Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1720 (f38c537ec6*) started at 2026-02-15T16:13:45.924 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 12.07s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.14.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.18.0+0 [e37daf67] + LibGit2_jll v1.9.2+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.12.2 [4536629a] + OpenBLAS_jll v0.3.30+0 [458c3c95] + OpenSSL_jll v3.5.5+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.53s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling packages... 1339.6 ms ✓ Measurements 4654.5 ms ✓ StatsBase 1356.0 ms ✓ EarCut_jll 21331.0 ms ✓ GeometryBasics 6389.4 ms ✓ RayTraceHeatTransfer 5 dependencies successfully precompiled in 36 seconds. 56 already precompiled. Precompilation completed after 57.75s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_L9EFBl/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.16 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_L9EFBl/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.16 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.18.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.30+0 [458c3c95] OpenSSL_jll v3.5.5+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:04:17 Bin 1 progress: 56%|██████████████████▋ | ETA: 0:00:04 Bin 1 progress: 93%|██████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:06 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010764833546713375 Iteration 10: d = 1.2970240907652015e-5 Iteration 20: d = 2.1281857142384573e-7 Iteration 30: d = 3.6572001638681423e-9 Iteration 40: d = 6.337803779083084e-11 Iteration 50: d = 1.1008314023172062e-12 Iteration 60: d = 1.9134523450047333e-14 Converged after 66 iterations. d = 1.6590855679882096e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 33%|██████████▊ | ETA: 0:00:02 Bin 1 progress: 71%|███████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001043216256135437 Iteration 10: d = 1.3493198414083594e-5 Iteration 20: d = 2.3155195705392337e-7 Iteration 30: d = 4.039363564180595e-9 Iteration 40: d = 7.038011498197512e-11 Iteration 50: d = 1.225344107986126e-12 Iteration 60: d = 2.1318432010131027e-14 Converged after 66 iterations. d = 1.888637758427644e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▊ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00119476026822624 Iteration 10: d = 1.6852501355156474e-5 Iteration 20: d = 2.6848005454964615e-7 Iteration 30: d = 4.482465527094916e-9 Iteration 40: d = 7.614279127275836e-11 Iteration 50: d = 1.3045423954037184e-12 Iteration 60: d = 2.247737130704934e-14 Converged after 66 iterations. d = 1.977418383658068e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001108544576612113 Iteration 10: d = 1.4273462440086592e-5 Iteration 20: d = 2.250325408129405e-7 Iteration 30: d = 3.808054341636298e-9 Iteration 40: d = 6.559034431817233e-11 Iteration 50: d = 1.1377916994009858e-12 Iteration 60: d = 1.9812521601142596e-14 Converged after 66 iterations. d = 1.7340833698364569e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013682181077779689 Iteration 10: d = 9.701139660926682e-6 Iteration 20: d = 1.0915927662402361e-7 Iteration 30: d = 1.586303890544994e-9 Iteration 40: d = 2.4284511084820375e-11 Iteration 50: d = 3.7827268941255063e-13 Iteration 60: d = 5.933960462550576e-15 Converged after 63 iterations. d = 1.7087975785703654e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 77%|█████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014075089493291255 Iteration 10: d = 1.2809404094727271e-5 Iteration 20: d = 1.691808417402624e-7 Iteration 30: d = 2.5392588106822297e-9 Iteration 40: d = 3.906332299493989e-11 Iteration 50: d = 6.079418996210792e-13 Iteration 60: d = 9.54129009807778e-15 Converged after 64 iterations. d = 1.7879099790902875e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013966274926725465 Iteration 10: d = 1.4084143040495517e-5 Iteration 20: d = 1.9173724586208677e-7 Iteration 30: d = 2.890944640492765e-9 Iteration 40: d = 4.449867939742592e-11 Iteration 50: d = 6.913755890141731e-13 Iteration 60: d = 1.075433705551915e-14 Converged after 64 iterations. d = 2.108201288872541e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 79%|██████████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001230440573703242 Iteration 10: d = 1.0385687153397528e-5 Iteration 20: d = 1.293504838687176e-7 Iteration 30: d = 1.895674215811325e-9 Iteration 40: d = 2.8861292359422168e-11 Iteration 50: d = 4.4747026422334277e-13 Iteration 60: d = 7.0008320689143485e-15 Converged after 63 iterations. d = 2.033114541624086e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001446583508793996 Iteration 10: d = 1.2717297148869862e-5 Iteration 20: d = 1.4162858837967322e-7 Iteration 30: d = 1.880135600873487e-9 Iteration 40: d = 2.6850131020093268e-11 Iteration 50: d = 4.009275303779536e-13 Iteration 60: d = 6.1673585785338834e-15 Converged after 63 iterations. d = 1.7338285702546181e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 77%|█████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012540828285987082 Iteration 10: d = 8.180970558664407e-6 Iteration 20: d = 9.017768625581038e-8 Iteration 30: d = 1.3234232353648998e-9 Iteration 40: d = 2.029838755923906e-11 Iteration 50: d = 3.1428657687995925e-13 Iteration 60: d = 4.867283975556313e-15 Converged after 62 iterations. d = 2.1264582081710128e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.005856514504080405 Iteration 10: d = 5.381881769568188e-5 Iteration 20: d = 5.179496910325239e-7 Iteration 30: d = 6.551600339292634e-9 Iteration 40: d = 8.950075181871772e-11 Iteration 50: d = 1.2421064784525933e-12 Iteration 60: d = 1.728332785131002e-14 Converged after 65 iterations. d = 2.0212991185444488e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.003637444139777709 Iteration 10: d = 4.634286259901754e-5 Iteration 20: d = 6.876692904477102e-7 Iteration 30: d = 1.0898149221622254e-8 Iteration 40: d = 1.7458617933607556e-10 Iteration 50: d = 2.8062293234933635e-12 Iteration 60: d = 4.519681243390519e-14 Converged after 68 iterations. d = 1.6734258087153584e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0029619111196374096 Iteration 10: d = 3.444631825370515e-5 Iteration 20: d = 4.6780339103790257e-7 Iteration 30: d = 7.164715566841142e-9 Iteration 40: d = 1.1380787257713033e-10 Iteration 50: d = 1.8387055825584366e-12 Iteration 60: d = 3.00070115650294e-14 Converged after 67 iterations. d = 1.7057560153533407e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0019252941297458676 Iteration 10: d = 1.59718060898457e-5 Iteration 20: d = 2.1966296116465176e-7 Iteration 30: d = 3.5347600922255527e-9 Iteration 40: d = 5.934256256270178e-11 Iteration 50: d = 1.0176476656001401e-12 Iteration 60: d = 1.7643384232760347e-14 Converged after 66 iterations. d = 1.5289561936174702e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 79%|██████████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013682181077779689 Iteration 10: d = 9.701139660926682e-6 Iteration 20: d = 1.0915927662402361e-7 Iteration 30: d = 1.586303890544994e-9 Iteration 40: d = 2.4284511084820375e-11 Iteration 50: d = 3.7827268941255063e-13 Iteration 60: d = 5.933960462550576e-15 Converged after 63 iterations. d = 1.7087975785703654e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010415182894710983 Iteration 10: d = 1.1766057812519853e-5 Iteration 20: d = 1.5926744582202567e-7 Iteration 30: d = 2.2392607343764804e-9 Iteration 40: d = 3.1524558353808825e-11 Iteration 50: d = 4.4343511369671106e-13 Iteration 60: d = 6.220339667515838e-15 Converged after 63 iterations. d = 1.7366816025029803e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015688584854251844 Iteration 10: d = 1.5022793278738743e-5 Iteration 20: d = 1.6758816010691234e-7 Iteration 30: d = 2.1202281832383695e-9 Iteration 40: d = 2.7540313763826616e-11 Iteration 50: d = 3.6087058349520733e-13 Iteration 60: d = 4.766765606928689e-15 Converged after 62 iterations. d = 2.0329258066849955e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.634801618575 Iteration 2: convergence error = 4832.474543400604 Iteration 3: convergence error = 1096.3689663922985 Iteration 4: convergence error = 317.64624097634396 Iteration 5: convergence error = 93.99986991996661 Iteration 6: convergence error = 28.32834523160409 Iteration 7: convergence error = 8.513984998985507 Iteration 8: convergence error = 2.548385997434252 Iteration 9: convergence error = 0.7609240354004214 Iteration 10: convergence error = 0.22688628317769144 Iteration 11: convergence error = 0.06759703692569019 Iteration 12: convergence error = 0.02013024916664108 Iteration 13: convergence error = 0.005993184137423668 Iteration 14: convergence error = 0.0017840264192727773 Iteration 15: convergence error = 0.0005310160029239341 Iteration 16: convergence error = 0.00015804920462869632 Iteration 17: convergence error = 4.703969625552418e-5 Iteration 18: convergence error = 1.4000046576256864e-5 Iteration 19: convergence error = 4.166675580563606e-6 Iteration 20: convergence error = 1.2400753348629223e-6 Iteration 21: convergence error = 3.690677203849191e-7 Iteration 22: convergence error = 1.0968574315484148e-7 Iteration 23: convergence error = 3.1738409234094433e-8 Iteration 24: convergence error = 9.13905751076527e-9 Iteration 25: convergence error = 2.6223005988867953e-9 Iteration 26: convergence error = 7.489688869100064e-10 Iteration 27: convergence error = 2.141860022675246e-10 Iteration 28: convergence error = 6.048139766789973e-11 Iteration 29: convergence error = 1.9099388737231493e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010415182894710983 Iteration 10: d = 1.1766057812519853e-5 Iteration 20: d = 1.5926744582202567e-7 Iteration 30: d = 2.2392607343764804e-9 Iteration 40: d = 3.1524558353808825e-11 Iteration 50: d = 4.4343511369671106e-13 Iteration 60: d = 6.220339667515838e-15 Converged after 63 iterations. d = 1.7366816025029803e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8652.079360724769 Iteration 2: convergence error = 4823.9425484033 Iteration 3: convergence error = 1095.6214677000257 Iteration 4: convergence error = 319.47203348087214 Iteration 5: convergence error = 94.66288376029866 Iteration 6: convergence error = 28.182981588693565 Iteration 7: convergence error = 8.422837149616043 Iteration 8: convergence error = 2.519906141518277 Iteration 9: convergence error = 0.7520981154309538 Iteration 10: convergence error = 0.22416452199627201 Iteration 11: convergence error = 0.06676032794621278 Iteration 12: convergence error = 0.019873585571076546 Iteration 13: convergence error = 0.0059145750703919475 Iteration 14: convergence error = 0.0017599798150058632 Iteration 15: convergence error = 0.0005236673846411577 Iteration 16: convergence error = 0.0001558053700136952 Iteration 17: convergence error = 4.635506229533348e-5 Iteration 18: convergence error = 1.379129093947995e-5 Iteration 19: convergence error = 4.1030682496057125e-6 Iteration 20: convergence error = 1.220705144078238e-6 Iteration 21: convergence error = 3.631610070442548e-7 Iteration 22: convergence error = 1.0788744475576095e-7 Iteration 23: convergence error = 3.119453140243422e-8 Iteration 24: convergence error = 8.974211596068926e-9 Iteration 25: convergence error = 2.5693225325085223e-9 Iteration 26: convergence error = 7.471498975064605e-10 Iteration 27: convergence error = 2.1327650756575167e-10 Iteration 28: convergence error = 5.866240826435387e-11 Iteration 29: convergence error = 1.9554136088117957e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 13:35:46 Bin 1 ray tracing: 8%|██▍ | ETA: 0:01:10 Bin 1 ray tracing: 15%|████▋ | ETA: 0:00:39 Bin 1 ray tracing: 22%|██████▊ | ETA: 0:00:28 Bin 1 ray tracing: 30%|█████████ | ETA: 0:00:21 Bin 1 ray tracing: 37%|███████████▏ | ETA: 0:00:17 Bin 1 ray tracing: 45%|█████████████▍ | ETA: 0:00:14 Bin 1 ray tracing: 52%|███████████████▋ | ETA: 0:00:11 Bin 1 ray tracing: 60%|█████████████████▉ | ETA: 0:00:09 Bin 1 ray tracing: 67%|████████████████████▏ | ETA: 0:00:07 Bin 1 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:05 Bin 1 ray tracing: 82%|████████████████████████▊ | ETA: 0:00:03 Bin 1 ray tracing: 90%|██████████████████████████▉ | ETA: 0:00:02 Bin 1 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:18 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 8%|██▎ | ETA: 0:00:13 Bin 2 ray tracing: 15%|████▌ | ETA: 0:00:12 Bin 2 ray tracing: 22%|██████▊ | ETA: 0:00:11 Bin 2 ray tracing: 30%|█████████ | ETA: 0:00:10 Bin 2 ray tracing: 38%|███████████▎ | ETA: 0:00:09 Bin 2 ray tracing: 45%|█████████████▌ | ETA: 0:00:08 Bin 2 ray tracing: 52%|███████████████▋ | ETA: 0:00:07 Bin 2 ray tracing: 60%|█████████████████▉ | ETA: 0:00:06 Bin 2 ray tracing: 68%|████████████████████▎ | ETA: 0:00:04 Bin 2 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:03 Bin 2 ray tracing: 83%|████████████████████████▊ | ETA: 0:00:02 Bin 2 ray tracing: 90%|███████████████████████████ | ETA: 0:00:01 Bin 2 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 8%|██▎ | ETA: 0:00:13 Bin 3 ray tracing: 15%|████▌ | ETA: 0:00:12 Bin 3 ray tracing: 23%|██████▊ | ETA: 0:00:10 Bin 3 ray tracing: 30%|█████████ | ETA: 0:00:09 Bin 3 ray tracing: 37%|███████████▎ | ETA: 0:00:08 Bin 3 ray tracing: 45%|█████████████▍ | ETA: 0:00:08 Bin 3 ray tracing: 52%|███████████████▋ | ETA: 0:00:07 Bin 3 ray tracing: 60%|█████████████████▉ | ETA: 0:00:06 Bin 3 ray tracing: 67%|████████████████████▏ | ETA: 0:00:04 Bin 3 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:03 Bin 3 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:02 Bin 3 ray tracing: 90%|██████████████████████████▉ | ETA: 0:00:01 Bin 3 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 4 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 4 ray tracing: 25%|███████▌ | ETA: 0:00:09 Bin 4 ray tracing: 33%|█████████▉ | ETA: 0:00:08 Bin 4 ray tracing: 41%|████████████▎ | ETA: 0:00:07 Bin 4 ray tracing: 49%|██████████████▋ | ETA: 0:00:06 Bin 4 ray tracing: 57%|█████████████████ | ETA: 0:00:05 Bin 4 ray tracing: 65%|███████████████████▌ | ETA: 0:00:04 Bin 4 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:03 Bin 4 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:02 Bin 4 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:01 Bin 4 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 5 ray tracing: 16%|████▉ | ETA: 0:00:10 Bin 5 ray tracing: 25%|███████▍ | ETA: 0:00:09 Bin 5 ray tracing: 32%|█████████▊ | ETA: 0:00:09 Bin 5 ray tracing: 40%|████████████ | ETA: 0:00:08 Bin 5 ray tracing: 48%|██████████████▍ | ETA: 0:00:07 Bin 5 ray tracing: 56%|████████████████▉ | ETA: 0:00:06 Bin 5 ray tracing: 64%|███████████████████▎ | ETA: 0:00:05 Bin 5 ray tracing: 72%|█████████████████████▊ | ETA: 0:00:03 Bin 5 ray tracing: 80%|████████████████████████▏ | ETA: 0:00:02 Bin 5 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:01 Bin 5 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 8%|██▍ | ETA: 0:00:11 Bin 6 ray tracing: 16%|████▉ | ETA: 0:00:10 Bin 6 ray tracing: 24%|███████▍ | ETA: 0:00:09 Bin 6 ray tracing: 33%|█████████▉ | ETA: 0:00:08 Bin 6 ray tracing: 41%|████████████▍ | ETA: 0:00:07 Bin 6 ray tracing: 50%|██████████████▉ | ETA: 0:00:06 Bin 6 ray tracing: 57%|█████████████████▎ | ETA: 0:00:05 Bin 6 ray tracing: 65%|███████████████████▋ | ETA: 0:00:04 Bin 6 ray tracing: 73%|██████████████████████ | ETA: 0:00:03 Bin 6 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:02 Bin 6 ray tracing: 89%|██████████████████████████▉ | ETA: 0:00:01 Bin 6 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 7 ray tracing: 16%|████▊ | ETA: 0:00:11 Bin 7 ray tracing: 24%|███████▏ | ETA: 0:00:10 Bin 7 ray tracing: 32%|█████████▌ | ETA: 0:00:09 Bin 7 ray tracing: 40%|███████████▉ | ETA: 0:00:08 Bin 7 ray tracing: 48%|██████████████▎ | ETA: 0:00:07 Bin 7 ray tracing: 55%|████████████████▋ | ETA: 0:00:06 Bin 7 ray tracing: 63%|███████████████████ | ETA: 0:00:05 Bin 7 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:04 Bin 7 ray tracing: 79%|███████████████████████▉ | ETA: 0:00:03 Bin 7 ray tracing: 88%|██████████████████████████▎ | ETA: 0:00:02 Bin 7 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 8 ray tracing: 16%|████▉ | ETA: 0:00:11 Bin 8 ray tracing: 24%|███████▎ | ETA: 0:00:10 Bin 8 ray tracing: 33%|█████████▊ | ETA: 0:00:08 Bin 8 ray tracing: 41%|████████████▎ | ETA: 0:00:07 Bin 8 ray tracing: 49%|██████████████▊ | ETA: 0:00:06 Bin 8 ray tracing: 57%|█████████████████▎ | ETA: 0:00:05 Bin 8 ray tracing: 66%|███████████████████▋ | ETA: 0:00:04 Bin 8 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:03 Bin 8 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:02 Bin 8 ray tracing: 90%|███████████████████████████ | ETA: 0:00:01 Bin 8 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 9 ray tracing: 16%|████▉ | ETA: 0:00:10 Bin 9 ray tracing: 24%|███████▍ | ETA: 0:00:09 Bin 9 ray tracing: 33%|█████████▊ | ETA: 0:00:08 Bin 9 ray tracing: 41%|████████████▎ | ETA: 0:00:07 Bin 9 ray tracing: 49%|██████████████▋ | ETA: 0:00:06 Bin 9 ray tracing: 57%|█████████████████ | ETA: 0:00:05 Bin 9 ray tracing: 65%|███████████████████▌ | ETA: 0:00:04 Bin 9 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:03 Bin 9 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:02 Bin 9 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:01 Bin 9 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 10 ray tracing: 16%|████▊ | ETA: 0:00:11 Bin 10 ray tracing: 24%|███████▏ | ETA: 0:00:09 Bin 10 ray tracing: 33%|█████████▍ | ETA: 0:00:08 Bin 10 ray tracing: 40%|███████████▊ | ETA: 0:00:07 Bin 10 ray tracing: 48%|██████████████ | ETA: 0:00:07 Bin 10 ray tracing: 56%|████████████████▍ | ETA: 0:00:05 Bin 10 ray tracing: 64%|██████████████████▋ | ETA: 0:00:05 Bin 10 ray tracing: 72%|█████████████████████ | ETA: 0:00:04 Bin 10 ray tracing: 80%|███████████████████████▎ | ETA: 0:00:03 Bin 10 ray tracing: 88%|█████████████████████████▋ | ETA: 0:00:01 Bin 10 ray tracing: 96%|███████████████████████████▉ | ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 22%|███████▍ | ETA: 0:00:04 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 1 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 1 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 22%|███████▍ | ETA: 0:00:04 Bin 2 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 2 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 2 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 22%|███████▍ | ETA: 0:00:04 Bin 3 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 3 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 3 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 22%|███████▍ | ETA: 0:00:04 Bin 4 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 4 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 4 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 22%|███████▍ | ETA: 0:00:04 Bin 5 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 5 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 5 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 22%|███████▍ | ETA: 0:00:04 Bin 6 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 6 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 6 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 22%|███████▍ | ETA: 0:00:04 Bin 7 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 7 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 7 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 22%|███████▍ | ETA: 0:00:04 Bin 8 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 8 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 8 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 22%|███████▍ | ETA: 0:00:04 Bin 9 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 9 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 9 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 22%|███████▏ | ETA: 0:00:04 Bin 10 progress: 44%|██████████████▎ | ETA: 0:00:03 Bin 10 progress: 69%|██████████████████████ | ETA: 0:00:01 Bin 10 progress: 91%|█████████████████████████████▏ | ETA: 0:00:00 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:04 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010415182894710983 Iteration 10: d = 1.1766057812519853e-5 Iteration 20: d = 1.5926744582202567e-7 Iteration 30: d = 2.2392607343764804e-9 Iteration 40: d = 3.1524558353808825e-11 Iteration 50: d = 4.4343511369671106e-13 Iteration 60: d = 6.220339667515838e-15 Converged after 63 iterations. d = 1.7366816025029803e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015747281178339347 Iteration 10: d = 1.517445487329796e-5 Iteration 20: d = 1.6916535757200478e-7 Iteration 30: d = 2.1346824371134557e-9 Iteration 40: d = 2.7648523555336118e-11 Iteration 50: d = 3.6118685832271767e-13 Iteration 60: d = 4.750933662284155e-15 Converged after 62 iterations. d = 2.022425641601013e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016903963177509885 Iteration 10: d = 2.0064560593057394e-5 Iteration 20: d = 2.386208579796798e-7 Iteration 30: d = 3.0812990124660397e-9 Iteration 40: d = 4.11478377238297e-11 Iteration 50: d = 5.594787868383231e-13 Iteration 60: d = 7.649879549558656e-15 Converged after 63 iterations. d = 2.086829363564803e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013049606806565467 Iteration 10: d = 9.678829781480372e-6 Iteration 20: d = 9.327871555973873e-8 Iteration 30: d = 1.0692097175183583e-9 Iteration 40: d = 1.300116072719128e-11 Iteration 50: d = 1.6319357123644138e-13 Converged after 60 iterations. d = 2.0606573161910564e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015148607637389374 Iteration 10: d = 1.631988890840256e-5 Iteration 20: d = 1.668202848228053e-7 Iteration 30: d = 1.9109943662810006e-9 Iteration 40: d = 2.3739789328945003e-11 Iteration 50: d = 3.112516636559696e-13 Iteration 60: d = 4.210863992690157e-15 Converged after 62 iterations. d = 1.7778294971875303e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013537948905284155 Iteration 10: d = 1.3928311441940902e-5 Iteration 20: d = 1.7618818460726102e-7 Iteration 30: d = 2.4133860609388776e-9 Iteration 40: d = 3.3553262775813904e-11 Iteration 50: d = 4.69778081219239e-13 Iteration 60: d = 6.643198951577069e-15 Converged after 63 iterations. d = 1.8377769316487952e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0022797587229498764 Iteration 10: d = 2.387748685332896e-5 Iteration 20: d = 2.6665691034997844e-7 Iteration 30: d = 3.3180523770472646e-9 Iteration 40: d = 4.258616955083047e-11 Iteration 50: d = 5.539647034597618e-13 Iteration 60: d = 7.242072032190994e-15 Converged after 63 iterations. d = 1.9895504431761564e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018088750601005506 Iteration 10: d = 2.125284313176425e-5 Iteration 20: d = 2.403063666440358e-7 Iteration 30: d = 3.075323090842212e-9 Iteration 40: d = 4.0684125224834655e-11 Iteration 50: d = 5.447741585043323e-13 Iteration 60: d = 7.374889513599813e-15 Converged after 63 iterations. d = 2.012910145390628e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001150801119051997 Iteration 10: d = 1.2158969026656464e-5 Iteration 20: d = 1.4710248882057896e-7 Iteration 30: d = 1.9443422271449912e-9 Iteration 40: d = 2.6279098568621057e-11 Iteration 50: d = 3.59133662688676e-13 Iteration 60: d = 4.880201289981698e-15 Converged after 62 iterations. d = 2.1480642097584134e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015618456084002382 Iteration 10: d = 1.6523683280485276e-5 Iteration 20: d = 1.9204502589514853e-7 Iteration 30: d = 2.436316367030416e-9 Iteration 40: d = 3.1364055692324656e-11 Iteration 50: d = 4.0557138439048e-13 Iteration 60: d = 5.3117409681980615e-15 Converged after 62 iterations. d = 2.1744042582575305e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8652.079857153829 Iteration 2: convergence error = 4813.496113852497 Iteration 3: convergence error = 1092.8319015007487 Iteration 4: convergence error = 315.7975772332875 Iteration 5: convergence error = 94.3853185953717 Iteration 6: convergence error = 28.770676688275216 Iteration 7: convergence error = 8.714044695244638 Iteration 8: convergence error = 2.628742401494492 Iteration 9: convergence error = 0.7911254702537462 Iteration 10: convergence error = 0.2377657336505763 Iteration 11: convergence error = 0.07140276418272151 Iteration 12: convergence error = 0.021433265982068406 Iteration 13: convergence error = 0.0064320862484237296 Iteration 14: convergence error = 0.001929978241378194 Iteration 15: convergence error = 0.0005790508673726436 Iteration 16: convergence error = 0.00017372409115523624 Iteration 17: convergence error = 5.2118418579993886e-5 Iteration 18: convergence error = 1.5635627050869516e-5 Iteration 19: convergence error = 4.690675041274517e-6 Iteration 20: convergence error = 1.40718839247711e-6 Iteration 21: convergence error = 4.221537892590277e-7 Iteration 22: convergence error = 1.2651685210585129e-7 Iteration 23: convergence error = 3.702211870404426e-8 Iteration 24: convergence error = 1.0746816769824363e-8 Iteration 25: convergence error = 3.106833901256323e-9 Iteration 26: convergence error = 8.942606655182317e-10 Iteration 27: convergence error = 2.576143742771819e-10 Iteration 28: convergence error = 7.594280759803951e-11 Iteration 29: convergence error = 2.0236257114447653e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.2714481573576 K, F = -7457.2316702361795, relative_change = 0.03272855184264243 Iter 2: T = 936.615881680241 K, F = -6321.37451977825, relative_change = 0.03169282680215063 Iter 3: T = 908.0020730660646 K, F = -5357.022215383943, relative_change = 0.03055020651886107 Iter 5: T = 856.7622956100389 K, F = -3843.528297175644, relative_change = 0.027949187984870276 Iter 10: T = 761.4014297123198 K, F = -1664.4233801446856, relative_change = 0.02004174286155575 Iter 15: T = 705.5054355530525 K, F = -712.6859111224438, relative_change = 0.012026829783308475 Iter 20: T = 676.7307812280288 K, F = -302.0779787739375, relative_change = 0.006165546192081353 Iter 25: T = 663.3040131273895 K, F = -127.17340133140927, relative_change = 0.002849972638492858 Iter 30: T = 657.3911341192819 K, F = -53.345646394831725, relative_change = 0.001247054648408534 Iter 35: T = 654.8611443225931 K, F = -22.338903158352263, relative_change = 0.0005318497153251856 Iter 40: T = 653.7926569673195 K, F = -9.347573535172147, relative_change = 0.00022428312455318825 Iter 45: T = 653.3439488338137 K, F = -3.9101787936617196, relative_change = 9.41267073364263e-5 Iter 50: T = 653.1559670587236 K, F = -1.6354434329287701, relative_change = 3.942272161999369e-5 Iter 55: T = 653.0772935212719 K, F = -0.6839899873285779, relative_change = 1.649718557322222e-5 Iter 60: T = 653.0443812709498 K, F = -0.2860576831463276, relative_change = 6.901093824361273e-6 Iter 65: T = 653.0306152182994 K, F = -0.11963359685210112, relative_change = 2.8864302101627727e-6 Iter 70: T = 653.0248577833946 K, F = -0.05003234891584041, relative_change = 1.2071938752362699e-6 Iter 75: T = 653.0224499016098 K, F = -0.02092415205880571, relative_change = 5.048723915005489e-7 Iter 80: T = 653.0214428872903 K, F = -0.00875073486439476, relative_change = 2.1114532443748096e-7 Iter 85: T = 653.0210217402313 K, F = -0.003659662628166638, relative_change = 8.830378677489938e-8 Iter 90: T = 653.0208456112141 K, F = -0.0015305147565326527, relative_change = 3.692974899530009e-8 Iter 95: T = 653.0207719519054 K, F = -0.0006400795730556741, relative_change = 1.5444470929452807e-8 Iter 100: T = 653.020741146694 K, F = -0.0002676889256135184, relative_change = 6.459063735748415e-9 Iter 105: T = 653.0207282635853 K, F = -0.00011195070650360517, relative_change = 2.701257867992081e-9 Iter 110: T = 653.020722875715 K, F = -4.681912183246428e-5, relative_change = 1.1296983300980008e-9 Iter 115: T = 653.0207206224433 K, F = -1.9580315888612088e-5, relative_change = 4.724533408528417e-10 Iter 120: T = 653.0207196800981 K, F = -8.188721076440864e-6, relative_change = 1.9758560987807745e-10 Iter 125: T = 653.0207192859981 K, F = -3.424620898473396e-6, relative_change = 8.263266076030642e-11 Iter 130: T = 653.0207191211808 K, F = -1.4322170650005184e-6, relative_change = 3.455795853557933e-11 Iter 135: T = 653.0207190522523 K, F = -5.989701708508655e-7, relative_change = 1.4452548321443034e-11 Iter 140: T = 653.0207190234256 K, F = -2.5049737495397295e-7, relative_change = 6.044249935743821e-12 Iter 145: T = 653.0207190113699 K, F = -1.0476214856725008e-7, relative_change = 2.527805370886578e-12 Iter 150: T = 653.020719006328 K, F = -4.381191198721268e-8, relative_change = 1.0571374103029665e-12 Iter 155: T = 653.0207190042195 K, F = -1.832265722478965e-8, relative_change = 4.421073066711675e-13 Converged in 159 iterations to T = 653.0207190034585 K Iter 1: T = 970.4209576569914 K, F = -6739.6129347876295, relative_change = 0.029579042343008562 Iter 2: T = 943.007714997261 K, F = -5708.17618134383, relative_change = 0.028248815571664435 Iter 3: T = 917.7150462920855 K, F = -4832.8387617831595, relative_change = 0.02682127442112068 Iter 5: T = 873.2730300530791 K, F = -3460.1371470669574, relative_change = 0.02372018205527176 Iter 10: T = 794.4716372279415 K, F = -1489.1258039569418, relative_change = 0.015414744554858967 Iter 15: T = 751.6003924222351 K, F = -633.8091463401207, relative_change = 0.008425614589251776 Iter 20: T = 730.8128897884569 K, F = -267.51334463657065, relative_change = 0.004049055981778495 Iter 25: T = 721.4625840835218 K, F = -112.35970383829766, relative_change = 0.0018067210535867094 Iter 30: T = 717.4210795162105 K, F = -47.079328856168296, relative_change = 0.0007774241787715389 Iter 35: T = 715.7065420868581 K, F = -19.70511160020886, relative_change = 0.0003291104725181404 Iter 40: T = 714.9851357522236 K, F = -8.243735696227619, relative_change = 0.00013834704577680106 Iter 45: T = 714.6826629788717 K, F = -3.4481245523994053, relative_change = 5.79833520300289e-5 Iter 50: T = 714.5560296043344 K, F = -1.4421337463214985, relative_change = 2.427125622374383e-5 Iter 55: T = 714.5030462441243 K, F = -0.6031327621616831, relative_change = 1.015436917644521e-5 Iter 60: T = 714.4808838092737 K, F = -0.25223998454305924, relative_change = 4.247350445041846e-6 Iter 65: T = 714.4716144863618 K, F = -0.10549023928205559, relative_change = 1.7764102384755024e-6 Iter 70: T = 714.4677378174788 K, F = -0.04411735927664562, relative_change = 7.429365395001226e-7 Iter 75: T = 714.4661165259814 K, F = -0.018450420754744346, relative_change = 3.1070852994073514e-7 Iter 80: T = 714.4654384786193 K, F = -0.007716188792764589, relative_change = 1.2994264690968308e-7 Iter 85: T = 714.4651549104335 K, F = -0.0032270027387216738, relative_change = 5.4343676794945704e-8 Iter 90: T = 714.4650363187126 K, F = -0.0013495711600078897, relative_change = 2.272719387909639e-8 Iter 95: T = 714.4649867222176 K, F = -0.0005644067888063153, relative_change = 9.504787250598381e-9 Iter 100: T = 714.4649659803677 K, F = -0.00023604166176927066, relative_change = 3.975016126655905e-9 Iter 105: T = 714.4649573058776 K, F = -9.87154428451209e-5, relative_change = 1.662399328156505e-9 Iter 110: T = 714.4649536781021 K, F = -4.1283976227046715e-5, relative_change = 6.952352542276863e-10 Iter 115: T = 714.4649521609231 K, F = -1.7265451548453825e-5, relative_change = 2.907556833186352e-10 Iter 120: T = 714.4649515264207 K, F = -7.22061851254896e-6, relative_change = 1.2159750775034638e-10 Iter 125: T = 714.4649512610642 K, F = -3.019748724297777e-6, relative_change = 5.0853527148408795e-11 Iter 130: T = 714.464951150089 K, F = -1.2628947571036164e-6, relative_change = 2.126754863631278e-11 Iter 135: T = 714.4649511036778 K, F = -5.281581498817189e-7, relative_change = 8.894350919240425e-12 Iter 140: T = 714.464951084268 K, F = -2.2088133189157588e-7, relative_change = 3.719711753093215e-12 Iter 145: T = 714.4649510761508 K, F = -9.237560971708803e-8, relative_change = 1.5556345945571325e-12 Iter 150: T = 714.464951072756 K, F = -3.8633223287121154e-8, relative_change = 6.5059574524181e-13 Iter 155: T = 714.4649510713363 K, F = -1.615727529546973e-8, relative_change = 2.720936455109848e-13 Converged in 157 iterations to T = 714.4649510710358 K Iter 1: T = 974.4746274279933 K, F = -5815.9804214294245, relative_change = 0.0255253725720067 Iter 2: T = 951.1380510646565 K, F = -4920.44546005202, relative_change = 0.02394785426577075 Iter 3: T = 929.9150423838745 K, F = -4161.0016364356115, relative_change = 0.022313278978825454 Iter 5: T = 893.4542572606972 K, F = -2971.6245014759097, relative_change = 0.018957748432719627 Iter 10: T = 832.0796173733993 K, F = -1270.5807983909403, relative_change = 0.011123113912369078 Iter 15: T = 800.9514063098663 K, F = -537.9665153300933, relative_change = 0.005608730661069777 Iter 20: T = 786.5648240953567 K, F = -226.34132758330085, relative_change = 0.0025683728691800784 Iter 25: T = 780.2609503984787 K, F = -94.91517772821688, relative_change = 0.0011187397733722472 Iter 30: T = 777.5699431554445 K, F = -39.7411022996687, relative_change = 0.000476158030531733 Iter 35: T = 776.4346140073029 K, F = -16.628447490116187, relative_change = 0.00020062248226517505 Iter 40: T = 775.9580436536945 K, F = -6.955666259928862, relative_change = 8.416574684046614e-5 Iter 45: T = 775.7584259863664 K, F = -2.9091971372054233, relative_change = 3.524533652941347e-5 Iter 50: T = 775.6748890787577 K, F = -1.2167055365973118, relative_change = 1.474811948463169e-5 Iter 55: T = 775.6399434179627 K, F = -0.5088485814200867, relative_change = 6.169257335221642e-6 Iter 60: T = 775.62532705794 K, F = -0.2128079173507047, relative_change = 2.5803051237446687e-6 Iter 65: T = 775.6192140299441 K, F = -0.08899905101092476, relative_change = 1.079157804740873e-6 Iter 70: T = 775.6166574376125 K, F = -0.03722050771801788, relative_change = 4.5132427056919547e-7 Iter 75: T = 775.6155882312439 K, F = -0.015566068128472166, relative_change = 1.8875052719973211e-7 Iter 80: T = 775.6151410748108 K, F = -0.00650991686412794, relative_change = 7.893795676780362e-8 Iter 85: T = 775.6149540683774 K, F = -0.002722525201643178, relative_change = 3.3012836855241874e-8 Iter 90: T = 775.6148758600059 K, F = -0.001138592591953258, relative_change = 1.380636972832757e-8 Iter 95: T = 775.6148431523226 K, F = -0.00047617302573588205, relative_change = 5.77398993670397e-9 Iter 100: T = 775.6148294735773 K, F = -0.0001991412477486687, relative_change = 2.414751770655954e-9 Iter 105: T = 775.6148237529624 K, F = -8.328324636863726e-5, relative_change = 1.009878043702651e-9 Iter 110: T = 775.6148213605329 K, F = -3.4830048200595876e-5, relative_change = 4.2234306405122546e-10 Iter 115: T = 775.6148203599904 K, F = -1.4566345030941896e-5, relative_change = 1.7662894965719556e-10 Iter 120: T = 775.6148199415514 K, F = -6.09181862365471e-6, relative_change = 7.386832630124387e-11 Iter 125: T = 775.6148197665553 K, F = -2.547670241659361e-6, relative_change = 3.0892603432129485e-11 Iter 130: T = 775.6148196933699 K, F = -1.0654667670362272e-6, relative_change = 1.2919663534442462e-11 Iter 135: T = 775.6148196627628 K, F = -4.455891619015162e-7, relative_change = 5.403136189275148e-12 Iter 140: T = 775.6148196499627 K, F = -1.8635170839775839e-7, relative_change = 2.2596682005448656e-12 Iter 145: T = 775.6148196446095 K, F = -7.793530043542773e-8, relative_change = 9.450298127867984e-13 Iter 150: T = 775.6148196423708 K, F = -3.2594819732167934e-8, relative_change = 3.9523907930854663e-13 Converged in 154 iterations to T = 775.6148196415626 K Iter 1: T = 970.3570858176967 K, F = -6754.166194128759, relative_change = 0.029642914182303387 Iter 2: T = 942.8787456891527 K, F = -5720.601676508463, relative_change = 0.028317761090381106 Iter 3: T = 917.5201418810543 K, F = -4843.4499457708, relative_change = 0.026894872669511367 Iter 5: T = 872.9457270044024 K, F = -3467.8779742992424, relative_change = 0.023801032627038872 Iter 10: T = 793.8380645071865 K, F = -1492.6284761087354, relative_change = 0.015495309574086399 Iter 15: T = 750.7439881822902 K, F = -635.3642803392042, relative_change = 0.008482927078604097 Iter 20: T = 729.8282810038352 K, F = -268.18734695178733, relative_change = 0.004080685541804083 Iter 25: T = 720.415090042702 K, F = -112.64667027244683, relative_change = 0.001821781628867682 Iter 30: T = 716.3453000749276 K, F = -47.2003227861365, relative_change = 0.0007840930552648394 Iter 35: T = 714.6185525812012 K, F = -19.755891788029903, relative_change = 0.00033196848015637693 Iter 40: T = 713.8919705501316 K, F = -8.265004474952738, relative_change = 0.0001395546973971545 Iter 45: T = 713.5873209111151 K, F = -3.457025031706095, relative_change = 5.849059970755676e-5 Iter 50: T = 713.4597749738468 K, F = -1.4458570195438152, relative_change = 2.4483778714706835e-5 Iter 55: T = 713.4064095880691 K, F = -0.6046900522586383, relative_change = 1.0243316171550548e-5 Iter 60: T = 713.3840873188544 K, F = -0.2528912920935583, relative_change = 4.284560965325829e-6 Iter 65: T = 713.374751139629 K, F = -0.10576262916775747, relative_change = 1.7919741913290169e-6 Iter 70: T = 713.370846508595 K, F = -0.04423127690455497, relative_change = 7.494459323484704e-7 Iter 75: T = 713.3692135226349 K, F = -0.01849806262776832, relative_change = 3.1343089904768335e-7 Iter 80: T = 713.3685305844464 K, F = -0.007736113220168095, relative_change = 1.3108118523399117e-7 Iter 85: T = 713.3682449708477 K, F = -0.0032353353785096184, relative_change = 5.481982907845802e-8 Iter 90: T = 713.3681255237086 K, F = -0.0013530559689387545, relative_change = 2.2926326765367547e-8 Iter 95: T = 713.3680755694675 K, F = -0.0005658641776337126, relative_change = 9.588067060313179e-9 Iter 100: T = 713.3680546780035 K, F = -0.0002366511584092068, relative_change = 4.009844734462604e-9 Iter 105: T = 713.3680459409433 K, F = -9.897034197048349e-5, relative_change = 1.676965075631491e-9 Iter 110: T = 713.3680422870001 K, F = -4.139057861229922e-5, relative_change = 7.013268329053759e-10 Iter 115: T = 713.3680407588774 K, F = -1.7310035172468652e-5, relative_change = 2.933032751853273e-10 Iter 120: T = 713.3680401197983 K, F = -7.239262246327982e-6, relative_change = 1.2266291285225747e-10 Iter 125: T = 713.3680398525279 K, F = -3.027546881528842e-6, relative_change = 5.129911133360523e-11 Iter 130: T = 713.3680397407521 K, F = -1.2661565235161376e-6, relative_change = 2.1453905440856657e-11 Iter 135: T = 713.368039694006 K, F = -5.295211323863569e-7, relative_change = 8.972268511596665e-12 Iter 140: T = 713.3680396744563 K, F = -2.2145076117308093e-7, relative_change = 3.752287812664433e-12 Iter 145: T = 713.3680396662805 K, F = -9.26147614155326e-8, relative_change = 1.5692754394268178e-12 Iter 150: T = 713.3680396628613 K, F = -3.87327954154415e-8, relative_change = 6.562930532690351e-13 Iter 155: T = 713.3680396614313 K, F = -1.6199180663534207e-8, relative_change = 2.7448082753125136e-13 Converged in 157 iterations to T = 713.3680396611287 K Iter 1: T = 969.3065274215708 K, F = -6993.536924025062, relative_change = 0.03069347257842925 Iter 2: T = 940.7535855585542 K, F = -5925.035363037051, relative_change = 0.029457082001675537 Iter 3: T = 914.3021706930284 K, F = -5018.095569243363, relative_change = 0.028117261811785435 Iter 5: T = 867.518506869551 K, F = -3595.3993462913745, relative_change = 0.025159027042717552 Iter 10: T = 783.2092236274826 K, F = -1550.5356258359645, relative_change = 0.01689187729008948 Iter 15: T = 736.2329457709794 K, F = -661.1845510615165, relative_change = 0.009505074040669017 Iter 20: T = 713.0391497602973 K, F = -279.4155760300803, relative_change = 0.00465549158346875 Iter 25: T = 702.4953284192504 K, F = -117.436516908211, relative_change = 0.002098216926318569 Iter 30: T = 697.9139899135198 K, F = -49.22176978476587, relative_change = 0.0009070698112320874 Iter 35: T = 695.9658301890739 K, F = -20.604633237853406, relative_change = 0.00038477890699542197 Iter 40: T = 695.1452855698042 K, F = -8.620555624403037, relative_change = 0.00016188919588014467 Iter 45: T = 694.8010964271803 K, F = -3.6058261235020987, relative_change = 6.787516533627044e-5 Iter 50: T = 694.6569717262466 K, F = -1.50810590488434, relative_change = 2.8416253855900873e-5 Iter 55: T = 694.5966653809428 K, F = -0.6307265185081667, relative_change = 1.1889280519492146e-5 Iter 60: T = 694.5714390020665 K, F = -0.2637806200712112, relative_change = 4.97316034335234e-6 Iter 65: T = 694.5608880589361 K, F = -0.11031677534282724, relative_change = 2.0799962175325742e-6 Iter 70: T = 694.5564753587945 K, F = -0.04613589257084638, relative_change = 8.699074504490988e-7 Iter 75: T = 694.5546298852106 K, F = -0.01929459868043537, relative_change = 3.638106156370299e-7 Iter 80: T = 694.5538580809261 K, F = -0.008069234641380096, relative_change = 1.521508067024331e-7 Iter 85: T = 694.5535353022491 K, F = -0.003374650827290271, relative_change = 6.363143527404516e-8 Iter 90: T = 694.5534003121926 K, F = -0.0014113193700748816, relative_change = 2.66114525158149e-8 Iter 95: T = 694.5533438577112 K, F = -0.0005902306317249195, relative_change = 1.1129231866997478e-8 Iter 100: T = 694.5533202477679 K, F = -0.00024684150082965317, relative_change = 4.654378465098593e-9 Iter 105: T = 694.553310373807 K, F = -0.00010323206531837048, relative_change = 1.9465168240833865e-9 Iter 110: T = 694.5533062443984 K, F = -4.3172883692488284e-5, relative_change = 8.140566264102008e-10 Iter 115: T = 694.5533045174303 K, F = -1.8055415384465867e-5, relative_change = 3.4044820390049934e-10 Iter 120: T = 694.5533037951917 K, F = -7.550990984261929e-6, relative_change = 1.4237951751583203e-10 Iter 125: T = 694.5533034931428 K, F = -3.157914416851426e-6, relative_change = 5.954481112421776e-11 Iter 130: T = 694.5533033668224 K, F = -1.320677893268396e-6, relative_change = 2.49023581383496e-11 Iter 135: T = 694.5533033139936 K, F = -5.52323375035968e-7, relative_change = 1.041446560771146e-11 Iter 140: T = 694.5533032919002 K, F = -2.3098971868584783e-7, relative_change = 4.3554819333807494e-12 Iter 145: T = 694.5533032826604 K, F = -9.660305499981092e-8, relative_change = 1.8215220278264766e-12 Iter 150: T = 694.5533032787961 K, F = -4.040044299102874e-8, relative_change = 7.617802236606289e-13 Iter 155: T = 694.5533032771801 K, F = -1.6896760879347994e-8, relative_change = 3.1860091942087665e-13 Converged in 158 iterations to T = 694.553303276707 K Iter 1: T = 963.5529036516257 K, F = -8304.505573116203, relative_change = 0.03644709634837435 Iter 2: T = 928.9829087921734 K, F = -7046.6679459447305, relative_change = 0.03587763030804084 Iter 3: T = 896.2564353364183 K, F = -5978.430692423292, relative_change = 0.03522828369179007 Iter 5: T = 836.2150726538048 K, F = -4300.8616472769445, relative_change = 0.033660680213992426 Iter 10: T = 716.4339179312566 K, F = -1879.5384850385365, relative_change = 0.027950103810202777 Iter 15: T = 636.6897965760176 K, F = -813.9254949201859, relative_change = 0.020042313277999046 Iter 20: T = 589.9479917040704 K, F = -348.5127923748588, relative_change = 0.012027101912169023 Iter 25: T = 565.8859708350377 K, F = -147.72004330890098, relative_change = 0.0061656601616715346 Iter 30: T = 554.6582430317934 K, F = -62.18942593523511, relative_change = 0.0028500189886572656 Iter 35: T = 549.7137860117533 K, F = -26.08670322621584, relative_change = 0.0012470736342860495 Iter 40: T = 547.598164190371 K, F = -10.924008797882523, relative_change = 0.0005318575700208881 Iter 45: T = 546.704676638131 K, F = -4.571082690733316, relative_change = 0.00022428639325708114 Iter 50: T = 546.3294592134376 K, F = -1.9121272903714175, relative_change = 9.412807141169296e-5 Iter 55: T = 546.1722656437784 K, F = -0.799752690161311, relative_change = 3.942329157175907e-5 Iter 60: T = 546.106477490283 K, F = -0.33447982400952625, relative_change = 1.6497423842207684e-5 Iter 65: T = 546.0789557056646 K, F = -0.13988585393110034, relative_change = 6.901193455223139e-6 Iter 70: T = 546.0674442978852 K, F = -0.058502354022471004, relative_change = 2.8864718741617164e-6 Iter 75: T = 546.0626298327286 K, F = -0.02446645645947687, relative_change = 1.2072112990970849e-6 Iter 80: T = 546.0606163209588 K, F = -0.010232177108661533, relative_change = 5.048796782747013e-7 Iter 85: T = 546.0597742384293 K, F = -0.004279220908049358, relative_change = 2.11148371865429e-7 Iter 90: T = 546.0594220680839 K, F = -0.0017896216799447306, relative_change = 8.830506120937481e-8 Iter 95: T = 546.0592747859993 K, F = -0.0007484412272538987, relative_change = 3.693028196511303e-8 Iter 100: T = 546.0592131908304 K, F = -0.00031300707114539916, relative_change = 1.544469382660789e-8 Iter 105: T = 546.059187430988 K, F = -0.00013090329774320675, relative_change = 6.459156980717166e-9 Iter 110: T = 546.059176657913 K, F = -5.4745323003674295e-5, relative_change = 2.7012968699036422e-9 Iter 115: T = 546.059172152484 K, F = -2.28951477058148e-5, relative_change = 1.1297146472026245e-9 Iter 120: T = 546.0591702682598 K, F = -9.575023833724439e-6, relative_change = 4.724601469692698e-10 Iter 125: T = 546.0591694802548 K, F = -4.004389223127847e-6, relative_change = 1.9758847254411665e-10 Iter 130: T = 546.0591691507017 K, F = -1.6746835247716252e-6, relative_change = 8.263386553285748e-11 Iter 135: T = 546.0591690128786 K, F = -7.003723747622814e-7, relative_change = 3.455845588286294e-11 Iter 140: T = 546.0591689552394 K, F = -2.9290442224438884e-7, relative_change = 1.4452775300497326e-11 Iter 145: T = 546.0591689311341 K, F = -1.224968691759809e-7, relative_change = 6.044359835952813e-12 Iter 150: T = 546.0591689210528 K, F = -5.122975657578799e-8, relative_change = 2.5278285491092785e-12 Iter 155: T = 546.0591689168367 K, F = -2.142488444989432e-8, relative_change = 1.0571675173915863e-12 Iter 160: T = 546.0591689150734 K, F = -8.959991748547225e-9, relative_change = 4.4211264032526005e-13 Converged in 164 iterations to T = 546.059168914437 K Iter 1: T = 966.8798440264588 K, F = -7546.45904397314, relative_change = 0.03312015597354111 Iter 2: T = 935.8164794836208 K, F = -6397.689530919694, relative_change = 0.03212743003668197 Iter 3: T = 906.7795409995751 K, F = -5422.334217343926, relative_change = 0.03102845389094675 Iter 5: T = 854.6543226518173 K, F = -3891.446000556313, relative_change = 0.02851172673356939 Iter 10: T = 757.0012812373894 K, F = -1686.6216449914643, relative_change = 0.02072720869049819 Iter 15: T = 699.1284150873373 K, F = -722.8585819687294, relative_change = 0.012619306747266594 Iter 20: T = 669.0449736313232 K, F = -306.6084943007557, relative_change = 0.006540636833065929 Iter 25: T = 654.9170381268832 K, F = -129.13484351844465, relative_change = 0.0030426608390123223 Iter 30: T = 648.6740493644943 K, F = -54.17962298166153, relative_change = 0.0013355300170255465 Iter 35: T = 645.9985205230087 K, F = -22.690252396961693, relative_change = 0.0005703821133625843 Iter 40: T = 644.8677690789108 K, F = -9.494975714872975, relative_change = 0.00024067786731577054 Iter 45: T = 644.3927698549128 K, F = -3.97190633002893, relative_change = 0.00010103310242266787 Iter 50: T = 644.1937483146155 K, F = -1.6612730800194715, relative_change = 4.2319859299519546e-5 Iter 55: T = 644.1104499902233 K, F = -0.6947947881614198, relative_change = 1.7710347584050587e-5 Iter 60: T = 644.075602227237 K, F = -0.29057682351384095, relative_change = 7.408723168170721e-6 Iter 65: T = 644.0610264799816 K, F = -0.1215236329453036, relative_change = 3.0987742031191763e-6 Iter 70: T = 644.0549303791149 K, F = -0.050822798158405014, relative_change = 1.2960069506390298e-6 Iter 75: T = 644.0523808558321 K, F = -0.021254729747495926, relative_change = 5.420165289154697e-7 Iter 80: T = 644.0513146040611 K, F = -0.008888986817397304, relative_change = 2.2667969967943888e-7 Iter 85: T = 644.0508686829678 K, F = -0.0037174813189559397, relative_change = 9.480049234466681e-8 Iter 90: T = 644.0506821931141 K, F = -0.0015546952353115984, relative_change = 3.964675657859795e-8 Iter 95: T = 644.050604200773 K, F = -0.0006501921401065314, relative_change = 1.658075729877096e-8 Iter 100: T = 644.0505715834346 K, F = -0.00027191812218280154, relative_change = 6.934272498919224e-9 Iter 105: T = 644.0505579424723 K, F = -0.00011371940630239274, relative_change = 2.8999958697238e-9 Iter 110: T = 644.0505522376588 K, F = -4.755881424289843e-5, relative_change = 1.2128129681134672e-9 Iter 115: T = 644.0505498518377 K, F = -1.9889664405192686e-5, relative_change = 5.072128843305898e-10 Iter 120: T = 644.0505488540587 K, F = -8.318094641301954e-6, relative_change = 2.1212247327648715e-10 Iter 125: T = 644.0505484367756 K, F = -3.4787266500746483e-6, relative_change = 8.871215524273021e-11 Iter 130: T = 644.0505482622629 K, F = -1.4548451748863656e-6, relative_change = 3.710048651634757e-11 Iter 135: T = 644.0505481892795 K, F = -6.084345242629574e-7, relative_change = 1.551588943300438e-11 Iter 140: T = 644.050548158757 K, F = -2.5445338053264877e-7, relative_change = 6.488899563798055e-12 Iter 145: T = 644.0505481459921 K, F = -1.0641624154095197e-7, relative_change = 2.713755666895807e-12 Iter 150: T = 644.0505481406537 K, F = -4.4503923601890705e-8, relative_change = 1.1349092312381495e-12 Iter 155: T = 644.050548138421 K, F = -1.8611554741809755e-8, relative_change = 4.746193947633256e-13 Converged in 160 iterations to T = 644.0505481374873 K Iter 1: T = 965.2148782941442 K, F = -7925.823069872308, relative_change = 0.034785121705855716 Iter 2: T = 932.4060816902033 K, F = -6722.3295145504435, relative_change = 0.03399118407905703 Iter 3: T = 901.5441813484609 K, F = -5700.3570381641, relative_change = 0.03309920532242557 Iter 5: T = 845.5479060735887 K, F = -4095.810392121326, relative_change = 0.031002716259914277 Iter 10: T = 737.4611025901271 K, F = -1782.1403441877908, relative_change = 0.02399308402964034 Iter 15: T = 669.9560923977144 K, F = -767.269263169194, relative_change = 0.015687519956905194 Iter 20: T = 633.0684233118756 K, F = -326.6807302646058, relative_change = 0.008620270914064768 Iter 25: T = 615.123746884842 K, F = -137.91365175903974, relative_change = 0.004156713237021903 Iter 30: T = 607.0369450741612 K, F = -57.93261938744425, relative_change = 0.0018580413277866218 Iter 35: T = 603.5383406687237 K, F = -24.275401735069963, relative_change = 0.0008001611541342279 Iter 40: T = 602.0535033265587 K, F = -10.16074117530433, relative_change = 0.00033885690222496375 Iter 45: T = 601.4286334348918 K, F = -4.2508419109613, relative_change = 0.00014246581499898015 Iter 50: T = 601.1666167889732 K, F = -1.77801613112691, relative_change = 5.971342436343552e-5 Iter 55: T = 601.0569172933094 K, F = -0.7436337137673168, relative_change = 2.4996120699765655e-5 Iter 60: T = 601.0110184483044 K, F = -0.3110045750748342, relative_change = 1.0457748819130565e-5 Iter 65: T = 600.9918192911821 K, F = -0.13006724026278188, relative_change = 4.3742681619687454e-6 Iter 70: T = 600.9837893249315 K, F = -0.05439592033224083, relative_change = 1.8294958691980695e-6 Iter 75: T = 600.980430983541 K, F = -0.02274906672859578, relative_change = 7.651388307544201e-7 Iter 80: T = 600.9790264651937 K, F = -0.009513938945814426, relative_change = 3.199940113386183e-7 Iter 85: T = 600.9784390753717 K, F = -0.003978844209089061, relative_change = 1.3382598425521187e-7 Iter 90: T = 600.9781934213255 K, F = -0.0016640003966159056, relative_change = 5.596774151975562e-8 Iter 95: T = 600.9780906857634 K, F = -0.0006959048787610334, relative_change = 2.3406398312677818e-8 Iter 100: T = 600.9780477205057 K, F = -0.0002910357377338135, relative_change = 9.788838858820975e-9 Iter 105: T = 600.9780297519187 K, F = -0.00012171462282806189, relative_change = 4.093809950977325e-9 Iter 110: T = 600.9780222372403 K, F = -5.090250836131682e-5, relative_change = 1.7120802975256764e-9 Iter 115: T = 600.9780190945121 K, F = -2.1288037520772463e-5, relative_change = 7.160124656529566e-10 Iter 120: T = 600.9780177801855 K, F = -8.902910482333493e-6, relative_change = 2.99444932211144e-10 Iter 125: T = 600.9780172305185 K, F = -3.723304451641596e-6, relative_change = 1.252314797717627e-10 Iter 130: T = 600.9780170006411 K, F = -1.5571299314398601e-6, relative_change = 5.237328518226771e-11 Iter 135: T = 600.9780169045036 K, F = -6.512102973532663e-7, relative_change = 2.1903132137052733e-11 Iter 140: T = 600.9780168642978 K, F = -2.7234368760176153e-7, relative_change = 9.160143508752895e-12 Iter 145: T = 600.9780168474833 K, F = -1.1389724885457753e-7, relative_change = 3.8308769117669004e-12 Iter 150: T = 600.9780168404513 K, F = -4.763350830438995e-8, relative_change = 1.6021291913108048e-12 Iter 155: T = 600.9780168375104 K, F = -1.9920755267577306e-8, relative_change = 6.700246247649636e-13 Iter 160: T = 600.9780168362805 K, F = -8.33120444854174e-9, relative_change = 2.80215888381206e-13 Converged in 162 iterations to T = 600.9780168360203 K Iter 1: T = 980.0571581858114 K, F = -4543.995477902889, relative_change = 0.019942841814188587 Iter 2: T = 962.1616911991101 K, F = -3838.4143270365453, relative_change = 0.01825961561244824 Iter 3: T = 946.1933026525783 K, F = -3240.882963242755, relative_change = 0.016596367006288762 Iter 5: T = 919.5164276779548 K, F = -2307.2208139470927, relative_change = 0.013418936889852733 Iter 10: T = 877.1280500177718 K, F = -979.5863106847213, relative_change = 0.0070600493080541895 Iter 15: T = 857.0440745927517 K, F = -412.81520873931663, relative_change = 0.003313573967499078 Iter 20: T = 848.1264426063367 K, F = -173.25070438958053, relative_change = 0.0014608638336310108 Iter 25: T = 844.2959560480907 K, F = -72.5664425063787, relative_change = 0.0006251529205334528 Iter 30: T = 842.6754606216064 K, F = -30.367934695427547, relative_change = 0.0002640160165887756 Iter 35: T = 841.9944397244291 K, F = -12.703721453420458, relative_change = 0.00011087058873904551 Iter 40: T = 841.7090445879517 K, F = -5.313460287667165, relative_change = 4.644763255936805e-5 Iter 45: T = 841.5895864044318 K, F = -2.2222597892144513, relative_change = 1.9439022326111352e-5 Iter 50: T = 841.5396096053937 K, F = -0.9293943510552612, relative_change = 8.132094358815167e-6 Iter 55: T = 841.5187055679316 K, F = -0.38868710020921926, relative_change = 3.4013699637776484e-6 Iter 60: T = 841.5099626999122 K, F = -0.16255416149508717, relative_change = 1.4225689334033302e-6 Iter 65: T = 841.5063062319051 K, F = -0.06798219207824974, relative_change = 5.949485043584426e-7 Iter 70: T = 841.504777036493 K, F = -0.028430982166127272, relative_change = 2.488168762121748e-7 Iter 75: T = 841.5041375057667 K, F = -0.01189017935100023, relative_change = 1.040585925503324e-7 Iter 80: T = 841.5038700458647 K, F = -0.0049726155366962566, relative_change = 4.351861665165273e-8 Iter 85: T = 841.5037581908496 K, F = -0.002079607296219921, relative_change = 1.820001753995874e-8 Iter 90: T = 841.5037114117307 K, F = -0.0008697166243978316, relative_change = 7.611466855878894e-9 Iter 95: T = 841.5036918481418 K, F = -0.000363725881066701, relative_change = 3.183206710268608e-9 Iter 100: T = 841.5036836664148 K, F = -0.00015211450960550543, relative_change = 1.331255143848988e-9 Iter 105: T = 841.5036802447187 K, F = -6.361610321281574e-5, relative_change = 5.567467987960421e-10 Iter 110: T = 841.5036788137246 K, F = -2.6605015500225093e-5, relative_change = 2.3283817435418854e-10 Iter 115: T = 841.5036782152656 K, F = -1.1126534533056898e-5, relative_change = 9.737569956748483e-11 Iter 120: T = 841.5036779649831 K, F = -4.653250131880782e-6, relative_change = 4.072368500271553e-11 Iter 125: T = 841.5036778603119 K, F = -1.946043061362701e-6, relative_change = 1.703111640971641e-11 Iter 130: T = 841.5036778165372 K, F = -8.138603506679942e-7, relative_change = 7.1226329222161705e-12 Iter 135: T = 841.50367779823 K, F = -3.403659705192297e-7, relative_change = 2.9787688581752893e-12 Iter 140: T = 841.5036777905738 K, F = -1.4234523382228303e-7, relative_change = 1.2457577618321553e-12 Iter 145: T = 841.5036777873719 K, F = -5.9531246154875817e-8, relative_change = 5.209975071094465e-13 Converged in 150 iterations to T = 841.5036777860328 K Iter 1: T = 976.4882683993868 K, F = -5357.170410630354, relative_change = 0.023511731600613206 Iter 2: T = 955.1371567024577 K, F = -4529.777469546321, relative_change = 0.021865200420612216 Iter 3: T = 935.8545969376964 K, F = -3828.435829070637, relative_change = 0.020188262627466872 Iter 5: T = 903.0725183002521 K, F = -2730.8995240379613, relative_change = 