F = -12.314429874468662, relative_change = 0.00010450322621868917 Iter 40: T = 847.6491046503858 K, F = -5.150601032452371, relative_change = 4.37757686262525e-5 Iter 45: T = 847.5357261641464 K, F = -2.154140835445374, relative_change = 1.832004454484075e-5 Iter 50: T = 847.4882938624072 K, F = -0.9009045684568637, relative_change = 7.663849050639346e-6 Iter 55: T = 847.468454295909 K, F = -0.3767720489748281, relative_change = 3.205495978473313e-6 Iter 60: T = 847.4601566604157 K, F = -0.1575710951089877, relative_change = 1.34064366006593e-6 Iter 65: T = 847.456686404124 K, F = -0.06589820551902692, relative_change = 5.606849014753366e-7 Iter 70: T = 847.4552350864515 K, F = -0.027559432582614285, relative_change = 2.3448717029577288e-7 Iter 75: T = 847.4546281254366 K, F = -0.011525686637340327, relative_change = 9.806569324336724e-8 Iter 80: T = 847.4543742866312 K, F = -0.004820180284434095, relative_change = 4.101230669910709e-8 Iter 85: T = 847.4542681281308 K, F = -0.0020158570438517653, relative_change = 1.7151847394879978e-8 Iter 90: T = 847.4542237313642 K, F = -0.0008430555063765333, relative_change = 7.173109344106603e-9 Iter 95: T = 847.4542051641037 K, F = -0.0003525758822187086, relative_change = 2.9998803162389417e-9 Iter 100: T = 847.4541973990531 K, F = -0.00014745144582772873, relative_change = 1.2545858396603596e-9 Iter 105: T = 847.4541941516162 K, F = -6.166595396761565e-5, relative_change = 5.246827768569789e-10 Iter 110: T = 847.4541927934993 K, F = -2.5789438271583975e-5, relative_change = 2.1942860393064492e-10 Iter 115: T = 847.4541922255186 K, F = -1.0785452703832021e-5, relative_change = 9.176767683698491e-11 Iter 120: T = 847.4541919879823 K, F = -4.510605001284418e-6, relative_change = 3.837833737869007e-11 Iter 125: T = 847.4541918886417 K, F = -1.886387271943235e-6, relative_change = 1.6050265356708414e-11 Iter 130: T = 847.4541918470965 K, F = -7.889123181392677e-7, relative_change = 6.712435055407764e-12 Iter 135: T = 847.4541918297215 K, F = -3.299294868419622e-7, relative_change = 2.8071944151288046e-12 Iter 140: T = 847.4541918224552 K, F = -1.379794167810644e-7, relative_change = 1.1739934248189277e-12 Iter 145: T = 847.4541918194163 K, F = -5.770535516091968e-8, relative_change = 4.909841563137726e-13 Converged in 150 iterations to T = 847.4541918181455 K Iter 1: T = 967.3550931455296 K, F = -7438.173080114241, relative_change = 0.03264490685447033 Iter 2: T = 936.786496362711 K, F = -6305.075988921383, relative_change = 0.03160018177339548 Iter 3: T = 908.2627690530223 K, F = -5343.075766122732, relative_change = 0.030448482573605152 Iter 5: T = 857.2109175624846 K, F = -3833.3005328804115, relative_change = 0.02783014131242501 Iter 10: T = 762.3322576461817 K, F = -1659.6943844513592, relative_change = 0.019898974704857155 Iter 15: T = 706.8462484737503 K, F = -710.5250891677945, relative_change = 0.011905505721339908 Iter 20: T = 678.3395760474845 K, F = -301.1182915214495, relative_change = 0.006089728602524222 Iter 25: T = 665.0551499446221 K, F = -126.7586665058967, relative_change = 0.0028113185980664294 Iter 30: T = 659.2089762889437 K, F = -53.16947324528975, relative_change = 0.0012293722324966704 Iter 35: T = 656.7083313902239 K, F = -22.264714723580518, relative_change = 0.0005241616670234614 Iter 40: T = 655.6523861704542 K, F = -9.316455025329399, relative_change = 0.00022101438787338883 Iter 45: T = 655.2089717812065 K, F = -3.897148362464768, relative_change = 9.275015304389856e-5 Iter 50: T = 655.0232124887499 K, F = -1.6299910851489818, relative_change = 3.884535063665361e-5 Iter 55: T = 654.9454699271764 K, F = -0.6817092480176099, relative_change = 1.6255427435453595e-5 Iter 60: T = 654.9129472862091 K, F = -0.285103762785225, relative_change = 6.7999360717926585e-6 Iter 65: T = 654.8993442190784 K, F = -0.11923464057734856, relative_change = 2.8441157978602463e-6 Iter 70: T = 654.8936549547537 K, F = -0.04986549794491535, relative_change = 1.1894959025630287e-6 Iter 75: T = 654.8912755841349 K, F = -0.020854372519973463, relative_change = 4.974706115990851e-7 Iter 80: T = 654.8902804937727 K, F = -0.008721552145492084, relative_change = 2.0804976334315152e-7 Iter 85: T = 654.8898643334984 K, F = -0.003647458050634378, relative_change = 8.700917766384266e-8 Iter 90: T = 654.8896902900218 K, F = -0.0015254106541149892, relative_change = 3.638832652971614e-8 Iter 95: T = 654.8896175029124 K, F = -0.0006379449769156609, relative_change = 1.521804135115471e-8 Iter 100: T = 654.8895870624655 K, F = -0.00026679621216652016, relative_change = 6.364368142251739e-9 Iter 105: T = 654.8895743319055 K, F = -0.0001115773628498351, relative_change = 2.661655026784918e-9 Iter 110: T = 654.889569007833 K, F = -4.6662985239864785e-5, relative_change = 1.1131359521638446e-9 Iter 115: T = 654.8895667812423 K, F = -1.9515018178206667e-5, relative_change = 4.6552676776385983e-10 Iter 120: T = 654.8895658500555 K, F = -8.161414359220132e-6, relative_change = 1.9468887182450983e-10 Iter 125: T = 654.8895654606221 K, F = -3.413201156321488e-6, relative_change = 8.14212163563267e-11 Iter 130: T = 654.8895652977562 K, F = -1.4274404904202065e-6, relative_change = 3.405130135053502e-11 Iter 135: T = 654.8895652296438 K, F = -5.969727340238151e-7, relative_change = 1.424066264813567e-11 Iter 140: T = 654.8895652011585 K, F = -2.49661102014187e-7, relative_change = 5.955614600549341e-12 Iter 145: T = 654.8895651892454 K, F = -1.0441089903778789e-7, relative_change = 2.490700673044583e-12 Iter 150: T = 654.8895651842633 K, F = -4.366540751199466e-8, relative_change = 1.0416293785907284e-12 Iter 155: T = 654.8895651821798 K, F = -1.8262792389478477e-8, relative_change = 4.3565518272207925e-13 Converged in 159 iterations to T = 654.8895651814278 K Iter 1: T = 980.1910812792611 K, F = -4513.480973666632, relative_change = 0.019808918720738915 Iter 2: T = 962.4237306002818 K, F = -3812.4968097978995, relative_change = 0.01812641536769632 Iter 3: T = 946.5766980354639 K, F = -3218.881137357671, relative_change = 0.01646575417974563 Iter 5: T = 920.1192731341051 K, F = -2291.393533804435, relative_change = 0.013298488127590555 Iter 10: T = 878.1310792930997 K, F = -972.7233511538524, relative_change = 0.006980841298251114 Iter 15: T = 858.2635239556123 K, F = -409.8864541615151, relative_change = 0.0032719554632885148 Iter 20: T = 849.4484783602613 K, F = -172.01384404564376, relative_change = 0.0014415387707081802 Iter 25: T = 845.6633817443587 K, F = -72.04691101756583, relative_change = 0.0006166938075082429 Iter 30: T = 844.0623367994292 K, F = -30.150252051430254, relative_change = 0.00026040894197627043 Iter 35: T = 843.3895347625638 K, F = -12.61261157326506, relative_change = 0.00010934967107846249 Iter 40: T = 843.1075918170665 K, F = -5.275344312594099, relative_change = 4.5809378921713635e-5 Iter 45: T = 842.9895800131669 K, F = -2.2063170005106714, relative_change = 1.9171712949998714e-5 Iter 50: T = 842.9402085687996 K, F = -0.9227264955242673, relative_change = 8.020235102448127e-6 Iter 55: T = 842.9195577786757 K, F = -0.3858984549962866, relative_change = 3.3545773112075675e-6 Iter 60: T = 842.9109208358527 K, F = -0.161387904800673, relative_change = 1.4029976271463545e-6 Iter 65: T = 842.9073086695006 K, F = -0.06749444750923872, relative_change = 5.867631900005006e-7 Iter 70: T = 842.9057980020021 K, F = -0.02822700119956356, relative_change = 2.4539361699106724e-7 Iter 75: T = 842.9051662199462 K, F = -0.011804872008704725, relative_change = 1.0262693361988376e-7 Iter 80: T = 842.9049020006439 K, F = -0.004936938979514638, relative_change = 4.291987789046476e-8 Iter 85: T = 842.9047915008887 K, F = -0.0020646869331120143, relative_change = 1.794961751221988e-8 Iter 90: T = 842.9047452885559 K, F = -0.0008634767468747029, relative_change = 7.506746487516001e-9 Iter 95: T = 842.9047259620038 K, F = -0.00036111629031454484, relative_change = 3.1394113966044542e-9 Iter 100: T = 842.9047178794084 K, F = -0.000151023144572493, relative_change = 1.312939392613828e-9 Iter 105: T = 842.9047144991705 K, F = -6.315968315484533e-5, relative_change = 5.490869486071244e-10 Iter 110: T = 842.9047130855147 K, F = -2.6414134216334872e-5, relative_change = 2.29634725006528e-10 Iter 115: T = 842.9047124943068 K, F = -1.104670566087762e-5, relative_change = 9.603597847876475e-11 Iter 120: T = 842.9047122470566 K, F = -4.619863472887786e-6, relative_change = 4.016338656039519e-11 Iter 125: T = 842.9047121436537 K, F = -1.932081308719802e-6, relative_change = 1.6796801240761972e-11 Iter 130: T = 842.9047121004094 K, F = -8.080186786330046e-7, relative_change = 7.024615934062276e-12 Iter 135: T = 842.9047120823241 K, F = -3.3792590969916603e-7, relative_change = 2.937803039483834e-12 Iter 140: T = 842.9047120747606 K, F = -1.4132341807915338e-7, relative_change = 1.2286135963073337e-12 Iter 145: T = 842.9047120715974 K, F = -5.9103961058681875e-8, relative_change = 5.138280062893894e-13 Converged in 150 iterations to T = 842.9047120702745 K Iter 1: T = 970.0931404507262 K, F = -6814.306397069843, relative_change = 0.029906859549273856 Iter 2: T = 942.3455035365947 K, F = -5771.953514892685, relative_change = 0.028603064754420687 Iter 3: T = 916.7138163870974 K, F = -4887.308231236429, relative_change = 0.02719988268984402 Iter 5: T = 871.5899652869953 K, F = -3499.8811031118935, relative_change = 0.024137195549199544 Iter 10: T = 791.2048344759977 K, F = -1507.1244269347044, relative_change = 0.01583333285733332 Iter 15: T = 747.1745623279201 K, F = -641.8080423360428, relative_change = 0.008725319388411942 Iter 20: T = 725.7172485542058 K, F = -270.98270270977105, relative_change = 0.004215152811991557 Iter 25: T = 716.0375343425507 K, F = -113.83746667056884, relative_change = 0.0018859832031616372 Iter 30: T = 711.8476711784199 K, F = -47.70252825886928, relative_change = 0.0008125576405523579 Iter 35: T = 710.0690535760679 K, F = -19.966687517827534, relative_change = 0.0003441739782920369 Iter 40: T = 709.3204775299541 K, F = -8.35329851518881, relative_change = 0.00014471334801869387 Iter 45: T = 709.0065761112646 K, F = -3.4939747604854077, relative_change = 6.065759347068851e-5 Iter 50: T = 708.8751515225214 K, F = -1.46131406765472, relative_change = 2.539172592556419e-5 Iter 55: T = 708.8201623810786 K, F = -0.6111551152773281, relative_change = 1.0623325769471901e-5 Iter 60: T = 708.7971607476188 K, F = -0.255595188317882, relative_change = 4.44353719794829e-6 Iter 65: T = 708.7875403993634 K, F = -0.10689345354250934, relative_change = 1.858468992584169e-6 Iter 70: T = 708.7835169165623 K, F = -0.044704205131823604, relative_change = 7.772564340951865e-7 Iter 75: T = 708.7818342238197 K, F = -0.018695847555388778, relative_change = 3.250618596851528e-7 Iter 80: T = 708.7811304973892 K, F = -0.007818829360629498, relative_change = 1.3594544026971445e-7 Iter 85: T = 708.7808361898519 K, F = -0.0032699282752266523, relative_change = 5.6854127049877824e-8 Iter 90: T = 708.7807131067958 K, F = -0.0013675231375175345, relative_change = 2.3777095991865393e-8 Iter 95: T = 708.7806616319691 K, F = -0.000571914522037642, relative_change = 9.943869188434299e-9 Iter 100: T = 708.7806401045779 K, F = -0.00023918148540635897, relative_change = 4.158645488899514e-9 Iter 105: T = 708.7806311015651 K, F = -0.00010002855416890721, relative_change = 1.739195322773791e-9 Iter 110: T = 708.7806273363974 K, F = -4.1833135399071963e-5, relative_change = 7.273522632378951e-10 Iter 115: T = 708.7806257617593 K, F = -1.7495117292654072e-5, relative_change = 3.0418741439364324e-10 Iter 120: T = 708.780625103227 K, F = -7.316667440249169e-6, relative_change = 1.2721481789706983e-10 Iter 125: T = 708.7806248278208 K, F = -3.059918100345449e-6, relative_change = 5.3202763117832925e-11 Iter 130: T = 708.7806247126426 K, F = -1.2796935974224155e-6, relative_change = 2.225001883941319e-11 Iter 135: T = 708.7806246644737 K, F = -5.35182018812641e-7, relative_change = 9.305204018316866e-12 Iter 140: T = 708.780624644329 K, F = -2.2382024955636126e-7, relative_change = 3.891560277856577e-12 Iter 145: T = 708.7806246359042 K, F = -9.360549113601735e-8, relative_change = 1.6275176702591732e-12 Iter 150: T = 708.7806246323809 K, F = -3.9146015984314886e-8, relative_change = 6.806313600091128e-13 Iter 155: T = 708.7806246309074 K, F = -1.6372218691884655e-8, relative_change = 2.8466359077765014e-13 Converged in 157 iterations to T = 708.7806246305955 K Iter 1: T = 969.2966282465684 K, F = -6995.792460465902, relative_change = 0.030703371753431633 Iter 2: T = 940.7335257442762 K, F = -5926.962235264616, relative_change = 0.029467865326181945 Iter 3: T = 914.2717384915634 K, F = -5019.742237861979, relative_change = 0.028128887223166844 Iter 5: T = 867.4669701967443 K, F = -3596.602767366788, relative_change = 0.02517208058340721 Iter 10: T = 783.107148825645 K, F = -1551.0839936188656, relative_change = 0.01690571067606144 Iter 15: T = 736.092219652926 K, F = -661.430116553921, relative_change = 0.00951547694075675 Iter 20: T = 712.875308589679 K, F = -279.5227299993847, relative_change = 0.0046614477142687205 Iter 25: T = 702.319884216357 K, F = -117.48231936985101, relative_change = 0.002101108770615957 Iter 30: T = 697.7332660300957 K, F = -49.2411186175034, relative_change = 0.0009083620361401524 Iter 35: T = 695.7828151978138 K, F = -20.612760761623527, relative_change = 0.00038533491859007025 Iter 40: T = 694.9612971902351 K, F = -8.623961014957818, relative_change = 0.00016212453978750707 Iter 45: T = 694.6166982500744 K, F = -3.6072514215155116, relative_change = 6.797408756867566e-5 Iter 50: T = 694.4724016881132 K, F = -1.508702178699135, relative_change = 2.8457712007281945e-5 Iter 55: T = 694.4120233844394 K, F = -0.6309759218761744, relative_change = 1.1906634186797965e-5 Iter 60: T = 694.3867668969943 K, F = -0.2638849295852955, relative_change = 4.980420545741395e-6 Iter 65: T = 694.3762033595245 K, F = -0.11036039988433372, relative_change = 2.0830329917932677e-6 Iter 70: T = 694.3717853918292 K, F = -0.04615413705853799, relative_change = 8.711775480621719e-7 Iter 75: T = 694.3699377152126 K, F = -0.01930222877470056, relative_change = 3.643418000224893e-7 Iter 80: T = 694.3691649895798 K, F = -0.008072425642372982, relative_change = 1.5237295685350972e-7 Iter 85: T = 694.3688418255813 K, F = -0.0033759853412028695, relative_change = 6.372434152706866e-8 Iter 90: T = 694.3687066743786 K, F = -0.0014118774805592649, relative_change = 2.66503071098161e-8 Iter 95: T = 694.3686501525037 K, F = -0.000590464039330163, relative_change = 1.1145481318826842e-8 Iter 100: T = 694.3686265143758 K, F = -0.000246939117331868, relative_change = 4.661174232251094e-9 Iter 105: T = 694.3686166286276 K, F = -0.00010327288916101018, relative_change = 1.949358885210017e-9 Iter 110: T = 694.3686124942894 K, F = -4.318995504293266e-5, relative_change = 8.152451789181614e-10 Iter 115: T = 694.3686107652597 K, F = -1.806255419434244e-5, relative_change = 3.409452588182862e-10 Iter 120: T = 694.3686100421589 K, F = -7.553975448493233e-6, relative_change = 1.4258737161158422e-10 Iter 125: T = 694.3686097397494 K, F = -3.159161630406082e-6, relative_change = 5.963172072523243e-11 Iter 130: T = 694.3686096132783 K, F = -1.3211989579042793e-6, relative_change = 2.4938694680971423e-11 Iter 135: T = 694.3686095603865 K, F = -5.525414350504576e-7, relative_change = 1.04296647146651e-11 Iter 140: T = 694.3686095382666 K, F = -2.3107917279663326e-7, relative_change = 4.361805544875557e-12 Iter 145: T = 694.3686095290158 K, F = -9.663953759453392e-8, relative_change = 1.824149125424457e-12 Iter 150: T = 694.368609525147 K, F = -4.041557388756445e-8, relative_change = 7.628765161501956e-13 Iter 155: T = 694.3686095235289 K, F = -1.6902177546462838e-8, relative_change = 3.1904221768599334e-13 Converged in 158 iterations to T = 694.3686095230552 K Iter 1: T = 965.2017416335037 K, F = -7928.816270495457, relative_change = 0.034798258366496304 Iter 2: T = 932.3790983840582 K, F = -6724.892064040356, relative_change = 0.034005992564721824 Iter 3: T = 901.5026297428875 K, F = -5702.552839785563, relative_change = 0.03311578808950552 Iter 5: T = 845.4751065527724 K, F = -4097.42698733864, relative_change = 0.03102303342791391 Iter 10: T = 737.3012015210384 K, F = -1782.9017683627387, relative_change = 0.024021376453005432 Iter 15: T = 669.7110518913369 K, F = -767.628023651692, relative_change = 0.015716014478767745 Iter 20: T = 632.7598201826372 K, F = -326.8452198110233, relative_change = 0.008640732478514795 Iter 25: T = 614.7780422866048 K, F = -137.98633788454813, relative_change = 0.004168074486194016 Iter 30: T = 606.6729082551176 K, F = -57.963869262195736, relative_change = 0.0018634683052978903 Iter 35: T = 603.1660300506245 K, F = -24.28863608661371, relative_change = 0.0008025677938827146 Iter 40: T = 601.6776157854983 K, F = -10.166306198365627, relative_change = 0.0003398889570677625 Iter 45: T = 601.0512287110499 K, F = -4.253174666785051, relative_change = 0.0001429020302802201 Iter 50: T = 600.7885737753584 K, F = -1.7789926691766724, relative_change = 5.9896668377080824e-5 Iter 55: T = 600.6786066722606 K, F = -0.744042280671885, relative_change = 2.507289852869677e-5 Iter 60: T = 600.6325957936068 K, F = -0.3111754718909581, relative_change = 1.0489883285370143e-5 Iter 65: T = 600.6133497621803 K, F = -0.13013871647314, relative_change = 4.387711566549481e-6 Iter 70: T = 600.6053001889495 K, F = -0.0544258134317826, relative_change = 1.8351188290766618e-6 Iter 75: T = 600.6019336470583 K, F = -0.022761568536764087, relative_change = 7.674905540050919e-7 Iter 80: T = 600.6005256990537 K, F = -0.009519167376973836, relative_change = 3.209775535145023e-7 Iter 85: T = 600.5999368748892 K, F = -0.003981030805715768, relative_change = 1.34237317429309e-7 Iter 90: T = 600.5996906209804 K, F = -0.0016649148578786188, relative_change = 5.613976667050651e-8 Iter 95: T = 600.599587634548 K, F = -0.000696287317654587, relative_change = 2.3478341415046303e-8 Iter 100: T = 600.5995445643733 K, F = -0.0002911956788186343, relative_change = 9.818926363780333e-9 Iter 105: T = 600.5995265519086 K, F = -0.0001217815120789223, relative_change = 4.106392907890975e-9 Iter 110: T = 600.5995190188802 K, F = -5.0930482684785616e-5, relative_change = 1.7173426557997938e-9 Iter 115: T = 600.5995158684776 K, F = -2.1299736071955788e-5, relative_change = 7.182132251432113e-10 Iter 120: T = 600.5995145509416 K, F = -8.907803780822121e-6, relative_change = 3.003653438508484e-10 Iter 125: T = 600.5995139999325 K, F = -3.7253501339318262e-6, relative_change = 1.256163815866443e-10 Iter 130: T = 600.5995137694937 K, F = -1.5579854459324416e-6, relative_change = 5.2534255198619364e-11 Iter 135: T = 600.5995136731216 K, F = -6.515682429708569e-7, relative_change = 2.197045708678638e-11 Iter 140: T = 600.5995136328177 K, F = -2.7249465667233963e-7, relative_change = 9.188342475707073e-12 Iter 145: T = 600.5995136159619 K, F = -1.1396020538345653e-7, relative_change = 3.8426639574959175e-12 Iter 150: T = 600.5995136089127 K, F = -4.7659773627639623e-8, relative_change = 1.6070565486903314e-12 Iter 155: T = 600.5995136059646 K, F = -1.9931853334487215e-8, relative_change = 6.720891223640886e-13 Iter 160: T = 600.5995136047317 K, F = -8.335222123623254e-9, relative_change = 2.8105826527117397e-13 Converged in 162 iterations to T = 600.5995136044708 K Iter 1: T = 965.2088296933508 K, F = -7927.2012493167995, relative_change = 0.03479117030664916 Iter 2: T = 932.3936577320881 K, F = -6723.509404220505, relative_change = 0.03399800224754289 Iter 3: T = 901.5250499430709 K, F = -5701.3680615694375, relative_change = 0.03310684015601365 Iter 5: T = 845.5143883839357 K, F = -4096.554723730754, relative_change = 0.031012069701113212 Iter 10: T = 737.3874900355578 K, F = -1782.4909159608874, relative_change = 0.024006105533730806 Iter 15: T = 669.8432985626149 K, F = -767.4344318169966, relative_change = 0.01570063012234373 Iter 20: T = 632.9263858175408 K, F = -326.7564536826375, relative_change = 0.008629682395583952 Iter 25: T = 614.9646433918194 K, F = -137.9471113081016, relative_change = 0.004161937945830912 Iter 30: T = 606.8694101134237 K, F = -57.94700418338637, relative_change = 0.001860536786526863 Iter 35: T = 603.3670005997794 K, F = -24.281493621344183, relative_change = 0.0008012677350705443 Iter 40: T = 601.8805182805821 K, F = -10.163302786949993, relative_change = 0.00033933143476219733 Iter 45: T = 601.2549506658918 K, F = -4.251915688714455, relative_change = 0.00014266638238219617 Iter 50: T = 600.9926404843129 K, F = -1.778465635356086, relative_change = 5.9797677801465254e-5 Iter 55: T = 600.8828179220367 K, F = -0.7438217785960448, relative_change = 2.5031422186230452e-5 Iter 60: T = 600.8368675553334 K, F = -0.3110832394818575, relative_change = 1.0472523835616735e-5 Iter 65: T = 600.8176468418046 K, F = -0.13010014101181397, relative_change = 4.380449265751374e-6 Iter 70: T = 600.8096078587595 K, F = -0.05440968022930831, relative_change = 1.8320812332124073e-6 Iter 75: T = 600.8062457461496 K, F = -0.022754821353619337, relative_change = 7.662201225348285e-7 Iter 80: T = 600.8048396505827 K, F = -0.009516345610885046, relative_change = 3.2044623124896694e-7 Iter 85: T = 600.8042516011401 K, F = -0.003979850707460986, relative_change = 1.3401510991260529e-7 Iter 90: T = 600.8040056712309 K, F = -0.0016644213258804053, relative_change = 5.604683643276362e-8 Iter 95: T = 600.8039028202994 K, F = -0.0006960809162459003, relative_change = 2.3439476799947264e-8 Iter 100: T = 600.803859806793 K, F = -0.00029110935967829876, relative_change = 9.802672719445905e-9 Iter 105: T = 600.8038418180275 K, F = -0.00012174541253373583, relative_change = 4.099595442765366e-9 Iter 110: T = 600.8038342949105 K, F = -5.0915386370697924e-5, relative_change = 1.7144999062512833e-9 Iter 115: T = 600.803831148653 K, F = -2.1293422261980943e-5, relative_change = 7.17024341450293e-10 Iter 120: T = 600.8038298328505 K, F = -8.90516388540874e-6, relative_change = 2.9986815921178843e-10 Iter 125: T = 600.8038292825662 K, F = -3.7242460689257406e-6, relative_change = 1.254084520376122e-10 Iter 130: T = 600.8038290524306 K, F = -1.5575240321918926e-6, relative_change = 5.24473073555843e-11 Iter 135: T = 600.8038289561852 K, F = -6.513746338976389e-7, relative_change = 2.193407289237056e-11 Iter 140: T = 600.8038289159342 K, F = -2.7241199296312857e-7, relative_change = 9.173069077869531e-12 Iter 145: T = 600.8038288991008 K, F = -1.1392641935392689e-7, relative_change = 3.836302885566262e-12 Iter 150: T = 600.8038288920609 K, F = -4.7645640544047296e-8, relative_change = 1.6043961475357125e-12 Iter 155: T = 600.8038288891167 K, F = -1.9926277627924094e-8, relative_change = 6.709877902084063e-13 Iter 160: T = 600.8038288878854 K, F = -8.333162881957179e-9, relative_change = 2.8060687761521634e-13 Converged in 162 iterations to T = 600.8038288876248 K Iter 1: T = 973.5089147146047 K, F = -6036.01898180497, relative_change = 0.026491085285395337 Iter 2: T = 949.2108722828548 K, F = -5107.953600693666, relative_change = 0.024959239781459145 Iter 3: T = 927.0384960866478 K, F = -4320.768564308137, relative_change = 0.023358746558477892 Iter 5: T = 888.7486979494732 K, F = -3087.52038923628, relative_change = 0.020029766777598115 Iter 10: T = 823.5502745909764 K, F = -1322.0189409796276, relative_change = 0.012016780569107875 Iter 15: T = 789.9920821907629 K, F = -560.3425656196863, relative_change = 0.006159301187587214 Iter 20: T = 774.3348295923774 K, F = -235.90000526354677, relative_change = 0.0028467958038280415 Iter 25: T = 767.4400628069956 K, F = -98.9530601214093, relative_change = 0.0012456026725058975 Iter 30: T = 764.4900195745341 K, F = -41.43730062479259, relative_change = 0.0005312186429062334 Iter 35: T = 763.2441454264218 K, F = -17.339166875657757, relative_change = 0.00022401485009356634 Iter 40: T = 762.7209467114427 K, F = -7.253136248393801, relative_change = 9.401373651676755e-5 Iter 45: T = 762.5017582927061 K, F = -3.033644581047244, relative_change = 3.93753392415819e-5 Iter 50: T = 762.4100243266396 K, F = -1.2687582943651758, relative_change = 1.647734572266008e-5 Iter 55: T = 762.3716483963188 K, F = -0.5306189530601069, relative_change = 6.892792363206946e-6 Iter 60: T = 762.3555970782138 K, F = -0.22191277188900926, relative_change = 2.8829577051955926e-6 Iter 65: T = 762.3488838674061 K, F = -0.09280684929397764, relative_change = 1.2057415036405103e-6 Iter 70: T = 762.346076259874 K, F = -0.03881298132112654, relative_change = 5.042649698719829e-7 Iter 75: T = 762.3449020739254 K, F = -0.016232060812714333, relative_change = 2.1089128955092828e-7 Iter 80: T = 762.3444110134238 K, F = -0.006788443169403302, relative_change = 8.81975456608448e-8 Iter 85: T = 762.3442056457226 K, F = -0.002839008262541909, relative_change = 3.6885317557861717e-8 Iter 90: T = 762.3441197584389 K, F = -0.0011873072053008027, relative_change = 1.542588916546018e-8 Iter 95: T = 762.3440838393409 K, F = -0.0004965460609839267, relative_change = 6.4512926278855314e-9 Iter 100: T = 762.3440688175433 K, F = -0.00020766149435225145, relative_change = 2.6980078960707093e-9 Iter 105: T = 762.3440625352478 K, F = -8.684651547641309e-5, relative_change = 1.128339148410494e-9 Iter 110: T = 762.3440599079167 K, F = -3.632024970312564e-5, relative_change = 4.718849117633964e-10 Iter 115: T = 762.3440588091356 K, F = -1.518956320678555e-5, relative_change = 1.9734792027406196e-10 Iter 120: T = 762.3440583496122 K, F = -6.352456530134276e-6, relative_change = 8.253325466865568e-11 Iter 125: T = 762.344058157434 K, F = -2.6566737597599754e-6, relative_change = 3.4516400263244424e-11 Iter 130: T = 762.3440580770628 K, F = -1.1110520271584434e-6, relative_change = 1.443516215005811e-11 Iter 135: T = 762.3440580434504 K, F = -4.6465398251260837e-7, relative_change = 6.036941042087937e-12 Iter 140: T = 762.3440580293934 K, F = -1.9432172193578623e-7, relative_change = 2.524693261602479e-12 Iter 145: T = 762.3440580235147 K, F = -8.126766937177621e-8, relative_change = 1.0558569325790314e-12 Iter 150: T = 762.3440580210562 K, F = -3.398847159274965e-8, relative_change = 4.4158967073792494e-13 Converged in 154 iterations to T = 762.3440580201687 K Iter 1: T = 976.4645687479922 K, F = -5362.570398744803, relative_change = 0.02353543125200781 Iter 2: T = 955.0902399852747 K, F = -4534.373001268617, relative_change = 0.02188950776792986 Iter 3: T = 935.7851441294159 K, F = -3832.345522027009, relative_change = 0.020212850103207416 Iter 5: T = 902.9607927430473 K, F = -2733.7255517431654, relative_change = 0.016860587683252652 Iter 10: T = 848.9183680165138 K, F = -1165.678436124919, relative_change = 0.009481648841506988 Iter 15: T = 822.2460465492932 K, F = -492.6007246948385, relative_change = 0.004642111221692491 Iter 20: T = 810.1236850280989 K, F = -207.03383334863463, relative_change = 0.0020917276218490586 Iter 25: T = 804.8570689243381 K, F = -86.77456205522516, relative_change = 0.0009041714698816339 Iter 30: T = 802.6176199165133 K, F = -36.324428575719445, relative_change = 0.00038353208461181046 Iter 35: T = 801.674408617637 K, F = -15.197375830674808, relative_change = 0.00016136149794505317 Iter 40: T = 801.2787689877282 K, F = -6.356790382355541, relative_change = 6.765336599346452e-5 Iter 45: T = 801.1131007382149 K, F = -2.6586725488369756, relative_change = 2.8323299544319602e-5 Iter 50: T = 801.0437800065522 K, F = -1.1119213281424332, relative_change = 1.1850371700117256e-5 Iter 55: T = 801.0147828953768 K, F = -0.4650245028582931, relative_change = 4.956882220183075e-6 Iter 60: T = 801.0026548455454 K, F = -0.1944798019700108, relative_change = 2.0731874639067025e-6 Iter 65: T = 800.9975825558082 K, F = -0.08133395088959494, relative_change = 8.670597649973619e-7 Iter 70: T = 800.9954612296513 K, F = -0.03401486022121114, relative_change = 3.6261964751403893e-7 Iter 75: T = 800.9945740597695 K, F = -0.014225426120502593, relative_change = 1.516527239842824e-7 Iter 80: T = 800.9942030336895 K, F = -0.0059492440259099055, relative_change = 6.34231301284737e-8 Iter 85: T = 800.9940478659698 K, F = -0.0024880450634712226, relative_change = 2.6524336652621787e-8 Iter 90: T = 800.9939829729447 K, F = -0.0010405301867522088, relative_change = 1.1092798929534721e-8 Iter 95: T = 800.993955833901 K, F = -0.0004351621570432007, relative_change = 4.639141804819618e-9 Iter 100: T = 800.9939444840278 K, F = -0.00018199001174956653, relative_change = 1.940144644615837e-9 Iter 105: T = 800.9939397373752 K, F = -7.611039681643117e-5, relative_change = 8.113916886414373e-10 Iter 110: T = 800.9939377522683 K, F = -3.1830276178479444e-5, relative_change = 3.393336905787432e-10 Iter 115: T = 800.9939369220729 K, F = -1.3311802750326507e-5, relative_change = 1.4191341452670048e-10 Iter 120: T = 800.9939365748752 K, F = -5.567154994001733e-6, relative_change = 5.934988602571502e-11 Iter 125: T = 800.9939364296731 K, F = -2.3282513117450776e-6, relative_change = 2.482083761983265e-11 Iter 130: T = 800.9939363689477 K, F = -9.737024115885617e-7, relative_change = 1.0380369737100408e-11 Iter 135: T = 800.9939363435518 K, F = -4.072148455103175e-7, relative_change = 4.341203851570169e-12 Iter 140: T = 800.9939363329307 K, F = -1.7030122467787123e-7, relative_change = 1.8155338409110986e-12 Iter 145: T = 800.9939363284889 K, F = -7.122115119884143e-8, relative_change = 7.592688216901496e-13 Iter 150: T = 800.9939363266313 K, F = -2.9784659627551946e-8, relative_change = 3.175259461471766e-13 Converged in 153 iterations to T = 800.9939363260875 K Iter 1: T = 967.2590808463319 K, F = -7460.0495738177115, relative_change = 0.03274091915366802 Iter 2: T = 936.5906514775622 K, F = -6323.784396161316, relative_change = 0.031706530314438035 Iter 3: T = 907.9635150479045 K, F = -5359.0843814950895, relative_change = 0.030565259630229793 Iter 5: T = 856.6959161648241 K, F = -3845.040737080789, relative_change = 0.027966822516053313 Iter 10: T = 761.2635358967879 K, F = -1665.1229531335857, relative_change = 0.02006295859817625 Iter 15: T = 705.3065661356703 K, F = -713.0057511873479, relative_change = 0.012044919200445441 Iter 20: T = 676.4919558882899 K, F = -302.2201062696596, relative_change = 0.00617687918656801 Iter 25: T = 663.0439293506345 K, F = -127.23484416511612, relative_change = 0.0028557589875614284 Iter 30: T = 657.1210791709889 K, F = -53.37175112980395, relative_change = 0.0012497035281999 Iter 35: T = 654.586701032493 K, F = -22.349897065245845, relative_change = 0.0005330017785688764 Iter 40: T = 653.5163377338166 K, F = -9.352185122616431, relative_change = 0.0002247730165399847 Iter 45: T = 653.0668377454292 K, F = -3.912109859904223, relative_change = 9.433302634462293e-5 Iter 50: T = 652.878523513292 K, F = -1.636251457873389, relative_change = 3.950926056007892e-5 Iter 55: T = 652.7997107109329 K, F = -0.684327988382043, relative_change = 1.6533421736939915e-5 Iter 60: T = 652.7667401785101 K, F = -0.28619905241899946, relative_change = 6.9162560224085385e-6 Iter 65: T = 652.7529497446129 K, F = -0.11969272147940546, relative_change = 2.8927725877565633e-6 Iter 70: T = 652.7471821119589 K, F = -0.050057075944531904, relative_change = 1.2098465721263665e-6 Iter 75: T = 652.7447699651401 K, F = -0.020934493268317034, relative_change = 5.059818228024329e-7 Iter 80: T = 652.743761167095 K, F = -0.008755059694280143, relative_change = 2.116093091698143e-7 Iter 85: T = 652.7433392740543 K, F = -0.003661471325748178, relative_change = 8.849783200709033e-8 Iter 90: T = 652.7431628330573 K, F = -0.0015312711754064678, relative_change = 3.701090124184371e-8 Iter 95: T = 652.7430890432748 K, F = -0.0006403959168266304, relative_change = 1.547840981439094e-8 Iter 100: T = 652.7430581834977 K, F = -0.0002678212250880607, relative_change = 6.473257406974574e-9 Iter 105: T = 652.743045277569 K, F = -0.00011200603593308767, relative_change = 2.7071938370189827e-9 Iter 110: T = 652.743039880155 K, F = -4.684226223139465e-5, relative_change = 1.1321808468690872e-9 Iter 115: T = 652.7430376228921 K, F = -1.9589993743185374e-5, relative_change = 4.734915654142208e-10 Iter 120: T = 652.7430366788777 K, F = -8.192768572445885e-6, relative_change = 1.980198102157981e-10 Iter 125: T = 652.7430362840796 K, F = -3.4263129086720134e-6, relative_change = 8.281423158354522e-11 Iter 130: T = 652.7430361189703 K, F = -1.4329247138289425e-6, relative_change = 3.46338943344545e-11 Iter 135: T = 652.7430360499197 K, F = -5.992666629039967e-7, relative_change = 1.4484318744263772e-11 Iter 140: T = 652.7430360210419 K, F = -2.5062067265935184e-7, relative_change = 6.057519852470076e-12 Iter 145: T = 652.7430360089649 K, F = -1.0481188367217342e-7, relative_change = 2.5333108376014535e-12 Iter 150: T = 652.7430360039141 K, F = -4.383331769775012e-8, relative_change = 1.0594544710516422e-12 Iter 155: T = 652.7430360018018 K, F = -1.833145774066125e-8, relative_change = 4.4307266446167005e-13 Converged in 159 iterations to T = 652.7430360010393 K Iter 1: T = 970.2828743354399 K, F = -6771.075350954289, relative_change = 0.02971712566456007 Iter 2: T = 942.7288647596963 K, F = -5735.039151940057, relative_change = 0.028397913953305338 Iter 3: T = 917.2935798407872 K, F = -4855.779874278076, relative_change = 0.026980488101838927 Iter 5: T = 872.5650606754114 K, F = -3476.8736416684683, relative_change = 0.02389521388841392 Iter 10: T = 793.1001560551739 K, F = -1496.7006916752493, relative_change = 0.015589514846327958 Iter 15: T = 749.7453750891929 K, F = -637.1731938601208, relative_change = 0.008550166460762917 Iter 20: T = 728.6793294235904 K, F = -268.97164158386204, relative_change = 0.004117873563329066 Iter 25: T = 719.1922972620047 K, F = -112.9806688301349, relative_change = 0.0018395088369015334 Iter 30: T = 715.0892718810322 K, F = -47.34116187798872, relative_change = 0.00079194682385887 Iter 35: T = 713.348173219885 K, F = -19.81500362836225, relative_change = 0.00033533505270621827 Iter 40: T = 712.6155071141237 K, F = -8.289763386909074, relative_change = 0.00014097738170486712 Iter 45: T = 712.3082984100525 K, F = -3.467386138015196, relative_change = 5.9088191695983456e-5 Iter 50: T = 712.1796796635463 K, F = -1.45019132196543, relative_change = 2.4734157240291257e-5 Iter 55: T = 712.1258651639349 K, F = -0.6065029131630808, relative_change = 1.0348107801163812e-5 Iter 60: T = 712.1033549907614 K, F = -0.25364948785048913, relative_change = 4.328400139734046e-6 Iter 65: T = 712.0939402139987 K, F = -0.10607972193000581, relative_change = 1.8103107182040686e-6 Iter 70: T = 712.0900027101119 K, F = -0.0443638899786194, relative_change = 7.571149173313721e-7 Iter 75: T = 712.088355975908 K, F = -0.01855352319124237, relative_change = 3.166382354605152e-7 Iter 80: T = 712.0876672879655 K, F = -0.007759307524129788, relative_change = 1.3242254480302658e-7 Iter 85: T = 712.0873792697381 K, F = -0.0032450355173861967, relative_change = 5.538080394055245e-8 Iter 90: T = 712.0872588169525 K, F = -0.001357112686497186, relative_change = 2.316093359941018e-8 Iter 95: T = 712.0872084421375 K, F = -0.0005675607471120614, relative_change = 9.686182537226395e-9 Iter 100: T = 712.0871873747843 K, F = -0.00023736068429358603, relative_change = 4.0508778148959455e-9 Iter 105: T = 712.0871785641649 K, F = -9.926707222296383e-5, relative_change = 1.6941255688697786e-9 Iter 110: T = 712.0871748794586 K, F = -4.151467458213265e-5, relative_change = 7.08503553601778e-10 Iter 115: T = 712.0871733384705 K, F = -1.736193271817399e-5, relative_change = 2.96304650795847e-10 Iter 120: T = 712.0871726940107 K, F = -7.260966948696712e-6, relative_change = 1.2391813286963344e-10 Iter 125: T = 712.0871724244901 K, F = -3.036622766905417e-6, relative_change = 5.182403760286815e-11 Iter 130: T = 712.0871723117733 K, F = -1.269951965254812e-6, relative_change = 2.1673432461903133e-11 Iter 135: T = 712.0871722646336 K, F = -5.311078672409764e-7, relative_change = 9.064067625542931e-12 Iter 140: T = 712.0871722449194 K, F = -2.2211489858481315e-7, relative_change = 3.790688456823903e-12 Iter 145: T = 712.0871722366747 K, F = -9.289210889384947e-8, relative_change = 1.5853283466210091e-12 Iter 150: T = 712.0871722332266 K, F = -3.884863786218773e-8, relative_change = 6.63004076076457e-13 Iter 155: T = 712.0871722317846 K, F = -1.6247154843718192e-8, relative_change = 2.772794743627019e-13 Converged in 157 iterations to T = 712.0871722314795 K Iter 1: T = 964.3428482415965 K, F = -8124.515946860066, relative_change = 0.03565715175840358 Iter 2: T = 930.6123267015887 K, F = -6892.47329151547, relative_change = 0.03497772768420766 Iter 3: T = 898.7775210413564 K, F = -5846.192095255139, relative_change = 0.03420845044366198 Iter 5: T = 840.6821574707168 K, F = -4203.265965059929, relative_change = 0.03237498142122728 Iter 10: T = 726.6348062962928 K, F = -1832.9693121939522, relative_change = 0.025969650284804326 Iter 15: T = 653.103099836886 K, F = -791.4131952913046, relative_change = 0.017765971397849026 Iter 20: T = 611.5512816861857 K, F = -337.85728770009536, relative_change = 0.010173422272181896 Iter 25: T = 590.8062586896536 K, F = -142.88925296080293, relative_change = 0.005042573993793747 Iter 30: T = 581.3120164954223 K, F = -60.08091179546082, relative_change = 0.002287333728913573 Iter 35: T = 577.1727212678991 K, F = -25.18708726274305, relative_change = 0.000991827477448603 Iter 40: T = 575.4098142961451 K, F = -10.54445707519098, relative_change = 0.0004212957040360987 Iter 45: T = 574.6667979906018 K, F = -4.411752376506544, relative_change = 0.00017735437490738 Iter 50: T = 574.3550403468712 K, F = -1.8453877582172744, relative_change = 7.437718992956697e-5 Iter 55: T = 574.2244802420031 K, F = -0.7718228437596237, relative_change = 3.114151274486078e-5 Iter 60: T = 574.169847003691 K, F = -0.32279597282775646, relative_change = 1.303007436570337e-5 Iter 65: T = 574.1469932258397 K, F = -0.13499895788648006, relative_change = 5.4504391942361e-6 Iter 70: T = 574.1374345397423 K, F = -0.0564584960142927, relative_change = 2.279632345459265e-6 Iter 75: T = 574.1334368145552 K, F = -0.02361167318826929, relative_change = 9.534033333031514e-7 Iter 80: T = 574.1317648886651 K, F = -0.009874693485454278, relative_change = 3.9873058274799756e-7 Iter 85: T = 574.1310656641358 K, F = -0.004129716453424415, relative_change = 1.667549274413156e-7 Iter 90: T = 574.1307732391856 K, F = -0.0017270970391603524, relative_change = 6.973908331763539e-8 Iter 95: T = 574.1306509434214 K, F = -0.0007222926601611057, relative_change = 2.9165749201049438e-8 Iter 100: T = 574.1305997978446 K, F = -0.0003020714251602552, relative_change = 1.2197470152332835e-8 Iter 105: T = 574.1305784081488 K, F = -0.0001263298785623146, relative_change = 5.101128634084677e-9 Iter 110: T = 574.1305694627218 K, F = -5.283266450301083e-5, relative_change = 2.133353097224661e-9 Iter 115: T = 574.1305657216373 K, F = -2.2095251221598833e-5, relative_change = 8.921937693900016e-10 Iter 120: T = 574.1305641570709 K, F = -9.240497598483888e-6, relative_change = 3.731260806997689e-10 Iter 125: T = 574.1305635027505 K, F = -3.864485958293695e-6, relative_change = 1.5604576398545582e-10 Iter 130: T = 574.1305632291061 K, F = -1.6161743715548127e-6, relative_change = 6.526020998317049e-11 Iter 135: T = 574.1305631146646 K, F = -6.759035136583158e-7, relative_change = 2.7292602857653965e-11 Iter 140: T = 574.1305630668038 K, F = -2.826700141178584e-7, relative_change = 1.1414055826388268e-11 Iter 145: T = 574.1305630467879 K, F = -1.1821590079064137e-7, relative_change = 4.773491435326142e-12 Iter 150: T = 574.1305630384169 K, F = -4.943849452043736e-8, relative_change = 1.9962985402703994e-12 Iter 155: T = 574.1305630349162 K, F = -2.0675962997263042e-8, relative_change = 8.3488373081944e-13 Iter 160: T = 574.1305630334522 K, F = -8.646997728956052e-9, relative_change = 3.4916089399953653e-13 Converged in 163 iterations to T = 574.1305630330236 K Iter 1: T = 966.441048108459 K, F = -7646.439111292099, relative_change = 0.03355895189154104 Iter 2: T = 934.9195093048872 K, F = -6483.219805466952, relative_change = 0.032616100966806415 Iter 3: T = 905.4057082925038 K, F = -5495.552868702449, relative_change = 0.03156828017668276 Iter 5: T = 852.2772049295866 K, F = -3945.2051593373467, relative_change = 0.029152389539572533 Iter 10: T = 751.985767638017 K, F = -1711.6120901457707, relative_change = 0.02153028645720815 Iter 15: T = 691.7782857852483 K, F = -734.3725492835767, relative_change = 0.013335094078371254 Iter 20: T = 660.11262048681 K, F = -311.76328893123537, relative_change = 0.007004774391033409 Iter 25: T = 645.1234111848439 K, F = -131.37436499053186, relative_change = 0.003284494350675911 Iter 30: T = 638.4713978589037 K, F = -55.13358169807623, relative_change = 0.0014473533703102254 Iter 35: T = 635.6147921709336 K, F = -23.09249088095377, relative_change = 0.0006192375552155046 Iter 40: T = 634.4064312333674 K, F = -9.663790229555783, relative_change = 0.00026149336334829943 Iter 45: T = 633.8986356145869 K, F = -4.042611888055825, relative_change = 0.00010980686860409829 Iter 50: T = 633.6858381369983 K, F = -1.6908615191695149, relative_change = 4.600123372785849e-5 Iter 55: T = 633.5967679835375 K, F = -0.7071722759507673, relative_change = 1.9252062918465632e-5 Iter 60: T = 633.559504520216 K, F = -0.29575380561126513, relative_change = 8.053858388441667e-6 Iter 65: T = 633.5439181739199 K, F = -0.12368880822740641, relative_change = 3.3686424659913195e-6 Iter 70: T = 633.5373993717204 K, F = -0.051728317732801565, relative_change = 1.4088804542835701e-6 Iter 75: T = 633.5346730597656 K, F = -0.021633431892776223, relative_change = 5.89223565513672e-7 Iter 80: T = 633.5335328711245 K, F = -0.009047365109116745, relative_change = 2.464225940957105e-7 Iter 85: T = 633.5330560284453 K, F = -0.0037837171037213846, relative_change = 1.0305726739064738e-7 Iter 90: T = 633.5328566067623 K, F = -0.0015823958487681256, relative_change = 4.3099849177579726e-8 Iter 95: T = 633.5327732061664 K, F = -0.0006617768713484407, relative_change = 1.8024883750271543e-8 Iter 100: T = 633.5327383270296 K, F = -0.00027676299574264096, relative_change = 7.538223755197922e-9 Iter 105: T = 633.532723740156 K, F = -0.00011574559145544061, relative_change = 3.15257558321036e-9 Iter 110: T = 633.5327176397509 K, F = -4.840618804519137e-5, relative_change = 1.3184448028189452e-9 Iter 115: T = 633.5327150884885 K, F = -2.0244046467332577e-5, relative_change = 5.513893872348498e-10 Iter 120: T = 633.5327140215202 K, F = -8.466301172849189e-6, relative_change = 2.3059760610642517e-10 Iter 125: T = 633.5327135753014 K, F = -3.540709064719927e-6, relative_change = 9.64386950466695e-11 Iter 130: T = 633.5327133886873 K, F = -1.4807676261274771e-6, relative_change = 4.033183611561498e-11 Iter 135: T = 633.532713310643 K, F = -6.192748037148199e-7, relative_change = 1.6867258216553118e-11 Iter 140: T = 633.5327132780038 K, F = -2.589872579727981e-7, relative_change = 7.0540653840446176e-12 Iter 145: T = 633.5327132643538 K, F = -1.0831098656849392e-7, relative_change = 2.9500786529936425e-12 Iter 150: T = 633.5327132586452 K, F = -4.5296546569151275e-8, relative_change = 1.2337471878645858e-12 Iter 155: T = 633.5327132562579 K, F = -1.8944039392732037e-8, relative_change = 5.159809543607846e-13 Converged in 160 iterations to T = 633.5327132552594 K Iter 1: T = 963.6164708250773 K, F = -8290.021732177262, relative_change = 0.03638352917492274 Iter 2: T = 929.1141879412817 K, F = -7034.2574918840655, relative_change = 0.035804994962626215 Iter 3: T = 896.4598347564095 K, F = -5967.784770171018, relative_change = 0.035145683500138254 Iter 5: T = 836.5766679877879 K, F = -4292.999001718701, relative_change = 0.03355567652342373 Iter 10: T = 717.2694473130471 K, F = -1875.7716471142655, relative_change = 0.02778340947229024 Iter 15: T = 638.0554584231172 K, F = -812.0888973994977, relative_change = 0.019842627585199703 Iter 20: T = 591.7730124550894 K, F = -347.63341140381647, relative_change = 0.01185760806209922 Iter 25: T = 568.0137774795286 K, F = -147.31738119804427, relative_change = 0.006059833504283752 Iter 30: T = 556.9474534702472 K, F = -62.012594593679786, relative_change = 0.00279609277968044 Iter 35: T = 552.0787477228891 K, F = -26.01102370656544, relative_change = 0.0012224110225577355 Iter 40: T = 549.9964710250597 K, F = -10.892034569479982, relative_change = 0.0005211358281382445 Iter 45: T = 549.1172390271248 K, F = -4.557652229352389, relative_change = 0.00021972803559482202 Iter 50: T = 548.748039194492 K, F = -1.906500153113889, relative_change = 9.220846141254795e-5 Iter 55: T = 548.5933721165516 K, F = -0.7973975326195364, relative_change = 3.861815248452416e-5 Iter 60: T = 548.5286423054076 K, F = -0.3334945496789149, relative_change = 1.6160295311991472e-5 Iter 65: T = 548.501563435975 K, F = -0.13947374453709727, relative_change = 6.7601305162226215e-6 Iter 70: T = 548.4902373137911 K, F = -0.05832999517100393, relative_change = 2.8274651102260683e-6 Iter 75: T = 548.4855003465871 K, F = -0.024394372218294297, relative_change = 1.1825317687715057e-6 Iter 80: T = 548.483519247014 K, F = -0.010202030319149763, relative_change = 4.945580196851938e-7 Iter 85: T = 548.482690719937 K, F = -0.004266613107558298, relative_change = 2.0683166372593334e-7 Iter 90: T = 548.4823442186935 K, F = -0.0017843489387767142, relative_change = 8.649975059262583e-8 Iter 95: T = 548.4821993075036 K, F = -0.0007462361026898678, relative_change = 3.6175277467121045e-8 Iter 100: T = 548.4821387038729 K, F = -0.0003120848612328253, relative_change = 1.5128941559639595e-8 Iter 105: T = 548.4821133587037 K, F = -0.00013051761811658236, relative_change = 6.3271055301913064e-9 Iter 110: T = 548.4821027590501 K, F = -5.458402720973088e-5, relative_change = 2.646071367049455e-9 Iter 115: T = 548.4820983261482 K, F = -2.2827692496979468e-5, relative_change = 1.1066187107114935e-9 Iter 120: T = 548.4820964722555 K, F = -9.546813743793736e-6, relative_change = 4.6280117396725953e-10 Iter 125: T = 548.4820956969355 K, F = -3.992591769891307e-6, relative_change = 1.935489913495115e-10 Iter 130: T = 548.4820953726874 K, F = -1.6697496990347727e-6, relative_change = 8.094450662375451e-11 Iter 135: T = 548.4820952370828 K, F = -6.98308670304959e-7, relative_change = 