Package evaluation to test IterativeLQR on Julia 1.12.4 (0f21d93eaa*) started at 2026-01-27T03:21:29.977 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.12` Set-up completed after 8.42s ################################################################################ # Installation # Installing IterativeLQR... Resolving package versions... Updating `~/.julia/environments/v1.12/Project.toml` [605048dd] + IterativeLQR v0.2.3 Updating `~/.julia/environments/v1.12/Manifest.toml` ⌅ [47edcb42] + ADTypes v0.2.7 ⌅ [c3fe647b] + AbstractAlgebra v0.27.10 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.43 ⌅ [79e6a3ab] + Adapt v3.7.2 [66dad0bd] + AliasTables v1.1.3 [dce04be8] + ArgCheck v2.5.0 ⌃ [4fba245c] + ArrayInterface v7.7.1 [30b0a656] + ArrayInterfaceCore v0.1.29 ⌅ [15f4f7f2] + AutoHashEquals v0.2.0 [198e06fe] + BangBang v0.4.7 [9718e550] + Baselet v0.1.1 ⌅ [e2ed5e7c] + Bijections v0.1.10 [d360d2e6] + ChainRulesCore v1.26.0 [861a8166] + Combinatorics v1.1.0 [38540f10] + CommonSolve v0.2.6 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.18.1 [b152e2b5] + CompositeTypes v0.1.4 [a33af91c] + CompositionsBase v0.1.2 ⌅ [187b0558] + ConstructionBase v1.5.6 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 ⌅ [864edb3b] + DataStructures v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [244e2a9f] + DefineSingletons v0.1.2 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [31c24e10] + Distributions v0.25.123 [ffbed154] + DocStringExtensions v0.9.5 ⌅ [5b8099bc] + DomainSets v0.5.14 ⌅ [7c1d4256] + DynamicPolynomials v0.4.6 [4e289a0a] + EnumX v1.0.6 [e2ba6199] + ExprTools v0.1.10 [5789e2e9] + FileIO v1.17.1 [1a297f60] + FillArrays v1.16.0 [59287772] + Formatting v0.4.3 ⌅ [f6369f11] + ForwardDiff v0.10.39 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 ⌅ [46192b85] + GPUArraysCore v0.1.5 ⌅ [0b43b601] + Groebner v0.2.11 ⌅ [d5909c97] + GroupsCore v0.4.2 [34004b35] + HypergeometricFunctions v0.3.28 [615f187c] + IfElse v0.1.1 [22cec73e] + InitialValues v0.3.1 [18e54dd8] + IntegerMathUtils v0.1.3 [8197267c] + IntervalSets v0.7.13 [3587e190] + InverseFunctions v0.1.17 [92d709cd] + IrrationalConstants v0.2.6 [605048dd] + IterativeLQR v0.2.3 [82899510] + IteratorInterfaceExtensions v1.0.0 ⌅ [033835bb] + JLD2 v0.4.55 [692b3bcd] + JLLWrappers v1.7.1 [b964fa9f] + LaTeXStrings v1.4.0 ⌃ [2ee39098] + LabelledArrays v1.15.1 ⌅ [984bce1d] + LambertW v0.4.6 ⌅ [23fbe1c1] + Latexify v0.15.21 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.16 ⌅ [e9d8d322] + Metatheory v1.3.5 [128add7d] + MicroCollections v0.2.0 [e1d29d7a] + Missings v1.2.0 ⌅ [102ac46a] + MultivariatePolynomials v0.4.7 [d8a4904e] + MutableArithmetics v1.6.7 [77ba4419] + NaNMath v1.1.3 [bac558e1] + OrderedCollections v1.8.1 [90014a1f] + PDMats v0.11.37 [d96e819e] + Parameters v0.12.3 ⌅ [d236fae5] + PreallocationTools v0.4.24 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [27ebfcd6] + Primes v0.5.7 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [fb686558] + RandomExtensions v0.4.4 [3cdcf5f2] + RecipesBase v1.3.4 ⌅ [731186ca] + RecursiveArrayTools v2.38.10 [189a3867] + Reexport v1.2.2 [42d2dcc6] + Referenceables v0.1.3 [ae029012] + Requires v1.3.1 [79098fc4] + Rmath v0.9.0 [7e49a35a] + RuntimeGeneratedFunctions v0.5.16 ⌅ [0bca4576] + SciMLBase v1.98.1 ⌅ [c0aeaf25] + SciMLOperators v0.3.12 [6c6a2e73] + Scratch v1.3.0 [efcf1570] + Setfield v1.1.2 [66db9d55] + SnoopPrecompile v1.0.3 [a2af1166] + SortingAlgorithms v1.2.2 [276daf66] + SpecialFunctions v2.6.1 [171d559e] + SplittablesBase v0.1.15 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 [2913bbd2] + StatsBase v0.34.10 [4c63d2b9] + StatsFuns v1.5.2 ⌅ [2efcf032] + SymbolicIndexingInterface v0.2.2 ⌅ [d1185830] + SymbolicUtils v0.19.11 ⌅ [0c5d862f] + Symbolics v4.14.0 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.1 ⌅ [8ea1fca8] + TermInterface v0.2.3 [ac1d9e8a] + ThreadsX v0.1.12 [a759f4b9] + TimerOutputs v0.5.29 [3bb67fe8] + TranscodingStreams v0.11.3 [28d57a85] + Transducers v0.4.85 [a2a6695c] + TreeViews v0.3.0 [781d530d] + TruncatedStacktraces v1.4.0 [3a884ed6] + UnPack v1.0.2 [700de1a5] + ZygoteRules v0.2.7 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.12.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.12.1 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.12.0 [f489334b] + StyledStrings v1.11.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.15.0+0 [e37daf67] + LibGit2_jll v1.9.0+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.11.4 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.7+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [bea87d4a] + SuiteSparse_jll v7.8.3+2 [83775a58] + Zlib_jll v1.3.1+2 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.64.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 8.26s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling packages... 8089.1 ms ✓ SciMLOperators 3473.3 ms ? DomainSets 2370.2 ms ✓ Transducers → TransducersReferenceablesExt 2346.5 ms ✓ Transducers → TransducersAdaptExt 1776.0 ms ✓ SciMLOperators → SciMLOperatorsStaticArraysCoreExt 1708.0 ms ✓ SciMLOperators → SciMLOperatorsSparseArraysExt 8061.5 ms ✓ ThreadsX 37979.7 ms ✓ SciMLBase 40625.1 ms ✓ Metatheory 123510.1 ms ✓ SymbolicUtils 8915.5 ms ? Symbolics 8657.8 ms ? IterativeLQR 9 dependencies successfully precompiled in 253 seconds. 183 already precompiled. 3 dependencies failed but may be precompilable after restarting julia 3 dependencies had output during precompilation: ┌ IterativeLQR │ WARNING: Constructor for type "Number" was extended in `DomainSets` without explicit qualification or import. │ NOTE: Assumed "Number" refers to `Base.Number`. This behavior is deprecated and may differ in future versions.` │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function Number end`. │ Hint: To silence the warning, qualify `Number` as `Base.Number` in the method signature or explicitly `import Base: Number`. │ WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/K4CRG/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. │ ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. └ ┌ DomainSets │ WARNING: Constructor for type "Number" was extended in `DomainSets` without explicit qualification or import. │ NOTE: Assumed "Number" refers to `Base.Number`. This behavior is deprecated and may differ in future versions.` │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function Number end`. │ Hint: To silence the warning, qualify `Number` as `Base.Number` in the method signature or explicitly `import Base: Number`. │ WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/K4CRG/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. │ ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. └ ┌ Symbolics │ WARNING: Constructor for type "Number" was extended in `DomainSets` without explicit qualification or import. │ NOTE: Assumed "Number" refers to `Base.Number`. This behavior is deprecated and may differ in future versions.` │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function Number end`. │ Hint: To silence the warning, qualify `Number` as `Base.Number` in the method signature or explicitly `import Base: Number`. │ WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/K4CRG/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. │ ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. └ Precompilation completed after 265.47s ################################################################################ # Testing # Testing IterativeLQR Status `/tmp/jl_prG38n/Project.toml` [6e4b80f9] BenchmarkTools v1.6.3 ⌅ [f6369f11] ForwardDiff v0.10.39 [605048dd] IterativeLQR v0.2.3 ⌅ [0c5d862f] Symbolics v4.14.0 [37e2e46d] LinearAlgebra v1.12.0 [2f01184e] SparseArrays v1.12.