Package evaluation to test QuasiNewtonMethods on Julia 1.12.4 (0f21d93eaa*) started at 2026-01-26T23:17:24.025 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.12` Set-up completed after 7.82s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.12/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.12/Manifest.toml` [79e6a3ab] + Adapt v4.4.0 [4fba245c] + ArrayInterface v7.22.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.18.1 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.5 [3e5b6fbb] + HostCPUFeatures v0.1.18 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.173 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.17.0 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.72 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.12.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [8e850b90] + libblastrampoline_jll v5.15.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 4.75s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling packages... 9154.3 ms ✓ StaticArrayInterface 1008.8 ms ✓ StaticArrayInterface → StaticArrayInterfaceOffsetArraysExt 1037.5 ms ✓ CloseOpenIntervals 1224.9 ms ✓ LayoutPointers 18334.8 ms ✓ VectorizationBase 2007.2 ms ✓ StrideArraysCore 5989.3 ms ✓ SLEEFPirates 7455.4 ms ✓ VectorizedRNG 51124.4 ms ✓ LoopVectorization 4111.1 ms ✓ VectorizedRNG → VectorizedRNGStaticArraysExt 16736.4 ms ✓ QuasiNewtonMethods 50189.7 ms ✓ VectorizedStatistics 17878.3 ms ✓ Octavian 19086.2 ms ✓ StrideArrays 14 dependencies successfully precompiled in 206 seconds. 55 already precompiled. Precompilation completed after 221.86s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_Mfnv7l/Project.toml` [4c88cf16] Aqua v0.8.14 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test v1.11.0 Status `/tmp/jl_Mfnv7l/Manifest.toml` [79e6a3ab] Adapt v4.4.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.22.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.18.1 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.5 [3e5b6fbb] HostCPUFeatures v0.1.18 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.173 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.72 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.11 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.12.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.12.1 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.15.0+0 [e37daf67] LibGit2_jll v1.9.0+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.11.4 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [83775a58] Zlib_jll v1.3.1+2 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.64.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Base.PkgId(Base.UUID("8dfed614-e22c-5e08-85e1-65c5234f0b40"), "Test")]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:680 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1776 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [-2.6645352591003757e-15, -5.329070518200751e-15] QuasiNewtonMethods.optimum(state) .- 1 = [2.398081733190338e-14, 5.306866057708248e-14] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [-1.672761928972477e-11, -3.273104010048655e-11, -1.7479351299698465e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.1151968237754772e-11, -2.325173387163204e-11, 6.820204401236651e-10] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [-5.330291763527839e-12, 4.771072426024148e-12, -1.1457501614131615e-11, 8.806955165141517e-12] QuasiNewtonMethods.optimum(state) .- 1 = [4.2821879375765093e-10, 4.2774517261534584e-10, 8.498970416326301e-10, 8.603866508138935e-10] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [-3.16376924658357e-10, -5.514844136911279e-11, -6.112579331585266e-10, -9.446665671930532e-11, -8.844569521215817e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-4.984901380566953e-14, -1.8771650900362147e-12, -4.289901767151605e-13, -3.72346597998785e-12, 3.352873534367973e-14] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [2.2764523599505537e-10, 8.103873128106898e-11, 1.143198868902573e-10, 4.377582740744401e-10, 1.5053114310603632e-10, 2.332880555400152e-10] QuasiNewtonMethods.optimum(state) .