Package evaluation to test ClusteredLowRankSolver on Julia 1.14.0-DEV.1720 (f38c537ec6*) started at 2026-02-15T17:09:33.363 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 10.64s ################################################################################ # Installation # Installing ClusteredLowRankSolver... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [cadeb640] + ClusteredLowRankSolver v1.2.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [c3fe647b] + AbstractAlgebra v0.48.3 [fb37089c] + Arblib v1.7.0 [0a1fb500] + BlockDiagonals v0.2.0 [cadeb640] + ClusteredLowRankSolver v1.2.1 [861a8166] + Combinatorics v1.1.0 [ffbed154] + DocStringExtensions v0.9.5 [1a297f60] + FillArrays v1.16.0 [14197337] + GenericLinearAlgebra v0.3.19 [076d061b] + HashArrayMappedTries v0.2.0 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [0b1a1467] + KrylovKit v0.10.2 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.16 [2edaba10] + Nemo v0.54.1 [65ce6f38] + PackageExtensionCompat v1.0.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [fb686558] + RandomExtensions v0.4.4 [af85af4c] + RowEchelon v0.2.1 [7e506255] + ScopedValues v1.5.0 [276daf66] + SpecialFunctions v2.7.1 [409d34a3] + VectorInterface v0.5.0 [e134572f] + FLINT_jll v301.400.1+0 [656ef2d0] + OpenBLAS32_jll v0.3.30+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [56f22d72] + Artifacts v1.11.0 [ade2ca70] + Dates v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [2f01184e] + SparseArrays v1.13.0 [fa267f1f] + TOML v1.0.3 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [781609d7] + GMP_jll v6.3.0+2 [3a97d323] + MPFR_jll v4.2.2+0 [4536629a] + OpenBLAS_jll v0.3.30+0 [05823500] + OpenLibm_jll v0.8.7+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.15.0+0 Installation completed after 4.7s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling packages... 21183.6 ms ✓ AbstractAlgebra 1210.8 ms ✓ FLINT_jll 5288.5 ms ✓ AbstractAlgebra → TestExt 22424.7 ms ✓ Arblib 28145.5 ms ✓ Nemo 46451.6 ms ✓ ClusteredLowRankSolver 6 dependencies successfully precompiled in 127 seconds. 43 already precompiled. Precompilation completed after 143.26s ################################################################################ # Testing # Testing ClusteredLowRankSolver Status `/tmp/jl_HryhXO/Project.toml` [c3fe647b] AbstractAlgebra v0.48.3 [cadeb640] ClusteredLowRankSolver v1.2.1 [2edaba10] Nemo v0.54.1 [1fd47b50] QuadGK v2.11.2 [276daf66] SpecialFunctions v2.7.1 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_HryhXO/Manifest.toml` [c3fe647b] AbstractAlgebra v0.48.3 [fb37089c] Arblib v1.7.0 [0a1fb500] BlockDiagonals v0.2.0 [cadeb640] ClusteredLowRankSolver v1.2.1 [861a8166] Combinatorics v1.1.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [1a297f60] FillArrays v1.16.0 [14197337] GenericLinearAlgebra v0.3.19 [076d061b] HashArrayMappedTries v0.2.0 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [0b1a1467] KrylovKit v0.10.2 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 [2edaba10] Nemo v0.54.1 [bac558e1] OrderedCollections v1.8.1 [65ce6f38] PackageExtensionCompat v1.0.