Package evaluation of QuasiNewtonMethods on Julia 1.12.0-rc2.1 (084dab1917*) started at 2025-09-12T07:52:14.538 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.67s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.12/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.12/Manifest.toml` [79e6a3ab] + Adapt v4.3.0 [4fba245c] + ArrayInterface v7.20.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.18.0 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.5 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.172 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.17.0 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.72 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.12.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [8e850b90] + libblastrampoline_jll v5.13.1+1 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 4.36s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 236.76s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_yVmad2/Project.toml` [4c88cf16] Aqua v0.8.14 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test v1.11.0 Status `/tmp/jl_yVmad2/Manifest.toml` [79e6a3ab] Adapt v4.3.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.20.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.18.0 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.5 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.172 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.72 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.11 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.12.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.12.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.11.1+1 [e37daf67] LibGit2_jll v1.9.0+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.5.20 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.1+0 [83775a58] Zlib_jll v1.3.1+2 [8e850b90] libblastrampoline_jll v5.13.1+1 [8e850ede] nghttp2_jll v1.64.0+1 [3f19e933] p7zip_jll v17.5.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Base.PkgId(Base.UUID("8dfed614-e22c-5e08-85e1-65c5234f0b40"), "Test")]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:680 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1776 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [-5.891442889094378e-11, -9.990863691911045e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-4.978251144649448e-11, -1.0327305677293452e-10] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [1.7228107829225792e-10, 3.384525992800036e-10, -1.91769711221923e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-2.3008506211397162e-10, -4.5216985711249436e-10, 8.220919500701029e-10] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [-3.045730334605423e-11, -9.673373213558989e-13, -6.043154865409406e-11, -2.0194956817931597e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-7.644296307063314e-11, -2.903799423137343e-10, -1.7228651838507858e-10, -5.758581389514461e-10] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [6.714695466314424e-11, 5.957767612585485e-11, 1.39096512086212e-10, 1.2365863888419426e-10, 2.2955637390964512e-11] QuasiNewtonMethods.optimum(state) .- 1 = [4.266564879173984e-11, 2.6568081068489846e-11, 7.349498787334596e-11, 5.221245658049156e-11, -3.43836070726411e-13] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [7.350453579135774e-11, 1.462419074726995e-10, 3.0288949126600073e-10, 1.5515455586978533e-10, 2.893625339339678e-10, 6.06452665863344e-10] QuasiNewtonMethods.optimum(state) .