Package evaluation of SDDP on Julia 1.13.0-DEV.453 (0d3c9b0bb4*) started at 2025-05-03T08:49:25.129 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.31s ################################################################################ # Installation # Installing SDDP... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [f4570300] + SDDP v1.11.0 Updating `~/.julia/environments/v1.13/Manifest.toml` [6e4b80f9] + BenchmarkTools v1.6.0 [d1d4a3ce] + BitFlags v0.1.9 [523fee87] + CodecBzip2 v0.8.5 [944b1d66] + CodecZlib v0.7.8 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.16.0 [f0e56b4a] + ConcurrentUtilities v2.5.0 [864edb3b] + DataStructures v0.18.22 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [ffbed154] + DocStringExtensions v0.9.4 [460bff9d] + ExceptionUnwrapping v0.1.11 [e2ba6199] + ExprTools v0.1.10 [f6369f11] + ForwardDiff v1.0.1 [cd3eb016] + HTTP v1.10.16 [92d709cd] + IrrationalConstants v0.2.4 [692b3bcd] + JLLWrappers v1.7.0 [682c06a0] + JSON v0.21.4 [0f8b85d8] + JSON3 v1.14.2 [4076af6c] + JuMP v1.25.0 [2ab3a3ac] + LogExpFunctions v0.3.29 [e6f89c97] + LoggingExtras v1.1.0 [1914dd2f] + MacroTools v0.5.16 [b8f27783] + MathOptInterface v1.39.0 [739be429] + MbedTLS v1.1.9 [d8a4904e] + MutableArithmetics v1.6.4 [77ba4419] + NaNMath v1.1.3 [4d8831e6] + OpenSSL v1.4.3 [bac558e1] + OrderedCollections v1.8.0 [69de0a69] + Parsers v2.8.3 [aea7be01] + PrecompileTools v1.3.2 [21216c6a] + Preferences v1.4.3 [3cdcf5f2] + RecipesBase v1.3.4 [189a3867] + Reexport v1.2.2 [f4570300] + SDDP v1.11.0 [777ac1f9] + SimpleBufferStream v1.2.0 [276daf66] + SpecialFunctions v2.5.1 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [856f2bd8] + StructTypes v1.11.0 [a759f4b9] + TimerOutputs v0.5.28 [3bb67fe8] + TranscodingStreams v0.11.3 [5c2747f8] + URIs v1.5.2 [6e34b625] + Bzip2_jll v1.0.9+0 [c8ffd9c3] + MbedTLS_jll v2.28.6+2 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.12.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.3.0 [de0858da] + Printf v1.11.0 [9abbd945] + Profile v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.12.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [14a3606d] + MozillaCACerts_jll v2024.12.31 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.5+0 [458c3c95] + OpenSSL_jll v3.0.16+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [8e850b90] + libblastrampoline_jll v5.12.0+0 Installation completed after 4.3s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling packages... 5653.8 ms ✓ TestEnv 1 dependency successfully precompiled in 6 seconds. 25 already precompiled. Precompiling package dependencies... Precompilation completed after 816.63s ################################################################################ # Testing # Testing SDDP Status `/tmp/jl_FrwCOw/Project.toml` [87dc4568] HiGHS v1.16.0 [b6b21f68] Ipopt v1.10.2 [682c06a0] JSON v0.21.4 [7d188eb4] JSONSchema v1.4.1 [91a5bcdd] Plots v1.40.13 [f4570300] SDDP v1.11.0 [10745b16] Statistics v1.11.1 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [44cfe95a] Pkg v1.12.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_FrwCOw/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [6e4b80f9] BenchmarkTools v1.6.0 [d1d4a3ce] BitFlags v0.1.9 [523fee87] CodecBzip2 v0.8.5 [944b1d66] CodecZlib v0.7.8 [35d6a980] ColorSchemes v3.29.0 [3da002f7] ColorTypes v0.12.1 [c3611d14] ColorVectorSpace v0.11.0 [5ae59095] Colors v0.13.0 [bbf7d656] CommonSubexpressions v0.3.1 [34da2185] Compat v4.16.0 [f0e56b4a] ConcurrentUtilities v2.5.0 [d38c429a] Contour v0.6.3 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.18.22 [8bb1440f] DelimitedFiles v1.9.1 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [ffbed154] DocStringExtensions v0.9.4 [460bff9d] ExceptionUnwrapping v0.1.11 [e2ba6199] ExprTools v0.1.10 [c87230d0] FFMPEG v0.4.2 [53c48c17] FixedPointNumbers v0.8.5 [1fa38f19] Format v1.3.7 [f6369f11] ForwardDiff v1.0.1 [28b8d3ca] GR v0.73.14 [42e2da0e] Grisu v1.0.2 [cd3eb016] HTTP v1.10.16 [87dc4568] HiGHS v1.16.0 [b6b21f68] Ipopt v1.10.2 [92d709cd] IrrationalConstants v0.2.4 [1019f520] JLFzf v0.1.11 [692b3bcd] JLLWrappers v1.7.0 [682c06a0] JSON v0.21.4 [0f8b85d8] JSON3 v1.14.2 [7d188eb4] JSONSchema v1.4.1 [4076af6c] JuMP v1.25.0 [b964fa9f] LaTeXStrings v1.4.0 [23fbe1c1] Latexify v0.16.7 [2ab3a3ac] LogExpFunctions v0.3.29 [e6f89c97] LoggingExtras v1.1.0 [1914dd2f] MacroTools v0.5.16 [b8f27783] MathOptInterface v1.39.0 [739be429] MbedTLS v1.1.9 [442fdcdd] Measures v0.3.2 [e1d29d7a] Missings v1.2.0 [d8a4904e] MutableArithmetics v1.6.4 [77ba4419] NaNMath v1.1.3 [4d8831e6] OpenSSL v1.4.3 [bac558e1] OrderedCollections v1.8.0 [69de0a69] Parsers v2.8.3 [ccf2f8ad] PlotThemes v3.3.0 [995b91a9] PlotUtils v1.4.3 [91a5bcdd] Plots v1.40.13 [aea7be01] PrecompileTools v1.3.2 [21216c6a] Preferences v1.4.3 [43287f4e] PtrArrays v1.3.0 [3cdcf5f2] RecipesBase v1.3.4 [01d81517] RecipesPipeline v0.6.12 [189a3867] Reexport v1.2.2 [05181044] RelocatableFolders v1.0.1 [ae029012] Requires v1.3.1 [f4570300] SDDP v1.11.0 [6c6a2e73] Scratch v1.2.1 [992d4aef] Showoff v1.0.3 [777ac1f9] SimpleBufferStream v1.2.0 [a2af1166] SortingAlgorithms v1.2.1 [276daf66] SpecialFunctions v2.5.1 [860ef19b] StableRNGs v1.0.2 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.0 [2913bbd2] StatsBase v0.34.4 [856f2bd8] StructTypes v1.11.0 [62fd8b95] TensorCore v0.1.1 [a759f4b9] TimerOutputs v0.5.28 [3bb67fe8] TranscodingStreams v0.11.3 [5c2747f8] URIs v1.5.2 [1cfade01] UnicodeFun v0.4.1 [1986cc42] Unitful v1.22.0 [45397f5d] UnitfulLatexify v1.6.4 [41fe7b60] Unzip v0.2.0 [ae81ac8f] ASL_jll v0.1.3+0 [6e34b625] Bzip2_jll v1.0.9+0 ⌃ [83423d85] Cairo_jll v1.18.4+0 [ee1fde0b] Dbus_jll v1.16.2+0 [2702e6a9] EpollShim_jll v0.0.20230411+1 [2e619515] Expat_jll v2.6.5+0 ⌅ [b22a6f82] FFMPEG_jll v4.4.4+1 [a3f928ae] Fontconfig_jll v2.16.0+0 [d7e528f0] FreeType2_jll v2.13.4+0 [559328eb] FriBidi_jll v1.0.17+0 [0656b61e] GLFW_jll v3.4.0+2 [d2c73de3] GR_jll v0.73.14+0 [78b55507] Gettext_jll v0.21.0+0 ⌃ [7746bdde] Glib_jll v2.82.4+0 [3b182d85] Graphite2_jll v1.3.15+0 [2e76f6c2] HarfBuzz_jll v8.5.0+0 [8fd58aa0] HiGHS_jll v1.10.0+0 [e33a78d0] Hwloc_jll v2.12.0+0 [9cc047cb] Ipopt_jll v300.1400.1700+0 [aacddb02] JpegTurbo_jll v3.1.1+0 [c1c5ebd0] LAME_jll v3.100.2+0 [88015f11] LERC_jll v4.0.1+0 [1d63c593] LLVMOpenMP_jll v18.1.8+0 [dd4b983a] LZO_jll v2.10.3+0 ⌅ [e9f186c6] Libffi_jll v3.2.2+2 [7e76a0d4] Libglvnd_jll v1.7.1+1 [94ce4f54] Libiconv_jll v1.18.0+0 [4b2f31a3] Libmount_jll v2.41.0+0 [89763e89] Libtiff_jll v4.7.1+0 [38a345b3] Libuuid_jll v2.41.0+0 [d00139f3] METIS_jll v5.1.3+0 [d7ed1dd3] MUMPS_seq_jll v500.700.301+0 [c8ffd9c3] MbedTLS_jll v2.28.6+2 [e7412a2a] Ogg_jll v1.3.5+1 [656ef2d0] OpenBLAS32_jll v0.3.29+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [91d4177d] Opus_jll v1.3.3+0 [36c8627f] Pango_jll v1.56.1+0 [30392449] Pixman_jll v0.44.2+0 ⌅ [c0090381] Qt6Base_jll v6.7.1+1 ⌅ [629bc702] Qt6Declarative_jll v6.7.1+2 ⌅ [ce943373] Qt6ShaderTools_jll v6.7.1+1 ⌃ [e99dba38] Qt6Wayland_jll v6.7.1+1 ⌅ [319450e9] SPRAL_jll v2024.5.8+0 [a44049a8] Vulkan_Loader_jll v1.3.243+0 ⌃ [a2964d1f] Wayland_jll v1.21.0+2 [2381bf8a] Wayland_protocols_jll v1.36.0+0 ⌅ [02c8fc9c] XML2_jll v2.13.6+1 [ffd25f8a] XZ_jll v5.8.1+0 [f67eecfb] Xorg_libICE_jll v1.1.2+0 [c834827a] Xorg_libSM_jll v1.2.6+0 [4f6342f7] Xorg_libX11_jll v1.8.12+0 [0c0b7dd1] Xorg_libXau_jll v1.0.13+0 [935fb764] Xorg_libXcursor_jll v1.2.4+0 [a3789734] Xorg_libXdmcp_jll v1.1.6+0 [1082639a] Xorg_libXext_jll v1.3.7+0 [d091e8ba] Xorg_libXfixes_jll v6.0.1+0 [a51aa0fd] Xorg_libXi_jll v1.8.3+0 [d1454406] Xorg_libXinerama_jll v1.1.6+0 [ec84b674] Xorg_libXrandr_jll v1.5.5+0 [ea2f1a96] Xorg_libXrender_jll v0.9.12+0 [c7cfdc94] Xorg_libxcb_jll v1.17.1+0 [cc61e674] Xorg_libxkbfile_jll v1.1.3+0 [e920d4aa] Xorg_xcb_util_cursor_jll v0.1.4+0 [12413925] Xorg_xcb_util_image_jll v0.4.0+1 [2def613f] Xorg_xcb_util_jll v0.4.0+1 [975044d2] Xorg_xcb_util_keysyms_jll v0.4.0+1 [0d47668e] Xorg_xcb_util_renderutil_jll v0.3.9+1 [c22f9ab0] Xorg_xcb_util_wm_jll v0.4.1+1 [35661453] Xorg_xkbcomp_jll v1.4.7+0 [33bec58e] Xorg_xkeyboard_config_jll v2.44.0+0 [c5fb5394] Xorg_xtrans_jll v1.6.0+0 [3161d3a3] Zstd_jll v1.5.7+1 [35ca27e7] eudev_jll v3.2.9+0 [214eeab7] fzf_jll v0.61.1+0 [1a1c6b14] gperf_jll v3.1.1+1 [a4ae2306] libaom_jll v3.11.0+0 [0ac62f75] libass_jll v0.15.2+0 [1183f4f0] libdecor_jll v0.2.2+0 [2db6ffa8] libevdev_jll v1.11.0+0 [f638f0a6] libfdk_aac_jll v2.0.3+0 [36db933b] libinput_jll v1.18.0+0 [b53b4c65] libpng_jll v1.6.47+0 [f27f6e37] libvorbis_jll v1.3.7+2 [009596ad] mtdev_jll v1.1.6+0 ⌅ [1270edf5] x264_jll v2021.5.5+0 ⌅ [dfaa095f] x265_jll v3.5.0+0 [d8fb68d0] xkbcommon_jll v1.8.1+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.12.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.12.0 [de0858da] Printf v1.11.0 [9abbd945] Profile v1.11.0 [3fa0cd96] REPL v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.12.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.12.1+1 [e37daf67] LibGit2_jll v1.9.0+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2024.12.31 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.5+0 [458c3c95] OpenSSL_jll v3.0.16+0 [efcefdf7] PCRE2_jll v10.44.0+1 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [8e850b90] libblastrampoline_jll v5.12.0+0 [8e850ede] nghttp2_jll v1.65.0+0 [3f19e933] p7zip_jll v17.5.