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [1fd47b50] QuadGK v2.11.2 [fb686558] RandomExtensions v0.4.4 [af85af4c] RowEchelon v0.2.1 [7e506255] ScopedValues v1.5.0 [276daf66] SpecialFunctions v2.7.1 [409d34a3] VectorInterface v0.5.0 [e134572f] FLINT_jll v301.400.1+0 [656ef2d0] OpenBLAS32_jll v0.3.30+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [8dfed614] Test v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [781609d7] GMP_jll v6.3.0+2 [3a97d323] MPFR_jll v4.2.2+0 [4536629a] OpenBLAS_jll v0.3.30+0 [05823500] OpenLibm_jll v0.8.7+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [8e850b90] libblastrampoline_jll v5.15.0+0 Testing Running tests... iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 21.8 1.000e+20 0.000e+00 0.000e+00 0.00e+00 1.00e+10 1.00e+00 1.95e+10 7.42e-01 7.10e-01 3.00e-01 2 24.5 3.995e+19 1.999e+11 -2.907e+09 1.03e+00 2.58e+09 2.58e-01 5.65e+09 7.46e-01 7.17e-01 3.00e-01 3 24.5 1.576e+19 3.079e+11 -4.779e+09 1.03e+00 6.53e+08 6.53e-02 1.60e+09 7.32e-01 7.31e-01 3.00e-01 4 24.5 6.100e+18 4.277e+11 -6.725e+09 1.03e+00 1.75e+08 1.75e-02 4.31e+08 7.20e-01 7.22e-01 3.00e-01 5 24.5 2.433e+18 5.963e+11 -9.362e+09 1.03e+00 4.92e+07 4.92e-03 1.20e+08 7.11e-01 7.14e-01 3.00e-01 6 24.5 9.953e+17 8.401e+11 -1.309e+10 1.03e+00 1.42e+07 1.42e-03 3.42e+07 7.07e-01 7.10e-01 3.00e-01 7 24.5 4.128e+17 1.191e+12 -1.842e+10 1.03e+00 4.16e+06 4.16e-04 9.93e+06 7.05e-01 7.07e-01 3.00e-01 8 24.5 1.725e+17 1.693e+12 -2.598e+10 1.03e+00 1.23e+06 1.23e-04 2.91e+06 7.04e-01 7.06e-01 3.00e-01 9 24.5 7.238e+16 2.410e+12 -3.671e+10 1.03e+00 3.64e+05 3.64e-05 8.56e+05 7.03e-01 7.05e-01 3.00e-01 10 24.5 3.044e+16 3.431e+12 -5.194e+10 1.03e+00 1.08e+05 1.08e-05 2.53e+05 7.03e-01 7.04e-01 3.00e-01 11 24.5 1.281e+16 4.886e+12 -7.353e+10 1.03e+00 3.20e+04 3.20e-06 7.48e+04 7.03e-01 7.04e-01 3.00e-01 12 24.5 5.398e+15 6.956e+12 -1.042e+11 1.03e+00 9.51e+03 9.51e-07 2.21e+04 7.03e-01 7.04e-01 3.00e-01 13 24.5 2.275e+15 9.899e+12 -1.476e+11 1.03e+00 2.82e+03 2.82e-07 6.55e+03 7.03e-01 7.04e-01 3.00e-01 14 24.5 9.587e+14 1.407e+13 -2.094e+11 1.03e+00 8.38e+02 8.38e-08 1.94e+03 7.04e-01 7.05e-01 3.00e-01 15 24.5 4.036e+14 1.993e+13 -2.971e+11 1.03e+00 2.48e+02 2.48e-08 5.71e+02 7.06e-01 7.09e-01 3.00e-01 16 24.5 1.692e+14 2.789e+13 -4.222e+11 1.03e+00 7.31e+01 7.31e-09 1.66e+02 7.12e-01 7.22e-01 3.00e-01 17 24.6 7.003e+13 3.756e+13 -6.021e+11 1.03e+00 2.10e+01 2.10e-09 4.62e+01 7.31e-01 7.65e-01 3.00e-01 18 24.6 2.773e+13 4.485e+13 -8.676e+11 1.04e+00 5.66e+00 5.66e-10 1.08e+01 7.79e-01 9.17e-01 3.00e-01 19 24.6 9.540e+12 3.941e+13 -1.292e+12 1.07e+00 1.25e+00 1.25e-10 8.99e-01 9.22e-01 1.00e+00 3.00e-01 20 24.6 2.995e+12 1.720e+13 -1.811e+12 1.24e+00 9.79e-02 9.79e-12 5.45e-52 1.00e+00 1.00e+00 3.00e-01 21 24.6 8.988e+11 4.388e+12 -1.903e+12 2.53e+00 1.90e-65 1.90e-65 1.18e-51 1.00e+00 1.00e+00 3.00e-01 22 24.6 2.696e+11 1.339e+12 -5.487e+11 2.39e+00 2.04e-65 0.00e+00 4.39e-52 8.90e-01 8.90e-01 1.00e-01 23 24.6 5.361e+10 2.688e+11 -1.065e+11 2.31e+00 6.30e-66 1.19e-66 4.47e-53 8.70e-01 8.70e-01 1.00e-01 24 24.6 1.161e+10 5.819e+10 -2.310e+10 2.32e+00 5.19e-67 7.42e-67 7.01e-54 8.52e-01 8.52e-01 1.00e-01 25 24.6 2.713e+09 1.355e+10 -5.443e+09 2.34e+00 1.40e-67 1.30e-67 1.04e-54 8.36e-01 8.36e-01 1.00e-01 26 24.6 6.711e+08 3.370e+09 -1.328e+09 2.30e+00 3.99e-68 0.00e+00 1.66e-55 8.30e-01 8.30e-01 1.00e-01 27 24.6 1.696e+08 8.422e+08 -3.452e+08 2.39e+00 1.11e-68 1.16e-68 2.79e-56 8.10e-01 8.10e-01 1.00e-01 28 24.6 4.599e+07 2.340e+08 -8.791e+07 2.20e+00 2.75e-69 2.03e-69 5.29e-57 8.18e-01 8.18e-01 1.00e-01 29 24.6 1.213e+07 5.873e+07 -2.619e+07 2.61e+00 3.67e-70 3.62e-70 9.63e-58 7.63e-01 7.63e-01 