3.38519305547005e-11 Iter 140: T = 548.4820951803714 K, F = -2.920404590378567e-7, relative_change = 1.4157254182540121e-11 Iter 145: T = 548.482095156654 K, F = -1.2213462147192544e-7, relative_change = 5.920723747383906e-12 Iter 150: T = 548.4820951467352 K, F = -5.1077954810185844e-8, relative_change = 2.476107563882059e-12 Iter 155: T = 548.482095142587 K, F = -2.1361230201355497e-8, relative_change = 1.0355290041244758e-12 Iter 160: T = 548.4820951408523 K, F = -8.933564860091892e-9, relative_change = 4.3307269458688e-13 Converged in 164 iterations to T = 548.4820951402262 K Iter 1: T = 976.3146179822196 K, F = -5396.736823366092, relative_change = 0.02368538201778041 Iter 2: T = 954.7933087997229 K, F = -4563.450883429847, relative_change = 0.022043415909284925 Iter 3: T = 935.3454591650287 K, F = -3857.0851099036518, relative_change = 0.02036864885358506 Iter 5: T = 902.2530897057733 K, F = -2751.610121713789, relative_change = 0.0170136008944467 Iter 10: T = 847.6819860562962 K, F = -1173.5348303292128, relative_change = 0.00959689140900856 Iter 15: T = 820.6968806557877 K, F = -495.98716846023734, relative_change = 0.004708160841106255 Iter 20: T = 808.4182450127943 K, F = -208.47219654741014, relative_change = 0.002123814116629736 Iter 25: T = 803.0806613136533 K, F = -87.38040813493708, relative_change = 0.0009185131207732755 Iter 30: T = 800.8104417677998 K, F = -36.57859033640258, relative_change = 0.00038970364510358126 Iter 35: T = 799.8541620328635 K, F = -15.303810279670863, relative_change = 0.00016397387302756467 Iter 40: T = 799.4530213834053 K, F = -6.401327408615242, relative_change = 6.875144990851754e-5 Iter 45: T = 799.2850462559192 K, F = -2.6773028304395323, relative_change = 2.8783508804960277e-5 Iter 50: T = 799.2147596571026 K, F = -1.1197134990670514, relative_change = 1.204300806754332e-5 Iter 55: T = 799.1853584155104 K, F = -0.468283415621495, relative_change = 5.037475049785604e-6 Iter 60: T = 799.1730613196943 K, F = -0.19584274161861837, relative_change = 2.106897596935649e-6 Iter 65: T = 799.1679183269911 K, F = -0.08190395262262395, relative_change = 8.811586634618568e-7 Iter 70: T = 799.1657674309744 K, F = -0.0342532424661659, relative_change = 3.685161358063945e-7 Iter 75: T = 799.1648678944433 K, F = -0.014325120548635328, relative_change = 1.541187339112509e-7 Iter 80: T = 799.1644916964513 K, F = -0.0059909374502002954, relative_change = 6.445444986433982e-8 Iter 85: T = 799.1643343657707 K, F = -0.002505481757667738, relative_change = 2.6955647767829705e-8 Iter 90: T = 799.1642685681683 K, F = -0.0010478224216754484, relative_change = 1.1273178544466077e-8 Iter 95: T = 799.1642410508196 K, F = -0.00043821185616710334, relative_change = 4.714578732585156e-9 Iter 100: T = 799.1642295427347 K, F = -0.00018326543420676966, relative_change = 1.971693293116442e-9 Iter 105: T = 799.1642247299159 K, F = -7.664379238347951e-5, relative_change = 8.245856966357394e-10 Iter 110: T = 799.1642227171376 K, F = -3.205334922529168e-5, relative_change = 3.4485158935184304e-10 Iter 115: T = 799.1642218753697 K, F = -1.3405092683216324e-5, relative_change = 1.442210456045529e-10 Iter 120: T = 799.1642215233323 K, F = -5.606170935368304e-6, relative_change = 6.031497543055085e-11 Iter 125: T = 799.1642213761061 K, F = -2.3445689256718083e-6, relative_change = 2.5224456924604444e-11 Iter 130: T = 799.1642213145343 K, F = -9.805280699604069e-7, relative_change = 1.0549183605710267e-11 Iter 135: T = 799.1642212887842 K, F = -4.1006903017670737e-7, relative_change = 4.411799747036267e-12 Iter 140: T = 799.1642212780152 K, F = -1.7149606912347792e-7, relative_change = 1.8450706070126287e-12 Iter 145: T = 799.1642212735115 K, F = -7.172175087166721e-8, relative_change = 7.716310647625801e-13 Iter 150: T = 799.164221271628 K, F = -2.999596837582885e-8, relative_change = 3.227168987843087e-13 Converged in 153 iterations to T = 799.1642212710765 K Iter 1: T = 973.4825054568894 K, F = -6042.036356297073, relative_change = 0.02651749454311056 Iter 2: T = 949.1580849923105 K, F = -5113.082727335589, relative_change = 0.02498701345758919 Iter 3: T = 926.9595726653304 K, F = -4325.140196252653, relative_change = 0.023387581771649704 Iter 5: T = 888.6191449670728 K, F = -3090.6939424424577, relative_change = 0.020059605498195684 Iter 10: T = 823.313516578241 K, F = -1323.4307670370004, relative_change = 0.012042215176155944 Iter 15: T = 789.6860877795918 K, F = -560.958094819113, relative_change = 0.006175232545019449 Iter 20: T = 773.9922425072558 K, F = -236.1633337235238, relative_change = 0.0028549289590168708 Iter 25: T = 767.0803622849447 K, F = -99.0643827232188, relative_change = 0.0012493256494145212 Iter 30: T = 764.1227968288587 K, F = -41.484080415355656, relative_change = 0.0005328378133902908 Iter 35: T = 762.8737087618346 K, F = -17.35877093817362, relative_change = 0.00022470336205236599 Iter 40: T = 762.349153721539 K, F = -7.261342017412824, relative_change = 9.430370328633459e-5 Iter 45: T = 762.129395908393 K, F = -3.0370775825994807, relative_change = 3.949696334473733e-5 Iter 50: T = 762.0374234346563 K, F = -1.2701942358724958, relative_change = 1.6528272935793793e-5 Iter 55: T = 761.9989476909606 K, F = -0.5312195193318772, relative_change = 6.9141016887184735e-6 Iter 60: T = 761.9828546180486 K, F = -0.22216394259290617, relative_change = 2.8918714370598444e-6 Iter 65: T = 761.9761239428416 K, F = -0.0929118930555407, relative_change = 1.2094696681838287e-6 Iter 70: T = 761.9733090311322 K, F = -0.038856912080545425, relative_change = 5.058241914610138e-7 Iter 75: T = 761.9721317904268 K, F = -0.01625043321418429, relative_change = 2.1154338486798144e-7 Iter 80: T = 761.9716394523787 K, F = -0.006796126732031338, relative_change = 8.847026148728804e-8 Iter 85: T = 761.9714335503905 K, F = -0.002842221623168273, relative_change = 3.699937091169576e-8 Iter 90: T = 761.971347439661 K, F = -0.0011886510711833775, relative_change = 1.5473587693723224e-8 Iter 95: T = 761.9713114271153 K, F = -0.0004971080790115989, relative_change = 6.471240695635318e-9 Iter 100: T = 761.971296366237 K, F = -0.00020789653823427567, relative_change = 2.706350433867384e-9 Iter 105: T = 761.9712900675974 K, F = -8.694481406068544e-5, relative_change = 1.1318281031278516e-9 Iter 110: T = 761.971287433431 K, F = -3.63613597239576e-5, relative_change = 4.73344039268248e-10 Iter 115: T = 761.9712863317912 K, F = -1.520675619071099e-5, relative_change = 1.979581485310788e-10 Iter 120: T = 761.9712858710723 K, F = -6.359646534948027e-6, relative_change = 8.278845542113028e-11 Iter 125: T = 761.9712856783941 K, F = -2.659680504168982e-6, relative_change = 3.46231256578386e-11 Iter 130: T = 761.9712855978138 K, F = -1.1123097292120576e-6, relative_change = 1.4479799165339759e-11 Iter 135: T = 761.9712855641142 K, F = -4.6518160690123267e-7, relative_change = 6.0556300712479885e-12 Iter 140: T = 761.9712855500206 K, F = -1.945460500474283e-7, relative_change = 2.532556948803879e-12 Iter 145: T = 761.9712855441264 K, F = -8.13611209515841e-8, relative_change = 1.0591408676031344e-12 Iter 150: T = 761.9712855416615 K, F = -3.402667791974068e-8, relative_change = 4.429516795321387e-13 Converged in 154 iterations to T = 761.9712855407716 K Iter 1: T = 964.5742307105909 K, F = -8071.795231198125, relative_change = 0.035425769289409104 Iter 2: T = 931.0887858981009 K, F = -6847.320185967893, relative_change = 0.034715259589530624 Iter 3: T = 899.5132892338223 K, F = -5807.481763605675, relative_change = 0.03391244437964295 Iter 5: T = 841.9798458286365 K, F = -4174.725372102453, relative_change = 0.03200614672114102 Iter 10: T = 729.5502781623557 K, F = -1819.4250742623967, relative_change = 0.025425000741008744 Iter 15: T = 657.695662846039 K, F = -784.9392380642428, relative_change = 0.01717495899608732 Iter 20: T = 617.476364120924 K, F = -334.8377253239141, relative_change = 0.00971893967673156 Iter 25: T = 597.5479215827152 K, F = -141.5370330046466, relative_change = 0.004778343644952999 Iter 30: T = 588.4691648543285 K, F = -59.49507158479021, relative_change = 0.0021579726859464 Iter 35: T = 584.5201791959387 K, F = -24.9380565671723, relative_change = 0.0009337947333077655 Iter 40: T = 582.8401026106874 K, F = -10.439565552537326, relative_change = 0.0003962823365061232 Iter 45: T = 582.1323224337872 K, F = -4.367752264913458, relative_change = 0.00016675906377656372 Iter 50: T = 581.8354073229702 K, F = -1.826962850868778, relative_change = 6.992226039523157e-5 Iter 55: T = 581.7110733114106 K, F = -0.7641131938026677, relative_change = 2.927421295362397e-5 Iter 60: T = 581.6590471946007 K, F = -0.31957098088665853, relative_change = 1.224841175221252e-5 Iter 65: T = 581.6372843232828 K, F = -0.1336501009751422, relative_change = 5.123409773876233e-6 Iter 70: T = 581.6281819683422 K, F = -0.05589436576706078, relative_change = 2.142842202725458e-6 Iter 75: T = 581.6243751039673 K, F = -0.023375743302090524, relative_change = 8.961921201276702e-7 Iter 80: T = 581.6227830014394 K, F = -0.009776024110750514, relative_change = 3.7480348066174557e-7 Iter 85: T = 581.6221171605342 K, F = -0.004088451624090994, relative_change = 1.567482070128658e-7 Iter 90: T = 581.6218386971088 K, F = -0.0017098395734807537, relative_change = 6.555413221752653e-8 Iter 95: T = 581.6217222402375 K, F = -0.0007150753775657659, relative_change = 2.7415548954991456e-8 Iter 100: T = 581.6216735365587 K, F = -0.00029905307175770446, relative_change = 1.1465514901917806e-8 Iter 105: T = 581.6216531680941 K, F = -0.00012506756759395055, relative_change = 4.795016117535359e-9 Iter 110: T = 581.6216446497582 K, F = -5.23047503526719e-5, relative_change = 2.005333143335808e-9 Iter 115: T = 581.6216410872883 K, F = -2.187447084145422e-5, relative_change = 8.386542781428287e-10 Iter 120: T = 581.6216395974208 K, F = -9.148164669348091e-6, relative_change = 3.507352285811441e-10 Iter 125: T = 581.6216389743404 K, F = -3.8258711671512735e-6, relative_change = 1.4668164092769106e-10 Iter 130: T = 581.6216387137607 K, F = -1.6000246508829363e-6, relative_change = 6.134400024547072e-11 Iter 135: T = 581.6216386047831 K, F = -6.691485276433262e-7, relative_change = 2.5654759417596433e-11 Iter 140: T = 581.6216385592076 K, F = -2.798458887953714e-7, relative_change = 1.0729126131401816e-11 Iter 145: T = 581.6216385401473 K, F = -1.1703508445704003e-7, relative_change = 4.487056031232023e-12 Iter 150: T = 581.621638532176 K, F = -4.894502791952249e-8, relative_change = 1.8765234695076295e-12 Iter 155: T = 581.6216385288424 K, F = -2.0469651751398033e-8, relative_change = 7.847943613057658e-13 Iter 160: T = 581.6216385274481 K, F = -8.559983388778392e-9, relative_change = 3.2818470866277236e-13 Converged in 163 iterations to T = 581.62163852704 K Iter 1: T = 966.4826264797474 K, F = -7636.965439842791, relative_change = 0.03351737352025262 Iter 2: T = 935.0045582274316 K, F = -6475.114489112532, relative_change = 0.03256971971339974 Iter 3: T = 905.536067482875 K, F = -5488.613358795968, relative_change = 0.03151694875201742 Iter 5: T = 852.5031413711322 K, F = -3940.108125929523, relative_change = 0.02909120821388773 Iter 10: T = 752.4649693574588 K, F = -1709.238682248696, relative_change = 0.021452538177647078 Iter 15: T = 692.4844163196846 K, F = -733.2760897406596, relative_change = 0.013264747401270592 Iter 20: T = 660.974332175093 K, F = -311.2710888723127, relative_change = 0.006958615933845177 Iter 25: T = 646.0704878038276 K, F = -131.16013897105165, relative_change = 0.003260273487973863 Iter 30: T = 639.4591919197378 K, F = -55.04224126251489, relative_change = 0.0014361142139630717 Iter 35: T = 636.6206495321371 K, F = -23.05395982502639, relative_change = 0.000614319359923593 Iter 40: T = 635.420037667588 K, F = -9.647616061309646, relative_change = 0.000259396457568366 Iter 45: T = 634.9155179661824 K, F = -4.0358370030594655, relative_change = 0.00010892276079525921 Iter 50: T = 634.7040967491989 K, F = -1.68802630614976, relative_change = 4.563022629691233e-5 Iter 55: T = 634.6156032606413 K, F = -0.7059862271695518, relative_change = 1.9096681451034383e-5 Iter 60: T = 634.5785811576629 K, F = -0.295257728269739, relative_change = 7.988837161423712e-6 Iter 65: T = 634.5630957847928 K, F = -0.12348133268307815, relative_change = 3.3414430143861317e-6 Iter 70: T = 634.5566192167736 K, F = -0.05164154721999881, relative_change = 1.3975041295025224e-6 Iter 75: T = 634.5539105686872 K, F = -0.021597143119389872, relative_change = 5.844656425857624e-7 Iter 80: T = 634.552777767467 K, F = -0.009032188657646378, relative_change = 2.444327375424941e-7 Iter 85: T = 634.5523040143271 K, F = -0.003777370122103718, relative_change = 1.0222507928100097e-7 Iter 90: T = 634.5521058847316 K, F = -0.001579741463325457, relative_change = 4.275181705104108e-8 Iter 95: T = 634.5520230245032 K, F = -0.0006606667755722495, relative_change = 1.7879332369422945e-8 Iter 100: T = 634.5519883713547 K, F = -0.00027629874064510895, relative_change = 7.477352402622505e-9 Iter 105: T = 634.551973878992 K, F = -0.00011555143375518995, relative_change = 3.127118432562559e-9 Iter 110: T = 634.5519678181126 K, F = -4.8324990635895126e-5, relative_change = 1.3077983624424682e-9 Iter 115: T = 634.5519652833805 K, F = -2.021008871128105e-5, relative_change = 5.469369176546844e-10 Iter 120: T = 634.5519642233252 K, F = -8.452100806632945e-6, relative_change = 2.2873556201034411e-10 Iter 125: T = 634.5519637799973 K, F = -3.534769946633709e-6, relative_change = 9.565995620584654e-11 Iter 130: T = 634.5519635945924 K, F = -1.4782829563797506e-6, relative_change = 4.000613482598066e-11 Iter 135: T = 634.5519635170538 K, F = -6.182362496942595e-7, relative_change = 1.673106130813872e-11 Iter 140: T = 634.5519634846262 K, F = -2.5855361013293887e-7, relative_change = 6.99712497571373e-12 Iter 145: T = 634.5519634710647 K, F = -1.0813083667349233e-7, relative_change = 2.926298254435054e-12 Iter 150: T = 634.551963465393 K, F = -4.522189289701828e-8, relative_change = 1.223820607732942e-12 Iter 155: T = 634.5519634630209 K, F = -1.8911317067882294e-8, relative_change = 5.117888275964667e-13 Converged in 160 iterations to T = 634.551963462029 K Iter 1: T = 966.8932681166713 K, F = -7543.40035224865, relative_change = 0.033106731883328765 Iter 2: T = 935.843899949396 K, F = -6395.073212137242, relative_change = 0.03211250837204987 Iter 3: T = 906.8215043440193 K, F = -5420.094837690802, relative_change = 0.031012004894134575 Iter 5: T = 854.7267929538964 K, F = -3889.8024642165155, relative_change = 0.028492300231549306 Iter 10: T = 757.1532863025668 K, F = -1685.859082872255, relative_change = 0.02070323464710074 Iter 15: T = 699.349801632303 K, F = -722.5082947230411, relative_change = 0.01259830222603101 Iter 20: T = 669.3127676612031 K, F = -306.45213316630696, relative_change = 0.006527200094513091 Iter 25: T = 655.2098665317654 K, F = -129.0670463998954, relative_change = 0.0030357161231086565 Iter 30: T = 648.9787079842433 K, F = -54.150773949830686, relative_change = 0.001332331690396463 Iter 35: T = 646.3084040650989 K, F = -22.67809405720799, relative_change = 0.0005689873125535972 Iter 40: T = 645.1798896751245 K, F = -9.489874094975095, relative_change = 0.0002400840625986817 Iter 45: T = 644.7058353654666 K, F = -3.969769782799435, relative_change = 0.0001007828964609809 Iter 50: T = 644.5072106555607 K, F = -1.6603790246827586, relative_change = 4.221489044541104e-5 Iter 55: T = 644.4240785815082 K, F = -0.694420791361825, relative_change = 1.7666390484813792e-5 Iter 60: T = 644.3893003974298 K, F = -0.2904203974476193, relative_change = 7.390329647952242e-6 Iter 65: T = 644.3747537578378 K, F = -0.12145821087314485, relative_change = 3.0910800393779733e-6 Iter 70: T = 644.3686698317066 K, F = -0.05079543737366443, relative_change = 1.2927888491609363e-6 Iter 75: T = 644.3661254003168 K, F = -0.021243287053338167, relative_change = 5.406706261393911e-7 Iter 80: T = 644.3650612780842 K, F = -0.008884201330233377, relative_change = 2.261168175523479e-7 Iter 85: T = 644.3646162475976 K, F = -0.0037154799671768046, relative_change = 9.456508662429165e-8 Iter 90: T = 644.3644301302079 K, F = -0.001553858246401696, relative_change = 3.954830682414626e-8 Iter 95: T = 644.364352293636 K, F = -0.0006498421015873057, relative_change = 1.653958439310306e-8 Iter 100: T = 644.364319741442 K, F = -0.00027177173166237356, relative_change = 6.917053483668144e-9 Iter 105: T = 644.3643061277241 K, F = -0.00011365818463948685, relative_change = 2.892794685742772e-9 Iter 110: T = 644.3643004343044 K, F = -4.75332107965909e-5, relative_change = 1.2098013513869913e-9 Iter 115: T = 644.3642980532481 K, F = -1.9878955756114092e-5, relative_change = 5.05953365194015e-10 Iter 120: T = 644.3642970574621 K, F = -8.313617312682986e-6, relative_change = 2.1159575678122008e-10 Iter 125: T = 644.3642966410123 K, F = -3.4768530837725464e-6, relative_change = 8.849184826193026e-11 Iter 130: T = 644.3642964668481 K, F = -1.4540615175806515e-6, relative_change = 3.70083487114806e-11 Iter 135: T = 644.3642963940106 K, F = -6.081061690310641e-7, relative_change = 1.547734046813982e-11 Iter 140: T = 644.3642963635491 K, F = -2.543176221281307e-7, relative_change = 6.472817784240655e-12 Iter 145: T = 644.3642963508097 K, F = -1.0635875913322934e-7, relative_change = 2.707012050251418e-12 Iter 150: T = 644.3642963454819 K, F = -4.448053420036402e-8, relative_change = 1.1321055554617368e-12 Iter 155: T = 644.3642963432537 K, F = -1.860229986716533e-8, relative_change = 4.734602990482375e-13 Converged in 160 iterations to T = 644.364296342322 K Iter 1: T = 974.4248921862621 K, F = -5827.312643568289, relative_change = 0.02557510781373782 Iter 2: T = 951.0389466313075 K, F = -4930.099966941384, relative_change = 0.023999741532140982 Iter 3: T = 929.7673451180009 K, F = -4169.225464071754, relative_change = 0.022366698639054765 Iter 5: T = 893.2134151604871 K, F = -2977.5860783517946, relative_change = 0.019012064016592174 Iter 10: T = 831.6463143937775 K, F = -1273.2211292862928, relative_change = 0.011167469457469936 Iter 15: T = 800.3976007623648 K, F = -539.1128048391223, relative_change = 0.005635641757457788 Iter 20: T = 785.9486207625035 K, F = -226.83037403899058, relative_change = 0.002581863030962765 Iter 25: T = 779.61588150433 K, F = -95.12162897913907, relative_change = 0.0011248603931407074 Iter 30: T = 776.9122510699688 K, F = -39.82780006604165, relative_change = 0.0004788094189052852 Iter 35: T = 775.7715407003725 K, F = -16.66476965222682, relative_change = 0.00020174799332819146 Iter 40: T = 775.2927015678608 K, F = -6.970867958495164, relative_change = 8.463941274642871e-5 Iter 45: T = 775.0921318385709 K, F = -2.915556660903757, relative_change = 3.544395122584317e-5 Iter 50: T = 775.0081961996426 K, F = -1.2193655143903368, relative_change = 1.4831274078608615e-5 Iter 55: T = 774.9730836851884 K, F = -0.5099610769937721, relative_change = 6.204049612166358e-6 Iter 60: T = 774.9583975275639 K, F = -0.21327318697749387, relative_change = 2.5948584750612445e-6 Iter 65: T = 774.9522553063316 K, F = -0.08919363419367743, relative_change = 1.0852446808463524e-6 Iter 70: T = 774.949686504507 K, F = -0.037301885052863026, relative_change = 4.538699606608493e-7 Iter 75: T = 774.9486121918894 K, F = -0.015600101155955115, relative_change = 1.898151801770309e-7 Iter 80: T = 774.9481628999459 K, F = -0.006524149893271214, relative_change = 7.938320999114395e-8 Iter 85: T = 774.9479750004136 K, F = -0.002728477625882464, relative_change = 3.3199047526712506e-8 Iter 90: T = 774.947896418537 K, F = -0.0011410819654743554, relative_change = 1.3884245314743786e-8 Iter 95: T = 774.9478635546494 K, F = -0.0004772141130755525, relative_change = 5.8065584698584014e-9 Iter 100: T = 774.9478498105775 K, F = -0.00019957664085390459, relative_change = 2.428372297550294e-9 Iter 105: T = 774.9478440626423 K, F = -8.34653344857772e-5, relative_change = 1.015574329548908e-9 Iter 110: T = 774.9478416587871 K, F = -3.490619995416555e-5, relative_change = 4.2472532288425987e-10 Iter 115: T = 774.9478406534662 K, F = -1.4598188900927234e-5, relative_change = 1.776251938311673e-10 Iter 120: T = 774.947840233029 K, F = -6.105136237777309e-6, relative_change = 7.428496903018005e-11 Iter 125: T = 774.947840057197 K, F = -2.5532417332607693e-6, relative_change = 3.106687154876481e-11 Iter 130: T = 774.947839983662 K, F = -1.0677953379278904e-6, relative_change = 1.2992526397568098e-11 Iter 135: T = 774.9478399529089 K, F = -4.4656497788508887e-7, relative_change = 5.433632324858034e-12 Iter 140: T = 774.9478399400475 K, F = -1.8675915347543537e-7, relative_change = 2.2724141471491777e-12 Iter 145: T = 774.9478399346687 K, F = -7.810327884438806e-8, relative_change = 9.503309074161891e-13 Iter 150: T = 774.9478399324192 K, F = -3.266410886215709e-8, relative_change = 3.9744441814268807e-13 Converged in 154 iterations to T = 774.9478399316072 K Iter 1: T = 970.3326139629411 K, F = -6759.742129513556, relative_change = 0.029667386037058943 Iter 2: T = 942.8293252345233 K, F = -5725.362491691975, relative_change = 0.028344186655843182 Iter 3: T = 917.4454437910231 K, F = -4847.515724307938, relative_change = 0.026923092827205078 Iter 5: T = 872.8202441838554 K, F = -3470.844162989885, relative_change = 0.023832060833577806 Iter 10: T = 793.5949440570347 K, F = -1493.9710223395293, relative_change = 0.015526303202038967 Iter 15: T = 750.4151131294423 K, F = -635.9605423576886, relative_change = 0.008505022258869224 Iter 20: T = 729.4499955306361 K, F = -268.4458333731218, relative_change = 0.004092896159834463 Iter 25: T = 720.0125476535351 K, F = -112.75674012364537, relative_change = 0.0018275999465404748 Iter 30: T = 715.9318424514864 K, F = -47.246734782685984, relative_change = 0.000786670283360901 Iter 35: T = 714.2003822359268 K, F = -19.775371119817528, relative_change = 0.00033307313525605676 Iter 40: T = 713.4718023745227 K, F = -8.273163305716496, relative_change = 0.00014002149852943092 Iter 45: T = 713.1663124310046 K, F = -3.460439327502578, relative_change = 5.868667444753145e-5 Iter 50: T = 713.0384142249147 K, F = -1.4472853005283963, relative_change = 2.45659294093752e-5 Iter 55: T = 712.984901368146 K, F = -0.6052874432769422, relative_change = 1.0277698843073071e-5 Iter 60: T = 712.96251739889 K, F = -0.25314113985097164, relative_change = 4.298944807678183e-6 Iter 65: T = 712.9531554114362 K, F = -0.1058671205312961, relative_change = 1.7979904905619147e-6 Iter 70: T = 712.9492399862996 K, F = -0.04427497679871828, relative_change = 7.519621612781683e-7 Iter 75: T = 712.9476024859782 K, F = -0.01851633850829071, relative_change = 3.144832406579045e-7 Iter 80: T = 712.9469176598055 K, F = -0.007743756423145731, relative_change = 1.315212913775969e-7 Iter 85: T = 712.9466312566251 K, F = -0.003238531856244453, relative_change = 5.500388742677612e-8 Iter 90: T = 712.9465114792729 K, F = -0.0013543927759706031, relative_change = 2.3003302322466983e-8 Iter 95: T = 712.9464613869325 K, F = -0.0005664232463191698, relative_change = 9.620259179916024e-9 Iter 100: T = 712.9464404377137 K, F = -0.0002368849683253016, relative_change = 