- 1 = [5.611910935954256e-11, -3.952960181408116e-11, 6.302647292955044e-11, 1.0170819741972537e-10, -5.670597325035942e-11, 1.2246159641904342e-10] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [6.361733362325594e-11, -7.591038908572045e-12, -1.8656853839615906e-11, 1.2306244911997055e-10, -1.7873147406533008e-11, -3.813549476205935e-11, -5.968714411608289e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-9.765521724602877e-13, -1.2284173678267507e-11, 5.900546717896304e-11, -7.454037387333301e-13, -2.238709218005397e-11, 1.1548983991360728e-10, -9.291456493087935e-13] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [-1.1428635815491361e-11, 5.46016565294849e-11, -3.994937713969193e-11, -3.548694671451358e-11, -2.4866664283251794e-11, 1.1133693966769442e-10, -8.347533775321381e-11, -6.839051547302688e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-2.2812862709997717e-12, -3.043743035391344e-11, 6.004063912712354e-11, -5.183942164421751e-11, -1.0969669617111322e-11, -6.245604033949803e-11, 1.2076295519136693e-10, -1.0427936292245477e-10] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [2.5383029012004954e-11, 2.595745840494601e-11, -9.614531393253856e-13, 2.417355204897831e-11, 5.0928372630210106e-11, 5.789879686801669e-11, 9.654499422140361e-13, 4.977573908604427e-11, 8.846257060213247e-13] QuasiNewtonMethods.optimum(state) .- 1 = [4.43116654480491e-11, -2.09232631220857e-11, 5.5398574616560836e-11, -9.664935518571838e-12, 8.730105527376963e-11, -4.415057208717599e-11, 1.0639444880666815e-10, -2.1405988093192718e-11, -6.079581282847357e-13] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [1.545121808277372e-10, -8.969613940479348e-11, 2.797431175594056e-10, 2.4520385721871207e-11, -2.2142432332117323e-10, 3.030682371729654e-10, -1.8798940182307433e-10, 5.587947882190747e-10, 5.634182009828237e-11, -4.349013371651722e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-6.311262623626135e-11, 1.8758949948960435e-10, 3.9567238374615954e-11, 1.0418443885384931e-10, -5.3258508714293384e-12, -1.2114798053630693e-10, 3.780644686202095e-10, 9.480216611734704e-11, 2.08637329635053e-10, -2.436828516749756e-11] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [-2.674838128768897e-11, -7.328582185550658e-13, -5.0125570361103655e-11, 1.0258238702931521e-11, 2.2049695402870384e-11, -5.5516369279473565e-11, -1.4690471061840071e-12, -1.0655931692582499e-10, 1.907007884938139e-11, 4.099698358572823e-11, -1.0876854972252659e-12] QuasiNewtonMethods.optimum(state) .- 1 = [2.0138335443675714e-11, -3.945510584912881e-11, 8.267431184094676e-11, -6.428124699198179e-11, -4.329614444742447e-11, 3.878164456239119e-11, -9.376699416918655e-11, 1.6036483252435119e-10, -1.2202017174445245e-10, -7.886047370675442e-11, 4.4224623962918486e-12] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [-4.1643355430665e-12, -5.430322858046566e-12, 1.163069640597314e-12, 1.9346746427117978e-12, -1.0030087871371052e-11, 1.6087131626818518e-12, -8.159584119482588e-12, -1.0909273484571713e-11, 1.9204637879965958e-12, 3.5860203695392556e-12, -2.0269008693674095e-11, 2.1034285424548216e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-5.578582040755009e-11, -7.400113855027257e-11, -3.7741587632922347e-11, 1.6713519457312032e-10, 3.111821911261359e-11, 5.817191173207448e-11, -1.1035095059952482e-10, -1.5373813333496855e-10, -5.972200511905612e-11, 3.1979974224327634e-10, 5.664824165307891e-11, 1.1906009511619686e-10] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [2.091917750135508e-10, 9.176059911908396e-11, -5.962674798354328e-11, 2.05595540592185e-11, 2.290123646275788e-11, -7.975720084374416e-11, 4.3307846198104016e-10, 1.76895387227205e-10, -1.3463097303656468e-10, 2.8265390028536785e-11, 4.194578018257289e-11, -1.649586023333427e-10, 2.2648549702353193e-13] QuasiNewtonMethods.optimum(state) .