1.00e-01 30 24.6 3.798e+06 2.001e+07 -6.576e+06 1.98e+00 1.45e-70 1.81e-70 2.28e-58 8.24e-01 8.24e-01 1.00e-01 31 24.6 9.800e+05 4.616e+06 -2.245e+06 2.89e+00 8.15e-71 7.70e-71 4.00e-59 7.75e-01 7.75e-01 1.00e-01 32 24.6 2.963e+05 1.559e+06 -5.151e+05 1.99e+00 4.15e-71 1.13e-71 9.00e-60 8.39e-01 8.39e-01 1.00e-01 33 24.7 7.263e+04 3.436e+05 -1.649e+05 2.85e+00 8.54e-72 3.68e-72 1.45e-60 7.97e-01 7.97e-01 1.00e-01 34 24.7 2.051e+04 1.063e+05 -3.733e+04 2.08e+00 1.56e-72 1.13e-72 2.94e-61 8.41e-01 8.41e-01 1.00e-01 35 24.7 4.988e+03 2.366e+04 -1.125e+04 2.81e+00 2.78e-73 1.95e-73 4.68e-62 8.01e-01 8.01e-01 1.00e-01 36 24.7 1.393e+03 7.141e+03 -2.612e+03 2.15e+00 1.26e-73 5.31e-74 9.32e-63 8.38e-01 8.38e-01 1.00e-01 37 24.7 3.422e+02 1.603e+03 -7.929e+02 2.96e+00 8.15e-75 0.00e+00 1.51e-63 7.97e-01 7.97e-01 1.00e-01 38 24.7 9.665e+01 4.860e+02 -1.905e+02 2.29e+00 6.63e-75 5.53e-75 3.06e-64 8.39e-01 8.39e-01 1.00e-01 39 24.7 2.366e+01 1.051e+02 -6.048e+01 3.71e+00 6.91e-76 2.14e-75 4.92e-65 8.03e-01 8.03e-01 1.00e-01 40 24.7 6.562e+00 2.998e+01 -1.595e+01 3.28e+00 3.97e-76 3.80e-76 9.69e-66 8.57e-01 8.57e-01 1.00e-01 41 24.7 1.499e+00 4.629e+00 -5.866e+00 8.49e+00 2.25e-76 1.73e-77 1.38e-66 8.75e-01 8.75e-01 1.00e-01 42 24.7 3.183e-01 -4.666e-01 -2.695e+00 7.05e-01 3.45e-77 1.73e-77 1.73e-67 9.64e-01 9.64e-01 1.00e-01 43 24.7 4.224e-02 -1.900e+00 -2.195e+00 7.22e-02 8.64e-78 3.45e-77 6.28e-69 9.83e-01 9.83e-01 1.00e-01 44 24.7 4.861e-03 -2.089e+00 -2.123e+00 8.08e-03 1.73e-77 4.32e-77 1.05e-70 9.97e-01 9.97e-01 1.00e-01 45 24.7 5.004e-04 -2.110e+00 -2.114e+00 8.29e-04 8.64e-78 2.59e-77 3.43e-73 9.99e-01 9.99e-01 1.00e-01 46 24.7 5.050e-05 -2.113e+00 -2.113e+00 8.37e-05 8.64e-78 2.59e-77 1.04e-75 1.00e+00 1.00e+00 1.00e-01 47 24.7 5.060e-06 -2.113e+00 -2.113e+00 8.38e-06 1.73e-77 3.45e-77 2.80e-75 1.00e+00 1.00e+00 1.00e-01 48 24.7 5.062e-07 -2.113e+00 -2.113e+00 8.39e-07 8.64e-78 3.45e-77 7.05e-75 1.00e+00 1.00e+00 1.00e-01 49 24.8 5.063e-08 -2.113e+00 -2.113e+00 8.39e-08 8.64e-78 0.00e+00 4.63e-75 1.00e+00 1.00e+00 1.00e-01 50 24.8 5.064e-09 -2.113e+00 -2.113e+00 8.39e-09 8.64e-78 8.64e-78 3.50e-74 1.00e+00 1.00e+00 1.00e-01 51 24.8 5.064e-10 -2.113e+00 -2.113e+00 8.39e-10 8.64e-78 2.59e-77 1.11e-73 1.00e+00 1.00e+00 1.00e-01 52 24.8 5.065e-11 -2.113e+00 -2.113e+00 8.39e-11 8.64e-78 3.45e-77 6.39e-74 1.00e+00 1.00e+00 1.00e-01 53 24.8 5.065e-12 -2.113e+00 -2.113e+00 8.39e-12 8.64e-78 0.00e+00 1.05e-73 1.00e+00 1.00e+00 1.00e-01 54 24.8 5.066e-13 -2.113e+00 -2.113e+00 8.39e-13 8.64e-78 8.64e-78 9.53e-73 1.00e+00 1.00e+00 1.00e-01 55 24.8 5.066e-14 -2.113e+00 -2.113e+00 8.39e-14 8.64e-78 2.59e-77 1.08e-72 1.00e+00 1.00e+00 1.00e-01 56 24.8 5.067e-15 -2.113e+00 -2.113e+00 8.39e-15 8.64e-78 3.45e-77 1.48e-72 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 24.835535 seconds (3.91 M allocations: 234.703 MiB, 1.22% gc time, 98.27% compilation time: <1% of which was recompilation) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:-2.112913881423601867291265297384096484636927358274155317909891748263000566467681 Dual objective:-2.112913881423605414363601038338861188346755083485834324341471298156073821530827 Duality gap:8.393792967442354817942654919852732948856514926442021476244876120435581799880257e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.3 1.000e+20 0.000e+00 0.000e+00 0.00e+00 1.00e+10 1.00e+00 2.10e+11 7.15e-01 