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... [ Info: Experimental.jl [ Info: fetching remote ref https://jump.dev/MathOptFormat/schemas/mof.1.schema.json [ Info: MSPFormat.jl [ Info: algorithm.jl ┌ Warning: Unable to recover in direct mode! Remove `direct = true` when creating the policy graph. └ @ SDDP ~/.julia/packages/SDDP/EWTpZ/src/algorithm.jl:391 [ Info: Writing cuts to the file `model_infeasible_node_1.cuts.json` [ Info: Writing cuts to the file `model_infeasible_node_1.cuts.json` ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 2 state variables : 1 scenarios : 1.00000e+00 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [3, 3] JuMP.AffExpr in MOI.GreaterThan{Float64} : [1, 1] JuMP.VariableRef in MOI.GreaterThan{Float64} : [2, 2] JuMP.VariableRef in MOI.LessThan{Float64} : [1, 1] numerical stability report matrix range [1e+00, 1e+00] objective range [1e+00, 1e+00] bounds range [0e+00, 0e+00] rhs range [2e+00, 2e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- † 1 0.000000e+00 0.000000e+00 2.399971e-01 4 1 3 0.000000e+00 0.000000e+00 5.664480e-01 12 1 ------------------------------------------------------------------- status : iteration_limit total time (s) : 5.664480e-01 total solves : 12 best bound : 0.000000e+00 simulation ci : 0.000000e+00 ± 0.000000e+00 numeric issues : 1 ------------------------------------------------------------------- ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 3 state variables : 1 scenarios : 8.00000e+00 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [6, 6] JuMP.AffExpr in MOI.EqualTo{Float64} : [1, 1] JuMP.VariableRef in MOI.EqualTo{Float64} : [1, 1] JuMP.VariableRef in MOI.GreaterThan{Float64} : [4, 4] JuMP.VariableRef in MOI.LessThan{Float64} : [2, 3] numerical stability report matrix range [1e+00, 1e+00] objective range [1e+00, 3e+02] bounds range [1e+02, 2e+02] rhs range [0e+00, 0e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 1 1.100000e+05 1.075000e+05 1.552892e-02 9 1 20 7.500000e+04 1.075000e+05 4.848669e-01 204 1 ------------------------------------------------------------------- status : simulation_stopping total time (s) : 4.848669e-01 total solves : 204 best bound : 1.075000e+05 simulation ci : 8.268750e+04 ± 1.084410e+04 numeric issues : 0 ------------------------------------------------------------------- ┌ Warning: Re-training a model with existing cuts! │ │ Are you sure you want to do this? The output from this training may be │ misleading because the policy is already partially trained. │ │ If you meant to train a new policy with different settings, you must │ build a new model. │ │ If you meant to refine a previously trained policy, turn off this │ warning by passing `add_to_existing_cuts = true` as a keyword argument │ to `SDDP.train`. │ │ In a future release, this warning may turn into an error. └ @ SDDP ~/.julia/packages/SDDP/EWTpZ/src/algorithm.jl:1170 ┌ Warning: Re-training a model with existing cuts! │ │ Are you sure you want to do this? The output from this training may be │ misleading because the policy is already partially trained. │ │ If you meant to train a new policy with different settings, you must │ build a new model. │ │ If you meant to refine a previously trained policy, turn off this │ warning by passing `add_to_existing_cuts = true` as a keyword argument │ to `SDDP.train`. │ │ In a future release, this warning may turn into an error. └ @ SDDP ~/.julia/packages/SDDP/EWTpZ/src/algorithm.jl:1170 [ Info: binary_expansion.jl [ Info: deterministic_equivalent.jl [ Info: modeling_aids.jl ┌ Warning: Budget for nodes is less than the number of stages. Using one node per stage. └ @ SDDP ~/.julia/packages/SDDP/EWTpZ/src/modeling_aids.jl:125 [ Info: user_interface.jl [ Info: backward_sampling_schemes.jl [ Info: bellman_functions.jl ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 3 state variables : 1 scenarios : 2.70000e+01 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [6, 6] JuMP.AffExpr in MOI.EqualTo{Float64} : [2, 2] JuMP.VariableRef in MOI.GreaterThan{Float64} : [5, 5] JuMP.VariableRef in MOI.LessThan{Float64} : [1, 2] numerical stability report matrix range [1e+00, 1e+00] objective range [1e+00, 1e+01] bounds range [5e+00, 2e+01] rhs range [2e+00, 1e+01] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 1 2.500000e+01 2.138889e+01 7.196031e-01 12 1 10 2.500000e+00 3.361111e+01 7.332909e-01 120 1 ------------------------------------------------------------------- status : iteration_limit total time (s) : 7.332909e-01 total solves : 120 best bound : 3.361111e+01 simulation ci : 2.775000e+01 ± 3.280073e+01 numeric issues : 0 ------------------------------------------------------------------- ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 3 state variables : 1 scenarios : 2.70000e+01 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [6, 6] JuMP.AffExpr in MOI.EqualTo{Float64} : [2, 2] JuMP.VariableRef in MOI.GreaterThan{Float64} : [5, 5] JuMP.VariableRef in MOI.LessThan{Float64} : [1, 2] numerical stability report matrix range [1e+00, 1e+00] objective range [1e+00, 1e+01] bounds range [5e+00, 2e+01] rhs range [2e+00, 1e+01] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 1 2.500000e+01 2.083333e+01 6.994963e-03 12 1 10 2.500000e+00 3.361111e+01 1.814103e-02 120 1 ------------------------------------------------------------------- status : iteration_limit total time (s) : 1.814103e-02 total solves : 120 best bound : 3.361111e+01 simulation ci : 2.775000e+01 ± 3.280073e+01 numeric issues : 0 ------------------------------------------------------------------- ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 1 state variables : 1 scenarios : Inf existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [8, 8] JuMP.AffExpr in MOI.EqualTo{Float64} : [2, 2] JuMP.VariableRef in MOI.EqualTo{Float64} : [3, 3] JuMP.VariableRef in MOI.GreaterThan{Float64} : [5, 5] JuMP.VariableRef in MOI.LessThan{Float64} : [1, 1] numerical stability report matrix range [1e+00, 1e+00] objective range [1e+00, 1e+01] bounds range [5e+00, 2e+01] rhs range [0e+00, 0e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 1 9.250000e+01 5.268631e+01 5.840063e-03 46 1 50 0.000000e+00 1.191663e+02 2.593961e-01 1625 1 ------------------------------------------------------------------- status : iteration_limit total time (s) : 2.593961e-01 total solves : 1625 best bound : 1.191663e+02 simulation ci : 7.795000e+01 ± 2.885518e+01 numeric issues : 0 ------------------------------------------------------------------- ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 1 state variables : 1 scenarios : Inf existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [8, 8] JuMP.AffExpr in MOI.EqualTo{Float64} : [2, 2] JuMP.VariableRef in MOI.EqualTo{Float64} : [3, 3] JuMP.VariableRef in MOI.GreaterThan{Float64} : [5, 5] JuMP.VariableRef in MOI.LessThan{Float64} : [1, 1] numerical stability report matrix range [1e+00, 1e+00] objective range [1e+00, 1e+01] bounds range [5e+00, 2e+01] rhs range [0e+00, 0e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 1 9.250000e+01 5.268631e+01 5.744934e-03 46 1 50 0.000000e+00 1.191663e+02 2.542930e-01 1625 1 ------------------------------------------------------------------- status : iteration_limit total time (s) : 2.542930e-01 total solves : 1625 best bound : 1.191663e+02 simulation ci : 7.795000e+01 ± 2.885518e+01 numeric issues : 0 ------------------------------------------------------------------- [ Info: duality_handlers.jl ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 2 state variables : 2 scenarios : 1.00000e+02 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [5, 11] JuMP.AffExpr in MOI.LessThan{Float64} : [2, 2] JuMP.VariableRef in MOI.EqualTo{Float64} : [2, 2] JuMP.VariableRef in MOI.GreaterThan{Float64} : [3, 7] JuMP.VariableRef in MOI.LessThan{Float64} : [2, 7] JuMP.VariableRef in MOI.ZeroOne : [4, 4] numerical stability report matrix range [1e+00, 6e+00] objective range [1e+00, 3e+01] bounds range [1e+00, 1e+02] rhs range [0e+00, 0e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 1 -4.650000e+01 -7.053967e+01 2.588812e+00 103 1 3S -5.785826e+01 -6.755367e+01 3.940085e+00 309 1 8S -5.772300e+01 -6.677661e+01 5.095908e+00 824 1 13S -3.268889e+01 -6.677644e+01 6.341442e+00 1339 1 19S -4.168889e+01 -6.677644e+01 7.604365e+00 1957 1 25S -4.168889e+01 -6.677644e+01 8.877817e+00 2575 1 49S -6.068889e+01 -6.677644e+01 1.388618e+01 5047 1 74 -8.368889e+01 -6.677644e+01 1.888939e+01 7622 1 97S -6.068889e+01 -6.677644e+01 2.391551e+01 9991 1 100 -8.368889e+01 -6.677644e+01 2.431161e+01 10300 1 ------------------------------------------------------------------- status : iteration_limit total time (s) : 2.431161e+01 total solves : 10300 best bound : -6.677644e+01 simulation ci : -5.960112e+01 ± 3.154656e+00 numeric issues : 0 ------------------------------------------------------------------- ****************************************************************************** This program contains Ipopt, a library for large-scale nonlinear optimization. Ipopt is released as open source code under the Eclipse Public License (EPL). For more information visit https://github.com/coin-or/Ipopt ****************************************************************************** [ Info: forward_passes.jl ┌ Warning: Re-training a model with existing cuts! │ │ Are you sure you want to do this? The output from this training may be │ misleading because the policy is already partially trained. │ │ If you meant to train a new policy with different settings, you must │ build a new model. │ │ If you meant to refine a previously trained policy, turn off this │ warning by passing `add_to_existing_cuts = true` as a keyword argument │ to `SDDP.train`. │ │ In a future release, this warning may turn into an error. └ @ SDDP ~/.julia/packages/SDDP/EWTpZ/src/algorithm.jl:1170 [ Info: local_improvement_search.jl [ Info: exp = 15 [ Info: OA(exp) = 220 [ Info: piecewise = 7 [ Info: OA(piecewise) = 6 [ Info: squared = 3 [ Info: OA(squared) = 16 [ Info: parallel_schemes.jl ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 2 state variables : 1 scenarios : 4.00000e+00 existing cuts : false options solver : Asynchronous mode with 4 workers. risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [3, 3] VariableRef in MOI.GreaterThan{Float64} : [2, 2] VariableRef in MOI.LessThan{Float64} : [1, 1] numerical stability report matrix range [0e+00, 0e+00] objective range [1e+00, 1e+00] bounds range [1e+00, 6e+00] rhs range [0e+00, 0e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 1 5.000000e+00 6.000000e+00 1.906007e+02 2 4 20 5.000000e+00 6.000000e+00 1.926428e+02 40 3 ------------------------------------------------------------------- status : iteration_limit total time (s) : 1.926428e+02 total solves : 40 best bound : 6.000000e+00 simulation ci : 5.700000e+00 ± 9.549212e-01 numeric issues : 0 ------------------------------------------------------------------- ┌ Warning: Re-training a model with existing cuts! │ │ Are you sure you want to do this? The output from this training may be │ misleading because the policy is already partially trained. │ │ If you meant to train a new policy with different settings, you must │ build a new model. │ │ If you meant to refine a previously trained policy, turn off this │ warning by passing `add_to_existing_cuts = true` as a keyword argument │ to `SDDP.train`. │ │ In a future release, this warning may turn into an error. └ @ SDDP ~/.julia/packages/SDDP/EWTpZ/src/algorithm.jl:1170 ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 2 state variables : 1 scenarios : 4.00000e+00 existing cuts : true options solver : Asynchronous mode with 4 workers. risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [3, 3] AffExpr in MOI.GreaterThan{Float64} : [2, 