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_prG38n/Manifest.toml` ⌅ [47edcb42] ADTypes v0.2.7 ⌅ [c3fe647b] AbstractAlgebra v0.27.10 [1520ce14] AbstractTrees v0.4.5 [7d9f7c33] Accessors v0.1.43 ⌅ [79e6a3ab] Adapt v3.7.2 [66dad0bd] AliasTables v1.1.3 [dce04be8] ArgCheck v2.5.0 ⌃ [4fba245c] ArrayInterface v7.7.1 [30b0a656] ArrayInterfaceCore v0.1.29 ⌅ [15f4f7f2] AutoHashEquals v0.2.0 [198e06fe] BangBang v0.4.7 [9718e550] Baselet v0.1.1 [6e4b80f9] BenchmarkTools v1.6.3 ⌅ [e2ed5e7c] Bijections v0.1.10 [d360d2e6] ChainRulesCore v1.26.0 [861a8166] Combinatorics v1.1.0 [38540f10] CommonSolve v0.2.6 [bbf7d656] CommonSubexpressions v0.3.1 [34da2185] Compat v4.18.1 [b152e2b5] CompositeTypes v0.1.4 [a33af91c] CompositionsBase v0.1.2 ⌅ [187b0558] ConstructionBase v1.5.6 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 ⌅ [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [31c24e10] Distributions v0.25.123 [ffbed154] DocStringExtensions v0.9.5 ⌅ [5b8099bc] DomainSets v0.5.14 ⌅ [7c1d4256] DynamicPolynomials v0.4.6 [4e289a0a] EnumX v1.0.6 [e2ba6199] ExprTools v0.1.10 [5789e2e9] FileIO v1.17.1 [1a297f60] FillArrays v1.16.0 [59287772] Formatting v0.4.3 ⌅ [f6369f11] ForwardDiff v0.10.39 [069b7b12] FunctionWrappers v1.1.3 [77dc65aa] FunctionWrappersWrappers v0.1.3 ⌅ [46192b85] GPUArraysCore v0.1.5 ⌅ [0b43b601] Groebner v0.2.11 ⌅ [d5909c97] GroupsCore v0.4.2 [34004b35] HypergeometricFunctions v0.3.28 [615f187c] IfElse v0.1.1 [22cec73e] InitialValues v0.3.1 [18e54dd8] IntegerMathUtils v0.1.3 [8197267c] IntervalSets v0.7.13 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.6 [605048dd] IterativeLQR v0.2.3 [82899510] IteratorInterfaceExtensions v1.0.0 ⌅ [033835bb] JLD2 v0.4.55 [692b3bcd] JLLWrappers v1.7.1 [682c06a0] JSON v1.4.0 [b964fa9f] LaTeXStrings v1.4.0 ⌃ [2ee39098] LabelledArrays v1.15.1 ⌅ [984bce1d] LambertW v0.4.6 ⌅ [23fbe1c1] Latexify v0.15.21 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 ⌅ [e9d8d322] Metatheory v1.3.5 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 ⌅ [102ac46a] MultivariatePolynomials v0.4.7 [d8a4904e] MutableArithmetics v1.6.7 [77ba4419] NaNMath v1.1.3 [bac558e1] OrderedCollections v1.8.1 [90014a1f] PDMats v0.11.37 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.3 ⌅ [d236fae5] PreallocationTools v0.4.24 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [27ebfcd6] Primes v0.5.7 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [fb686558] RandomExtensions v0.4.4 [3cdcf5f2] RecipesBase v1.3.4 ⌅ [731186ca] RecursiveArrayTools v2.38.10 [189a3867] Reexport v1.2.2 [42d2dcc6] Referenceables v0.1.3 [ae029012] Requires v1.3.1 [79098fc4] Rmath v0.9.0 [7e49a35a] RuntimeGeneratedFunctions v0.5.16 ⌅ [0bca4576] SciMLBase v1.98.1 ⌅ [c0aeaf25] SciMLOperators v0.3.12 [6c6a2e73] Scratch v1.3.0 [efcf1570] Setfield v1.1.2 [66db9d55] SnoopPrecompile v1.0.3 [a2af1166] SortingAlgorithms v1.2.2 [276daf66] SpecialFunctions v2.6.1 [171d559e] SplittablesBase v0.1.15 [90137ffa] StaticArrays v1.9.16 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 [2913bbd2] StatsBase v0.34.10 [4c63d2b9] StatsFuns v1.5.2 [ec057cc2] StructUtils v2.6.2 ⌅ [2efcf032] SymbolicIndexingInterface v0.2.2 ⌅ [d1185830] SymbolicUtils v0.19.11 ⌅ [0c5d862f] Symbolics v4.14.0 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 ⌅ [8ea1fca8] TermInterface v0.2.3 [ac1d9e8a] ThreadsX v0.1.12 [a759f4b9] TimerOutputs v0.5.29 [3bb67fe8] TranscodingStreams v0.11.3 [28d57a85] Transducers v0.4.85 [a2a6695c] TreeViews v0.3.0 [781d530d] TruncatedStacktraces v1.4.0 [3a884ed6] UnPack v1.0.2 [700de1a5] ZygoteRules v0.2.7 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.12.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.12.1 [de0858da] Printf v1.11.0 [9abbd945] Profile v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.12.0 [f489334b] StyledStrings v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.15.0+0 [e37daf67] LibGit2_jll v1.9.0+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.11.4 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [458c3c95] OpenSSL_jll v3.5.4+0 [bea87d4a] SuiteSparse_jll v7.8.3+2 [83775a58] Zlib_jll v1.3.1+2 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.64.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... Precompiling packages... 3580.5 ms ? DomainSets 23373.3 ms ✓ SciMLBase Info Given Symbolics was explicitly requested, output will be shown live  WARNING: Constructor for type "Number" was extended in `DomainSets` without explicit qualification or import.  NOTE: Assumed "Number" refers to `Base.Number`. This behavior is deprecated and may differ in future versions.`  NOTE: This behavior may have differed in Julia versions prior to 1.12.  Hint: If you intended to create a new generic function of the same name, use `function Number end`.  Hint: To silence the warning, qualify `Number` as `Base.Number` in the method signature or explicitly `import Base: Number`. WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/K4CRG/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. 7799.6 ms ? Symbolics 1 dependency successfully precompiled in 39 seconds. 179 already precompiled. 2 dependencies failed but may be precompilable after restarting julia 2 dependencies had output during precompilation: ┌ DomainSets │ WARNING: Constructor for type "Number" was extended in `DomainSets` without explicit qualification or import. │ NOTE: Assumed "Number" refers to `Base.Number`. This behavior is deprecated and may differ in future versions.` │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function Number end`. │ Hint: To silence the warning, qualify `Number` as `Base.Number` in the method signature or explicitly `import Base: Number`. │ WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/K4CRG/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. │ ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. └ ┌ Symbolics │ [Output was shown above] └ WARNING: Constructor for type "Number" was extended in `DomainSets` without explicit qualification or import. NOTE: Assumed "Number" refers to `Base.Number`. This behavior is deprecated and may differ in future versions.` NOTE: This behavior may have differed in Julia versions prior to 1.12. Hint: If you intended to create a new generic function of the same name, use `function Number end`. Hint: To silence the warning, qualify `Number` as `Base.Number` in the method signature or explicitly `import Base: Number`. WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/K4CRG/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. Precompiling packages... Info Given DomainSets was explicitly requested, output will be shown live  WARNING: Constructor for type "Number" was extended in `DomainSets` without explicit qualification or import.  NOTE: Assumed "Number" refers to `Base.Number`. This behavior is deprecated and may differ in future versions.`  NOTE: This behavior may have differed in Julia versions prior to 1.12.  Hint: If you intended to create a new generic function of the same name, use `function Number end`.  Hint: To silence the warning, qualify `Number` as `Base.Number` in the method signature or explicitly `import Base: Number`. WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/K4CRG/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. 3585.4 ms ? DomainSets WARNING: Constructor for type "Number" was extended in `DomainSets` without explicit qualification or import. NOTE: Assumed "Number" refers to `Base.Number`. This behavior is deprecated and may differ in future versions.` NOTE: This behavior may have differed in Julia versions prior to 1.12. Hint: If you intended to create a new generic function of the same name, use `function Number end`. Hint: To silence the warning, qualify `Number` as `Base.Number` in the method signature or explicitly `import Base: Number`. WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/K4CRG/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. WARNING: Constructor for type "Number" was extended in `DomainSets` without explicit qualification or import. NOTE: Assumed "Number" refers to `Base.Number`. This behavior is deprecated and may differ in future versions.` NOTE: This behavior may have differed in Julia versions prior to 1.12. Hint: If you intended to create a new generic function of the same name, use `function Number end`. Hint: To silence the warning, qualify `Number` as `Base.Number` in the method signature or explicitly `import Base: Number`. WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/K4CRG/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. WARNING: Wrapping `Vararg` directly in UnionAll is deprecated (wrap the tuple instead). You may need to write `f(x::Vararg{T})` rather than `f(x::Vararg{<:T})` or `f(x::Vararg{T}) where T` instead of `f(x::Vararg{T} where T)`. To make this warning an error, and hence obtain a stack trace, use `julia --depwarn=error`. Precompiling packages... 1684.2 ms ✓ SciMLOperators → SciMLOperatorsStaticArraysCoreExt 19223.6 ms ✓ SciMLBase 2 dependencies successfully precompiled in 22 seconds. 64 already precompiled. Precompiling packages... 22028.4 ms ✓ AbstractAlgebra 6098.2 ms ✓ Groebner 2 dependencies successfully precompiled in 29 seconds. 29 already precompiled. 1 dependency had output during precompilation: ┌ AbstractAlgebra │ WARNING: Constructor for type "Matrix" was extended in `AbstractAlgebra` without explicit qualification or import. │ NOTE: Assumed "Matrix" refers to `Base.Matrix`. This behavior is deprecated and may differ in future versions.` │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function Matrix end`. │ Hint: To silence the warning, qualify `Matrix` as `Base.Matrix` in the method signature or explicitly `import Base: Matrix`. └ WARNING: Use of Code.get_symbolify is deprecated, use get_rewrites instead. likely near /home/pkgeval/.julia/packages/Symbolics/UrqtQ/src/build_function.jl:130 Precompiling packages... 8959.9 ms ✓ StatsBase 2702.8 ms ✓ PDMats → StatsBaseExt 11255.7 ms ✓ Distributions 3 dependencies successfully precompiled in 26 seconds. 46 already precompiled. Precompiling packages... 4279.1 ms ✓ StatsFuns → StatsFunsChainRulesCoreExt 1 dependency successfully precompiled in 5 seconds. 24 already precompiled. Precompiling packages... 