8.46e-01 3.00e-01 2 0.4 4.213e+19 -7.841e+09 2.996e+11 1.05e+00 2.85e+09 2.85e-01 3.23e+10 7.79e-01 1.00e+00 3.00e-01 3 0.4 1.478e+19 1.359e+09 5.379e+11 9.95e-01 6.29e+08 6.29e-02 1.39e-65 8.20e-01 1.00e+00 3.00e-01 4 0.4 4.264e+18 4.397e+08 8.578e+11 9.99e-01 1.13e+08 1.13e-02 1.23e-64 8.92e-01 1.00e+00 3.00e-01 5 0.5 7.344e+17 4.931e+07 1.370e+12 1.00e+00 1.22e+07 1.22e-03 2.01e-64 8.98e-01 1.00e+00 3.00e-01 6 0.5 1.198e+17 4.867e+06 2.189e+12 1.00e+00 1.24e+06 1.24e-04 2.80e-64 8.95e-01 1.00e+00 3.00e-01 7 0.6 2.010e+16 5.242e+05 3.499e+12 1.00e+00 1.30e+05 1.30e-05 4.12e-64 8.99e-01 1.00e+00 3.00e-01 8 0.6 3.262e+15 5.203e+04 5.596e+12 1.00e+00 1.32e+04 1.32e-06 7.53e-64 8.97e-01 1.00e+00 3.00e-01 9 0.7 5.394e+14 5.483e+03 8.950e+12 1.00e+00 1.37e+03 1.37e-07 8.19e-64 8.99e-01 1.00e+00 3.00e-01 10 0.8 8.742e+13 5.525e+02 1.430e+13 1.00e+00 1.38e+02 1.38e-08 1.52e-63 8.99e-01 1.00e+00 3.00e-01 11 1.2 1.453e+13 6.378e+01 2.266e+13 1.00e+00 1.40e+01 1.40e-09 1.85e-63 8.96e-01 1.00e+00 3.00e-01 12 1.2 2.995e+12 1.385e+01 3.308e+13 1.00e+00 1.45e+00 1.45e-10 4.09e-63 8.80e-01 1.00e+00 3.00e-01 13 1.3 1.001e+12 9.125e+00 2.897e+13 1.00e+00 1.74e-01 1.74e-11 8.55e-63 8.85e-01 1.00e+00 3.00e-01 14 1.3 3.229e+11 8.728e+00 1.226e+13 1.00e+00 2.01e-02 2.01e-12 7.75e-63 8.77e-01 1.00e+00 3.00e-01 15 1.4 9.802e+10 8.791e+00 3.989e+12 1.00e+00 2.47e-03 2.47e-13 9.65e-64 1.00e+00 1.00e+00 3.00e-01 16 1.4 2.964e+10 8.979e+00 1.245e+12 1.00e+00 3.45e-77 1.73e-77 2.17e-64 1.00e+00 1.00e+00 3.00e-01 17 1.5 8.892e+09 9.036e+00 3.735e+11 1.00e+00 3.45e-77 1.73e-77 2.85e-65 9.97e-01 9.97e-01 1.00e-01 18 1.5 9.112e+08 9.041e+00 3.827e+10 1.00e+00 3.45e-77 3.45e-77 3.21e-66 1.00e+00 1.00e+00 1.00e-01 19 1.6 9.117e+07 9.046e+00 3.829e+09 1.00e+00 3.45e-77 2.59e-77 2.60e-67 1.00e+00 1.00e+00 1.00e-01 20 1.6 9.118e+06 9.050e+00 3.830e+08 1.00e+00 6.91e-77 1.73e-77 7.42e-68 1.00e+00 1.00e+00 1.00e-01 21 1.7 9.119e+05 9.054e+00 3.830e+07 1.00e+00 5.18e-77 8.64e-78 2.90e-69 1.00e+00 1.00e+00 1.00e-01 22 1.7 9.120e+04 9.058e+00 3.830e+06 1.00e+00 5.18e-77 2.59e-77 2.38e-70 1.00e+00 1.00e+00 1.00e-01 23 1.8 9.121e+03 9.061e+00 3.831e+05 1.00e+00 3.45e-77 1.73e-77 1.04e-70 1.00e+00 1.00e+00 1.00e-01 24 1.8 9.124e+02 9.064e+00 3.833e+04 1.00e+00 5.18e-77 3.45e-77 2.59e-72 1.00e+00 1.00e+00 1.00e-01 25 1.9 9.155e+01 9.069e+00 3.854e+03 9.95e-01 3.45e-77 2.59e-77 7.78e-73 9.96e-01 9.96e-01 1.00e-01 26 2.0 9.454e+00 9.090e+00 4.062e+02 9.56e-01 3.45e-77 1.73e-77 6.19e-74 9.67e-01 9.67e-01 1.00e-01 27 2.4 1.227e+00 9.266e+00 6.078e+01 7.35e-01 3.89e-77 1.73e-77 2.09e-75 8.41e-01 8.41e-01 1.00e-01 28 2.4 2.985e-01 1.028e+01 2.281e+01 3.79e-01 5.18e-77 1.73e-77 1.93e-75 7.57e-01 7.57e-01 1.00e-01 29 2.5 9.522e-02 1.184e+01 1.584e+01 1.45e-01 5.18e-77 1.73e-77 5.16e-75 5.18e-01 5.18e-01 1.00e-01 30 2.5 5.086e-02 1.263e+01 1.477e+01 7.79e-02 5.18e-77 1.73e-77 1.07e-74 6.13e-01 6.13e-01 1.00e-01 31 2.6 2.282e-02 1.280e+01 1.376e+01 3.61e-02 3.45e-77 2.59e-77 6.03e-75 8.46e-01 8.46e-01 1.00e-01 32 2.6 5.436e-03 1.307e+01 1.330e+01 8.66e-03 6.91e-77 2.59e-77 1.14e-74 8.46e-01 8.46e-01 1.00e-01 33 2.6 1.296e-03 1.314e+01 1.319e+01 2.07e-03 3.92e-77 2.59e-77 5.70e-74 8.17e-01 8.17e-01 1.00e-01 34 2.7 3.428e-04 1.315e+01 1.317e+01 5.47e-04 5.18e-77 2.59e-77 2.99e-73 8.07e-01 8.07e-01 1.00e-01 35 2.7 9.374e-05 1.316e+01 1.316e+01 1.50e-04 3.45e-77 2.59e-77 1.06e-72 7.58e-01 