2] VariableRef in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.GreaterThan{Float64} : [2, 2] VariableRef in MOI.LessThan{Float64} : [1, 1] numerical stability report matrix range [1e+00, 1e+00] objective range [1e+00, 1e+00] bounds range [1e+00, 6e+00] rhs range [4e+00, 4e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 1 5.000000e+00 6.000000e+00 1.569698e-01 48 1 20 9.000000e+00 6.000000e+00 2.988698e-01 162 1 ------------------------------------------------------------------- status : iteration_limit total time (s) : 2.988698e-01 total solves : 162 best bound : 6.000000e+00 simulation ci : 5.900000e+00 ± 9.633534e-01 numeric issues : 0 ------------------------------------------------------------------- [ Info: risk_measures.jl ┌ Warning: Radius is very small. You should probably use `SDDP.Expectation()` instead. └ @ SDDP ~/.julia/packages/SDDP/EWTpZ/src/plugins/risk_measures.jl:528 ┌ Warning: Radius is very small. You should probably use `SDDP.Expectation()` instead. └ @ SDDP ~/.julia/packages/SDDP/EWTpZ/src/plugins/risk_measures.jl:528 ┌ Warning: Radius is very small. You should probably use `SDDP.Expectation()` instead. └ @ SDDP ~/.julia/packages/SDDP/EWTpZ/src/plugins/risk_measures.jl:528 [ Info: sampling_schemes.jl [ Info: stopping_rules.jl ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 2 state variables : 1 scenarios : 1.00000e+00 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [3, 3] VariableRef in MOI.GreaterThan{Float64} : [2, 2] VariableRef in MOI.LessThan{Float64} : [1, 1] numerical stability report matrix range [0e+00, 0e+00] objective range [1e+00, 1e+00] bounds range [0e+00, 0e+00] rhs range [0e+00, 0e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 1 0.000000e+00 0.000000e+00 2.712965e-03 4 1 50 0.000000e+00 0.000000e+00 1.451018e-01 200 1 ------------------------------------------------------------------- status : first_stage_stopping total time (s) : 1.451018e-01 total solves : 200 best bound : 0.000000e+00 simulation ci : 0.000000e+00 ± 0.000000e+00 numeric issues : 0 ------------------------------------------------------------------- ┌ Warning: Are you really sure you want to use this stopping rule? Read why we don't recommend it by typing `? SDDP.Statistical` into the REPL to read the docstring. │ │ If you understand what you are doing, you can disable this warning with `SDDP.Statistical(; disable_warning = true)` └ @ SDDP ~/.julia/packages/SDDP/EWTpZ/src/plugins/stopping_rules.jl:132 Simulated policy value: [ 5.035598e+00, 6.964402e+00] Simulated policy value: [ 5.282880e+00, 7.117120e+00] Simulated policy value: [ 5.606329e+00, 7.393671e+00] ┌ Warning: Are you really sure you want to use this stopping rule? Read why we don't recommend it by typing `? SDDP.Statistical` into the REPL to read the docstring. │ │ If you understand what you are doing, you can disable this warning with `SDDP.Statistical(; disable_warning = true)` └ @ SDDP ~/.julia/packages/SDDP/EWTpZ/src/plugins/stopping_rules.jl:132 Simulated policy value: [ 5.035598e+00, 6.964402e+00] Simulated policy value: [ 5.282880e+00, 7.117120e+00] Simulated policy value: [ 5.606329e+00, 7.393671e+00] ┌ Warning: Are you really sure you want to use this stopping rule? Read why we don't recommend it by typing `? SDDP.Statistical` into the REPL to read the docstring. │ │ If you understand what you are doing, you can disable this warning with `SDDP.Statistical(; disable_warning = true)` └ @ SDDP ~/.julia/packages/SDDP/EWTpZ/src/plugins/stopping_rules.jl:132 [ Info: threaded.jl [ Info: value_functions.jl [ Info: visualization.jl ┌ Warning: `SDDP.save` is deprecated. Use `SDDP.plot` instead. │ caller = test_SpaghettiPlot() at visualization.jl:51 └ @ Core ~/.julia/packages/SDDP/EWTpZ/test/visualization/visualization.jl:51 [ Info: FAST_hydro_thermal.jl ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 2 state variables : 1 scenarios : 2.00000e+00 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [6, 6] AffExpr in MOI.GreaterThan{Float64} : [1, 1] AffExpr in MOI.LessThan{Float64} : [1, 1] VariableRef in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.GreaterThan{Float64} : [3, 4] VariableRef in MOI.LessThan{Float64} : [2, 2] numerical stability report matrix range [1e+00, 1e+00] objective range [1e+00, 5e+00] bounds range [8e+00, 8e+00] rhs range [6e+00, 6e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 1 -2.000000e+01 -1.000000e+01 3.750658e+00 5 1 20 0.000000e+00 -1.000000e+01 4.096215e+00 104 1 ------------------------------------------------------------------- status : simulation_stopping total time (s) : 4.096215e+00 total solves : 104 best bound : -1.000000e+01 simulation ci : -1.100000e+01 ± 4.474009e+00 numeric issues : 0 ------------------------------------------------------------------- [ Info: FAST_production_management.jl ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 3 state variables : 2 scenarios : 4.00000e+00 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [8, 8] AffExpr in MOI.LessThan{Float64} : [3, 3] VariableRef in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.GreaterThan{Float64} : [5, 5] VariableRef in MOI.LessThan{Float64} : [1, 1] numerical stability report matrix range [1e+00, 1e+00] objective range [2e-01, 3e+00] bounds range [5e+01, 5e+01] rhs range [0e+00, 0e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 5 -5.320000e+00 -2.396000e+01 1.034999e-02 52 1 10 -2.396000e+01 -2.396000e+01 1.369786e-02 92 1 15 -4.260000e+01 -2.396000e+01 1.725602e-02 132 1 20 -2.396000e+01 -2.396000e+01 2.115703e-02 172 1 25 -5.320000e+00 -2.396000e+01 2.620292e-02 224 1 30 -5.320000e+00 -2.396000e+01 3.080893e-02 264 1 35 -2.396000e+01 -2.396000e+01 3.575587e-02 304 1 40 -2.396000e+01 -2.396000e+01 4.112506e-02 344 1 ------------------------------------------------------------------- status : simulation_stopping total time (s) : 4.112506e-02 total solves : 344 best bound : -2.396000e+01 simulation ci : -1.868714e+01 ± 3.990349e+00 numeric issues : 0 ------------------------------------------------------------------- ──────────────────────────────────────────────────────────────────────────────────── Time Allocations ─────────────────────── ──────────────────────── Tot / % measured: 2.93s / 1.2% 64.9MiB / 12.3% Section ncalls time %tot avg alloc %tot avg ──────────────────────────────────────────────────────────────────────────────────── backward_pass 40 21.6ms 60.0% 539μs 5.97MiB 74.7% 153KiB solve_subproblem 160 10.9ms 30.3% 68.0μs 934KiB 11.4% 5.84KiB get_dual_solution 160 608μs 1.7% 3.80μs 190KiB 2.3% 1.19KiB prepare_backward_pass 160 24.5μs 0.1% 153ns 0.00B 0.0% 0.00B forward_pass 40 9.91ms 27.6% 248μs 1.74MiB 21.8% 44.5KiB solve_subproblem 120 9.11ms 25.3% 75.9μs 1.56MiB 19.6% 13.3KiB get_dual_solution 120 42.0μs 0.1% 350ns 13.1KiB 0.2% 112B sample_scenario 40 139μs 0.4% 3.48μs 24.2KiB 0.3% 620B calculate_bound 40 4.46ms 12.4% 112μs 281KiB 3.4% 7.02KiB get_dual_solution 40 19.1μs 0.1% 477ns 4.38KiB 0.1% 112B get_dual_solution 36 11.0μs 0.0% 306ns 3.94KiB 0.0% 112B ──────────────────────────────────────────────────────────────────────────────────── ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 3 state variables : 2 scenarios : 4.00000e+00 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [8, 8] AffExpr in MOI.LessThan{Float64} : [3, 3] VariableRef in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.GreaterThan{Float64} : [5, 5] VariableRef in MOI.LessThan{Float64} : [1, 1] numerical stability report matrix range [1e+00, 1e+00] objective range [2e-01, 3e+00] bounds range [5e+01, 5e+01] rhs range [0e+00, 0e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 5 -2.396000e+01 -2.396000e+01 3.189898e-02 52 1 10 -2.396000e+01 -2.396000e+01 3.588986e-02 92 1 15 -2.396000e+01 -2.396000e+01 4.046202e-02 132 1 20 -4.260000e+01 -2.396000e+01 4.595995e-02 172 1 25 -5.320000e+00 -2.396000e+01 5.293202e-02 224 1 30 -2.396000e+01 -2.396000e+01 5.977702e-02 264 1 35 -2.396000e+01 -2.396000e+01 6.775594e-02 304 1 40 -5.320000e+00 -2.396000e+01 7.629395e-02 344 1 ------------------------------------------------------------------- status : simulation_stopping total time (s) : 7.629395e-02 total solves : 344 best bound : -2.396000e+01 simulation ci : -2.237170e+01 ± 4.300524e+00 numeric issues : 0 ------------------------------------------------------------------- ──────────────────────────────────────────────────────────────────────────────────── Time Allocations ─────────────────────── ──────────────────────── Tot / % measured: 80.1ms / 87.1% 15.1MiB / 94.0% Section ncalls time %tot avg alloc %tot avg ──────────────────────────────────────────────────────────────────────────────────── backward_pass 40 54.1ms 77.6% 1.35ms 12.1MiB 85.7% 311KiB solve_subproblem 160 12.2ms 17.5% 76.4μs 940KiB 6.5% 5.88KiB get_dual_solution 160 648μs 0.9% 4.05μs 190KiB 1.3% 1.19KiB prepare_backward_pass 160 26.5μs 0.0% 166ns 0.00B 0.0% 0.00B forward_pass 40 10.4ms 15.0% 261μs 1.74MiB 12.3% 44.5KiB solve_subproblem 120 9.58ms 13.7% 79.9μs 1.56MiB 11.0% 13.3KiB get_dual_solution 120 40.2μs 0.1% 335ns 13.1KiB 0.1% 112B sample_scenario 40 150μs 0.2% 3.76μs 24.3KiB 0.2% 623B calculate_bound 40 5.20ms 7.4% 130μs 291KiB 2.0% 7.27KiB get_dual_solution 40 21.0μs 0.0% 526ns 4.38KiB 0.0% 112B get_dual_solution 36 11.0μs 0.0% 306ns 3.94KiB 0.0% 112B ──────────────────────────────────────────────────────────────────────────────────── [ Info: FAST_quickstart.jl ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 2 state variables : 1 scenarios : 2.00000e+00 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [3, 4] AffExpr in MOI.LessThan{Float64} : [1, 1] VariableRef in MOI.GreaterThan{Float64} : [2, 3] VariableRef in MOI.LessThan{Float64} : [2, 2] numerical stability report matrix range [1e+00, 1e+00] objective range [1e+00, 2e+00] bounds range [2e+00, 5e+00] rhs range [0e+00, 0e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 1 0.000000e+00 -2.500000e+00 9.854221e-02 5 1 2 -2.500000e+00 -2.000000e+00 9.953904e-02 14 1 3 -1.000000e+00 -2.000000e+00 9.995699e-02 19 1 4 -1.000000e+00 -2.000000e+00 1.003191e-01 24 1 5 -1.000000e+00 -2.000000e+00 1.006732e-01 29 1 6 -3.000000e+00 -2.000000e+00 1.010370e-01 34 1 7 -1.000000e+00 -2.000000e+00 1.013951e-01 39 1 8 -1.000000e+00 -2.000000e+00 1.017561e-01 44 1 9 -3.000000e+00 -2.000000e+00 1.021292e-01 49 1 10 -1.000000e+00 -2.000000e+00 1.025012e-01 54 1 11 -3.000000e+00 -2.000000e+00 1.028652e-01 59 1 12 -3.000000e+00 -2.000000e+00 1.032481e-01 64 1 13 -1.000000e+00 -2.000000e+00 