0.016836476502323203 Iter 10: T = 849.113313529778 K, F = -1164.4374322959359, relative_change = 0.009463551861432735 Iter 15: T = 822.4901116465264 K, F = -492.0659506268578, relative_change = 0.004631763420578942 Iter 20: T = 810.3922559258532 K, F = -206.80673128237248, relative_change = 0.0020867070480975877 Iter 25: T = 805.1367602796445 K, F = -86.67891354576756, relative_change = 0.0009019287613272553 Iter 30: T = 802.9021313219148 K, F = -36.284304077465336, relative_change = 0.00038256724468686945 Iter 35: T = 801.9609668282525 K, F = -15.180573307779122, relative_change = 0.00016095313408285512 Iter 40: T = 801.5661887256555 K, F = -6.349759489569659, relative_change = 6.748172270703948e-5 Iter 45: T = 801.4008817521295 K, F = -2.655731464970696, relative_change = 2.8251364908970883e-5 Iter 50: T = 801.3317122815113 K, F = -1.1106912125441928, relative_change = 1.182026124151215e-5 Iter 55: T = 801.3027784594819 K, F = -0.46451003296263926, relative_change = 4.944285021283527e-6 Iter 60: T = 801.2906768831723 K, F = -0.19426464086484052, relative_change = 2.0679183520376292e-6 Iter 65: T = 801.2856156658958 K, F = -0.08124396730687666, relative_change = 8.64856017291329e-7 Iter 70: T = 801.2834989705345 K, F = -0.03397722789897173, relative_change = 3.616979890165845e-7 Iter 75: T = 801.2826137373349 K, F = -0.014209687815802008, relative_change = 1.5126727105876599e-7 Iter 80: T = 801.2822435212033 K, F = -0.00594266207361005, relative_change = 6.326192833067119e-8 Iter 85: T = 801.2820886922148 K, F = -0.002485292411623208, relative_change = 2.6456920000505458e-8 Iter 90: T = 801.2820239408511 K, F = -0.0010393789952729549, relative_change = 1.1064604462575833e-8 Iter 95: T = 801.281996861052 K, F = -0.00043468071366636885, relative_change = 4.6273505237336555e-9 Iter 100: T = 801.2819855359556 K, F = -0.00018178866714047004, relative_change = 1.9352133974705952e-9 Iter 105: T = 801.2819807996648 K, F = -7.602619121072074e-5, relative_change = 8.093293726423222e-10 Iter 110: T = 801.2819788188915 K, F = -3.179506108441643e-5, relative_change = 3.3847121279720516e-10 Iter 115: T = 801.2819779905084 K, F = -1.3297074344720272e-5, relative_change = 1.4155270500397372e-10 Iter 120: T = 801.2819776440687 K, F = -5.560994902786831e-6, relative_change = 5.919902771212124e-11 Iter 125: T = 801.2819774991834 K, F = -2.3256733818755038e-6, relative_change = 2.47577286993239e-11 Iter 130: T = 801.2819774385907 K, F = -9.726229233120165e-7, relative_change = 1.0353962279670236e-11 Iter 135: T = 801.2819774132502 K, F = -4.0676401602546264e-7, relative_change = 4.330166581872654e-12 Iter 140: T = 801.2819774026523 K, F = -1.7011119712861955e-7, relative_change = 1.810902125150067e-12 Iter 145: T = 801.2819773982202 K, F = -7.114106925776298e-8, relative_change = 7.573253006403631e-13 Iter 150: T = 801.2819773963668 K, F = -2.975209678623969e-8, relative_change = 3.167230388670268e-13 Converged in 153 iterations to T = 801.2819773958241 K Iter 1: T = 980.644453294928 K, F = -4410.179728628814, relative_change = 0.019355546705072054 Iter 2: T = 963.3099878062974 K, F = -3724.7718096463095, relative_change = 0.017676605858920082 Iter 3: T = 947.872206744953 K, F = -3144.4226316290246, relative_change = 0.016025766634580548 Iter 5: T = 922.1527540601597 K, F = -2237.8505002091633, relative_change = 0.012894659487722037 Iter 10: T = 881.5027527561599 K, F = -949.5269068262388, relative_change = 0.006717832608532894 Iter 15: T = 862.3544529761763 K, F = -399.99362960804075, relative_change = 0.003134560817969843 Iter 20: T = 853.8791800830944 K, F = -167.83736441466408, relative_change = 0.0013779257744453881 Iter 25: T = 850.244170996393 K, F = -70.29290065523199, relative_change = 0.000588885204920766 Iter 30: T = 848.7073944939636 K, F = -29.41537695089947, relative_change = 0.00024855774232750036 Iter 35: T = 848.0617407553358 K, F = -12.305042865584513, relative_change = 0.00010435383731603222 Iter 40: T = 847.7911994709735 K, F = -5.1466740472819055, relative_change = 4.371308863232293e-5 Iter 45: T = 847.6779644044568 K, F = -2.152498308446752, relative_change = 1.8293795255067683e-5 Iter 50: T = 847.6305921258685 K, F = -0.9002176064274877, relative_change = 7.652865018947851e-6 Iter 55: T = 847.6107776693508 K, F = -0.37648474666507514, relative_change = 3.200901228740686e-6 Iter 60: T = 847.6024905364778 K, F = -0.15745094069879229, relative_change = 1.3387218890146006e-6 Iter 65: T = 847.5990246727396 K, F = -0.06584795531082821, relative_change = 5.598811603379023e-7 Iter 70: T = 847.5975751921259 K, F = -0.027538417308843988, relative_change = 2.3415103027291287e-7 Iter 75: T = 847.596968999398 K, F = -0.011516897793875103, relative_change = 9.792511445485054e-8 Iter 80: T = 847.5967154819007 K, F = -0.0048165046853814175, relative_change = 4.095351480261806e-8 Iter 85: T = 847.5966094577755 K, F = -0.002014319866838976, relative_change = 1.7127259912323344e-8 Iter 90: T = 847.596565117206 K, F = -0.0008424126383708153, relative_change = 7.162826541159805e-9 Iter 95: T = 847.5965465734479 K, F = -0.0003523070268800499, relative_change = 2.9955799221193895e-9 Iter 100: T = 847.5965388182263 K, F = -0.00014733900654295695, relative_change = 1.2527873567596622e-9 Iter 105: T = 847.5965355749 K, F = -6.161893225931081e-5, relative_change = 5.239306446349753e-10 Iter 110: T = 847.5965342185023 K, F = -2.576977381840706e-5, relative_change = 2.1911405823832796e-10 Iter 115: T = 847.5965336512405 K, F = -1.0777230017966488e-5, relative_change = 9.163614046323777e-11 Iter 120: T = 847.5965334140049 K, F = -4.507166390110839e-6, relative_change = 3.832332911863781e-11 Iter 125: T = 847.59653331479 K, F = -1.884949603070396e-6, relative_change = 1.602726365045429e-11 Iter 130: T = 847.5965332732972 K, F = -7.883067933978083e-7, relative_change = 6.702779107513301e-12 Iter 135: T = 847.5965332559445 K, F = -3.296795398899377e-7, relative_change = 2.80318418015858e-12 Iter 140: T = 847.5965332486874 K, F = -1.3787646779839235e-7, relative_change = 1.1723297523813053e-12 Iter 145: T = 847.5965332456523 K, F = -5.7660340280207834e-8, relative_change = 4.90271715858814e-13 Converged in 150 iterations to T = 847.596533244383 K Iter 1: T = 967.3089091648749 K, F = -7448.696144038747, relative_change = 0.032691090835125135 Iter 2: T = 936.6922985263863 K, F = -6314.075017393266, relative_change = 0.03165132704600172 Iter 3: T = 908.1188463818219 K, F = -5350.776027694343, relative_change = 0.030504630164587036 Iter 5: T = 856.9632848618609 K, F = -3838.9474048710917, relative_change = 0.027895824167451292 Iter 10: T = 761.818695324743 K, F = -1662.3049294901577, relative_change = 0.01997764792304057 Iter 15: T = 706.1068348882649 K, F = -711.7176595895003, relative_change = 0.011972274742327035 Iter 20: T = 677.4526819068111 K, F = -301.6478373896732, relative_change = 0.006131412517322253 Iter 25: T = 664.0899706077281 K, F = -126.9874818531968, relative_change = 0.0028325581146004027 Iter 30: T = 658.2071231688412 K, F = -53.26666372687851, relative_change = 0.001239085592308983 Iter 35: T = 655.690347457044 K, F = -22.30564136742175, relative_change = 0.0005283843576968578 Iter 40: T = 654.6275083580691 K, F = -9.333621557613256, relative_change = 0.00022280965678400465 Iter 45: T = 654.1811843126573 K, F = -3.9043365592278594, relative_change = 9.350617241454177e-5 Iter 50: T = 653.9942034697613 K, F = -1.632998848184258, relative_change = 3.916244631914174e-5 Iter 55: T = 653.9159492156673 K, F = -0.6829674062213175, relative_change = 1.6388201947658164e-5 Iter 60: T = 653.8832124340997 K, F = -0.28562998785158045, relative_change = 6.855492209724855e-6 Iter 65: T = 653.869519785487 K, F = -0.11945472263113421, relative_change = 2.867354982147696e-6 Iter 70: T = 653.8637930526857 K, F = -0.04995754036577693, relative_change = 1.1992156718680265e-6 Iter 75: T = 653.8613980115272 K, F = -0.020892866017758527, relative_change = 5.015356864805946e-7 Iter 80: T = 653.8603963674227 K, F = -0.008737650629997262, relative_change = 2.0974985263849614e-7 Iter 85: T = 653.8599774662715 K, F = -0.003654190637981558, relative_change = 8.772017996155079e-8 Iter 90: T = 653.8598022765232 K, F = -0.001528226303491087, relative_change = 3.668567698066164e-8 Iter 95: T = 653.8597290100287 K, F = -0.000639122515806112, relative_change = 1.5342397013323173e-8 Iter 100: T = 653.8596983690969 K, F = -0.0002672886722676071, relative_change = 6.41637517160732e-9 Iter 105: T = 653.8596855546919 K, F = -0.00011178331596606306, relative_change = 2.6834050018045785e-9 Iter 110: T = 653.8596801955543 K, F = -4.674911765395473e-5, relative_change = 1.1222320607832787e-9 Iter 115: T = 653.859677954299 K, F = -1.9551038765219797e-5, relative_change = 4.693308447962617e-10 Iter 120: T = 653.8596770169792 K, F = -8.17647851203418e-6, relative_change = 1.9627978031167348e-10 Iter 125: T = 653.8596766249808 K, F = -3.4194997297620766e-6, relative_change = 8.208651886768066e-11 Iter 130: T = 653.8596764610425 K, F = -1.4300750846851784e-6, relative_change = 3.432954959452702e-11 Iter 135: T = 653.8596763924816 K, F = -5.980751600631606e-7, relative_change = 1.4357043975360712e-11 Iter 140: T = 653.8596763638085 K, F = -2.5012191401385664e-7, relative_change = 6.004280998844411e-12 Iter 145: T = 653.859676351817 K, F = -1.0460302823922518e-7, relative_change = 2.511039376175612e-12 Iter 150: T = 653.8596763468022 K, F = -4.374739803747474e-8, relative_change = 1.0501745592881863e-12 Iter 155: T = 653.8596763447048 K, F = -1.8294974868382496e-8, relative_change = 4.391785119066363e-13 Converged in 159 iterations to T = 653.8596763439477 K Iter 1: T = 973.4928348987213 K, F = -6039.682783149837, relative_change = 0.026507165101278648 Iter 2: T = 949.1787322023386 K, F = -5111.076565588813, relative_change = 0.0249761496178986 Iter 3: T = 926.9904435977603 K, F = -4323.430305818838, relative_change = 0.02337630190374761 Iter 5: T = 888.6698225433448 K, F = -3089.4526453775097, relative_change = 0.020047931328123405 Iter 10: T = 823.406142377135 K, F = -1322.878526791268, relative_change = 0.012032260394676206 Iter 15: T = 789.8058124075095 K, F = -560.7173195225203, relative_change = 0.006168995463930458 Iter 20: T = 774.1262919516406 K, F = -236.0603254878595, relative_change = 0.0028517443337286205 Iter 25: T = 767.2211117259828 K, F = -99.02083522697025, relative_change = 0.0012478677611077297 Iter 30: T = 764.2664913939933 K, F = -41.465780851103446, relative_change = 0.0005322037363323246 Iter 35: T = 763.0186616759576 K, F = -17.35110209769181, relative_change = 0.00022443373239719604 Iter 40: T = 762.494637683734 K, F = -7.258132029455637, relative_change = 9.419014803046288e-5 Iter 45: T = 762.275102808928 K, F = -3.035734637305672, relative_change = 3.944933342431723e-5 Iter 50: T = 762.1832237196454 K, F = -1.2696325142289462, relative_change = 1.6508329011492674e-5 Iter 55: T = 762.1447870565527 K, F = -0.530984585596538, relative_change = 6.905756606507219e-6 Iter 60: T = 762.128710332186 K, F = -0.22206568786956105, relative_change = 2.888380672426861e-6 Iter 65: T = 762.1219864949355 K, F = -0.09287080129801317, relative_change = 1.2080096572557386e-6 Iter 70: T = 762.1191744430812 K, F = -0.038839726939877806, relative_change = 5.052135745014193e-7 Iter 75: T = 762.1179983984256 K, F = -0.01624324616890238, relative_change = 2.112880135385318e-7 Iter 80: T = 762.1175065605842 K, F = -0.00679312102312557, relative_change = 8.836346146638567e-8 Iter 85: T = 762.117300867789 K, F = -0.002840964598117224, relative_change = 3.695470572803874e-8 Iter 90: T = 762.1172148445469 K, F = -0.0011881253685890325, relative_change = 1.5454908163789678e-8 Iter 95: T = 762.1171788685893 K, F = -0.000496888227084491, relative_change = 6.463428730881102e-9 Iter 100: T = 762.1171638230126 K, F = -0.00020780459190017364, relative_change = 2.703083355032969e-9 Iter 105: T = 762.1171575307724 K, F = -8.69063630027922e-5, relative_change = 1.13046179762289e-9 Iter 110: T = 762.1171548992822 K, F = -3.634527900542306e-5, relative_change = 4.72772633618529e-10 Iter 115: T = 762.1171537987616 K, F = -1.5200029556017292e-5, relative_change = 1.9771916051635558e-10 Iter 120: T = 762.1171533385108 K, F = -6.356833792908745e-6, relative_change = 8.268851320702101e-11 Iter 125: T = 762.1171531460283 K, F = -2.6585019085034745e-6, relative_change = 3.4581299055159885e-11 Iter 130: T = 762.1171530655299 K, F = -1.111817243826252e-6, relative_change = 1.4462312214181567e-11 Iter 135: T = 762.1171530318645 K, F = -4.6497540195922227e-7, relative_change = 6.048313671877209e-12 Iter 140: T = 762.1171530177852 K, F = -1.9445817200924864e-7, relative_change = 2.529475786287694e-12 Iter 145: T = 762.1171530118971 K, F = -8.132360040935538e-8, relative_change = 1.0578422905620229e-12 Iter 150: T = 762.1171530094346 K, F = -3.400977122147708e-8, relative_change = 4.4239278770092905e-13 Converged in 154 iterations to T = 762.1171530085458 K Iter 1: T = 970.0713354653979 K, F = -6819.274683718785, relative_change = 0.029928664534602127 Iter 2: T = 942.3014308227099 K, F = -5776.19610013856, relative_change = 0.028626662418970595 Iter 3: T = 916.6471396422037 K, F = -4890.932045613131, relative_change = 0.027225142975860532 Iter 5: T = 871.4777316181023 K, F = -3502.5260031985244, relative_change = 0.024165115358276975 Iter 10: T = 790.9862055780486 K, F = -1508.3235187364714, relative_change = 0.01586163014774443 Iter 15: T = 746.8774655388944 K, F = -642.341635240105, relative_change = 0.008745753436596287 Iter 20: T = 725.3745367854834 K, F = -271.2143716791904, relative_change = 0.004226540331483351 Iter 25: T = 715.6723115672393 K, F = -113.93620249095979, relative_change = 0.0018914331858868496 Iter 30: T = 711.4722924656338 K, F = -47.74417860137416, relative_change = 0.0008149766409976125 Iter 35: T = 709.689284817504 K, F = -19.984171626239224, relative_change = 0.00034521173969471276 Iter 40: T = 708.9388467840431 K, F = -8.360622243382943, relative_change = 0.00014515204846933142 Iter 45: T = 708.6241620285139 K, F = -3.497039687822874, relative_change = 6.084189441566194e-5 Iter 50: T = 708.4924090228578 K, F = -1.4625962178131493, relative_change = 2.5468948881213207e-5 Iter 55: T = 708.4372823903595 K, F = -0.6116913890056473, relative_change = 1.0655646938090745e-5 Iter 60: T = 708.4142232314233 K, F = -0.25581947545978884, relative_change = 4.45705877915592e-6 Iter 65: T = 708.4045788209384 K, F = -0.10698725503890827, relative_change = 1.864124663597103e-6 Iter 70: T = 708.400545274258 K, F = -0.044743434375644875, relative_change = 7.796218404343053e-7 Iter 75: T = 708.3988583725466 K, F = -0.018712253753386254, relative_change = 3.2605112487054376e-7 Iter 80: T = 708.3981528858515 K, F = -0.007825690638384675, relative_change = 1.3635916697228157e-7 Iter 85: T = 708.3978578421464 K, F = -0.003272797744376832, relative_change = 5.702715321514517e-8 Iter 90: T = 708.3977344512155 K, F = -0.0013687231831255309, relative_change = 2.3849457711967513e-8 Iter 95: T = 708.3976828476318 K, F = -0.0005724163962663731, relative_change = 9.974131759814164e-9 Iter 100: T = 708.3976612663928 K, F = -0.0002393913750461385, relative_change = 4.171301658686356e-9 Iter 105: T = 708.3976522408602 K, F = -0.00010011633254003449, relative_change = 1.7444882850857823e-9 Iter 110: T = 708.3976484662745 K, F = -4.1869845721964616e-5, relative_change = 7.295658496488642e-10 Iter 115: T = 708.3976468876978 K, F = -1.751046932996214e-5, relative_change = 3.051131512361974e-10 Iter 120: T = 708.3976462275181 K, F = -7.323088213828655e-6, relative_change = 1.2760197853707493e-10 Iter 125: T = 708.397645951423 K, F = -3.0626013854950784e-6, relative_change = 5.33646442011673e-11 Iter 130: T = 708.3976458359567 K, F = -1.2808160881894182e-6, relative_change = 2.2317724797656997e-11 Iter 135: T = 708.3976457876674 K, F = -5.356537764455993e-7, relative_change = 9.333559816786511e-12 Iter 140: T = 708.3976457674722 K, F = -2.240170468015279e-7, relative_change = 3.9034103716396935e-12 Iter 145: T = 708.3976457590263 K, F = -9.368595976777527e-8, relative_change = 1.6324416033361327e-12 Iter 150: T = 708.3976457554943 K, F = -3.918146607162498e-8, relative_change = 6.827218876242188e-13 Iter 155: T = 708.397645754017 K, F = -1.6385770740257044e-8, relative_change = 2.8551571576283016e-13 Converged in 157 iterations to T = 708.3976457537045 K Iter 1: T = 973.4569257501965 K, F = -6047.864716799641, relative_change = 0.026543074249803497 Iter 2: T = 949.106951504381 K, F = -5118.050809979456, relative_change = 0.025013920597514113 Iter 3: T = 926.8831151403685 K, F = -4329.374636352501, relative_change = 0.023415523749759224 Iter 5: T = 888.4936167853072 K, F = -3093.7680225176027, relative_change = 0.020088533892505013 Iter 10: T = 823.0840132589931 K, F = -1324.7985126409878, relative_change = 0.012066903399425526 Iter 15: T = 789.3893751062659 K, F = -561.55447873879, relative_change = 0.0061907104589731575 Iter 20: T = 773.659987587787 K, F = -236.41849239059545, relative_change = 0.002862834793435704 Iter 25: T = 766.7314799231023 K, F = -99.17225611259715, relative_change = 0.0012529455050183538 Iter 30: T = 763.7666047710088 K, F = -41.52941167466684, relative_change = 0.0005344123178604708 Iter 35: T = 762.5143933830291 K, F = -17.377768126048544, relative_change = 0.00022537291442219446 Iter 40: T = 761.9885202140249 K, F = -7.2692937930035875, relative_change = 9.458569120827325e-5 Iter 45: T = 761.7682090350678 K, F = -3.0404043274755796, relative_change = 3.96152418430812e-5 Iter 50: T = 761.676004766553 K, F = -1.2715857336843066, relative_change = 1.6577799441364637e-5 Iter 55: T = 761.6374320185655 K, F = -0.5318014976845495, relative_change = 6.934824952625042e-6 Iter 60: T = 761.6212983659314 K, F = -0.2224073394241085, relative_change = 2.9005400238700253e-6 Iter 65: T = 761.6145507178109 K, F = -0.09301368565962176, relative_change = 1.2130953019116854e-6 Iter 70: T = 761.6117287074784 K, F = -0.03889948316413627, relative_change = 5.07340532032112e-7 Iter 75: T = 761.6105484979832 K, F = -0.01626823698489921, relative_change = 2.1217754661679073e-7 Iter 80: T = 761.6100549183411 K, F = -0.006803572488363163, relative_change = 8.873547726387687e-8 Iter 85: T = 761.6098484971016 K, F = -0.0028453355284148163, relative_change = 3.711028762249559e-8 Iter 90: T = 761.6097621692147 K, F = -0.0011899533427318643, relative_change = 1.5519974427302146e-8 Iter 95: T = 761.6097260658512 K, F = -0.0004976527068007996, relative_change = 6.490640220148155e-9 Iter 100: T = 761.6097109669915 K, F = -0.0002081243066918148, relative_change = 2.7144635301933638e-9 Iter 105: T = 761.6097046524677 K, F = -8.704006908721862e-5, relative_change = 1.1352210911113327e-9 Iter 110: T = 761.6097020116586 K, F = -3.640119786396667e-5, relative_change = 4.747630450257664e-10 Iter 115: T = 761.6097009072405 K, F = -1.5223415130494189e-5, relative_change = 1.985515696476559e-10 Iter 120: T = 761.6097004453597 K, F = -6.366613472197358e-6, relative_change = 8.303663081239835e-11 Iter 125: T = 761.6097002521957 K, F = -2.6625936276891693e-6, relative_change = 3.47269086302088e-11 Iter 130: T = 761.6097001714122 K, F = -1.1135294117892158e-6, relative_change = 1.452322042599633e-11 Iter 135: T = 761.6097001376276 K, F = -4.65692226447878e-7, relative_change = 6.073796331914259e-12 Iter 140: T = 761.6097001234984 K, F = -1.9475789581058223e-7, relative_change = 2.540132143310612e-12 Iter 145: T = 761.6097001175895 K, F = -8.14509755198145e-8, relative_change = 1.0623253048017763e-12 Iter 150: T = 761.6097001151182 K, F = -3.4063033393927356e-8, relative_change = 4.442675130936041e-13 Converged in 154 iterations to T = 761.6097001142263 K Iter 1: T = 964.4118999776051 K, F = -8108.782443125317, relative_change = 0.03558810002239484 Iter 2: T = 930.7545554700662 K, F = -6878.99762828201, relative_change = 0.03489934592088766 Iter 3: T = 898.9972238824913 K, F = -5834.638606678082, relative_change = 0.03411998512490356 Iter 5: T = 841.0699335298307 K, F = -4194.746389133971, relative_change = 0.03226454741121426 Iter 10: T = 727.5082059235905 K, F = -1828.922842413542, relative_change = 0.025805512044988523 Iter 15: T = 654.4832805616946 K, F = -789.4757856272405, relative_change = 0.01758634147943384 Iter 20: T = 613.337045737821 K, F = -336.9517532153341, relative_change = 0.010034172166894567 Iter 25: T = 592.8420166610878 K, F = -142.48305186963978, relative_change = 0.0049611652189200306 Iter 30: T = 583.47542991187 K, F = -59.904753014049255, relative_change = 0.0022473573907959084 Iter 35: T = 579.3947129973005 K, F = -25.112168630944634, relative_change = 0.0009738680210645212 Iter 40: T = 577.6573230333188 K, F = -10.512894498421394, relative_change = 0.0004135499018851446 Iter 45: T = 576.9251656508054 K, F = -4.398511191850366, relative_change = 0.00017407247500467483 Iter 50: T = 576.6179828274799 K, F = -1.8398428323254339, relative_change = 7.299711700338463e-5 Iter 55: T = 576.4893418777192 K, F = -0.7695026064976132, relative_change = 3.0563022462973375e-5 Iter 60: T = 576.4355122906968 K, F = -0.3218253970869779, relative_change = 1.2787910086379895e-5 Iter 65: T = 576.4129947911973 K, F = -0.13459301217144104, relative_change = 5.349122451851906e-6 Iter 70: T = 576.4035767725385 K, F = -0.056288717784078984, relative_change = 2.2372533436730253e-6 Iter 75: T = 576.3996378817201 K, F = -0.023540668700291395, relative_change = 9.356786813319687e-7 Iter 80: T = 576.3979905620392 K, F = -0.009844998349812673, relative_change = 3.913177034399394e-7 Iter 85: T = 576.3973016282908 K, F = -0.004117297556228472, relative_change = 1.6365473462735596e-7 Iter 90: T = 576.3970135070978 K, F = -0.0017219033011621199, relative_change = 6.844253896717539e-8 Iter 95: T = 576.3968930112216 K, F = -0.0007201205750095308, relative_change = 2.8623517671718892e-8 Iter 100: T = 576.3968426183803 K, F = -0.00030116303305083303, relative_change = 1.1970702248798166e-8 Iter 105: T = 576.3968215434877 K, F = -0.00012594997825232657, relative_change = 5.006291559360594e-9 Iter 110: T = 576.3968127297152 K, F = -5.267378501694342e-5, relative_change = 2.093691068361375e-9 Iter 115: T = 576.39680904369 K, F = -2.2028806302643034e-5, relative_change = 8.75606649339381e-10 Iter 120: T = 576.3968075021503 K, F = -9.21270988207823e-6, relative_change = 3.6618916263864694e-10 Iter 125: T = 576.39680685746 K, F = -3.852865354647683e-6, relative_change = 1.5314468419714637e-10 Iter 130: T = 576.3968065878428 K, F = -1.6113138422979567e-6, relative_change = 6.404691764613033e-11 Iter 135: T = 576.3968064750857 K, F = -6.738708693276863e-7, relative_change = 2.6785192914746943e-11 Iter 140: T = 576.3968064279293 K, F = -2.8182086847516885e-7, relative_change = 1.1201888486410316e-11 Iter 145: T = 576.3968064082079 K, F = -1.1786059850305008e-7, relative_change = 4.684753434801567e-12 Iter 150: T = 576.3968063999603 K, F = -4.92910100513555e-8, relative_change = 1.95923176694781e-12 Iter 155: T = 576.3968063965109 K, F = -2.0613625972831784e-8, relative_change = 8.193557161239894e-13 Iter 160: T = 576.3968063950684 K, F = -8.620999525366102e-9, relative_change = 3.426697102782791e-13 Converged in 163 iterations to T = 576.3968063946461 K Iter 1: T = 963.5832154435593 K, F = -8297.599002490171, relative_change = 0.03641678455644074 Iter 2: T = 929.0455122920898 K, F = -7040.750011672697, relative_change = 0.035842989580895705 Iter 3: T = 896.3534372021963 K, F = -5973.354119225588, relative_change = 0.035188884352110365 Iter 5: T = 836.3875450249287 K, F = -4297.112171922737, relative_change = 0.033610575399297044 Iter 10: T = 716.8326663590988 K, F = -1877.7418472974903, relative_change = 0.027870448886343123 Iter 15: T = 637.342041084258 K, F = -813.0491442558182, relative_change = 0.019946700425441003 Iter 20: T = 590.8202909475857 K, F = -348.09294308256204, relative_change = 0.011945773432790378 Iter 25: T = 566.9035510283569 K, F = -147.5276977247658, relative_change = 0.006114800111983231 Iter 30: T = 555.753348964793 K, F = -62.10492869937968, relative_change = 0.0028240782795273195 Iter 35: T = 550.8452974921257 K, F = -26.05053444519994, relative_change = 0.0012352045627133375 Iter 40: T = 548.7457053710725 K, F = -10.908726502679228, relative_change = 0.0005266966058769213 Iter 45: T = 547.859071565631 K, F = -4.564663300397286, relative_change = 0.00022209201371203974 Iter 50: T = 547.4867474075253 K, F = -1.9094376361252665, relative_change = 9.320394286194585e-5 Iter 55: T = 547.3307686042797 K, F = -0.7986269673246383, relative_change = 3.9035679729039366e-5 Iter 60: T = 547.2654893185372 K, F = -0.334008879478964, relative_change = 1.633512162225188e-5 Iter 65: T = 547.2381804953425 K, F = -0.13968887237890681, relative_change = 6.833281995706253e-6 Iter 70: T = 547.2267581762803 K, F = -0.05841996927412482, relative_change = 2.8580644125432504e-6 Iter 75: T = 547.2219809735869 K, F = -0.024432001350199406, relative_change = 1.1953298960761862e-6 Iter 80: T = 547.2199830462109 K, F = -0.010217767426290852, relative_change = 4.999105476386641e-7 Iter 85: T = 547.2191474813986 K, F = -0.004273194581462997, relative_change = 2.090701895513421e-7 Iter 90: T = 547.2187980368645 K, F = -0.0017871013946798853, relative_change = 8.743593490087173e-8 Iter 95: T = 547.2186518947509 K, F = -0.0007473872130084602, relative_change = 3.6566801964540616e-8 Iter 100: T = 547.2185907763323 K, F = -0.0003125662698603149, relative_change = 1.5292681985124978e-8 Iter 105: T = 547.2185652158726 K, F = -0.00013071894868957323, relative_change = 6.3955837498956134e-9 Iter 110: T = 547.2185545261817 K, F = -5.466822536950855e-5, relative_change = 2.674709748130977e-9 Iter 115: T = 547.2185500556252 K, F = -2.2862904889536795e-5, relative_change = 1.118595610956006e-9 Iter 120: T = 547.2185481859849 K, F = -9.561538776292622e-6, relative_change = 4.678099976707254e-10 Iter 125: T = 547.2185474040791 K, F = -3.998749088296449e-6, relative_change = 1.9564369900851216e-10 Iter 130: T = 547.2185470770768 K, F = -1.6723248052463724e-6, relative_change = 8.182054051115443e-11 Iter 135: T = 547.2185469403205 K, F = -6.993859698045668e-7, relative_change = 3.421831570272144e-11 Iter 140: T = 547.2185468831274 K, F = -2.9249142252663063e-7, relative_change = 1.4310501316077595e-11 Iter 145: T = 547.2185468592086 K, F = -1.2232322044170019e-7, relative_change = 5.9848134771292136e-12 Iter 150: T = 547.2185468492055 K, F = -5.1157744179741726e-8, relative_change = 2.502955332172716e-12 Iter 155: T = 547.218546845022 K, F = -2.139454005622987e-8, relative_change = 1.046754093122773e-12 Iter 160: T = 547.2185468432725 K, F = -8.947887097932039e-9, relative_change = 4.3778634268774667e-13 Converged in 164 iterations to T = 547.218546842641 K Iter 1: T = 969.3914566112014 K, F = -6974.185727379187, relative_change = 0.030608543388798527 Iter 2: T = 940.9256603142674 K, F = -5908.504328792253, relative_change = 0.029364604054222563 Iter 3: T = 914.5631765918503 K, F = -5003.968891468875, relative_change = 0.028017605252270466 Iter 5: T = 867.9603537806303 K, F = -3585.076092968333, relative_change = 0.025047236008776688 Iter 10: T = 784.0834528865145 K, F = -1545.8330848381145, relative_change = 0.016773734748313746 Iter 15: T = 737.4371063497363 K, F = -659.0795503618534, relative_change = 0.009416456645530051 Iter 20: T = 714.4402662182285 K, F = -278.4973490044552, relative_change = 0.004604842045785909 Iter 25: T = 703.9952020223465 K, F = -117.04410150569325, relative_change = 0.002073648273380925 Iter 30: T = 699.458775606984 K, F = -49.05601334733044, relative_change = 0.000896096084712773 Iter 35: T = 697.5301004545898 K, F = -20.535009842319287, relative_change = 0.000380058102643398 Iter 40: T = 696.7178330367065 K, F = -8.591384321733894, relative_change = 0.00015989117855155378 Iter 45: T = 696.3771284413015 K, F = -3.5936168123119314, relative_change = 6.703536690360453e-5 Iter 50: T = 696.234465062053 K, F = -1.5029981530783374, relative_change = 2.8064300810438547e-5 Iter 55: T = 696.1747705684056 K, F = -0.6285901027948743, relative_change = 1.1741959946388167e-5 Iter 60: T = 696.1498001974674 K, F = -0.26288709424273404, relative_change = 4.9115264300500205e-6 