7.58e-01 1.00e-01 36 2.8 2.978e-05 1.316e+01 1.316e+01 4.75e-05 3.92e-77 4.32e-77 1.50e-72 8.83e-01 8.83e-01 1.00e-01 37 2.8 6.118e-06 1.316e+01 1.316e+01 9.76e-06 4.84e-77 2.59e-77 1.93e-72 8.72e-01 8.72e-01 1.00e-01 38 2.9 1.315e-06 1.316e+01 1.316e+01 2.10e-06 5.18e-77 1.73e-77 1.01e-72 9.01e-01 9.01e-01 1.00e-01 39 2.9 2.487e-07 1.316e+01 1.316e+01 3.97e-07 4.31e-77 0.00e+00 5.62e-72 9.70e-01 9.70e-01 1.00e-01 40 3.0 3.167e-08 1.316e+01 1.316e+01 5.05e-08 7.34e-77 3.45e-77 2.15e-71 9.98e-01 9.98e-01 1.00e-01 41 3.0 3.234e-09 1.316e+01 1.316e+01 5.16e-09 6.91e-77 2.59e-77 6.75e-72 9.98e-01 9.98e-01 1.00e-01 42 3.1 3.294e-10 1.316e+01 1.316e+01 5.26e-10 5.28e-77 2.59e-77 6.79e-72 1.00e+00 1.00e+00 1.00e-01 43 3.5 3.303e-11 1.316e+01 1.316e+01 5.27e-11 8.02e-77 2.59e-77 7.10e-72 1.00e+00 1.00e+00 1.00e-01 44 3.6 3.304e-12 1.316e+01 1.316e+01 5.27e-12 9.87e-77 2.59e-77 7.17e-72 1.00e+00 1.00e+00 1.00e-01 45 3.6 3.304e-13 1.316e+01 1.316e+01 5.27e-13 9.40e-77 8.64e-78 2.00e-71 1.00e+00 1.00e+00 1.00e-01 46 3.7 3.304e-14 1.316e+01 1.316e+01 5.27e-14 6.91e-77 2.59e-77 1.40e-71 1.00e+00 1.00e+00 1.00e-01 47 3.7 3.305e-15 1.316e+01 1.316e+01 5.27e-15 8.26e-77 1.73e-77 1.50e-71 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 3.716247 seconds (5.53 M allocations: 369.970 MiB, 40.90% gc time, 6.22% compilation time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:13.1583143473902987787952516212126750822406486741773498756742206891297090023159 Dual objective:13.158314347390312659544213435193355992569245071815637431511802904839112913189 Duality gap:5.274516399042767866788272249697266186244831127792560993172673525104291695468598e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.1 1.000e+20 1.585e-02 1.585e-02 0.00e+00 1.00e+10 3.02e+20 8.43e+10 7.03e-01 7.57e-01 3.00e-01 2 0.2 4.190e+19 -2.320e+10 -2.620e+08 9.78e-01 2.97e+09 8.99e+19 2.04e+10 7.89e-01 7.78e-01 3.00e-01 3 0.3 1.306e+19 -4.643e+10 -1.742e+09 9.28e-01 6.28e+08 1.90e+19 4.53e+09 8.17e-01 7.43e-01 3.00e-01 4 0.3 3.686e+18 -7.438e+10 -1.494e+09 9.61e-01 1.15e+08 3.48e+18 1.17e+09 8.25e-01 8.15e-01 3.00e-01 5 0.4 9.725e+17 -1.038e+11 1.515e+08 1.00e+00 2.01e+07 6.09e+17 2.16e+08 7.94e-01 7.63e-01 3.00e-01 6 0.8 3.020e+17 -1.438e+11 3.329e+09 1.05e+00 4.16e+06 1.26e+17 5.11e+07 7.09e-01 7.99e-01 3.00e-01 7 0.9 1.203e+17 -1.906e+11 1.626e+10 1.19e+00 1.21e+06 3.65e+16 1.03e+07 7.49e-01 8.14e-01 3.00e-01 8 1.0 4.286e+16 -2.882e+11 3.009e+10 1.23e+00 3.03e+05 9.15e+15 1.92e+06 7.63e-01 8.17e-01 3.00e-01 9 1.1 1.468e+16 -4.788e+11 5.004e+10 1.23e+00 7.18e+04 2.17e+15 3.51e+05 7.82e-01 6.89e-01 3.00e-01 10 1.2 4.729e+15 -8.435e+11 8.455e+10 1.22e+00 1.57e+04 4.74e+14 1.09e+05 6.46e-01 6.36e-01 3.00e-01 11 1.3 2.321e+15 -1.155e+12 1.377e+11 1.27e+00 5.54e+03 1.67e+14 3.98e+04 6.72e-01 6.11e-01 3.00e-01 12 1.3 1.063e+15 -1.592e+12 1.951e+11 1.28e+00 1.81e+03 5.49e+13 1.55e+04 5.62e-01 9.01e-01 3.00e-01 13 1.4 6.779e+14 -2.021e+12 2.787e+11 1.32e+00 7.94e+02 2.40e+13 1.53e+03 8.24e-01 9.11e-01 3.00e-01 14 1.5 1.835e+14 -5.984e+12 4.300e+11 1.15e+00 1.40e+02 4.23e+12 1.36e+02 8.55e-01 1.00e+00 3.00e-01 15 1.6 4.247e+13 -1.546e+13 6.864e+11 1.09e+00 2.03e+01 6.13e+11 4.94e-48 8.97e-01 1.00e+00 3.00e-01 16 1.7 7.181e+12 -1.302e+13 1.093e+12 1.18e+00 2.08e+00 6.30e+10 4.45e-48 8.89e-01 1.00e+00 3.00e-01 17 1.8 1.329e+12 -3.359e+12 1.724e+12 3.11e+00 2.31e-01 6.99e+09 2.96e-48 