- 1 = [3.809441651014822e-11, 1.5501111505500376e-10, 9.69599955880085e-11, 8.138800744461605e-11, 2.883857597169026e-10, 2.033788693012184e-10] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [3.1382896281684225e-11, 6.979239408622107e-11, 1.3808509891077847e-11, 5.47764056335609e-11, 1.3418777200513432e-10, 3.0578872767250687e-11, -8.549694285875375e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-8.535794293607069e-11, -2.4748092464221827e-11, -2.461586490198897e-10, -1.6715306916381678e-10, -5.441735950739712e-11, -4.99234431572404e-10, 6.292522058970462e-12] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [4.0589753780295723e-13, -2.1770696356782082e-11, -1.3955947508748068e-11, -3.3252400832850526e-11, -6.811218256075335e-13, -4.219413707318154e-11, -2.910882646034452e-11, -6.623634973834669e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.3955947508748068e-11, 2.1848078901598456e-11, -1.9808599205362043e-11, -1.3660961251105164e-11, 2.8911539828868627e-11, 4.013323007256986e-11, -3.723010788547754e-11, -2.7567725879862337e-11] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [9.025957758979075e-11, 7.418421432703326e-11, -1.9102019965799855e-10, -3.1291635949060037e-12, 1.980671182622018e-10, 1.551667683230562e-10, -3.838989126592196e-10, -5.183520279672393e-12, -9.456546656849696e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.348032796499865e-12, 1.77262649003751e-11, 1.0951239914902544e-11, -2.912670105104098e-12, 4.9897863618753036e-12, 3.5250691254873345e-11, 2.411626454090765e-11, -6.896261339761622e-12, -2.775224494655504e-12] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [-8.758660463570322e-11, 1.73847602980004e-11, -6.027389698459729e-11, -3.420053129588041e-11, 6.469491609095712e-11, -1.7713397415519694e-10, 2.7813085168304497e-11, -1.177585806644288e-10, -7.596689943767387e-11, 1.4229994960146541e-10] QuasiNewtonMethods.optimum(state) .- 1 = [2.5867308295346447e-11, -7.64288632382204e-12, 1.4630074929300463e-11, 2.4485746763502902e-11, -2.061473214354237e-11, 5.2726711885497934e-11, -1.246214242911492e-11, 2.7035929051066887e-11, 4.724709512515801e-11, -3.918043667283655e-11] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [5.926636958974996e-11, -1.4099832412739488e-13, -2.102085172595025e-11, -5.676992209657783e-11, -1.121861492592302e-10, 1.210900268944215e-10, 1.9049206656518436e-12, -4.8292370102842597e-11, -1.1920742171156462e-10, -2.1182666731789368e-10, 1.078426237199892e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-2.3021584638627246e-11, 6.900036098045348e-12, -1.1521450460350025e-11, 2.4427126987802694e-12, 1.2783551994743902e-11, -4.513833751218499e-11, 1.0511591597150982e-11, -2.1210255773951303e-11, 4.618083693230801e-12, 2.911115792869623e-11, -5.826450433232822e-13] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [1.136937211043687e-10, -2.5726754060428902e-11, -9.33696453486732e-11, 1.0913958625735631e-10, 1.847566544199708e-11, -2.6398883079536972e-11, 2.2927881815348883e-10, -4.931099972793618e-11, -1.9206325418963388e-10, 2.1391000082360279e-10, 3.435718376465502e-11, -4.285505283974089e-11] QuasiNewtonMethods.optimum(state) .- 1 = [2.6838087308078684e-11, 3.449063257221496e-11, 3.551958727143756e-11, -2.359012984953779e-11, 2.1639356972968926e-11, -1.237698832312617e-11, 5.537881264672251e-11, 6.81241729694193e-11, 7.550737812778152e-11, -4.095690453453926e-11, 4.3771430924266497e-11, -2.554345623906329e-11] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [3.3226754680981685e-12, -1.139943694994372e-11, 2.4834134748630277e-11, -1.4095391520640987e-12, 1.8856249894838584e-11, -5.468847597001059e-12, 5.782041512247815e-12, -2.3537838345077944e-11, 4.9960924286551744e-11, -3.2412961203931445e-12, 3.748712451567826e-11, -9.548362100986196e-12, -9.07496300328603e-13] QuasiNewtonMethods.optimum(state) .- 1 = [2.0809132195154234e-11, -4.428968303216152e-11, -2.1160850849355484e-13, -2.0964008307089443e-11, 1.02837738324979e-11, 3.031419559818005e-11, 4.4835024581857397e-11, -8.122336137006414e-11, 3.2382985182266566e-12, -4.127242991813773e-11, 2.0230928043929453e-11, 5.893152632552301e-11, 3.539391002504999e-13] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [1.3318901537218153e-11, -1.5523138330308939e-12, -1.530520155057502e-11, 1.9118484573255046e-11, 9.089173858001232e-12, -1.1106560116047604e-11, 1.7197354651443675e-11, 2.3843371721454787e-11, 1.5563106359195444e-12, -3.218547650618575e-11, 3.994271580154418e-11, 1.759126178058068e-11, -1.9787504967894165e-11, 2.992539549495632e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-8.90190143820746e-11, 