Iter 65: T = 696.1393563416617 K, F = -0.10994308320179563, relative_change = 2.0542162087630163e-6 Iter 70: T = 696.1349884305229 K, F = -0.04597960848431959, relative_change = 8.591252483722285e-7 Iter 75: T = 696.1331616889004 K, F = -0.019229238533965187, relative_change = 3.593012484719947e-7 Iter 80: T = 696.1323977186623 K, F = -0.00804190020015938, relative_change = 1.5026491426487544e-7 Iter 85: T = 696.1320782162973 K, F = -0.003363219228026626, relative_change = 6.284272879740613e-8 Iter 90: T = 696.1319445964374 K, F = -0.0014065385389911977, relative_change = 2.6281605430449885e-8 Iter 95: T = 696.131888714989 K, F = -0.0005882312314050564, relative_change = 1.0991285774035688e-8 Iter 100: T = 696.1318653446951 K, F = -0.0002460053272860252, relative_change = 4.596687734287922e-9 Iter 105: T = 696.1318555709584 K, F = -0.00010288236732836076, relative_change = 1.922389863678545e-9 Iter 110: T = 696.1318514834647 K, F = -4.3026634605647374e-5, relative_change = 8.03966420042116e-10 Iter 115: T = 696.131849774026 K, F = -1.7994250899211472e-5, relative_change = 3.362283334150892e-10 Iter 120: T = 696.1318490591184 K, F = -7.52541099224846e-6, relative_change = 1.4061471203949428e-10 Iter 125: T = 696.1318487601354 K, F = -3.1472159159884328e-6, relative_change = 5.880673641793256e-11 Iter 130: T = 696.1318486350973 K, F = -1.31620419419054e-6, relative_change = 2.4593696540780157e-11 Iter 135: T = 696.1318485828048 K, F = -5.504515409038291e-7, relative_change = 1.0285363184517815e-11 Iter 140: T = 696.1318485609354 K, F = -2.3020506312310118e-7, relative_change = 4.301455269981285e-12 Iter 145: T = 696.1318485517894 K, F = -9.62738124776763e-8, relative_change = 1.798906993838565e-12 Iter 150: T = 696.1318485479644 K, F = -4.026317645955402e-8, relative_change = 7.523303364135243e-13 Iter 155: T = 696.1318485463647 K, F = -1.6837889971199616e-8, relative_change = 3.1462136226112904e-13 Converged in 157 iterations to T = 696.1318485460263 K Iter 1: T = 966.477430546483 K, F = -7638.149338179682, relative_change = 0.03352256945351697 Iter 2: T = 934.9939305416572 K, F = -6476.127378269461, relative_change = 0.032575514967818575 Iter 3: T = 905.5197789319436 K, F = -5489.480551323953, relative_change = 0.03152336143255896 Iter 5: T = 852.4749146711238 K, F = -3940.7450529624534, relative_change = 0.029098848398655095 Iter 10: T = 752.4051306854508 K, F = -1709.535217653858, relative_change = 0.021462234855186144 Iter 15: T = 692.396286166031 K, F = -733.4130475696323, relative_change = 0.013273508508245397 Iter 20: T = 660.8668268216295 K, F = -311.33255349202926, relative_change = 0.006964358063025175 Iter 25: T = 645.9523597051566 K, F = -131.18688628294333, relative_change = 0.0032632845074411147 Iter 30: T = 639.3359991162775 K, F = -55.053644567843484, relative_change = 0.001437510931166201 Iter 35: T = 636.4952103510542 K, F = -23.058769988200943, relative_change = 0.0006149304606652202 Iter 40: T = 635.2936348876212 K, F = -9.649635183589897, relative_change = 0.0002596569868881768 Iter 45: T = 634.7887078409508 K, F = -4.036682747357784, relative_change = 0.00010903260330631835 Iter 50: T = 634.5771154950885 K, F = -1.6883802393999892, relative_change = 4.56763201049689e-5 Iter 55: T = 634.4885503025675 K, F = -0.706134287119607, relative_change = 1.911598588178505e-5 Iter 60: T = 634.451498188324 K, F = -0.2953196558582697, relative_change = 7.9969153133955e-6 Iter 65: T = 634.4360002602157 K, F = -0.12350723279070358, relative_change = 3.3448222355637e-6 Iter 70: T = 634.4295184407165 K, F = -0.05165237917359461, relative_change = 1.3989175073975078e-6 Iter 75: T = 634.426807596271 K, F = -0.021601673211477046, relative_change = 5.850567598937519e-7 Iter 80: T = 634.4256738764848 K, F = -0.00903408320264476, relative_change = 2.4467995435630985e-7 Iter 85: T = 634.4251997391856 K, F = -0.003778162443694999, relative_change = 1.0232846906777276e-7 Iter 90: T = 634.4250014489296 K, F = -0.0015800728234882655, relative_change = 4.2795056075890484e-8 Iter 95: T = 634.4249185215108 K, F = -0.0006608053541867775, relative_change = 1.789741546472302e-8 Iter 100: T = 634.4248838402624 K, F = -0.00027635669523068396, relative_change = 7.484914955582846e-9 Iter 105: T = 634.4248693361482 K, F = -0.00011557567190972895, relative_change = 3.130281206379804e-9 Iter 110: T = 634.424863270354 K, F = -4.8335126141385576e-5, relative_change = 1.3091210404028628e-9 Iter 115: T = 634.4248607335664 K, F = -2.021432695459291e-5, relative_change = 5.474900626143724e-10 Iter 120: T = 634.4248596726515 K, F = -8.453872802516305e-6, relative_change = 2.2896688063024457e-10 Iter 125: T = 634.4248592289642 K, F = -3.5355103092382656e-6, relative_change = 9.575667727065676e-11 Iter 130: T = 634.4248590434089 K, F = -1.47859220755997e-6, relative_change = 4.0046574510452606e-11 Iter 135: T = 634.4248589658075 K, F = -6.183649659541324e-7, relative_change = 1.6747956990130666e-11 Iter 140: T = 634.4248589333536 K, F = -2.586076847110874e-7, relative_change = 7.0041975538353414e-12 Iter 145: T = 634.4248589197811 K, F = -1.0815234086081205e-7, relative_change = 2.9292260290807406e-12 Iter 150: T = 634.4248589141049 K, F = -4.523129049083252e-8, relative_change = 1.2250559940335967e-12 Iter 155: T = 634.4248589117309 K, F = -1.8915429389476657e-8, relative_change = 5.123103918161932e-13 Converged in 160 iterations to T = 634.4248589107382 K Iter 1: T = 966.4650616003436 K, F = -7640.967614323453, relative_change = 0.033534938399656385 Iter 2: T = 934.968630543545 K, F = -6478.538577267544, relative_change = 0.03258931161427025 Iter 3: T = 905.4810015684436 K, F = -5491.544929132511, relative_change = 0.031538629224339594 Iter 5: T = 852.4077117332963 K, F = -3942.261301334187, relative_change = 0.029117042187902512 Iter 10: T = 752.2626317822244 K, F = -1710.241193818196, relative_change = 0.02148534000924366 Iter 15: T = 692.1863621632248 K, F = -733.7391494702341, relative_change = 0.013294398681542564 Iter 20: T = 660.6107028444884 K, F = -311.4789211042035, relative_change = 0.006978057213410204 Iter 25: T = 645.6708965787171 K, F = -131.25058582734093, relative_change = 0.0032704703453106934 Iter 30: T = 639.0424523517231 K, F = -55.080803100601756, relative_change = 0.0014408447657490977 Iter 35: T = 636.1963035389431 K, F = -23.070226288591716, relative_change = 0.000616389210857488 Iter 40: T = 634.9924287472608 K, F = -9.654444143595347, relative_change = 0.00026027891305056367 Iter 45: T = 634.4865296800647 K, F = -4.038697071290606, relative_change = 0.00010929481898882042 Iter 50: T = 634.2745289776917 K, F = -1.689223209771733, relative_change = 4.578635573112358e-5 Iter 55: T = 634.1857926809294 K, F = -0.7064869249051894, relative_change = 1.9162069735259692e-5 Iter 60: T = 634.1486689519294 K, F = -0.29546715026498266, relative_change = 8.016199629920104e-6 Iter 65: T = 634.1331410637096 K, F = -0.12356891970072553, relative_change = 3.35288917948878e-6 Iter 70: T = 634.1266467127903 K, F = -0.05167817789884527, relative_change = 1.4022915517666837e-6 Iter 75: T = 634.1239306272503 K, F = -0.02161246263792027, relative_change = 5.864678871296677e-7 Iter 80: T = 634.1227947155223 K, F = -0.009038595485718781, relative_change = 2.452701153931197e-7 Iter 85: T = 634.1223196615176 K, F = -0.0037800495381026256, relative_change = 1.0257528337090695e-7 Iter 90: T = 634.1221209878828 K, F = -0.0015808620289663455, relative_change = 4.2898277082975245e-8 Iter 95: T = 634.1220379001302 K, F = -0.0006611354095660271, relative_change = 1.7940583783974472e-8 Iter 100: T = 634.1220031518282 K, F = -0.0002764947288644848, relative_change = 7.502968486320138e-9 Iter 105: T = 634.1219886196714 K, F = -0.0001156333984893565, relative_change = 3.137831390334226e-9 Iter 110: T = 634.1219825421495 K, F = -4.835926932478252e-5, relative_change = 1.3122786513877739e-9 Iter 115: T = 634.121980000457 K, F = -2.0224423346537623e-5, relative_change = 5.488105976645792e-10 Iter 120: T = 634.1219789374909 K, F = -8.458094734264954e-6, relative_change = 2.29519130593958e-10 Iter 125: T = 634.1219784929459 K, F = -3.5372760915919343e-6, relative_change = 9.598763804733842e-11 Iter 130: T = 634.1219783070318 K, F = -1.4793316920336252e-6, relative_change = 4.014319253807013e-11 Iter 135: T = 634.1219782292802 K, F = -6.186729773483002e-7, relative_change = 1.6788329889796876e-11 Iter 140: T = 634.1219781967636 K, F = -2.587356930927598e-7, relative_change = 7.0210601238552475e-12 Iter 145: T = 634.1219781831647 K, F = -1.0820541401779238e-7, relative_change = 2.936265609672841e-12 Iter 150: T = 634.1219781774777 K, F = -4.5253536085088086e-8, relative_change = 1.2280014168843495e-12 Iter 155: T = 634.1219781750992 K, F = -1.89248743343029e-8, relative_change = 5.135460012141502e-13 Converged in 160 iterations to T = 634.1219781741046 K Iter 1: T = 976.6109837126822 K, F = -5329.209609763594, relative_change = 0.023389016287317786 Iter 2: T = 955.3800312698964 K, F = -4505.983030396242, relative_change = 0.02173941599763122 Iter 3: T = 936.2140483142638 K, F = -3808.1933757637116, relative_change = 0.020061109012459846 Iter 5: T = 903.6504751584874 K, F = -2716.269233379921, relative_change = 0.01671194532793878 Iter 10: T = 850.1207155342778 K, F = -1158.0146130910791, relative_change = 0.009370352537585258 Iter 15: T = 823.7504890845725 K, F = -489.2988808613127, relative_change = 0.0045785760602213175 Iter 20: T = 811.7786910739082 K, F = -205.63180821663954, relative_change = 0.0020609284413749033 Iter 25: T = 806.5803640814017 K, F = -86.18410614885126, relative_change = 0.000890419024843271 Iter 30: T = 804.3705073832556 K, F = -36.0767391757505, relative_change = 0.0003776166910231051 Iter 35: T = 803.4398610033888 K, F = -15.09365467280186, relative_change = 0.000158858029991785 Iter 40: T = 803.0495098850967 K, F = -6.313389232117518, relative_change = 6.660114405579279e-5 Iter 45: T = 802.8860592988638 K, F = -2.6405175054413936, relative_change = 2.788232591992331e-5 Iter 50: T = 802.8176670637396 K, F = -1.1043279427976218, relative_change = 1.1665789660532016e-5 Iter 55: T = 802.7890584436357 K, F = -0.46184873077472155, relative_change = 4.879659514943442e-6 Iter 60: T = 802.7770928973888 K, F = -0.19315163382405265, relative_change = 2.0408870560344373e-6 Iter 65: T = 802.7720885741858 K, F = -0.08077849120335545, relative_change = 8.535504827250348e-7 Iter 70: T = 802.7699956734239 K, F = -0.03378255966222965, relative_change = 3.569697528514437e-7 Iter 75: T = 802.769120391553 K, F = -0.014128275137712087, relative_change = 1.4928984412022277e-7 Iter 80: T = 802.7687543372109 K, F = -0.005908614302003956, relative_change = 6.243494089839076e-8 Iter 85: T = 802.7686012487368 K, F = -0.002471053227126152, relative_change = 2.611106333722531e-8 Iter 90: T = 802.7685372252778 K, F = -0.0010334239980964721, relative_change = 1.0919962961034351e-8 Iter 95: T = 802.7685104498971 K, F = -0.00043219026266760885, relative_change = 4.56685970001536e-9 Iter 100: T = 802.7684992521122 K, F = -0.00018074712738802567, relative_change = 1.9099153731246266e-9 Iter 105: T = 802.7684945690646 K, F = -7.559060714279475e-5, relative_change = 7.98749439297536e-10 Iter 110: T = 802.7684926105584 K, F = -3.1612895492250104e-5, relative_change = 3.340465673813052e-10 Iter 115: T = 802.7684917914876 K, F = -1.3220893009258106e-5, relative_change = 1.397022917434265e-10 Iter 120: T = 802.7684914489424 K, F = -5.5291355320896685e-6, relative_change = 5.842516887636448e-11 Iter 125: T = 802.7684913056859 K, F = -2.312351414124336e-6, relative_change = 2.443411292821832e-11 Iter 130: T = 802.7684912457743 K, F = -9.6705201668712e-7, relative_change = 1.0218627690955335e-11 Iter 135: T = 802.7684912207185 K, F = -4.044328771879435e-7, relative_change = 4.273553983928789e-12 Iter 140: T = 802.7684912102399 K, F = -1.69136626260169e-7, relative_change = 1.7872298316920571e-12 Iter 145: T = 802.7684912058576 K, F = -7.073459529216564e-8, relative_change = 7.474370373667547e-13 Iter 150: T = 802.7684912040249 K, F = -2.9582696292607125e-8, relative_change = 3.1259389812266393e-13 Converged in 152 iterations to T = 802.768491203637 K Iter 1: T = 965.245220308945 K, F = -7918.909612937255, relative_change = 0.03475477969105499 Iter 2: T = 932.4684010768198 K, F = -6716.410808581464, relative_change = 0.03395698682831546 Iter 3: T = 901.6401392042152 K, F = -5695.285481366523, relative_change = 0.0330609185651803 Iter 5: T = 845.7159947312093 K, F = -4092.076760356467, relative_change = 0.030955830140264585 Iter 10: T = 737.830067725808 K, F = -1780.3821548885019, relative_change = 0.023927901228144657 Iter 15: T = 670.5210908499234 K, F = -766.4411747297079, relative_change = 0.015622004740146972 Iter 20: T = 633.7795317862164 K, F = -326.30122276119147, relative_change = 0.008573309608728158 Iter 25: T = 615.9200327202285 K, F = -137.74600655466887, relative_change = 0.004130668483075917 Iter 30: T = 607.8752869118618 K, F = -57.860557145931296, relative_change = 0.0018456080317222764 Iter 35: T = 604.3956565130143 K, F = -24.244886007940142, relative_change = 0.0007946490699979793 Iter 40: T = 602.91902064317 K, F = -10.147909866431622, relative_change = 0.0003364934139631746 Iter 45: T = 602.2976292278272 K, F = -4.245463351782973, relative_change = 0.0001414669001147629 Iter 50: T = 602.0370759576083 K, F = -1.7757645751812017, relative_change = 5.929381257732923e-5 Iter 55: T = 601.9279899845583 K, F = -0.742691703886301, relative_change = 2.4820308248827335e-5 Iter 60: T = 601.882347988953 K, F = -0.31061054833240914, relative_change = 1.0384164854817203e-5 Iter 65: T = 601.8632562960609 K, F = -0.1299024418559293, relative_change = 4.343484474357788e-6 Iter 70: T = 601.8552712808146 K, F = -0.05432699761996157, relative_change = 1.8166200146337702e-6 Iter 75: T = 601.8519317399019 K, F = -0.022720242068514807, relative_change = 7.59753688697102e-7 Iter 80: T = 601.8505350843892 K, F = -0.009501884065595267, relative_change = 3.1774182709794247e-7 Iter 85: T = 601.8499509829423 K, F = -0.003973802702064377, relative_change = 1.3288408451103785e-7 Iter 90: T = 601.8497067041417 K, F = -0.0016618919765282736, relative_change = 5.5573826170563513e-8 Iter 95: T = 601.8496045437249 K, F = -0.0006950231118653671, relative_change = 2.324165791966791e-8 Iter 100: T = 601.8495618190003 K, F = -0.0002906669734789591, relative_change = 9.719942450877396e-9 Iter 105: T = 601.8495439510069 K, F = -0.00012156040136168667, relative_change = 4.064996646874091e-9 Iter 110: T = 601.8495364783981 K, F = -5.0838011801446203e-5, relative_change = 1.7000302516908383e-9 Iter 115: T = 601.8495333532638 K, F = -2.1261063505695343e-5, relative_change = 7.109729660064576e-10 Iter 120: T = 601.8495320462953 K, F = -8.891630974006137e-6, relative_change = 2.973373984744237e-10 Iter 125: T = 601.8495314997054 K, F = -3.7185861074262583e-6, relative_change = 1.2435004637488053e-10 Iter 130: T = 601.849531271115 K, F = -1.5551568171012775e-6, relative_change = 5.2004664431528344e-11 Iter 135: T = 601.8495311755158 K, F = -6.503850196737382e-7, relative_change = 2.1748967276527316e-11 Iter 140: T = 601.849531135535 K, F = -2.7199875329841916e-7, relative_change = 9.09567688010721e-12 Iter 145: T = 601.8495311188146 K, F = -1.1375344571851187e-7, relative_change = 3.8039313557297245e-12 Iter 150: T = 601.8495311118219 K, F = -4.757213345474298e-8, relative_change = 1.5908188888208508e-12 Iter 155: T = 601.8495311088975 K, F = -1.9895086633692216e-8, relative_change = 6.652945183222907e-13 Iter 160: T = 601.8495311076745 K, F = -8.32001118000747e-9, relative_change = 2.782223537101251e-13 Converged in 162 iterations to T = 601.8495311074157 K Iter 1: T = 964.5496929216159 K, F = -8077.386189757527, relative_change = 0.035450307078384036 Iter 2: T = 931.0382754922464 K, F = -6852.108351846794, relative_change = 0.03474306992713212 Iter 3: T = 899.4353193684639 K, F = -5811.58643348461, relative_change = 0.033943777560674154 Iter 5: T = 841.8424562726128 K, F = -4177.751078935095, relative_change = 0.03204509751642947 Iter 10: T = 729.2425978123096 K, F = -1820.8594166543608, relative_change = 0.025482042283867908 Iter 15: T = 657.2129432510169 K, F = -785.6233779566936, relative_change = 0.017236183950425744 Iter 20: T = 616.8558556702791 K, F = -335.15597870152675, relative_change = 0.00976553405878948 Iter 25: T = 596.8436051568203 K, F = -141.6792512211145, relative_change = 0.004805238796597692 Iter 30: T = 587.7224025636197 K, F = -59.55660990210816, relative_change = 0.002171088372549957 Iter 35: T = 583.7540207933259 K, F = -24.964199459587547, relative_change = 0.0009396676404956296 Iter 40: T = 582.0655113876758 K, F = -10.450573894275344, relative_change = 0.00039881160694067665 Iter 45: T = 581.354145575198 K, F = -4.372369520249792, relative_change = 0.0001678300501857807 Iter 50: T = 581.0557203889505 K, F = -1.8288962149873855, relative_change = 7.037250292165686e-5 Iter 55: T = 580.9307529899514 K, F = -0.7649221664669255, relative_change = 2.9462921949401015e-5 Iter 60: T = 580.8784616571818 K, F = -0.3199093759231635, relative_change = 1.2327404375010796e-5 Iter 65: T = 580.8565878123183 K, F = -0.13379163459855586, relative_change = 5.156458084434096e-6 Iter 70: T = 580.8474390369289 K, F = -0.05595355905427518, relative_change = 2.1566656147245393e-6 Iter 75: T = 580.8436127572206 K, F = -0.023400499033259525, relative_change = 9.019736234018101e-7 Iter 80: T = 580.842012534663 K, F = -0.009786377322470174, relative_change = 3.772214421501789e-7 Iter 85: T = 580.8413432978108 K, F = -0.004092781472434248, relative_change = 1.5775943921616202e-7 Iter 90: T = 580.8410634141504 K, F = -0.0017116503693305196, relative_change = 6.5977043653378e-8 Iter 95: T = 580.8409463633185 K, F = -0.0007158326746711241, relative_change = 2.759241594158591e-8 Iter 100: T = 580.8408974112377 K, F = -0.00029936978221600796, relative_change = 1.1539482839920254e-8 Iter 105: T = 580.8408769388885 K, F = -0.00012520001952281978, relative_change = 4.825950396795791e-9 Iter 110: T = 580.8408683771069 K, F = -5.2360143981966534e-5, relative_change = 2.018270255244952e-9 Iter 115: T = 580.8408647964674 K, F = -2.1897637732803954e-5, relative_change = 8.440647567462568e-10 Iter 120: T = 580.8408632990011 K, F = -9.157853349761602e-6, relative_change = 3.529979557238427e-10 Iter 125: T = 580.8408626727429 K, F = -3.829923951648162e-6, relative_change = 1.4762797358887636e-10 Iter 130: T = 580.8408624108342 K, F = -1.6017203059992546e-6, relative_change = 6.173979601780008e-11 Iter 135: T = 580.8408623013008 K, F = -6.698578557950974e-7, relative_change = 2.582029288130889e-11 Iter 140: T = 580.8408622554928 K, F = -2.801428608534273e-7, relative_change = 1.079836663253492e-11 Iter 145: T = 580.8408622363352 K, F = -1.1715896153230432e-7, relative_change = 4.516000933443234e-12 Iter 150: T = 580.8408622283234 K, F = -4.8997791046723194e-8, relative_change = 1.8886653417218737e-12 Iter 155: T = 580.8408622249726 K, F = -2.0491568053504494e-8, relative_change = 7.898665134586765e-13 Iter 160: T = 580.8408622235713 K, F = -8.570021525766691e-9, relative_change = 3.3033943548030344e-13 Converged in 163 iterations to T = 580.840862223161 K Iter 1: T = 964.323339979046 K, F = -8128.960923039346, relative_change = 0.03567666002095407 Iter 2: T = 930.572138774208 K, F = -6896.280478094163, relative_change = 0.034999880025273745 Iter 3: T = 898.7154317876348 K, F = -5849.456320380611, relative_change = 0.03423346311285054 Iter 5: T = 840.5725261614306 K, F = -4205.673222500271, relative_change = 0.03240623695290821 Iter 10: T = 726.3875382449498 K, F = -1834.1131979088798, relative_change = 0.026016271927938896 Iter 15: T = 652.7116689226502 K, F = -791.9613882819758, relative_change = 0.017817235277545827 Iter 20: T = 611.0440065927922 K, F = -338.1138118157601, relative_change = 0.010213343239717416 Iter 25: T = 590.227343959762 K, F = -143.00443378897774, relative_change = 0.005065986703869073 Iter 30: T = 580.6964453103865 K, F = -60.13089105257639, relative_change = 0.0022988506561926626 Iter 35: T = 576.5403115925039 K, F = -25.208348901508934, relative_change = 0.0009970057468749335 Iter 40: T = 574.7700661513487 K, F = -10.553415547143167, relative_change = 0.00042352987403067907 Iter 45: T = 574.0239262569941 K, F = -4.415510853353026, relative_change = 0.0001783011416632135 Iter 50: T = 573.7108525400289 K, F = -1.846961707603035, relative_change = 7.477534144668199e-5 Iter 55: T = 573.5797403164344 K, F = -0.7724814587487537, relative_change = 3.130841201916104e-5 Iter 60: T = 573.5248758732797 K, F = -0.3230714784111171, relative_change = 1.3099941592986362e-5 Iter 65: T = 573.5019253498622 K, F = -0.13511418897582178, relative_change = 5.479670401648119e-6 Iter 70: T = 573.4923261943484 K, F = -0.056506689021239176, relative_change = 2.291859267539721e-6 Iter 75: T = 573.4883115427468 K, F = -0.023631828427418594, relative_change = 9.585171423629142e-7 Iter 80: T = 573.4866325377445 K, F = -0.009883122708011172, relative_change = 4.008693024748527e-7 Iter 85: T = 573.4859303525964 K, F = -0.004133241665604415, relative_change = 1.6764937671531766e-7 Iter 90: T = 573.4856366894712 K, F = -0.0017285713261710467, relative_change = 7.011315460716305e-8 Iter 95: T = 573.485513875886 K, F = -0.0007229092242017066, relative_change = 2.9322190593400694e-8 Iter 100: T = 573.4854625137501 K, F = -0.000302329279998792, relative_change = 1.2262895884101321e-8 Iter 105: T = 573.4854410334866 K, F = -0.0001264377165440811, relative_change = 5.128490466743743e-9 Iter 110: T = 573.485432050183 K, F = -5.2877763262404454e-5, relative_change = 2.1447961291150448e-9 Iter 115: T = 573.4854282932581 K, F = -2.21141121251045e-5, relative_change = 8.969793848628426e-10 Iter 120: T = 573.4854267220671 K, F = -9.248385214599697e-6, relative_change = 3.751274725406229e-10 Iter 125: T = 573.4854260649764 K, F = -3.867784865552171e-6, relative_change = 1.5688277847355376e-10 Iter 130: T = 573.4854257901732 K, F = -1.617553524679849e-6, relative_change = 6.56102396285068e-11 Iter 135: T = 573.4854256752471 K, F = -6.764796322000777e-7, relative_change = 2.7438962691254213e-11 Iter 140: T = 573.4854256271839 K, F = -2.8291243342470906e-7, relative_change = 1.1475325108434302e-11 Iter 145: T = 573.4854256070831 K, F = -1.1831761964620213e-7, relative_change = 4.799128604166271e-12 Iter 150: T = 573.4854255986768 K, F = -4.9481508501703075e-8, relative_change = 2.0070393873243763e-12 Iter 155: T = 573.485425595161 K, F = -2.0692949465050958e-8, relative_change = 8.393350541455877e-13 Iter 160: T = 573.4854255936907 K, F = -8.653853633688868e-9, relative_change = 3.5101244124509357e-13 Converged in 163 iterations to T = 573.4854255932603 K Iter 1: T = 979.9700614853202 K, F = -4563.840543960145, relative_change = 0.02002993851467972 Iter 2: T = 961.9912142143434 K, F = -3855.270759897022, relative_change = 0.018346322992486883 Iter 3: T = 945.9437875232351 K, F = -3255.193603282926, relative_change = 0.016681469075800495 Iter 5: T = 919.1238338996047 K, F = -2317.5167728271826, relative_change = 0.01349755746219428 Iter 10: T = 876.4739819062775 K, F = -984.0523198706221, relative_change = 0.007111941381134184 Iter 15: T = 856.2482673284122 K, F = -414.7215304605956, relative_change = 0.0033409005249080857 Iter 20: T = 847.2633602837433 K, F = -174.05588080863822, relative_change = 0.0014735667823154214 Iter 25: T = 843.4030886003305 K, F = -72.90467023449736, relative_change = 0.0006307161747504906 Iter 30: T = 841.7698260549967 K, F = -30.509655304731904, relative_change = 0.0002663887818750003 Iter 35: T = 841.0834097173907 K, F = -12.763038532807993, relative_change = 0.00011187115520801521 Iter 40: T = 840.7957482024286 K, F = -5.338275812317537, relative_change = 4.686753715192038e-5 Iter 45: T = 840.6753404438467 K, F = -2.232639413108517, relative_change = 1.96148870288091e-5 Iter 50: T = 840.624966214636 K, F = -0.9337354919874288, relative_change = 8.205687851915094e-6 Iter 55: T = 840.6038959134617 K, F = -0.39050266237939724, relative_change = 3.4321554777767852e-6 Iter 60: T = 840.5950835025818 K, F = -0.1633134591838179, relative_change = 1.435445173991516e-6 Iter 65: T = 840.5913979492773 K, F = -0.0682997408222763, relative_change = 6.003337417574397e-7 Iter 70: T = 840.589856589759 K, F = -0.028563785084399385, relative_change = 2.5106908874495315e-7 Iter 75: T = 840.5892119718081 K, F = -0.011945719158328316, relative_change = 1.0500050205276566e-7 Iter 80: T = 840.5889423843593 K, F = -0.004995842957896901, relative_change = 4.391253576453448e-8 Iter 85: T = 840.588829639577 K, F = -0.0020893212831247787, relative_change = 1.8364759447646843e-8 Iter 90: T = 840.5887824883466 K, F = -0.0008737791279549434, relative_change = 7.680363910795792e-9 Iter 95: T = 840.5887627691362 K, F = -0.0003654248685194261, relative_change = 3.2120202874767878e-9 Iter 100: T = 840.5887545223264 K, F = -0.00015282504470515157, relative_change = 1.3433053118310892e-9 Iter 105: T = 840.5887510734121 K, F = -6.391326145860354e-5, relative_change = 5.617863580976117e-10 Iter 110: T = 840.5887496310348 K, F = -2.6729290842464337e-5, relative_change = 2.349457802169497e-10 Iter 115: T = 840.5887490278154 K, F = -1.1178507890008405e-5, relative_change = 9.825712482729142e-11 Iter 120: T = 840.588748775542 K, F = -4.6749870485918166e-6, relative_change = 4.1092316718443155e-11 Iter 125: T = 840.5887486700382 K, F = -1.9551365870729143e-6, relative_change = 1.7185307911393686e-11 Iter 130: T = 840.5887486259151 K, F = -8.176608747856307e-7, relative_change = 7.187095774643393e-12 Iter 135: T = 840.5887486074623 K, F = -3.419545753224895e-7, relative_change = 3.0057207816400077e-12 Iter 140: T = 840.5887485997453 K, F = -1.4300950068601992e-7, relative_change = 1.2570284453639542e-12 Iter 145: T = 840.5887485965179 K, F = -5.981108874841823e-8, relative_change = 5.257289868551635e-13 Converged in 150 iterations to T = 840.5887485951681 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 6%|█▉ | ETA: 0:00:17 Bin 1 ray tracing: 11%|███▌ | ETA: 0:00:19 Bin 1 ray tracing: 17%|█████▏ | ETA: 0:00:17 Bin 1 ray tracing: 23%|███████ | ETA: 0:00:15 Bin 1 ray tracing: 29%|████████▊ | ETA: 0:00:14 Bin 1 ray tracing: 35%|██████████▌ | ETA: 0:00:12 Bin 1 ray tracing: 41%|████████████▎ | ETA: 0:00:11 Bin 1 ray tracing: 46%|██████████████ | ETA: 0:00:10 Bin 1 ray tracing: 52%|███████████████▋ | ETA: 0:00:09 Bin 1 ray tracing: 58%|█████████████████▍ | ETA: 0:00:08 Bin 1 ray tracing: 64%|███████████████████▏ | ETA: 0:00:07 Bin 1 ray tracing: 69%|████████████████████▉ | ETA: 0:00:06 Bin 1 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:05 Bin 1 ray tracing: 81%|████████████████████████▏ | ETA: 0:00:04 Bin 1 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:03 Bin 1 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:02 Bin 1 ray tracing: 97%|█████████████████████████████▎| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:18 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 2 ray tracing: 12%|███▌ | ETA: 0:00:15 Bin 2 ray tracing: 17%|█████▏ | ETA: 0:00:15 Bin 2 ray tracing: 23%|██████▉ | ETA: 0:00:14 Bin 2 ray tracing: 29%|████████▋ | ETA: 0:00:13 Bin 2 ray tracing: 34%|██████████▍ | ETA: 0:00:12 Bin 2 ray tracing: 40%|████████████ | ETA: 0:00:11 Bin 2 ray tracing: 46%|█████████████▊ | ETA: 0:00:10 Bin 2 ray tracing: 51%|███████████████▍ | ETA: 0:00:09 Bin 2 ray tracing: 57%|█████████████████ | ETA: 0:00:08 Bin 2 ray tracing: 62%|██████████████████▊ | ETA: 0:00:07 Bin 2 ray tracing: 68%|████████████████████▍ | ETA: 0:00:06 Bin 2 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:05 Bin 2 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:04 Bin 2 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:03 Bin 2 ray tracing: 90%|███████████████████████████▏ | ETA: 0:00:02 Bin 2 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 5%|█▋ | ETA: 0:00:17 Bin 3 ray tracing: 11%|███▍ | ETA: 0:00:16 Bin 3 ray tracing: 17%|█████ | ETA: 0:00:15 Bin 3 ray tracing: 22%|██████▊ | ETA: 0:00:14 Bin 3 ray tracing: 28%|████████▍ | ETA: 0:00:13 Bin 3 ray tracing: 34%|██████████▏ | ETA: 0:00:12 Bin 3 ray tracing: 39%|███████████▊ | ETA: 0:00:11 