5092.5 ms ✓ Distributions → DistributionsTestExt 1 dependency successfully precompiled in 7 seconds. 51 already precompiled. Precompiling packages... 8467.1 ms ✓ Distributions → DistributionsChainRulesCoreExt 1 dependency successfully precompiled in 10 seconds. 54 already precompiled. Precompiling packages... 9467.9 ms ✓ Latexify 1 dependency successfully precompiled in 10 seconds. 14 already precompiled. Precompiling packages... 3478.6 ms ? DomainSets 55258.7 ms ✓ JLD2 3292.7 ms ? Symbolics Info Given IterativeLQR was explicitly requested, output will be shown live  ┌ Warning: Module Symbolics with build ID ffffffff-ffff-ffff-443a-75ddaa98eb01 is missing from the cache. │ This may mean Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] does not support precompilation but is imported by a module that does. └ @ Base loading.jl:2641 639.4 ms ? IterativeLQR 1 dependency successfully precompiled in 66 seconds. 185 already precompiled. 2 dependencies precompiled but different versions are currently loaded. Restart julia to access the new versions. Otherwise, loading dependents of these packages may trigger further precompilation to work with the unexpected versions. 3 dependencies failed but may be precompilable after restarting julia 3 dependencies had output during precompilation: ┌ IterativeLQR │ [Output was shown above] └ ┌ DomainSets │ WARNING: Constructor for type "Number" was extended in `DomainSets` without explicit qualification or import. │ NOTE: Assumed "Number" refers to `Base.Number`. This behavior is deprecated and may differ in future versions.` │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function Number end`. │ Hint: To silence the warning, qualify `Number` as `Base.Number` in the method signature or explicitly `import Base: Number`. │ WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/K4CRG/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. │ ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. └ ┌ Symbolics │ ┌ Warning: Module DomainSets with build ID ffffffff-ffff-ffff-985b-c113ae9c1fbf is missing from the cache. │ │ This may mean DomainSets [5b8099bc-c8ec-5219-889f-1d9e522a28bf] does not support precompilation but is imported by a module that does. │ └ @ Base loading.jl:2641 └ ┌ Warning: Module Symbolics with build ID ffffffff-ffff-ffff-443a-75ddaa98eb01 is missing from the cache. │ This may mean Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] does not support precompilation but is imported by a module that does. └ @ Base loading.jl:2641 Test Summary: | Pass Total Time Objective | 7 7 43.4s Test Summary: | Pass Total Time Dynamics | 4 4 23.0s Test Summary: | Pass Total Time Constraints | 12 12 18.3s ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University al iter: 1 ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University iter: 1 cost: 20.855560441514754 gradient_norm: 9.360856541902033 max_violation: 3.115947804384851 step_size: 1.0 iter: 2 cost: 8.765393062854882 gradient_norm: 6.445933786121642 max_violation: 3.1122762361654943 step_size: 1.0 iter: 3 cost: 6.6048380893692675 gradient_norm: 4.415548929686462 max_violation: 3.110554868539986 step_size: 1.0 iter: 4 cost: 5.850444582441823 gradient_norm: 3.31544429392236 max_violation: 3.1096579307988423 step_size: 1.0 iter: 5 cost: 5.501307098390959 gradient_norm: 2.6430809678313643 max_violation: 3.109115848992611 step_size: 1.0 iter: 6 cost: 5.311623455879254 gradient_norm: 2.1934336467169917 max_violation: 3.1087545730189965 step_size: 1.0 iter: 7 cost: 5.197232831681438 gradient_norm: 1.8727921209518545 max_violation: 3.1084971412039137 step_size: 1.0 iter: 8 cost: 5.1229801623643345 gradient_norm: 1.6330839451003054 max_violation: 3.108304643764541 step_size: 1.0 iter: 9 cost: 5.072068371967795 gradient_norm: 1.4473164742994449 max_violation: 3.108155381109937 step_size: 1.0 iter: 10 cost: 5.035649191124571 gradient_norm: 1.299231139937285 max_violation: 3.1080363233802886 step_size: 1.0 iter: 11 cost: 5.00870190541397 gradient_norm: 1.1784755963846225 max_violation: 3.1079391841098616 step_size: 1.0 iter: 12 cost: 4.98820562627729 gradient_norm: 1.078155866795219 max_violation: 3.107858446233689 step_size: 1.0 iter: 13 cost: 4.9722543386751425 gradient_norm: 0.9935085163911523 max_violation: 3.107790296484478 step_size: 1.0 iter: 14 cost: 4.959597280003579 gradient_norm: 0.9211391439759112 max_violation: 3.107732015930905 step_size: 1.0 iter: 15 cost: 4.949386102191289 gradient_norm: 0.8585648421703407 max_violation: 3.1076816143131842 step_size: 1.0 iter: 16 cost: 4.941028944972138 gradient_norm: 0.8039282271532637 max_violation: 3.1076376016357434 step_size: 1.0 iter: 17 cost: 4.93410271133804 gradient_norm: 0.7558125494374667 max_violation: 3.1075988405083677 step_size: 1.0 iter: 18 cost: 4.9282984514198125 gradient_norm: 0.7131185984265401 max_violation: 3.1075644478152684 step_size: 1.0 iter: 19 cost: 4.923386307680239 gradient_norm: 0.6749806177564128 max_violation: 3.1075337275174926 step_size: 1.0 iter: 20 cost: 4.919192405735825 gradient_norm: 0.6407075535596451 max_violation: 3.1075061236743124 step_size: 1.0 iter: 21 cost: 4.9155832553453 gradient_norm: 0.6097411695989117 max_violation: 3.1074811869305177 step_size: 1.0 iter: 22 cost: 4.912454996399661 gradient_norm: 0.5816256452476479 max_violation: 3.107458550175175 step_size: 1.0 iter: 23 cost: 4.909725843421255 gradient_norm: 0.5559851484699755 max_violation: 3.1074379105734455 step_size: 1.0 iter: 24 cost: 4.907330685817845 gradient_norm: 0.5325070480950694 max_violation: 3.1074190161075412 step_size: 1.0 iter: 25 cost: 4.9052171685586945 gradient_norm: 0.5109291792980074 max_violation: 3.1074016553605692 step_size: 1.0 iter: 26 cost: 4.9033428069491745 gradient_norm: 0.49103006585159525 max_violation: 3.107385649667501 step_size: 1.0 iter: 27 cost: 4.901672835045172 gradient_norm: 0.4726213287718704 max_violation: 3.1073708470175982 step_size: 1.0 iter: 28 cost: 4.9001785820074835 gradient_norm: 0.45554173195229347 max_violation: 3.1073571172689944 step_size: 1.0 iter: 29 cost: 4.898836233376818 gradient_norm: 0.4396524675704917 max_violation: 3.1073443483576138 step_size: 1.0 iter: 30 cost: 4.897625876405591 gradient_norm: 0.42483339043439106 max_violation: 3.1073324432676213 step_size: 1.0 iter: 31 cost: 4.8965307573708285 gradient_norm: 0.4109799858244237 max_violation: 3.1073213175908263 step_size: 1.0 iter: 32 cost: 4.895536698732696 gradient_norm: 0.3980009094969568 max_violation: 3.1073108975457417 step_size: 1.0 al iter: 2 iter: 1 cost: 56.286611296301686 gradient_norm: 6.861772878754017 max_violation: 2.9377534942717656 step_size: 1.0 iter: 2 cost: 55.792696481652854 gradient_norm: 3.234281182715854 max_violation: 2.9406351500010333 step_size: 1.0 iter: 3 cost: 55.702078581862665 gradient_norm: 2.1141031312463823 max_violation: 2.94142645021963 step_size: 1.0 iter: 4 cost: 55.67034743318575 gradient_norm: 1.5699085356608986 max_violation: 2.941780882666889 step_size: 1.0 iter: 5 cost: 55.65564282622245 gradient_norm: 1.2484517232739547 max_violation: 2.9419771695632813 step_size: 1.0 iter: 6 cost: 55.647645541904645 gradient_norm: 1.0362547149594197 max_violation: 2.9420998779592686 step_size: 1.0 iter: 7 cost: 55.642818119704145 gradient_norm: 0.8857175750489708 max_violation: 2.9421828867819273 step_size: 1.0 iter: 8 cost: 55.63968181458506 gradient_norm: 0.7733787846035938 max_violation: 2.9422422523619165 step_size: 1.0 iter: 9 cost: 55.63752963083377 gradient_norm: 0.6863379550834985 max_violation: 2.9422865034682415 step_size: 1.0 iter: 10 cost: 55.6359889168461 gradient_norm: 0.6169151325659961 max_violation: 2.9423205621160524 step_size: 1.0 iter: 11 cost: 55.634848098933126 gradient_norm: 0.5602530012588938 max_violation: 2.9423474542249717 step_size: 1.0 iter: 12 cost: 55.633979805337425 gradient_norm: 0.513129370071205 max_violation: 2.942369135204158 step_size: 1.0 al iter: 3 iter: 1 cost: 477.61220524826325 gradient_norm: 137.9419921608516 max_violation: 2.2688837404405375 step_size: 1.0 iter: 2 cost: 404.00134153957606 gradient_norm: 155.57127518902936 max_violation: 1.767382126543742 step_size: 1.0 iter: 3 cost: 343.10515481809074 gradient_norm: 109.85509379366539 max_violation: 1.553028043854321 step_size: 1.0 iter: 4 cost: 311.6573100644324 gradient_norm: 89.83458541317789 max_violation: 1.3963113092739046 step_size: 1.0 iter: 5 cost: 295.6588410135293 gradient_norm: 81.01053694359717 max_violation: 1.3032883295091924 step_size: 1.0 iter: 6 cost: 280.2701606598885 gradient_norm: 74.06625468494978 max_violation: 1.20279349166585 step_size: 1.0 iter: 7 cost: 267.8299452555478 gradient_norm: 67.15480718791575 max_violation: 1.1136265040985882 step_size: 1.0 iter: 8 cost: 258.2055196387967 gradient_norm: 71.09505212413916 max_violation: 1.042907620686763 step_size: 1.0 iter: 9 cost: 250.76797332253068 gradient_norm: 74.09936019206508 max_violation: 0.9882057028496845 step_size: 1.0 iter: 10 cost: 244.74429276318446 