- 1 = [1.7754686609805503e-10, -8.847211852014425e-11, -7.739298091280489e-11, 1.060338483682699e-10, -4.5090720046658816e-10, -6.542222319438906e-11, 3.490157052254972e-10, -1.7742429747613642e-10, -1.5502676919965097e-10, 2.246525188098758e-10, -9.15844178273062e-10, -1.4068002318623485e-10, -7.1208594576432915e-12] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [-1.3072531945823584e-10, -7.536304913458025e-11, 5.059574981203241e-11, 4.2328585081463643e-11, 7.875433638560025e-11, -1.0405953876357898e-10, 7.761591369614962e-11, -2.708038238097288e-10, -1.4563905637032803e-10, 1.0411116413422405e-10, 8.107980953298011e-11, 1.5534218356094698e-10, -2.123852205215826e-10, 1.6131096458593674e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-1.1272727196143251e-10, -1.0154410645668577e-10, -3.3350322503622465e-10, 1.159414786400248e-10, -8.86410944644922e-11, -4.9828141612806576e-11, -4.887558135990844e-10, -2.142529487159095e-10, -2.0691726110300124e-10, -6.879805614090628e-10, 2.2938784205450702e-10, -1.872878518938137e-10, -1.010866945705402e-10, -9.562216574110494e-10] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [4.5969228423814457e-11, -9.16100528769448e-12, -5.166422845093166e-12, -8.570988363487686e-11, -5.1289417157818207e-11, -5.401878944155669e-11, -4.6050829816124406e-11, 9.054268446107017e-11, -2.1666668459374705e-11, -7.75279840325993e-12, -1.6905810085177109e-10, -1.0425027507920959e-10, -1.0619549684065532e-10, -8.714307053736547e-11, -2.3718804698091844e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.5530465802271465e-10, 1.3068879312072568e-11, -6.750300318714153e-11, -2.7759905485424952e-11, 4.6987747026605575e-11, -1.4297429906662273e-10, 3.258393554972372e-11, 3.1318858617623846e-10, 3.284306160367123e-11, -1.3019552103088472e-10, -5.3914317454939464e-11, 9.782530341340134e-11, -2.770303986210365e-10, 6.935141350083995e-11, 1.6752599307778837e-11] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [2.043032409915213e-11, -2.7275959268990846e-12, -1.7924550732573152e-12, 4.297895372928906e-11, -1.4924839142338442e-11, -2.2642443475717755e-11, -1.6635026689471033e-11, 5.988654017130557e-11, 3.913980251013527e-11, -3.3670843890831748e-12, -6.548095399239173e-13, 8.341727308902591e-11, -2.8441027311032485e-11, -4.891165250597851e-11, -3.8027914150973174e-11, 1.1961343027167004e-10] QuasiNewtonMethods.optimum(state) .- 1 = [2.0600854355734555e-11, -5.73724401320419e-11, 5.692268878476625e-11, -3.885347599208444e-11, -1.6293411064793872e-11, -2.6435520439349602e-11, 9.649392396227086e-12, -2.3087642908592443e-11, 4.640154926960349e-11, -1.2859702192002942e-10, 1.1354428508525416e-10, -8.269984697051314e-11, -3.702249617987263e-11, -4.743072601343101e-11, 2.050137837272814e-11, -4.6855408442070257e-11] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [4.845945866804868e-11, -4.1909919978877497e-11, -8.185718769482264e-11, 3.7059688651197575e-11, 2.8356872405765898e-11, -5.604827713057148e-11, 4.9569903737278764e-11, 1.2170198182559488e-10, 9.597367345293151e-11, -7.992106976217883e-11, -1.63113966777928e-10, 7.766076670634448e-11, 5.537659220067326e-11, -1.080239231399105e-10, 9.538947409737375e-11, 2.4250956798255174e-10, -6.780576100595681e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.9777735005277464e-11, -1.9969026432420378e-11, -9.899192576767746e-12, -4.351130566959682e-11, 7.91122722887394e-12, 3.393396674766791e-11, -1.1239120745187847e-11, 6.434541788280512e-11, 4.29118962586017e-11, -3.974232054559934e-11, -1.986888431559919e-11, -9.088896302245075e-11, 2.2922774789435607e-11, 7.113176714312885e-11, -2.2217450101891245e-11, 1.3186562952682834e-10, 1.4226397837546756e-12] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [1.1978285030522784e-10, 1.0831557872847952e-11, -5.5678350818766376e-11, 3.7868153057729614e-11, -7.338574192772285e-14, -8.28951352005447e-11, -7.00686175747478e-11, 3.68611807743946e-11, -1.853845965626988e-10, 2.2870350058212807e-10, 2.751221472863108e-11, -1.0536671535277264e-10, 6.818878794945249e-11, -1.148414696672262e-12, -1.8878432150870594e-10, -1.5868084624059975e-10, 7.25035587123557e-11, -3.829493389062577e-10] QuasiNewtonMethods.optimum(state) .