3.74111852607939e-11, -2.553391942328176e-10, -3.6700276151435673e-10, -1.6641832356611985e-10, -8.991440925143479e-11, -8.740241863591791e-11, -1.6828394233669997e-10, 6.14897022188643e-11, -5.238935951723533e-10, -7.236381494024613e-10, -3.3521196929342523e-10, -1.8602763773856168e-10, -1.7036405619563766e-10] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [4.9748205555033564e-11, 4.5064396658744954e-11, -3.885336496978198e-12, 2.5943025505625883e-11, -4.825539967612258e-11, 3.1589841853474354e-11, -9.237610676393615e-12, 1.0064726829739357e-10, 9.006018153456807e-11, -1.3673062682073578e-11, 5.222555721218214e-11, -9.752920693273381e-11, 6.348077619122705e-11, -2.156708145406583e-11, -7.797651413454787e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.6364987143191456e-10, -1.0291212326762889e-10, -1.3001988374838902e-10, 2.5492497002232994e-11, 5.260480939739409e-11, 8.389733352487383e-12, 8.501865877974524e-12, -3.3424873979726044e-10, -2.12954209821703e-10, -2.567854817669968e-10, 5.7549076615259764e-11, 1.0504574987635351e-10, 1.5722090296321767e-11, 1.2386314196533021e-11, 4.817479748453479e-12] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [5.98876503943302e-11, 1.1891243545392172e-10, 1.1973977365187238e-11, 1.647026959261666e-10, -2.6050384072107136e-11, -6.867928448173188e-11, 5.754485776776619e-11, 9.896106156759288e-11, 1.2091905254862922e-10, 2.440723179120141e-10, 2.628053330511193e-11, 3.1606806061290627e-10, -5.551437087802924e-11, -1.3348988581185495e-10, 1.1306422464940624e-10, 1.907585200910944e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-4.896294480971619e-11, -3.0632163472432694e-12, 2.263522702605769e-11, 1.6062262631066915e-11, 4.242828310907498e-12, -2.511768570911954e-12, -1.5730861058216306e-11, -3.809841331303687e-11, -9.926715005548203e-11, -1.1099010599480152e-11, 4.432099132145595e-11, 3.396438685854264e-11, 8.024914066595557e-12, -9.53792600455472e-13, -3.3870684035264276e-11, -7.685252434441736e-11] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [9.887624052851152e-11, -5.5387472386314585e-11, -5.5656701469786185e-11, 6.280220787857616e-11, 2.0508661435769682e-10, 4.440980916342596e-11, 3.488853650424062e-11, 1.443489772157136e-11, 1.9208856727459533e-10, -1.1226952700837955e-10, -1.0626632906962641e-10, 1.2274492533492776e-10, 4.3523029624736864e-10, 8.370948378910725e-11, 7.776268518000506e-11, 2.812527988282909e-11, 2.0017321133991572e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.7785550809890083e-11, 3.156674921456215e-11, -8.189859901364116e-11, 1.1316281245399296e-11, 4.644906681505745e-11, 8.815836949338518e-12, 2.984235081271436e-11, -6.530886942357483e-12, 2.4008794952123935e-11, 6.678679831395584e-11, -1.58551283213626e-10, 2.258837561441851e-11, 9.438694270613723e-11, 8.678391338889924e-12, 6.920597428461406e-11, -2.019462375102421e-11, 1.5303758260643008e-11] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [1.3027356970951587e-12, 1.1146639167236572e-12, 2.589128911267835e-11, 9.027001368622223e-12, 2.966826784245313e-11, 1.4120038471787666e-11, -5.597522445555114e-12, 1.1703304991783625e-11, -1.0407674722046067e-11, 3.2864821974953884e-12, 3.3741898164407758e-12, 4.5003112347785645e-11, 1.921396375337281e-11, 5.826983340284642e-11, 2.564637391344604e-11, -1.2787548797632553e-11, 1.9133139517180098e-11, -1.9667045769722336e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-4.802858111219166e-11, 1.3389511721584313e-11, -6.8228755978338995e-12, 2.5220270316594906e-11, 1.273918748267988e-10, 6.96844804082275e-11, -1.5676571152312135e-11, -6.977496358473445e-11, -1.5705992062464702e-11, -9.672562750751013e-11, 2.3154367312372415e-11, -1.0034306718864627e-11, 5.1706416925867416e-11, 2.5484259147390276e-10, 1.3427703393631418e-10, -3.522704350444883e-11, -1.4605305853621076e-10, -3.120670388767621e-11] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [4.705635880952741e-11, -8.466494172409966e-11, 5.773381772655739e-12, -3.257105696263807e-11, 8.969380793644177e-11, 7.144129732239435e-11, 6.215206127535566e-11, -1.768485358155658e-11, -1.9147239349592837e-11, 