Bin 3 ray tracing: 45%|█████████████▌ | ETA: 0:00:10 Bin 3 ray tracing: 51%|███████████████▏ | ETA: 0:00:09 Bin 3 ray tracing: 56%|████████████████▉ | ETA: 0:00:08 Bin 3 ray tracing: 62%|██████████████████▋ | ETA: 0:00:07 Bin 3 ray tracing: 68%|████████████████████▎ | ETA: 0:00:06 Bin 3 ray tracing: 73%|██████████████████████ | ETA: 0:00:05 Bin 3 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:04 Bin 3 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:03 Bin 3 ray tracing: 90%|███████████████████████████ | ETA: 0:00:02 Bin 3 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 4 ray tracing: 12%|███▌ | ETA: 0:00:15 Bin 4 ray tracing: 18%|█████▎ | ETA: 0:00:14 Bin 4 ray tracing: 24%|███████▏ | ETA: 0:00:13 Bin 4 ray tracing: 29%|████████▉ | ETA: 0:00:12 Bin 4 ray tracing: 35%|██████████▋ | ETA: 0:00:11 Bin 4 ray tracing: 41%|████████████▍ | ETA: 0:00:10 Bin 4 ray tracing: 47%|██████████████▏ | ETA: 0:00:09 Bin 4 ray tracing: 53%|████████████████ | ETA: 0:00:08 Bin 4 ray tracing: 59%|█████████████████▊ | ETA: 0:00:07 Bin 4 ray tracing: 65%|███████████████████▋ | ETA: 0:00:06 Bin 4 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:05 Bin 4 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:04 Bin 4 ray tracing: 83%|█████████████████████████ | ETA: 0:00:03 Bin 4 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:02 Bin 4 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 5 ray tracing: 12%|███▋ | ETA: 0:00:15 Bin 5 ray tracing: 18%|█████▌ | ETA: 0:00:14 Bin 5 ray tracing: 24%|███████▎ | ETA: 0:00:13 Bin 5 ray tracing: 31%|█████████▏ | ETA: 0:00:11 Bin 5 ray tracing: 37%|███████████ | ETA: 0:00:10 Bin 5 ray tracing: 43%|█████████████ | ETA: 0:00:09 Bin 5 ray tracing: 50%|██████████████▉ | ETA: 0:00:08 Bin 5 ray tracing: 56%|████████████████▊ | ETA: 0:00:07 Bin 5 ray tracing: 62%|██████████████████▋ | ETA: 0:00:06 Bin 5 ray tracing: 68%|████████████████████▍ | ETA: 0:00:05 Bin 5 ray tracing: 74%|██████████████████████▎ | ETA: 0:00:04 Bin 5 ray tracing: 80%|████████████████████████▏ | ETA: 0:00:03 Bin 5 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 5 ray tracing: 92%|███████████████████████████▊ | ETA: 0:00:01 Bin 5 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 6%|█▉ | ETA: 0:00:16 Bin 6 ray tracing: 12%|███▋ | ETA: 0:00:14 Bin 6 ray tracing: 18%|█████▌ | ETA: 0:00:14 Bin 6 ray tracing: 24%|███████▎ | ETA: 0:00:13 Bin 6 ray tracing: 30%|█████████▏ | ETA: 0:00:12 Bin 6 ray tracing: 37%|███████████ | ETA: 0:00:11 Bin 6 ray tracing: 43%|████████████▊ | ETA: 0:00:10 Bin 6 ray tracing: 49%|██████████████▋ | ETA: 0:00:09 Bin 6 ray tracing: 55%|████████████████▌ | ETA: 0:00:07 Bin 6 ray tracing: 61%|██████████████████▍ | ETA: 0:00:07 Bin 6 ray tracing: 67%|████████████████████ | ETA: 0:00:06 Bin 6 ray tracing: 73%|█████████████████████▊ | ETA: 0:00:05 Bin 6 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:04 Bin 6 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:03 Bin 6 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:02 Bin 6 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 7 ray tracing: 12%|███▋ | ETA: 0:00:15 Bin 7 ray tracing: 18%|█████▍ | ETA: 0:00:14 Bin 7 ray tracing: 24%|███████▎ | ETA: 0:00:13 Bin 7 ray tracing: 30%|█████████▏ | ETA: 0:00:12 Bin 7 ray tracing: 36%|██████████▉ | ETA: 0:00:11 Bin 7 ray tracing: 42%|████████████▊ | ETA: 0:00:10 Bin 7 ray tracing: 48%|██████████████▌ | ETA: 0:00:09 Bin 7 ray tracing: 55%|████████████████▍ | ETA: 0:00:08 Bin 7 ray tracing: 61%|██████████████████▏ | ETA: 0:00:07 Bin 7 ray tracing: 67%|████████████████████ | ETA: 0:00:06 Bin 7 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:04 Bin 7 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:03 Bin 7 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:02 Bin 7 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 7 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 7%|██ | ETA: 0:00:15 Bin 8 ray tracing: 13%|███▉ | ETA: 0:00:14 Bin 8 ray tracing: 19%|█████▊ | ETA: 0:00:13 Bin 8 ray tracing: 25%|███████▌ | ETA: 0:00:12 Bin 8 ray tracing: 31%|█████████▍ | ETA: 0:00:11 Bin 8 ray tracing: 37%|███████████▎ | ETA: 0:00:10 Bin 8 ray tracing: 43%|█████████████ | ETA: 0:00:09 Bin 8 ray tracing: 49%|██████████████▉ | ETA: 0:00:08 Bin 8 ray tracing: 55%|████████████████▋ | ETA: 0:00:07 Bin 8 ray tracing: 61%|██████████████████▍ | ETA: 0:00:06 Bin 8 ray tracing: 67%|████████████████████▏ | ETA: 0:00:05 Bin 8 ray tracing: 73%|██████████████████████ | ETA: 0:00:04 Bin 8 ray tracing: 79%|███████████████████████▉ | ETA: 0:00:03 Bin 8 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:02 Bin 8 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 8 ray tracing: 98%|█████████████████████████████▎| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 6%|█▉ | ETA: 0:00:16 Bin 9 ray tracing: 12%|███▋ | ETA: 0:00:15 Bin 9 ray tracing: 18%|█████▍ | ETA: 0:00:14 Bin 9 ray tracing: 24%|███████▎ | ETA: 0:00:13 Bin 9 ray tracing: 31%|█████████▏ | ETA: 0:00:12 Bin 9 ray tracing: 37%|███████████ | ETA: 0:00:11 Bin 9 ray tracing: 43%|████████████▊ | ETA: 0:00:10 Bin 9 ray tracing: 49%|██████████████▋ | ETA: 0:00:09 Bin 9 ray tracing: 55%|████████████████▌ | ETA: 0:00:07 Bin 9 ray tracing: 61%|██████████████████▍ | ETA: 0:00:06 Bin 9 ray tracing: 68%|████████████████████▎ | ETA: 0:00:05 Bin 9 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:04 Bin 9 ray tracing: 80%|████████████████████████ | ETA: 0:00:03 Bin 9 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 9 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 9 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 6%|█▊ | ETA: 0:00:15 Bin 10 ray tracing: 12%|███▋ | ETA: 0:00:14 Bin 10 ray tracing: 19%|█████▍ | ETA: 0:00:13 Bin 10 ray tracing: 25%|███████▏ | ETA: 0:00:12 Bin 10 ray tracing: 31%|████████▉ | ETA: 0:00:11 Bin 10 ray tracing: 37%|██████████▋ | ETA: 0:00:10 Bin 10 ray tracing: 43%|████████████▌ | ETA: 0:00:09 Bin 10 ray tracing: 49%|██████████████▍ | ETA: 0:00:08 Bin 10 ray tracing: 56%|████████████████▎ | ETA: 0:00:07 Bin 10 ray tracing: 62%|██████████████████ | ETA: 0:00:06 Bin 10 ray tracing: 69%|███████████████████▉ | ETA: 0:00:05 Bin 10 ray tracing: 75%|█████████████████████▊ | ETA: 0:00:04 Bin 10 ray tracing: 81%|███████████████████████▌ | ETA: 0:00:03 Bin 10 ray tracing: 87%|█████████████████████████▍ | ETA: 0:00:02 Bin 10 ray tracing: 94%|███████████████████████████▏ | ETA: 0:00:01 Bin 10 ray tracing: 99%|████████████████████████████▉| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.340231178225 K, F = -7441.559393501973, relative_change = 0.03265976882177492 Iter 2: T = 936.756185146288 K, F = -6307.971845126666, relative_change = 0.03161663812398827 Iter 3: T = 908.2164598979068 K, F = -5345.5536581669685, relative_change = 0.030466545832226605 Iter 5: T = 857.1312485681837 K, F = -3835.117607035059, relative_change = 0.027851265125842153 Iter 10: T = 762.1670977942873 K, F = -1660.5343117531286, relative_change = 0.019924250068735626 Iter 15: T = 706.60854889426 K, F = -710.9087200804121, relative_change = 0.011926933305090561 Iter 20: T = 678.054546682248 K, F = -301.28860827383255, relative_change = 0.0061030948644466175 Iter 25: T = 664.7450106941823 K, F = -126.83225159130954, relative_change = 0.0028181259747186373 Iter 30: T = 658.8870773688818 K, F = -53.2007270564574, relative_change = 0.0012324846916855442 Iter 35: T = 656.3812607321786 K, F = -22.277875263335673, relative_change = 0.0005255146058045137 Iter 40: T = 655.323105382264 K, F = -9.321975101297788, relative_change = 0.00022158956134922552 Iter 45: T = 654.8787582012708 K, F = -3.8994597899373904, relative_change = 9.299236411302063e-5 Iter 50: T = 654.692607302472 K, F = -1.6309582555999993, relative_change = 3.89469399236198e-5 Iter 55: T = 654.6147007025442 K, F = -0.6821138185739626, relative_change = 1.6297964825453445e-5 Iter 60: T = 654.5821094125284 K, F = -0.285272974485971, relative_change = 6.8177347422175045e-6 Iter 65: T = 654.5684776274499 K, F = -0.11930540963599673, relative_change = 2.8515609938980284e-6 Iter 70: T = 654.5627763515199 K, F = -0.04989509488380606, relative_change = 1.1926098487889455e-6 Iter 75: T = 654.5603919572563 K, F = -0.020866750394807176, relative_change = 4.987729494033814e-7 Iter 80: T = 654.5593947659028 K, F = -0.008726728733883249, relative_change = 2.0859442499220883e-7 Iter 85: T = 654.5589777269613 K, F = -0.0036496229650119227, relative_change = 8.723696316679683e-8 Iter 90: T = 654.5588033160142 K, F = -0.0015263160470755377, relative_change = 3.648358939332939e-8 Iter 95: T = 654.5587303752241 K, F = -0.0006383236244844603, relative_change = 1.52578814957212e-8 Iter 100: T = 654.558699870506 K, F = -0.00026695456739889156, relative_change = 6.381029781186854e-9 Iter 105: T = 654.558687113067 K, F = -0.00011164358865539681, relative_change = 2.668623118667917e-9 Iter 110: T = 654.5586817777533 K, F = -4.669068119844688e-5, relative_change = 1.1160500805155943e-9 Iter 115: T = 654.5586795464615 K, F = -1.9526601063524218e-5, relative_change = 4.667454936072859e-10 Iter 120: T = 654.5586786133086 K, F = -8.166258802344561e-6, relative_change = 1.9519856574608483e-10 Iter 125: T = 654.5586782230528 K, F = -3.415226116687542e-6, relative_change = 8.163435150707188e-11 Iter 130: T = 654.5586780598431 K, F = -1.4282879117755165e-6, relative_change = 3.414045032388348e-11 Iter 135: T = 654.558677991587 K, F = -5.973274821990948e-7, relative_change = 1.4277954098121864e-11 Iter 140: T = 654.5586779630414 K, F = -2.498093728542372e-7, relative_change = 5.971208199734467e-12 Iter 145: T = 654.5586779511034 K, F = -1.0447318071760137e-7, relative_change = 2.4972286118802065e-12 Iter 150: T = 654.5586779461108 K, F = -4.3692983120457995e-8, relative_change = 1.0443959573290383e-12 Iter 155: T = 654.5586779440227 K, F = -1.8272711399536234e-8, relative_change = 4.3677370031688695e-13 Converged in 159 iterations to T = 654.5586779432691 K Iter 1: T = 970.2729213101408 K, F = -6773.343157236476, relative_change = 0.02972707868985924 Iter 2: T = 942.7087603966787 K, F = -5736.975506720328, relative_change = 0.028408667611008607 Iter 3: T = 917.263185312552 K, F = -4857.433609269337, relative_change = 0.026991979021622387 Iter 5: T = 872.5139757896172 K, F = -3478.0802569921984, relative_change = 0.02390786507575203 Iter 10: T = 793.0010444999012 K, F = -1497.2470525197143, relative_change = 0.015602198609719708 Iter 15: T = 749.6111502123706 K, F = -637.4159671458967, relative_change = 0.008559238008434895 Iter 20: T = 728.5248275943374 K, F = -269.07692638121796, relative_change = 0.004122897383917655 Iter 25: T = 719.0278278696697 K, F = -113.02551134679547, relative_change = 0.001841905303098245 Iter 30: T = 714.9203143253851 K, F = -47.36007211947595, relative_change = 0.0007930088817380746 Iter 35: T = 713.1772773018903 K, F = -19.822940713176315, relative_change = 0.0003357903750319005 Iter 40: T = 712.4437893756568 K, F = -8.293087865529513, relative_change = 0.00014116980846559825 Iter 45: T = 712.136234988236 K, F = -3.46877737278584, relative_change = 5.916902170746259e-5 Iter 50: T = 712.0074713225613 K, F = -1.4507733105551666, relative_change = 2.4768023680130286e-5 Iter 55: T = 711.9535961545758 K, F = -0.606746335341733, relative_change = 1.0362282080384175e-5 Iter 60: T = 711.931060598403 K, F = -0.25375129474351493, relative_change = 4.3343299058231285e-6 Iter 65: T = 711.9216352042837 K, F = -0.10612229963266828, relative_change = 1.8127909519296584e-6 Iter 70: T = 711.917693259762 K, F = -0.044381696628084, relative_change = 7.581522392160253e-7 Iter 75: T = 711.9160446683741 K, F = -0.01856097016991698, relative_change = 3.170720660920618e-7 Iter 80: T = 711.9153552037249 K, F = -0.007762421943055986, relative_change = 1.326039797282446e-7 Iter 85: T = 711.9150668606677 K, F = -0.0032463380047424995, relative_change = 5.5456682495721304e-8 Iter 90: T = 711.9149462720341 K, F = -0.0013576573999265484, relative_change = 2.319266692988004e-8 Iter 95: T = 711.9148958404057 K, F = -0.0005677885523729387, relative_change = 9.699453797344299e-9 Iter 100: T = 711.9148747492927 K, F = -0.00023745595555613175, relative_change = 4.0564280224866e-9 Iter 105: T = 711.9148659287367 K, F = -9.930691634385536e-5, relative_change = 1.6964467414746573e-9 Iter 110: T = 711.9148622398748 K, F = -4.1531338439093624e-5, relative_change = 7.094743054782674e-10 Iter 115: T = 711.9148606971486 K, F = -1.736890106962541e-5, relative_change = 2.9671061934361044e-10 Iter 120: T = 711.9148600519621 K, F = -7.263882084163065e-6, relative_change = 1.2408792891910734e-10 Iter 125: T = 711.9148597821373 K, F = -3.037840747399656e-6, relative_change = 5.1895028449455276e-11 Iter 130: T = 711.9148596692935 K, F = -1.270461423730218e-6, relative_change = 2.1703123126058173e-11 Iter 135: T = 711.9148596221007 K, F = -5.313217175118012e-7, relative_change = 9.076498068307703e-12 Iter 140: T = 711.9148596023642 K, F = -2.2220486106672155e-7, relative_change = 3.795896019368141e-12 Iter 145: T = 711.9148595941102 K, F = -9.292893177192951e-8, relative_change = 1.5874925531478487e-12 Iter 150: T = 711.9148595906584 K, F = -3.8866104445922645e-8, relative_change = 6.639444810429886e-13 Iter 155: T = 711.9148595892146 K, F = -1.6253857815229367e-8, relative_change = 2.776624862725421e-13 Converged in 157 iterations to T = 711.914859588909 K Iter 1: T = 974.5357890056862 K, F = -5802.044697772429, relative_change = 0.02546421099431385 Iter 2: T = 951.2599021817274 K, F = -4908.573247559951, relative_change = 0.023884075973964056 Iter 3: T = 930.0966057237356 K, F = -4150.8890851241085, relative_change = 0.022247649048859886 Iter 5: T = 893.7502102769483 K, F = -2964.294355125282, relative_change = 0.018891085205977064 Iter 10: T = 832.6116008659267 K, F = -1267.3351510992288, relative_change = 0.011068806870195473 Iter 15: T = 801.630915975719 K, F = -536.5577536010665, relative_change = 0.005575840033640642 Iter 20: T = 787.3206388197152 K, F = -225.74038968463262, relative_change = 0.0025519016778284675 Iter 25: T = 781.0520433543029 K, F = -94.6615105230457, relative_change = 0.001111270225869933 Iter 30: T = 778.3764593631058 K, F = -39.63458019199459, relative_change = 0.0004729229948517134 Iter 35: T = 777.2477042948606 K, F = -16.583820558509874, relative_change = 0.00019924934028612074 Iter 40: T = 776.7739054981508 K, F = -6.936988934553131, relative_change = 8.35878892058706e-5 Iter 45: T = 776.5754508512689 K, F = -2.901383630436733, relative_change = 3.5003036766869724e-5 Iter 50: T = 776.492401021648 K, F = -1.2134374095989235, relative_change = 1.4646675833846404e-5 Iter 55: T = 776.4576591833985 K, F = -0.5074817372594754, relative_change = 6.126812952134293e-6 Iter 60: T = 776.4431280855273 K, F = -0.21223627378222587, relative_change = 2.562550974648044e-6 Iter 65: T = 776.437050718878 K, F = -0.08875998056601264, relative_change = 1.0717322125525253e-6 Iter 70: T = 776.434509041194 K, F = -0.03712052520345788, relative_change = 4.4821869514735907e-7 Iter 75: T = 776.4334460724223 K, F = -0.01552425417715364, relative_change = 1.874517202661925e-7 Iter 80: T = 776.4330015246464 K, F = -0.006492429756809193, relative_change = 7.839477699731904e-8 Iter 85: T = 776.4328156091882 K, F = -0.0027152118813648096, relative_change = 3.2785672018974525e-8 Iter 90: T = 776.4327378570762 K, F = -0.0011355340746630471, relative_change = 1.3711366595115155e-8 Iter 95: T = 776.432705340206 K, F = -0.0004748939176555389, relative_change = 5.734258480156414e-9 Iter 100: T = 776.4326917412611 K, F = -0.0001986063075786193, relative_change = 2.3981355752848223e-9 Iter 105: T = 776.4326860540198 K, F = -8.30595310817861e-5, relative_change = 1.0029289891590034e-9 Iter 110: T = 776.4326836755475 K, F = -3.473648818341779e-5, relative_change = 4.1943689104803727e-10 Iter 115: T = 776.432682680842 K, F = -1.4527216652293617e-5, relative_change = 1.7541354765664353e-10 Iter 120: T = 776.4326822648442 K, F = -6.075454693887927e-6, relative_change = 7.336003101684625e-11 Iter 125: T = 776.432682090869 K, F = -2.54082842532366e-6, relative_change = 3.068004975439983e-11 Iter 130: T = 776.4326820181104 K, F = -1.0626045499062542e-6, relative_change = 1.2830760294555564e-11 Iter 135: T = 776.4326819876819 K, F = -4.4439170421295415e-7, relative_change = 5.365950517727807e-12 Iter 140: T = 776.4326819749564 K, F = -1.8584931615883704e-7, relative_change = 2.2440973242421327e-12 Iter 145: T = 776.4326819696344 K, F = -7.772377819126319e-8, relative_change = 9.385007503908504e-13 Iter 150: T = 776.4326819674087 K, F = -3.250407809574085e-8, relative_change = 3.924809420479378e-13 Converged in 154 iterations to T = 776.4326819666053 K Iter 1: T = 970.4363010117972 K, F = -6736.11693679984, relative_change = 0.02956369898820281 Iter 2: T = 943.0386921057584 K, F = -5705.191379498192, relative_change = 0.02823225891021752 Iter 3: T = 917.761853819782 K, F = -4830.289850862572, relative_change = 0.026803606784716848 Iter 5: T = 873.3516102149038 K, F = -3458.277845025355, relative_change = 0.02370078874253021 Iter 10: T = 794.6236253202619 K, F = -1488.2846873313192, relative_change = 0.01539546163299046 Iter 15: T = 751.8056974481444 K, F = -633.4358102113275, relative_change = 0.008411923112944085 Iter 20: T = 731.0488303051864 K, F = -267.3515745258816, relative_change = 0.004041509211475745 Iter 25: T = 721.7135400466578 K, F = -112.29083642241835, relative_change = 0.001803129921996616 Iter 30: T = 717.6787867800449 K, F = -47.050293969382444, relative_change = 0.000775834484835914 Iter 35: T = 715.9671632119025 K, F = -19.692926216032216, relative_change = 0.0003284292831854129 Iter 40: T = 715.2469919359945 K, F = -8.238632027452118, relative_change = 0.00013805922503876367 Iter 45: T = 714.94503860436 K, F = -3.4459887984867574, relative_change = 5.7862462038742053e-5 Iter 50: T = 714.8186229818442 K, F = -1.441240313638826, relative_change = 2.4220607218089096e-5 Iter 55: T = 714.7657307785232 K, F = -0.6027590768070227, relative_change = 1.0133171145318864e-5 Iter 60: T = 714.7436064824017 K, F = -0.2520836976652098, relative_change = 4.238482372389595e-6 Iter 65: T = 714.734353112332 K, F = -0.1054248769846492, relative_change = 1.7727010142037416e-6 Iter 70: T = 714.7304831156026 K, F = -0.04409002376423998, relative_change = 7.413852118503758e-7 Iter 75: T = 714.7288646145643 K, F = -0.018438988678651125, relative_change = 3.1005973118951106e-7 Iter 80: T = 714.7281877342202 K, F = -0.007711407754276145, relative_change = 1.2967130888249425e-7 Iter 85: T = 714.727904654098 K, F = -0.0032250032501442982, relative_change = 5.4230199532435266e-8 Iter 90: T = 714.7277862664915 K, F = -0.0013487349513040536, relative_change = 2.2679736277725157e-8 Iter 95: T = 714.72773675536 K, F = -0.0005640570771979769, relative_change = 9.484939915957589e-9 Iter 100: T = 714.7277160492097 K, F = -0.000235895407909692, relative_change = 3.966715727082222e-9 Iter 105: T = 714.7277073896498 K, F = -9.865427750344047e-5, relative_change = 1.6589279976186148e-9 Iter 110: T = 714.7277037681183 K, F = -4.1258397282750714e-5, relative_change = 6.937835213282992e-10 Iter 115: T = 714.7277022535505 K, F = -1.725475444303015e-5, relative_change = 2.9014855656849347e-10 Iter 120: T = 714.7277016201402 K, F = -7.216144479071929e-6, relative_change = 1.2134359375207705e-10 Iter 125: T = 714.7277013552405 K, F = -3.01787811596288e-6, relative_change = 5.074734545641817e-11 Iter 130: T = 714.7277012444562 K, F = -1.2621125096146102e-6, relative_change = 2.122314325378623e-11 Iter 135: T = 714.7277011981249 K, F = -5.278302658284773e-7, relative_change = 8.875767622523494e-12 Iter 140: T = 714.7277011787487 K, F = -2.207455779279499e-7, relative_change = 3.711963069350999e-12 Iter 145: T = 714.7277011706452 K, F = -9.231924913422063e-8, relative_change = 1.5524009432559961e-12 Iter 150: T = 714.7277011672562 K, F = -3.8608291341724055e-8, relative_change = 6.492204871663226e-13 Iter 155: T = 714.727701165839 K, F = -1.6146501469194163e-8, relative_change = 2.715126514452179e-13 Converged in 157 iterations to T = 714.7277011655391 K Iter 1: T = 969.3602019077659 K, F = -6981.307141287861, relative_change = 0.03063979809223402 Iter 2: T = 940.8623408500932 K, F = -5914.587811456869, relative_change = 0.029398629118037874 Iter 3: T = 914.4671417322554 K, F = -5009.167471975172, relative_change = 0.028054262533229925 Iter 5: T = 867.7978142462949 K, F = -3588.8748507230976, relative_change = 0.025088334333496963 Iter 10: T = 783.762043372559 K, F = -1547.563217640667, relative_change = 0.016817100130950054 Iter 15: T = 736.9946267154887 K, F = -659.8538336819299, relative_change = 0.009448937303210638 Iter 20: T = 713.9255865319027 K, F = -278.8350381133128, relative_change = 0.004623388211608796 Iter 25: T = 703.4443424857078 K, F = -117.18840118761486, relative_change = 0.0020826397366176517 Iter 30: T = 698.891467630776 K, F = -49.116962308356044, relative_change = 0.0009001111733577649 Iter 35: T = 696.9556575469092 K, F = -20.560609878691224, relative_change = 0.0003817851705926223 Iter 40: T = 696.1403593429375 K, F = -8.602110293997287, relative_change = 0.00016062210272682606 Iter 45: T = 695.7983788771261 K, F = -3.5981060240300033, relative_change = 6.734257987309779e-5 Iter 50: T = 695.6551804394936 K, F = -1.5048762063312924, relative_change = 2.819305032715282e-5 Iter 55: T = 695.5952619193204 K, F = -0.6293756341808925, relative_change = 1.17958517562742e-5 Iter 60: T = 695.5701978124978 K, F = -0.2632156315916919, relative_change = 4.934072896130526e-6 Iter 65: T = 695.5597147472953 K, F = -0.11008048472397869, relative_change = 2.063646856739552e-6 Iter 70: T = 695.5553304369311 K, F = -0.046037072016702374, relative_change = 8.630695110598157e-7 Iter 75: T = 695.553496836714 K, F = -0.019253270569756342, relative_change = 3.609508304940193e-7 Iter 80: T = 695.5527299980872 K, F = -0.008051950701914112, relative_change = 1.5095479690531683e-7 Iter 85: T = 695.5524092961203 K, F = -0.003367422470895054, relative_change = 6.313124730939829e-8 Iter 90: T = 695.5522751745712 K, F = -0.001408296383387242, relative_change = 2.6402267507702555e-8 Iter 95: T = 695.5522190833103 K, F = -0.0005889663821503355, relative_change = 1.1041748120943991e-8 Iter 100: T = 695.5521956252703 K, F = -0.000246312777262947, relative_change = 4.617791718925034e-9 Iter 105: T = 695.552185814837 K, F = -0.00010301094511211417, relative_change = 1.931215775839193e-9 Iter 110: T = 695.5521817119965 K, F = -4.308040638589805e-5, relative_change = 8.07657503656532e-10 Iter 115: T = 695.5521799961396 K, F = -1.8016739904869183e-5, relative_change = 3.377720074448269e-10 Iter 120: T = 695.5521792785478 K, F = -7.534815599674616e-6, relative_change = 1.4126028442260373e-10 Iter 125: T = 695.5521789784423 K, F = -3.151149831959188e-6, relative_change = 5.907673738617143e-11 Iter 130: T = 695.5521788529346 K, F = -1.317848310478098e-6, relative_change = 2.4706593710716926e-11 Iter 135: T = 695.5521788004459 K, F = -5.511411999004068e-7, relative_change = 1.0332616887545082e-11 Iter 140: T = 695.5521787784943 K, F = -2.3049309116895955e-7, relative_change = 4.321209895146796e-12 Iter 145: T = 695.552178769314 K, F = -9.639406639561088e-8, relative_change = 1.8071647677412981e-12 Iter 150: T = 695.5521787654747 K, F = -4.031397371484502e-8, relative_change = 7.557933353286626e-13 Iter 155: T = 695.5521787638689 K, F = -1.6859225904219954e-8, relative_change = 3.1607131233152913e-13 Converged in 158 iterations to T = 695.5521787633988 K Iter 1: T = 963.5444626316425 K, F = -8306.428867548824, relative_change = 0.0364555373683574 Iter 2: T = 928.9654742689434 K, F = -7048.315948310009, relative_change = 0.035887278380757504 Iter 3: T = 896.2294191759694 K, F = -5979.844414541889, relative_change = 0.035239259154099214 Iter 5: T = 836.1670285117938 K, F = -4301.905840200886, relative_change = 0.03367464415907256 Iter 10: T = 716.3227701320556 K, F = -1880.0389414971958, relative_change = 0.02797234009135682 Iter 15: T = 636.5078269355607 K, F = -814.169722698063, relative_change = 0.020069067664649033 Iter 20: T = 589.7044112045967 K, F = -348.6298790734843, relative_change = 0.012049916071735813 Iter 25: T = 565.6016377973126 K, F = -147.7737170828274, relative_change = 0.006179954313072586 Iter 30: T = 554.3521361326177 K, F = -62.21301388926567, relative_change = 0.0028573175670420633 Iter 35: T = 549.3974474011587 K, F = -26.096801968297335, relative_change = 0.0012504148595053508 Iter 40: T = 547.2773190398523 K, F = -10.928276176185715, relative_change = 0.0005333107662492492 Iter 45: T = 546.3819043783966 K, F = -4.572875290600702, relative_change = 0.00022490433878691207 Iter 50: T = 546.0058733880819 K, F = -1.912878382592579, relative_change = 9.43883209176986e-5 Iter 55: T = 545.84833822631 K, F = -0.8000670530944214, relative_change = 3.953245133536384e-5 Iter 60: T = 545.7824069777765 K, F = -0.3346113376783144, relative_change = 1.6543131963597978e-5 Iter 65: T = 545.7548253075438 K, F = -0.1399408621047462, relative_change = 6.920318981032751e-6 Iter 70: T = 545.7432888476103 K, F = -0.058525360425529915, relative_change = 2.894472120111865e-6 Iter 75: T = 545.7384639040707 K, F = -0.024476078244870664, relative_change = 1.2105573988901208e-6 Iter 80: T = 545.7364460098934 K, F = -0.010236201095063485, relative_change = 5.062791098934695e-7 Iter 85: T = 545.7356020945497 K, F = -0.004280903793530383, relative_change = 2.1173364006191228e-7 Iter 90: T = 545.7352491576928 K, F = -0.0017903254845711702, relative_change = 8.854982899982025e-8 Iter 95: T = 545.7351015550427 K, F = -0.0007487355672658735, relative_change = 3.7032647074786545e-8 Iter 100: T = 545.7350398258094 K, F = -0.00031313016823619755, relative_change = 1.5487504214195627e-8 Iter 105: T = 545.7350140098994 K, F = -0.0001309547777461617, relative_change = 6.477060771252789e-9 Iter 110: T = 545.7350032133762 K, F = -5.476685198482767e-5, relative_change = 2.7087844221615736e-9 Iter 115: T = 545.7349986981411 K, F = -2.2904151445207743e-5, relative_change = 1.132846034287922e-9 Iter 120: T = 545.7349968098158 K, F = -9.578789663067244e-6, relative_change = 4.737697481523902e-10 Iter 125: T = 545.7349960200957 K, F = -4.005964256786898e-6, relative_change = 1.981361692739113e-10 Iter 130: T = 545.7349956898253 K, F = -1.6753424981474918e-6, relative_change = 8.286293248841348e-11 Iter 135: T = 545.7349955517022 K, F = -7.006482368177025e-7, relative_change = 3.465426781670335e-11 Iter 140: T = 545.7349954939375 K, F = -2.93019402630712e-7, relative_change = 1.44928258229731e-11 Iter 145: T = 545.7349954697796 K, F = -1.2254428283231533e-7, relative_change = 6.061076267029563e-12 Iter 150: T = 545.7349954596764 K, F = -5.12488800008537e-8, relative_change = 2.5347846764703213e-12 Iter 155: T = 545.7349954554511 K, F = -2.143232244455895e-8, relative_change = 1.0600489711138367e-12 Iter 160: T = 545.7349954536842 K, F = -8.963293440800157e-9, relative_change = 4.433271295930057e-13 Converged in 164 iterations to T = 545.7349954530463 K Iter 1: T = 966.8790172332748 K, F = -7546.6474295866265, relative_change = 0.03312098276672523 Iter 2: T = 935.814790610188 K, F = -6397.850671271675, relative_change = 0.03212834912063475 Iter 3: T = 906.7769563378637 K, F = -5422.472142478337, relative_change = 0.031029467116447787 Iter 5: T = 854.649858698762 K, F = -3891.5472285478477, relative_change = 0.028512923550610955 Iter 10: T = 756.9919164597377 K, F = -1686.6686151689155, relative_change = 0.020728686386060027 Iter 15: T = 699.1147732403244 K, F = -722.8801599688873, relative_change = 0.012620602088780616 Iter 20: T = 669.0284698208651 K, F = -306.6181271424797, relative_change = 0.006541465809912842 Iter 25: T = 654.8989900204194 K, F = -129.13902050065715, relative_change = 0.00304308939493224 Iter 30: T = 648.6552713796808 K, F = -54.181400426577945, relative_change = 0.0013357274081143968 Iter 35: T = 645.9794201581891 K, F = -22.691001506700825, relative_change = 0.0005704682008943234 Iter 40: T = 644.8485306825895 K, F = -9.495290042100526, relative_change = 0.0002407145179753789 Iter 45: T = 644.3734731543794 K, F = -3.972037969935484, relative_change = 0.00010104854572175774 Iter 50: T = 644.174427128251 