- 1 = [5.878630915390204e-12, 1.2439382857110104e-11, -3.2582825326699094e-12, -1.624833600999409e-11, -1.4229839528923094e-11, 2.9399593870493845e-11, -2.1547541528832426e-11, -5.099254352103344e-13, -4.292677324713168e-12, 1.0974554598419672e-11, 2.5654811608433192e-11, -5.925149260121998e-12, -3.206845899939026e-11, -2.7708946248594657e-11, 5.5451865321742844e-11, -4.1286640772852934e-11, 4.551248267148367e-12, -8.098854920035592e-12] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [4.483635684948695e-11, -1.5073609027638213e-11, 1.7752688208361178e-11, -1.098362512053086e-10, 6.0964566728216596e-12, -5.114619838764156e-11, 2.6434188171720052e-11, -2.262900977711979e-11, -3.8132941249102714e-11, 8.553868724447966e-11, -2.934152920630595e-11, 3.49194007043252e-11, -2.209250560269993e-10, -2.1270762928793374e-12, -1.074567101966295e-10, 5.1637139009130806e-11, -4.499356442977387e-11, -7.46994688327618e-11, 3.873790177522096e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.2065948240547186e-10, -6.801226248853709e-12, -4.0734637885009306e-11, -1.4248180413289901e-10, 8.965872488886362e-11, 4.774780570926396e-11, 1.5793144569897777e-11, 1.241486913272638e-10, -2.6281643528136556e-11, 2.4028135037212905e-10, -1.6768364474728514e-11, -7.892486664218268e-11, -2.872692084210371e-10, 1.7333046109513361e-10, 8.790990158047407e-11, 3.221223288107922e-11, 2.437916535313889e-10, -5.141276293585406e-11, -2.2470914018413168e-13] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [-7.511546940008884e-12, 3.550604255053713e-11, 1.4467760323100265e-11, -6.573530608733336e-11, 1.170707975006735e-11, -7.966605153342243e-11, -1.6937562463681388e-12, 7.245537503308697e-12, -2.269073817728895e-12, -1.2619572054006767e-11, -1.4035328455008766e-11, 7.85693732296977e-11, 2.5700774841652674e-11, -1.2577361374610518e-10, 2.7876589925313056e-11, -1.6007950520702252e-10, -1.8025692050116504e-11, 1.7963630583039958e-11, -3.84925424867788e-12, -2.6959101617762826e-11] QuasiNewtonMethods.optimum(state) .- 1 = [4.895595040466105e-11, -1.4023338046342815e-11, -5.859202012459264e-12, 1.077804512306102e-12, -5.3819504408636476e-11, -2.993116865468437e-11, -4.279765430936777e-11, 2.7460478335683547e-11, -4.5395909253898026e-12, 1.5181411683329316e-11, 1.0112599646561193e-10, -3.0646707394055284e-11, -1.465383370202744e-11, 2.2857271630982723e-12, -1.0553935503310186e-10, -5.886779952390953e-11, -8.433920228867464e-11, 5.198597108346803e-11, -1.0695333507726446e-11, 3.35258487638157e-11] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [-1.2283729589057657e-11, 9.5933705424045e-11, 1.8557155812004567e-11, -4.909850304102292e-11, -2.1313728559846368e-11, 7.208367236444246e-11, -1.4917844737283303e-11, -1.556643702826932e-11, -2.2788437803455963e-12, -7.536749002667875e-12, -2.3433366358460717e-11, 1.8871171292289546e-10, 3.7656322504631135e-11, -9.604661510564938e-11, -3.792344216435595e-11, 1.4754175658993063e-10, -2.5058732866511946e-11, -3.245947954866324e-11, -5.7414073495465345e-12, -8.933187523041397e-12, 3.2236435743016045e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-3.3606228910798563e-11, 7.009703928417821e-11, 5.4109827729575954e-11, -1.3476886273622313e-11, 2.9953817204386723e-12, -2.8244961924883683e-11, 8.497647030480948e-13, -1.996647291946374e-11, -7.150946501610633e-11, 2.240430063693566e-13, -7.031197846174564e-11, 1.3882583971280837e-10, 1.0878609124631566e-10, -3.0149882590535526e-11, 7.745137864390017e-12, -5.818312498462319e-11, 4.915179374620493e-12, -4.1523673388610405e-11, -1.4102985446129424e-10, 1.042943509332872e-12, 1.1860512572070547e-11] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [5.902323074735705e-11, -4.9933168710936116e-11, -3.717059993135763e-11, -3.91942034383419e-12, -7.512868105408188e-11, 2.7121416223963024e-11, -5.92614846084416e-11, 4.55464554960372e-11, 2.0807799927524684e-11, 1.372844060654188e-10, 3.4774405577309153e-12, 1.23706822563463e-10, -1.0065714928231273e-10, -7.123135414843773e-11, -7.3568928726786e-12, -1.473863253664831e-10, 5.0488280223248694e-11, -1.246729386394918e-10, 9.581047066831161e-11, 4.030620281980646e-11, 2.7460189677697144e-10, 6.218137116320577e-12] QuasiNewtonMethods.optimum(state) .