9.289657931788042e-11, -1.6603562968953156e-10, 7.12829795190828e-12, -6.596723167717755e-11, 1.8793611111789232e-10, 1.427788998142887e-10, 1.3470957682670814e-10, -3.644429202864785e-11, -4.308431389432599e-11, -3.7015945864027344e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.624478329631529e-11, -5.780709244618265e-12, 5.25135490647699e-13, -2.2280621791992417e-11, 1.497291179930471e-11, 8.950840069132937e-12, 1.4161560812908647e-11, -2.628453010800058e-12, 2.8271607277474686e-11, 3.008349125366294e-11, -1.054989429150055e-11, -1.0728085086952888e-12, -4.3138936867137545e-11, 3.0636604364531195e-11, 1.765387835916954e-11, 2.802025278469955e-11, -6.442402167294858e-12, 5.502887034936066e-11, -4.789946217442775e-12] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [1.7760903858743404e-11, 8.987255384340642e-12, -6.165312704808912e-11, 5.090394772366835e-11, 2.628319784037103e-11, -1.3077183780296764e-10, 1.3418821609434417e-11, -9.546896606593691e-11, 3.4452440900167858e-12, -9.215428420361604e-11, 2.3931523429610024e-11, 7.301492743749805e-12, -1.2310275021576444e-10, 9.488299035353975e-11, 5.4959370388019124e-11, -2.563784740061692e-10, 4.779510121011299e-11, -1.9822843366767984e-10, 1.3736345394477212e-11, -1.8310153393485962e-10] QuasiNewtonMethods.optimum(state) .- 1 = [5.2486681667573976e-11, 3.632760758875975e-11, 1.4731815767277112e-10, -3.2210900613449667e-11, 8.657563554947956e-11, -2.610978100392458e-11, 6.889733228376826e-11, -8.955614028138825e-12, 3.6391112345768306e-11, -5.1957882440945014e-11, 9.994582939043539e-11, 7.695954984399123e-11, 2.937434739891387e-10, -6.570166632968721e-11, 1.7076251523917563e-10, -5.0331738776776547e-11, 1.179976116816306e-10, -1.4620527011288686e-11, 6.487810289002027e-11, -1.0459544341756555e-10] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [-7.85107534539975e-11, -2.7959856652159942e-12, -6.926981210853e-11, 2.1934232208309368e-11, 3.932210113077872e-11, -7.526290701775906e-11, 4.0673686640957385e-11, -1.0167477970668415e-10, -5.092581911725347e-11, -3.108702184562162e-11, -1.5808554465479574e-10, -7.827072323607354e-14, -1.3577106106055226e-10, 4.2701175928527846e-11, 7.919687128321584e-11, -1.554028017380915e-10, 7.854583650157565e-11, -1.944465699565967e-10, -9.639145037709795e-11, -6.406053465468631e-11, 5.42788036739239e-12] QuasiNewtonMethods.optimum(state) .- 1 = [9.3111074406238e-11, -1.1685952205908734e-10, -1.3926848563272642e-10, -2.7325253171284203e-11, -9.160183722656257e-11, -5.545042203181083e-11, 1.7680301667155618e-11, -3.976996509891251e-11, 9.182410387609252e-11, -6.296618781931329e-11, 1.8618595554187323e-10, -2.2744595096213516e-10, -2.687912115106883e-10, -5.110156742205163e-11, -1.8969181780903455e-10, -1.0763379076905721e-10, 3.232392131735651e-11, -7.75496333815795e-11, 1.8810597524065997e-10, -1.297341123418505e-10, -9.952039192739903e-13] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [2.0383583709815412e-10, 4.131046615896139e-10, -1.224986778680659e-11, -3.136912951617887e-11, -1.1604761596117896e-10, -2.848445923575582e-10, 1.8742785101721893e-11, 3.9016123665192026e-11, -1.4080181465203623e-10, -8.979372800865804e-12, -2.334147319871249e-10, 4.093774208513423e-10, 8.275342633368155e-10, -2.5147550708481958e-11, -6.718059442079038e-11, -2.1350410328579983e-10, -5.718608919735857e-10, 4.0888181729314965e-11, 7.547584779388217e-11, -2.901222595497188e-10, -1.903877056008696e-11, -4.639895134772587e-10] QuasiNewtonMethods.optimum(state) .