gradient_norm: 77.07732408546985 max_violation: 0.944540572235316 step_size: 1.0 iter: 11 cost: 239.83015794622978 gradient_norm: 76.98113800764223 max_violation: 0.9080100077777957 step_size: 1.0 iter: 12 cost: 236.1549977258198 gradient_norm: 72.48006322212677 max_violation: 0.8774276137526531 step_size: 1.0 iter: 13 cost: 233.37936644014647 gradient_norm: 66.4132491249016 max_violation: 0.8522915887045457 step_size: 1.0 iter: 14 cost: 231.13633233092096 gradient_norm: 60.56374260784053 max_violation: 0.8315147305478958 step_size: 1.0 iter: 15 cost: 229.27138644872178 gradient_norm: 55.35467895454799 max_violation: 0.8140658190166339 step_size: 1.0 iter: 16 cost: 227.7026613909488 gradient_norm: 64.21270593295478 max_violation: 0.7991787957561938 step_size: 1.0 iter: 17 cost: 226.37100357277097 gradient_norm: 74.43304741379296 max_violation: 0.7863026704263323 step_size: 1.0 iter: 18 cost: 225.22993784226585 gradient_norm: 81.57648458248515 max_violation: 0.7750356512894658 step_size: 1.0 iter: 19 cost: 224.2427273761655 gradient_norm: 86.43131433310654 max_violation: 0.7650782514498808 step_size: 1.0 iter: 20 cost: 223.38048621861662 gradient_norm: 89.59339970810399 max_violation: 0.7562024158270182 step_size: 1.0 iter: 21 cost: 222.62058708847414 gradient_norm: 91.50323379555614 max_violation: 0.7482311812426139 step_size: 1.0 iter: 22 cost: 221.9453220552375 gradient_norm: 92.48499506683636 max_violation: 0.7410250063488757 step_size: 1.0 iter: 23 cost: 221.3408077711093 gradient_norm: 92.77795700715373 max_violation: 0.7344723479203199 step_size: 1.0 iter: 24 cost: 220.79610697666953 gradient_norm: 92.55977233031712 max_violation: 0.7284829874694658 step_size: 1.0 iter: 25 cost: 220.30253345460704 gradient_norm: 91.96323593571466 max_violation: 0.7229831814824248 step_size: 1.0 iter: 26 cost: 219.8531112287709 gradient_norm: 91.0882542283367 max_violation: 0.7179120578323253 step_size: 1.0 iter: 27 cost: 219.44216228109443 gradient_norm: 90.01041050713238 max_violation: 0.713218893817197 step_size: 1.0 iter: 28 cost: 219.06499867936438 gradient_norm: 88.78714210691898 max_violation: 0.7088610382681502 step_size: 1.0 iter: 29 cost: 218.7176963211106 gradient_norm: 87.46224089642723 max_violation: 0.7048023148360736 step_size: 1.0 iter: 30 cost: 218.3969298740391 gradient_norm: 86.06916692749941 max_violation: 0.7010117886919365 step_size: 1.0 iter: 31 cost: 218.09985200037622 gradient_norm: 84.63351174799851 max_violation: 0.6974628084743539 step_size: 1.0 iter: 32 cost: 217.82400387062705 gradient_norm: 83.17484467232366 max_violation: 0.6941322566733938 step_size: 1.0 iter: 33 cost: 217.5672475666857 gradient_norm: 81.70810613629001 max_violation: 0.6909999579638377 step_size: 1.0 iter: 34 cost: 217.32771385535625 gradient_norm: 80.24466543434579 max_violation: 0.6880482076332344 step_size: 1.0 iter: 35 cost: 217.10376091955024 gradient_norm: 78.79312784325705 max_violation: 0.6852613919017352 step_size: 1.0 iter: 36 cost: 216.8939410828448 gradient_norm: 77.35995342050087 max_violation: 0.6826256791665757 step_size: 1.0 iter: 37 cost: 216.69697352258166 gradient_norm: 75.94993351065709 max_violation: 0.6801287665452236 step_size: 1.0 iter: 38 cost: 216.5117215906066 gradient_norm: 74.56655920698958 max_violation: 0.6777596699976822 step_size: 1.0 iter: 39 cost: 216.3371737653583 gradient_norm: 73.21230738786593 max_violation: 0.6755085491588138 step_size: 1.0 iter: 40 cost: 216.17242752412275 gradient_norm: 71.88886358769285 max_violation: 0.673366560097342 step_size: 1.0 iter: 41 cost: 216.0166756016148 gradient_norm: 70.5972962474947 max_violation: 0.6713257307550844 step_size: 1.0 iter: 42 cost: 215.86919422309396 gradient_norm: 69.33819337960254 max_violation: 0.6693788549635018 step_size: 1.0 iter: 43 cost: 215.72933298692428 gradient_norm: 68.1117700547958 max_violation: 0.6675194017946717 step_size: 1.0 iter: 44 cost: 215.59650613511835 gradient_norm: 66.91795314761912 max_violation: 0.6657414376582107 step_size: 1.0 iter: 45 cost: 215.4701849985221 gradient_norm: 65.75644828766885 max_violation: 0.6640395590593244 step_size: 1.0 iter: 46 cost: 215.34989144060626 gradient_norm: 64.62679283696197 max_violation: 0.6624088343249435 step_size: 1.0 iter: 47 cost: 215.23519215341798 gradient_norm: 63.52839785589676 max_violation: 0.6608447529129653 step_size: 1.0 iter: 48 cost: 215.12569368303954 gradient_norm: 62.460581364152624 max_violation: 0.6593431811638766 step_size: 1.0 iter: 49 cost: 215.02103808133208 gradient_norm: 61.42259469980126 max_violation: 0.6579003235495984 step_size: 1.0 iter: 50 cost: 214.92089909673334 gradient_norm: 60.41364339170141 max_violation: 0.6565126886320432 step_size: 1.0 iter: 51 cost: 214.8249788301342 gradient_norm: 59.43290365975108 max_violation: 0.6551770590718933 step_size: 1.0 iter: 52 cost: 214.73300479292743 gradient_norm: 58.47953542392776 max_violation: 0.6538904651327702 step_size: 1.0 iter: 53 cost: 214.64472731358725 gradient_norm: 57.552692520762086 max_violation: 0.6526501612119597 step_size: 1.0 iter: 54 cost: 214.5599172469341 gradient_norm: 56.6515306829651 max_violation: 0.6514536049999826 step_size: 1.0 iter: 55 cost: 214.47836394680752 gradient_norm: 55.77521372555988 max_violation: 0.6502984389303244 step_size: 1.0 iter: 56 cost: 214.3998734684311 gradient_norm: 54.92291829307587 max_violation: 0.6491824736298883 step_size: 1.0 iter: 57 cost: 214.3242669714639 gradient_norm: 54.093837452141706 max_violation: 0.6481036731220504 step_size: 1.0 iter: 58 cost: 214.25137929873796 gradient_norm: 53.28718335809946 max_violation: 0.6470601415688675 step_size: 1.0 iter: 59 cost: 214.18105770908457 gradient_norm: 52.50218917941796 max_violation: 0.646050111368353 step_size: 1.0 iter: 60 cost: 214.11316074556404 gradient_norm: 51.73811042854391 max_violation: 0.6450719324474958 step_size: 1.0 iter: 61 cost: 214.0475572228955 gradient_norm: 50.99422581885599 max_violation: 0.6441240626128986 step_size: 1.0 iter: 62 cost: 213.98412532001393 gradient_norm: 50.26983774488149 max_violation: 0.6432050588388414 step_size: 1.0 iter: 63 cost: 213.92275176550345 gradient_norm: 49.56427246412872 max_violation: 0.642313569387992 step_size: 1.0 iter: 64 cost: 213.86333110523032 gradient_norm: 48.87688004419795 max_violation: 0.6414483266732081 step_size: 1.0 iter: 65 cost: 213.8057650428478 gradient_norm: 48.207034126521165 max_violation: 0.6406081407802104 step_size: 1.0 iter: 66 cost: 213.74996184500986 gradient_norm: 47.55413154878948 max_violation: 0.6397918935806848 step_size: 1.0 iter: 67 cost: 213.6958358041438 gradient_norm: 46.91759185947323 max_violation: 0.6389985333738895 step_size: 1.0 iter: 68 cost: 213.64330675249983 gradient_norm: 46.29685675206523 max_violation: 0.6382270700021158 step_size: 1.0 iter: 69 cost: 213.59229962195255 gradient_norm: 45.69138944097082 max_violation: 0.6374765703917449 step_size: 1.0 iter: 70 cost: 213.54274404469047 gradient_norm: 45.10067399691412 max_violation: 0.6367461544772071 step_size: 1.0 iter: 71 cost: 213.4945739904991 gradient_norm: 44.524214656064125 max_violation: 0.6360349914699603 step_size: 1.0 iter: 72 cost: 213.4477274368423 gradient_norm: 43.96153511440518 max_violation: 0.6353422964388318 step_size: 1.0 iter: 73 cost: 213.40214606838634 gradient_norm: 43.412177816525045 max_violation: 0.63466732717181 step_size: 1.0 iter: 74 cost: 213.35777500298354 gradient_norm: 42.875703245806875 max_violation: 0.6340093812925609 step_size: 1.0 iter: 75 cost: 213.31456254147588 gradient_norm: 42.35168922187195 max_violation: 0.6333677936078628 step_size: 1.0 iter: 76 cost: 213.2724599389674 gradient_norm: 41.83973020967015 max_violation: 0.6327419336646272 step_size: 1.0 iter: 77 cost: 213.23142119547012 gradient_norm: 41.33943664344311 max_violation: 0.6321312034974338 step_size: 1.0 iter: 78 cost: 213.19140286405937 gradient_norm: 40.85043426812157 max_violation: 0.6315350355494274 step_size: 1.0 iter: 79 cost: 213.1523638748683 gradient_norm: 40.372363500087694 max_violation: 0.6309528907512072 step_size: 1.0 iter: 80 cost: 213.11426537343624 gradient_norm: 39.90487880841808 max_violation: 0.6303842567438607 step_size: 1.0 iter: 81 cost: 213.0770705720707 gradient_norm: 39.44764811759597 max_violation: 0.6298286462336575 step_size: 1.0 iter: 82 cost: 213.0407446130311 gradient_norm: 39.000352231976024 max_violation: 0.6292855954671701 step_size: 1.0 iter: 83 cost: 213.0052544424588 gradient_norm: 38.56268428241862 max_violation: 0.6287546628166361 step_size: 1.0 iter: 84 cost: 212.97056869408598 gradient_norm: 38.13434919482716 max_violation: 0.6282354274663731 step_size: 1.0 iter: 85 cost: 212.93665758185873 gradient_norm: 37.71506318046676 max_violation: 0.6277274881919204 step_size: 1.0 iter: 86 cost: 212.90349280068887 gradient_norm: 37.30455324774157 max_violation: 0.6272304622243499 step_size: 1.0 iter: 87 cost: 212.87104743462908 gradient_norm: 36.902556734841234 max_violation: 0.6267439841928919 step_size: 