1.036232e-01 69 1 14 -1.000000e+00 -2.000000e+00 1.040182e-01 74 1 15 -3.000000e+00 -2.000000e+00 1.044061e-01 79 1 16 -1.000000e+00 -2.000000e+00 1.048081e-01 84 1 17 -3.000000e+00 -2.000000e+00 1.052270e-01 89 1 18 -3.000000e+00 -2.000000e+00 1.056402e-01 94 1 19 -1.000000e+00 -2.000000e+00 1.060672e-01 99 1 20 -3.000000e+00 -2.000000e+00 1.064961e-01 104 1 21 -1.000000e+00 -2.000000e+00 1.072531e-01 113 1 22 -1.000000e+00 -2.000000e+00 1.076910e-01 118 1 23 -3.000000e+00 -2.000000e+00 1.081541e-01 123 1 24 -3.000000e+00 -2.000000e+00 1.086121e-01 128 1 25 -1.000000e+00 -2.000000e+00 1.090760e-01 133 1 26 -3.000000e+00 -2.000000e+00 1.095450e-01 138 1 27 -3.000000e+00 -2.000000e+00 1.100421e-01 143 1 28 -1.000000e+00 -2.000000e+00 1.105430e-01 148 1 29 -3.000000e+00 -2.000000e+00 1.110470e-01 153 1 30 -3.000000e+00 -2.000000e+00 1.115541e-01 158 1 31 -1.000000e+00 -2.000000e+00 1.120770e-01 163 1 32 -1.000000e+00 -2.000000e+00 1.125941e-01 168 1 33 -1.000000e+00 -2.000000e+00 1.131320e-01 173 1 34 -3.000000e+00 -2.000000e+00 1.137002e-01 178 1 35 -1.000000e+00 -2.000000e+00 1.142421e-01 183 1 36 -3.000000e+00 -2.000000e+00 1.147821e-01 188 1 37 -1.000000e+00 -2.000000e+00 1.153400e-01 193 1 38 -1.000000e+00 -2.000000e+00 1.158872e-01 198 1 39 -1.000000e+00 -2.000000e+00 1.164551e-01 203 1 40 -1.000000e+00 -2.000000e+00 1.170242e-01 208 1 ------------------------------------------------------------------- status : simulation_stopping total time (s) : 1.170242e-01 total solves : 208 best bound : -2.000000e+00 simulation ci : -1.812500e+00 ± 3.171441e-01 numeric issues : 0 ------------------------------------------------------------------- [ Info: Hydro_thermal.jl ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 3 state variables : 1 scenarios : Inf existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [6, 6] AffExpr in MOI.EqualTo{Float64} : [2, 2] VariableRef in MOI.GreaterThan{Float64} : [5, 5] VariableRef in MOI.LessThan{Float64} : [1, 1] numerical stability report matrix range [1e+00, 1e+00] objective range [1e+00, 3e+00] bounds range [5e+00, 2e+01] rhs range [2e+00, 1e+01] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 1 4.000000e+01 1.882708e+01 2.254291e-01 51 1 31 2.939221e+02 2.338538e+02 1.228197e+00 8013 1 54 1.830901e+02 2.360657e+02 2.241662e+00 13446 1 67 6.882020e+01 2.362655e+02 3.243294e+00 16845 1 83 1.294954e+02 2.363718e+02 4.262991e+00 20001 1 97 1.870302e+02 2.364036e+02 5.393367e+00 22527 1 100 4.969839e+02 2.364135e+02 6.118856e+00 23928 1 ------------------------------------------------------------------- status : iteration_limit total time (s) : 6.118856e+00 total solves : 23928 best bound : 2.364135e+02 simulation ci : 2.345669e+02 ± 6.032770e+01 numeric issues : 0 ------------------------------------------------------------------- On average, 2.1 units of thermal are used in the first stage. [ Info: StochDynamicProgramming.jl_multistock.jl ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 5 state variables : 3 scenarios : 1.43489e+07 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [13, 13] AffExpr in MOI.EqualTo{Float64} : [3, 3] AffExpr in MOI.LessThan{Float64} : [1, 1] VariableRef in MOI.EqualTo{Float64} : [3, 3] VariableRef in MOI.GreaterThan{Float64} : [7, 7] VariableRef in MOI.LessThan{Float64} : [6, 7] numerical stability report matrix range [1e+00, 1e+00] objective range [3e-01, 2e+00] bounds range [5e-01, 5e+00] rhs range [2e+00, 2e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 10 -4.977586e+00 -4.446713e+00 5.467670e-01 1400 1 20 -4.764789e+00 -4.394789e+00 6.773710e-01 2800 1 30 -4.672487e+00 -4.377000e+00 8.162172e-01 4200 1 40 -4.483495e+00 -4.370632e+00 9.577520e-01 5600 1 50 -4.167321e+00 -4.364999e+00 1.104190e+00 7000 1 60 -4.362455e+00 -4.358864e+00 1.251479e+00 8400 1 70 -4.849916e+00 -4.355337e+00 1.402940e+00 9800 1 80 -4.861568e+00 -4.353006e+00 1.565138e+00 11200 1 90 -4.268264e+00 -4.350407e+00 1.726627e+00 12600 1 100 -4.539897e+00 -4.348641e+00 1.891372e+00 14000 1 ------------------------------------------------------------------- status : iteration_limit total time (s) : 1.891372e+00 total solves : 14000 best bound : -4.348641e+00 simulation ci : -4.325071e+00 ± 8.068858e-02 numeric issues : 0 ------------------------------------------------------------------- [ Info: StochDynamicProgramming.jl_stock.jl ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 5 state variables : 1 scenarios : 1.00000e+05 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [5, 5] AffExpr in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.GreaterThan{Float64} : [3, 3] VariableRef in MOI.LessThan{Float64} : [2, 3] numerical stability report matrix range [1e+00, 1e+00] objective range [3e-01, 2e+00] bounds range [5e-01, 2e+00] rhs range [0e+00, 0e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 10 -1.671715e+00 -1.476962e+00 2.157989e-01 1050 1 20 -1.529197e+00 -1.471817e+00 2.520199e-01 1600 1 30 -1.410768e+00 -1.471408e+00 3.367529e-01 2650 1 40 -1.596461e+00 -1.471258e+00 3.767290e-01 3200 1 50 -1.002277e+00 -1.471216e+00 5.073171e-01 4250 1 60 -1.085156e+00 -1.471164e+00 5.480809e-01 4800 1 70 -1.391746e+00 -1.471164e+00 6.350961e-01 5850 1 80 -1.448703e+00 -1.471132e+00 6.784251e-01 6400 1 90 -1.488989e+00 -1.471087e+00 7.678521e-01 7450 1 100 -1.564260e+00 -1.471075e+00 8.144341e-01 8000 1 110 -1.738157e+00 -1.471075e+00 8.613379e-01 8550 1 120 -1.591292e+00 -1.471075e+00 9.092369e-01 9100 1 130 -1.271481e+00 -1.471075e+00 9.552929e-01 9650 1 140 -1.249746e+00 -1.471075e+00 1.006814e+00 10200 1 150 -1.536222e+00 -1.471075e+00 1.059543e+00 10750 1 160 -1.565422e+00 -1.471075e+00 1.113594e+00 11300 1 170 -1.631076e+00 -1.471075e+00 1.166299e+00 11850 1 180 -1.494909e+00 -1.471075e+00 1.220467e+00 12400 1 182 -9.083563e-01 -1.471075e+00 1.229996e+00 12510 1 ------------------------------------------------------------------- status : simulation_stopping total time (s) : 1.229996e+00 total solves : 12510 best bound : -1.471075e+00 simulation ci : -1.462065e+00 ± 2.699238e-02 numeric issues : 0 ------------------------------------------------------------------- [ Info: StructDualDynProg.jl_prob5.2_2stages.jl ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 2 state variables : 4 scenarios : 2.00000e+00 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [29, 29] AffExpr in MOI.EqualTo{Float64} : [4, 5] AffExpr in MOI.GreaterThan{Float64} : [3, 3] AffExpr in MOI.LessThan{Float64} : [4, 4] VariableRef in MOI.EqualTo{Float64} : [3, 3] VariableRef in MOI.GreaterThan{Float64} : [22, 22] VariableRef in MOI.LessThan{Float64} : [1, 1] numerical stability report matrix range [1e+00, 1e+00] objective range [1e+00, 1e+06] bounds range [0e+00, 0e+00] rhs range [0e+00, 0e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 10 3.455904e+05 3.147347e+05 1.071405e-02 54 1 20 3.336455e+05 3.402383e+05 1.685905e-02 104 1 30 3.993519e+05 3.403155e+05 2.232194e-02 158 1 40 3.337559e+05 3.403155e+05 2.700996e-02 208 1 48 3.337559e+05 3.403155e+05 3.139496e-02 248 1 ------------------------------------------------------------------- status : simulation_stopping total time (s) : 3.139496e-02 total solves : 248 best bound : 3.403155e+05 simulation ci : 1.298444e+08 ± 1.785864e+08 numeric issues : 0 ------------------------------------------------------------------- [ Info: StructDualDynProg.jl_prob5.2_3stages.jl ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 3 state variables : 4 scenarios : 4.00000e+00 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [29, 29] AffExpr in MOI.EqualTo{Float64} : [4, 5] AffExpr in MOI.GreaterThan{Float64} : [3, 3] AffExpr in MOI.LessThan{Float64} : [4, 4] VariableRef in MOI.EqualTo{Float64} : [3, 3] VariableRef in MOI.GreaterThan{Float64} : [22, 22] VariableRef in MOI.LessThan{Float64} : [1, 1] numerical stability report matrix range [1e+00, 1e+00] objective range [1e+00, 1e+05] bounds range [0e+00, 0e+00] rhs range [0e+00, 0e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 10 4.403329e+05 3.509666e+05 1.749396e-02 92 1 20 4.506600e+05 4.054833e+05 2.812409e-02 172 1 30 3.959476e+05 4.067125e+05 3.702712e-02 264 1 40 4.497721e+05 4.067125e+05 4.528999e-02 344 1 47 3.959476e+05 4.067125e+05 5.211902e-02 400 1 ------------------------------------------------------------------- status : simulation_stopping total time (s) : 5.211902e-02 total solves : 400 best bound : 4.067125e+05 simulation ci : 2.696242e+07 ± 3.645299e+07 numeric issues : 0 ------------------------------------------------------------------- [ Info: agriculture_mccardle_farm.jl ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 10 state variables : 4 scenarios : 2.70000e+01 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [24, 24] AffExpr in MOI.EqualTo{Float64} : [3, 3] AffExpr in MOI.GreaterThan{Float64} : [1, 1] AffExpr in MOI.LessThan{Float64} : [1, 6] VariableRef in MOI.GreaterThan{Float64} : [20, 20] VariableRef in MOI.LessThan{Float64} : [1, 2] numerical stability report matrix range [1e+00, 8e+01] objective range [1e+00, 1e+03] bounds range [6e+01, 6e+01] rhs range [2e+02, 3e+03] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 1 8.316000e+03 0.000000e+00 2.779022e+00 14 1 40 2.308500e+03 4.074139e+03 3.128338e+00 776 1 ------------------------------------------------------------------- status : simulation_stopping total time (s) : 3.128338e+00 total solves : 776 best bound : 4.074139e+03 simulation ci : 4.224313e+03 ± 6.692189e+02 numeric issues : 0 ------------------------------------------------------------------- [ Info: air_conditioning.jl ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 3 state variables : 1 scenarios : 4.00000e+00 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [6, 6] AffExpr in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.GreaterThan{Float64} : [4, 4] VariableRef in MOI.Integer : [3, 3] VariableRef in MOI.LessThan{Float64} : [2, 3] numerical stability report matrix range [1e+00, 1e+00] objective range [1e+00, 3e+02] bounds range [1e+02, 2e+02] rhs range [0e+00, 0e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 1L 7.000000e+04 6.250000e+04 1.279560e+00 8 1 20L 6.000000e+04 6.250000e+04 2.058106e+00 172 1 ------------------------------------------------------------------- status : simulation_stopping total time (s) : 2.058106e+00 total solves : 172 best bound : 6.250000e+04 simulation ci : 5.475000e+04 ± 7.336233e+03 numeric issues : 0 ------------------------------------------------------------------- Lower bound is: 62500.0 With first stage solutions 200.0 (production) and 100.0 (stored_production). ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 3 state variables : 1 scenarios : 4.00000e+00 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [6, 6] AffExpr in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.GreaterThan{Float64} : [4, 4] VariableRef in MOI.Integer : [3, 3] VariableRef in MOI.LessThan{Float64} : [2, 3] numerical stability report matrix range [1e+00, 1e+00] objective range [1e+00, 3e+02] bounds range [1e+02, 2e+02] rhs range [0e+00, 0e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 1 7.000000e+04 6.250000e+04 7.169008e-03 8 1 20 4.000000e+04 6.250000e+04 3.559408e-01 172 1 ------------------------------------------------------------------- status : simulation_stopping total time (s) : 3.559408e-01 total solves : 172 best bound : 6.250000e+04 simulation ci : 5.950000e+04 ± 8.933885e+03 numeric issues : 0 ------------------------------------------------------------------- Lower bound is: 62500.0 With first stage solutions 200.0 (production) and 100.0 (stored_production). [ Info: air_conditioning_forward.jl ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 3 state variables : 1 scenarios : 4.00000e+00 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [5, 5] AffExpr in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.GreaterThan{Float64} : [4, 4] VariableRef in MOI.LessThan{Float64} : [2, 3] numerical stability report matrix range [1e+00, 1e+00] objective range [1e+00, 3e+02] bounds range [1e+02, 2e+02] rhs range [1e+02, 3e+02] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 1 7.000000e+04 6.250000e+04 3.042603e-02 5 1 10 4.000000e+04 6.250000e+04 2.533898e-01 50 1 ------------------------------------------------------------------- status : iteration_limit total time (s) : 2.533898e-01 total solves : 50 best bound : 6.250000e+04 simulation ci : 5.450000e+04 ± 1.135842e+04 numeric issues : 0 ------------------------------------------------------------------- [ Info: all_blacks.jl ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 3 state variables : 2 scenarios : 1.00000e+00 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [6, 6] AffExpr in MOI.EqualTo{Float64} : [2, 2] VariableRef in MOI.GreaterThan{Float64} : [2, 3] VariableRef in MOI.LessThan{Float64} : [3, 3] VariableRef in MOI.ZeroOne : [3, 3] numerical stability report matrix range [1e+00, 1e+00] objective range [1e+00, 6e+00] bounds range [1e+00, 1e+02] rhs range [0e+00, 0e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 1L 6.000000e+00 9.000000e+00 2.361360e-01 6 1 20L 9.000000e+00 9.000000e+00 2.813020e-01 123 1 ------------------------------------------------------------------- status : simulation_stopping total time (s) : 2.813020e-01 total solves : 123 best bound : 9.000000e+00 simulation ci : 8.850000e+00 ± 2.940000e-01 numeric issues : 0 ------------------------------------------------------------------- [ Info: asset_management_simple.jl ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 7 state variables : 2 scenarios : 8.00000e+00 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [5, 7] AffExpr in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.GreaterThan{Float64} : [3, 5] VariableRef in MOI.LessThan{Float64} : [1, 1] numerical stability report matrix range [1e+00, 1e+00] objective range [1e+00, 4e+00] bounds range [1e+03, 1e+03] rhs range [6e+01, 8e+01] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 5 -1.109375e+01 2.605769e-01 5.836999e-01 87 1 10 -1.109375e+01 2.605769e-01 5.890110e-01 142 1 15 3.105797e+00 5.434132e-01 5.946701e-01 197 1 20 -2.463349e+01 1.503415e+00 6.012421e-01 252 1 25 -1.421085e-14 1.514085e+00 6.070201e-01 307 1 30 4.864000e+01 1.514085e+00 1.773972e+00 394 1 35 4.864000e+01 1.514085e+00 1.779993e+00 449 1 40 -8.870299e+00 1.514085e+00 1.786619e+00 504 1 45 -1.428571e+00 1.514085e+00 1.793211e+00 559 1 48 -1.428571e+00 1.514085e+00 1.797782e+00 592 1 ------------------------------------------------------------------- status : simulation_stopping total time (s) : 1.797782e+00 total solves : 592 best bound : 1.514085e+00 simulation ci : 2.494033e+00 ± 5.472486e+00 numeric issues : 0 ------------------------------------------------------------------- [ Info: asset_management_stagewise.jl ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 7 state variables : 2 scenarios : 3.20000e+01 existing cuts : false options solver : serial mode risk measure : #108 sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [5, 7] AffExpr in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.GreaterThan{Float64} : [2, 5] VariableRef in MOI.LessThan{Float64} : [1, 1] numerical stability report matrix range [1e+00, 1e+00] objective range [2e-02, 4e+00] bounds range [1e+03, 1e+03] rhs range [6e+01, 8e+01] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 10 1.395796e+01 1.428818e+00 5.376461e-01 278 1 20 1.440356e+01 1.278425e+00 5.550079e-01 428 1 30 8.388546e+00 1.278425e+00 5.847061e-01 706 1 40 6.666667e-03 1.278410e+00 6.029041e-01 856 1 50 -5.614035e+00 1.278410e+00 6.330841e-01 1134 1 60 1.426676e+01 1.278410e+00 6.536000e-01 1284 1 64 1.261296e+01 1.278410e+00 6.621051e-01 1344 1 ------------------------------------------------------------------- status : simulation_stopping total time (s) : 6.621051e-01 total solves : 1344 best bound : 1.278410e+00 simulation ci : 8.172580e-01 ± 5.385320e+00 numeric issues : 0 ------------------------------------------------------------------- ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 7 state variables : 2 scenarios : 3.20000e+01 existing cuts : false options solver : serial mode risk measure : #108 sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [5, 7] AffExpr in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.GreaterThan{Float64} : [2, 5] VariableRef in MOI.LessThan{Float64} : [1, 1] numerical stability report matrix range [1e+00, 1e+00] objective range [2e-02, 4e+00] bounds range [1e+03, 1e+03] rhs range [6e+01, 8e+01] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 10 1.111809e+00 1.278488e+00 4.121780e-02 278 1 20 1.111084e+01 1.278410e+00 6.533098e-02 428 1 30 2.293779e+01 1.278410e+00 1.040690e-01 706 1 40 1.426676e+01 1.278410e+00 1.401880e-01 856 1 ------------------------------------------------------------------- status : simulation_stopping total time (s) : 1.401880e-01 total solves : 856 best bound : 1.278410e+00 simulation ci : 3.654300e+00 ± 6.176856e+00 numeric issues : 0 ------------------------------------------------------------------- [ Info: belief.jl ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 4 state variables : 1 scenarios : Inf existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [7, 7] AffExpr in MOI.EqualTo{Float64} : [1, 1] AffExpr in MOI.GreaterThan{Float64} : [2, 2] VariableRef in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.GreaterThan{Float64} : [5, 5] VariableRef in MOI.LessThan{Float64} : [3, 3] numerical stability report matrix range [1e+00, 1e+00] objective range [1e+00, 2e+00] bounds range [2e+00, 1e+02] rhs range [0e+00, 0e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 10 4.787277e+00 9.346930e+00 3.246406e+00 900 1 20 6.374753e+00 1.361934e+01 3.396755e+00 1720 1 30 2.848217e+01 1.624016e+01 3.705188e+00 3036 1 40 1.973944e+01 1.776547e+01 4.070420e+00 4192 1 50 4.000000e+00 1.889360e+01 4.367879e+00 5020 1 60 1.143524e+01 1.907862e+01 4.709531e+00 5808 1 70 9.386174e+00 1.961343e+01 5.051716e+00 6540 1 80 5.667808e+01 1.890971e+01 5.311739e+00 7088 1 90 3.740638e+01 1.993168e+01 6.013821e+00 8180 1 100 9.867073e+00 2.001710e+01 6.308938e+00 8664 1 ------------------------------------------------------------------- status : iteration_limit total time (s) : 6.308938e+00 total solves : 8664 best bound : 2.001710e+01 simulation ci : 2.301353e+01 ± 4.670835e+00 numeric issues : 0 ------------------------------------------------------------------- [ Info: biobjective_hydro.jl ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 3 state variables : 1 scenarios : 1.33100e+03 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [9, 9] AffExpr in MOI.EqualTo{Float64} : [2, 4] AffExpr in MOI.GreaterThan{Float64} : [3, 5] VariableRef in MOI.GreaterThan{Float64} : [8, 8] VariableRef in MOI.LessThan{Float64} : [5, 6] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 1 0.000000e+00 0.000000e+00 1.503082e+00 36 1 10 0.000000e+00 0.000000e+00 1.519808e+00 360 1 ------------------------------------------------------------------- status : iteration_limit total time (s) : 1.519808e+00 total solves : 360 best bound : 0.000000e+00 simulation ci : 0.000000e+00 ± 0.000000e+00 numeric issues : 0 ------------------------------------------------------------------- ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 3 state variables : 1 scenarios : 1.33100e+03 existing cuts : true options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [9, 9] AffExpr in MOI.EqualTo{Float64} : [2, 4] AffExpr in MOI.GreaterThan{Float64} : [3, 7] VariableRef in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.GreaterThan{Float64} : [8, 8] VariableRef in MOI.LessThan{Float64} : [5, 6] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 1 9.500000e+02 5.500000e+02 2.789021e-03 407 1 10 2.850000e+02 5.728212e+02 2.748704e-02 731 1 ------------------------------------------------------------------- status : iteration_limit total time (s) : 2.748704e-02 total solves : 731 best bound : 5.728212e+02 simulation ci : 6.480000e+02 ± 1.400040e+02 numeric issues : 0 ------------------------------------------------------------------- ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 3 state variables : 1 scenarios : 1.33100e+03 existing cuts : true options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [9, 9] AffExpr in MOI.EqualTo{Float64} : [2, 4] AffExpr in MOI.GreaterThan{Float64} : [3, 13] VariableRef in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.GreaterThan{Float64} : [8, 8] VariableRef in MOI.LessThan{Float64} : [5, 6] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 1 4.150000e+02 3.347014e+02 2.677917e-03 778 1 10 2.825000e+02 3.465177e+02 2.824593e-02 1102 1 ------------------------------------------------------------------- status : iteration_limit total time (s) : 2.824593e-02 total solves : 1102 best bound : 3.465177e+02 simulation ci : 3.598954e+02 ± 6.281469e+01 numeric issues : 0 ------------------------------------------------------------------- ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 