- 1 = [1.258704251938525e-11, -3.215461230610117e-11, 1.0127898519840528e-11, 4.026889932617905e-11, -1.9893753311350793e-11, 1.012854244919481e-10, 8.65068017219528e-11, 1.3808754140143265e-10, -2.1438406605511773e-12, 1.4105050460955226e-10, -1.9301227283108346e-11, 2.6713742329320667e-11, -6.697842280800614e-11, 2.6757929205700748e-11, 8.056200151429493e-11, -3.090150357820676e-11, 1.9692336650223297e-10, 1.6811152470097568e-10, 2.789091180233072e-10, -1.3033796264494413e-11, 2.813156374514847e-10, -3.7933989283089886e-11] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [2.7607915953353768e-11, -3.326938724512729e-11, 6.051226186798431e-11, 4.902456218758289e-11, -1.0796807892177185e-11, -9.741452089429004e-11, -1.344457878360572e-11, -7.955147651728112e-11, 8.808065388166142e-11, 1.3667289522345527e-11, -2.7625901566352695e-11, 5.023470528442431e-11, -7.558287329345603e-11, 1.1370060448712138e-10, 9.497980180128707e-11, 1.581845765485923e-12, -1.9910872950390512e-10, -7.500999821274945e-12, -1.645528158178422e-10, 1.8059820305893481e-10, 2.644773289262048e-11, -3.446520846495105e-11, 1.3766987549956866e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.2930090331764177e-10, -2.5936919278990445e-11, -1.539957050766816e-11, 3.4692915207301667e-11, 2.359101802795749e-10, -4.2327807925346406e-11, 6.612355107904477e-11, -1.019666573398581e-10, 2.2364332608049153e-12, -1.4538226178473224e-10, -1.3651724195540282e-10, -2.6085567039757507e-10, -5.716982443004781e-11, -2.6959434684670214e-11, 6.868683399829933e-11, 4.712501500137023e-10, -8.36216651478594e-11, 1.3708323365335673e-10, -2.0047763449326794e-10, -3.6014524695815453e-12, -2.977117441460564e-10, -2.741358251512338e-10, 7.111866651143828e-12] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [9.412026713562227e-11, -2.0328183580886616e-13, 8.189537936686975e-11, 1.6436185745760667e-11, -1.8169465931805462e-11, 2.238471630278127e-10, -5.347633447172484e-11, -8.589562394689665e-11, -6.497347104783557e-11, -1.1184042580936193e-10, 4.511990780997621e-11, -9.121126076649944e-11, 2.0850121629223395e-10, -1.9596546607658638e-11, 1.745756872395532e-10, 4.1355585622682156e-11, -4.134415032552852e-11, 4.4365044971073075e-10, -1.1870060490082324e-10, -1.686510930909435e-10, -1.321166509526961e-10, -2.291254963537881e-10, 8.916867244579407e-11, -1.8706058924067293e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-2.2573165558981145e-11, 9.59683443824133e-11, 1.6600387731102728e-10, -2.3070112487033612e-10, -1.1840439739785324e-10, 3.613485066722433e-10, 4.570011036264532e-11, -2.2844104385910668e-10, -2.723341552268721e-10, 6.272737884671642e-11, 2.2138757493905814e-10, 5.2027271379984086e-12, -4.420552812689493e-11, 1.8840262683283981e-10, 3.2657432313953905e-10, -4.6059456249025743e-10, -2.2452673054118577e-10, 7.110811939270434e-10, 9.630518604808458e-11, -4.817407583956879e-10, -5.689424487087535e-10, 1.2945444716194743e-10, 4.4107872909648904e-10, 1.1485257189747244e-11] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 148 1 149 4m24.8s Method ambiguity | 1 1 10.0s Unbound type parameters | 1 1 0.1s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.4s Stale dependencies | 1 1 7.3s Compat bounds | 3 1 4 12.1s julia | 1 1 0.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") deps | 1 1 0.6s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras | 1 1 11.4s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") weakdeps | 1 1 0.0s Piracy | 1 1 0.2s Persistent tasks | 1 1 28.9s RNG of the outermost testset: Random.Xoshiro(0x3489b4ee17c94787, 0x21c45a7744290935, 0x15c9a6b754a9fd51, 0x387abd8da6691377, 0x922234c81875ddfc) ERROR: LoadError: Some tests did not pass: 148 passed, 1 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 293.15s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.12/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2427 [3] test @ /opt/julia/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2280 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.12/Pkg/src/API.jl:483 [5] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.12/Pkg/src/API.jl:164 [6] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.12/Pkg/src/API.jl:152 [7] test @ /opt/julia/share/julia/stdlib/v1.12/Pkg/src/API.jl:152 [inlined] [8] #test#81 @ /opt/julia/share/julia/stdlib/v1.12/Pkg/src/API.jl:151 [inlined] [9] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 [10] include(mod::Module, _path::String) @ Base ./Base.jl:305 [11] exec_options(opts::Base.JLOptions) @ Base ./client.jl:321 [12] _start() @ Base ./client.jl:554 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 587.54s: package has test failures