1.0 iter: 88 cost: 212.83929587183508 gradient_norm: 36.50882086282507 max_violation: 0.6262677051396417 step_size: 1.0 iter: 89 cost: 212.80821372573598 gradient_norm: 36.123102308374925 max_violation: 0.6258012916006739 step_size: 1.0 iter: 90 cost: 212.77777776189393 gradient_norm: 35.745166795765954 max_violation: 0.6253444247483952 step_size: 1.0 iter: 91 cost: 212.7479658300785 gradient_norm: 35.3747887071531 max_violation: 0.6248967995904344 step_size: 1.0 iter: 92 cost: 212.71875680112885 gradient_norm: 35.01175071072138 max_violation: 0.624458124220753 step_size: 1.0 iter: 93 cost: 212.69013050821223 gradient_norm: 34.65584340571173 max_violation: 0.6240281191190489 step_size: 1.0 iter: 94 cost: 212.6620676921258 gradient_norm: 34.30686498385511 max_violation: 0.623606516494859 step_size: 1.0 iter: 95 cost: 212.63454995032356 gradient_norm: 33.96462090648369 max_violation: 0.6231930596730693 step_size: 1.0 iter: 96 cost: 212.60755968936732 gradient_norm: 33.62892359640961 max_violation: 0.622787502517792 step_size: 1.0 iter: 97 cost: 212.58108008054344 gradient_norm: 33.29959214431792 max_violation: 0.6223896088918761 step_size: 1.0 iter: 98 cost: 212.5550950183965 gradient_norm: 32.976452028607774 max_violation: 0.6219991521494759 step_size: 1.0 iter: 99 cost: 212.5295890819577 gradient_norm: 32.6593348483246 max_violation: 0.6216159146593414 step_size: 1.0 iter: 100 cost: 212.50454749846514 gradient_norm: 32.3480780684633 max_violation: 0.6212396873566952 step_size: 1.0 al iter: 4 iter: 1 cost: 448.0302518687765 gradient_norm: 249.13663952557334 max_violation: 0.3679572693430382 step_size: 1.0 iter: 2 cost: 418.34705581672705 gradient_norm: 480.568171338089 max_violation: 0.353638736000085 step_size: 0.125 iter: 3 cost: 393.4384381034989 gradient_norm: 1601.119380508717 max_violation: 0.34084131941051155 step_size: 0.25 iter: 4 cost: 380.9754900305623 gradient_norm: 3680.8886175796442 max_violation: 0.3403156195438748 step_size: 0.5 iter: 5 cost: 356.37331460534546 gradient_norm: 4640.562155448627 max_violation: 0.30585290999749404 step_size: 1.0 iter: 6 cost: 329.10895493026493 gradient_norm: 3795.2707246922528 max_violation: 0.27668924749297874 step_size: 1.0 iter: 7 cost: 313.23406364247853 gradient_norm: 3201.762167689828 max_violation: 0.2563826925567545 step_size: 1.0 iter: 8 cost: 302.78583146228266 gradient_norm: 2761.27536215502 max_violation: 0.24048079955010992 step_size: 1.0 iter: 9 cost: 295.4456285690907 gradient_norm: 2424.0677192712974 max_violation: 0.23192607707813462 step_size: 1.0 iter: 10 cost: 290.0540021042072 gradient_norm: 2158.9212783749495 max_violation: 0.2296113558392432 step_size: 1.0 iter: 11 cost: 285.9584943980375 gradient_norm: 1945.5026683528838 max_violation: 0.22782271469645154 step_size: 1.0 iter: 12 cost: 282.762737517512 gradient_norm: 1770.2466799944139 max_violation: 0.22635619951969277 step_size: 1.0 iter: 13 cost: 280.2127224610691 gradient_norm: 1623.8560151579857 max_violation: 0.2251072482369776 step_size: 1.0 iter: 14 cost: 278.1389522194282 gradient_norm: 1499.785170995733 max_violation: 0.22401622394465814 step_size: 1.0 iter: 15 cost: 276.42458057248797 gradient_norm: 1393.309447459308 max_violation: 0.22304599097548206 step_size: 1.0 iter: 16 cost: 274.9868311947391 gradient_norm: 1300.9405710977308 max_violation: 0.2221717291709755 step_size: 1.0 iter: 17 cost: 273.7656749206423 gradient_norm: 1220.0506236710467 max_violation: 0.22137588759583338 step_size: 1.0 iter: 18 cost: 272.71667921490143 gradient_norm: 1148.62391622159 max_violation: 0.2206454877532824 step_size: 1.0 iter: 19 cost: 271.80635444632566 gradient_norm: 1085.0893617793722 max_violation: 0.219970584126977 step_size: 1.0 iter: 20 cost: 271.00904524855935 gradient_norm: 1028.2047209004513 max_violation: 0.2193433334794821 step_size: 1.0 iter: 21 cost: 270.30480585491796 gradient_norm: 976.975044587488 max_violation: 0.21875740343921546 step_size: 1.0 iter: 22 cost: 269.67791796111334 gradient_norm: 930.5941471925584 max_violation: 0.2182075801150951 step_size: 1.0 iter: 23 cost: 269.1158375497853 gradient_norm: 888.4018971907558 max_violation: 0.21768949787549907 step_size: 1.0 iter: 24 cost: 268.6084338180494 gradient_norm: 849.8525711701559 max_violation: 0.21719944720281958 step_size: 1.0 iter: 25 cost: 268.1474305973348 gradient_norm: 814.4910758882489 max_violation: 0.21673423430483885 step_size: 1.0 iter: 26 cost: 267.72599046646616 gradient_norm: 781.9348528834149 max_violation: 0.2162910762369643 step_size: 1.0 iter: 27 cost: 267.3384010009498 gradient_norm: 751.8599461941194 max_violation: 0.21586752125344866 step_size: 1.0 iter: 28 cost: 266.9798353078413 gradient_norm: 723.9901609733834 max_violation: 0.21546138780123902 step_size: 1.0 iter: 29 cost: 266.6461675989327 gradient_norm: 698.088546106794 max_violation: 0.21507071797768207 step_size: 1.0 iter: 30 cost: 266.3338305566508 gradient_norm: 673.9506456454047 max_violation: 0.2146937429268121 step_size: 1.0 iter: 31 cost: 266.0397055819904 gradient_norm: 651.3991127186719 max_violation: 0.2143288588274168 step_size: 1.0 iter: 32 cost: 265.7610402427566 gradient_norm: 630.2793853879823 max_violation: 0.21397461293891995 step_size: 1.0 iter: 33 cost: 265.49538963186825 gradient_norm: 610.4561993385099 max_violation: 0.21362969958552025 step_size: 1.0 iter: 34 cost: 265.2405798952303 gradient_norm: 591.8107654458621 max_violation: 0.21329296581737456 step_size: 1.0 iter: 35 cost: 264.9946926348893 gradient_norm: 574.2384762125996 max_violation: 0.212963425559777 step_size: 1.0 iter: 36 cost: 264.7560678339353 gradient_norm: 557.6470276175335 max_violation: 0.21264027920632333 step_size: 1.0 iter: 37 cost: 264.52332019094627 gradient_norm: 541.95485626948 max_violation: 0.21232293308075212 step_size: 1.0 iter: 38 cost: 264.29535989636247 gradient_norm: 527.089801879983 max_violation: 0.2120110109517661 step_size: 1.0 iter: 39 cost: 264.0714057844766 gradient_norm: 512.9879194661521 max_violation: 0.2117043494766757 step_size: 1.0 iter: 40 cost: 263.85097908875235 gradient_norm: 499.5923898299987 max_violation: 0.21140297252612683 step_size: 1.0 iter: 41 cost: 263.63387131522717 gradient_norm: 486.8525090375626 max_violation: 0.2111070455913273 step_size: 1.0 iter: 42 cost: 263.42008858427505 gradient_norm: 474.72276741735186 max_violation: 0.21081681828132393 step_size: 1.0 iter: 43 cost: 263.2097828630537 gradient_norm: 463.1620433212672 max_violation: 0.21053256665420816 step_size: 1.0 iter: 44 cost: 263.00318368336815 gradient_norm: 452.1329318634755 max_violation: 0.2102545459168672 step_size: 1.0 iter: 45 cost: 262.8005413902409 gradient_norm: 441.6012110894435 max_violation: 0.20998295915513454 step_size: 1.0 iter: 46 cost: 262.6020872669052 gradient_norm: 431.5354298035726 max_violation: 0.20971794229248397 step_size: 1.0 iter: 47 cost: 262.408010430907 gradient_norm: 421.90659104663945 max_violation: 0.20945956183979186 step_size: 1.0 iter: 48 cost: 262.218448131481 gradient_norm: 412.68790416241563 max_violation: 0.20920782079424027 step_size: 1.0 iter: 49 cost: 262.0334851073765 gradient_norm: 403.8545831281517 max_violation: 0.20896266855811163 step_size: 1.0 iter: 50 cost: 261.853158145994 gradient_norm: 395.38367537740066 max_violation: 0.2087240119630298 step_size: 1.0 iter: 51 cost: 261.6774630234702 gradient_norm: 387.2539111532651 max_violation: 0.20849172569554897 step_size: 1.0 iter: 52 cost: 261.50636203898677 gradient_norm: 379.445567623688 max_violation: 0.208265661325981 step_size: 1.0 iter: 53 cost: 261.33979115406936 gradient_norm: 371.9403446075315 max_violation: 0.20804565470903302 step_size: 1.0 iter: 54 cost: 261.1776662787253 gradient_norm: 364.72125022266147 max_violation: 0.2078315318278574 step_size: 1.0 iter: 55 cost: 261.0198885622462 gradient_norm: 357.77249550838405 max_violation: 0.20762311328559457 step_size: 1.0 iter: 56 cost: 260.86634871508073 gradient_norm: 351.07939739186133 max_violation: 0.20742021768441887 step_size: 1.0 iter: 57 cost: 260.7169304656772 gradient_norm: 344.6282894995553 max_violation: 0.2072226641203052 step_size: 1.0 iter: 58 cost: 260.57151328208346 gradient_norm: 338.40644033050626 max_violation: 0.20703027399051077 step_size: 1.0 iter: 59 cost: 260.42997448734076 gradient_norm: 332.40197831706286 max_violation: 0.20684287227499798 step_size: 1.0 iter: 60 cost: 260.2921908847877 gradient_norm: 326.60382328475566 max_violation: 0.2066602884195592 step_size: 1.0 iter: 61 cost: 260.15803999236766 gradient_norm: 321.00162382584494 max_violation: 0.20648235691993921 step_size: 1.0 iter: 62 cost: 260.0274009677676 gradient_norm: 315.5857001112957 max_violation: 0.20630891768302595 step_size: 1.0 iter: 63 cost: 259.90015529070155 gradient_norm: 310.34699168558996 max_violation: 0.20613981622304944 step_size: 1.0 iter: 64 cost: 259.77618725531806 gradient_norm: 305.2770098068739 max_violation: 0.20597490373653038 step_size: 1.0 iter: 65 cost: 259.6553843147714 