8.33e-01 1.00e+00 3.00e-01 18 1.8 3.857e+11 -8.933e+11 2.306e+12 2.26e+00 3.86e-02 1.17e+09 1.60e-47 7.07e-01 1.00e+00 3.00e-01 19 1.9 1.766e+11 -3.434e+11 1.375e+12 1.67e+00 1.13e-02 3.42e+08 2.72e-47 8.44e-01 8.41e-01 3.00e-01 20 2.0 4.903e+10 -9.837e+10 7.115e+11 1.32e+00 1.77e-03 5.34e+07 4.06e-47 8.56e-01 1.00e+00 3.00e-01 21 2.2 1.622e+10 -2.672e+10 4.770e+11 1.12e+00 2.54e-04 7.67e+06 1.85e-47 7.71e-01 1.00e+00 3.00e-01 22 2.6 5.589e+09 -9.867e+09 1.839e+11 1.11e+00 5.81e-05 1.76e+06 1.85e-48 8.65e-01 8.10e-01 3.00e-01 23 2.7 2.102e+09 -2.786e+09 8.647e+10 1.07e+00 7.86e-06 2.38e+05 2.44e-49 7.54e-01 1.00e+00 3.00e-01 24 2.8 6.491e+08 -1.160e+09 2.539e+10 1.10e+00 1.93e-06 5.84e+04 7.59e-49 9.04e-01 9.19e-01 3.00e-01 25 2.8 2.210e+08 -2.876e+08 9.863e+09 1.06e+00 1.86e-07 5.62e+03 8.28e-48 9.41e-01 1.00e+00 3.00e-01 26 2.9 6.517e+07 -7.947e+07 3.067e+09 1.05e+00 1.11e-08 3.34e+02 1.01e-47 1.00e+00 1.00e+00 3.00e-01 27 3.0 1.954e+07 -1.955e+07 9.380e+08 1.04e+00 1.05e-63 1.58e-43 4.05e-47 1.00e+00 1.00e+00 3.00e-01 28 3.1 5.862e+06 -5.862e+06 2.814e+08 1.04e+00 1.02e-63 1.48e-43 1.65e-48 1.00e+00 1.00e+00 1.00e-01 29 3.1 5.873e+05 -5.873e+05 2.819e+07 1.04e+00 1.26e-63 2.04e-44 1.78e-49 1.00e+00 1.00e+00 1.00e-01 30 3.2 5.874e+04 -5.874e+04 2.819e+06 1.04e+00 1.16e-63 1.21e-43 2.16e-50 1.00e+00 1.00e+00 1.00e-01 31 3.3 5.874e+03 -5.874e+03 2.820e+05 1.04e+00 9.83e-64 3.16e-43 1.89e-51 1.00e+00 1.00e+00 1.00e-01 32 3.4 5.875e+02 -5.874e+02 2.820e+04 1.04e+00 1.85e-63 4.85e-44 1.20e-52 1.00e+00 1.00e+00 1.00e-01 33 3.5 5.876e+01 -5.866e+01 2.821e+03 1.04e+00 8.53e-64 4.38e-43 2.92e-54 1.00e+00 1.00e+00 1.00e-01 34 3.6 5.883e+00 -5.788e+00 2.825e+02 1.04e+00 1.66e-63 3.73e-43 1.27e-54 9.99e-01 9.99e-01 1.00e-01 35 3.6 5.954e-01 -4.995e-01 2.867e+01 1.04e+00 1.58e-63 5.33e-43 3.47e-55 9.88e-01 9.88e-01 1.00e-01 36 3.8 6.616e-02 3.259e-02 3.274e+00 9.80e-01 1.24e-63 6.70e-43 8.31e-56 9.22e-01 9.22e-01 1.00e-01 37 4.2 1.126e-02 1.068e-01 6.584e-01 5.52e-01 9.61e-64 1.85e-43 1.82e-55 8.48e-01 8.48e-01 1.00e-01 38 4.3 2.667e-03 1.882e-01 3.188e-01 1.31e-01 1.75e-63 6.50e-44 1.31e-55 8.38e-01 8.38e-01 1.00e-01 39 4.3 6.553e-04 2.394e-01 2.715e-01 3.21e-02 1.01e-63 1.28e-42 1.91e-56 8.06e-01 8.06e-01 1.00e-01 40 4.4 1.798e-04 2.495e-01 2.583e-01 8.81e-03 1.46e-63 1.71e-43 3.75e-56 8.23e-01 8.23e-01 1.00e-01 41 4.5 4.661e-05 2.526e-01 2.549e-01 2.28e-03 1.06e-63 1.59e-42 3.05e-56 7.89e-01 7.89e-01 1.00e-01 42 4.6 1.350e-05 2.534e-01 2.540e-01 6.61e-04 1.24e-63 2.87e-43 8.01e-56 7.75e-01 7.75e-01 1.00e-01 43 4.7 4.080e-06 2.536e-01 2.538e-01 2.00e-04 1.03e-63 1.40e-42 5.52e-55 7.61e-01 7.61e-01 1.00e-01 44 4.8 1.286e-06 2.537e-01 2.538e-01 6.30e-05 2.12e-63 3.42e-43 6.42e-55 9.61e-01 9.61e-01 1.00e-01 45 4.9 1.738e-07 2.537e-01 2.537e-01 8.52e-06 1.25e-63 2.98e-43 2.82e-54 9.60e-01 9.60e-01 1.00e-01 46 5.0 2.368e-08 2.537e-01 2.537e-01 1.16e-06 1.48e-63 1.50e-42 9.81e-55 9.77e-01 9.77e-01 1.00e-01 47 5.0 2.854e-09 2.537e-01 2.537e-01 1.40e-07 1.43e-63 4.17e-43 2.23e-54 9.93e-01 9.93e-01 1.00e-01 48 5.1 3.031e-10 2.537e-01 2.537e-01 1.49e-08 1.36e-63 4.12e-44 5.77e-55 1.00e+00 1.00e+00 1.00e-01 49 5.2 3.040e-11 2.537e-01 2.537e-01 1.49e-09 1.62e-63 1.39e-42 6.66e-55 1.00e+00 1.00e+00 1.00e-01 50 5.3 3.041e-12 2.537e-01 2.537e-01 1.49e-10 1.11e-63 3.18e-43 1.24e-54 1.00e+00 1.00e+00 1.00e-01 51 5.4 3.041e-13 2.537e-01 2.537e-01 1.49e-11 