3 state variables : 1 scenarios : 1.33100e+03 existing cuts : true options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [9, 9] AffExpr in MOI.EqualTo{Float64} : [2, 4] AffExpr in MOI.GreaterThan{Float64} : [3, 19] VariableRef in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.GreaterThan{Float64} : [8, 8] VariableRef in MOI.LessThan{Float64} : [5, 6] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 1 2.387500e+02 2.006818e+02 2.762079e-03 1149 1 10 2.587500e+02 2.052799e+02 2.651501e-02 1473 1 ------------------------------------------------------------------- status : iteration_limit total time (s) : 2.651501e-02 total solves : 1473 best bound : 2.052799e+02 simulation ci : 2.206923e+02 ± 2.764045e+01 numeric issues : 0 ------------------------------------------------------------------- ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 3 state variables : 1 scenarios : 1.33100e+03 existing cuts : true options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [9, 9] AffExpr in MOI.EqualTo{Float64} : [2, 4] AffExpr in MOI.GreaterThan{Float64} : [3, 24] VariableRef in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.GreaterThan{Float64} : [8, 8] VariableRef in MOI.LessThan{Float64} : [5, 6] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 1 9.375000e+02 4.637735e+02 3.300905e-03 1520 1 10 2.875000e+02 4.661908e+02 3.120995e-02 1844 1 ------------------------------------------------------------------- status : iteration_limit total time (s) : 3.120995e-02 total solves : 1844 best bound : 4.661908e+02 simulation ci : 5.075000e+02 ± 1.503394e+02 numeric issues : 0 ------------------------------------------------------------------- ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 3 state variables : 1 scenarios : 1.33100e+03 existing cuts : true options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [9, 9] AffExpr in MOI.EqualTo{Float64} : [2, 4] AffExpr in MOI.GreaterThan{Float64} : [3, 30] VariableRef in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.GreaterThan{Float64} : [8, 8] VariableRef in MOI.LessThan{Float64} : [5, 6] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 1 1.112500e+02 1.129545e+02 2.938032e-03 1891 1 10 1.000000e+02 1.129771e+02 2.569103e-02 2215 1 ------------------------------------------------------------------- status : iteration_limit total time (s) : 2.569103e-02 total solves : 2215 best bound : 1.129771e+02 simulation ci : 1.068750e+02 ± 2.168477e+01 numeric issues : 0 ------------------------------------------------------------------- ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 3 state variables : 1 scenarios : 1.33100e+03 existing cuts : true options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [9, 9] AffExpr in MOI.EqualTo{Float64} : [2, 4] AffExpr in MOI.GreaterThan{Float64} : [3, 34] VariableRef in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.GreaterThan{Float64} : [8, 8] VariableRef in MOI.LessThan{Float64} : [5, 6] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 1 4.562500e+02 2.788383e+02 3.087044e-03 2262 1 10 1.625000e+02 2.794553e+02 2.997088e-02 2586 1 ------------------------------------------------------------------- status : iteration_limit total time (s) : 2.997088e-02 total solves : 2586 best bound : 2.794553e+02 simulation ci : 2.690625e+02 ± 6.720434e+01 numeric issues : 0 ------------------------------------------------------------------- ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 3 state variables : 1 scenarios : 1.33100e+03 existing cuts : true options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [9, 9] AffExpr in MOI.EqualTo{Float64} : [2, 4] AffExpr in MOI.GreaterThan{Float64} : [3, 38] VariableRef in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.GreaterThan{Float64} : [8, 8] VariableRef in MOI.LessThan{Float64} : [5, 6] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 1 4.810804e+02 4.073537e+02 3.394127e-03 2633 1 10 5.487500e+02 4.077574e+02 3.201604e-02 2957 1 ------------------------------------------------------------------- status : iteration_limit total time (s) : 3.201604e-02 total solves : 2957 best bound : 4.077574e+02 simulation ci : 3.863418e+02 ± 9.936379e+01 numeric issues : 0 ------------------------------------------------------------------- ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 3 state variables : 1 scenarios : 1.33100e+03 existing cuts : true options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [9, 9] AffExpr in MOI.EqualTo{Float64} : [2, 4] AffExpr in MOI.GreaterThan{Float64} : [3, 43] VariableRef in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.GreaterThan{Float64} : [8, 8] VariableRef in MOI.LessThan{Float64} : [5, 6] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 1 2.718750e+02 5.198033e+02 3.728151e-03 3004 1 10 6.771875e+02 5.210100e+02 3.297806e-02 3328 1 ------------------------------------------------------------------- status : iteration_limit total time (s) : 3.297806e-02 total solves : 3328 best bound : 5.210100e+02 simulation ci : 5.831217e+02 ± 1.295425e+02 numeric issues : 0 ------------------------------------------------------------------- ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 3 state variables : 1 scenarios : 1.33100e+03 existing cuts : true options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [9, 9] AffExpr in MOI.EqualTo{Float64} : [2, 4] AffExpr in MOI.GreaterThan{Float64} : [3, 50] VariableRef in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.GreaterThan{Float64} : [8, 8] VariableRef in MOI.LessThan{Float64} : [5, 6] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 1 7.812500e+01 5.720558e+01 3.350019e-03 3375 1 10 5.312500e+01 5.938345e+01 2.700806e-02 3699 1 ------------------------------------------------------------------- status : iteration_limit total time (s) : 2.700806e-02 total solves : 3699 best bound : 5.938345e+01 simulation ci : 6.187500e+01 ± 1.306667e+01 numeric issues : 0 ------------------------------------------------------------------- [ Info: booking_management.jl ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 5 state variables : 2 scenarios : 3.20000e+01 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [10, 10] AffExpr in MOI.EqualTo{Float64} : [2, 2] AffExpr in MOI.GreaterThan{Float64} : [2, 2] AffExpr in MOI.LessThan{Float64} : [6, 6] VariableRef in MOI.EqualTo{Float64} : [2, 2] VariableRef in MOI.GreaterThan{Float64} : [5, 6] VariableRef in MOI.LessThan{Float64} : [6, 6] VariableRef in MOI.ZeroOne : [5, 5] numerical stability report matrix range [1e+00, 1e+00] objective range [1e+00, 6e+00] bounds range [1e+00, 1e+01] rhs range [1e+00, 1e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 5 8.000000e+00 9.440450e+00 5.930450e-01 235 1 10 1.000000e+01 9.159200e+00 7.301610e-01 310 1 15 1.000000e+01 9.159200e+00 8.830209e-01 385 1 20 1.000000e+01 9.159200e+00 1.019063e+00 460 1 25 1.000000e+01 9.159200e+00 1.809044e+00 695 1 30 4.000000e+00 9.159200e+00 1.954169e+00 770 1 35 1.000000e+01 9.159200e+00 2.096157e+00 845 1 40 1.000000e+01 9.159200e+00 2.259041e+00 920 1 ------------------------------------------------------------------- status : simulation_stopping total time (s) : 2.259041e+00 total solves : 920 best bound : 9.159200e+00 simulation ci : 7.200000e+00 ± 8.485598e-01 numeric issues : 0 ------------------------------------------------------------------- ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 3 state variables : 4 scenarios : 2.16000e+02 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [18, 18] AffExpr in MOI.EqualTo{Float64} : [4, 4] AffExpr in MOI.GreaterThan{Float64} : [4, 4] AffExpr in MOI.LessThan{Float64} : [12, 12] VariableRef in MOI.EqualTo{Float64} : [4, 4] VariableRef in MOI.GreaterThan{Float64} : [9, 10] VariableRef in MOI.LessThan{Float64} : [10, 10] VariableRef in MOI.ZeroOne : [9, 9] numerical stability report matrix range [1e+00, 1e+00] objective range [1e+00, 4e+00] bounds range [1e+00, 2e+01] rhs range [1e+00, 1e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 10 5.000000e+00 6.959189e+00 4.146330e-01 510 1 20 1.000000e+01 6.834387e+00 9.335930e-01 720 1 30 7.000000e+00 6.834387e+00 2.051606e+00 1230 1 40 1.000000e+01 6.823805e+00 2.531591e+00 1440 1 50 3.000000e+00 6.823805e+00 3.700639e+00 1950 1 60 2.000000e+00 6.823805e+00 4.223602e+00 2160 1 ------------------------------------------------------------------- status : simulation_stopping total time (s) : 4.223602e+00 total solves : 2160 best bound : 6.823805e+00 simulation ci : 6.183333e+00 ± 6.694539e-01 numeric issues : 0 ------------------------------------------------------------------- [ Info: generation_expansion.jl ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 5 state variables : 5 scenarios : 3.27680e+04 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [14, 14] AffExpr in MOI.GreaterThan{Float64} : [7, 7] AffExpr in MOI.LessThan{Float64} : [4, 4] VariableRef in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.GreaterThan{Float64} : [8, 8] VariableRef in MOI.Integer : [5, 5] VariableRef in MOI.LessThan{Float64} : [5, 6] numerical stability report matrix range [1e+00, 1e+00] objective range [1e+00, 5e+05] bounds range [1e+00, 1e+00] rhs range [0e+00, 0e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 10 5.299676e+06 2.074407e+06 5.661144e+00 920 1 20 6.049875e+06 2.075240e+06 7.374002e+00 1340 1 30 5.496647e+05 2.078257e+06 1.319020e+01 2260 1 40 3.985383e+04 2.078257e+06 1.489010e+01 2680 1 50 2.994548e+05 2.078257e+06 2.064212e+01 3600 1 60 3.799457e+06 2.078257e+06 2.238802e+01 4020 1 ------------------------------------------------------------------- status : simulation_stopping total time (s) : 2.238802e+01 total solves : 4020 best bound : 2.078257e+06 simulation ci : 2.419054e+06 ± 5.154891e+05 numeric issues : 0 ------------------------------------------------------------------- ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 5 state variables : 5 scenarios : 3.27680e+04 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [14, 14] AffExpr in MOI.GreaterThan{Float64} : [7, 7] AffExpr in MOI.LessThan{Float64} : [4, 4] VariableRef in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.GreaterThan{Float64} : [8, 8] VariableRef in MOI.Integer : [5, 5] VariableRef in MOI.LessThan{Float64} : [5, 6] numerical stability report matrix range [1e+00, 1e+00] objective range [1e+00, 5e+05] bounds range [1e+00, 1e+00] rhs range [0e+00, 0e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 10L 1.299572e+06 2.079330e+06 