- 1 = [4.30742108648019e-11, 1.529445459169665e-10, 7.69611041562257e-11, -2.656252995336672e-11, -3.619571309343428e-11, -1.963240681135403e-11, 3.022826433607406e-11, -6.281974940236523e-12, 1.0095257962916548e-11, -3.197220266315526e-11, -3.41117134539104e-11, 8.715494992372896e-11, 3.092257561121414e-10, 1.6070766939435543e-10, -5.4904303325997716e-11, -7.234424170832199e-11, -3.9528824657963924e-11, 7.012435077058399e-11, -1.4731105224541352e-11, 1.624211876105619e-11, -6.222988790938189e-11, -6.813227759749907e-11] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [-1.629685275617021e-11, 1.7570389587717727e-11, 2.3385737790704297e-12, -1.979527652906654e-12, -8.683831431710587e-12, 1.7812418207086012e-12, -2.7579050154713514e-12, 3.015476757184388e-11, 1.170619157164765e-12, -1.5615730930562677e-11, -3.816280624846513e-12, -3.27824434265267e-11, 3.5461633629552125e-11, 4.760858374197596e-12, -4.0671910284117985e-12, -1.82736048515153e-11, 3.5507152773561756e-12, -5.352496224020342e-12, 5.994471585779593e-11, 3.3353320105788953e-12, -3.0441982268314405e-11, -8.079537039407114e-12, 1.84385839929746e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.5913048656557294e-11, 1.0475398326548202e-11, 3.653077840226615e-12, -4.545919196630166e-12, 3.0806468487298844e-12, 2.7111646261346323e-12, -2.1538326677728037e-14, -1.2575052110719298e-11, 1.617550537957868e-11, -1.0287104501571775e-11, -7.103317933854214e-12, 3.1235014574804154e-11, 2.1405099914773018e-11, 7.0181638278654646e-12, -8.07143241132735e-12, 5.880851361439454e-12, 6.545874953189923e-12, -8.406608742461685e-13, -2.6614044301709328e-11, 3.086331190615965e-11, -2.0935808642263964e-11, -1.3612888594138894e-11, -3.8095082643963e-12] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [-1.5488499371940634e-11, 1.0416778550847994e-11, 6.558309451065725e-11, -6.818878794945249e-12, -3.6867287001030036e-11, 9.59630153118951e-11, 1.7823742481937188e-11, -3.645250767903008e-11, -6.0785820821251946e-12, 3.175371077190903e-11, -6.34936547783127e-12, -3.3097080631705467e-11, -3.4990677022506134e-11, 2.577471569509271e-11, 1.2701617535526566e-10, -1.4203305198634553e-11, -8.114542371373545e-11, 1.8949686264591037e-10, 3.647993018773832e-11, -6.975209299042717e-11, -1.9377832671807482e-11, 6.982792122300907e-11, -3.588340735660722e-11, -6.91442458844449e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-4.763966998666547e-11, 5.3980153680299736e-11, -2.328620629654665e-10, 2.4590818270553427e-10, 3.007423199363757e-10, -2.0501056408051e-10, 2.2784707454093223e-10, -9.632505904022537e-11, 5.793365787098992e-12, -1.3226730821713772e-10, -5.409817038781739e-11, 6.869171897960769e-11, -1.025498574946937e-10, 9.982237259009707e-11, -4.721828483766899e-10, 4.806375297761178e-10, 5.997520258205213e-10, -3.996469821743176e-10, 4.467610725811255e-10, -1.8060319906254563e-10, 6.871836433219869e-12, -2.637344787004281e-10, -1.1147360812202578e-10, 1.4777112866681819e-10] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 148 1 149 4m20.8s Method ambiguity | 1 1 9.7s Unbound type parameters | 1 1 0.1s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.4s Stale dependencies | 1 1 7.1s Compat bounds | 3 1 4 12.0s julia | 1 1 0.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") deps | 1 1 0.6s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras | 1 1 11.3s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") weakdeps | 1 1 0.0s Piracy | 1 1 0.2s Persistent tasks | 1 1 33.1s RNG of the outermost testset: Random.Xoshiro(0x127ddb8c7dce1d16, 0xe483026bb286a239, 0xbae6ddadad21710a, 0x559bbd3b822a94ea, 0xbdcb63d486334b59) ERROR: LoadError: Some tests did not pass: 148 passed, 1 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 291.15s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.12/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2535 [3] test @ /opt/julia/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2384 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.12/Pkg/src/API.jl:538 [5] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.12/Pkg/src/API.jl:169 [6] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.12/Pkg/src/API.jl:157 [7] test @ /opt/julia/share/julia/stdlib/v1.12/Pkg/src/API.jl:157 [inlined] [8] #test#81 @ /opt/julia/share/julia/stdlib/v1.12/Pkg/src/API.jl:156 [inlined] [9] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:223 [10] include(mod::Module, _path::String) @ Base ./Base.jl:306 [11] exec_options(opts::Base.JLOptions) @ Base ./client.jl:317 [12] _start() @ Base ./client.jl:550 in expression starting at /PkgEval.jl/scripts/evaluate.jl:214 PkgEval failed after 543.8s: package has test failures