gradient_norm: 300.36779392916526 max_violation: 0.20581403708905643 step_size: 1.0 iter: 66 cost: 259.5376373111132 gradient_norm: 295.6118719532379 max_violation: 0.20565707873868444 step_size: 1.0 iter: 67 cost: 259.4228406165559 gradient_norm: 291.0022238936812 max_violation: 0.20550389661460144 step_size: 1.0 iter: 68 cost: 259.31089220659794 gradient_norm: 286.53224865315065 max_violation: 0.20535436396504414 step_size: 1.0 iter: 69 cost: 259.2016936810216 gradient_norm: 282.1957336113621 max_violation: 0.20520835918490565 step_size: 1.0 iter: 70 cost: 259.0951502453464 gradient_norm: 277.9868267676552 max_violation: 0.2050657656307866 step_size: 1.0 iter: 71 cost: 258.99117066257696 gradient_norm: 273.9000112035312 max_violation: 0.20492647142931153 step_size: 1.0 iter: 72 cost: 258.8896671829443 gradient_norm: 269.93008164751257 max_violation: 0.20479036928293004 step_size: 1.0 iter: 73 cost: 258.79055545766596 gradient_norm: 266.07212295172474 max_violation: 0.2046573562763161 step_size: 1.0 iter: 74 cost: 258.6937544414323 gradient_norm: 262.32149030228624 max_violation: 0.20452733368564768 step_size: 1.0 iter: 75 cost: 258.5991862872927 gradient_norm: 258.67379101197275 max_violation: 0.2044002067923203 step_size: 1.0 iter: 76 cost: 258.5067762367863 gradient_norm: 255.12486774718425 max_violation: 0.20427588470221236 step_size: 1.0 iter: 77 cost: 258.41645250753425 gradient_norm: 251.67078306356092 max_violation: 0.20415428017121995 step_size: 1.0 iter: 78 cost: 258.3281461799979 gradient_norm: 248.30780513595136 max_violation: 0.20403530943754067 step_size: 1.0 iter: 79 cost: 258.2417910847063 gradient_norm: 245.03239457574696 max_violation: 0.20391889206088543 step_size: 1.0 iter: 80 cost: 258.15732369094 gradient_norm: 241.84119224279203 max_violation: 0.20380495076877292 step_size: 1.0 iter: 81 cost: 258.0746829976056 gradient_norm: 238.7310079650825 max_violation: 0.20369341130982344 step_size: 1.0 iter: 82 cost: 257.99381042685707 gradient_norm: 235.69881009225944 max_violation: 0.2035842023139791 step_size: 1.0 iter: 83 cost: 257.91464972082883 gradient_norm: 232.74171580784267 max_violation: 0.20347725515943038 step_size: 1.0 iter: 84 cost: 257.83714684176306 gradient_norm: 229.85698214134368 max_violation: 0.20337250384610117 step_size: 1.0 iter: 85 cost: 257.76124987569466 gradient_norm: 227.04199761973265 max_violation: 0.20326988487539976 step_size: 1.0 iter: 86 cost: 257.6869089397799 gradient_norm: 224.29427450858773 max_violation: 0.2031693371360035 step_size: 1.0 iter: 87 cost: 257.6140760933218 gradient_norm: 221.61144159278135 max_violation: 0.20307080179541437 step_size: 1.0 iter: 88 cost: 257.542705252459 gradient_norm: 218.99123745523318 max_violation: 0.20297422219700278 step_size: 1.0 iter: 89 cost: 257.472752108498 gradient_norm: 216.43150421439327 max_violation: 0.20287954376228834 step_size: 1.0 iter: 90 cost: 257.40417404980747 gradient_norm: 213.9301816827372 max_violation: 0.20278671389819847 step_size: 1.0 iter: 91 cost: 257.33693008718154 gradient_norm: 211.48530191614773 max_violation: 0.20269568190902199 step_size: 1.0 iter: 92 cost: 257.27098078258547 gradient_norm: 209.09498412299666 max_violation: 0.20260639891286125 step_size: 1.0 iter: 93 cost: 257.2062881811525 gradient_norm: 206.75742990558996 max_violation: 0.20251881776228098 step_size: 1.0 iter: 94 cost: 257.1428157463272 gradient_norm: 204.4709188079991 max_violation: 0.20243289296899336 step_size: 1.0 iter: 95 cost: 257.08052829803376 gradient_norm: 202.23380415109256 max_violation: 0.2023485806323242 step_size: 1.0 iter: 96 cost: 257.0193919537295 gradient_norm: 200.04450912858792 max_violation: 0.20226583837123613 step_size: 1.0 iter: 97 cost: 256.95937407224335 gradient_norm: 197.90152315024932 max_violation: 0.20218462525978254 step_size: 1.0 iter: 98 cost: 256.9004432002558 gradient_norm: 195.80339840910375 max_violation: 0.20210490176573037 step_size: 1.0 iter: 99 cost: 256.84256902131244 gradient_norm: 193.74874666155887 max_violation: 0.20202662969222063 step_size: 1.0 iter: 100 cost: 256.7857223072571 gradient_norm: 191.73623620280503 max_violation: 0.2019497721222967 step_size: 1.0 al iter: 5 iter: 1 cost: 573.6611040603896 gradient_norm: 28679.255281763304 max_violation: 0.15221155360357075 step_size: 0.5 iter: 2 cost: 532.9615640933063 gradient_norm: 25700.73798354749 max_violation: 0.14804914722825357 step_size: 0.25 iter: 3 cost: 438.9959190406646 gradient_norm: 19541.11010384745 max_violation: 0.13542183230899418 step_size: 1.0 iter: 4 cost: 367.4225501184634 gradient_norm: 14344.38596619181 max_violation: 0.1022672934737987 step_size: 1.0 iter: 5 cost: 334.0671574614377 gradient_norm: 11278.262934737908 max_violation: 0.08326495141053283 step_size: 1.0 iter: 6 cost: 314.69888872704877 gradient_norm: 9271.627772838881 max_violation: 0.06972556355508541 step_size: 1.0 iter: 7 cost: 302.66891317851645 gradient_norm: 7866.791934353795 max_violation: 0.059888467276424884 step_size: 1.0 iter: 8 cost: 294.6926621274423 gradient_norm: 6829.716177861693 max_violation: 0.05244841779448106 step_size: 1.0 iter: 9 cost: 289.12873295237756 gradient_norm: 6033.169194018647 max_violation: 0.04663451918782352 step_size: 1.0 iter: 10 cost: 285.08849128367837 gradient_norm: 5402.373939978902 max_violation: 0.04197032019242186 step_size: 1.0 iter: 11 cost: 282.0578852053491 gradient_norm: 4890.580131186837 max_violation: 0.038147462076100924 step_size: 1.0 iter: 12 cost: 279.72299778826914 gradient_norm: 4467.081922693826 max_violation: 0.03495819082519952 step_size: 1.0 iter: 13 cost: 277.8833577220915 gradient_norm: 4110.887396153518 max_violation: 0.03225766165150534 step_size: 1.0 iter: 14 cost: 276.4060554869031 gradient_norm: 3807.1625277272406 max_violation: 0.029941905105461963 step_size: 1.0 iter: 15 cost: 275.2001295813865 gradient_norm: 3545.129356547582 max_violation: 0.027934406256255262 step_size: 1.0 iter: 16 cost: 274.2016061259794 gradient_norm: 3316.7694319475368 max_violation: 0.02617762789628808 step_size: 1.0 iter: 17 cost: 273.36441473528043 gradient_norm: 3115.9944269451053 max_violation: 0.024627483380528226 step_size: 1.0 iter: 18 cost: 272.6546836885313 gradient_norm: 2938.0987630272302 max_violation: 0.023249630618450146 step_size: 1.0 iter: 19 cost: 272.047050286612 gradient_norm: 2779.3884227497874 max_violation: 0.0220169251571668 step_size: 1.0 iter: 20 cost: 271.52221182672724 gradient_norm: 2636.923182162504 max_violation: 0.02090763115103106 step_size: 1.0 iter: 21 cost: 271.0652621624701 gradient_norm: 2508.333804699918 max_violation: 0.019904139947034882 step_size: 1.0 iter: 22 cost: 270.66453834617477 gradient_norm: 2391.6899484388596 max_violation: 0.018992036062875584 step_size: 1.0 iter: 23 cost: 270.31080599532515 gradient_norm: 2285.403104321219 max_violation: 0.018159405560927988 step_size: 1.0 iter: 24 cost: 269.9966741920035 gradient_norm: 2188.154189294712 max_violation: 0.01739631654596463 step_size: 1.0 iter: 25 cost: 269.7161688017919 gradient_norm: 2098.8387872179765 max_violation: 0.016694423847555262 step_size: 1.0 iter: 26 cost: 269.46441697105155 gradient_norm: 2016.5252169900646 max_violation: 0.016046664609733696 step_size: 1.0 iter: 27 cost: 269.2374108480376 gradient_norm: 1940.4220552924746 max_violation: 0.015447021317597454 step_size: 1.0 iter: 28 cost: 269.03182855314714 gradient_norm: 1869.8527178003662 max_violation: 0.014890335464189164 step_size: 1.0 iter: 29 cost: 268.844897055286 gradient_norm: 1804.235372333005 max_violation: 0.014372159674872487 step_size: 1.0 iter: 30 cost: 268.6742860909129 gradient_norm: 1743.0669236382525 max_violation: 0.013888639342832909 step_size: 1.0 iter: 31 cost: 268.51802533334984 gradient_norm: 1685.9101387075245 max_violation: 0.013436417129443545 step_size: 1.0 iter: 32 cost: 268.3744391556739 gradient_norm: 1632.3832171611527 max_violation: 0.0130125553403303 step_size: 1.0 iter: 33 cost: 268.2420948344252 gradient_norm: 1582.1512817461257 max_violation: 0.012614472393296161 step_size: 1.0 iter: 34 cost: 268.11976111373707 gradient_norm: 1534.9193889837682 max_violation: 0.012239890482861893 step_size: 1.0 iter: 35 cost: 268.0063748223891 gradient_norm: 1490.4267523971014 max_violation: 0.011886792205893615 step_size: 1.0 iter: 36 cost: 267.90101379952654 gradient_norm: 1448.4419398820812 max_violation: 0.011553384408805156 step_size: 1.0 iter: 37 cost: 267.80287479912187 gradient_norm: 1408.7588588684073 max_violation: 0.011238067891990444 step_size: 1.0 iter: 38 cost: 267.7112553510449 gradient_norm: 1371.1933825973592 max_violation: 0.010939411894152928 step_size: 1.0 iter: 39 cost: 267.62553878703784 gradient_norm: 1335.5805011810507 max_violation: 0.010656132499322957 step_size: 1.0 iter: 40 cost: 267.5451818140763 gradient_norm: 1301.7719046761288 max_violation: 0.010387074281053343 step_size: 1.0 iter: 41 cost: 267.4697041501578 gradient_norm: 1269.633923631073 max_violation: 0.010131194631495588 