1.142186e+01 920 1 20L 3.984407e+04 2.079401e+06 1.970635e+01 1340 1 30L 5.495606e+05 2.079457e+06 3.153033e+01 2260 1 40L 3.799861e+06 2.079457e+06 3.995640e+01 2680 1 ------------------------------------------------------------------- status : simulation_stopping total time (s) : 3.995640e+01 total solves : 2680 best bound : 2.079457e+06 simulation ci : 1.720973e+06 ± 5.166660e+05 numeric issues : 0 ------------------------------------------------------------------- [ Info: hydro_valley.jl [ Info: infinite_horizon_hydro_thermal.jl ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 1 state variables : 1 scenarios : Inf existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [8, 8] AffExpr in MOI.EqualTo{Float64} : [2, 2] VariableRef in MOI.EqualTo{Float64} : [2, 2] VariableRef in MOI.GreaterThan{Float64} : [5, 5] VariableRef in MOI.LessThan{Float64} : [1, 1] numerical stability report matrix range [1e+00, 1e+00] objective range [1e+00, 1e+01] bounds range [5e+00, 2e+01] rhs range [0e+00, 0e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 100 1.000000e+01 1.188534e+02 1.444213e+00 1914 1 200 0.000000e+00 1.191645e+02 1.638402e+00 3840 1 300 7.500000e+01 1.191666e+02 1.834481e+00 5738 1 328 2.500000e+00 1.191667e+02 1.871650e+00 6034 1 ------------------------------------------------------------------- status : simulation_stopping total time (s) : 1.871650e+00 total solves : 6034 best bound : 1.191667e+02 simulation ci : 2.272866e+01 ± 3.596240e+00 numeric issues : 0 ------------------------------------------------------------------- Confidence_interval = 128.14 ± 13.91 ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 1 state variables : 1 scenarios : Inf existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [8, 8] AffExpr in MOI.EqualTo{Float64} : [2, 2] VariableRef in MOI.EqualTo{Float64} : [2, 2] VariableRef in MOI.GreaterThan{Float64} : [5, 5] VariableRef in MOI.LessThan{Float64} : [1, 1] numerical stability report matrix range [1e+00, 1e+00] objective range [1e+00, 1e+01] bounds range [5e+00, 2e+01] rhs range [0e+00, 0e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 100 1.000000e+01 1.191232e+02 2.768340e-01 2806 1 200 0.000000e+00 1.191666e+02 5.052259e-01 4749 1 287 5.000000e+00 1.191667e+02 6.510620e-01 5662 1 ------------------------------------------------------------------- status : simulation_stopping total time (s) : 6.510620e-01 total solves : 5662 best bound : 1.191667e+02 simulation ci : 2.112369e+01 ± 3.684376e+00 numeric issues : 0 ------------------------------------------------------------------- Confidence_interval = 122.02 ± 14.06 [ Info: infinite_horizon_trivial.jl ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 1 state variables : 1 scenarios : Inf existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [3, 3] AffExpr in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.GreaterThan{Float64} : [1, 1] numerical stability report matrix range [1e+00, 1e+00] objective range [1e+00, 1e+00] bounds range [0e+00, 0e+00] rhs range [0e+00, 0e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 10 2.000000e+01 1.998872e+01 5.141091e-02 1033 1 20 8.000000e+00 2.000000e+01 6.278992e-02 1209 1 30 1.200000e+01 2.000000e+01 1.177571e-01 2304 1 40 3.000000e+01 2.000000e+01 1.601169e-01 2594 1 ------------------------------------------------------------------- status : simulation_stopping total time (s) : 1.601169e-01 total solves : 2594 best bound : 2.000000e+01 simulation ci : 1.970000e+01 ± 4.721453e+00 numeric issues : 0 ------------------------------------------------------------------- [ Info: no_strong_duality.jl ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 1 state variables : 1 scenarios : Inf existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [3, 3] AffExpr in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.GreaterThan{Float64} : [1, 1] numerical stability report matrix range [1e+00, 1e+00] objective range [1e+00, 1e+00] bounds range [0e+00, 0e+00] rhs range [0e+00, 0e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 1 1.000000e+00 1.500000e+00 3.045082e-03 3 1 40 2.000000e+00 2.000000e+00 4.134512e-02 604 1 ------------------------------------------------------------------- status : simulation_stopping total time (s) : 4.134512e-02 total solves : 604 best bound : 2.000000e+00 simulation ci : 2.150000e+00 ± 5.038753e-01 numeric issues : 0 ------------------------------------------------------------------- [ Info: objective_state_newsvendor.jl ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 3 state variables : 1 scenarios : 8.51840e+04 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [6, 6] AffExpr in MOI.EqualTo{Float64} : [1, 3] AffExpr in MOI.LessThan{Float64} : [2, 2] VariableRef in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.GreaterThan{Float64} : [3, 4] VariableRef in MOI.LessThan{Float64} : [3, 3] numerical stability report matrix range [8e-01, 2e+00] objective range [1e+00, 2e+00] bounds range [1e+00, 1e+02] rhs range [5e+01, 5e+01] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 10 3.675000e+00 4.115510e+00 3.898861e-01 1350 1 20 5.062500e+00 4.110713e+00 4.725280e-01 2700 1 30 4.500000e+00 4.104200e+00 5.623760e-01 4050 1 40 3.812500e+00 4.102669e+00 6.551511e-01 5400 1 50 4.725000e+00 4.095504e+00 7.548780e-01 6750 1 60 4.050000e+00 4.092999e+00 8.554242e-01 8100 1 70 4.606250e+00 4.091524e+00 9.569561e-01 9450 1 80 3.875000e+00 4.089694e+00 1.062335e+00 10800 1 90 3.750000e+00 4.089490e+00 1.169112e+00 12150 1 100 5.125000e+00 4.087894e+00 1.282187e+00 13500 1 110 4.500000e+00 4.087478e+00 1.393923e+00 14850 1 120 3.650000e+00 4.086704e+00 1.572951e+00 16200 1 130 4.406250e+00 4.086063e+00 1.696543e+00 17550 1 140 3.375000e+00 4.085981e+00 1.813817e+00 18900 1 150 3.000000e+00 4.085945e+00 1.940537e+00 20250 1 160 3.812500e+00 4.085838e+00 2.064366e+00 21600 1 170 4.250000e+00 4.085728e+00 2.189936e+00 22950 1 180 3.243750e+00 4.085593e+00 2.314489e+00 24300 1 190 4.306250e+00 4.085487e+00 2.440153e+00 25650 1 200 5.237500e+00 4.085446e+00 2.576184e+00 27000 1 210 4.500000e+00 4.085441e+00 2.707843e+00 28350 1 220 3.612500e+00 4.085405e+00 2.840341e+00 29700 1 230 3.700000e+00 4.085382e+00 2.975494e+00 31050 1 240 3.437500e+00 4.085254e+00 3.106398e+00 32400 1 250 4.100000e+00 4.085115e+00 3.236936e+00 33750 1 260 3.000000e+00 4.084973e+00 3.376384e+00 35100 1 270 4.918750e+00 4.084943e+00 3.514881e+00 36450 1 280 2.756250e+00 4.084920e+00 3.662068e+00 37800 1 290 3.737500e+00 4.084868e+00 3.809969e+00 39150 1 300 5.750000e+00 4.084868e+00 3.957956e+00 40500 1 310 5.156250e+00 4.084858e+00 4.108400e+00 41850 1 320 3.131250e+00 4.084855e+00 4.249371e+00 43200 1 330 4.125000e+00 4.084846e+00 4.397358e+00 44550 1 340 5.875000e+00 4.084820e+00 4.592888e+00 45900 1 350 4.587500e+00 4.084810e+00 4.741386e+00 47250 1 360 5.087500e+00 4.084805e+00 4.897333e+00 48600 1 370 4.393750e+00 4.084802e+00 5.046064e+00 49950 1 380 4.750000e+00 4.084792e+00 5.197550e+00 51300 1 390 4.437500e+00 4.084785e+00 5.345776e+00 52650 1 400 4.181250e+00 4.084785e+00 5.491717e+00 54000 1 410 3.650000e+00 4.084777e+00 5.650027e+00 55350 1 420 3.750000e+00 4.084769e+00 5.813342e+00 56700 1 430 3.725000e+00 4.084762e+00 5.966035e+00 58050 1 440 4.218750e+00 4.084751e+00 6.114514e+00 59400 1 450 5.500000e+00 4.084751e+00 6.266296e+00 60750 1 460 3.637500e+00 4.084747e+00 6.417967e+00 62100 1 470 2.993750e+00 4.084743e+00 6.575997e+00 63450 1 480 5.237500e+00 4.084743e+00 6.737543e+00 64800 1 490 4.212500e+00 4.084743e+00 6.883909e+00 66150 1 500 3.843750e+00 4.084743e+00 7.032788e+00 67500 1 510 3.425000e+00 4.084743e+00 7.183324e+00 68850 1 520 4.293750e+00 4.084743e+00 7.328769e+00 70200 1 530 2.818750e+00 4.084740e+00 7.497451e+00 71550 1 540 4.668750e+00 4.084740e+00 7.660927e+00 72900 1 550 2.750000e+00 4.084740e+00 7.827977e+00 74250 1 560 4.100000e+00 4.084740e+00 8.022823e+00 75600 1 570 3.200000e+00 4.084738e+00 8.184577e+00 76950 1 580 3.525000e+00 4.084738e+00 8.339094e+00 78300 1 590 3.125000e+00 4.084738e+00 8.488430e+00 79650 1 600 4.875000e+00 4.084736e+00 8.654177e+00 81000 1 610 4.050000e+00 4.084736e+00 8.806989e+00 82350 1 620 4.750000e+00 4.084733e+00 8.970020e+00 83700 1 630 3.687500e+00 4.084733e+00 9.125005e+00 85050 1 640 3.875000e+00 4.084733e+00 9.288786e+00 86400 1 650 3.625000e+00 4.084733e+00 9.440830e+00 87750 1 660 3.500000e+00 4.084732e+00 9.604211e+00 89100 1 670 4.875000e+00 4.084732e+00 9.771280e+00 90450 1 680 3.925000e+00 4.084732e+00 9.922617e+00 91800 1 690 3.900000e+00 4.084732e+00 1.007527e+01 93150 1 700 4.812500e+00 4.084732e+00 1.023587e+01 94500 1 710 5.625000e+00 4.084732e+00 1.040179e+01 95850 1 720 4.556250e+00 4.084732e+00 1.057591e+01 97200 1 730 5.150000e+00 4.084732e+00 1.074509e+01 98550 1 740 4.275000e+00 4.084732e+00 1.091282e+01 99900 1 750 4.381250e+00 4.084732e+00 1.107970e+01 101250 1 760 4.406250e+00 4.084732e+00 1.128260e+01 102600 1 770 3.393750e+00 4.084732e+00 1.144676e+01 103950 1 780 4.000000e+00 4.084732e+00 1.161542e+01 105300 1 790 3.125000e+00 4.084732e+00 1.177957e+01 106650 1 800 3.500000e+00 4.084732e+00 1.194705e+01 108000 1 810 3.750000e+00 4.084732e+00 1.210669e+01 109350 1 820 4.262500e+00 4.084732e+00 1.227779e+01 110700 1 830 4.181250e+00 4.084732e+00 1.243717e+01 112050 1 840 3.500000e+00 4.084732e+00 1.261113e+01 113400 1 850 3.318750e+00 4.084732e+00 1.277366e+01 114750 1 860 3.750000e+00 4.084732e+00 1.294203e+01 116100 1 870 4.125000e+00 4.084732e+00 1.310944e+01 117450 1 880 2.975000e+00 4.084732e+00 1.327876e+01 118800 1 890 4.400000e+00 4.084732e+00 1.345560e+01 120150 1 900 5.062500e+00 4.084732e+00 1.363038e+01 121500 1 910 5.125000e+00 4.084732e+00 1.380479e+01 122850 1 920 3.587500e+00 4.084732e+00 1.397971e+01 124200 1 930 3.612500e+00 4.084732e+00 1.414727e+01 125550 1 940 3.375000e+00 4.084732e+00 1.431289e+01 126900 1 950 4.868750e+00 4.084732e+00 1.448816e+01 128250 1 960 3.725000e+00 4.084732e+00 1.468630e+01 129600 1 970 4.356250e+00 4.084732e+00 1.485479e+01 130950 1 980 4.362500e+00 4.084732e+00 1.502960e+01 132300 1 990 3.462500e+00 4.084727e+00 1.519802e+01 133650 1 1000 3.612500e+00 4.084727e+00 1.537531e+01 135000 1 1010 3.187500e+00 4.084722e+00 1.557266e+01 136350 1 1020 3.587500e+00 4.084722e+00 1.577477e+01 137700 1 1030 5.131250e+00 4.084722e+00 1.597192e+01 139050 1 1040 4.837500e+00 4.084722e+00 1.615203e+01 140400 1 1050 4.387500e+00 4.084722e+00 1.633597e+01 141750 1 1060 4.031250e+00 4.084722e+00 1.653019e+01 143100 1 1070 3.837500e+00 4.084722e+00 1.671783e+01 144450 