4.0233078793017106e-9 Iter 105: T = 712.9464316764996 K, F = -9.906812288551503e-5, relative_change = 1.6825955041854458e-9 Iter 110: T = 712.946428012455 K, F = -4.143147149504589e-5, relative_change = 7.036815409907119e-10 Iter 115: T = 712.946426480108 K, F = -1.732713639424066e-5, relative_change = 2.942880309014467e-10 Iter 120: T = 712.9464258392621 K, F = -7.246415340000922e-6, relative_change = 1.2307476908522566e-10 Iter 125: T = 712.9464255712527 K, F = -3.0305377890504914e-6, relative_change = 5.14713443487156e-11 Iter 130: T = 712.946425459168 K, F = -1.2674084137742625e-6, relative_change = 2.152595330781307e-11 Iter 135: T = 712.9464254122928 K, F = -5.300446034306461e-7, relative_change = 9.002398330385578e-12 Iter 140: T = 712.946425392689 K, F = -2.2167013269402958e-7, relative_change = 3.764896048004842e-12 Iter 145: T = 712.9464253844905 K, F = -9.270521383886177e-8, relative_change = 1.5745264776479485e-12 Iter 150: T = 712.9464253810618 K, F = -3.8771832411299556e-8, relative_change = 6.585096370742309e-13 Iter 155: T = 712.9464253796277 K, F = -1.6213105968887476e-8, relative_change = 2.753670864524025e-13 Converged in 157 iterations to T = 712.9464253793244 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 6%|█▋ | ETA: 0:00:17 Bin 1 ray tracing: 11%|███▍ | ETA: 0:00:16 Bin 1 ray tracing: 17%|█████▏ | ETA: 0:00:15 Bin 1 ray tracing: 23%|██████▉ | ETA: 0:00:14 Bin 1 ray tracing: 29%|████████▋ | ETA: 0:00:12 Bin 1 ray tracing: 35%|██████████▍ | ETA: 0:00:11 Bin 1 ray tracing: 41%|████████████▎ | ETA: 0:00:10 Bin 1 ray tracing: 47%|██████████████ | ETA: 0:00:09 Bin 1 ray tracing: 53%|███████████████▉ | ETA: 0:00:08 Bin 1 ray tracing: 59%|█████████████████▊ | ETA: 0:00:07 Bin 1 ray tracing: 65%|███████████████████▌ | ETA: 0:00:06 Bin 1 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:05 Bin 1 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:04 Bin 1 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:03 Bin 1 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:02 Bin 1 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 2 ray tracing: 12%|███▋ | ETA: 0:00:15 Bin 2 ray tracing: 18%|█████▌ | ETA: 0:00:14 Bin 2 ray tracing: 24%|███████▎ | ETA: 0:00:13 Bin 2 ray tracing: 31%|█████████▎ | ETA: 0:00:11 Bin 2 ray tracing: 37%|███████████▏ | ETA: 0:00:10 Bin 2 ray tracing: 43%|█████████████ | ETA: 0:00:09 Bin 2 ray tracing: 49%|██████████████▉ | ETA: 0:00:08 Bin 2 ray tracing: 55%|████████████████▋ | ETA: 0:00:07 Bin 2 ray tracing: 62%|██████████████████▌ | ETA: 0:00:06 Bin 2 ray tracing: 68%|████████████████████▍ | ETA: 0:00:05 Bin 2 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:04 Bin 2 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:03 Bin 2 ray tracing: 87%|██████████████████████████▎ | ETA: 0:00:02 Bin 2 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 2 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 6%|█▉ | ETA: 0:00:16 Bin 3 ray tracing: 12%|███▋ | ETA: 0:00:15 Bin 3 ray tracing: 18%|█████▍ | ETA: 0:00:14 Bin 3 ray tracing: 24%|███████▏ | ETA: 0:00:13 Bin 3 ray tracing: 31%|█████████▎ | ETA: 0:00:11 Bin 3 ray tracing: 38%|███████████▎ | ETA: 0:00:10 Bin 3 ray tracing: 45%|█████████████▍ | ETA: 0:00:09 Bin 3 ray tracing: 51%|███████████████▍ | ETA: 0:00:08 Bin 3 ray tracing: 59%|█████████████████▋ | ETA: 0:00:06 Bin 3 ray tracing: 67%|████████████████████ | ETA: 0:00:05 Bin 3 ray tracing: 73%|█████████████████████▊ | ETA: 0:00:04 Bin 3 ray tracing: 80%|████████████████████████ | ETA: 0:00:03 Bin 3 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:02 Bin 3 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 10%|██▉ | ETA: 0:00:12 Bin 4 ray tracing: 17%|█████ | ETA: 0:00:12 Bin 4 ray tracing: 23%|███████ | ETA: 0:00:12 Bin 4 ray tracing: 30%|████████▉ | ETA: 0:00:11 Bin 4 ray tracing: 36%|██████████▉ | ETA: 0:00:10 Bin 4 ray tracing: 42%|████████████▊ | ETA: 0:00:09 Bin 4 ray tracing: 48%|██████████████▌ | ETA: 0:00:08 Bin 4 ray tracing: 54%|████████████████▍ | ETA: 0:00:07 Bin 4 ray tracing: 61%|██████████████████▍ | ETA: 0:00:06 Bin 4 ray tracing: 69%|████████████████████▉ | ETA: 0:00:05 Bin 4 ray tracing: 77%|███████████████████████▎ | ETA: 0:00:03 Bin 4 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:02 Bin 4 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 4 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 4 Energy per ray: 0.00018533358351859177 Processing spectral bin 5/10 Bin 5 ray tracing: 7%|██▏ | ETA: 0:00:14 Bin 5 ray tracing: 14%|████▏ | ETA: 0:00:13 Bin 5 ray tracing: 20%|██████ | ETA: 0:00:13 Bin 5 ray tracing: 26%|███████▉ | ETA: 0:00:12 Bin 5 ray tracing: 33%|█████████▉ | ETA: 0:00:11 Bin 5 ray tracing: 39%|███████████▋ | ETA: 0:00:10 Bin 5 ray tracing: 45%|█████████████▌ | ETA: 0:00:09 Bin 5 ray tracing: 51%|███████████████▍ | ETA: 0:00:08 Bin 5 ray tracing: 57%|█████████████████▏ | ETA: 0:00:07 Bin 5 ray tracing: 63%|██████████████████▉ | ETA: 0:00:06 Bin 5 ray tracing: 69%|████████████████████▋ | ETA: 0:00:05 Bin 5 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:04 Bin 5 ray tracing: 81%|████████████████████████▏ | ETA: 0:00:03 Bin 5 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 5 ray tracing: 92%|███████████████████████████▊ | ETA: 0:00:01 Bin 5 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 6 ray tracing: 12%|███▌ | ETA: 0:00:15 Bin 6 ray tracing: 17%|█████▎ | ETA: 0:00:14 Bin 6 ray tracing: 24%|███████ | ETA: 0:00:13 Bin 6 ray tracing: 30%|████████▉ | ETA: 0:00:12 Bin 6 ray tracing: 36%|██████████▋ | ETA: 0:00:11 Bin 6 ray tracing: 41%|████████████▍ | ETA: 0:00:10 Bin 6 ray tracing: 47%|██████████████▏ | ETA: 0:00:09 Bin 6 ray tracing: 53%|███████████████▉ | ETA: 0:00:08 Bin 6 ray tracing: 59%|█████████████████▊ | ETA: 0:00:07 Bin 6 ray tracing: 65%|███████████████████▋ | ETA: 0:00:06 Bin 6 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:05 Bin 6 ray tracing: 77%|███████████████████████▎ | ETA: 0:00:04 Bin 6 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:03 Bin 6 ray tracing: 90%|███████████████████████████ | ETA: 0:00:02 Bin 6 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 7 ray tracing: 12%|███▋ | ETA: 0:00:15 Bin 7 ray tracing: 18%|█████▍ | ETA: 0:00:14 Bin 7 ray tracing: 24%|███████▎ | ETA: 0:00:13 Bin 7 ray tracing: 30%|█████████▏ | ETA: 0:00:12 Bin 7 ray tracing: 37%|███████████ | ETA: 0:00:11 Bin 7 ray tracing: 43%|████████████▉ | ETA: 0:00:09 Bin 7 ray tracing: 49%|██████████████▊ | ETA: 0:00:08 Bin 7 ray tracing: 55%|████████████████▌ | ETA: 0:00:07 Bin 7 ray tracing: 61%|██████████████████▎ | ETA: 0:00:07 Bin 7 ray tracing: 67%|████████████████████ | ETA: 0:00:06 Bin 7 ray tracing: 73%|█████████████████████▊ | ETA: 0:00:05 Bin 7 ray tracing: 79%|███████████████████████▌ | ETA: 0:00:04 Bin 7 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:03 Bin 7 ray tracing: 91%|███████████████████████████▏ | ETA: 0:00:02 Bin 7 ray tracing: 96%|█████████████████████████████ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 8 ray tracing: 12%|███▌ | ETA: 0:00:15 Bin 8 ray tracing: 18%|█████▍ | ETA: 0:00:14 Bin 8 ray tracing: 24%|███████▎ | ETA: 0:00:13 Bin 8 ray tracing: 30%|█████████▏ | ETA: 0:00:12 Bin 8 ray tracing: 36%|███████████ | ETA: 0:00:10 Bin 8 ray tracing: 43%|████████████▊ | ETA: 0:00:09 Bin 8 ray tracing: 49%|██████████████▊ | ETA: 0:00:08 Bin 8 ray tracing: 55%|████████████████▋ | ETA: 0:00:07 Bin 8 ray tracing: 61%|██████████████████▍ | ETA: 0:00:06 Bin 8 ray tracing: 67%|████████████████████▎ | ETA: 0:00:05 Bin 8 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:04 Bin 8 ray tracing: 80%|████████████████████████▏ | ETA: 0:00:03 Bin 8 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 8 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 8 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 9 ray tracing: 13%|███▊ | ETA: 0:00:14 Bin 9 ray tracing: 19%|█████▊ | ETA: 0:00:13 Bin 9 ray tracing: 25%|███████▋ | ETA: 0:00:12 Bin 9 ray tracing: 32%|█████████▌ | ETA: 0:00:11 Bin 9 ray tracing: 38%|███████████▌ | ETA: 0:00:10 Bin 9 ray tracing: 44%|█████████████▍ | ETA: 0:00:09 Bin 9 ray tracing: 51%|███████████████▎ | ETA: 0:00:08 Bin 9 ray tracing: 57%|█████████████████▏ | ETA: 0:00:07 Bin 9 ray tracing: 64%|███████████████████ | ETA: 0:00:06 Bin 9 ray tracing: 70%|████████████████████▉ | ETA: 0:00:05 Bin 9 ray tracing: 76%|██████████████████████▋ | ETA: 0:00:04 Bin 9 ray tracing: 81%|████████████████████████▌ | ETA: 0:00:03 Bin 9 ray tracing: 88%|██████████████████████████▎ | ETA: 0:00:02 Bin 9 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 10 ray tracing: 13%|███▋ | ETA: 0:00:14 Bin 10 ray tracing: 19%|█████▌ | ETA: 0:00:13 Bin 10 ray tracing: 25%|███████▍ | ETA: 0:00:12 Bin 10 ray tracing: 32%|█████████▏ | ETA: 0:00:11 Bin 10 ray tracing: 38%|███████████ | ETA: 0:00:10 Bin 10 ray tracing: 45%|████████████▉ | ETA: 0:00:09 Bin 10 ray tracing: 51%|██████████████▊ | ETA: 0:00:08 Bin 10 ray tracing: 57%|████████████████▋ | ETA: 0:00:07 Bin 10 ray tracing: 64%|██████████████████▌ | ETA: 0:00:06 Bin 10 ray tracing: 70%|████████████████████▍ | ETA: 0:00:05 Bin 10 ray tracing: 77%|██████████████████████▎ | ETA: 0:00:04 Bin 10 ray tracing: 83%|████████████████████████▏ | ETA: 0:00:03 Bin 10 ray tracing: 90%|██████████████████████████ | ETA: 0:00:02 Bin 10 ray tracing: 96%|███████████████████████████▉ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 980.1948272621967 K, F = -4512.627447891401, relative_change = 0.019805172737803297 Iter 2: T = 962.4310585365263 K, F = -3811.771894124262, relative_change = 0.01812269176658154 Iter 3: T = 946.5874173760211 K, F = -3218.265768726533, relative_change = 0.016462105020381496 Iter 5: T = 920.136121136886 K, F = -2290.9508990480676, relative_change = 0.01329512669703447 Iter 10: T = 878.1590885046778 K, F = -972.5314581615305, relative_change = 0.006978635847047093 Iter 15: T = 858.2975603483457 K, F = -409.8045764448569, relative_change = 0.0032707982464022034 Iter 20: T = 849.4853693949301 K, F = -171.9792685728128, relative_change = 0.0014410018029169924 Iter 25: T = 845.7015353354498 K, F = -72.03238847297717, relative_change = 0.0006164588358704392 Iter 30: T = 844.1010313260089 K, F = -30.1441672371417, relative_change = 0.000260308760717335 Iter 35: T = 843.4284578458836 K, F = -12.61006482587015, relative_change = 0.00010930743224653911 Iter 40: T = 843.1466108986594 K, F = -5.274278879681029, relative_change = 4.5791653813119946e-5 Iter 45: T = 843.0286393150399 K, F = -2.205871361902587, relative_change = 1.9164289507371877e-5 Iter 50: T = 842.979284704011 K, F = -0.9225401133101201, relative_change = 8.01712867488018e-6 Iter 55: T = 842.9586409560202 K, F = -0.38582050583626504, relative_change = 3.353277841427097e-6 Iter 60: T = 842.9500069586916 K, F = -0.16135530519672048, relative_change = 1.4024541165350956e-6 Iter 65: T = 842.9463960242487 K, F = -0.06748081390804628, relative_change = 5.865358774397158e-7 Iter 70: T = 842.9448858719612 K, F = -0.028221299451971937, relative_change = 2.4529855040277914e-7 Iter 75: T = 842.9442543053749 K, F = -0.011802487470126577, relative_change = 1.0258717535187823e-7 Iter 80: T = 842.9439901761849 K, F = -0.004935941735605409, relative_change = 4.290325044534597e-8 Iter 85: T = 842.9438797141157 K, F = -0.0020642698752535438, relative_change = 1.7942663719907568e-8 Iter 90: T = 842.9438335175438 K, F = -0.0008633023300683718, relative_change = 7.503838342376681e-9 Iter 95: T = 842.943814197583 K, F = -0.00036104334553610506, relative_change = 3.1381951615120726e-9 Iter 100: T = 842.9438061177443 K, F = -0.00015099264081208652, relative_change = 1.3124307712756536e-9 Iter 105: T = 842.9438027386591 K, F = -6.31469260785611e-5, relative_change = 5.488742367379733e-10 Iter 110: T = 842.9438013254853 K, F = -2.640879855664302e-5, relative_change = 2.295457620314544e-10 Iter 115: T = 842.9438007344792 K, F = -1.104447436217626e-5, relative_change = 9.599877429971413e-11 Iter 120: T = 842.9438004873133 K, F = -4.618928513666631e-6, relative_change = 4.01478116539057e-11 Iter 125: T = 842.9438003839456 K, F = -1.931691611778419e-6, relative_change = 1.6790299052891427e-11 Iter 130: T = 842.9438003407159 K, F = -8.078554269985716e-7, relative_change = 7.021894246168786e-12 Iter 135: T = 842.9438003226369 K, F = -3.3785450437306963e-7, relative_change = 2.936637573081406e-12 Iter 140: T = 842.9438003150759 K, F = -1.4129290848430287e-7, relative_change = 1.2281205622894481e-12 Iter 145: T = 842.943800311914 K, F = -5.9090531134842195e-8, relative_change = 5.136159847163378e-13 Converged in 150 iterations to T = 842.9438003105915 K Iter 1: T = 964.3228458570652 K, F = -8129.073509202673, relative_change = 0.03567715414293475 Iter 2: T = 930.5711208259928 K, F = -6896.376910278824, relative_change = 0.035000441165608555 Iter 3: T = 898.7138590259448 K, F = -5849.539000458011, relative_change = 0.0342340967681986 Iter 5: T = 840.5697488783009 K, F = -4205.73419750012, relative_change = 0.03240702894118344 Iter 10: T = 726.3812722543283 K, F = -1834.1421751886417, relative_change = 0.026017454237667003 Iter 15: T = 652.7017457531832 K, F = -791.9752782316705, relative_change = 0.017818536710979917 Iter 20: T = 611.0311419301825 K, F = -338.12031329296866, relative_change = 0.010214357761314657 Iter 25: T = 590.2126588694719 K, F = -143.0073536303668, relative_change = 0.005066582127914326 Iter 30: T = 580.6808283109574 K, F = -60.132158194875835, relative_change = 0.002299143667174564 Iter 35: T = 576.5242664089196 K, F = -25.20888799018699, relative_change = 0.000997137516104759 Iter 40: T = 574.7538343379714 K, F = -10.553642695687415, relative_change = 0.00042358673076689854 Iter 45: T = 574.0076150015909 K, F = -4.41560615344391, relative_change = 0.00017832523651665407 Iter 50: T = 573.6945078123347 K, F = -1.8470016169378254, relative_change = 7.478547440475938e-5 Iter 55: T = 573.5633815463309 K, F = -0.7724981587411444, relative_change = 3.1312659633513665e-5 Iter 60: T = 573.5085112227657 K, F = -0.32307846420014946, relative_change = 1.3101719730306417e-5 Iter 65: T = 573.48555823874 K, F = -0.1351171108052725, relative_change = 5.480414343552945e-6 Iter 70: T = 573.4759580539343 K, F = -0.05650791101542957, relative_change = 2.2921704460458325e-6 Iter 75: T = 573.4719429718292 K, F = -0.023632339488245196, relative_change = 9.586472902011951e-7 Iter 80: T = 573.470263786778 K, F = -0.009883336441872392, relative_change = 4.009237335040834e-7 Iter 85: T = 573.4695615263299 K, F = -0.004133331051987266, relative_change = 1.67672140708525e-7 Iter 90: T = 573.4692678317133 K, F = -0.001728608709086088, relative_change = 7.012267484754394e-8 Iter 95: T = 573.4691450049579 K, F = -0.0007229248587571346, relative_change = 2.9326172103265277e-8 Iter 100: T = 573.4690936373141 K, F = -0.0003023358183391611, relative_change = 1.2264560991717897e-8 Iter 105: T = 573.4690721547472 K, F = -0.0001264404516280737, relative_change = 5.1291868621469115e-9 Iter 110: T = 573.4690631704802 K, F = -5.287890725957922e-5, relative_change = 2.1450873762154837e-9 Iter 115: T = 573.4690594131524 K, F = -2.211459075102118e-5, relative_change = 8.971011957007084e-10 Iter 120: T = 573.469057841793 K, F = -9.248586049614982e-6, relative_change = 3.751784423821296e-10 Iter 125: T = 573.4690571846318 K, F = -3.867869243445732e-6, relative_change = 1.569041103392367e-10 Iter 130: T = 573.4690569097991 K, F = -1.6175895823367092e-6, relative_change = 6.561919209645977e-11 Iter 135: T = 573.4690567948608 K, F = -6.764956552163248e-7, relative_change = 2.7442744982502383e-11 Iter 140: T = 573.4690567467921 K, F = -2.8291895221022045e-7, relative_change = 1.1476899518057462e-11 Iter 145: T = 573.4690567266892 K, F = -1.183203864330018e-7, relative_change = 4.799788687351385e-12 Iter 150: T = 573.469056718282 K, F = -4.948312870567406e-8, relative_change = 2.0073342266111674e-12 Iter 155: T = 573.469056714766 K, F = -2.0694608582338958e-8, relative_change = 8.394981724366876e-13 Iter 160: T = 573.4690567132956 K, F = -8.654782390760118e-9, relative_change = 3.510901871403192e-13 Converged in 163 iterations to T = 573.4690567128649 K Iter 1: T = 963.5401028886376 K, F = -8307.42223913968, relative_change = 0.03645989711136231 Iter 2: T = 928.9564692354229 K, F = -7049.1671358100975, relative_change = 0.03589226182650317 Iter 3: T = 896.2154648301082 K, F = -5980.574600277824, relative_change = 0.03524492857266196 Iter 5: T = 836.1422113640814 K, F = -4302.445171473899, relative_change = 0.033681858359452005 Iter 10: T = 716.2653445741461 K, F = -1880.2974487664667, relative_change = 0.027983834341662316 Iter 15: T = 636.4137828747199 K, F = -814.2958971905041, relative_change = 0.02008290825114428 Iter 20: T = 589.5784885376966 K, F = -348.69038288228603, relative_change = 0.012061728076326066 Iter 25: T = 565.454615780834 K, F = -147.80145831460104, relative_change = 0.006187359742702764 Iter 30: T = 554.1938361497214 K, F = -62.22520686824497, relative_change = 0.0028611001491439616 Iter 35: T = 549.2338466275543 K, F = -26.10202250792896, relative_change = 0.001252146801668776 Iter 40: T = 547.1113832962129 K, F = -10.930482261608796, relative_change = 0.0005340640987880728 Iter 45: T = 546.214970096798 K, F = -4.573802014190108, relative_change = 0.00022522469096529079 Iter 50: T = 545.8385175464146 K, F = -1.9132666782525387, relative_change = 9.452324012025405e-5 Iter 55: T = 545.6808053825685 K, F = -0.800229571150578, relative_change = 3.958904256293253e-5 Iter 60: T = 545.6147999865155 K, F = -0.3346793271392494, relative_change = 1.6566828289874023e-5 Iter 65: T = 545.5871872853238 K, F = -0.13996930004368843, relative_change = 6.930234181600735e-6 Iter 70: T = 545.5756378440948 K, F = -0.0585372541994475, relative_change = 2.898619670332319e-6 Iter 75: T = 545.5708074709615 K, F = -0.02448105248335755, relative_change = 1.2122921104760128e-6 Iter 80: T = 545.5687873059475 K, F = -0.010238281402076221, relative_change = 5.070046143816153e-7 Iter 85: T = 545.5679424408926 K, F = -0.0042817738063849475, relative_change = 2.120370594898427e-7 Iter 90: T = 545.5675891068516 K, F = -0.001790689334760981, relative_change = 8.867672345502632e-8 Iter 95: T = 545.5674413380938 K, F = -0.0007488877344664635, relative_change = 3.708571602728788e-8 Iter 100: T = 545.567379539392 K, F = -0.00031319380566446897, relative_change = 1.5509698273299188e-8 Iter 105: T = 545.5673536944296 K, F = -0.00013098139170727996, relative_change = 6.486342597535123e-9 Iter 110: T = 545.5673428857564 K, F = -5.4777982419818017e-5, relative_change = 2.712666201347739e-9 Iter 115: T = 545.56733836544 K, F = -2.290880702618403e-5, relative_change = 1.1344694754947511e-9 Iter 120: T = 545.5673364749897 K, F = -9.580737111325455e-6, relative_change = 4.744487119045986e-10 Iter 125: T = 545.5673356843806 K, F = -4.006778802412292e-6, relative_change = 1.9842012495671233e-10 Iter 130: T = 545.5673353537386 K, F = -1.6756826494990218e-6, relative_change = 8.298166134365952e-11 Iter 135: T = 545.5673352154602 K, F = -7.007908776335281e-7, relative_change = 3.470394073010718e-11 Iter 140: T = 545.5673351576304 K, F = -2.9307934903965993e-7, relative_change = 1.451361410092777e-11 Iter 145: T = 545.5673351334453 K, F = -1.2256955786438262e-7, relative_change = 6.069780315704537e-12 Iter 150: T = 545.5673351233307 K, F = -5.12597870816478e-8, relative_change = 2.5384414536855104e-12 Iter 155: T = 545.5673351191008 K, F = -2.1437170344418277e-8, relative_change = 1.0615924285311808e-12 Iter 160: T = 545.5673351173317 K, F = -8.965364894919503e-9, relative_change = 4.439748035164937e-13 Converged in 164 iterations to T = 545.5673351166931 K Iter 1: T = 969.3016376814604 K, F = -6994.651055960542, relative_change = 0.03069836231853957 Iter 2: T = 940.7436770085642 K, F = -5925.987148611081, relative_change = 0.029462408359492653 Iter 3: T = 914.2871388340279 K, F = -5018.908945907336, relative_change = 0.028123003981982083 Iter 5: T = 867.4930510455124 K, F = -3595.993777043621, relative_change = 0.025165474283719572 Iter 10: T = 783.1588079541489 K, F = -1550.8064879491449, relative_change = 0.0168987087017759 Iter 15: T = 736.1634432327019 K, F = -661.3058436708081, relative_change = 0.009510210658638064 Iter 20: T = 712.9582336006031 K, F = -279.4685018569941, relative_change = 0.004658432258101446 Iter 25: T = 702.4086833141706 K, F = -117.459139570061, relative_change = 0.002099644623432016 Iter 30: T = 697.8247380669607 K, F = -49.23132647343485, relative_change = 0.0009077077648858026 Iter 35: T = 695.8754471670693 K, F = -20.608647538728682, relative_change = 0.00038505339944013933 Iter 40: T = 695.0544219652382 K, F = -8.622237594107649, relative_change = 0.00016200538021961177 Iter 45: T = 694.71003049734 K, F = -3.606530097697271, relative_change = 6.792400107195384e-5 Iter 50: T = 694.5658209452548 K, F = -1.5084004126316208, relative_change = 2.843672081964896e-5 Iter 55: T = 694.5054790727116 K, F = -0.6308497022140145, relative_change = 1.1897847634788747e-5 Iter 60: T = 694.4802378286552 K, F = -0.263832139953168, relative_change = 4.97674454151063e-6 Iter 65: T = 694.4696806674574 K, F = -0.11033832209485467, relative_change = 2.081495404407913e-6 Iter 70: T = 694.4652653666234 K, F = -0.04614490377017533, relative_change = 8.705344689392973e-7 Iter 75: T = 694.46341880536 K, F = -0.019298367288507645, relative_change = 3.6407284938614037e-7 Iter 80: T = 694.4626465461881 K, F = -0.00807081072059268, relative_change = 1.5226047722264968e-7 Iter 85: T = 694.4623235772705 K, F = -0.0033753099625514205, relative_change = 6.367730100577449e-8 Iter 90: T = 694.4621885076531 K, F = -0.0014115950291352375, relative_change = 2.6630634164517023e-8 Iter 95: T = 694.4621320198981 K, F = -0.0005903459156174629, relative_change = 1.1137253867585694e-8 Iter 100: T = 694.4621083960395 K, F = -0.0002468897145770921, relative_change = 4.657733374853881e-9 Iter 105: T = 694.462098516259 K, F = -0.00010325222734230977, relative_change = 1.9479198585439903e-9 Iter 110: T = 694.4620943844166 K, F = -4.3181314476670174e-5, relative_change = 8.146433692997307e-10 Iter 115: T = 694.4620926564307 K, F = -1.805894239181871e-5, relative_change = 3.4069360853509637e-10 Iter 120: T = 694.4620919337664 K, F = -7.552465787208362e-6, relative_change = 1.4248214426420387e-10 Iter 125: T = 694.4620916315395 K, F = -3.1585308729598083e-6, relative_change = 5.958772474000506e-11 Iter 130: T = 694.4620915051446 K, F = -1.3209348455056613e-6, relative_change = 2.4920288959505976e-11 Iter 135: T = 694.4620914522848 K, F = -5.524305577431221e-7, relative_change = 1.042195925169852e-11 Iter 140: T = 694.4620914301781 K, F = -2.3103344759523026e-7, relative_change = 4.358595199401456e-12 Iter 145: T = 694.4620914209328 K, F = -9.661973943142499e-8, relative_change = 1.8227937853298766e-12 Iter 150: T = 694.4620914170663 K, F = -4.040690992912488e-8, relative_change = 7.623024522584249e-13 Iter 155: T = 694.4620914154494 K, F = -1.689868400767125e-8, relative_change = 3.1880458767389386e-13 Converged in 158 iterations to T = 694.462091414976 K Iter 1: T = 980.9030070378982 K, F = -4351.268012344931, relative_change = 0.01909699296210177 Iter 2: T = 963.8148397341749 K, F = -3674.752754791282, relative_change = 0.017420853214963197 Iter 3: T = 948.6093661108974 K, F = -3101.976660178651, relative_change = 0.015776343127764273 Iter 5: T = 923.3073926024036 K, F = -2207.341080302101, relative_change = 0.012667041777988084 Iter 10: T = 883.409319724696 K, F = -936.323322882057, relative_change = 0.006571298561935693 Iter 15: T = 864.6622027458806 K, F = -394.36672652763, relative_change = 0.003058540622761059 Iter 20: T = 856.3756754615432 K, F = -165.46278551424146, relative_change = 0.0013428501272538926 Iter 25: T = 852.8238782432377 K, F = -69.29582679431759, relative_change = 0.0005735757322352792 Iter 30: T = 851.3227027060339 K, F = -28.997668670048625, relative_change = 0.00024203771248474458 Iter 35: T = 850.692081941495 K, F = -12.130224729806345, relative_change = 0.00010160612935992525 Iter 40: T = 850.4278531666814 K, F = -5.0735405885407285, relative_change = 4.256026849927977e-5 Iter 45: T = 850.3172625574313 K, F = -2.121909091409764, relative_change = 1.7811023408955654e-5 Iter 50: T = 850.2709970095464 K, F = -0.8874241423399511, relative_change = 7.450850441083142e-6 Iter 55: T = 850.2516455388154 K, F = -0.37113424678091655, relative_change = 3.1163964340193804e-6 Iter 60: T = 850.2435520562364 K, F = -0.15521327668818863, relative_change = 1.3033774957633494e-6 Iter 65: T = 850.240167183581 K, F = -0.0649121338126264, relative_change = 5.450991044350039e-7 Iter 70: T = 850.2387515751432 K, F = -0.027147044938834686, relative_change = 2.2796889153036425e-7 Iter 75: T = 850.2381595482927 K, F = -0.011353221083229004, relative_change = 9.533965159611974e-8 Iter 80: T = 850.2379119551572 K, F = -0.004748053112644923, relative_change = 3.987224011983539e-8 Iter 85: T = 850.2378084086746 K, F = -0.001985692597666011, relative_change = 1.6675057352902408e-8 Iter 90: T = 850.2377651042857 K, F = -0.0008304403723440323, relative_change = 6.973709934448181e-9 Iter 95: T = 850.2377469938708 K, F = -0.00034730008546346447, relative_change = 2.916489109297475e-9 Iter 100: T = 850.2377394198785 K, F = -0.00014524504411417283, relative_change = 1.2197106336441068e-9 Iter 105: T = 850.2377362523445 K, F = -6.0743211463654134e-5, relative_change = 5.100975576135577e-10 Iter 110: T = 850.2377349276438 K, F = -2.5403536758838996e-5, relative_change = 2.1332889452695344e-10 Iter 115: T = 850.2377343736382 K, F = -1.062406118546022e-5, relative_change = 8.921668099319822e-11 Iter 120: T = 850.2377341419465 K, F = -4.443109585805516e-6, relative_change = 3.731148419885308e-11 Iter 125: T = 850.2377340450502 K, F = -1.858161791323809e-6, relative_change = 1.5604110818018793e-11 Iter 130: T = 850.237734004527 K, F = -7.771056946825894e-7, relative_change = 6.525827533701142e-12 Iter 135: T = 850.2377339875798 K, F = -3.249954467765548e-7, relative_change = 2.7291837514708948e-12 Iter 140: T = 850.2377339804922 K, F = -1.359161732050751e-7, relative_change = 1.1413704873937855e-12 Iter 145: T = 850.2377339775281 K, F = -5.684320814047794e-8, relative_change = 4.773468723513034e-13 Converged in 150 iterations to T = 850.2377339762885 K Iter 1: T = 967.2705058850515 K, F = -7457.446367877438, relative_change = 0.03272949411494845 Iter 2: T = 936.6139594134 K, F = -6321.55812904958, relative_change = 0.03169387083047758 Iter 3: T = 907.9991354259574 K, F = -5357.1793319063045, relative_change = 0.03055135330821254 Iter 5: T = 856.7572385637434 K, F = -3843.6435288528087, relative_change = 0.027950531270774022 Iter 10: T = 761.390925927862 K, F = -1664.4766776523209, relative_change = 0.020043358328078784 Iter 15: T = 705.4902892613584 K, F = -712.7102767082218, relative_change = 0.012028206646499931 Iter 20: T = 676.7125937196871 K, F = -302.0888054209848, relative_change = 0.006166408533520898 Iter 25: T = 663.2842078713766 K, F = -127.1780815788386, relative_change = 0.00285041285150177 Iter 30: T = 657.3705701475351 K, F = -53.34763481146409, relative_change = 0.0012472561521342177 Iter 35: T = 654.8402464546933 K, F = -22.339740563815525, relative_change = 0.0005319373508816084 Iter 40: T = 653.7716163675274 K, F = -9.347924798070554, relative_change = 0.0002243203892091822 Iter 45: T = 653.3228479860055 K, F = -3.910325881984251, relative_change = 9.414240131125272e-5 Iter 50: T = 653.1348409161329 K, F = -1.6355049797247339, relative_change = 3.942930431889468e-5 Iter 55: T = 653.0561567828175 K, F = -0.6840157326654539, relative_change = 1.649994192147403e-5 Iter 60: T = 653.0232400981497 K, F = -0.28606845115757223, relative_change = 6.902247154963711e-6 Iter 65: T = 653.0094721904727 K, F = -0.1196381003394204, relative_change = 2.886912650561016e-6 Iter 70: T = 653.0037139796808 K, F = -0.050034232357324904, relative_change = 1.2073956556879958e-6 Iter 75: T = 653.0013057733946 K, F = -0.020924939742007154, relative_change = 5.049567816725131e-7 Iter 80: T = 653.0002986233619 K, F = -0.008751064284974797, relative_change = 2.1118061799749904e-7 Iter 85: T = 652.9998774195456 K, F = -0.0036598003962920456, relative_change = 8.831854706852697e-8 Iter 90: T = 652.9997012667916 K, F = -0.0015305723727302989, relative_change = 3.693592194078672e-8 Iter 95: T = 652.9996275975559 K, F = -0.0006401036688651884, relative_change = 1.544705253248826e-8 Iter 100: T = 652.999596788193 K, F = -0.00026769900364154164, relative_change = 6.460143414526749e-9 Iter 105: T = 652.9995839033479 K, F = -0.0001119549206391457, relative_change = 2.7017093877703464e-9 Iter 110: T = 652.9995785147515 K, F = -4.682088467083956e-5, relative_change = 1.1298871716097476e-9 Iter 115: T = 652.9995762611762 K, F = -1.9581053526951386e-5, relative_change = 4.725323262421853e-10 Iter 120: T = 652.999575318704 K, F = -8.189030373584316e-6, relative_change = 1.9761866200721873e-10 Iter 125: T = 652.999574924551 K, F = -3.424751607139509e-6, relative_change = 8.264651630040403e-11 Iter 130: T = 652.9995747597113 K, F = -1.4322710347736134e-6, relative_change = 3.456373633565467e-11 Iter 135: T = 652.9995746907734 K, F = -5.989921467719483e-7, relative_change = 1.445495031031742e-11 Iter 140: T = 652.9995746619428 K, F = -2.5050504326440404e-7, relative_change = 6.045217743081123e-12 Iter 145: T = 652.9995746498855 K, F = -1.0476471096199091e-7, relative_change = 2.5281945678969962e-12 Iter 150: T = 652.999574644843 K, F = -4.381354173910168e-8, relative_change = 1.0573136432303542e-12 Iter 155: T = 652.9995746427342 K, F = -1.8323330130964877e-8, relative_change = 4.421808000034579e-13 Converged in 159 iterations to T = 652.999574641973 K Iter 1: T = 980.1541996572648 K, F = -4521.884486321946, relative_change = 0.01984580034273512 Iter 2: T = 962.3515776651949 K, F = -3819.6341516307566, relative_change = 0.01816308290909231 Iter 3: T = 946.471145642011 K, F = -3224.9399777669187, relative_change = 0.01650169479818601 Iter 5: T = 919.9533522142107 K, F = -2295.7517693751724, relative_change = 0.013331605806859766 Iter 10: T = 877.8551751500022 K, F = -974.612870148358, relative_change = 0.007002584611110784 Iter 15: T = 857.9282020463572 K, F = -410.6927176003404, relative_change = 0.003283368979659712 Iter 20: T = 849.0850077723412 K, F = -172.35432258186987, relative_change = 0.0014468359097337116 Iter 25: T = 845.2874600677102 K, F = -72.18992194125363, relative_change = 0.0006190119959139964 Iter 30: T = 843.6810802465907 K, F = -30.21017262621554, relative_change = 0.0002613973520692257 Iter 35: T = 843.0060240613348 K, F = -12.637690874508928, relative_change = 0.00010976641567215638 Iter 40: T = 842.7231343208499 K, F = -5.285836258866046, relative_change = 4.5984262926187196e-5 Iter 45: T = 842.6047258378441 K, F = -2.2107054683735243, relative_change = 1.924495624025791e-5 Iter 50: T = 842.5551883716416 K, F = -0.9245619121000506, relative_change = 8.050884664097338e-6 Iter 55: T = 842.5344681271628 K, F = -0.3866660668347497, relative_change = 3.3673985342516075e-6 Iter 60: T = 842.5258021338428 K, F = -0.16170893251101548, relative_change = 1.4083601773846048e-6 Iter 65: T = 842.5221778175512 K, F = -0.06762870570471624, relative_change = 5.890059708024503e-7 Iter 70: T = 842.5206620686849 K, F = -0.028283149679711572, relative_change = 2.4633159188451263e-7 Iter 75: T = 842.5200281615196 K, F = -0.011828353991232943, relative_change = 1.0301920892814788e-7 Iter 80: T = 842.5197630534676 K, F = -0.004946759428184899, relative_change = 4.3083932635499024e-8 Iter 85: T = 842.5196521820259 K, F = -0.0020687939602317407, relative_change = 1.80182272374675e-8 Iter 90: T = 842.5196058142494 K, F = -0.0008651943555946229, relative_change = 7.535439917318618e-9 Iter 95: T = 842.5195864226889 K, F = -0.00036183461341021683, relative_change = 3.1514113222371878e-9 Iter 100: T = 842.5195783129063 K, F = -0.00015132355898694883, relative_change = 1.317957932421032e-9 Iter 105: T = 842.5195749212982 K, F = -6.328531773780455e-5, relative_change = 5.511857418326912e-10 Iter 110: T = 842.5195735028872 K, F = -2.6466673242575567e-5, relative_change = 2.3051244053837187e-10 Iter 115: T = 842.5195729096907 K, F = -1.1068679259151892e-5, relative_change = 9.640305960374571e-11 Iter 120: T = 842.519572661609 K, F = -4.629054444871272e-6, relative_change = 4.0316916023614306e-11 Iter 125: T = 842.5195725578583 K, F = -1.9359275111874297e-6, relative_change = 1.6861030232337567e-11 Iter 130: T = 842.5195725144685 K, F = -8.096298482751507e-7, relative_change = 7.051500261879333e-12 Iter 135: T = 842.5195724963223 K, F = -3.385980669179389e-7, relative_change = 2.9490320334349897e-12 Iter 140: T = 842.5195724887333 K, F = -1.4160368211335594e-7, relative_change = 1.2333023588222308e-12 Iter 145: T = 842.5195724855596 K, F = -5.9221074932835904e-8, relative_change = 5.157880806340682e-13 Converged in 150 iterations to T = 842.5195724842322 K Iter 1: T = 969.9867421370485 K, F = -6838.5493540522175, relative_change = 0.03001325786295149 Iter 2: T = 942.1304190776128 K, F = -5792.6558454215165, relative_change = 0.028718251342346606 Iter 3: T = 916.3883707317441 K, F = -4904.991655812743, relative_change = 0.02732323235149472 Iter 5: T = 871.0419803072355 K, F = -3512.7885446754585, relative_change = 0.024273647700308685 Iter 10: T = 790.1364310243133 K, F = -1512.9777117863548, relative_change = 0.015971957805950097 Iter 15: T = 745.7216106824337 K, F = -644.4135813812902, relative_change = 0.008825635167908075 Iter 20: T = 724.0404234889547 K, F = -272.11422975940314, relative_change = 0.004271134544442351 Iter 25: T = 714.2501317118379 K, F = -114.3197862266591, relative_change = 0.0019127952373988574 Iter 30: T = 710.0103594089244 K, F = -47.9060024341811, relative_change = 0.0008244623388904019 Iter 35: T = 708.21016365138 K, F = -20.052105215849092, relative_change = 0.0003492819062077097 Iter 40: T = 707.4524347013989 K, F = -8.389078690241316, relative_change = 0.000146872797146636 Iter 45: T = 707.1346825231897 K, F = -3.5089485908915767, relative_change = 6.156481661635545e-5 Iter 50: T = 707.0016434645346 K, F = -1.4675780808185197, relative_change = 2.577186094004223e-5 Iter 55: T = 706.9459784243261 K, F = -0.6137751118911026, relative_change = 1.078242957214335e-5 Iter 60: T = 706.9226939979086 K, F = -0.2566909567048048, relative_change = 4.510098505233472e-6 Iter 65: T = 706.9129553605575 K, F = -0.10735172650564123, relative_change = 1.8863096099000046e-6 Iter 70: T = 706.9088824040471 K, F = -0.044895862026400724, relative_change = 7.889003921135924e-7 Iter 75: T = 706.9071790201443 K, F = -0.018776001049654822, relative_change = 3.2993162082089144e-7 Iter 80: T = 706.9064666403074 K, F = -0.007852350561750154, relative_change = 1.37982053344718e-7 Iter 85: T = 706.9061687137918 K, F = -0.0032839472516463797, relative_change = 5.770586661009604e-8 Iter 90: T = 706.9060441172321 K, F = -0.0013733860423399413, relative_change = 2.4133304282084338e-8 Iter 95: T = 706.9059920094396 K, F = -0.0005743664583583996, relative_change = 1.0092839847179963e-8 Iter 100: T = 706.9059702173344 K, F = -0.00024020691570203478, relative_change = 4.2209468378907605e-9 Iter 105: T = 706.905961103615 K, F = -0.00010045740029041017, relative_change = 1.7652504753534433e-9 Iter 110: T = 706.9059572921486 K, F = -4.201248487112341e-5, relative_change = 7.382488555243247e-10 Iter 115: T = 706.9059556981479 K, F = -1.757012268821523e-5, relative_change = 3.087444873837573e-10 Iter 120: T = 706.9059550315177 K, F = -7.348036566101612e-6, relative_change = 1.2912065745481642e-10 Iter 125: T = 706.905954752725 K, F = -3.073037515344268e-6, relative_change = 5.399981635096057e-11 Iter 130: T = 706.9059546361306 K, F = -1.2851813137038093e-6, relative_change = 2.2583373820093248e-11 Iter 135: T = 706.9059545873693 K, F = -5.374770654098526e-7, relative_change = 9.444617162136192e-12 Iter 140: T = 706.9059545669769 K, F = -2.2478070638154435e-7, relative_change = 3.949875918670026e-12 Iter 145: T = 706.9059545584485 K, F = -9.400542178017446e-8, relative_change = 1.6518755444472812e-12 Iter 150: T = 706.9059545548818 K, F = -3.931462122519491e-8, relative_change = 6.908416569262587e-13 Iter 155: T = 706.9059545533901 K, F = -1.6442026073981708e-8, relative_change = 2.889214287789968e-13 Converged in 157 iterations to T = 706.9059545530745 K Iter 1: T = 969.2990888672408 K, F = -6995.231805705037, relative_change = 0.030700911132759218 Iter 2: T = 940.7385120383401 K, F = -5926.483275053984, relative_change = 0.029465184850506487 Iter 3: T = 914.2793031635642 K, F = -5019.332926528729, relative_change = 0.028125997326765705 Iter 5: T = 867.4797812781137 K, F = -3596.3036318981294, relative_change = 0.025168835430509986 Iter 10: T = 783.1325248295448 K, F = -1550.947681927257, relative_change = 0.016902270903184868 Iter 15: T = 736.1272069728524 K, F = -661.3690726402332, relative_change = 0.00951288966061792 Iter 20: T = 712.9160446857769 K, F = -279.4960924297584, relative_change = 0.004659966176431444 Iter 25: T = 702.363506268447 K, F = -117.47093309025554, relative_change = 0.002100389395455497 Iter 30: T = 697.7782013247129 K, F = -49.23630855094214, relative_change = 0.0009080405711320527 Iter 35: T = 695.828320383104 K, F = -20.610740274703357, relative_change = 0.00038519659823830056 Iter 40: T = 695.007044498465 K, F = -8.623114440110662, relative_change = 0.00016206599233062962 Iter 45: T = 694.662547492704 K, F = -3.6068970944040224, relative_change = 6.794947821641374e-5 Iter 50: T = 694.5182936800924 K, F = -1.5085539458173802, relative_change = 2.8447398254686455e-5 Iter 55: T = 694.4579332756223 K, F = -0.6309139205236015, relative_change = 1.19023170257373e-5 Iter 60: T = 694.4326842775012 K, F = -0.26385899837421234, relative_change = 4.978614387479605e-6 Iter 65: T = 694.4221238727972 K, F = -0.1103495548795238, relative_change = 2.0822775176277162e-6 Iter 70: T = 694.4177072153742 K, F = -0.0461496015024101, relative_change = 8.708615792466562e-7 Iter 75: T = 694.4158600867487 K, F = -0.019300331942144533, relative_change = 3.642096544892695e-7 Iter 80: T = 694.4150875902957 K, F = -0.008071632364055614, relative_change = 1.523176914071607e-7 Iter 85: T = 694.4147645221436 K, F = -0.0033756535823736833, relative_change = 6.37012287454788e-8 Iter 90: T = 694.4146294110252 K, F = -0.001411738735552004, relative_change = 2.6640641059535727e-8 Iter 95: T = 694.4145729059139 K, F = -0.0005904060154936497, relative_change = 1.114143887649242e-8 Iter 100: T = 694.4145492747969 K, F = -0.0002469148505425123, relative_change = 4.659483624056418e-9 Iter 105: T = 694.4145393919806 K, F = -0.00010326273970218125, relative_change = 1.9486518375174674e-9 Iter 110: T = 694.4145352588687 K, F = -4.318571111550096e-5, relative_change = 8.149494962768037e-10 Iter 115: T = 694.4145335303518 K, F = -1.806078009847223e-5, relative_change = 3.4082161524871556e-10 Iter 120: T = 694.4145328074654 K, F = -7.553233870694065e-6, relative_change = 1.4253566938330015e-10 Iter 125: T = 694.4145325051458 K, F = -3.158853437601472e-6, relative_change = 5.9610134924124e-11 Iter 130: T = 694.414532378712 K, F = -1.321070522308787e-6, relative_change = 2.4929675815275953e-11 Iter 135: T = 694.4145323258359 K, F = -5.524878892160245e-7, relative_change = 1.0425896076269801e-11 Iter 140: T = 694.4145323037225 K, F = -2.310566952212767e-7, relative_change = 4.360227870129294e-12 Iter 145: T = 694.4145322944744 K, F = -9.663033839757418e-8, relative_change = 1.823493122345348e-12 Iter 150: T = 694.4145322906068 K, F = -4.041211021377222e-8, relative_change = 7.626094067169274e-13 Iter 155: T = 694.4145322889892 K, F = -1.690080031480079e-8, relative_change = 3.1893185565108226e-13 Converged in 158 iterations to T = 694.4145322885156 K Iter 1: T = 965.1442270342238 K, F = -7941.921026651894, relative_change = 0.03485577296577622 Iter 2: T = 932.2609468541737 K, F = -6736.111561148039, relative_change = 0.03407084584766852 Iter 3: T = 901.3206641150542 K, F = -5712.166848031779, relative_change = 0.03318843596690873 Iter 5: T = 845.1561989886413 K, F = -4104.505499060689, relative_change = 0.031112111633291195 Iter 10: T = 736.6000088851293 K, F = -1786.2369235294457, relative_change = 0.024145756073160406 Iter 15: T = 668.635194909441 K, F = -769.2004380041551, relative_change = 0.015841699511175963 Iter 20: T = 631.4034875866668 K, F = -327.5666808902813, relative_change = 0.008731251805929091 Iter 25: T = 613.2576579423185 K, F = -138.30531596806662, relative_change = 0.004218431986709189 Iter 30: T = 605.0713656711664 K, F = -58.10104897541652, relative_change = 0.0018875471189509802 Iter 35: T = 601.5278365617477 K, F = -24.3467403207777, relative_change = 0.0008132507691821734 Iter 40: T = 600.0235730728705 K, F = -10.190740520567307, relative_change = 0.0003444711494243451 Iter 45: T = 599.3904626179026 K, F = -4.263417373036783, relative_change = 0.00014483894077970167 Iter 50: T = 599.1249789653646 K, F = -1.7832805205505737, relative_change = 6.071035009255901e-5 Iter 55: T = 599.0138258779657 K, F = -0.7458362536194774, relative_change = 2.54138301931437e-5 Iter 60: T = 598.9673184834865 K, F = -0.31192586281975515, relative_change = 1.0632577192156056e-5 Iter 65: T = 598.947864711615 K, F = -0.13045256167565725, relative_change = 4.447407505719556e-6 Iter 70: T = 598.93972824282 K, F = -0.05455707122444342, relative_change = 1.8600878206253886e-6 Iter 75: T = 598.936325357362 K, F = -0.022816462808766536, relative_change = 7.779334856395911e-7 Iter 80: T = 598.9349022095532 K, F = -0.009542124939467767, relative_change = 3.2534501741515463e-7 Iter 85: T = 598.9343070285632 K, F = -0.003990631953650237, relative_change = 1.360638613774024e-7 Iter 90: T = 598.9340581161392 K, F = -0.001668930177070982, relative_change = 5.6903652404988375e-8 Iter 95: T = 598.9339540178812 K, F = -0.000697966571906905, relative_change = 2.3797808086065156e-8 Iter 100: T = 598.9339104827275 K, F = -0.0002918979639074393, relative_change = 9.952531266268123e-9 Iter 105: T = 598.9338922758029 K, F = -0.00012207521571228064, relative_change = 4.162268077469969e-9 Iter 110: T = 598.9338846614489 K, F = -5.105331285393255e-5, relative_change = 1.7407103150538153e-9 Iter 115: T = 598.9338814770351 K, F = -2.135110533213469e-5, relative_change = 7.279858671770653e-10 Iter 120: T = 598.9338801452752 K, F = -8.929287472481118e-6, relative_change = 3.0445239492863296e-10 Iter 125: T = 598.9338795883173 K, F = -3.734334137639461e-6, relative_change = 1.273256102690646e-10 Iter 130: T = 598.9338793553909 K, F = -1.5617434998005386e-6, relative_change = 5.324910338358825e-11 Iter 135: T = 598.9338792579782 K, F = -6.531401043896601e-7, relative_change = 2.2269421946680248e-11 Iter 140: T = 598.9338792172391 K, F = -2.7315082268275503e-7, relative_change = 9.313332448111234e-12 Iter 145: T = 598.9338792002015 K, F = -1.1423530604792731e-7, relative_change = 3.8949594668284135e-12 Iter 150: T = 598.9338791930761 K, F = -4.77741913806895e-8, relative_change = 1.6289056810576533e-12 Iter 155: T = 598.9338791900963 K, F = -1.997969534262012e-8, relative_change = 6.812263757816479e-13 Iter 160: T = 598.93387918885 K, F = -8.355458436248853e-9, relative_change = 2.848871602378472e-13 Converged in 162 iterations to T = 598.9338791885863 K Iter 1: T = 965.1679648387302 K, F = -7936.512345314622, relative_change = 0.03483203516126979 Iter 2: T = 932.3097138739873 K, F = -6731.480935512683, relative_change = 0.03404407539596813 Iter 3: T = 901.3957751338302 K, F = -5708.198811366236, relative_change = 0.03315844325133304 Iter 5: T = 845.2878558647044 K, F = -4101.583856083978, relative_change = 0.031075321788932308 Iter 10: T = 736.889630637411 K, F = -1784.8601185621683, relative_change = 0.02409432031609656 Iter 15: T = 669.0798286292054 K, F = -768.5511247732885, relative_change = 0.015789641368342235 Iter 20: T = 631.9643149957643 K, F = -327.2686577308798, relative_change = 0.008693706332334288 Iter 25: T = 613.8865147276299 K, F = -138.17351739011562, relative_change = 0.004197525590095386 Iter 30: T = 605.733896891389 K, F = -58.044359379121396, relative_change = 0.001877545747627365 Iter 35: T = 602.2055794775168 K, F = -24.32272702374571, relative_change = 0.0008088124957974016 Iter 40: T = 600.7078949540057 K, F = -10.180641997156668, relative_change = 0.00034256727722532196 Iter 45: T = 600.0775755118666 K, F = -4.259184082055486, relative_change = 0.0001440341328949713 Iter 50: T = 599.8132661457316 K, F = -1.7815083496995958, relative_change = 6.037225030435512e-5 Iter 55: T = 599.702605401458 K, F = -0.7450948020485673, relative_change = 2.5272165736383566e-5 Iter 60: T = 599.6563041287523 K, F = -0.3116157248707766, relative_change = 1.057328461336485e-5 Iter 65: T = 599.6369365976462 K, F = -0.13032284882251247, relative_change = 4.422602446709305e-6 Iter 70: T = 599.6288362024503 K, F = -0.05450282210579788, relative_change = 1.849712614987536e-6 Iter 75: T = 599.6254484045709 K, F = -0.022793774889313445, relative_change = 7.735941999113518e-7 Iter 80: T = 599.6240315667724 K, F = -0.009532636530367289, relative_change = 3.235302324472052e-7 Iter 85: T = 599.6234390247397 K, F = -0.0039866637797217885, relative_change = 1.3530488898962075e-7 Iter 90: T = 599.6231912159652 K, F = -0.0016672706368603962, relative_change = 5.658623971464446e-8 Iter 95: T = 599.6230875792679 K, F = -0.000697272532631521, relative_change = 2.3665062091645825e-8 Iter 100: T = 599.6230442371444 K, F = -0.00029160770777181266, relative_change = 9.897015245390825e-9 Iter 105: T = 599.6230261109474 K, F = -0.00012195382673690913, relative_change = 4.139050594306909e-9 Iter 110: T = 599.6230185303548 K, F = -5.100254665502124e-5, relative_change = 1.7310004892678414e-9 Iter 115: T = 599.6230153600604 K, F = -2.1329874620446e-5, relative_change = 7.239251126643951e-10 Iter 120: T = 599.6230140342054 K, F = -8.920408466672747e-6, relative_change = 3.0275413649359245e-10 Iter 125: T = 599.623013479717 K, F = -3.730621827957581e-6, relative_change = 1.266154122089509e-10 Iter 130: T = 599.6230132478232 K, F = -1.5601894916561498e-6, relative_change = 5.2952039923593014e-11 Iter 135: T = 599.6230131508426 K, F = -6.524895307946643e-7, relative_change = 2.2145163709758355e-11 Iter 140: T = 599.6230131102841 K, F = -2.7287953108245944e-7, relative_change = 9.261392873920092e-12 Iter 145: T = 599.623013093322 K, F = -1.1412144007572067e-7, relative_change = 3.873223791570272e-12 Iter 150: T = 599.6230130862283 K, F = -4.7727158891675003e-8, relative_change = 1.6198355647374153e-12 Iter 155: T = 599.6230130832615 K, F = -1.995898840645438e-8, relative_change = 6.773979429845649e-13 Iter 160: T = 599.6230130820209 K, F = -8.346634605693737e-9, relative_change = 2.8328054496830193e-13 Converged in 162 iterations to T = 599.6230130817584 K Iter 1: T = 973.5296699620601 K, F = -6031.289878928902, relative_change = 0.026470330037939856 Iter 2: T = 949.2523550594258 K, F = -5103.922629652731, relative_change = 0.02493741654897943 Iter 3: T = 927.1005129257616 K, F = -4317.332957256995, relative_change = 0.023336093943403968 Iter 5: T = 888.8504818448366 K, F = -3085.026424684472, relative_change = 0.020006336101451465 Iter 10: T = 823.7362107214194 K, F = -1320.9095717583318, relative_change = 0.011996829880870278 Iter 15: T = 790.232323346613 K, F = -559.8589553320651, relative_change = 0.006146815047111396 Iter 20: T = 774.603756652165 K, F = -235.69312797592758, relative_change = 0.0028404245143853852 Iter 25: T = 767.7224016737548 K, F = -98.86560571403494, relative_change = 0.0012426868766294828 Iter 30: T = 764.7782528148218 K, F = -41.40055133743389, relative_change = 0.000529950658905125 Iter 35: T = 763.534896926051 K, F = -17.323766427389543, relative_change = 0.00022347569585156118 Iter 40: T = 763.0127609297967 K, F = -7.246690028176159, relative_change = 9.378667609497453e-5 Iter 45: T = 762.794018642661 K, F = -3.0309477158068203, relative_change = 3.928010144068388e-5 Iter 50: T = 762.7024715511507 K, F = -1.2676302615263941, relative_change = 1.6437467283537922e-5 Iter 55: T = 762.6641738260499 K, F = -0.5301471662161898, relative_change = 6.876106167638482e-6 Iter 60: T = 762.648155223413 K, F = -0.2217154597421901, relative_change = 2.8759778416396586e-6 Iter 65: T = 762.6414556961989 K, F = -0.09272433007785297, relative_change = 1.20282217939399e-6 Iter 70: T = 762.6386538115879 K, F = -0.03877847063966744, relative_change = 5.030440278026798e-7 Iter 75: T = 762.6374820190817 K, F = -0.016217628002420437, relative_change = 2.1038066894298772e-7 Iter 80: T = 762.6369919595551 K, F = -0.006782407189386386, relative_change = 8.798399660378297e-8 Iter 85: T = 762.6367870104752 K, F = -0.002836483945514723, relative_change = 3.6796008582584136e-8 Iter 90: T = 762.636701298264 K, F = -0.0011862515063187917, relative_change = 1.5388539051583928e-8 Iter 95: T = 762.6366654523835 K, F = -0.0004961045536366893, relative_change = 6.4356723385542625e-9 Iter 100: T = 762.6366504612064 K, F = -0.0002074768496432844, relative_change = 2.691475289471879e-9 Iter 105: T = 762.6366441917166 K, F = -8.676929513740106e-5, relative_change = 1.1256071378065049e-9 Iter 110: T = 762.6366415697412 K, F = -3.628795468790802e-5, relative_change = 4.707423451699665e-10 Iter 115: T = 762.6366404731999 K, F = -1.5176057193366788e-5, relative_change = 1.968700871676869e-10 Iter 120: T = 762.636640014613 K, F = -6.346807257417986e-6, relative_change = 8.233340752878991e-11 Iter 125: T = 762.6366398228265 K, F = -2.6543087768837736e-6, relative_change = 3.443279079267113e-11 Iter 130: T = 762.6366397426192 K, F = -1.1100638594996326e-6, relative_change = 1.4400207312982579e-11 Iter 135: T = 762.6366397090756 K, F = -4.6424151323165574e-7, relative_change = 6.022332839699824e-12 Iter 140: T = 762.6366396950472 K, F = -1.9415105012576817e-7, relative_change = 2.51860768977283e-12 Iter 145: T = 762.6366396891804 K, F = -8.119589434141261e-8, relative_change = 1.0533067101171061e-12 Iter 150: T = 762.6366396867268 K, F = -3.3957012979257684e-8, relative_change = 4.405044111804459e-13 Converged in 154 iterations to T = 762.6366396858413 K Iter 1: T = 976.4803233969295 K, F = -5358.980686997892, relative_change = 0.02351967660307048 Iter 2: T = 955.1214288771633 K, F = -4531.318055758322, relative_change = 0.021873348605186336 Iter 3: T = 935.8313149709656 K, F = -3829.746491415241, relative_change = 0.02019650415432 Iter 5: T = 903.0350675922789 K, F = -2731.8468945223085, relative_change = 0.016844557265719012 Iter 10: T = 849.0479746274947 K, F = -1164.8534417266185, relative_change = 0.009469615101243951 Iter 15: T = 822.4083155791809 K, F = -492.2452130544888, relative_change = 0.004635229632727421 Iter 20: T = 810.3022504360122 K, F = -206.88285734469875, relative_change = 0.0020883886035596936 Iter 25: T = 805.0430296924163 K, F = -86.71097529370215, relative_change = 0.0009026798782189858 Iter 30: T = 802.8067861776849 K, F = -36.29775391755866, relative_change = 0.0003828903765284166 Iter 35: T = 801.8649360811509 K, F = -15.186205550495425, relative_change = 0.00016108989670865972 Iter 40: T = 801.4698694008775 K, F = -6.352116258856036, relative_change = 6.75392064591307e-5 Iter 45: T = 801.3044414144276 K, F = -2.656717321890391, relative_change = 2.827545594958676e-5 Iter 50: T = 801.2352212774939 K, F = -1.1111035495922894, relative_change = 1.1830345281508192e-5 Iter 55: T = 801.206266256176 K, F = -0.4646824842248397, relative_change = 4.94850384170627e-6 Iter 60: T = 801.1941558123154 K, F = -0.19433676326136862, relative_change = 2.0696829850812816e-6 Iter 65: T = 801.1890908862161 K, F = -0.08127412997116801, relative_change = 8.655940555154783e-7 Iter 70: T = 801.1869726397272 K, F = -0.03398984232233315, relative_change = 3.6200665373340234e-7 Iter 75: T = 801.1860867578181 K, F = -0.01421496332487282, relative_change = 1.5139635978553681e-7 Iter 80: T = 801.1857162703868 K, F = -0.005944868356634214, relative_change = 6.331591504290506e-8 Iter 85: T = 801.1855613279372 K, F = -0.002486215106714207, relative_change = 2.6479497943276998e-8 Iter 90: T = 801.1854965291226 K, F = -0.0010397648764373102, relative_change = 1.1074046825260637e-8 Iter 95: T = 801.185469429479 K, F = -0.0004348420949786824, relative_change = 4.631299446662397e-9 Iter 100: T = 801.1854580960835 K, F = -0.00018185615890664586, relative_change = 1.9368648862834592e-9 Iter 105: T = 801.1854533563219 K, F = -7.605441865621287e-5, relative_change = 8.100200618818832e-10 Iter 110: T = 801.1854513740969 K, F = -3.180686481363271e-5, relative_change = 3.3876005317414114e-10 Iter 115: T = 801.1854505451068 K, F = -1.3302011983795659e-5, relative_change = 1.4167351405291607e-10 Iter 120: T = 801.1854501984133 K, F = -5.563062059454893e-6, relative_change = 5.924957468399092e-11 Iter 125: T = 801.1854500534218 K, F = -2.326538287134028e-6, relative_change = 2.4778872254931212e-11 Iter 130: T = 801.1854499927848 K, F = -9.72988634440064e-7, relative_change = 1.036284733430192e-11 Iter 135: T = 801.1854499674256 K, F = -4.0691656955083033e-7, relative_change = 4.333878258624563e-12 Iter 140: T = 801.1854499568201 K, F = -1.701776407569966e-7, relative_change = 1.8124825397043045e-12 Iter 145: T = 801.1854499523847 K, F = -7.117175981896651e-8, relative_change = 7.580171603125354e-13 Iter 150: T = 801.1854499505298 K, F = -2.9764670617105082e-8, relative_change = 3.170095998251838e-13 Converged in 153 iterations to T = 801.1854499499867 K Iter 1: T = 967.293636165549 K, F = -7452.176111463524, relative_change = 0.032706363834451024 Iter 2: T = 936.6611442228169 K, F = -6317.051035737385, relative_change = 0.03166824508859825 Iter 3: T = 908.0712411176876 K, F = -5353.3225894688685, relative_change = 0.030523208186298258 Iter 5: T = 856.8813546141536 K, F = -3840.814990906983, relative_change = 0.027917571409871084 Iter 10: T = 761.6486505740125 K, F = -1663.1685249429436, relative_change = 0.020003749187743777 Iter 15: T = 705.8618201626017 K, F = -712.1123189507583, relative_change = 0.011994473888584881 Iter 20: T = 677.1586335948283 K, F = -301.8231411241655, relative_change = 0.006145293801960512 Iter 25: T = 663.7698668064047 K, F = -127.06324701481101, relative_change = 0.0028396377451727086 Iter 30: T = 657.8748063766682 K, F = -53.29884907440182, relative_change = 0.0012423247609302664 Iter 35: T = 655.3526573942391 K, F = -22.31919524722651, relative_change = 0.000529792810379858 Iter 40: T = 654.287521631987 K, F = -9.339306814688703, relative_change = 0.00022340851062240913 Iter 45: T = 653.8402281994839 K, F = -3.90671718844817, relative_change = 9.375836974853845e-5 Iter 50: T = 653.652840373639 K, F = -1.6339949809373757, relative_change = 3.926822660251126e-5 Iter 55: T = 653.5744156378469 K, F = -0.6833840928952699, relative_change = 1.6432494629265434e-5 Iter 60: T = 653.5416075103273 K, F = -0.28580426730975206, relative_change = 6.874025413665291e-6 Iter 65: T = 653.5278850155009 K, F = -0.11952761120298883, relative_change = 2.8751074476184906e-6 Iter 70: T = 653.5221457991721 K, F = -0.049988023731141584, relative_change = 1.202458135625243e-6 Iter 75: T = 653.5197455369936 K, F = -0.020905614610292556, relative_change = 5.028917742607922e-7 Iter 80: T = 653.5187417093509 K, F = -0.008742982259550724, relative_change = 2.1031699363800268e-7 Iter 85: T = 653.5183218950099 K, F = -0.003656420391185633, relative_change = 8.795736663877236e-8 Iter 90: T = 653.5181463233534 K, F = -0.0015291588147904878, relative_change = 3.6784871587282284e-8 Iter 95: T = 653.51807289714 K, F = -0.000639512503168127, relative_change = 1.5383881428014982e-8 Iter 100: T = 653.518042189412 K, F = -0.0002674517711975244, relative_change = 6.433724494655005e-9 Iter 105: T = 653.5180293470718 K, F = -0.00011185152529941123, relative_change = 2.690660683190413e-9 Iter 110: T = 653.5180239762515 K, F = -4.677764447713617e-5, relative_change = 1.1252664944415672e-9 Iter 115: T = 653.5180217301101 K, F = -1.9562968868847008e-5, relative_change = 4.705998774884725e-10 Iter 120: T = 653.5180207907471 K, F = -8.18146792108676e-6, relative_change = 1.9681050731616198e-10 Iter 125: T = 653.5180203978941 K, F = -3.4215867573128556e-6, relative_change = 8.23084847310452e-11 Iter 130: T = 653.5180202335985 K, F = -1.430949109426649e-6, relative_change = 3.4422407327066583e-11 Iter 135: T = 653.518020164888 K, F = -5.98439310772747e-7, relative_change = 1.4395845100678678e-11 Iter 140: T = 653.5180201361525 K, F = -2.5027440547775726e-7, relative_change = 6.020512873768531e-12 Iter 145: T = 653.5180201241349 K, F = -1.0466759875482623e-7, relative_change = 2.5178468594186493e-12 Iter 150: T = 653.518020119109 K, F = -4.3772703572919625e-8, relative_change = 1.0529807269347783e-12 Iter 155: T = 653.5180201170072 K, F = -1.8305866267276372e-8, relative_change = 4.4035946597339667e-13 Converged in 159 iterations to T = 653.5180201162486 K Iter 1: T = 970.2186478534386 K, F = -6785.709415973453, relative_change = 0.02978135214656142 Iter 2: T = 942.5991205450757 K, F = -5747.534552837668, relative_change = 0.02846732266945159 Iter 3: T = 917.0974089361378 K, F = -4866.451699782419, relative_change = 0.027054673671020553 Iter 5: T = 872.2352825585054 K, F = -3484.660478362712, relative_change = 0.023976934397766683 Iter 10: T = 792.45998560896 K, F = -1500.2272021735807, relative_change = 0.01567156878799587 Iter 15: T = 748.8779977236834 K, F = -638.740499627363, relative_change = 0.008608929968508693 Iter 20: T = 727.680626644196 K, F = -269.65144884550017, relative_change = 0.004150444793059218 Iter 25: T = 718.1290040285182 K, F = -113.27023550421367, relative_change = 0.0018550529934393894 Iter 30: T = 713.9968873053922 K, F = -47.46327835443275, relative_change = 0.0007988370734027206 Iter 35: T = 712.24322306717 K, F = -19.866259838823936, relative_change = 0.000338289290935354 Iter 40: T = 711.5052291714852 K, F = -8.311232424513816, relative_change = 0.0001422259405397596 Iter 45: T = 711.1957793829989 K, F = -3.476370576948782, relative_change = 5.961266494447183e-5 Iter 50: T = 711.0662211086968 K, F = -1.4539497448402607, relative_change = 2.495390438953717e-5 Iter 55: T = 711.0120132874339 K, F = -0.6080749097025427, relative_change = 1.0440079868352215e-5 Iter 60: T = 710.9893385524151 K, F = -0.25430694693895695, relative_change = 4.366876417579319e-6 Iter 65: T = 710.979854941668 K, F = -0.10635468465800024, relative_change = 1.826404137297923e-6 Iter 70: T = 710.9758886484427 K, F = -0.044478883632987576, relative_change = 7.638457587375407e-7 Iter 75: T = 710.9742298738188 K, F = -0.018601615078321698, relative_change = 3.1945322042110936e-7 Iter 80: T = 710.9735361503633 K, F = -0.007779420154464423, relative_change = 1.3359981678965472e-7 Iter 85: T = 710.9732460262128 K, F = -0.003253446865425169, relative_change = 5.587315519758679e-8 Iter 90: T = 710.9731246927029 K, F = -0.0013606304125075575, relative_change = 2.3366841113338377e-8 Iter 95: T = 710.9730739495582 K, F = -0.0005690319034790114, relative_change = 9.77229560139448e-9 Iter 100: T = 710.9730527281652 K, F = -0.0002379759401774928, relative_change = 4.08689134951395e-9 Iter 105: T = 710.9730438531244 K, F = -9.952438014904086e-5, relative_change = 1.7091868706036287e-9 Iter 110: T = 710.9730401414763 K, F = -4.162228543491686e-5, relative_change = 7.148023976795773e-10 Iter 115: T = 710.9730385892207 K, F = -1.74069349868633e-5, relative_change = 2.989388704677686e-10 Iter 120: T = 710.9730379400488 K, F = -7.279787722080933e-6, relative_change = 1.2501979986637108e-10 Iter 125: T = 710.9730376685575 K, F = -3.0444949298269464e-6, relative_change = 5.2284786595995176e-11 Iter 130: T = 710.9730375550165 K, F = -1.2732440448637306e-6, relative_change = 2.1866120573478144e-11 Iter 135: T = 710.9730375075322 K, F = -5.324846655829774e-7, relative_change = 9.144652159841143e-12 Iter 140: T = 710.9730374876739 K, F = -2.2269188126866624e-7, relative_change = 3.824410212947384e-12 Iter 145: T = 710.9730374793688 K, F = -9.313149418321842e-8, relative_change = 1.5993983951819731e-12 Iter 150: T = 710.9730374758956 K, F = -3.894959554884281e-8, relative_change = 6.689028363777752e-13 Iter 155: T = 710.973037474443 K, F = -1.6287971305040116e-8, relative_change = 2.7972229368145064e-13 Converged in 157 iterations to T = 710.9730374741356 K Iter 1: T = 964.2504042354925 K, F = -8145.579401587783, relative_change = 0.03574959576450744 Iter 2: T = 930.4218645733187 K, F = -6910.514788857836, relative_change = 0.03508273319210567 Iter 3: T = 898.4832216875533 K, F = -5861.660986767738, relative_change = 0.0343270553948257 Iter 5: T = 840.1623409502489 K, F = -4214.674572634074, relative_change = 0.032523311881034654 Iter 10: T = 725.4610407638615 K, F = -1838.3925647304704, relative_change = 0.026191561072186356 Iter 15: T = 651.2422774083839 K, F = -794.014246133508, relative_change = 0.01801094412114432 Iter 20: T = 609.1364850477337 K, F = -339.0756399975581, relative_change = 0.010364922010443598 Iter 25: T = 588.047923312161 K, F = -143.43674327118143, relative_change = 0.005155186045035601 Iter 30: T = 578.3775946576167 K, F = -60.31859318834506, relative_change = 0.00234281054987653 Iter 35: T = 574.1573401963393 K, F = -25.28822317710788, relative_change = 0.0010167886664517282 Iter 40: T = 572.3591354391431 K, F = -10.587074686129384, relative_change = 0.00043206859530195283 Iter 45: T = 571.6010920792347 K, F = -4.4296331832016005, relative_change = 0.00018192017742562475 Iter 50: T = 571.283002546497 K, F = -1.852875907547003, relative_change = 7.629739245321106e-5 Iter 55: T = 571.1497860033917 K, F = -0.7749562659952003, relative_change = 3.194645257324356e-5 Iter 60: T = 571.0940403418508 K, F = -0.32410672086098175, relative_change = 1.3367040918836036e-5 Iter 65: T = 571.0707210779657 K, F = -0.1355471832282547, relative_change = 5.591420604105893e-6 Iter 70: T = 571.060967675008 K, F = -0.05668777999802599, relative_change = 2.3386025989076507e-6 Iter 75: T = 571.0568885090241 K, F = -0.023707564167209094, relative_change = 9.780671720956143e-7 Iter 80: T = 571.0551825222418 K, F = -0.009914796531476228, relative_change = 4.090456050656144e-7 Iter 85: T = 571.0544690527995 K, F = -0.0041464880770561985, relative_change = 1.7106884723060372e-7 Iter 90: T = 571.0541706704144 K, F = -0.0017341111412543242, relative_change = 7.154322558047741e-8 Iter 95: T = 571.0540458831724 K, F = -0.0007252260427393353, relative_change = 2.992026469182822e-8 Iter 100: T = 571.0539936956286 K, F = -0.00030329820108127015, relative_change = 1.2513017832289609e-8 Iter 105: T = 571.0539718701697 K, F = -0.0001268429317063946, relative_change = 5.233094523764394e-9 Iter 110: T = 571.0539627425011 K, F = -5.3047228590064055e-5, relative_change = 2.1885427814212724e-9 Iter 115: T = 571.053958925201 K, F = -2.2184984413420317e-5, relative_change = 9.152747528872552e-10 Iter 120: T = 571.0539573287605 K, F = -9.278025945025359e-6, relative_change = 3.827788588393942e-10 Iter 125: T = 571.05395666111 K, F = -3.880181078330658e-6, relative_change = 1.6008268378654553e-10 Iter 130: T = 571.0539563818905 K, F = -1.622737908935079e-6, relative_change = 6.694848382204057e-11 Iter 135: T = 571.0539562651176 K, F = -6.786474255338071e-7, relative_change = 2.7998616402120115e-11 Iter 140: T = 571.0539562162818 K, F = -2.8381868166782453e-7, relative_change = 1.1709364981024878e-11 Iter 145: T = 571.0539561958581 K, F = -1.18696259543416e-7, relative_change = 4.896992040642454e-12 Iter 150: T = 571.0539561873167 K, F = -4.9640334953693355e-8, relative_change = 2.047986399196149e-12 Iter 155: T = 571.0539561837445 K, F = -2.075987043381744e-8, relative_change = 8.564795611967417e-13 Iter 160: T = 571.0539561822505 K, F = -8.681557528422701e-9, relative_change = 3.5817066422668713e-13 Converged in 163 iterations to T = 571.0539561818132 K Iter 1: T = 966.4626599081423 K, F = -7641.5148421761105, relative_change = 0.03353734009185765 Iter 2: T = 934.9637178940934 K, F = -6479.006764304139, relative_change = 0.032591990690093275 Iter 3: T = 905.4734717349063 K, F = -5491.945775205274, relative_change = 0.03154159417609355 Iter 5: T = 852.3946613717864 K, F = -3942.5557195627207, relative_change = 0.02912057592381075 Iter 10: T = 752.234954010138 K, F = -1710.378285782829, relative_change = 0.021489829985589324 Iter 15: T = 692.1455797804057 K, F = -733.8024809882999, relative_change = 0.013298460562834936 Iter 20: T = 660.560937128376 K, F = -311.5073497696918, relative_change = 0.006980722100350283 Iter 25: T = 645.6162022775783 K, F = -131.26295892618725, relative_change = 0.0032718685897084546 Iter 30: T = 638.9854073231281 K, F = -55.08607861464902, relative_change = 0.0014414935646326768 Iter 35: T = 636.1382156915956 K, F = -23.07245170091081, relative_change = 0.0006166731167309009 Iter 40: T = 634.933893540066 K, F = -9.655378302160006, relative_change = 0.00026039995729762103 Iter 45: T = 634.4278053525201 K, F = -4.0390883625747644, relative_change = 0.00010934585409605306 Iter 50: T = 634.2157251980823 K, F = -1.6893869607011913, relative_change = 4.5807772098632476e-5 Iter 55: T = 634.126955610255 K, F = -0.7065554264806545, relative_change = 1.9171039109983992e-5 Iter 60: T = 634.0898179474432 K, F = -0.2954958017656901, relative_change = 8.019952970772008e-6 Iter 65: T = 634.0742842299952 K, F = -0.12358090268249439, relative_change = 3.3544592637190784e-6 Iter 70: T = 634.0677874408832 K, F = -0.05168318942517186, relative_change = 1.4029482483258248e-6 Iter 75: T = 634.0650703356025 K, F = -0.021614558534859607, relative_change = 5.86742537449469e-7 Iter 80: T = 634.0639339973966 K, F = -0.00903947201835259, relative_change = 2.453849795470446e-7 Iter 85: T = 634.0634587650318 K, F = -0.003780416114761209, relative_change = 1.0262332129088766e-7 Iter 90: T = 634.0632600168042 K, F = -0.0015810153337531552, relative_change = 4.2918367123527535e-8 Iter 95: T = 634.063176897856 K, F = -0.0006611995231854961, relative_change = 1.7948985682225127e-8 Iter 100: T = 634.0631421365076 K, F = -0.0002765215416711819, relative_change = 7.506482254936713e-9 Iter 105: T = 634.0631275988947 K, F = -0.00011564461222640654, relative_change = 3.139300898835136e-9 Iter 110: T = 634.0631215190909 K, F = -4.836395846158359e-5, relative_change = 1.3128932016621226e-9 Iter 115: T = 634.0631189764443 K, F = -2.022638454712844e-5, relative_change = 5.490676139384251e-10 Iter 120: T = 634.0631179130792 K, F = -8.45891600387283e-6, relative_change = 2.296266469676897e-10 Iter 125: T = 634.0631174683672 K, F = -3.537619211957388e-6, relative_change = 9.60325933288485e-11 Iter 130: T = 634.0631172823832 K, F = -1.4794748018909232e-6, relative_change = 4.016198286928366e-11 Iter 135: T = 634.0631172046027 K, F = -6.187346202612964e-7, relative_change = 1.6796236882385233e-11 Iter 140: T = 634.0631171720738 K, F = -2.5876210740793937e-7, relative_change = 7.02438413973842e-12 Iter 145: T = 634.0631171584699 K, F = -1.0821735529908949e-7, relative_change = 2.937680025486171e-12 Iter 150: T = 634.0631171527806 K, F = -4.525827995705001e-8, relative_change = 1.2285861602874097e-12 Iter 155: T = 634.0631171504012 K, F = -1.8927774902977035e-8, relative_change = 5.138154236819599e-13 Converged in 160 iterations to T = 634.0631171494061 K Iter 1: T = 963.505113935801 K, F = -8315.394505326607, relative_change = 0.03649488606419901 Iter 2: T = 928.8841949228575 K, F = -7055.998378833459, relative_change = 0.03593226285174681 Iter 3: T = 896.1034589810936 K, F = -5986.43481649035, relative_change = 0.035290444299664644 Iter 5: T = 835.942978159914 K, F = -4306.7738268902385, relative_change = 0.03373980244846084 Iter 10: T = 715.8040257485575 K, F = -1882.3726847070686, relative_change = 0.028076311763170575 Iter 15: T = 635.6576077383727 K, F = -815.3093007228902, relative_change = 0.020194533343018163 Iter 20: T = 588.5650588581025 K, F = -349.17667664951614, relative_change = 0.012157236959040777 Iter 25: T = 564.2705871266506 K, F = -148.02456674741626, relative_change = 0.006247354945854804 Iter 30: T = 552.9185014048278 K, F = -62.32330795398112, relative_change = 0.0028917795080725243 Iter 35: T = 547.9155670236219 K, F = -26.14403400702253, relative_change = 0.0012662018561122477 Iter 40: T = 545.7741805169543 K, F = -10.948237059566097, relative_change = 0.0005401790679626709 Iter 45: T = 544.8696737497347 K, F = -4.581260682448063, relative_change = 0.00022782534145480846 Iter 50: T = 544.4898040674544 K, F = -1.9163919020219322, relative_change = 9.561857745146825e-5 Iter 55: T = 544.3306571016243 K, F = -0.8015376181971334, relative_change = 4.0048485491844684e-5 Iter 60: T = 544.2640506494841 K, F = -0.3352265505593932, relative_change = 1.6759211413687e-5 Iter 65: T = 544.2361864033627 K, F = -0.14019818736778433, relative_change = 7.010732890694184e-6 Iter 70: T = 544.224531732214 K, F = -0.05863298320253954, relative_change = 2.932292504960119e-6 Iter 75: T = 544.2196573452783 K, F = -0.024521088473701214, relative_change = 1.2263757714360226e-6 Iter 80: T = 544.2176187722231 K, F = -0.010255025102226006, relative_change = 5.128947933657292e-7 Iter 85: T = 544.2167662085405 K, F = -0.0042887762523539374, relative_change = 2.14500441860477e-7 Iter 90: T = 544.2164096548127 K, F = -0.0017936178468353214, relative_change = 8.970694624281818e-8 Iter 95: T = 544.2162605395381 K, F = -0.0007501124737646914, relative_change = 3.7516568681164135e-8 Iter 100: T = 544.2161981777062 K, F = -0.0003137060067764652, relative_change = 1.568988622532139e-8 Iter 105: T = 544.2161720972359 K, F = -0.00013119560064595026, relative_change = 6.561699401910197e-9 Iter 110: T = 544.2161611900704 K, F = -5.4867567067573564e-5, relative_change = 2.7441813185151455e-9 Iter 115: T = 544.2161566285632 K, F = -2.2946271412388475e-5, relative_change = 1.1476494260195502e-9 Iter 120: T = 544.2161547208865 K, F = -9.596404749012688e-6, relative_change = 4.799607041998864e-10 Iter 125: T = 544.2161539230733 K, F = -4.013331467378478e-6, relative_change = 2.0072531964771699e-10 Iter 130: T = 544.2161535894182 K, F = -1.6784227942767682e-6, relative_change = 8.394570834904128e-11 Iter 135: T = 544.2161534498796 K, F = -7.019357318449604e-7, relative_change = 3.510706152113918e-11 Iter 140: T = 544.216153391523 K, F = -2.9355754627147235e-7, relative_change = 1.4682174413775025e-11 Iter 145: T = 544.2161533671176 K, F = -1.2276935054678084e-7, relative_change = 6.140264628427061e-12 Iter 150: T = 544.2161533569109 K, F = -5.134385480665138e-8, relative_change = 2.567944313303141e-12 Iter 155: T = 544.2161533526423 K, F = -2.1472025102386993e-8, relative_change = 1.0739155633420218e-12 Iter 160: T = 544.2161533508572 K, F = -8.979955529175854e-9, relative_change = 4.491292253556335e-13 Converged in 165 iterations to T = 544.2161533501107 K Iter 1: T = 976.4779559703278 K, F = -5359.520107401108, relative_change = 0.023522044029672243 Iter 2: T = 955.1167422719034 K, F = -4531.777116018261, relative_change = 0.02187577668069086 Iter 3: T = 935.8243772520807 K, F = -3830.1370407185514, relative_change = 0.020198960154266185 Iter 5: T = 903.0239073995779 K, F = -2732.1291926478584, relative_change = 0.016846965574754336 Iter 10: T = 849.0285024060184 K, F = -1164.9774070094888, relative_change = 0.009471422496192884 Iter 15: T = 822.3839376437921 K, F = -492.2986317708932, relative_change = 0.004636263020556523 Iter 20: T = 810.2754251463904 K, F = -206.90554250710616, relative_change = 0.002088889965751791 Iter 25: T = 805.0150938463186 K, F = -86.72052957173167, relative_change = 0.0009029038343989768 Iter 30: T = 802.7783689771343 K, F = -36.30176192731552, relative_change = 0.0003829867243601582 Iter 35: T = 801.8363144772653 K, F = -15.187883942606526, relative_change = 0.00016113067532366087 Iter 40: T = 801.4411617610992 K, F = -6.3528185696074555, relative_change = 6.755634648026726e-5 Iter 45: T = 801.2756976960753 K, F = -2.657011104584737, relative_change = 2.8282639221559386e-5 Iter 50: T = 801.2064624535683 K, F = -1.1112264249262145, relative_change = 1.1833352060603847e-5 Iter 55: T = 801.1775011119272 K, F = -0.4647338742393473, relative_change = 4.949761776383258e-6 Iter 60: T = 801.1653880243083 K, F = -0.1943582555463178, relative_change = 2.0702091495598267e-6 Iter 65: T = 801.160321992466 K, F = -0.08128311836375657, relative_change = 8.658141179639696e-7 Iter 70: T = 801.1582032835263 K, F = -0.03399360138870833, relative_change = 3.6209868898267505e-7 Iter 75: T = 801.1573172082118 K, F = -0.014216535411736286, relative_change = 1.5143485044379885e-7 Iter 80: T = 801.1569466398958 K, F = -0.005945525823987774, relative_change = 6.3332012387916e-8 Iter 85: T = 801.156791663619 K, F = -0.0024864900675342083, relative_change = 2.6486230059140357e-8 Iter 90: T = 801.1567268506575 K, F = -0.0010398798687564215, relative_change = 1.1076862283202026e-8 Iter 95: T = 801.1566997450975 K, F = -0.00043489018727116413, relative_change = 4.632476917237002e-9 Iter 100: T = 801.1566884092276 K, F = -0.00018187627133647855, relative_change = 1.9373573149738646e-9 Iter 105: T = 801.1566836684312 K, F = -7.606282915506579e-5, relative_change = 8.102259933642578e-10 Iter 110: T = 801.1566816857735 K, F = -3.181038468758057e-5, relative_change = 3.38846202840263e-10 Iter 115: T = 801.1566808566024 K, F = -1.3303483117343973e-5, relative_change = 1.4170953307694408e-10 Iter 120: T = 801.1566805098331 K, F = -5.5636760670774166e-6, relative_change = 5.926462508557976e-11 Iter 125: T = 801.1566803648102 K, F = -2.326797319152085e-6, relative_change = 2.4785190443513027e-11 Iter 130: T = 801.1566803041597 K, F = -9.730945969010918e-7, relative_change = 1.036546445791395e-11 Iter 135: T = 801.156680278795 K, F = -4.0696012248986335e-7, relative_change = 4.33496465762581e-12 Iter 140: T = 801.1566802681872 K, F = -1.7019657772010532e-7, relative_change = 1.8129445823783638e-12 Iter 145: T = 801.1566802637508 K, F = -7.117696132485918e-8, relative_change = 7.581814402853088e-13 Iter 150: T = 801.1566802618955 K, F = -2.9765957365590623e-8, relative_change = 3.170688381056436e-13 Converged in 153 iterations to T = 801.1566802613523 K Iter 1: T = 973.6141759305253 K, F = -6012.035113628176, relative_change = 0.02638582406947465 Iter 2: T = 949.4212252656164 K, F = -5087.510802005455, relative_change = 0.02484860149225616 Iter 3: T = 927.3529292244888 K, F = -4303.345571142055, relative_change = 0.023243946368434756 Iter 5: T = 889.2646018256174 K, F = -3074.8735500625057, relative_change = 0.019911116659521395 Iter 10: T = 824.4920455177216 K, F = -1316.3945007070572, relative_change = 0.011915948422793355 Iter 15: T = 791.2082842572676 K, F = -557.8911714525512, relative_change = 0.006096287774084206 Iter 20: T = 775.6958590220972 K, F = -234.85149232685325, relative_change = 0.002814669261055277 Iter 25: T = 768.868770383203 K, F = -98.50984651014979, relative_change = 0.0012309061836513248 Iter 30: T = 765.9484639826236 K, F = -41.25106333952348, relative_change = 0.0005248288118814972 Iter 35: T = 764.7152929887869 K, F = -17.26112187287526, relative_change = 0.00022129807456430848 Iter 40: T = 764.1974548293499 K, F = -7.220468866308614, relative_change = 9.286962752779955e-5 Iter 45: T = 763.9805167403309 K, F = -3.019977764405554, relative_change = 3.889546315960684e-5 Iter 50: T = 763.8897253795233 K, F = -1.2630418048016003, relative_change = 1.6276410860604407e-5 Iter 55: T = 763.8517439191902 K, F = -0.5282280976722855, relative_change = 6.808716103969384e-6 Iter 60: T = 763.8358576188693 K, F = -0.22091286116197373, relative_change = 2.8477885019901593e-6 Iter 65: T = 763.8292134284699 K, F = -0.09238867005898455, relative_change = 1.1910320094652295e-6 Iter 70: T = 763.8264346874961 K, F = -0.03863809296168952, relative_change = 4.981130540067852e-7 Iter 75: T = 763.8252725741314 K, F = -0.01615892026732546, relative_change = 2.0831844464178905e-7 Iter 80: T = 763.8247865625717 K, F = -0.006757854895416693, relative_change = 8.712154416994742e-8 Iter 85: T = 763.8245833064059 K, F = -0.0028262158779621682, relative_change = 3.643531967107263e-8 Iter 90: T = 763.8244983021926 K, F = -0.0011819572781346377, relative_change = 1.5237694480723837e-8 Iter 95: T = 763.8244627524055 K, F = -0.0004943086561843835, relative_change = 6.372587309657847e-9 Iter 100: T = 763.824447885058 K, F = -0.0002067257831799285, relative_change = 2.665092362992267e-9 Iter 105: T = 763.8244416673556 K, F = -8.645519213990038e-5, relative_change = 1.1145735074692946e-9 Iter 110: T = 763.8244390670382 K, F = -3.615659289790685e-5, relative_change = 4.661279469756776e-10 Iter 115: T = 763.8244379795543 K, F = -1.5121118141947498e-5, relative_change = 1.9494026506213012e-10 Iter 120: T = 763.8244375247556 K, F = -6.3238326555303814e-6, relative_change = 8.152635314399397e-11 Iter 125: T = 763.8244373345534 K, F = -2.64470293021013e-6, relative_change = 3.4095302176653596e-11 Iter 130: T = 763.8244372550085 K, F = -1.106047108678787e-6, relative_change = 1.4259072344174166e-11 Iter 135: T = 763.8244372217418 K, F = -4.62561656644489e-7, relative_change = 5.963308502276478e-12 Iter 140: T = 763.8244372078294 K, F = -1.9344891122319297e-7, relative_change = 2.4939281511611647e-12 Iter 145: T = 763.824437202011 K, F = -8.09043164684553e-8, relative_change = 1.043012085840366e-12 Iter 150: T = 763.8244371995777 K, F = -3.38348651318654e-8, relative_change = 4.361964206150777e-13 Converged in 154 iterations to T = 763.8244371986993 K Iter 1: T = 964.4984402821647 K, F = -8089.064152410357, relative_change = 0.035501559717835356 Iter 2: T = 930.9327599207612 K, F = -6862.109700714764, relative_change = 0.03480117640375219 Iter 3: T = 899.2724180910868 K, F = -5820.160338956412, relative_change = 0.03400926811552881 Iter 5: T = 841.5553130218736 K, F = -4184.071693505914, relative_change = 0.03212657979195534 Iter 10: T = 728.598796108758 K, F = -1823.8568876222855, relative_change = 0.02560173068018895 Iter 15: T = 656.2014067934019 K, F = -787.0541858858483, relative_change = 0.017365157599346058 Iter 20: T = 615.5538734614786 K, F = -335.8222043898073, relative_change = 0.009864053259929914 Iter 25: T = 595.3644909365396 K, F = -141.9771937980059, relative_change = 0.004862251299307327 Iter 30: T = 586.1534299422706 K, F = -59.685587873010746, relative_change = 0.002198929615018603 Iter 35: T = 582.1439521011253 K, F = -25.019004165201068, relative_change = 0.0009521424817418179 Iter 40: T = 580.4375685808719 K, F = -10.473653500280045, relative_change = 0.0004041856689322054 Iter 45: T = 579.7186014286831 K, F = -4.382050261078047, relative_change = 0.00017010590780066167 Iter 50: T = 579.4169747432198 K, F = -1.8329498633201924, relative_change = 7.132932310959201e-5 Iter 55: T = 579.2906644643471 K, F = -0.7666183369677924, relative_change = 2.9863960340154294e-5 Iter 60: T = 579.2378108254576 K, F = -0.32061888997616694, relative_change = 1.2495278542070497e-5 Iter 65: T = 579.2157016952407 K, F = -0.1340883890298209, relative_change = 5.226692224713475e-6 Iter 70: T = 579.2064544993166 K, F = -0.05607767005699374, relative_change = 2.1860431230901338e-6 Iter 75: T = 579.2025870552231 K, F = -0.02345240456737155, relative_change = 9.142604794913588e-7 Iter 80: T = 579.2009696165735 K, F = -0.009808084982048215, relative_change = 3.823600975018587e-7 Iter 85: T = 579.2002931796317 K, F = -0.004101859900797644, relative_change = 1.5990851170168395e-7 Iter 90: T = 579.2000102847877 K, F = -0.0017154470814537137, relative_change = 6.687581589989498e-8 Iter 95: T = 579.1998919746393 K, F = -0.0007174205058468885, relative_change = 2.79682940083375e-8 Iter 100: T = 579.1998424958967 K, F = -0.0003000338320798268, relative_change = 1.1696679663474966e-8 Iter 105: T = 579.1998218032912 K, F = -0.00012547773319332434, relative_change = 4.891692011939521e-9 Iter 110: T = 579.1998131493957 K, F = -5.247628667354176e-5, relative_change = 2.045764169181185e-9 Iter 115: T = 579.1998095302331 K, F = -2.1946209828205276e-5, relative_change = 8.555630342292511e-10 Iter 120: T = 579.199808016656 K, F = -9.178166647305641e-6, relative_change = 3.5780666751093556e-10 Iter 125: T = 579.19980738366 K, F = -3.838418495327733e-6, relative_change = 1.496390063776777e-10 Iter 130: T = 579.1998071189334 K, F = -1.6052718598835725e-6, relative_change = 6.258079646451222e-11 Iter 135: T = 579.1998070082217 K, F = -6.713439123506859e-7, relative_change = 2.6172038409611185e-11 Iter 140: T = 579.1998069619208 K, F = -2.807645760882771e-7, relative_change = 1.0945479860698831e-11 Iter 145: T = 579.1998069425572 K, F = -1.1741945959986566e-7, relative_change = 4.57754446239307e-12 Iter 150: T = 579.199806934459 K, F = -4.9105978727759236e-8, relative_change = 1.914374344564487e-12 Iter 155: T = 579.1998069310722 K, F = -2.0535821154687994e-8, relative_change = 8.005796887206792e-13 Iter 160: T = 579.1998069296559 K, F = -8.588013300503405e-9, relative_change = 3.3479980971477114e-13 Converged in 163 iterations to T = 579.1998069292412 K Iter 1: T = 966.452357479384 K, F = -7643.862260368834, relative_change = 0.033547642520615976 Iter 2: T = 934.9426438833443 K, F = -6481.015131421793, relative_change = 0.03260348360908396 Iter 3: T = 905.441169917606 K, F = -5493.665279144579, relative_change = 0.03155431422317213 Iter 5: T = 852.3386743311934 K, F = -3943.8186961806623, relative_change = 0.029135738220619798 Iter 10: T = 752.1161941886623 K, F = -1710.966406373183, relative_change = 0.021509103813920998 Iter 15: T = 691.9705591318657 K, F = -734.0741954222528, relative_change = 0.013315905384297338 Iter 20: T = 660.3473343639066 K, F = -311.6293295958269, relative_change = 0.00699217170523233 Iter 25: T = 645.3814263023675 K, F = -131.3160518298145, relative_change = 0.0032778775421714143 Iter 30: T = 638.7405311266518 K, F = -55.108716552598544, relative_change = 0.001444282111026627 Iter 35: T = 635.8888585649261 K, F = -23.08200138799535, relative_change = 0.0006178934144820331 Iter 40: T = 634.6826140742259 K, F = -9.659386989042659, relative_change = 0.0002609202477276447 Iter 45: T = 634.1757132112181 K, F = -4.0407674872234915, relative_change = 0.00010956522300138466 Iter 50: T = 633.9632916386703 K, F = -1.6900896560119147, relative_change = 4.589982843336119e-5 Iter 55: T = 633.8743789935189 K, F = -0.7068493836512733, relative_change = 1.920959323088135e-5 Iter 60: T = 633.8371814547064 K, F = -0.29561875245227154, relative_change = 8.03608641018957e-6 Iter 65: T = 633.8216226880454 K, F = -0.12363232462791274, relative_change = 3.36120814889787e-6 Iter 70: T = 633.8151154215917 K, F = -0.05170469513469822, relative_change = 1.4057710080590865e-6 Iter 75: T = 633.8123939343058 K, F = -0.021623552555915193, relative_change = 5.879231009417926e-7 Iter 80: T = 633.8112557634481 K, F = -0.009043233438288112, relative_change = 2.4587871432186005e-7 Iter 85: T = 633.8107797646387 K, F = -0.003781989187309709, relative_change = 1.0282980863616341e-7 Iter 90: T = 633.8105806958736 K, F = -0.0015816732122188593, relative_change = 4.300472288263103e-8 Iter 95: T = 633.8104974428725 K, F = -0.0006614746560472118, relative_change = 1.7985100744651626e-8 Iter 100: T = 633.8104626254616 K, F = -0.000276636606026226, relative_change = 7.521586027214887e-9 Iter 105: T = 633.8104480644024 K, F = -0.00011569273302425298, relative_change = 3.1456174648968207e-9 Iter 110: T = 633.8104419747932 K, F = -4.838408172264108e-5, relative_change = 1.3155348263738556e-9 Iter 115: T = 633.8104394280459 K, F = -2.023480088114704e-5, relative_change = 5.501723878057375e-10 Iter 120: T = 633.8104383629658 K, F = -8.46243505209232e-6, relative_change = 2.3008865586848997e-10 Iter 125: T = 633.8104379175367 K, F = -3.539091796067595e-6, relative_change = 9.622583477029685e-11 Iter 130: T = 633.8104377312528 K, F = -1.4800911138923567e-6, relative_change = 4.024281125681325e-11 Iter 135: T = 633.8104376533466 K, F = -6.189911063159137e-7, relative_change = 1.683000596509662e-11 Iter 140: T = 633.8104376207655 K, F = -2.588705120820656e-7, relative_change = 7.0385377417224e-12 Iter 145: T = 633.8104376071394 K, F = -1.0826193946877893e-7, relative_change = 2.9435787834324476e-12 Iter 150: T = 633.810437601441 K, F = -4.527634794859736e-8, relative_change = 1.2310374067973869e-12 Iter 155: T = 633.8104375990578 K, F = -1.8934200762821263e-8, relative_change = 5.148098392062109e-13 Converged in 160 iterations to T = 633.8104375980612 K Iter 1: T = 966.8595164743696 K, F = -7551.090696053186, relative_change = 0.033140483525630426 Iter 2: T = 935.7749554698494 K, F = -6401.651350772375, relative_change = 0.03215002849418012 Iter 3: T = 906.7159901368505 K, F = -5425.725286309364, relative_change = 0.031053369363158993 Iter 5: T = 854.5445553831815 K, F = -3893.9348665906223, relative_change = 0.02854116293446649 Iter 10: T = 756.7709461501016 K, F = -1687.7765818918963, relative_change = 0.02076357735663544 Iter 15: T = 698.7927942081441 K, F = -723.3892243770305, relative_change = 0.012651210308028944 Iter 20: T = 668.6388630967672 K, F = -306.84541247254805, relative_change = 0.006561065516042986 Iter 25: T = 654.4728776879429 K, F = -129.23758409188133, relative_change = 0.0030532253414252255 Iter 30: T = 648.2119018097618 K, F = -54.22334438444728, relative_change = 0.001340396779938584 Iter 35: T = 645.5284274733726 K, F = -22.708679284520063, relative_change = 0.0005725047956446723 Iter 40: T = 644.3942739096873 K, F = -9.502707723079528, relative_change = 0.00024158160086673903 Iter 45: T = 643.9178376113773 K, F = -3.9751444987578166, relative_change = 0.00010141390911901664 Iter 50: T = 643.7182125429707 K, F = -1.6626281213570189, relative_change = 4.2479620624629065e-5 Iter 55: T = 643.6346613717263 K, F = -0.6953616229794265, relative_change = 1.7777250032944598e-5 Iter 60: T = 643.599707787308 K, F = -0.29081390517588296, relative_change = 7.436718047135824e-6 Iter 65: T = 643.5850877706359 K, F = -0.12162278762780565, relative_change = 3.110484704240898e-6 Iter 70: T = 643.5789731533856 K, F = -0.05086426658302989, relative_change = 1.300904895885628e-6 Iter 75: T = 643.5764158859129 K, F = -0.021272072468590753, relative_change = 5.440649909695102e-7 Iter 80: T = 643.5753463953562 K, F = -0.008896239772784531, relative_change = 2.2753640545278106e-7 Iter 85: T = 643.5748991197512 K, F = -0.0037205145950525154, relative_change = 9.51587794532934e-8 Iter 90: T = 643.5747120634226 K, F = -0.001555963788691772, relative_change = 3.979659697955353e-8 Iter 95: T = 643.5746338341744 K, F = -0.0006507226657844201, relative_change = 1.6643422456740088e-8 Iter 100: T = 643.5746011177586 K, F = -0.0002721399946591929, relative_change = 6.96047983707135e-9 Iter 105: T = 643.5745874353609 K, F = -0.00011381219628414652, relative_change = 2.910956100463307e-9 Iter 110: T = 643.5745817132184 K, F = -4.759761889605585e-5, relative_change = 1.2173966365805823e-9 Iter 115: T = 643.5745793201502 K, F = -1.9905892275462467e-5, relative_change = 5.091298114348274e-10 Iter 120: T = 643.5745783193405 K, F = -8.32488243190932e-6, relative_change = 2.129241832269018e-10 Iter 125: T = 643.5745779007899 K, F = -3.481565256147068e-6, relative_change = 8.904743663047751e-11 Iter 130: T = 643.574577725747 K, F = -1.4560313474909492e-6, relative_change = 3.724068049181701e-11 Iter 135: T = 643.574577652542 K, F = -6.089295723765709e-7, relative_change = 1.5574494119410705e-11 Iter 140: T = 643.5745776219268 K, F = -2.546614245035883e-7, relative_change = 6.513434458094285e-12 Iter 145: T = 643.5745776091231 K, F = -1.0650195803041385e-7, relative_change = 2.7239835193246555e-12 Iter 150: T = 643.5745776037685 K, F = -4.454068786019505e-8, relative_change = 1.1392100381920997e-12 Iter 155: T = 643.5745776015292 K, F = -1.862810705688389e-8, relative_change = 4.764481100669251e-13 Converged in 160 iterations to T = 643.5745776005925 K Iter 1: T = 974.4555903863262 K, F = -5820.31802948217, relative_change = 0.02554440961367378 Iter 2: T = 951.1001189799144 K, F = -4924.140862637553, relative_change = 0.023967712471280968 Iter 3: T = 929.8585143694709 K, F = -4164.149396026783, relative_change = 0.02233372090545617 Iter 5: T = 893.3620897466086 K, F = -2973.9063086544797, relative_change = 0.018978527379884494 Iter 10: T = 831.9138379258319 K, F = -1271.5913210290166, relative_change = 0.01114007113445417 Iter 15: T = 800.7395595302445 K, F = -538.4052018623709, relative_change = 0.005619013781992056 Iter 20: T = 786.3291305148657 K, F = -226.52847867874422, relative_change = 0.0025735262270308048 Iter 25: T = 780.014226973951 K, F = -94.99418202035444, relative_change = 0.0011210775897202963 Iter 30: T = 777.318396643495 K, F = -39.774279284344715, relative_change = 0.00047717068761320294 Iter 35: T = 776.1810114997835 K, F = -16.64234698073367, relative_change = 0.00020105234289874118 Iter 40: T = 775.7035743295643 K, F = -6.9614835207867705, relative_change = 8.434664965088662e-5 Iter 45: T = 775.5035929167416 K, F = -2.911630745561551, relative_change = 3.532119124530764e-5 Iter 50: T = 775.41990366994 K, F = -1.2177234339238627, relative_change = 1.4779877738934512e-5 Iter 55: T = 775.3848942611439 K, F = -0.5092743015628267, relative_change = 6.182545128988628e-6 Iter 60: T = 775.3702512343065 K, F = -0.21298596268026415, relative_change = 2.585863307430671e-6 Iter 65: T = 775.3641270527686 K, F = -0.08907351240671713, relative_change = 1.0814824906421856e-6 Iter 70: T = 775.3615657956893 K, F = -0.037251648487432676, relative_change = 4.5229651470085534e-7 Iter 75: T = 775.3604946384319 K, F = -0.015579091589391525, relative_change = 1.8915713699996548e-7 Iter 80: T = 775.3600466661078 K, F = -0.006515363436484178, relative_change = 7.910800686347086e-8 Iter 85: T = 775.3598593184579 K, F = -0.0027248030230160314, relative_change = 3.308395400028859e-8 Iter 90: T = 775.3597809673853 K, F = -0.0011395452033806652, relative_change = 1.3836111788732562e-8 Iter 95: T = 775.3597482000228 K, F = -0.00047657142162527144, relative_change = 5.786428455966896e-9 Iter 100: T = 775.359734496319 K, F = -0.00019930786213939733, relative_change = 2.4199537145904573e-9 Iter 105: T = 775.3597287652661 K, F = -8.335292948702389e-5, relative_change = 1.0120535952150459e-9 Iter 110: T = 775.3597263684712 K, F = -3.4859189561142756e-5, relative_change = 4.232528941453486e-10 Iter 115: T = 775.359725366103 K, F = -1.4578529874076374e-5, relative_change = 1.7700942211363012e-10 Iter 120: T = 775.3597249469007 K, F = -6.096915070474829e-6, relative_change = 7.40274516978408e-11 Iter 125: T = 775.3597247715852 K, F = -2.5498030301607244e-6, relative_change = 3.095916847710591e-11 Iter 130: T = 775.3597246982662 K, F = -1.0663587236559025e-6, relative_change = 1.2947501829377522e-11 Iter 135: T = 775.3597246676032 K, F = -4.459634966869075e-7, relative_change = 5.414794348453945e-12 Iter 140: T = 775.3597246547797 K, F = -1.865061747263752e-7, relative_change = 2.2645184828853137e-12 Iter 145: T = 775.3597246494168 K, F = -7.80000906086542e-8, relative_change = 9.470605845355133e-13 Iter 150: T = 775.359724647174 K, F = -3.262177938889721e-8, relative_change = 3.960867380535482e-13 Converged in 154 iterations to T = 775.3597246463644 K Iter 1: T = 970.3182659080327 K, F = -6763.011347472958, relative_change = 0.029681734091967338 Iter 2: T = 942.8003477606169 K, F = -5728.1538264748815, relative_change = 0.02835968270850211 Iter 3: T = 917.4016418917895 K, F = -4849.899578626233, relative_change = 0.02693964414539681 Iter 5: T = 872.7466519297959 K, F = -3472.583359414496, relative_change = 0.023850266126170167 Iter 10: T = 793.4523040193344 K, F = -1494.7583060465977, relative_change = 0.015544507623715145 Iter 15: T = 750.2220962820886 K, F = -636.3102465261165, relative_change = 0.008518012257246086 Iter 20: T = 729.2279336463615 K, F = -268.5974506724379, relative_change = 0.004100079273688016 Iter 25: T = 719.7762213757388 K, F = -112.82130649784537, relative_change = 0.0018310237617032816 Iter 30: T = 715.6890962153252 K, F = -47.27396062343835, relative_change = 0.0007881870879272538 Iter 35: T = 713.9548639070154 K, F = -19.786798085034235, relative_change = 0.0003337233119953127 Iter 40: T = 713.2251088491531 K, F = -8.27794946632088, relative_change = 0.00014029625539085502 Iter 45: T = 712.9191246002798 K, F = -3.4624422379898743, relative_change = 5.8802084415218045e-5 Iter 50: T = 712.7910191722789 K, F = -1.4481231663871437, relative_change = 2.461428370049452e-5 Iter 55: T = 712.7374195655549 K, F = -0.6056378881510226, relative_change = 1.0297936688823385e-5 Iter 60: T = 712.7149993011477 K, F = -0.25328770697244074, relative_change = 4.307411230386739e-6 Iter 65: T = 