K, F = -1.6613281658577561, relative_change = 4.232633825037319e-5 Iter 55: T = 644.0911185456036 K, F = -0.6948178314083502, relative_change = 1.771306073535093e-5 Iter 60: T = 644.0562664893397 K, F = -0.29058646147118083, relative_change = 7.409858466916451e-6 Iter 65: T = 644.0416889460322 K, F = -0.12152766382844232, relative_change = 3.0992491082487153e-6 Iter 70: T = 644.0355920939386 K, F = -0.05082448395362349, relative_change = 1.2962055808482805e-6 Iter 75: T = 644.0330422564667 K, F = -0.021255434772653237, relative_change = 5.420996017994845e-7 Iter 80: T = 644.0319758732952 K, F = -0.008889281668281956, relative_change = 2.2671444233873998e-7 Iter 85: T = 644.0315298972481 K, F = -0.0037176046292867193, relative_change = 9.481502224250251e-8 Iter 90: T = 644.031343384412 K, F = -0.0015547468059625147, relative_change = 3.9652833192967096e-8 Iter 95: T = 644.0312653824594 K, F = -0.0006502137082158854, relative_change = 1.6583298630987396e-8 Iter 100: T = 644.0312327611014 K, F = -0.00027192714336093937, relative_change = 6.93533534393195e-9 Iter 105: T = 644.031219118458 K, F = -0.0001137231788954085, relative_change = 2.9004403599195975e-9 Iter 110: T = 644.0312134129414 K, F = -4.756039183839711e-5, relative_change = 1.2129988554651853e-9 Iter 115: T = 644.0312110268261 K, F = -1.9890323650684216e-5, relative_change = 5.072906112858986e-10 Iter 120: T = 644.0312100289243 K, F = -8.318371944704417e-6, relative_change = 2.1215502039943835e-10 Iter 125: T = 644.0312096115897 K, F = -3.4788423790566014e-6, relative_change = 8.87257606510431e-11 Iter 130: T = 644.0312094370555 K, F = -1.4548943073622311e-6, relative_change = 3.710619516172108e-11 Iter 135: T = 644.0312093640632 K, F = -6.084548544449397e-7, relative_change = 1.5518271309513116e-11 Iter 140: T = 644.0312093335368 K, F = -2.544623686207004e-7, relative_change = 6.489908078407513e-12 Iter 145: T = 644.0312093207704 K, F = -1.0641915221265563e-7, relative_change = 2.714155807992386e-12 Iter 150: T = 644.0312093154314 K, F = -4.450639312647553e-8, relative_change = 1.1351085109228882e-12 Iter 155: T = 644.0312093131986 K, F = -1.861413834181036e-8, relative_change = 4.747422869247228e-13 Converged in 160 iterations to T = 644.0312093122647 K Iter 1: T = 965.2249617032185 K, F = -7923.525555522968, relative_change = 0.03477503829678158 Iter 2: T = 932.4267926765723 K, F = -6720.362570377327, relative_change = 0.03397981851688864 Iter 3: T = 901.5760728219984 K, F = -5698.671612888601, relative_change = 0.0330864793857065 Iter 5: T = 845.6037750928206 K, F = -4094.5695741462546, relative_change = 0.030987128507379478 Iter 10: T = 737.583774871649 K, F = -1781.555978512884, relative_change = 0.023971396673342117 Iter 15: T = 670.1440065037348 K, F = -766.9939839659544, relative_change = 0.015665701399885462 Iter 20: T = 633.3050018163956 K, F = -326.55454594831696, relative_change = 0.00860461832555114 Iter 25: T = 615.388711686134 K, F = -137.8579020888728, relative_change = 0.004148027599369804 Iter 30: T = 607.3159303001629 K, F = -57.90865335565434, relative_change = 0.0018538937827202384 Iter 35: T = 603.8236524299762 K, F = -24.265252579205672, relative_change = 0.000798322170063941 Iter 40: T = 602.3415499285446 K, F = -10.156473561828209, relative_change = 0.0003380683314769854 Iter 45: T = 601.7178399986891 K, F = -4.249053021656813, relative_change = 0.00014213252184334943 Iter 50: T = 601.4563113491491 K, F = -1.7772672692969322, relative_change = 5.957341725050975e-5 Iter 55: T = 601.3468164479646 K, F = -0.7433204032201981, relative_change = 2.4937459094450558e-5 Iter 60: T = 601.3010032560369 K, F = -0.3108735225152793, relative_change = 1.0433196739177714e-5 Iter 65: T = 601.2818399356796 K, F = -0.1300124286069551, relative_change = 4.3639968461552855e-6 Iter 70: T = 601.2738249595265 K, F = -0.05437299675846474, relative_change = 1.8251996973760009e-6 Iter 75: T = 601.2704728876521 K, F = -0.022739479696564036, relative_change = 7.633420180812967e-7 Iter 80: T = 601.2690709913749 K, F = -0.009509929513303594, relative_change = 3.1924254491553966e-7 Iter 85: T = 601.2684846981487 K, F = -0.003977167412403171, relative_change = 1.3351170887712994e-7 Iter 90: T = 601.2682395027144 K, F = -0.0016632991396238195, relative_change = 5.583630725757775e-8 Iter 95: T = 601.2681369589498 K, F = -0.0006956116046956673, relative_change = 2.3351430842030652e-8 Iter 100: T = 601.2680940739042 K, F = -0.0002909130874627075, relative_change = 9.765850805043479e-9 Iter 105: T = 601.2680761388627 K, F = -0.00012166332866780927, relative_change = 4.084196057693666e-9 Iter 110: T = 601.2680686382137 K, F = -5.088105711503754e-5, relative_change = 1.7080596717023331e-9 Iter 115: T = 601.2680655013526 K, F = -2.1279066071244745e-5, relative_change = 7.143309823216746e-10 Iter 120: T = 601.2680641894798 K, F = -8.899159418762626e-6, relative_change = 2.9874174619279554e-10 Iter 125: T = 601.2680636408389 K, F = -3.7217350102869418e-6, relative_change = 1.2493737535771206e-10 Iter 130: T = 601.2680634113907 K, F = -1.5564739538898031e-6, relative_change = 5.225030004216768e-11 Iter 135: T = 601.2680633154328 K, F = -6.50935538248909e-7, relative_change = 2.185168413673681e-11 Iter 140: T = 601.268063275302 K, F = -2.7222881954225286e-7, relative_change = 9.138628681185331e-12 Iter 145: T = 601.268063258519 K, F = -1.1385052245405092e-7, relative_change = 3.8219232326476796e-12 Iter 150: T = 601.2680632514999 K, F = -4.761339700287692e-8, relative_change = 1.5983655083719968e-12 Iter 155: T = 601.2680632485645 K, F = -1.9912327620108528e-8, relative_change = 6.684500511106401e-13 Iter 160: T = 601.2680632473368 K, F = -8.327695422138959e-9, relative_change = 2.79557896837497e-13 Converged in 162 iterations to T = 601.2680632470771 K Iter 1: T = 980.1550648328928 K, F = -4521.687355232143, relative_change = 0.019844935167107256 Iter 2: T = 962.3532703386365 K, F = -3819.4667209637514, relative_change = 0.018162222624734634 Iter 3: T = 946.4736219908262 K, F = -3224.7978455299785, relative_change = 0.01650085144119941 Iter 5: T = 919.9572452788285 K, F = -2295.6495287350876, relative_change = 0.013330828464032182 Iter 10: T = 877.8616501753006 K, F = -974.5685411377096, relative_change = 0.0070020739441866596 Iter 15: T = 857.936072492455 K, F = -410.6738015398406, relative_change = 0.003283100823418646 Iter 20: T = 849.0935394283774 K, F = -172.3463343130285, relative_change = 0.0014467114329902505 Iter 25: T = 845.2962842286637 K, F = -72.1865666016721, relative_change = 0.0006189575166572361 Iter 30: T = 843.690029741861 K, F = -30.208766756266826, relative_change = 0.0002613741228269163 Iter 35: T = 843.0150265152264 K, F = -12.637102457223836, relative_change = 0.00010975662134973681 Iter 40: T = 842.732159018784 K, F = -5.28559009381857, relative_change = 4.5980152780025187e-5 Iter 45: T = 842.6137598554067 K, F = -2.2106025048487323, relative_change = 1.9243234862523986e-5 Iter 50: T = 842.5642262897478 K, F = -0.924518849008422, relative_change = 8.050164331454622e-6 Iter 55: T = 842.5435076770417 K, F = -0.3866480568974311, relative_change = 3.3670972069634895e-6 Iter 60: T = 842.5348423662392 K, F = -0.1617014004603563, relative_change = 1.4082341454650082e-6 Iter 65: T = 842.5312183354005 K, F = -0.06762555569485484, relative_change = 5.889532604103661e-7 Iter 70: T = 842.5297027059167 K, F = -0.028281832303737042, relative_change = 2.46309547348095e-7 Iter 75: T = 842.5290688486792 K, F = -0.011827803049021535, relative_change = 1.0300998957391093e-7 Iter 80: T = 842.5288037615078 K, F = -0.004946529018207135, relative_change = 4.308007698523238e-8 Iter 85: T = 842.5286928987986 K, F = -0.0020686976005765967, relative_change = 1.8016614761208774e-8 Iter 90: T = 842.5286465346742 K, F = -0.0008651540584851958, relative_change = 7.534765574493802e-9 Iter 95: T = 842.528627144641 K, F = -0.0003618177626762975, relative_change = 3.1511293213573926e-9 Iter 100: T = 842.528619035497 K, F = -0.00015131650945510167, relative_change = 1.3178399757749835e-9 Iter 105: T = 842.528615644156 K, F = -6.328237168196083e-5, relative_change = 5.511364296133379e-10 Iter 110: T = 842.5286142258567 K, F = -2.646544281925678e-5, relative_change = 2.304918319710801e-10 Iter 115: T = 842.528613632707 K, F = -1.1068162354188615e-5, relative_change = 9.639442058628307e-11 Iter 120: T = 842.5286133846448 K, F = -4.628837583897649e-6, relative_change = 4.031329711607138e-11 Iter 125: T = 842.5286132809023 K, F = -1.9358381095901933e-6, relative_change = 1.6859528015792558e-11 Iter 130: T = 842.5286132375157 K, F = -8.095898351712094e-7, relative_change = 7.0508491609383544e-12 Iter 135: T = 842.5286132193711 K, F = -3.385800917410364e-7, relative_change = 2.9487489248214862e-12 Iter 140: T = 842.5286132117828 K, F = -1.415995771747447e-7, relative_change = 1.2332136801666067e-12 Iter 145: T = 842.5286132086093 K, F = -5.922014101322759e-8, relative_change = 5.157578115511717e-13 Converged in 150 iterations to T = 842.5286132072821 K Iter 1: T = 976.4970071388906 K, F = -5355.179280521724, relative_change = 0.0235029928611094 Iter 2: T = 955.1544553347271 K, F = -4528.082980303435, relative_change = 0.02185623882934016 Iter 3: T = 935.8802034770616 K, F = -3826.9942401291805, relative_change = 0.02017919902903133 Iter 5: T = 903.1137060054524 K, F = -2729.8575294662023, relative_change = 0.016827590998893333 Iter 10: T = 849.1851636724995 K, F = -1163.9798864423828, relative_change = 0.00945688699786332 Iter 15: T = 822.5800519899137 K, F = -491.86879509796705, relative_change = 0.0046279541236923264 Iter 20: T = 810.4912190641156 K, F = -206.72300804383116, relative_change = 0.002084859274135575 Iter 25: T = 805.2398173037492 K, F = -86.64365240414563, relative_change = 0.0009011034444970765 Iter 30: T = 803.006962689055 K, F = -36.269512151397635, relative_change = 0.0003822122007107571 Iter 35: T = 802.0665516390642 K, F = -15.174379064018414, relative_change = 0.00016080286652994205 Iter 40: T = 801.6720906671948 K, F = -6.347167556914274, relative_change = 6.741856287803667e-5 Iter 45: T = 801.506916679773 K, F = -2.6546472374889465, relative_change = 2.8224895113827026e-5 Iter 50: T = 801.437802888405 K, F = -1.1102377318188936, relative_change = 1.1809181509930521e-5 Iter 55: T = 801.4088923631156 K, F = -0.46432037423380457, relative_change = 4.939649638771045e-6 Iter 60: T = 801.396800531708 K, F = -0.19418532197529859, relative_change = 2.0659794811152437e-6 Iter 65: T = 801.3917433902029 K, F = -0.0812107949654105, relative_change = 8.640451060883295e-7 Iter 70: T = 801.3896283994371 K, F = -0.03396335478833512, relative_change = 3.613588471291917e-7 Iter 75: T = 801.3887438791301 K, F = -0.014203885909389147, relative_change = 1.5112543628738077e-7 Iter 80: T = 801.3883739611406 K, F = -0.005940235649670944, relative_change = 6.320261109711518e-8 Iter 85: T = 801.3882192568387 K, F = -0.002484277653041378, relative_change = 2.64321127879369e-8 Iter 90: T = 801.3881545576205 K, F = -0.0010389546126310378, relative_change = 1.1054229798008695e-8 Iter 95: T = 801.3881274996294 K, F = -0.00043450323220883824, relative_change = 4.623011718279239e-9 Iter 100: T = 801.3881161836532 K, F = -0.00018171444125392178, relative_change = 1.9333988460929137e-9 Iter 105: T = 801.3881114511768 K, F = -7.599515037504112e-5, relative_change = 8.085705195528858e-10 Iter 110: T = 801.3881094719986 K, F = -3.17820814603742e-5, relative_change = 3.381538729016787e-10 Iter 115: T = 801.3881086442826 K, F = -1.3291645686752673e-5, relative_change = 1.4141998515482034e-10 Iter 120: T = 801.3881082981218 K, F = -5.558724619936228e-6, relative_change = 5.914352318549673e-11 Iter 125: T = 801.3881081533533 K, F = -2.324725217661694e-6, relative_change = 2.4734529830067203e-11 Iter 130: T = 801.3881080928094 K, F = -9.722286675728498e-7, relative_change = 1.0344284479593402e-11 Iter 135: T = 801.3881080674892 K, F = -4.065970642397332e-7, relative_change = 4.326097184725194e-12 Iter 140: T = 801.3881080568999 K, F = -1.700423275519114e-7, relative_change = 1.8092103934105041e-12 Iter 145: T = 801.3881080524714 K, F = -7.111337585463673e-8, relative_change = 7.566296025371907e-13 Iter 150: T = 801.3881080506194 K, F = -2.9742652118969204e-8, relative_change = 3.1645482697131583e-13 Converged in 153 iterations to T = 801.3881080500771 K Iter 1: T = 980.8966366299782 K, F = -4352.719515849351, relative_change = 0.019103363370021886 Iter 2: T = 963.8024058644062 K, F = -3675.985070872056, relative_change = 0.01742714790449461 Iter 3: T = 948.5912179352539 K, F = -3103.022322170699, relative_change = 0.01578247557445116 Iter 5: T = 923.2789875729578 K, F = -2208.0925673575675, relative_change = 0.012672626801735438 Iter 10: T = 883.3624846887238 K, F = -936.6484241476985, relative_change = 0.006574879443885811 Iter 15: T = 864.6055598564102 K, F = -394.50523781150855, relative_change = 0.003060393863112337 Iter 20: T = 856.3144247776687 K, F = -165.5212299060939, relative_change = 0.0013437041861602292 Iter 25: T = 852.7605975048813 K, F = -69.32036573177233, relative_change = 0.0005739483015447513 Iter 30: T = 851.258553699643 K, F = -29.007948579684466, relative_change = 0.0002421963458973946 Iter 35: T = 850.6275663447691 K, F = -12.134526998038213, relative_change = 0.0001016729749076128 Iter 40: T = 850.3631836430633 K, F = -5.075340391297449, relative_change = 4.2588312844494985e-5 Iter 45: T = 850.2525285517283 K, F = -2.1226618855612265, relative_change = 1.782276746383297e-5 Iter 50: T = 850.2062360177316 K, F = -0.8877389865000462, relative_change = 7.4557646731146695e-6 Iter 55: T = 850.186873257772 K, F = -0.37126592128365243, relative_change = 3.118452101976509e-6 Iter 60: T = 850.178775053323 K, F = -0.15526834504799525, relative_change = 1.3042372841805701e-6 Iter 65: T = 850.1753882058237 K, F = -0.06493516415034684, relative_change = 5.454586928528333e-7 Iter 70: T = 850.1739717714646 K, F = -0.02715667651747733, relative_change = 2.2811927826298002e-7 Iter 75: T = 850.173379399201 K, F = -0.011357249125536262, relative_change = 9.54025455569167e-8 Iter 80: T = 850.173131661609 K, F = -0.004749737686585487, relative_change = 3.989854318727573e-8 Iter 85: T = 850.173028054713 K, F = -0.0019863971086986343, relative_change = 1.668605764038095e-8 Iter 90: T = 850.1729847250584 K, F = -0.0008307350089815646, relative_change = 6.9783104026749336e-9 Iter 95: T = 850.172966604077 K, F = -0.0003474233042457531, relative_change = 2.918413065514772e-9 Iter 100: T = 850.1729590256657 K, F = -0.0001452965736343792, relative_change = 1.2205152379937342e-9 Iter 105: T = 850.1729558562837 K, F = -6.076476323690905e-5, relative_change = 5.104340654773942e-10 Iter 110: T = 850.1729545308101 K, F = -2.5412548573022775e-5, relative_change = 2.1346961442088072e-10 Iter 115: T = 850.1729539764813 K, F = -1.0627829355014384e-5, relative_change = 8.92755260287982e-11 Iter 120: T = 850.1729537446544 K, F = -4.444685544280347e-6, relative_change = 3.7336094442105695e-11 Iter 125: T = 850.1729536477015 K, F = -1.8588214492076816e-6, relative_change = 1.5614407931652622e-11 Iter 130: T = 850.1729536071548 K, F = -7.773790124954161e-7, relative_change = 6.5301124142606544e-12 Iter 135: T = 850.1729535901976 K, F = -3.2510984770972584e-7, relative_change = 2.7309765488964823e-12 Iter 140: T = 850.1729535831059 K, F = -1.3596544334859573e-7, relative_change = 1.142132235845427e-12 Iter 145: T = 850.1729535801402 K, F = -5.6864494224484474e-8, relative_change = 4.776711665139385e-13 Converged in 150 iterations to T = 850.1729535788998 K Iter 1: T = 967.299281630216 K, F = -7450.889786968911, relative_change = 0.03270071836978397 Iter 2: T = 936.6726601875218 K, F = -6315.950986655974, relative_change = 0.031661991303330965 Iter 3: T = 908.0888383707527 K, F = -5352.38128082428, relative_change = 0.030516340480191483 Iter 5: T = 856.911641281586 K, F = -3840.124652237316, relative_change = 0.02790953131976312 Iter 10: T = 761.711517585257 K, F = -1662.8492913112584, relative_change = 0.0199940963124554 Iter 15: T = 705.9524151859767 K, F = -711.9664221646981, relative_change = 0.011986261358622572 Iter 20: T = 677.2673684860408 K, F = -301.7583317286328, relative_change = 0.006140157146582182 Iter 25: T = 663.8882424777563 K, F = -127.0352358213658, relative_change = 0.002837017601606836 Iter 30: T = 657.997701375608 K, F = -53.286949589700555, relative_change = 0.0012411258711737076 Iter 35: T = 655.4775408162709 K, F = -22.314184099403562, relative_change = 0.0005292714932920477 Iter 40: T = 654.4132549689814 K, F = -9.337204850685533, relative_change = 0.00022318685100660842 Iter 45: T = 653.9663202756753 K, F = -3.9058370163424945, relative_change = 9.366502093795027e-5 Iter 50: T = 653.7790830617248 K, F = -1.6336266880394976, relative_change = 3.922907278617271e-5 Iter 55: T = 653.7007214160641 K, F = -0.6832300343289397, relative_change = 1.6416099992531514e-5 Iter 60: T = 653.6679396915437 K, F = -0.2857398322129706, relative_change = 6.867165470527999e-6 Iter 65: T = 653.6542282419094 K, F = -0.11950066263205333, relative_change = 2.872237923170483e-6 Iter 70: T = 653.6484936453617 K, F = -0.04997675333308138, relative_change = 1.2012579587342895e-6 Iter 75: T = 653.646095315327 K, F = -0.020900901163987518, relative_change = 5.023898271707808e-7 Iter 80: T = 653.6450922957467 K, F = -0.008741011034191282, relative_change = 2.1010707007684906e-7 Iter 85: T = 653.6446728193501 K, F = -0.003655596001328698, relative_change = 8.786957355004556e-8 Iter 90: T = 653.6444973890264 K, F = -0.0015288140430834707, relative_change = 3.6748155323980155e-8 Iter 95: T = 653.6444240219201 K, F = -0.0006393683155386798, relative_change = 1.5368526231718242e-8 Iter 100: T = 653.6443933389114 K, F = -0.0002673914697005064, relative_change = 6.427302752998704e-9 Iter 105: T = 653.6443805069091 K, F = -0.00011182630667683213, relative_change = 2.6879750380395405e-9 Iter 110: T = 653.6443751404123 K, F = -4.6767096803124186e-5, relative_change = 1.1241433027512104e-9 Iter 115: T = 653.6443728960793 K, F = -1.9558558576993068e-5, relative_change = 4.701301662528695e-10 Iter 120: T = 653.6443719574722 K, F = -8.17962209476164e-6, relative_change = 1.966140350500924e-10 Iter 125: T = 653.6443715649356 K, F = -3.4208150545556038e-6, relative_change = 8.222632355962164e-11 Iter 130: T = 653.6443714007721 K, F = -1.4306258070417854e-6, relative_change = 3.438803290068701e-11 Iter 135: T = 653.644371332117 K, F = -5.983046534319136e-7, relative_change = 1.4381482576274117e-11 Iter 140: T = 653.6443713034047 K, F = -2.5021769944899575e-7, relative_change = 6.014496903897485e-12 Iter 145: T = 653.6443712913967 K, F = -1.0464376426488897e-7, relative_change = 2.515328042837726e-12 Iter 150: T = 653.644371286375 K, F = -4.3763276835750986e-8, relative_change = 1.0519403449288593e-12 Iter 155: T = 653.6443712842747 K, F = -1.830142942749191e-8, relative_change = 4.3991248775078553e-13 Converged in 159 iterations to T = 653.6443712835166 K Iter 1: T = 973.502595063281 K, F = -6037.458920370623, relative_change = 0.02649740493671907 Iter 2: T = 949.1982408644737 K, F = -5109.180977796938, relative_change = 0.024965885373143096 Iter 3: T = 927.019611222685 K, F = -4321.814669785381, relative_change = 0.023365645538480775 Iter 5: T = 888.7177005924581 K, F = -3088.2797901351137, relative_change = 0.02003690451762295 Iter 10: T = 823.4936365278357 K, F = -1322.3567610016964, relative_change = 0.012022861981560254 Iter 15: T = 789.9188901557995 K, F = -560.4898417489541, relative_change = 0.006163109037035601 Iter 20: T = 774.252890473651 K, F = -235.9630092326593, relative_change = 0.0028487393625124327 Iter 25: T = 767.3540334055716 K, F = -98.97969473184523, relative_change = 0.001246492253764931 Iter 30: T = 764.4021923899783 K, F = -41.44849288983596, relative_change = 0.0005316055158938086 Iter 35: T = 763.1555501468744 K, F = -17.343857215980552, relative_change = 0.00022417935502696594 Iter 40: T = 762.6320272870198 K, F = -7.255099504482436, relative_change = 9.408301719236873e-5 Iter 45: T = 762.412702790729 K, F = -3.034465936995423, relative_change = 3.9404398333568506e-5 Iter 50: T = 762.3209118246688 K, F = -1.2691018476035523, relative_change = 1.6489513511738422e-5 Iter 55: T = 762.2825120403683 K, F = -0.5307626402963589, relative_change = 6.897883692693501e-6 Iter 60: T = 762.2664507434604 K, F = -0.22197286521090442, relative_change = 2.885087417569437e-6 Iter 65: T = 762.2597333589114 K, F = -0.09283198131922799, relative_change = 1.2066322548372484e-6 Iter 70: T = 762.2569240057855 K, F = -0.03882349188473788, relative_change = 5.046375066812201e-7 Iter 75: T = 762.2557490897935 K, F = -0.016236456461111826, relative_change = 2.1104709129835506e-7 Iter 80: T = 762.2552577239768 K, F = -0.006790281483752714, relative_change = 8.826270424315047e-8 Iter 85: T = 762.2550522285887 K, F = -0.0028397770696648728, relative_change = 3.691256775403521e-8 Iter 90: T = 762.2549662879046 K, F = -0.0011876287292666987, relative_change = 1.5437285530833e-8 Iter 95: T = 762.2549303464739 K, F = -0.0004966805244743799, relative_change = 6.45605870444334e-9 Iter 100: T = 762.2549153153366 K, F = -0.0002077177302277633, relative_change = 2.7000011478812696e-9 Iter 105: T = 762.2549090291351 K, F = -8.687003454188602e-5, relative_change = 1.1291727573373553e-9 Iter 110: T = 762.2549064001705 K, F = -3.63300855114046e-5, relative_change = 4.722335350871229e-10 Iter 115: T = 762.2549053007061 K, F = -1.5193676240143894e-5, relative_change = 1.9749371327171846e-10 Iter 120: T = 762.254904840897 K, F = -6.354175995038069e-6, relative_change = 8.259421852958897e-11 Iter 125: T = 762.2549046485993 K, F = -2.657392903282485e-6, relative_change = 3.454189663737953e-11 Iter 130: T = 762.2549045681782 K, F = -1.111352928462317e-6, relative_change = 1.4445826943565503e-11 Iter 135: T = 762.2549045345451 K, F = -4.647815113889564e-7, relative_change = 6.0414231245100345e-12 Iter 140: T = 762.2549045204793 K, F = -1.94375597284413e-7, relative_change = 2.5265747444823553e-12 Iter 145: T = 762.2549045145968 K, F = -8.129041062510112e-8, relative_change = 1.0566465200927615e-12 Iter 150: T = 762.2549045121367 K, F = -3.399706005602354e-8, relative_change = 4.419079067985606e-13 Converged in 154 iterations to T = 762.2549045112487 K Iter 1: T = 970.0052751043048 K, F = -6834.326599833473, relative_change = 0.02999472489569522 Iter 2: T = 942.1678889201502 K, F = -5789.049730676583, relative_change = 0.02869818020439248 Iter 3: T = 916.4450753821573 K, F = -4901.911314042444, relative_change = 0.027301730233530493 Iter 5: T = 871.1374918255183 K, F = -3510.5399853016775, relative_change = 0.024249840633511644 Iter 10: T = 790.3228197027728 K, F = -1511.9577477314288, relative_change = 0.015947712161689505 Iter 15: T = 745.9752833804528 K, F = -643.9594004003034, relative_change = 0.008808051357389966 Iter 20: T = 724.3333266287261 K, F = -271.91693729473053, relative_change = 0.004261307709281881 Iter 25: T = 714.5624293421617 K, F = -114.23567650201565, relative_change = 0.0019080851867485384 Iter 30: T = 710.3314146599172 K, F = -47.87051680130548, relative_change = 0.0008223703126961058 Iter 35: T = 708.535006018536 K, F = -20.03720799110928, relative_change = 0.0003483841456679091 Iter 40: T = 707.7788836082073 K, F = -8.382838381249526, relative_change = 0.00014649323112151964 Iter 45: T = 707.4618073498117 K, F = -3.5063370361342807, relative_change = 6.140534972080527e-5 Iter 50: T = 707.3290516818388 K, F = -1.466485584511624, relative_change = 2.5705042034853624e-5 Iter 55: T = 707.2735052840864 K, F = -0.6133181620788226, relative_change = 1.0754462682967574e-5 Iter 60: T = 707.2502704972679 K, F = -0.2564998452426383, relative_change = 4.498398492526947e-6 Iter 65: T = 707.2405526236238 K, F = -0.10727179973219308, relative_change = 1.8814158380156506e-6 Iter 70: T = 707.2364883514142 K, F = -0.04486243540108692, relative_change = 7.868536381076202e-7 Iter 75: T = 707.234788599507 K, F = -0.01876202158455187, relative_change = 3.290756228391392e-7 Iter 80: T = 707.2340777386345 K, F = -0.007846504172106084, relative_change = 1.3762406106553422e-7 Iter 85: T = 707.2337804473716 K, F = -0.0032815022193466437, relative_change = 5.75561493074133e-8 Iter 90: T = 707.2336561164827 K, F = -0.0013723634988275224, relative_change = 2.4070690578792136e-8 Iter 95: T = 707.2336041197971 K, F = -0.0005739388181834615, relative_change = 1.0066654025223509e-8 Iter 100: T = 707.2335823741581 K, F = -0.00024002807060585774, relative_change = 4.209995595878806e-9 Iter 105: T = 707.2335732798715 K, F = -0.00010038260641265229, relative_change = 1.7606705570181716e-9 Iter 110: T = 707.2335694765321 K, F = -4.1981204413898965e-5, relative_change = 7.363334654651412e-10 Iter 115: T = 707.2335678859303 K, F = -1.755704222883292e-5, relative_change = 3.0794347295632813e-10 Iter 120: T = 707.2335672207214 K, F = -7.342564493750814e-6, relative_change = 1.287856343492666e-10 Iter 125: T = 707.2335669425232 K, F = -3.0707483875680452e-6, relative_change = 5.3859694402026276e-11 Iter 130: T = 707.2335668261774 K, F = -1.2842236767340864e-6, relative_change = 2.252476793831327e-11 Iter 135: T = 707.2335667775201 K, F = -5.370775333357614e-7, relative_change = 9.42012441165837e-12 Iter 140: T = 707.2335667571712 K, F = -2.2461329796108487e-7, relative_change = 3.939627112038199e-12 Iter 145: T = 707.2335667486609 K, F = -9.393473532348651e-8, relative_change = 1.6475775629627118e-12 Iter 150: T = 707.2335667451018 K, F = -3.928399816555128e-8, relative_change = 6.890255637564837e-13 Iter 155: T = 707.2335667436133 K, F = -1.6429220539571077e-8, relative_change = 2.8816193547218426e-13 Converged in 157 iterations to T = 707.2335667432983 K Iter 1: T = 973.5459853607862 K, F = -6027.572399809236, relative_change = 0.026454014639213878 Iter 2: T = 949.2849621043368 K, F = -5100.753973176254, relative_change = 0.02492026429286583 Iter 3: T = 927.149257464701 K, F = -4314.632334226427, relative_change = 0.02331829273958616 Iter 5: T = 888.9304724147352 K, F = -3083.066051924855, relative_change = 0.019987929816432486 Iter 10: T = 823.8822898118103 K, F = -1320.0376337830066, relative_change = 0.011981170707967637 Iter 15: T = 790.4210240350237 K, F = -559.4788820420245, relative_change = 0.006137021076383761 Iter 20: T = 774.8149622356731 K, F = -235.53055075930305, relative_change = 0.0028354288238449147 Iter 25: T = 767.9441268348169 K, F = -98.79688059045738, relative_change = 0.001240401036929475 Iter 30: T = 765.0046007504124 K, F = -41.371672698544074, relative_change = 0.0005289567039200002 Iter 35: T = 763.7632197622345 K, F = -17.31166438896637, relative_change = 0.00022305307534221917 Iter 40: T = 763.2419171678 K, F = -7.241624448142562, relative_change = 9.360869558037051e-5 Iter 45: T = 763.0235247415851 K, F = -3.0288284627590065, relative_change = 3.920545009636474e-5 Iter 50: T = 762.9321241984757 K, F = -1.2667438301608702, relative_change = 1.64062089892746e-5 Iter 55: T = 762.8938878023924 K, F = -0.5297764264992106, relative_change = 6.863026883592133e-6 Iter 60: T = 762.8778948554121 K, F = -0.22156040784760367, relative_change = 2.8705067577421586e-6 Iter 65: T = 762.8712060589472 K, F = -0.09265948480247943, relative_change = 1.2005339018786995e-6 Iter 70: T = 762.868408662282 K, F = -0.03875135144511255, relative_change = 5.020870069814111e-7 Iter 75: T = 762.8672387467265 K, F = -0.016206286409512716, relative_change = 2.099804251403195e-7 Iter 80: T = 762.8667494721697 K, F = -0.006777663995800487, relative_change = 8.781660876760884e-8 Iter 85: T = 762.8665448513747 K, F = -0.002834500282459129, relative_change = 3.6726004770480295e-8 Iter 90: T = 762.8664592764565 K, F = -0.0011854219143403455, relative_change = 1.5359262584161757e-8 Iter 95: T = 762.8664234879935 K, F = -0.0004957576092572413, relative_change = 6.423428576236649e-9 Iter 100: T = 762.866408520829 K, F = -0.0002073317532803598, relative_change = 2.6863547998455954e-9 Iter 105: T = 762.866402261382 K, F = -8.670861721515877e-5, relative_change = 1.1234657280339816e-9 Iter 110: T = 762.8663996436063 K, F = -3.626258074740374e-5, relative_change = 4.698468116991287e-10 Iter 