step_size: 1.0 iter: 42 cost: 267.39867983914553 gradient_norm: 1239.0457669549562 max_violation: 0.00988755032842914 step_size: 1.0 iter: 43 cost: 267.33172993979326 gradient_norm: 1209.8980081870109 max_violation: 0.009655285975923467 step_size: 1.0 iter: 44 cost: 267.2685163451277 gradient_norm: 1182.0912802995488 max_violation: 0.009433624021036424 step_size: 1.0 iter: 45 cost: 267.208736536042 gradient_norm: 1155.5351462673798 max_violation: 0.009221856101399473 step_size: 1.0 iter: 46 cost: 267.1521191105104 gradient_norm: 1130.1471183943672 max_violation: 0.009019335521191607 step_size: 1.0 iter: 47 cost: 267.09841995959346 gradient_norm: 1105.851804063774 max_violation: 0.008825470687748194 step_size: 1.0 iter: 48 cost: 267.04741898499014 gradient_norm: 1082.580159270508 max_violation: 0.008639719368461418 step_size: 1.0 iter: 49 cost: 266.9989172718848 gradient_norm: 1060.2688344375229 max_violation: 0.00846158365114813 step_size: 1.0 iter: 50 cost: 266.95273464595425 gradient_norm: 1038.8595994404088 max_violation: 0.008290605509085225 step_size: 1.0 iter: 51 cost: 266.9087075557757 gradient_norm: 1018.2988369162629 max_violation: 0.008126362888085992 step_size: 1.0 iter: 52 cost: 266.866687231754 gradient_norm: 998.5370945439263 max_violation: 0.007968466245018346 step_size: 1.0 iter: 53 cost: 266.826538080872 gradient_norm: 979.5286884748359 max_violation: 0.007816555478415754 step_size: 1.0 iter: 54 cost: 266.788136283171 gradient_norm: 961.2313512016963 max_violation: 0.007670297200166876 step_size: 1.0 iter: 55 cost: 266.7513685613519 gradient_norm: 943.6059181873828 max_violation: 0.0075293823050394115 step_size: 1.0 iter: 56 cost: 266.7161310993707 gradient_norm: 926.6160483398737 max_violation: 0.0073935238006117565 step_size: 1.0 iter: 57 cost: 266.6823285896439 gradient_norm: 910.2279741676166 max_violation: 0.007262454865789025 step_size: 1.0 iter: 58 cost: 266.64987339157693 gradient_norm: 894.4102779959701 max_violation: 0.007135927110270113 step_size: 1.0 iter: 59 cost: 266.61868478669726 gradient_norm: 879.1336911284694 max_violation: 0.007013709011114644 step_size: 1.0 iter: 60 cost: 266.5886883178432 gradient_norm: 864.3709132505704 max_violation: 0.006895584505688723 step_size: 1.0 iter: 61 cost: 266.559815201662 gradient_norm: 850.096449737982 max_violation: 0.006781351723099349 step_size: 1.0 iter: 62 cost: 266.5320018052337 gradient_norm: 836.2864648525095 max_violation: 0.00667082183860479 step_size: 1.0 iter: 63 cost: 266.5051891788381 gradient_norm: 822.9186489885653 max_violation: 0.006563818036878888 step_size: 1.0 iter: 64 cost: 266.47932263809923 gradient_norm: 809.9720985157667 max_violation: 0.0064601745729724325 step_size: 1.0 iter: 65 cost: 266.45435138952786 gradient_norm: 797.4272067421501 max_violation: 0.006359735919565401 step_size: 1.0 iter: 66 cost: 266.4302281944021 gradient_norm: 785.2655649091084 max_violation: 0.006262355992154411 step_size: 1.0 iter: 67 cost: 266.4069090664885 gradient_norm: 773.4698720942603 max_violation: 0.006167897443485226 step_size: 1.0 iter: 68 cost: 266.38435299975964 gradient_norm: 762.023853130263 max_violation: 0.006076231020343492 step_size: 1.0 iter: 69 cost: 266.3625217227138 gradient_norm: 750.9121837075508 max_violation: 0.005987234976280176 step_size: 1.0 iter: 70 cost: 266.3413794763538 gradient_norm: 740.1204219587823 max_violation: 0.005900794534834275 step_size: 1.0 iter: 71 cost: 266.3208928132192 gradient_norm: 729.6349458415079 max_violation: 0.005816801397964921 step_size: 1.0 iter: 72 cost: 266.3010304152183 gradient_norm: 719.4428957989094 max_violation: 0.0057351532956557705 step_size: 1.0 iter: 73 cost: 266.28176292824764 gradient_norm: 709.5321221561679 max_violation: 0.005655753572503142 step_size: 1.0 iter: 74 cost: 266.2630628118394 gradient_norm: 699.8911368060856 max_violation: 0.005578510807796144 step_size: 1.0 iter: 75 cost: 266.2449042022877 gradient_norm: 690.5090688017351 max_violation: 0.005503338466149477 step_size: 1.0 iter: 76 cost: 266.2272627878663 gradient_norm: 681.3756234605233 max_violation: 0.005430154575598145 step_size: 1.0 iter: 77 cost: 266.2101156949374 gradient_norm: 672.4810446926862 max_violation: 0.0053588814309232236 step_size: 1.0 iter: 78 cost: 266.1934413838457 gradient_norm: 663.816080232138 max_violation: 0.00528944531970954 step_size: 1.0 iter: 79 cost: 266.17721955366386 gradient_norm: 655.3719495420972 max_violation: 0.005221776269360712 step_size: 1.0 iter: 80 cost: 266.1614310549077 gradient_norm: 647.1403141236691 max_violation: 0.005155807812946556 step_size: 1.0 iter: 81 cost: 266.14605780947664 gradient_norm: 639.1132500553548 max_violation: 0.005091476772555281 step_size: 1.0 iter: 82 cost: 266.13108273713175 gradient_norm: 631.2832225486527 max_violation: 0.005028723058460471 step_size: 1.0 iter: 83 cost: 266.11648968789507 gradient_norm: 623.6430623481913 max_violation: 0.004967489482773146 step_size: 1.0 iter: 84 cost: 266.10226337983573 gradient_norm: 616.185943835629 max_violation: 0.0049077215864815615 step_size: 1.0 iter: 85 cost: 266.08838934175 gradient_norm: 608.9053646897445 max_violation: 0.004849367478707789 step_size: 1.0 iter: 86 cost: 266.0748538602862 gradient_norm: 601.79512696738 max_violation: 0.0047923776871531265 step_size: 1.0 iter: 87 cost: 266.061643931136 gradient_norm: 594.8493195037146 max_violation: 0.00473670501890755 step_size: 1.0 iter: 88 cost: 266.0487472139189 gradient_norm: 588.0623015167893 max_violation: 0.004682304430742246 step_size: 1.0 iter: 89 cost: 266.03615199045225 gradient_norm: 581.428687325076 max_violation: 0.004629132908164468 step_size: 1.0 iter: 90 cost: 266.02384712610626 gradient_norm: 574.943332084515 max_violation: 0.004577149352500753 step_size: 1.0 iter: 91 cost: 266.0118220339933 gradient_norm: 568.601318483858 max_violation: 0.0045263144755332 step_size: 1.0 iter: 92 cost: 266.00006664174236 gradient_norm: 562.3979442945024 max_violation: 0.00447659070086559 step_size: 1.0 iter: 93 cost: 265.9885713606548 gradient_norm: 556.3287107492474 max_violation: 0.004427942071833946 step_size: 1.0 iter: 94 cost: 265.9773270570414 gradient_norm: 550.3893116531546 max_violation: 0.004380334165186683 step_size: 1.0 iter: 95 cost: 265.96632502555786 gradient_norm: 544.5756231849011 max_violation: 0.0043337340102197475 step_size: 1.0 iter: 96 cost: 265.955556964394 gradient_norm: 538.8836943499228 max_violation: 0.004288110013045632 step_size: 1.0 iter: 97 cost: 265.9450149521545 gradient_norm: 533.3097380136709 max_violation: 0.004243431885452509 step_size: 1.0 iter: 98 cost: 265.93469142630664 gradient_norm: 527.8501225054289 max_violation: 0.004199670578278525 step_size: 1.0 iter: 99 cost: 265.9245791630695 gradient_norm: 522.5013637139181 max_violation: 0.004156798218653002 step_size: 1.0 iter: 100 cost: 265.9146712586366 gradient_norm: 517.26011766708 max_violation: 0.004114788051077012 step_size: 1.0 Test Summary: | Pass Total Time Solve: acrobot | 1 1 5m56.2s ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University al iter: 1 ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University iter: 1 cost: 261.2537798738653 gradient_norm: 885.6763002794513 max_violation: 1.1807656674637883 step_size: 1.0 iter: 2 cost: 69.99469960068207 gradient_norm: 376.08357134305186 max_violation: 0.766429330514935 step_size: 1.0 iter: 3 cost: 34.54977364243712 gradient_norm: 193.82532155965612 max_violation: 0.5197983639867401 step_size: 1.0 iter: 4 cost: 22.539037764763805 gradient_norm: 111.7024513072441 max_violation: 0.4196158004810382 step_size: 1.0 iter: 5 cost: 17.035664625358486 gradient_norm: 69.14467761180012 max_violation: 0.37323467952446965 step_size: 1.0 iter: 6 cost: 14.062954292496705 gradient_norm: 45.607762506571646 max_violation: 0.34188493819304266 step_size: 1.0 iter: 7 cost: 12.272616098482587 gradient_norm: 31.744197515746393 max_violation: 0.3195794259745215 step_size: 1.0 iter: 8 cost: 11.110324366994146 gradient_norm: 28.481409161315987 max_violation: 0.30283107541267995 step_size: 1.0 iter: 9 cost: 10.312569004061332 gradient_norm: 25.725116998667954 max_violation: 0.28976177042682494 step_size: 1.0 iter: 10 cost: 9.740976036112503 gradient_norm: 24.387263942641127 max_violation: 0.27926490324135944 step_size: 1.0 iter: 11 cost: 9.317182750501477 gradient_norm: 23.27948171916522 max_violation: 0.270642534988605 step_size: 1.0 iter: 12 cost: 8.99409364960746 gradient_norm: 22.133658624582665 max_violation: 0.2634309744732146 step_size: 1.0 iter: 13 cost: 8.742010825607291 gradient_norm: 21.003710960323513 max_violation: 0.25730926409585564 step_size: 1.0 iter: 14 cost: 8.541448500865746 gradient_norm: 19.918615937273927 max_violation: 0.2520477436399142 step_size: 1.0 iter: 15 cost: 8.379187541400649 gradient_norm: 18.892634093629162 max_violation: 0.24747750308208794 step_size: 1.0 iter: 16 cost: 8.246001295724474 gradient_norm: 17.931443843477687 max_violation: 0.243471404916475 step_size: 