712.7056221319535 K, F = -0.10592841785692086, relative_change = 1.8015317244799275e-6 Iter 70: T = 712.701700357164 K, F = -0.044300612284104535, relative_change = 7.534432306711748e-7 Iter 75: T = 712.70006020126 K, F = -0.01852705961208334, relative_change = 3.1510265610729727e-7 Iter 80: T = 712.6993742644767 K, F = -0.007748240123128247, relative_change = 1.3178034085509982e-7 Iter 85: T = 712.6990873968231 K, F = -0.003240406996060985, relative_change = 5.5112225487134815e-8 Iter 90: T = 712.6989674252221 K, F = -0.0013551769818550552, relative_change = 2.3048610667847622e-8 Iter 95: T = 712.6989172516445 K, F = -0.0005667512111464656, relative_change = 9.639207693577551e-9 Iter 100: T = 712.6988962684513 K, F = -0.00023702212615783758, relative_change = 4.031232359697125e-9 Iter 105: T = 712.6988874930288 K, F = -9.91254843223377e-5, relative_change = 1.6859096236045462e-9 Iter 110: T = 712.6988838230423 K, F = -4.145546139289191e-5, relative_change = 7.050675565879279e-10 Iter 115: T = 712.69888228821 K, F = -1.733716995722112e-5, relative_change = 2.9486769111967854e-10 Iter 120: T = 712.6988816463248 K, F = -7.2506116721715586e-6, relative_change = 1.2331719291105487e-10 Iter 125: T = 712.6988813778808 K, F = -3.0322929678305854e-6, relative_change = 5.157273268165379e-11 Iter 130: T = 712.6988812656142 K, F = -1.2681406381664928e-6, relative_change = 2.156832432676959e-11 Iter 135: T = 712.698881218663 K, F = -5.303518225696635e-7, relative_change = 9.020135287677686e-12 Iter 140: T = 712.6988811990274 K, F = -2.2179884506812186e-7, relative_change = 3.772317741332478e-12 Iter 145: T = 712.6988811908155 K, F = -9.275723544810432e-8, relative_change = 1.5775995805098287e-12 Iter 150: T = 712.6988811873813 K, F = -3.8791931222803555e-8, relative_change = 6.597666923773734e-13 Iter 155: T = 712.6988811859451 K, F = -1.6223654308866742e-8, relative_change = 2.7592920497460196e-13 Converged in 157 iterations to T = 712.6988811856411 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016265821550610026 Iteration 10: d = 1.9165432691683302e-5 Iteration 20: d = 2.216936998550917e-7 Iteration 30: d = 2.9043973993568584e-9 Iteration 40: d = 3.9745084548388335e-11 Iteration 50: d = 5.532465489050557e-13 Iteration 60: d = 7.78999878301488e-15 Converged after 63 iterations. d = 2.132701519230702e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.674791118285 Iteration 2: convergence error = 4829.8378875005865 Iteration 3: convergence error = 1098.9192579665903 Iteration 4: convergence error = 319.967371288348 Iteration 5: convergence error = 94.81678163182869 Iteration 6: convergence error = 28.25034326969285 Iteration 7: convergence error = 8.425852845552072 Iteration 8: convergence error = 2.5209346261030987 Iteration 9: convergence error = 0.7533501236011944 Iteration 10: convergence error = 0.22482496713041655 Iteration 11: convergence error = 0.06704351150597176 Iteration 12: convergence error = 0.019983792205493955 Iteration 13: convergence error = 0.00595511281517247 Iteration 14: convergence error = 0.0017743511405114987 Iteration 15: convergence error = 0.0005286316516048828 Iteration 16: convergence error = 0.0001574874402194837 Iteration 17: convergence error = 4.691661979450146e-5 Iteration 18: convergence error = 1.3976554555483744e-5 Iteration 19: convergence error = 4.163615358265815e-6 Iteration 20: convergence error = 1.2403254459059099e-6 Iteration 21: convergence error = 3.694901806738926e-7 Iteration 22: convergence error = 1.0992698662448674e-7 Iteration 23: convergence error = 3.183959051966667e-8 Iteration 24: convergence error = 9.164978109765798e-9 Iteration 25: convergence error = 2.630940798553638e-9 Iteration 26: convergence error = 7.596554496558383e-10 Iteration 27: convergence error = 2.1577761799562722e-10 Iteration 28: convergence error = 6.45741238258779e-11 Iteration 29: convergence error = 1.77351466845721e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 25%|████████▎ | ETA: 0:00:03 Bin 1 progress: 62%|████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015201719010779495 Iteration 10: d = 1.1691841690315158e-5 Iteration 20: d = 1.1704577562556024e-7 Iteration 30: d = 1.4773547594172066e-9 Iteration 40: d = 1.931396731897471e-11 Iteration 50: d = 2.537916714274279e-13 Iteration 60: d = 3.3478408900995123e-15 Converged after 61 iterations. d = 2.161461094893269e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12273.903723430645 Iteration 2: convergence error = 8312.199519708933 Iteration 3: convergence error = 1948.3735190184977 Iteration 4: convergence error = 478.54718208984445 Iteration 5: convergence error = 121.90004277778735 Iteration 6: convergence error = 32.52757333351701 Iteration 7: convergence error = 8.856189156912478 Iteration 8: convergence error = 2.4251444193582756 Iteration 9: convergence error = 0.6649279545013087 Iteration 10: convergence error = 0.1823402596789947 Iteration 11: convergence error = 0.05000042634537749 Iteration 12: convergence error = 0.013710215445371432 Iteration 13: convergence error = 0.0037592601624965027 Iteration 14: convergence error = 0.0010307520906280843 Iteration 15: convergence error = 0.00028262021282898786 Iteration 16: convergence error = 7.749095038889209e-5 Iteration 17: convergence error = 2.124703587469412e-5 Iteration 18: convergence error = 5.825665311931516e-6 Iteration 19: convergence error = 1.5973228073562495e-6 Iteration 20: convergence error = 4.3796694626507815e-7 Iteration 21: convergence error = 1.2094119483663235e-7 Iteration 22: convergence error = 3.2492607715539634e-8 Iteration 23: convergence error = 8.684764907229692e-9 Iteration 24: convergence error = 2.3198936105472967e-9 Iteration 25: convergence error = 6.207301339600235e-10 Iteration 26: convergence error = 1.6370904631912708e-10 Iteration 27: convergence error = 4.3655745685100555e-11 Iteration 28: convergence error = 1.318767317570746e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015201719010779495 Iteration 10: d = 1.1691841690315158e-5 Iteration 20: d = 1.1704577562556024e-7 Iteration 30: d = 1.4773547594172066e-9 Iteration 40: d = 1.931396731897471e-11 Iteration 50: d = 2.537916714274279e-13 Iteration 60: d = 3.3478408900995123e-15 Converged after 61 iterations. d = 2.161461094893269e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10995.781365827343 Iteration 2: convergence error = 5731.312431009486 Iteration 3: convergence error = 2019.9097990641326 Iteration 4: convergence error = 897.5762231795234 Iteration 5: convergence error = 409.43042920968765 Iteration 6: convergence error = 193.20041983321335 Iteration 7: convergence error = 91.23142862517443 Iteration 8: convergence error = 43.0972544507913 Iteration 9: convergence error = 20.358151628287033 Iteration 10: convergence error = 9.614476175296659 Iteration 11: convergence error = 4.5393857129270145 Iteration 12: convergence error = 2.1427361251526236 Iteration 13: convergence error = 1.011262635743151 Iteration 14: convergence error = 0.4772044656756407 Iteration 15: convergence error = 0.2251683052277258 Iteration 16: convergence error = 0.1061495258627474 Iteration 17: convergence error = 0.049603736737481086 Iteration 18: convergence error = 0.022650794440778554 Iteration 19: convergence error = 0.010304309659659339 Iteration 20: convergence error = 0.004677480926147837 Iteration 21: convergence error = 0.0021206056599112344 Iteration 22: convergence error = 0.0009607052925275639 Iteration 23: convergence error = 0.0004350446447460854 Iteration 24: convergence error = 0.0001969548980014224 Iteration 25: convergence error = 8.91525032784557e-5 Iteration 26: convergence error = 4.035155461679096e-5 Iteration 27: convergence error = 1.8262604953633854e-5 Iteration 28: convergence error = 8.265141332230996e-6 Iteration 29: convergence error = 3.740490228665294e-6 Iteration 30: convergence error = 1.692783826001687e-6 Iteration 31: convergence error = 7.660742085136008e-7 Iteration 32: convergence error = 3.4668983062147163e-7 Iteration 33: convergence error = 1.56888290803181e-7 Iteration 34: convergence error = 7.100697985151783e-8 Iteration 35: convergence error = 3.2129719329532236e-8 Iteration 36: convergence error = 1.4538727555191144e-8 Iteration 37: convergence error = 6.582013156730682e-9 Iteration 38: convergence error = 2.9754119168501347e-9 Iteration 39: convergence error = 1.3483258953783661e-9 Iteration 40: convergence error = 6.14363671047613e-10 Iteration 41: convergence error = 2.7966962079517543e-10 Iteration 42: convergence error = 1.255102688446641e-10 Iteration 43: convergence error = 5.6843418860808015e-11 Iteration 44: convergence error = 2.4556356947869062e-11 Iteration 45: convergence error = 1.4097167877480388e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015201719010779495 Iteration 10: d = 1.1691841690315158e-5 Iteration 20: d = 1.1704577562556024e-7 Iteration 30: d = 1.4773547594172066e-9 Iteration 40: d = 1.931396731897471e-11 Iteration 50: d = 2.537916714274279e-13 Iteration 60: d = 3.3478408900995123e-15 Converged after 61 iterations. d = 2.161461094893269e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10827.035874741914 Iteration 2: convergence error = 7348.522856500863 Iteration 3: convergence error = 1736.4527057837872 Iteration 4: convergence error = 504.2369687068872 Iteration 5: convergence error = 156.6902006508426 Iteration 6: convergence error = 48.683863085129815 Iteration 7: convergence error = 15.09834769489953 Iteration 8: convergence error = 4.674421814117068 Iteration 9: convergence error = 1.445484926930476 Iteration 10: convergence error = 0.44666817096367595 Iteration 11: convergence error = 0.13796630160095447 Iteration 12: convergence error = 0.042604563529494044 Iteration 13: convergence error = 0.01315466038431623 Iteration 14: convergence error = 0.004061340194311924 Iteration 15: convergence error = 0.001253833602731902 Iteration 16: convergence error = 0.00038707891735612066 Iteration 17: convergence error = 0.00011949586541959434 Iteration 18: convergence error = 3.688948481794796e-5 Iteration 19: convergence error = 1.1388081475161016e-5 Iteration 20: convergence error = 3.5155817386112176e-6 Iteration 21: convergence error = 1.085285020963056e-6 Iteration 22: convergence error = 3.348709469719324e-7 Iteration 23: convergence error = 1.021544449031353e-7 Iteration 24: convergence error = 3.03939486911986e-8 Iteration 25: convergence error = 9.019913704833016e-9 Iteration 26: convergence error = 2.666183718247339e-9 Iteration 27: convergence error = 7.885319064371288e-10 Iteration 28: convergence error = 2.3374013835564256e-10 Iteration 29: convergence error = 6.821210263296962e-11 Iteration 30: convergence error = 2.0463630789890885e-11 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015201719010779495 Iteration 10: d = 1.1691841690315158e-5 Iteration 20: d = 1.1704577562556024e-7 Iteration 30: d = 1.4773547594172066e-9 Iteration 40: d = 1.931396731897471e-11 Iteration 50: d = 2.537916714274279e-13 Iteration 60: d = 3.3478408900995123e-15 Converged after 61 iterations. d = 2.161461094893269e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.813386531989 Iteration 2: convergence error = 5517.76058362529 Iteration 3: convergence error = 939.2596468418935 Iteration 4: convergence error = 171.00322621965574 Iteration 5: convergence error = 31.02417070335082 Iteration 6: convergence error = 5.643319032651107 Iteration 7: convergence error = 1.0278658070371876 Iteration 8: convergence error = 0.18742621321052866 Iteration 9: convergence error = 0.03425061257530615 Iteration 10: convergence error = 0.006255412148675532 Iteration 11: convergence error = 0.0011421342269386514 Iteration 12: convergence error = 0.0002085036417156516 Iteration 13: convergence error = 3.806069298661896e-5 Iteration 14: convergence error = 6.94739446771564e-6 Iteration 15: convergence error = 1.2681016414717305e-6 Iteration 16: convergence error = 2.3147049432736821e-7 Iteration 17: convergence error = 4.224921212880872e-8 Iteration 18: convergence error = 7.707967597525567e-9 Iteration 19: convergence error = 1.4169927453622222e-9 Iteration 20: convergence error = 2.5647750589996576e-10 Iteration 21: convergence error = 4.638422979041934e-11 Iteration 22: convergence error = 8.185452315956354e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 75%|████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015201719010779495 Iteration 10: d = 1.1691841690315158e-5 Iteration 20: d = 1.1704577562556024e-7 Iteration 30: d = 1.4773547594172066e-9 Iteration 40: d = 1.931396731897471e-11 Iteration 50: d = 2.537916714274279e-13 Iteration 60: d = 3.3478408900995123e-15 Converged after 61 iterations. d = 2.161461094893269e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.501465996035 Iteration 2: convergence error = 2713.4082941715087 Iteration 3: convergence error = 205.20034885227886 Iteration 4: convergence error = 19.35456461235382 Iteration 5: convergence error = 1.6003618442948366 Iteration 6: convergence error = 0.13034647439302416 Iteration 7: convergence error = 0.01062826440926839 Iteration 8: convergence error = 0.0008685601546186951 Iteration 9: convergence error = 7.108638261426517e-5 Iteration 10: convergence error = 5.822896792732014e-6 Iteration 11: convergence error = 4.771861698751088e-7 Iteration 12: convergence error = 3.9114732070026944e-8 Iteration 13: convergence error = 3.207443550682784e-9 Iteration 14: convergence error = 2.620146997417027e-10 Iteration 15: convergence error = 2.2282620193436742e-11 Iteration 16: convergence error = 3.637978807091713e-12 Converged after 16 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346352 Iteration 2: convergence error = 858.4060420534064 Iteration 3: convergence error = 199.12106737711963 Iteration 4: convergence error = 59.265629268140174 Iteration 5: convergence error = 17.985482911037252 Iteration 6: convergence error = 5.463033078096487 Iteration 7: convergence error = 1.660989611064224 Iteration 8: convergence error = 0.5052487627317532 Iteration 9: convergence error = 0.15371874094239502 Iteration 10: convergence error = 0.04677131697644654 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.004330236512828378 Iteration 13: convergence error = 0.0013175920926187246 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198903971238906 Iteration 16: convergence error = 3.711853855747904e-5 Iteration 17: convergence error = 1.1294342471046548e-5 Iteration 18: convergence error = 3.4366166801191866e-6 Iteration 19: convergence error = 1.045686303768889e-6 Iteration 20: convergence error = 3.1818046863918426e-7 Iteration 21: convergence error = 9.68161657510791e-8 Iteration 22: convergence error = 2.946035237982869e-8 Iteration 23: convergence error = 8.963752406998537e-9 Iteration 24: convergence error = 2.7299620342091657e-9 Iteration 25: convergence error = 8.292317943414673e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.696598913753405e-11 Iteration 28: convergence error = 2.3646862246096134e-11 Iteration 29: convergence error = 9.094947017729282e-12 Converged after 29 iterations Energy conservation errors by band: [1.5428857128674637e-25, 8.401053096241687e-26, 1.1490863489811346e-25, 9.400697635337753e-26, 1.2440020930973268e-25, -3.2610768469290563e-19, 2.7533531010703882e-14, 1.7053025658242404e-12, 5.6701310313655995e-12, 2.6432189770275727e-12, 7.176481631177012e-13, 8.526512829121202e-14, 4.9960036108132044e-15, 2.636779683484747e-16, 2.0166160408230382e-17, 1.0062751413381088e-18, 3.560185356428231e-20, 1.2755125045567687e-21, 4.105530024647957e-23, 5.6284752489113644e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016265821550610026 Iteration 10: d = 1.9165432691683302e-5 Iteration 20: d = 2.216936998550917e-7 Iteration 30: d = 2.9043973993568584e-9 Iteration 40: d = 3.9745084548388335e-11 Iteration 50: d = 5.532465489050557e-13 Iteration 60: d = 7.78999878301488e-15 Converged after 63 iterations. d = 2.132701519230702e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.3304506018685 Iteration 2: convergence error = 3614.339745994693 Iteration 3: convergence error = 594.4947221457596 Iteration 4: convergence error = 104.72727557683652 Iteration 5: convergence error = 18.612558392653455 Iteration 6: convergence error = 3.27815942660186 Iteration 7: convergence error = 0.575228641407648 Iteration 8: convergence error = 0.10078130972920007 Iteration 9: convergence error = 0.017645920517225022 Iteration 10: convergence error = 0.0030888504038557585 Iteration 11: convergence error = 0.0005406352393038105 Iteration 12: convergence error = 9.46223506161914e-5 Iteration 13: convergence error = 1.6560599988224567e-5 Iteration 14: convergence error = 2.89837112177338e-6 Iteration 15: convergence error = 5.07261574966833e-7 Iteration 16: convergence error = 8.8791921371012e-8 Iteration 17: convergence error = 1.554440132167656e-8 Iteration 18: convergence error = 2.6971065381076187e-9 Iteration 19: convergence error = 4.793037078343332e-10 Iteration 20: convergence error = 8.36735125631094e-11 Iteration 21: convergence error = 1.3642420526593924e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.492427513024 Iteration 2: convergence error = 871.304602661783 Iteration 3: convergence error = 207.75299581225158 Iteration 4: convergence error = 62.49550550490892 Iteration 5: convergence error = 18.97931530918413 Iteration 6: convergence error = 5.76621559404623 Iteration 7: convergence error = 1.7533061530655232 Iteration 8: convergence error = 0.5333443698997371 Iteration 9: convergence error = 0.16226812526508638 Iteration 10: convergence error = 0.04937275063014113 Iteration 11: convergence error = 0.015022831428041172 Iteration 12: convergence error = 0.0045710916562029524 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318846916256 Iteration 15: convergence error = 0.0001287742984459328 Iteration 16: convergence error = 3.9183143599075265e-5 Iteration 17: convergence error = 1.1922556950594299e-5 Iteration 18: convergence error = 3.6277691606301232e-6 Iteration 19: convergence error = 1.1038513321182108e-6 Iteration 20: convergence error = 3.3587832604098367e-7 Iteration 21: convergence error = 1.0220117019343888e-7 Iteration 22: convergence error = 3.1099034458748065e-8 Iteration 23: convergence error = 9.464656613999978e-9 Iteration 24: convergence error = 2.880597094190307e-9 Iteration 25: convergence error = 8.786855687503703e-10 Iteration 26: convergence error = 2.6830093702301383e-10 Iteration 27: convergence error = 8.185452315956354e-11 Iteration 28: convergence error = 2.6261659513693303e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [9.81469183839774e-26, 1.2278462217584005e-25, 1.7064639101740927e-25, 1.3045866106183005e-25, 1.2440020930973268e-25, -2.642742795433417e-19, -7.993605777301127e-15, 8.526512829121202e-14, 7.013056801952189e-12, 4.575895218295045e-12, 5.826450433232822e-13, 8.79296635503124e-14, 5.218048215738236e-15, 3.642919299551295e-16, 2.0166160408230382e-17, 8.775261333554552e-19, 3.7613556814011274e-20, 1.2358078351542233e-21, 3.6499344528902346e-23, 4.998575315730623e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729987 Iteration 2: convergence error = 2115.1156110176394 Iteration 3: convergence error = 714.8959934551629 Iteration 4: convergence error = 296.01907471323966 Iteration 5: convergence error = 115.88799395378669 Iteration 6: convergence error = 44.11524923618913 Iteration 7: convergence error = 16.599581025126554 Iteration 8: convergence error = 6.215983404932786 Iteration 9: convergence error = 2.323124567003788 Iteration 10: convergence error = 0.867563639824084 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.12090784413658184 Iteration 13: convergence error = 0.04513241840754745 Iteration 14: convergence error = 0.016846741615154315 Iteration 15: convergence error = 0.0062884074741305085 Iteration 16: convergence error = 0.0023472777563711134 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782211112615 Iteration 19: convergence error = 0.00012207719146317686 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985607473878e-6 Iteration 23: convergence error = 2.3698869426880265e-6 Iteration 24: convergence error = 8.846079708746402e-7 Iteration 25: convergence error = 3.302000095573021e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7174670574604534e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.949427865445614e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.248281478183344e-10 Iteration 34: convergence error = 4.774847184307873e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.9952501103574007e-25, 1.4136387421560532e-25, 1.0339757656912846e-25, 1.6478988765704848e-25, 2.1729646950855903e-25, 9.486769009248164e-20, 5.240252676230739e-14, 2.9274360713316128e-12, 1.2093437362636905e-11, 5.6203930398623925e-12, 2.0961010704922955e-13, 1.84297022087776e-14, 1.582067810090848e-15, 1.723881454251952e-16, 7.101524229780054e-18, 4.641740550953566e-19, 1.4770137017746862e-20, 4.963083675318166e-22, 1.7991178323028352e-23, 9.298117831235686e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238243 Iteration 2: convergence error = 864.8522700482431 Iteration 3: convergence error = 203.43244494690748 Iteration 4: convergence error = 60.87736397590345 Iteration 5: convergence error = 18.481426659698286 Iteration 6: convergence error = 5.6143306186266955 Iteration 7: convergence error = 1.7070587705935623 Iteration 8: convergence error = 0.5192694771476454 Iteration 9: convergence error = 0.1579851928424887 Iteration 10: convergence error = 0.04806952669207476 Iteration 11: convergence error = 0.014626287390910875 Iteration 12: convergence error = 0.004450431969985402 Iteration 13: convergence error = 0.0013541649049102489 Iteration 14: convergence error = 0.0004120419150694943 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.8148852013364376e-5 Iteration 17: convergence error = 1.1607843930505624e-5 Iteration 18: convergence error = 3.532008690854127e-6 Iteration 19: convergence error = 1.0747122587417834e-6 Iteration 20: convergence error = 3.270116621933994e-7 Iteration 21: convergence error = 9.950440471584443e-8 Iteration 22: convergence error = 3.027832917723572e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8029489840264432e-9 Iteration 25: convergence error = 8.546976459911093e-10 Iteration 26: convergence error = 2.609112925711088e-10 Iteration 27: convergence error = 8.003553375601768e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.753886504564434e-12 Converged after 29 iterations Energy conservation errors by band: [1.4621063561728321e-25, 7.674038885990003e-26, 1.32882041762669e-25, 1.3116548043290807e-25, 1.126872025890111e-25, -1.5246593050577406e-19, -3.6637359812630166e-14, 2.5721647034515627e-12, 7.627676268384675e-12, 2.8421709430404007e-12, 4.973799150320701e-13, 7.194245199571014e-14, 4.385380947269368e-15, 4.198030811863873e-16, 2.3310346708438345e-17, 9.84252284709497e-19, 4.1081097941833566e-20, 9.880672416945916e-22, 2.4156258825962636e-23, 4.8210806556121566e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 11m07.3s Testing RayTraceHeatTransfer tests passed Testing completed after 661.01s PkgEval succeeded after 749.42s