1 1080 3.618750e+00 4.084722e+00 1.691029e+01 145800 1 1090 3.887500e+00 4.084722e+00 1.710072e+01 147150 1 1100 4.462500e+00 4.084722e+00 1.727277e+01 148500 1 1110 4.781250e+00 4.084722e+00 1.744414e+01 149850 1 1120 4.500000e+00 4.084722e+00 1.761571e+01 151200 1 1130 2.987500e+00 4.084722e+00 1.778842e+01 152550 1 1140 5.000000e+00 4.084722e+00 1.799624e+01 153900 1 1150 3.418750e+00 4.084722e+00 1.817230e+01 155250 1 1160 3.000000e+00 4.084722e+00 1.834682e+01 156600 1 1170 3.018750e+00 4.084722e+00 1.852769e+01 157950 1 1180 3.375000e+00 4.084722e+00 1.870865e+01 159300 1 1190 4.875000e+00 4.084722e+00 1.888353e+01 160650 1 1200 3.562500e+00 4.084722e+00 1.905892e+01 162000 1 1210 4.125000e+00 4.084722e+00 1.923939e+01 163350 1 1220 4.875000e+00 4.084722e+00 1.942673e+01 164700 1 1230 4.268750e+00 4.084722e+00 1.958885e+01 166050 1 1240 3.500000e+00 4.084722e+00 1.977514e+01 167400 1 1250 3.875000e+00 4.084720e+00 1.994520e+01 168750 1 1253 3.075000e+00 4.084720e+00 2.000122e+01 169155 1 ------------------------------------------------------------------- status : time_limit total time (s) : 2.000122e+01 total solves : 169155 best bound : 4.084720e+00 simulation ci : 4.063961e+00 ± 4.137031e-02 numeric issues : 0 ------------------------------------------------------------------- ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 3 state variables : 1 scenarios : 8.51840e+04 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [6, 6] AffExpr in MOI.EqualTo{Float64} : [1, 3] AffExpr in MOI.LessThan{Float64} : [2, 2] VariableRef in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.GreaterThan{Float64} : [3, 4] VariableRef in MOI.LessThan{Float64} : [3, 3] numerical stability report matrix range [8e-01, 2e+00] objective range [1e+00, 2e+00] bounds range [1e+00, 1e+02] rhs range [5e+01, 5e+01] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 10 4.375000e+00 4.354329e+00 1.769130e-01 1350 1 20 2.850000e+00 4.347822e+00 5.642390e-01 2700 1 30 4.125000e+00 4.047771e+00 1.087624e+00 4050 1 40 3.725000e+00 4.045782e+00 1.632827e+00 5400 1 50 3.850000e+00 4.041062e+00 2.398739e+00 6750 1 60 4.493750e+00 4.038983e+00 3.220655e+00 8100 1 70 3.950000e+00 4.038923e+00 4.178227e+00 9450 1 80 3.250000e+00 4.038727e+00 5.312686e+00 10800 1 90 5.150000e+00 4.038707e+00 6.612653e+00 12150 1 100 3.068750e+00 4.038681e+00 8.149067e+00 13500 1 110 4.350000e+00 4.037839e+00 1.039411e+01 14850 1 120 3.375000e+00 4.037793e+00 1.197765e+01 16200 1 130 5.550000e+00 4.037742e+00 1.365815e+01 17550 1 140 3.612500e+00 4.037659e+00 1.560659e+01 18900 1 150 5.200000e+00 4.037645e+00 1.759758e+01 20250 1 160 4.375000e+00 4.037635e+00 1.975339e+01 21600 1 162 5.131250e+00 4.037635e+00 2.016054e+01 21870 1 ------------------------------------------------------------------- status : time_limit total time (s) : 2.016054e+01 total solves : 21870 best bound : 4.037635e+00 simulation ci : 4.084498e+00 ± 1.173424e-01 numeric issues : 0 ------------------------------------------------------------------- [ Info: sldp_example_one.jl ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 8 state variables : 1 scenarios : 1.00000e+08 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [7, 7] AffExpr in MOI.EqualTo{Float64} : [1, 1] AffExpr in MOI.GreaterThan{Float64} : [2, 2] VariableRef in MOI.EqualTo{Float64} : [1, 1] VariableRef in MOI.GreaterThan{Float64} : [4, 4] VariableRef in MOI.LessThan{Float64} : [1, 2] VariableRef in MOI.ZeroOne : [1, 1] numerical stability report matrix range [1e+00, 2e+00] objective range [5e-01, 1e+00] bounds range [1e+00, 1e+00] rhs range [1e+00, 1e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 10 3.219176e+00 1.165102e+00 4.788278e+00 1680 1 20 2.078810e+00 1.166281e+00 5.251079e+00 2560 1 30 3.973033e+00 1.166907e+00 5.753641e+00 3440 1 40 3.706337e+00 1.167312e+00 1.049557e+01 5120 1 50 3.158565e+00 1.167416e+00 1.097844e+01 6000 1 60 3.642642e+00 1.167416e+00 1.568588e+01 7680 1 70 3.451253e+00 1.167416e+00 1.618977e+01 8560 1 71 2.984727e+00 1.167416e+00 1.622793e+01 8648 1 ------------------------------------------------------------------- status : simulation_stopping total time (s) : 1.622793e+01 total solves : 8648 best bound : 1.167416e+00 simulation ci : 3.293853e+00 ± 1.130135e-01 numeric issues : 0 ------------------------------------------------------------------- [ Info: sldp_example_two.jl ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 2 state variables : 2 scenarios : 4.00000e+00 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [7, 11] AffExpr in MOI.EqualTo{Float64} : [2, 2] AffExpr in MOI.LessThan{Float64} : [2, 2] VariableRef in MOI.EqualTo{Float64} : [2, 2] VariableRef in MOI.GreaterThan{Float64} : [5, 7] VariableRef in MOI.Integer : [2, 2] VariableRef in MOI.LessThan{Float64} : [4, 7] VariableRef in MOI.ZeroOne : [4, 4] numerical stability report matrix range [1e+00, 6e+00] objective range [1e+00, 3e+01] bounds range [1e+00, 1e+02] rhs range [0e+00, 0e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 10 -4.000000e+01 -5.809615e+01 2.978480e-01 78 1 20 -4.000000e+01 -5.809615e+01 6.228511e-01 148 1 30 -4.000000e+01 -5.809615e+01 1.030849e+00 226 1 40 -4.700000e+01 -5.809615e+01 1.366843e+00 296 1 ------------------------------------------------------------------- status : simulation_stopping total time (s) : 1.366843e+00 total solves : 296 best bound : -5.809615e+01 simulation ci : -5.346250e+01 ± 7.152725e+00 numeric issues : 0 ------------------------------------------------------------------- ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 2 state variables : 2 scenarios : 9.00000e+00 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [7, 11] AffExpr in MOI.EqualTo{Float64} : [2, 2] AffExpr in MOI.LessThan{Float64} : [2, 2] VariableRef in MOI.EqualTo{Float64} : [2, 2] VariableRef in MOI.GreaterThan{Float64} : [5, 7] VariableRef in MOI.Integer : [2, 2] VariableRef in MOI.LessThan{Float64} : [4, 7] VariableRef in MOI.ZeroOne : [4, 4] numerical stability report matrix range [1e+00, 6e+00] objective range [1e+00, 3e+01] bounds range [1e+00, 1e+02] rhs range [0e+00, 0e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 10 -6.300000e+01 -6.196125e+01 3.274679e-01 138 1 20 -4.000000e+01 -6.196125e+01 6.864750e-01 258 1 30 -7.500000e+01 -6.196125e+01 1.185509e+00 396 1 40 -4.000000e+01 -6.196125e+01 1.500497e+00 516 1 ------------------------------------------------------------------- status : simulation_stopping total time (s) : 1.500497e+00 total solves : 516 best bound : -6.196125e+01 simulation ci : -6.108750e+01 ± 7.148463e+00 numeric issues : 0 ------------------------------------------------------------------- ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 2 state variables : 2 scenarios : 3.60000e+01 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [7, 11] AffExpr in MOI.EqualTo{Float64} : [2, 2] AffExpr in MOI.LessThan{Float64} : [2, 2] VariableRef in MOI.EqualTo{Float64} : [2, 2] VariableRef in MOI.GreaterThan{Float64} : [5, 7] VariableRef in MOI.Integer : [2, 2] VariableRef in MOI.LessThan{Float64} : [4, 7] VariableRef in MOI.ZeroOne : [4, 4] numerical stability report matrix range [1e+00, 6e+00] objective range [1e+00, 3e+01] bounds range [1e+00, 1e+02] rhs range [0e+00, 0e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 10 -7.000000e+01 -6.546793e+01 5.226841e-01 462 1 20 -5.600000e+01 -6.546793e+01 9.020381e-01 852 1 30 -4.000000e+01 -6.546793e+01 1.947034e+00 1314 1 40 -4.000000e+01 -6.546793e+01 2.336032e+00 1704 1 ------------------------------------------------------------------- status : simulation_stopping total time (s) : 2.336032e+00 total solves : 1704 best bound : -6.546793e+01 simulation ci : -5.991250e+01 ± 5.174250e+00 numeric issues : 0 ------------------------------------------------------------------- [ Info: stochastic_all_blacks.jl ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 3 state variables : 2 scenarios : 2.70000e+01 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [9, 9] AffExpr in MOI.EqualTo{Float64} : [2, 2] AffExpr in MOI.LessThan{Float64} : [2, 2] VariableRef in MOI.EqualTo{Float64} : [2, 2] VariableRef in MOI.GreaterThan{Float64} : [2, 3] VariableRef in MOI.LessThan{Float64} : [3, 3] VariableRef in MOI.ZeroOne : [4, 4] numerical stability report matrix range [1e+00, 1e+00] objective range [1e+00, 6e+00] bounds range [1e+00, 1e+02] rhs range [0e+00, 0e+00] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 1L 6.000000e+00 1.200000e+01 3.921618e-01 11 1 16L 1.200000e+01 8.000000e+00 1.460669e+00 257 1 27L 6.000000e+00 8.000000e+00 2.479667e+00 459 1 40L 6.000000e+00 8.000000e+00 3.461670e+00 602 1 ------------------------------------------------------------------- status : simulation_stopping total time (s) : 3.461670e+00 total solves : 602 best bound : 8.000000e+00 simulation ci : 8.475000e+00 ± 8.904404e-01 numeric issues : 0 ------------------------------------------------------------------- [ Info: the_farmers_problem.jl ------------------------------------------------------------------- SDDP.jl (c) Oscar Dowson and contributors, 2017-25 ------------------------------------------------------------------- problem nodes : 2 state variables : 3 scenarios : 3.00000e+00 existing cuts : false options solver : serial mode risk measure : SDDP.Expectation() sampling scheme : SDDP.InSampleMonteCarlo subproblem structure VariableRef : [7, 19] AffExpr in MOI.EqualTo{Float64} : [3, 3] AffExpr in MOI.GreaterThan{Float64} : [3, 3] AffExpr in MOI.LessThan{Float64} : [1, 1] VariableRef in MOI.GreaterThan{Float64} : [3, 16] VariableRef in MOI.LessThan{Float64} : [1, 2] numerical stability report matrix range [1e+00, 2e+01] objective range [1e+00, 1e+03] bounds range [6e+03, 5e+05] rhs range [2e+02, 5e+02] ------------------------------------------------------------------- iteration simulation bound time (s) solves pid ------------------------------------------------------------------- 1 -9.800000e+04 4.922260e+05 4.121220e-01 6 1 40 1.093500e+05 1.083900e+05 4.366498e-01 240 1 ------------------------------------------------------------------- status : iteration_limit total time (s) : 4.366498e-01 total solves : 240 best bound : 1.083900e+05 simulation ci : 9.772505e+04 ± 1.969816e+04 numeric issues : 0 ------------------------------------------------------------------- [ Info: vehicle_location.jl Test Summary: | Pass Total Time SDDP.jl | 2399 2399 18m00.3s Testing SDDP tests passed Testing completed after 1088.36s PkgEval succeeded after 1938.87s