1.0 iter: 17 cost: 8.135289721002943 gradient_norm: 17.035806102872616 max_violation: 0.2399318426078958 step_size: 1.0 iter: 18 cost: 8.042229513640368 gradient_norm: 16.203750801407285 max_violation: 0.23678258854916034 step_size: 1.0 iter: 19 cost: 7.963228813262942 gradient_norm: 15.431879152844623 max_violation: 0.23396321467267356 step_size: 1.0 iter: 20 cost: 7.895567773780683 gradient_norm: 14.71613518888006 max_violation: 0.2314251818556059 step_size: 1.0 iter: 21 cost: 7.837155934003607 gradient_norm: 14.05225742418412 max_violation: 0.2291290411089797 step_size: 1.0 iter: 22 cost: 7.786364917793634 gradient_norm: 13.436037151680694 max_violation: 0.22704239307714413 step_size: 1.0 iter: 23 cost: 7.741910858273423 gradient_norm: 12.86345977297741 max_violation: 0.22513837563732508 step_size: 1.0 iter: 24 cost: 7.702770335780684 gradient_norm: 12.330775619639935 max_violation: 0.223394526194177 step_size: 1.0 iter: 25 cost: 7.668119333509148 gradient_norm: 11.834528666306948 max_violation: 0.22179191431193956 step_size: 1.0 iter: 26 cost: 7.637288274827675 gradient_norm: 11.37156056170258 max_violation: 0.2203144723692816 step_size: 1.0 iter: 27 cost: 7.609728473089355 gradient_norm: 10.939000679422454 max_violation: 0.21894847327438605 step_size: 1.0 iter: 28 cost: 7.5849867970528555 gradient_norm: 10.534248743252592 max_violation: 0.21768211877573584 step_size: 1.0 iter: 29 cost: 7.562686328832223 gradient_norm: 10.154954010172425 max_violation: 0.21650521190799044 step_size: 1.0 iter: 30 cost: 7.542511446200534 gradient_norm: 9.798993394781991 max_violation: 0.2154088941268837 step_size: 1.0 iter: 31 cost: 7.5241962083383624 gradient_norm: 9.464449922833648 max_violation: 0.21438543266983068 step_size: 1.0 iter: 32 cost: 7.507515233952561 gradient_norm: 9.149592283243631 max_violation: 0.21342804726960818 step_size: 1.0 iter: 33 cost: 7.492276478169418 gradient_norm: 8.852855866270925 max_violation: 0.21253076796176984 step_size: 1.0 iter: 34 cost: 7.478315469141725 gradient_norm: 8.572825443102449 max_violation: 0.2116883176538611 step_size: 1.0 iter: 35 cost: 7.465490676384057 gradient_norm: 8.308219503864 max_violation: 0.21089601456018237 step_size: 1.0 iter: 36 cost: 7.453679763543525 gradient_norm: 8.057876191788143 max_violation: 0.21014969068297518 step_size: 1.0 iter: 37 cost: 7.442776537525081 gradient_norm: 7.820740728824099 max_violation: 0.20944562333843297 step_size: 1.0 iter: 38 cost: 7.432688449752018 gradient_norm: 7.595854208610376 max_violation: 0.2087804773531028 step_size: 1.0 iter: 39 cost: 7.423334538118871 gradient_norm: 7.382343627146472 max_violation: 0.2081512560379437 step_size: 1.0 iter: 40 cost: 7.414643722894794 gradient_norm: 7.179413023837764 max_violation: 0.20755525942109987 step_size: 1.0 iter: 41 cost: 7.406553388595878 gradient_norm: 6.986335612818852 max_violation: 0.20699004851539815 step_size: 1.0 iter: 42 cost: 7.399008198200706 gradient_norm: 6.802446793745567 max_violation: 0.20645341462638545 step_size: 1.0 iter: 43 cost: 7.391959097146254 gradient_norm: 6.627137941422962 max_violation: 0.2059433528896557 step_size: 1.0 iter: 44 cost: 7.385362473123337 gradient_norm: 6.45985088395812 max_violation: 0.20545803937275675 step_size: 1.0 iter: 45 cost: 7.379179444392276 gradient_norm: 6.300072989008616 max_violation: 0.2049958111936343 step_size: 1.0 iter: 46 cost: 7.373375254601611 gradient_norm: 6.147332786703153 max_violation: 0.2045551492013793 step_size: 1.0 iter: 47 cost: 7.367918756251549 gradient_norm: 6.001196066353447 max_violation: 0.2041346628427032 step_size: 1.0 iter: 48 cost: 7.362781968245788 gradient_norm: 5.861262391436014 max_violation: 0.20373307689846154 step_size: 1.0 iter: 49 cost: 7.357939695613454 gradient_norm: 5.727161984084324 max_violation: 0.20334921982621523 step_size: 1.0 iter: 50 cost: 7.353369201599009 gradient_norm: 5.598552936261505 max_violation: 0.2029820134865652 step_size: 1.0 iter: 51 cost: 7.349049924024784 gradient_norm: 5.475118710010506 max_violation: 0.20263046406533292 step_size: 1.0 iter: 52 cost: 7.34496322921335 gradient_norm: 5.35656589373689 max_violation: 0.20229365403219823 step_size: 1.0 iter: 53 cost: 7.341092197882067 gradient_norm: 5.242622185541038 max_violation: 0.2019707350005815 step_size: 1.0 iter: 54 cost: 7.337421438340977 gradient_norm: 5.133034578164165 max_violation: 0.20166092137318348 step_size: 1.0 iter: 55 cost: 7.333936923079356 gradient_norm: 5.0275677230832505 max_violation: 0.2013634846738297 step_size: 1.0 iter: 56 cost: 7.330625845447401 gradient_norm: 4.926002454107622 max_violation: 0.20107774848119497 step_size: 1.0 iter: 57 cost: 7.327476493652688 gradient_norm: 4.828134453115053 max_violation: 0.20080308389097912 step_size: 1.0 iter: 58 cost: 7.324478139716949 gradient_norm: 4.733773042605958 max_violation: 0.2005389054433122 step_size: 1.0 iter: 59 cost: 7.321620941393538 gradient_norm: 4.64274009160189 max_violation: 0.20028466746088736 step_size: 1.0 iter: 60 cost: 7.318895855341548 gradient_norm: 4.554869022929657 max_violation: 0.20003986075024294 step_size: 1.0 iter: 61 cost: 7.316294560101643 gradient_norm: 4.47000391137999 max_violation: 0.19980400962503886 step_size: 1.0 iter: 62 cost: 7.313809387626099 gradient_norm: 4.387998663338512 max_violation: 0.1995766692150367 step_size: 1.0 iter: 63 cost: 7.3114332622926375 gradient_norm: 4.318891416810995 max_violation: 0.19935742302960957 step_size: 1.0 iter: 64 cost: 7.309159646479266 gradient_norm: 4.2614430161156545 max_violation: 0.19914588074805462 step_size: 1.0 iter: 65 cost: 7.306982491904377 gradient_norm: 4.205440961225905 max_violation: 0.19894167621241277 step_size: 1.0 iter: 66 cost: 7.304896196042877 gradient_norm: 4.150833848380019 max_violation: 0.1987444656016777 step_size: 1.0 iter: 67 cost: 7.302895563020863 gradient_norm: 4.09757253229489 max_violation: 0.19855392576839925 step_size: 1.0 iter: 68 cost: 7.300975768469271 gradient_norm: 4.0456100154202375 max_violation: 0.19836975272122537 step_size: 1.0 iter: 69 cost: 7.299132327884227 gradient_norm: 3.994901342440709 max_violation: 0.19819166023870682 step_size: 1.0 iter: 70 cost: 7.297361068098634 gradient_norm: 3.945403499836873 max_violation: 0.1980193786011526 step_size: 1.0 iter: 71 cost: 7.295658101519613 gradient_norm: 3.8970753204244346 max_violation: 0.1978526534292424 step_size: 1.0 iter: 72 cost: 7.294019802828746 gradient_norm: 3.8498773926640872 max_violation: 0.19769124461888232 step_size: 1.0 iter: 73 cost: 7.292442787879104 gradient_norm: 3.803771974568054 max_violation: 0.19753492536320216 step_size: 1.0 iter: 74 cost: 7.290923894554755 gradient_norm: 3.7587229120288264 max_violation: 0.19738348125356087 step_size: 1.0 iter: 75 cost: 7.289460165386733 gradient_norm: 3.714695561357109 max_violation: 0.1972367094521399 step_size: 1.0 iter: 76 cost: 7.28804883174277 gradient_norm: 3.671656715862188 max_violation: 0.19709441792968274 step_size: 1.0 iter: 77 cost: 7.286687299430009 gradient_norm: 3.62957453626189 max_violation: 0.1969564247623623 step_size: 1.0 iter: 78 cost: 7.285373135567649 gradient_norm: 3.588418484737847 max_violation: 0.19682255748258193 step_size: 1.0 iter: 79 cost: 7.284104056602718 gradient_norm: 3.548159262458899 max_violation: 0.19669265247897094 step_size: 1.0 iter: 80 cost: 7.282877917356494 gradient_norm: 3.508768750404913 max_violation: 0.19656655444127047 step_size: 1.0 iter: 81 cost: 7.281692701001064 gradient_norm: 3.470219953278031 max_violation: 0.19644411584615984 step_size: 1.0 iter: 82 cost: 7.28054650987663 gradient_norm: 3.432486946391343 max_violation: 0.19632519648074798 step_size: 1.0 iter: 83 cost: 7.2794375570698175 gradient_norm: 3.3955448253297504 max_violation: 0.19620966300036713 step_size: 1.0 iter: 84 cost: 7.2783641586813435 gradient_norm: 3.3593696582735255 max_violation: 0.19609738851796976 step_size: 1.0 iter: 85 cost: 7.277324726719402 gradient_norm: 3.323938440791899 max_violation: 0.1959882522223797 step_size: 1.0 iter: 86 cost: 7.276317762561029 gradient_norm: 3.2892290530176655 max_violation: 0.19588213902326235 step_size: 1.0 iter: 87 cost: 7.275341850930356 gradient_norm: 3.25522021904111 max_violation: 0.19577893922049228 step_size: 1.0 al iter: 2 iter: 1 cost: 7.269944849743791 gradient_norm: 0.48354130657668726 max_violation: 0.0481756108564424 step_size: 1.0 iter: 2 cost: 7.253994869618226 gradient_norm: 0.13733625988558718 max_violation: 0.0017963190921093108 step_size: 1.0 iter: 3 cost: 7.252163371769252 gradient_norm: 0.12093728810343407 max_violation: 0.001811038634711104 step_size: 1.0 iter: 4 cost: 7.251086984969248 gradient_norm: 0.114766263279237 max_violation: 0.0018202529338060547 step_size: 1.0 iter: 5 cost: 7.250360358028719 gradient_norm: 0.1096676429055452 max_violation: 0.0018264790512261264 step_size: 1.0 Test Summary: | Pass Total Time Solve: car | 3 3 39.8s Testing IterativeLQR tests passed Testing completed after 830.47s PkgEval succeeded after 1137.19s