115: T = 762.8663985488213 K, F = -1.5165444600562239e-5, relative_change = 1.9649555258889362e-10 Iter 120: T = 762.866398090969 K, F = -6.3423690633834795e-6, relative_change = 8.21767742534401e-11 Iter 125: T = 762.8663978994898 K, F = -2.652455157847733e-6, relative_change = 3.436731713433791e-11 Iter 130: T = 762.8663978194108 K, F = -1.1092873838380868e-6, relative_change = 1.437280898783271e-11 Iter 135: T = 762.8663977859209 K, F = -4.6391783103949535e-7, relative_change = 6.010888134239565e-12 Iter 140: T = 762.8663977719151 K, F = -1.9401636874860628e-7, relative_change = 2.5138302751762595e-12 Iter 145: T = 762.8663977660576 K, F = -8.114104732559468e-8, relative_change = 1.0513278990307438e-12 Iter 150: T = 762.866397763608 K, F = -3.3934842935678944e-8, relative_change = 4.396867960662549e-13 Converged in 154 iterations to T = 762.8663977627238 K Iter 1: T = 964.2938752666819 K, F = -8135.67448577967, relative_change = 0.03570612473331812 Iter 2: T = 930.5114351371958 K, F = -6902.030815339713, relative_change = 0.03503334512017239 Iter 3: T = 898.6216376454835 K, F = -5854.38665531629, relative_change = 0.03427125802812996 Iter 5: T = 840.4068768734531 K, F = -4209.309354766888, relative_change = 0.032453491347403385 Iter 10: T = 726.0136371783368 K, F = -1835.84146869289, relative_change = 0.026086898026764147 Iter 15: T = 652.1191945131611 K, F = -792.7900721834151, relative_change = 0.017895098932036294 Iter 20: T = 610.2754957893995 K, F = -338.5018462196337, relative_change = 0.010274132924381452 Iter 25: T = 589.349768406205 K, F = -143.1787574959624, relative_change = 0.0051017020172263935 Iter 30: T = 579.7629994110683 K, F = -60.20655782518289, relative_change = 0.0023164365549786727 Iter 35: T = 575.5811859278447 K, F = -25.240543337421755, relative_change = 0.0010049164467106479 Iter 40: T = 573.799745804252 K, F = -10.566981456920283, relative_change = 0.0004269436583207688 Iter 45: T = 573.0488403731971 K, F = -4.421202529760405, relative_change = 0.00017974791755638635 Iter 50: T = 572.73375867327 K, F = -1.849345260179987, relative_change = 7.538378860500228e-5 Iter 55: T = 572.6018040431566 K, F = -0.7734788555251115, relative_change = 3.1563468144022275e-5 Iter 60: T = 572.5465868312907 K, F = -0.32348870094007165, relative_change = 1.32067136656139e-5 Iter 65: T = 572.5234886944564 K, F = -0.13528869379830588, relative_change = 5.5243420640988105e-6 Iter 70: T = 572.5138277910147 K, F = -0.056579672062646524, relative_change = 2.310544693556915e-6 Iter 75: T = 572.509787313202 K, F = -0.023662351337607357, relative_change = 9.663321709888116e-7 Iter 80: T = 572.5080975069342 K, F = -0.009895887846969764, relative_change = 4.041377388078239e-7 Iter 85: T = 572.5073908044916 K, F = -0.004138580215276966, relative_change = 1.6901629296004433e-7 Iter 90: T = 572.5070952521668 K, F = -0.0017308039749402426, relative_change = 7.068481833180438e-8 Iter 95: T = 572.5069716484933 K, F = -0.0007238429455854734, relative_change = 2.9561267735161813e-8 Iter 100: T = 572.5069199559326 K, F = -0.0003027197735426812, relative_change = 1.2362880892605731e-8 Iter 105: T = 572.5068983374815 K, F = -0.000126601026102513, relative_change = 5.170305426857097e-9 Iter 110: T = 572.5068892963861 K, F = -5.294606101458044e-5, relative_change = 2.1622836370561756e-9 Iter 115: T = 572.506885515292 K, F = -2.214267513067636e-5, relative_change = 9.042928728538301e-10 Iter 120: T = 572.5068839339932 K, F = -9.260331263694077e-6, relative_change = 3.781860873955792e-10 Iter 125: T = 572.5068832726752 K, F = -3.872780881708504e-6, relative_change = 1.581619291299665e-10 Iter 130: T = 572.5068829961042 K, F = -1.6196440369431464e-6, relative_change = 6.614524131376352e-11 Iter 135: T = 572.5068828804389 K, F = -6.773549589556005e-7, relative_change = 2.7662749490837794e-11 Iter 140: T = 572.5068828320663 K, F = -2.8327839352026984e-7, relative_change = 1.1568911005468953e-11 Iter 145: T = 572.5068828118361 K, F = -1.184701672873878e-7, relative_change = 4.838246946226451e-12 Iter 150: T = 572.5068828033757 K, F = -4.954569216009119e-8, relative_change = 2.02341483343733e-12 Iter 155: T = 572.5068827998375 K, F = -2.0720470617074938e-8, relative_change = 8.462109575168411e-13 Iter 160: T = 572.5068827983577 K, F = -8.665034634258717e-9, relative_change = 3.5387455190426533e-13 Converged in 163 iterations to T = 572.5068827979245 K Iter 1: T = 963.4502303657432 K, F = -8327.899778972014, relative_change = 0.03654976963425674 Iter 2: T = 928.770808602521 K, F = -7066.714097217122, relative_change = 0.03599503188665721 Iter 3: T = 895.9277103937139 K, F = -5995.627629741664, relative_change = 0.03536189757968873 Iter 5: T = 835.6302315446327 K, F = -4313.56472077143, relative_change = 0.033830861328298795 Iter 10: T = 715.0787766314359 K, F = -1885.6300342132095, relative_change = 0.028222203022338955 Iter 15: T = 634.4663218039439 K, F = -816.9017896392976, relative_change = 0.02037161403502119 Iter 20: T = 586.9651075502074 K, F = -349.9420931723808, relative_change = 0.012309648408987479 Iter 25: T = 562.3984101407378 K, F = -148.37624988858323, relative_change = 0.006343526608457166 Iter 30: T = 550.9001898567942 K, F = -62.47808756692402, relative_change = 0.002941087436377287 Iter 35: T = 545.8284117889921 K, F = -26.21034951826069, relative_change = 0.0012888203189392049 Iter 40: T = 543.6566669994107 K, F = -10.976269277978698, relative_change = 0.0005500254498119281 Iter 45: T = 542.7391714335815 K, F = -4.593037942120007, relative_change = 0.00023201398178782244 Iter 50: T = 542.353817048244 K, F = -1.9213268389686633, relative_change = 9.738292861822936e-5 Iter 55: T = 542.1923669988154 K, F = -0.8036031469099831, relative_change = 4.0788581534091616e-5 Iter 60: T = 542.1247957322189 K, F = -0.3360906737184488, relative_change = 1.706911856798508e-5 Iter 65: T = 542.0965277021892 K, F = -0.14055962553161405, relative_change = 7.140408096232587e-6 Iter 70: T = 542.0847041135511 K, F = -0.0587841499777724, relative_change = 2.9865361829741047e-6 Iter 75: T = 542.0797590745141 K, F = -0.02458430980156384, relative_change = 1.2490632174075983e-6 Iter 80: T = 542.0776909523688 K, F = -0.010281465292882597, relative_change = 5.223833201720204e-7 Iter 85: T = 542.0768260306348 K, F = -0.00429983390370231, relative_change = 2.184687210721185e-7 Iter 90: T = 542.0764643085753 K, F = -0.0017982422967659228, relative_change = 9.136653917671869e-8 Iter 95: T = 542.0763130318346 K, F = -0.0007520464751900879, relative_change = 3.821063221169642e-8 Iter 100: T = 542.0762497660503 K, F = -0.000314514829724416, relative_change = 1.5980152234950016e-8 Iter 105: T = 542.076223307536 K, F = -0.00013153386003034173, relative_change = 6.683092169656456e-9 Iter 110: T = 542.076212242268 K, F = -5.500903161359538e-5, relative_change = 2.7949492554958222e-9 Iter 115: T = 542.0762076146405 K, F = -2.300543388536469e-5, relative_change = 1.1688812007309267e-9 Iter 120: T = 542.0762056793113 K, F = -9.621147139926567e-6, relative_change = 4.888400831088655e-10 Iter 125: T = 542.0762048699336 K, F = -4.023678593007007e-6, relative_change = 2.0443876007552702e-10 Iter 130: T = 542.076204531442 K, F = -1.6827500119442895e-6, relative_change = 8.549870945944248e-11 Iter 135: T = 542.0762043898808 K, F = -7.037453791103321e-7, relative_change = 3.575654217780433e-11 Iter 140: T = 542.0762043306783 K, F = -2.943143239675372e-7, relative_change = 1.4953792744263478e-11 Iter 145: T = 542.0762043059191 K, F = -1.2308536251337543e-7, relative_change = 6.2538342560615854e-12 Iter 150: T = 542.0762042955645 K, F = -5.1475752355090165e-8, relative_change = 2.615427349690737e-12 Iter 155: T = 542.0762042912341 K, F = -2.1527727850356726e-8, relative_change = 1.093800588095644e-12 Iter 160: T = 542.0762042894231 K, F = -9.003168627286229e-9, relative_change = 4.574412686679972e-13 Converged in 165 iterations to T = 542.0762042886657 K Iter 1: T = 969.2899742460428 K, F = -6997.308580815252, relative_change = 0.03071002575395725 Iter 2: T = 940.7200416257919 K, F = -5928.2574406553795, relative_change = 0.029475114134419802 Iter 3: T = 914.2512814972774 K, F = -5020.849101839436, relative_change = 0.028136702692939348 Iter 5: T = 867.4323242006456 K, F = -3597.411698869206, relative_change = 0.025180857627672373 Iter 10: T = 783.0385157065385 K, F = -1551.4526232831684, relative_change = 0.016915016582201754 Iter 15: T = 735.9975829631531 K, F = -661.595204945366, relative_change = 0.009522478261729639 Iter 20: T = 712.7651157715477 K, F = -279.5947714803762, relative_change = 0.0046654575102866224 Iter 25: T = 702.2018811997465 K, F = -117.51311421945948, relative_change = 0.002103055942355949 Iter 30: T = 697.6117088227272 K, F = -49.254127840848845, relative_change = 0.0009092321999559602 Iter 35: T = 695.6597155867622 K, F = -20.61822535865425, relative_change = 0.00038570934075233583 Iter 40: T = 694.8375422687249 K, F = -8.62625066042892, relative_change = 0.00016228302435620278 Iter 45: T = 694.4926674398654 K, F = -3.608209734992272, relative_change = 6.804070388301339e-5 Iter 50: T = 694.3482551752066 K, F = -1.5091030896387119, relative_change = 2.848563087148232e-5 Iter 55: T = 694.2878284266366 K, F = -0.6311436108846685, relative_change = 1.191832055463935e-5 Iter 60: T = 694.2625516690351 K, F = -0.26395506320212503, relative_change = 4.9853097390120145e-6 Iter 65: T = 694.2519796526075 K, F = -0.11038973131349455, relative_change = 2.085078028342444e-6 Iter 70: T = 694.2475581386069 K, F = -0.04616640393783922, relative_change = 8.720328623279446e-7 Iter 75: T = 694.24570897883 K, F = -0.019307358951941467, relative_change = 3.6469951237891813e-7 Iter 80: T = 694.2449356329125 K, F = -0.008074571148452336, relative_change = 1.52522558148795e-7 Iter 85: T = 694.244612209502 K, F = -0.0033768826186134637, relative_change = 6.37869068816049e-8 Iter 90: T = 694.2444769498097 K, F = -0.0014122527326531076, relative_change = 2.66764727373854e-8 Iter 95: T = 694.2444203825631 K, F = -0.0005906209750139446, relative_change = 1.1156424120127267e-8 Iter 100: T = 694.2443967254602 K, F = -0.0002470047482000526, relative_change = 4.665750615480339e-9 Iter 105: T = 694.2443868317764 K, F = -0.00010330033643801695, relative_change = 1.951272777261793e-9 Iter 110: T = 694.2443826941196 K, F = -4.320143495384343e-5, relative_change = 8.160456128493576e-10 Iter 115: T = 694.244380963702 K, F = -1.806735699128037e-5, relative_change = 3.412800431105225e-10 Iter 120: T = 694.2443802400207 K, F = -7.555983659535137e-6, relative_change = 1.4272737529408176e-10 Iter 125: T = 694.2443799373685 K, F = -3.160002877033996e-6, relative_change = 5.969029815565823e-11 Iter 130: T = 694.2443798107957 K, F = -1.3215498857466201e-6, relative_change = 2.4963175619101424e-11 Iter 135: T = 694.2443797578616 K, F = -5.526891050378069e-7, relative_change = 1.0439920085980451e-11 Iter 140: T = 694.2443797357239 K, F = -2.3114152047920555e-7, relative_change = 4.36610561113957e-12 Iter 145: T = 694.2443797264656 K, F = -9.666686762166421e-8, relative_change = 1.8259711724921435e-12 Iter 150: T = 694.2443797225937 K, F = -4.042791401648316e-8, relative_change = 7.636557113753575e-13 Iter 155: T = 694.2443797209744 K, F = -1.6907058197901392e-8, relative_change = 3.1936279349615305e-13 Converged in 158 iterations to T = 694.2443797205003 K Iter 1: T = 966.4609266261083 K, F = -7641.909772136346, relative_change = 0.033539073373891705 Iter 2: T = 934.9601724500031 K, F = -6479.344651506239, relative_change = 0.032593924191093325 Iter 3: T = 905.4680374356875 K, F = -5492.235063315795, relative_change = 0.03154373403632086 Iter 5: T = 852.3852427289953 K, F = -3942.7682001696494, relative_change = 0.029123126400348396 Iter 10: T = 752.2149774452864 K, F = -1710.4772263367743, relative_change = 0.021493071098085435 Iter 15: T = 692.1161431737166 K, F = -733.8481892532329, relative_change = 0.0133013931257307 Iter 20: T = 660.5250147656095 K, F = -311.52786818920504, relative_change = 0.006982646321401901 Iter 25: T = 645.5767212830515 K, F = -131.27188940032192, relative_change = 0.003272878291351118 Iter 30: T = 638.9442289296483 K, F = -55.08988633809241, relative_change = 0.001441962094202185 Iter 35: T = 636.0962842885822 K, F = -23.074057951270948, relative_change = 0.0006168781427488082 Iter 40: T = 634.8916390994439 K, F = -9.656052557331442, relative_change = 0.0002604873715171909 Iter 45: T = 634.3854143478892 K, F = -4.039370788302815, relative_change = 0.00010938271011113164 Iter 50: T = 634.1732768209233 K, F = -1.6895051526853186, relative_change = 4.582323837446072e-5 Iter 55: T = 634.0844831935187 K, F = -0.7066048694882041, relative_change = 1.91775165344677e-5 Iter 60: T = 634.0473354690567 K, F = -0.2955164818225493, relative_change = 8.022663526253934e-6 Iter 65: T = 634.0317975423037 K, F = -0.12358955174956832, relative_change = 3.3555931337868437e-6 Iter 70: T = 634.0252989925648 K, F = -0.05168680664261971, relative_change = 1.4034224959301116e-6 Iter 75: T = 634.0225811509257 K, F = -0.02161607131097304, relative_change = 5.869408821261042e-7 Iter 80: T = 634.0214445047584 K, F = -0.009040104681065364, relative_change = 2.4546793116086696e-7 Iter 85: T = 634.0209691435994 K, F = -0.0037806807029061584, relative_change = 1.0265801292938217e-7 Iter 90: T = 634.0207703415083 K, F = -0.001581125989029597, relative_change = 4.2932875662351046e-8 Iter 95: T = 634.0206872000335 K, F = -0.000661245800730903, relative_change = 1.7955053339303513e-8 Iter 100: T = 634.0206524292644 K, F = -0.000276540895772337, relative_change = 7.509019830524646e-9 Iter 105: T = 634.0206378877115 K, F = -0.0001156527065001578, relative_change = 3.1403621477680102e-9 Iter 110: T = 634.02063180626 K, F = -4.8367342603494734e-5, relative_change = 1.3133370020729607e-9 Iter 115: T = 634.0206292629242 K, F = -2.0227799390371004e-5, relative_change = 5.49253204482067e-10 Iter 120: T = 634.020628199271 K, F = -8.459507974234448e-6, relative_change = 2.2970427037720895e-10 Iter 125: T = 634.0206277544384 K, F = -3.537866817615587e-6, relative_change = 9.60650573558027e-11 Iter 130: T = 634.0206275684042 K, F = -1.4795781547172204e-6, relative_change = 4.017555431599241e-11 Iter 135: T = 634.0206274906024 K, F = -6.187775895560854e-7, relative_change = 1.6801905728328636e-11 Iter 140: T = 634.0206274580647 K, F = -2.587792213293305e-7, relative_change = 7.026731665261709e-12 Iter 145: T = 634.0206274444571 K, F = -1.082250947193053e-7, relative_change = 2.9386775963360693e-12 Iter 150: T = 634.0206274387663 K, F = -4.5260960535031813e-8, relative_change = 1.2289882588100606e-12 Iter 155: T = 634.0206274363863 K, F = -1.8928924483407883e-8, relative_change = 5.139843624047822e-13 Converged in 160 iterations to T = 634.0206274353909 K Iter 1: T = 966.4752122204532 K, F = -7638.65478587577, relative_change = 0.033524787779546886 Iter 2: T = 934.9893931543118 K, F = -6476.559816992701, relative_change = 0.03257798924175561 Iter 3: T = 905.5128245982123 K, F = -5489.850787836317, relative_change = 0.03152609941023644 Iter 5: T = 852.4628630123084 K, F = -3941.0169824849063, relative_change = 0.0291021107373893 Iter 10: T = 752.3795794757526 K, F = -1709.6618244680044, relative_change = 0.021466376383607856 Iter 15: T = 692.3586505000231 K, F = -733.4715251964449, relative_change = 0.01327725152707685 Iter 20: T = 660.8209133645403 K, F = -311.35879873276906, relative_change = 0.006966811846164075 Iter 25: T = 645.901907120616 K, F = -131.19830772254952, relative_change = 0.0032645713847319503 Iter 30: T = 639.283382184322 K, F = -55.058514014608186, relative_change = 0.0014381079146028985 Iter 35: T = 636.4416334142363 K, F = -23.060824045175302, relative_change = 0.000615191664969027 Iter 40: T = 635.2396461427044 K, F = -9.650497401355018, relative_change = 0.00025976834710495617 Iter 45: T = 634.7345450097032 K, F = -4.037043902777558, relative_change = 0.0001090795544784033 Iter 50: T = 634.5228795285921 K, F = -1.6885313784619822, relative_change = 4.569602252788597e-5 Iter 55: T = 634.4342836919475 K, F = -0.7061975127376364, relative_change = 1.912423741197999e-5 Iter 60: T = 634.3972187517818 K, F = -0.2953461006239114, relative_change = 8.000368258727799e-6 Iter 65: T = 634.3817154579368 K, F = -0.12351829284273907, relative_change = 3.3462666585297492e-6 Iter 70: T = 634.3752313941104 K, F = -0.05165700471324797, relative_change = 1.3995216453168773e-6 Iter 75: T = 634.3725196110058 K, F = -0.02160360768298042, relative_change = 5.853094285814901e-7 Iter 80: T = 634.3713854986516 K, F = -0.009034892223669988, relative_change = 2.4478562532085986e-7 Iter 85: T = 634.3709111971742 K, F = -0.0037785007863936904, relative_change = 1.0237266226259662e-7 Iter 90: T = 634.3707128382566 K, F = -0.0015802143215270514, relative_change = 4.2813538229439395e-8 Iter 95: T = 634.3706298821227 K, F = -0.000660864529123173, relative_change = 1.7905144898541544e-8 Iter 100: T = 634.3705951888653 K, F = -0.0002763814431528955, relative_change = 7.488147505804776e-9 Iter 105: T = 634.3705806797288 K, F = -0.00011558602186101385, relative_change = 3.1316330998192036e-9 Iter 110: T = 634.3705746118343 K, F = -4.8339454354007216e-5, relative_change = 1.30968641137379e-9 Iter 115: T = 634.3705720741683 K, F = -2.0216137759321295e-5, relative_change = 5.477265263319978e-10 Iter 120: T = 634.370571012886 K, F = -8.45463050458406e-6, relative_change = 2.2906578347022508e-10 Iter 125: T = 634.3705705690451 K, F = -3.53582713441547e-6, relative_change = 9.579803813058022e-11 Iter 130: T = 634.3705703834255 K, F = -1.478725448256224e-6, relative_change = 4.00638921782219e-11 Iter 135: T = 634.3705703057972 K, F = -6.184208921622414e-7, relative_change = 1.6755204955727258e-11 Iter 140: T = 634.3705702733321 K, F = -2.5863063629616434e-7, relative_change = 7.007216888932943e-12 Iter 145: T = 634.3705702597548 K, F = -1.081624150245375e-7, relative_change = 2.9305016305842214e-12 Iter 150: T = 634.3705702540766 K, F = -4.52351487378877e-8, relative_change = 1.225579857029599e-12 Iter 155: T = 634.370570251702 K, F = -1.891899209516268e-8, relative_change = 5.125822789243147e-13 Converged in 160 iterations to T = 634.3705702507089 K Iter 1: T = 976.447205675077 K, F = -5366.526591425076, relative_change = 0.023552794324923004 Iter 2: T = 955.0558651231007 K, F = -4537.739862323539, relative_change = 0.02190731913374387 Iter 3: T = 935.7342541387512 K, F = -3835.209947109424, relative_change = 0.02023086993121498 Iter 5: T = 902.8789173578242 K, F = -2735.7960915182935, relative_change = 0.016878264787197998 Iter 10: T = 848.7754649276653 K, F = -1166.5877528605138, relative_change = 0.009494927413840348 Iter 15: T = 822.0671025635689 K, F = -492.9925941584012, relative_change = 0.004649708046409078 Iter 20: T = 809.9267540938235 K, F = -207.20025488882, relative_change = 0.0020954145590414866 Iter 25: T = 804.6519743056225 K, F = -86.8446551526793, relative_change = 0.0009058186671502806 Iter 30: T = 802.4089865518263 K, F = -36.35383285448972, relative_change = 0.00038424077189559344 Iter 35: T = 801.46427249421 K, F = -15.209689205051957, relative_change = 0.00016166145428873988 Iter 40: T = 801.0680003240894 K, F = -6.361942832187192, relative_change = 6.777944488201391e-5 Iter 45: T = 800.9020668212387 K, F = -2.6608278650884722, relative_change = 2.8376138668816915e-5 Iter 50: T = 800.8326350315432 K, F = -1.1128227947580218, relative_change = 1.187248918721537e-5 Iter 55: T = 800.803591452517 K, F = -0.46540152229679266, relative_change = 4.966135437303094e-6 Iter 60: T = 800.7914439654155 K, F = -0.19463747868206271, relative_change = 2.077057868171826e-6 Iter 65: T = 800.7863635461047 K, F = -0.08139989364475275, relative_change = 8.686785189790782e-7 Iter 70: T = 800.7842388199449 K, F = -0.03404243835063625, relative_change = 3.632966480662999e-7 Iter 75: T = 800.7833502281206 K, F = -0.014236959641043545, relative_change = 1.5193585693584125e-7 Iter 80: T = 800.7829786073637 K, F = -0.005954067486644954, relative_change = 6.354154029364482e-8 Iter 85: T = 800.7828231909425 K, F = -0.002490062293514006, relative_change = 2.6573857303448635e-8 Iter 90: T = 800.7827581939071 K, F = -0.0010413738181634935, relative_change = 1.1113509091734596e-8 Iter 95: T = 800.7827310113652 K, F = -0.0004355149724872831, relative_change = 4.647803031115079e-9 Iter 100: T = 800.7827196433004 K, F = -0.00018213756340956788, relative_change = 1.943766873683483e-9 Iter 105: T = 800.7827148890399 K, F = -7.617210511823291e-5, relative_change = 8.129065528341864e-10 Iter 110: T = 800.7827129007512 K, F = -3.1856082615466796e-5, relative_change = 3.3996721728622714e-10 Iter 115: T = 800.7827120692252 K, F = -1.3322594411224742e-5, relative_change = 1.421783533801761e-10 Iter 120: T = 800.7827117214712 K, F = -5.57166980075241e-6, relative_change = 5.946070375148103e-11 Iter 125: T = 800.7827115760363 K, F = -2.3301390943419875e-6, relative_change = 2.4867179043796067e-11 Iter 130: T = 800.7827115152137 K, F = -9.74493120975417e-7, relative_change = 1.0399763251837107e-11 Iter 135: T = 800.7827114897768 K, F = -4.0754292607303455e-7, relative_change = 4.349286675845548e-12 Iter 140: T = 800.7827114791389 K, F = -1.7044111444430854e-7, relative_change = 1.8189427927475273e-12 Iter 145: T = 800.78271147469 K, F = -7.128123535871111e-8, relative_change = 7.607113444430254e-13 Iter 150: T = 800.7827114728293 K, F = -2.980862734425216e-8, relative_change = 3.181168349452139e-13 Converged in 153 iterations to T = 800.7827114722846 K Iter 1: T = 965.1923217269053 K, F = -7930.962605174541, relative_change = 0.03480767827309468 Iter 2: T = 932.3597487355269 K, F = -6726.729602490349, relative_change = 0.034016612287834015 Iter 3: T = 901.4728319539744 K, F = -5704.12740462854, relative_change = 0.03312768148071762 Iter 5: T = 845.422894863121 K, F = -4098.586239945218, relative_change = 0.03103760884911966 Iter 10: T = 737.1864828918954 K, F = -1783.4478415567905, relative_change = 0.024041690723668355 Iter 15: T = 669.5351828630925 K, F = -767.8853686112666, relative_change = 0.01573649549343169 Iter 20: T = 632.5382585588634 K, F = -326.96323788396063, relative_change = 0.008655453409461573 Iter 25: T = 614.5297924508078 K, F = -138.03849771404995, relative_change = 0.004176253242633441 Iter 30: T = 606.4114664191644 K, F = -57.986296450562705, relative_change = 0.0018673763376766122 Iter 35: T = 602.8986331904246 K, F = -24.298134461884647, relative_change = 0.0008043011020089196 Iter 40: T = 601.4076442308035 K, F = -10.170300331685128, relative_change = 0.00034063231116218776 Iter 45: T = 600.7801650365644 K, F = -4.254848949153546, relative_change = 0.00014321623007522593 Iter 50: T = 600.5170506308774 K, F = -1.7796935597357115, relative_change = 6.002865803494246e-5 Iter 55: T = 600.4068908904958 K, F = -0.7443355218176309, relative_change = 2.512820144956351e-5 Iter 60: T = 600.3607993641633 K, F = -0.3112981299166558, relative_change = 1.0513029726453967e-5 Iter 65: T = 600.3415195901223 K, F = -0.13019001721388904, relative_change = 4.397394852956408e-6 Iter 70: T = 600.3334559027385 K, F = -0.05444726865952337, relative_change = 1.8391690494310103e-6 Iter 75: T = 600.3300834576871 K, F = -0.022770541481355933, relative_change = 7.691845014701302e-7 Iter 80: T = 600.3286730408313 K, F = -0.009522919990247958, relative_change = 3.2168599956706114e-7 Iter 85: T = 600.3280831841498 K, F = -0.00398260019724006, relative_change = 1.3453360100860256e-7 Iter 90: T = 600.3278364984276 K, F = -0.0016655711969222886, relative_change = 5.626367652602393e-8 Iter 95: T = 600.3277333314052 K, F = -0.0006965618055376765, relative_change = 2.3530162051749145e-8 Iter 100: T = 600.3276901857057 K, F = -0.0002913104730991045, relative_change = 9.840598393901804e-9 Iter 105: T = 600.3276721416556 K, F = -0.00012182952032380179, relative_change = 4.1154564092141475e-9 Iter 110: T = 600.3276645954177 K, F = -5.0950559949580754e-5, relative_change = 1.7211331087001155e-9 Iter 115: T = 600.3276614394908 K, F = -2.1308132624298093e-5, relative_change = 7.197984379059987e-10 Iter 120: T = 600.3276601196446 K, F = -8.911315869830627e-6, relative_change = 3.0102831735787646e-10 Iter 125: T = 600.3276595676691 K, F = -3.7268189712058586e-6, relative_change = 1.2589364638152327e-10 Iter 130: T = 600.3276593368263 K, F = -1.5586003735412746e-6, relative_change = 5.2650232316609065e-11 Iter 135: T = 600.3276592402851 K, F = -6.518254223042419e-7, relative_change = 2.2018960423120098e-11 Iter 140: T = 600.3276591999105 K, F = -2.726015494447509e-7, relative_change = 9.208604827360473e-12 Iter 145: T = 600.3276591830253 K, F = -1.140050706616158e-7, relative_change = 3.851143349394207e-12 Iter 150: T = 600.3276591759637 K, F = -4.767883188261379e-8, relative_change = 1.6106127144721616e-12 Iter 155: T = 600.3276591730105 K, F = -1.994016446404956e-8, relative_change = 6.735878616801331e-13 Iter 160: T = 600.3276591717753 K, F = -8.339079926589221e-9, relative_change = 2.8169792813460196e-13 Converged in 162 iterations to T = 600.3276591715139 K Iter 1: T = 964.5555452972571 K, F = -8076.052720400626, relative_change = 0.0354444547027428 Iter 2: T = 931.0503228319429 K, F = -6850.966346677334, relative_change = 0.034736436515938086 Iter 3: T = 899.4539167741827 K, F = -5810.607439902268, relative_change = 0.033936303208246095 Iter 5: T = 841.8752292248982 K, F = -4177.029412772731, relative_change = 0.03203580406104536 Iter 10: T = 729.3160130976173 K, F = -1820.5172764694514, relative_change = 0.02546842233702759 Iter 15: T = 657.3281657836462 K, F = -785.4601561308035, relative_change = 0.017221550974627884 Iter 20: T = 617.0040153500701 K, F = -335.0800322982728, relative_change = 0.009754387704457863 Iter 25: T = 597.011811449218 K, F = -141.64530669059184, relative_change = 0.004798800901170079 Iter 30: T = 587.9007658376966 K, F = -59.54192039622319, relative_change = 0.002167947809398517 Iter 35: T = 583.9370263574582 K, F = -24.95795868929966, relative_change = 0.0009382611433115797 Iter 40: T = 582.2505354617566 K, F = -10.447945946266662, relative_change = 0.0003982058316589821 Iter 45: T = 581.5400279545905 K, F = -4.371267262408408, relative_change = 0.00016757353486144495 Iter 50: T = 581.2419642462712 K, F = -1.828434669149265, relative_change = 7.02646625466018e-5 Iter 55: T = 581.1171484670115 K, F = -0.7647290426565883, relative_change = 2.9417722848185645e-5 Iter 60: T = 581.064920621603 K, F = -0.31982859174836037, relative_change = 1.230848421952131e-5 Iter 65: T = 581.0430733416061 K, F = -0.13375784663093163, relative_change = 5.1485424115932065e-6 Iter 70: T = 581.0339356783578 K, F = -0.05593942798722956, relative_change = 2.1533546542617383e-6 Iter 75: T = 581.030114046299 K, F = -0.02339458915866327, relative_change = 9.005888472131151e-7 Iter 80: T = 581.0285157675172 K, F = -0.009783905726253594, relative_change = 3.766422959576875e-7 Iter 85: T = 581.027847343588 K, F = -0.004091747818337377, relative_change = 1.575172305105212e-7 Iter 90: T = 581.0275677999041 K, F = -0.0017112180834382151, relative_change = 6.587574862480716e-8 Iter 95: T = 581.0274508912547 K, F = -0.0007156518881505369, relative_change = 2.7550053090464047e-8 Iter 100: T = 581.0274019986364 K, F = -0.00029929417488827603, relative_change = 1.1521766165558015e-8 Iter 105: T = 581.027381551155 K, F = -0.00012516839929516133, relative_change = 4.818541056344561e-9 Iter 110: T = 581.0273729997735 K, F = -5.234691994954188e-5, relative_change = 2.0151715772070724e-9 Iter 115: T = 581.0273694234835 K, F = -2.1892107693211038e-5, relative_change = 8.427688682318502e-10 Iter 120: T = 581.0273679278362 K, F = -9.155540342919988e-6, relative_change = 3.524559889593548e-10 Iter 125: T = 581.0273673023387 K, F = -3.82895619982504e-6, relative_change = 1.4740130024677106e-10 Iter 130: T = 581.0273670407481 K, F = -1.6013144215620834e-6, relative_change = 6.164495388034894e-11 Iter 135: T = 581.0273669313478 K, F = -6.69688721477435e-7, relative_change = 2.578065233834693e-11 Iter 140: T = 581.0273668855954 K, F = -2.800719269280272e-7, relative_change = 1.0781780772177094e-11 Iter 145: T = 581.0273668664611 K, F = -1.1712928477125573e-7, relative_change = 4.509064098124009e-12 