1.19e-63 1.03e-43 4.13e-55 1.00e+00 1.00e+00 1.00e-01 52 5.8 3.041e-14 2.537e-01 2.537e-01 1.49e-12 1.58e-63 3.54e-43 8.64e-55 1.00e+00 1.00e+00 1.00e-01 53 5.9 3.042e-15 2.537e-01 2.537e-01 1.49e-13 1.35e-63 1.34e-43 2.81e-55 1.00e+00 1.00e+00 1.00e-01 54 6.0 3.042e-16 2.537e-01 2.537e-01 1.49e-14 1.02e-63 1.05e-42 1.57e-55 1.00e+00 1.00e+00 1.00e-01 55 6.0 3.042e-17 2.537e-01 2.537e-01 1.49e-15 1.10e-63 1.75e-42 1.17e-54 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 6.025506 seconds (7.92 M allocations: 466.473 MiB, 32.46% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:0.2537404272210647353016840860293540283949591214258198401772906077975455111184093 Dual objective:0.253740427221064884382429563607171864358121448887404772917233455582739043518143 Duality gap:1.490807454775778178359631623274615849327399428477851935323997337684942385903112e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.5 1.000e+20 0.000e+00 0.000e+00 0.00e+00 1.00e+10 1.00e+00 8.43e+10 6.32e-01 5.24e-01 3.00e-01 2 1.3 5.118e+19 7.190e+07 1.164e+10 9.88e-01 3.68e+09 3.68e-01 4.01e+10 6.36e-01 6.99e-01 3.00e-01 3 1.9 2.570e+19 6.028e+07 2.506e+10 9.95e-01 1.34e+09 1.34e-01 1.21e+10 7.82e-01 7.56e-01 3.00e-01 4 2.4 8.263e+18 1.502e+07 4.098e+10 9.99e-01 2.93e+08 2.93e-02 2.94e+09 8.07e-01 8.00e-01 3.00e-01 5 3.2 2.367e+18 3.547e+06 6.396e+10 1.00e+00 5.64e+07 5.64e-03 5.87e+08 8.04e-01 7.46e-01 3.00e-01 6 3.7 7.008e+17 8.038e+05 9.568e+10 1.00e+00 1.11e+07 1.11e-03 1.49e+08 8.14e-01 7.81e-01 3.00e-01 7 4.2 1.972e+17 1.837e+05 1.446e+11 1.00e+00 2.06e+06 2.06e-04 3.27e+07 7.79e-01 7.96e-01 3.00e-01 8 5.1 6.361e+16 4.687e+04 2.206e+11 1.00e+00 4.56e+05 4.56e-05 6.67e+06 7.28e-01 7.70e-01 3.00e-01 9 5.7 2.470e+16 1.204e+04 3.288e+11 1.00e+00 1.24e+05 1.24e-05 1.54e+06 7.29e-01 7.91e-01 3.00e-01 10 6.2 9.586e+15 3.109e+03 5.041e+11 1.00e+00 3.37e+04 3.37e-06 3.21e+05 7.58e-01 7.85e-01 3.00e-01 11 7.1 3.375e+15 7.627e+02 8.164e+11 1.00e+00 8.17e+03 8.17e-07 6.90e+04 6.24e-01 7.24e-01 3.00e-01 12 7.6 1.763e+15 3.251e+02 1.508e+12 1.00e+00 3.07e+03 3.07e-07 1.91e+04 5.66e-01 4.74e-01 3.00e-01 13 8.3 1.006e+15 3.029e+02 2.709e+12 1.00e+00 1.33e+03 1.33e-07 1.00e+04 6.70e-01 6.86e-01 3.00e-01 14 9.1 4.647e+14 3.925e+02 4.272e+12 1.00e+00 4.40e+02 4.40e-08 3.14e+03 5.67e-01 6.23e-01 3.00e-01 15 9.7 2.709e+14 6.587e+02 6.050e+12 1.00e+00 1.91e+02 1.91e-08 1.18e+03 4.25e-01 9.14e-01 3.00e-01 16 10.3 2.367e+14 6.300e+01 9.859e+12 1.00e+00 1.10e+02 1.10e-08 1.01e+02 7.83e-01 1.00e+00 3.00e-01 17 11.1 8.205e+13 7.894e+01 1.584e+13 1.00e+00 2.37e+01 2.37e-09 3.09e-58 8.13e-01 1.00e+00 3.00e-01 18 11.5 2.463e+13 1.886e+01 2.504e+13 1.00e+00 4.43e+00 4.43e-10 7.15e-58 8.84e-01 1.00e+00 3.00e-01 19 12.1 4.808e+12 2.447e+00 3.732e+13 1.00e+00 5.16e-01 5.16e-11 4.23e-57 8.88e-01 1.00e+00 3.00e-01 20 13.0 1.084e+12 3.495e-01 3.941e+13 1.00e+00 5.77e-02 5.77e-12 2.19e-57 8.56e-01 1.00e+00 3.00e-01 21 13.6 3.431e+11 1.295e-01 2.400e+13 1.00e+00 8.33e-03 8.33e-13 2.12e-57 8.25e-01 1.00e+00 3.00e-01 22 14.2 1.158e+11 9.545e-02 1.061e+13 1.00e+00 1.46e-03 1.46e-13 4.22e-58 8.40e-01 8.07e-01 3.00e-01 23 15.0 4.557e+10 8.306e-02 4.818e+12 1.00e+00 2.34e-04 2.34e-14 1.43e-58 7.20e-01 1.00e+00 3.00e-01 24 15.6 1.417e+10 8.217e-02 1.436e+12 1.00e+00 6.54e-05 6.54e-15 2.46e-60 8.96e-01 8.18e-01 3.00e-01 25 16.1 5.688e+09 7.650e-02 6.445e+11 1.00e+00 6.79e-06 6.79e-16 4.98e-59 