Iter 150: T = 581.0273668584589 K, F = -4.89848496765255e-8, relative_change = 1.8857438383087413e-12 Iter 155: T = 581.0273668551124 K, F = -2.0487048613127e-8, relative_change = 7.886790700290565e-13 Iter 160: T = 581.0273668537127 K, F = -8.567622278299325e-9, relative_change = 3.298232214159556e-13 Converged in 163 iterations to T = 581.027366853303 K Iter 1: T = 964.3439785191932 K, F = -8124.2584120344645, relative_change = 0.03565602148080678 Iter 2: T = 930.6146550457796 K, F = -6892.252710387522, relative_change = 0.034976444323535895 Iter 3: T = 898.7811181295464 K, F = -5846.002973592796, relative_change = 0.03420700151629057 Iter 5: T = 840.6885082780191 K, F = -4203.126496941021, relative_change = 0.03237317128388314 Iter 10: T = 726.6491255994196 K, F = -1832.903046628035, relative_change = 0.02596695248823975 Iter 15: T = 653.1257582803769 K, F = -791.3814452912328, relative_change = 0.017763008262626386 Iter 20: T = 611.5806347917966 K, F = -337.84243455778693, relative_change = 0.010171117239587855 Iter 25: T = 590.8397486584178 K, F = -142.88258531751762, relative_change = 0.005041223155596215 Iter 30: T = 581.3476221874441 K, F = -60.07801895948896, relative_change = 0.0022866695115191953 Iter 35: T = 577.2092985967568 K, F = -25.185856704792094, relative_change = 0.0009915288885954453 Iter 40: T = 575.4468150307687 K, F = -10.543938601918628, relative_change = 0.0004211668886696058 Iter 45: T = 574.7039789371491 K, F = -4.411534856730488, relative_change = 0.00017729978926923413 Iter 50: T = 574.3922972211659 K, F = -1.8452966672586135, relative_change = 7.435423494644523e-5 Iter 55: T = 574.2617689692036 K, F = -0.7717847270739765, relative_change = 3.113189041590777e-5 Iter 60: T = 574.2071490695414 K, F = -0.3227800282327378, relative_change = 1.3026046285933001e-5 Iter 65: T = 574.1843008731182 K, F = -0.13499228901068733, relative_change = 5.448753919089495e-6 Iter 70: T = 574.174744521774 K, F = -0.0564557068968414, relative_change = 2.2789274235977337e-6 Iter 75: T = 574.1707477731015 K, F = -0.023610506726182257, relative_change = 9.531085056309763e-7 Iter 80: T = 574.1690762556179 K, F = -0.009874205653644885, relative_change = 3.98607278634957e-7 Iter 85: T = 574.168377201892 K, F = -0.004129512436305549, relative_change = 1.6670335957163248e-7 Iter 90: T = 574.1680848483742 K, F = -0.001727011716833371, relative_change = 6.971751691374078e-8 Iter 95: T = 574.1679625824839 K, F = -0.0007222569767632026, relative_change = 2.9156729831056047e-8 Iter 100: T = 574.1679114494009 K, F = -0.00030205650188064315, relative_change = 1.219369813851826e-8 Iter 105: T = 574.1678900649301 K, F = -0.0001263236380595889, relative_change = 5.09955115614861e-9 Iter 110: T = 574.1678811216883 K, F = -5.2830054243835356e-5, relative_change = 2.132693360602405e-9 Iter 115: T = 574.1678773815177 K, F = -2.20941599762825e-5, relative_change = 8.919178756347901e-10 Iter 120: T = 574.1678758173335 K, F = -9.240041837221824e-6, relative_change = 3.7301072328471833e-10 Iter 125: T = 574.167875163173 K, F = -3.864295243516391e-6, relative_change = 1.5599751570190757e-10 Iter 130: T = 574.1678748895953 K, F = -1.6160944401599764e-6, relative_change = 6.524002502125216e-11 Iter 135: T = 574.1678747751819 K, F = -6.758704884646249e-7, relative_change = 2.728417753607569e-11 Iter 140: T = 574.1678747273328 K, F = -2.8265717433306747e-7, relative_change = 1.1410571494145619e-11 Iter 145: T = 574.1678747073216 K, F = -1.182103068209095e-7, relative_change = 4.772025195296417e-12 Iter 150: T = 574.1678746989528 K, F = -4.9436757132426123e-8, relative_change = 1.995709654856667e-12 Iter 155: T = 574.1678746954528 K, F = -2.0674771006312653e-8, relative_change = 8.346186623835579e-13 Iter 160: T = 574.1678746939891 K, F = -8.646353966135223e-9, relative_change = 3.4904417464138957e-13 Converged in 163 iterations to T = 574.1678746935605 K Iter 1: T = 980.1903103874063 K, F = -4513.656622109071, relative_change = 0.019809689612593783 Iter 2: T = 962.4222225616445 K, F = -3812.645991543542, relative_change = 0.01812718166815913 Iter 3: T = 946.574492053618 K, F = -3219.0077753805585, relative_change = 0.016466505174667734 Iter 5: T = 920.1158058602218 K, F = -2291.48462481198, relative_change = 0.013299179933408819 Iter 10: T = 878.125314918046 K, F = -972.7628416057258, relative_change = 0.006981295229428924 Iter 15: T = 858.2565190602224 K, F = -409.90330419744555, relative_change = 0.003272193655146325 Iter 20: T = 849.440885904004 K, F = -172.02095952867367, relative_change = 0.0014416492981711236 Iter 25: T = 845.6555294172405 K, F = -72.04989969826687, relative_change = 0.0006167421736968044 Iter 30: T = 844.0543731314068 K, F = -30.151504282187386, relative_change = 0.00026042956321910483 Iter 35: T = 843.3815240505278 K, F = -12.613135683945671, relative_change = 0.00010935836550756514 Iter 40: T = 843.09956134561 K, F = -5.275563574551301, relative_change = 4.5813027455883294e-5 Iter 45: T = 842.9815412631264 K, F = -2.206408711211098, relative_change = 1.9173240991033865e-5 Iter 50: T = 842.932166353934 K, F = -0.9227648522624401, relative_change = 8.020874529416816e-6 Iter 55: T = 842.9115141143197 K, F = -0.38591449663370303, relative_change = 3.354844794065167e-6 Iter 60: T = 842.9028765652223 K, F = -0.1613946136710147, relative_change = 1.4031095033478976e-6 Iter 65: T = 842.8992641453049 K, F = -0.0674972532482272, relative_change = 5.868099799868738e-7 Iter 70: T = 842.8977533717599 K, F = -0.0282281745938604, relative_change = 2.454131854683084e-7 Iter 75: T = 842.8971215453537 K, F = -0.011805362737510539, relative_change = 1.0263511746145481e-7 Iter 80: T = 842.8968573075036 K, F = -0.0049371442086048045, relative_change = 4.292330048498827e-8 Iter 85: T = 842.8967467999913 K, F = -0.00206477276057071, relative_change = 1.7951048868311896e-8 Iter 90: T = 842.8967005844146 K, F = -0.0008635126438170104, relative_change = 7.507345123031994e-9 Iter 95: T = 842.8966812565058 K, F = -0.0003611313030931207, relative_change = 3.139661755343359e-9 Iter 100: T = 842.8966731733432 K, F = -0.00015102942569567013, relative_change = 1.3130441182410008e-9 Iter 105: T = 842.8966697928678 K, F = -6.316230975667025e-5, relative_change = 5.491307440399447e-10 Iter 110: T = 842.8966683791126 K, F = -2.6415231577425757e-5, relative_change = 2.2965303108483425e-10 Iter 115: T = 842.8966677878633 K, F = -1.104716609146017e-5, relative_change = 9.604364734938378e-11 Iter 120: T = 842.8966675405958 K, F = -4.6200565975151875e-6, relative_change = 4.0166598703420786e-11 Iter 125: T = 842.8966674371854 K, F = -1.9321602509059232e-6, relative_change = 1.6798128731997177e-11 Iter 130: T = 842.8966673939382 K, F = -8.080529985132756e-7, relative_change = 7.025182454847639e-12 Iter 135: T = 842.8966673758516 K, F = -3.3793815035210173e-7, relative_change = 2.9380216016620528e-12 Iter 140: T = 842.8966673682876 K, F = -1.4132912951048127e-7, relative_change = 1.2287101501591295e-12 Iter 145: T = 842.8966673651241 K, F = -5.9104197758230725e-8, relative_change = 5.13849678091044e-13 Converged in 150 iterations to T = 842.8966673638013 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010415182894710983 Iteration 10: d = 1.1766057812519853e-5 Iteration 20: d = 1.5926744582202567e-7 Iteration 30: d = 2.2392607343764804e-9 Iteration 40: d = 3.1524558353808825e-11 Iteration 50: d = 4.4343511369671106e-13 Iteration 60: d = 6.220339667515838e-15 Converged after 63 iterations. d = 1.7366816025029803e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8652.079360724769 Iteration 2: convergence error = 4823.9425484033 Iteration 3: convergence error = 1095.6214677000257 Iteration 4: convergence error = 319.47203348087214 Iteration 5: convergence error = 94.66288376029866 Iteration 6: convergence error = 28.182981588693565 Iteration 7: convergence error = 8.422837149616043 Iteration 8: convergence error = 2.519906141518277 Iteration 9: convergence error = 0.7520981154309538 Iteration 10: convergence error = 0.22416452199627201 Iteration 11: convergence error = 0.06676032794621278 Iteration 12: convergence error = 0.019873585571076546 Iteration 13: convergence error = 0.0059145750703919475 Iteration 14: convergence error = 0.0017599798150058632 Iteration 15: convergence error = 0.0005236673846411577 Iteration 16: convergence error = 0.0001558053700136952 Iteration 17: convergence error = 4.635506229533348e-5 Iteration 18: convergence error = 1.379129093947995e-5 Iteration 19: convergence error = 4.1030682496057125e-6 Iteration 20: convergence error = 1.220705144078238e-6 Iteration 21: convergence error = 3.631610070442548e-7 Iteration 22: convergence error = 1.0788744475576095e-7 Iteration 23: convergence error = 3.119453140243422e-8 Iteration 24: convergence error = 8.974211596068926e-9 Iteration 25: convergence error = 2.5693225325085223e-9 Iteration 26: convergence error = 7.471498975064605e-10 Iteration 27: convergence error = 2.1327650756575167e-10 Iteration 28: convergence error = 5.866240826435387e-11 Iteration 29: convergence error = 1.9554136088117957e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018149942544793552 Iteration 10: d = 2.089583086985631e-5 Iteration 20: d = 2.2881831323410683e-7 Iteration 30: d = 2.8141920465771254e-9 Iteration 40: d = 3.556489232600378e-11 Iteration 50: d = 4.5360784929129523e-13 Iteration 60: d = 5.811653309497196e-15 Converged after 63 iterations. d = 1.6052908258819561e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12267.998155384168 Iteration 2: convergence error = 8330.304498084057 Iteration 3: convergence error = 1942.852264095044 Iteration 4: convergence error = 475.6567115047317 Iteration 5: convergence error = 120.8082428001378 Iteration 6: convergence error = 32.14487090894954 Iteration 7: convergence error = 8.726362149142687 Iteration 8: convergence error = 2.382343723258373 Iteration 9: convergence error = 0.6511669606297801 Iteration 10: convergence error = 0.17800606389323548 Iteration 11: convergence error = 0.04865770114429324 Iteration 12: convergence error = 0.01329974029818004 Iteration 13: convergence error = 0.003635128921814612 Iteration 14: convergence error = 0.0009935481548382086 Iteration 15: convergence error = 0.0002715529292345309 Iteration 16: convergence error = 7.421958162012743e-5 Iteration 17: convergence error = 2.0285318214519066e-5 Iteration 18: convergence error = 5.544277883018367e-6 Iteration 19: convergence error = 1.5153309504967183e-6 Iteration 20: convergence error = 4.1416728890908416e-7 Iteration 21: convergence error = 1.1407109923311509e-7 Iteration 22: convergence error = 3.048171492991969e-8 Iteration 23: convergence error = 8.12042344477959e-9 Iteration 24: convergence error = 2.1573214326053858e-9 Iteration 25: convergence error = 5.74118530494161e-10 Iteration 26: convergence error = 1.5279510989785194e-10 Iteration 27: convergence error = 4.1382008930668235e-11 Iteration 28: convergence error = 1.2278178473934531e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018149942544793552 Iteration 10: d = 2.089583086985631e-5 Iteration 20: d = 2.2881831323410683e-7 Iteration 30: d = 2.8141920465771254e-9 Iteration 40: d = 3.556489232600378e-11 Iteration 50: d = 4.5360784929129523e-13 Iteration 60: d = 5.811653309497196e-15 Converged after 63 iterations. d = 1.6052908258819561e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10995.75441497502 Iteration 2: convergence error = 5724.807852781771 Iteration 3: convergence error = 2009.274095853525 Iteration 4: convergence error = 890.2215872031175 Iteration 5: convergence error = 407.37844485399137 Iteration 6: convergence error = 191.89324211318944 Iteration 7: convergence error = 90.46608315013873 Iteration 8: convergence error = 42.667510690213476 Iteration 9: convergence error = 20.123102862054566 Iteration 10: convergence error = 9.488325852503749 Iteration 11: convergence error = 4.472665182714536 Iteration 12: convergence error = 2.1078601843405522 Iteration 13: convergence error = 0.9932073392456005 Iteration 14: convergence error = 0.467932038604431 Iteration 15: convergence error = 0.22043858269762495 Iteration 16: convergence error = 0.10374130469290321 Iteration 17: convergence error = 0.048365773653586075 Iteration 18: convergence error = 0.02204262891336839 Iteration 19: convergence error = 0.010008875751282176 Iteration 20: convergence error = 0.004534990491720237 Iteration 21: convergence error = 0.002052228781849408 Iteration 22: convergence error = 0.0009280215654143831 Iteration 23: convergence error = 0.0004194723387627164 Iteration 24: convergence error = 0.00018955592895508744 Iteration 25: convergence error = 8.564553900214378e-5 Iteration 26: convergence error = 3.86929477826925e-5 Iteration 27: convergence error = 1.7479716007073876e-5 Iteration 28: convergence error = 7.896268471085932e-6 Iteration 29: convergence error = 3.5669777389557566e-6 Iteration 30: convergence error = 1.611287189007271e-6 Iteration 31: convergence error = 7.278486009454355e-7 Iteration 32: convergence error = 3.2878597266972065e-7 Iteration 33: convergence error = 1.485195753048174e-7 Iteration 34: convergence error = 6.708751243422739e-8 Iteration 35: convergence error = 3.030027073691599e-8 Iteration 36: convergence error = 1.3683802535524592e-8 Iteration 37: convergence error = 6.183654477354139e-9 Iteration 38: convergence error = 2.795331965899095e-9 Iteration 39: convergence error = 1.260104909306392e-9 Iteration 40: convergence error = 5.748006515204906e-10 Iteration 41: convergence error = 2.5920599000528455e-10 Iteration 42: convergence error = 1.177795638795942e-10 Iteration 43: convergence error = 5.3660187404602766e-11 Iteration 44: convergence error = 2.7284841053187847e-11 Iteration 45: convergence error = 1.2278178473934531e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018149942544793552 Iteration 10: d = 2.089583086985631e-5 Iteration 20: d = 2.2881831323410683e-7 Iteration 30: d = 2.8141920465771254e-9 Iteration 40: d = 3.556489232600378e-11 Iteration 50: d = 4.5360784929129523e-13 Iteration 60: d = 5.811653309497196e-15 Converged after 63 iterations. d = 1.6052908258819561e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10827.006268522036 Iteration 2: convergence error = 7341.540511773592 Iteration 3: convergence error = 1724.858164204552 Iteration 4: convergence error = 501.7642862231537 Iteration 5: convergence error = 155.602314397006 Iteration 6: convergence error = 48.243374392866826 Iteration 7: convergence error = 14.930686416775188 Iteration 8: convergence error = 4.61290701908365 Iteration 9: convergence error = 1.4234850102193377 Iteration 10: convergence error = 0.4389489451823465 Iteration 11: convergence error = 0.13529759883022052 Iteration 12: convergence error = 0.04169274221521846 Iteration 13: convergence error = 0.012846088581682125 Iteration 14: convergence error = 0.003957741720114427 Iteration 15: convergence error = 0.0012192837093607523 Iteration 16: convergence error = 0.00037562214356512413 Iteration 17: convergence error = 0.00011571545246624737 Iteration 18: convergence error = 3.564740836736746e-5 Iteration 19: convergence error = 1.0981521882058587e-5 Iteration 20: convergence error = 3.3829501262516715e-6 Iteration 21: convergence error = 1.042155417962931e-6 Iteration 22: convergence error = 3.20866092806682e-7 Iteration 23: convergence error = 9.75687726167962e-8 Iteration 24: convergence error = 2.8957401809748262e-8 Iteration 25: convergence error = 8.572897058911622e-9 Iteration 26: convergence error = 2.5243025447707623e-9 Iteration 27: convergence error = 7.471498975064605e-10 Iteration 28: convergence error = 2.2146195988170803e-10 Iteration 29: convergence error = 6.139089236967266e-11 Iteration 30: convergence error = 2.0463630789890885e-11 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▌ | ETA: 0:00:01 Bin 1 progress: 91%|█████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018149942544793552 Iteration 10: d = 2.089583086985631e-5 Iteration 20: d = 2.2881831323410683e-7 Iteration 30: d = 2.8141920465771254e-9 Iteration 40: d = 3.556489232600378e-11 Iteration 50: d = 4.5360784929129523e-13 Iteration 60: d = 5.811653309497196e-15 Converged after 63 iterations. d = 1.6052908258819561e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.799035255225 Iteration 2: convergence error = 5511.993582429099 Iteration 3: convergence error = 931.90535380563 Iteration 4: convergence error = 169.19559039227784 Iteration 5: convergence error = 30.626375824353545 Iteration 6: convergence error = 5.557886167620836 Iteration 7: convergence error = 1.0104647802513682 Iteration 8: convergence error = 0.18442474696757927 Iteration 9: convergence error = 0.03361979411738503 Iteration 10: convergence error = 0.006125081312347902 Iteration 11: convergence error = 0.0011155727493132872 Iteration 12: convergence error = 0.0002031500971497735 Iteration 13: convergence error = 3.6991434171795845e-5 Iteration 14: convergence error = 6.735467195539968e-6 Iteration 15: convergence error = 1.226380845764652e-6 Iteration 16: convergence error = 2.2330277715809643e-7 Iteration 17: convergence error = 4.06607796321623e-8 Iteration 18: convergence error = 7.378730515483767e-9 Iteration 19: convergence error = 1.36196831590496e-9 Iteration 20: convergence error = 2.455635694786906e-10 Iteration 21: convergence error = 4.411049303598702e-11 Iteration 22: convergence error = 9.094947017729282e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018149942544793552 Iteration 10: d = 2.089583086985631e-5 Iteration 20: d = 2.2881831323410683e-7 Iteration 30: d = 2.8141920465771254e-9 Iteration 40: d = 3.556489232600378e-11 Iteration 50: d = 4.5360784929129523e-13 Iteration 60: d = 5.811653309497196e-15 Converged after 63 iterations. d = 1.6052908258819561e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.4980036183774 Iteration 2: convergence error = 2710.932266198316 Iteration 3: convergence error = 204.89189294023856 Iteration 4: convergence error = 19.349710794705636 Iteration 5: convergence error = 1.5941545481692185 Iteration 6: convergence error = 0.12941929761629142 Iteration 7: convergence error = 0.010520775176580855 Iteration 8: convergence error = 0.0008572790961442669 Iteration 9: convergence error = 6.996346896125918e-5 Iteration 10: convergence error = 5.714776849101219e-6 Iteration 11: convergence error = 4.6701324623746237e-7 Iteration 12: convergence error = 3.8173899992698685e-8 Iteration 13: convergence error = 3.1217392496622607e-9 Iteration 14: convergence error = 2.542983822205076e-10 Iteration 15: convergence error = 2.0804691303055733e-11 Converged after 15 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346352 Iteration 2: convergence error = 858.4060420534064 Iteration 3: convergence error = 199.12106737711963 Iteration 4: convergence error = 59.265629268140174 Iteration 5: convergence error = 17.985482911037252 Iteration 6: convergence error = 5.463033078096487 Iteration 7: convergence error = 1.660989611064224 Iteration 8: convergence error = 0.5052487627317532 Iteration 9: convergence error = 0.15371874094239502 Iteration 10: convergence error = 0.04677131697644654 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.004330236512828378 Iteration 13: convergence error = 0.0013175920926187246 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198903971238906 Iteration 16: convergence error = 3.711853855747904e-5 Iteration 17: convergence error = 1.1294342471046548e-5 Iteration 18: convergence error = 3.4366166801191866e-6 Iteration 19: convergence error = 1.045686303768889e-6 Iteration 20: convergence error = 3.1818046863918426e-7 Iteration 21: convergence error = 9.68161657510791e-8 Iteration 22: convergence error = 2.946035237982869e-8 Iteration 23: convergence error = 8.963752406998537e-9 Iteration 24: convergence error = 2.7299620342091657e-9 Iteration 25: convergence error = 8.292317943414673e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.696598913753405e-11 Iteration 28: convergence error = 2.3646862246096134e-11 Iteration 29: convergence error = 9.094947017729282e-12 Converged after 29 iterations Energy conservation errors by band: [1.5428857128674637e-25, 8.401053096241687e-26, 1.1490863489811346e-25, 9.400697635337753e-26, 1.2440020930973268e-25, -3.2610768469290563e-19, 2.7533531010703882e-14, 1.7053025658242404e-12, 5.6701310313655995e-12, 2.6432189770275727e-12, 7.176481631177012e-13, 8.526512829121202e-14, 4.9960036108132044e-15, 2.636779683484747e-16, 2.0166160408230382e-17, 1.0062751413381088e-18, 3.560185356428231e-20, 1.2755125045567687e-21, 4.105530024647957e-23, 5.6284752489113644e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010415182894710983 Iteration 10: d = 1.1766057812519853e-5 Iteration 20: d = 1.5926744582202567e-7 Iteration 30: d = 2.2392607343764804e-9 Iteration 40: d = 3.1524558353808825e-11 Iteration 50: d = 4.4343511369671106e-13 Iteration 60: d = 6.220339667515838e-15 Converged after 63 iterations. d = 1.7366816025029803e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.448321871698 Iteration 2: convergence error = 3608.4113494701433 Iteration 3: convergence error = 592.3187475638491 Iteration 4: convergence error = 104.21240340011195 Iteration 5: convergence error = 18.504586553406853 Iteration 6: convergence error = 3.2550024619065425 Iteration 7: convergence error = 0.5703641452109878 Iteration 8: convergence error = 0.09978305330969306 Iteration 9: convergence error = 0.017445078639639178 Iteration 10: convergence error = 0.0030490879510125524 Iteration 11: convergence error = 0.0005328656920937647 Iteration 12: convergence error = 9.312046586273937e-5 Iteration 13: convergence error = 1.6272866560029797e-5 Iteration 14: convergence error = 2.8436713819246506e-6 Iteration 15: convergence error = 4.969358542439295e-7 Iteration 16: convergence error = 8.68365077622002e-8 Iteration 17: convergence error = 1.5176738088484854e-8 Iteration 18: convergence error = 2.637534635141492e-9 Iteration 19: convergence error = 4.656612873077393e-10 Iteration 20: convergence error = 7.912603905424476e-11 Iteration 21: convergence error = 1.3642420526593924e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.492427513024 Iteration 2: convergence error = 871.304602661783 Iteration 3: convergence error = 207.75299581225158 Iteration 4: convergence error = 62.49550550490892 Iteration 5: convergence error = 18.97931530918413 Iteration 6: convergence error = 5.76621559404623 Iteration 7: convergence error = 1.7533061530655232 Iteration 8: convergence error = 0.5333443698997371 Iteration 9: convergence error = 0.16226812526508638 Iteration 10: convergence error = 0.04937275063014113 Iteration 11: convergence error = 0.015022831428041172 Iteration 12: convergence error = 0.0045710916562029524 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318846916256 Iteration 15: convergence error = 0.0001287742984459328 Iteration 16: convergence error = 3.9183143599075265e-5 Iteration 17: convergence error = 1.1922556950594299e-5 Iteration 18: convergence error = 3.6277691606301232e-6 Iteration 19: convergence error = 1.1038513321182108e-6 Iteration 20: convergence error = 3.3587832604098367e-7 Iteration 21: convergence error = 1.0220117019343888e-7 Iteration 22: convergence error = 3.1099034458748065e-8 Iteration 23: convergence error = 9.464656613999978e-9 Iteration 24: convergence error = 2.880597094190307e-9 Iteration 25: convergence error = 8.786855687503703e-10 Iteration 26: convergence error = 2.6830093702301383e-10 Iteration 27: convergence error = 8.185452315956354e-11 Iteration 28: convergence error = 2.6261659513693303e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [9.81469183839774e-26, 1.2278462217584005e-25, 1.7064639101740927e-25, 1.3045866106183005e-25, 1.2440020930973268e-25, -2.642742795433417e-19, -7.993605777301127e-15, 8.526512829121202e-14, 7.013056801952189e-12, 4.575895218295045e-12, 5.826450433232822e-13, 8.79296635503124e-14, 5.218048215738236e-15, 3.642919299551295e-16, 2.0166160408230382e-17, 8.775261333554552e-19, 3.7613556814011274e-20, 1.2358078351542233e-21, 3.6499344528902346e-23, 4.998575315730623e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729987 Iteration 2: convergence error = 2115.1156110176394 Iteration 3: convergence error = 714.8959934551629 Iteration 4: convergence error = 296.01907471323966 Iteration 5: convergence error = 115.88799395378669 Iteration 6: convergence error = 44.11524923618913 Iteration 7: convergence error = 16.599581025126554 Iteration 8: convergence error = 6.215983404932786 Iteration 9: convergence error = 2.323124567003788 Iteration 10: convergence error = 0.867563639824084 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.12090784413658184 Iteration 13: convergence error = 0.04513241840754745 Iteration 14: convergence error = 0.016846741615154315 Iteration 15: convergence error = 0.0062884074741305085 Iteration 16: convergence error = 0.0023472777563711134 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782211112615 Iteration 19: convergence error = 0.00012207719146317686 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985607473878e-6 Iteration 23: convergence error = 2.3698869426880265e-6 Iteration 24: convergence error = 8.846079708746402e-7 Iteration 25: convergence error = 3.302000095573021e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7174670574604534e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.949427865445614e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.248281478183344e-10 Iteration 34: convergence error = 4.774847184307873e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.9952501103574007e-25, 1.4136387421560532e-25, 1.0339757656912846e-25, 1.6478988765704848e-25, 2.1729646950855903e-25, 9.486769009248164e-20, 5.240252676230739e-14, 2.9274360713316128e-12, 1.2093437362636905e-11, 5.6203930398623925e-12, 2.0961010704922955e-13, 1.84297022087776e-14, 1.582067810090848e-15, 1.723881454251952e-16, 7.101524229780054e-18, 4.641740550953566e-19, 1.4770137017746862e-20, 4.963083675318166e-22, 1.7991178323028352e-23, 9.298117831235686e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238243 Iteration 2: convergence error = 864.8522700482431 Iteration 3: convergence error = 203.43244494690748 Iteration 4: convergence error = 60.87736397590345 Iteration 5: convergence error = 18.481426659698286 Iteration 6: convergence error = 5.6143306186266955 Iteration 7: convergence error = 1.7070587705935623 Iteration 8: convergence error = 0.5192694771476454 Iteration 9: convergence error = 0.1579851928424887 Iteration 10: convergence error = 0.04806952669207476 Iteration 11: convergence error = 0.014626287390910875 Iteration 12: convergence error = 0.004450431969985402 Iteration 13: convergence error = 0.0013541649049102489 Iteration 14: convergence error = 0.0004120419150694943 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.8148852013364376e-5 Iteration 17: convergence error = 1.1607843930505624e-5 Iteration 18: convergence error = 3.532008690854127e-6 Iteration 19: convergence error = 1.0747122587417834e-6 Iteration 20: convergence error = 3.270116621933994e-7 Iteration 21: convergence error = 9.950440471584443e-8 Iteration 22: convergence error = 3.027832917723572e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8029489840264432e-9 Iteration 25: convergence error = 8.546976459911093e-10 Iteration 26: convergence error = 2.609112925711088e-10 Iteration 27: convergence error = 8.003553375601768e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.753886504564434e-12 Converged after 29 iterations Energy conservation errors by band: [1.4621063561728321e-25, 7.674038885990003e-26, 1.32882041762669e-25, 1.3116548043290807e-25, 1.126872025890111e-25, -1.5246593050577406e-19, -3.6637359812630166e-14, 2.5721647034515627e-12, 7.627676268384675e-12, 2.8421709430404007e-12, 4.973799150320701e-13, 7.194245199571014e-14, 4.385380947269368e-15, 4.198030811863873e-16, 2.3310346708438345e-17, 9.84252284709497e-19, 4.1081097941833566e-20, 9.880672416945916e-22, 2.4156258825962636e-23, 4.8210806556121566e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 11m08.3s Testing RayTraceHeatTransfer tests passed Testing completed after 669.98s PkgEval succeeded after 774.88s