9.34e-01 1.00e+00 3.00e-01 26 17.0 1.690e+09 7.658e-02 1.988e+11 1.00e+00 4.49e-07 4.49e-17 6.25e-59 1.00e+00 1.00e+00 3.00e-01 27 17.6 5.061e+08 7.648e-02 6.022e+10 1.00e+00 2.22e-74 3.61e-51 8.58e-59 1.00e+00 1.00e+00 3.00e-01 28 18.2 1.518e+08 7.648e-02 1.807e+10 1.00e+00 3.13e-74 5.62e-51 1.00e-58 1.00e+00 1.00e+00 1.00e-01 29 19.1 1.524e+07 7.648e-02 1.814e+09 1.00e+00 1.93e-74 6.69e-51 5.79e-60 1.00e+00 1.00e+00 1.00e-01 30 19.6 1.524e+06 7.649e-02 1.814e+08 1.00e+00 2.06e-74 5.31e-51 9.27e-62 1.00e+00 1.00e+00 1.00e-01 31 20.2 1.525e+05 7.649e-02 1.814e+07 1.00e+00 3.14e-74 7.13e-51 2.90e-62 1.00e+00 1.00e+00 1.00e-01 32 21.1 1.525e+04 7.649e-02 1.814e+06 1.00e+00 2.60e-74 4.47e-51 3.80e-64 1.00e+00 1.00e+00 1.00e-01 33 21.7 1.525e+03 7.649e-02 1.815e+05 1.00e+00 3.60e-74 5.25e-51 8.36e-64 1.00e+00 1.00e+00 1.00e-01 34 22.3 1.525e+02 7.649e-02 1.815e+04 1.00e+00 2.81e-74 2.59e-51 6.05e-65 1.00e+00 1.00e+00 1.00e-01 35 23.2 1.529e+01 7.653e-02 1.820e+03 1.00e+00 3.36e-74 3.26e-51 8.68e-66 9.97e-01 9.97e-01 1.00e-01 36 23.7 1.564e+00 7.692e-02 1.862e+02 9.99e-01 3.87e-74 4.54e-51 1.31e-67 9.76e-01 9.76e-01 1.00e-01 37 24.3 1.897e-01 8.062e-02 2.266e+01 9.93e-01 2.84e-74 3.90e-51 4.01e-68 8.77e-01 8.77e-01 1.00e-01 38 25.2 3.990e-02 1.073e-01 4.856e+00 9.57e-01 2.58e-74 5.75e-51 1.11e-69 9.21e-01 9.21e-01 1.00e-01 39 25.8 6.811e-03 1.612e-01 9.717e-01 7.15e-01 2.38e-74 4.12e-51 6.88e-69 8.71e-01 8.71e-01 1.00e-01 40 26.3 1.473e-03 2.059e-01 3.812e-01 1.75e-01 2.90e-74 2.11e-51 1.38e-68 8.63e-01 8.63e-01 1.00e-01 41 27.2 3.291e-04 2.437e-01 2.829e-01 3.92e-02 4.52e-74 7.46e-51 2.84e-69 8.93e-01 8.93e-01 1.00e-01 42 27.7 6.458e-05 2.517e-01 2.594e-01 7.69e-03 3.45e-74 5.06e-51 2.45e-69 8.48e-01 8.48e-01 1.00e-01 43 28.3 1.529e-05 2.532e-01 2.550e-01 1.82e-03 4.64e-74 5.14e-51 4.71e-68 8.38e-01 8.38e-01 1.00e-01 44 29.1 3.758e-06 2.536e-01 2.540e-01 4.47e-04 5.91e-74 9.18e-51 3.08e-67 8.60e-01 8.60e-01 1.00e-01 45 29.6 8.506e-07 2.537e-01 2.538e-01 1.01e-04 3.67e-74 8.30e-51 1.09e-66 9.32e-01 9.32e-01 1.00e-01 46 30.3 1.372e-07 2.537e-01 2.538e-01 1.63e-05 3.26e-74 5.64e-51 1.40e-66 9.60e-01 9.60e-01 1.00e-01 47 31.2 1.861e-08 2.537e-01 2.537e-01 2.21e-06 3.54e-74 8.01e-51 1.73e-67 9.53e-01 9.53e-01 1.00e-01 48 31.7 2.646e-09 2.537e-01 2.537e-01 3.15e-07 4.73e-74 2.67e-51 3.28e-67 9.65e-01 9.65e-01 1.00e-01 49 32.2 3.469e-10 2.537e-01 2.537e-01 4.13e-08 6.26e-74 1.14e-50 3.44e-67 9.73e-01 9.73e-01 1.00e-01 50 33.1 4.314e-11 2.537e-01 2.537e-01 5.13e-09 4.30e-74 8.74e-51 1.24e-66 9.75e-01 9.75e-01 1.00e-01 51 33.6 5.269e-12 2.537e-01 2.537e-01 6.27e-10 4.62e-74 1.35e-50 7.50e-65 9.79e-01 9.79e-01 1.00e-01 52 34.2 6.243e-13 2.537e-01 2.537e-01 7.43e-11 3.89e-74 4.92e-51 3.18e-64 9.96e-01 9.96e-01 1.00e-01 53 35.0 6.487e-14 2.537e-01 2.537e-01 7.72e-12 6.95e-74 9.53e-51 3.49e-63 1.00e+00 1.00e+00 1.00e-01 54 35.6 6.499e-15 2.537e-01 2.537e-01 7.73e-13 4.59e-74 1.03e-50 3.91e-62 1.00e+00 1.00e+00 1.00e-01 55 36.1 6.500e-16 2.537e-01 2.537e-01 7.73e-14 3.42e-74 8.78e-51 3.86e-61 1.00e+00 1.00e+00 1.00e-01 56 37.0 6.500e-17 2.537e-01 2.537e-01 7.74e-15 5.81e-74 1.17e-50 5.54e-60 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 36.980920 seconds (50.93 M allocations: 3.283 GiB, 24.05% gc time, 0.44% compilation time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:0.25374042722106456999382272973337234403817250888843247143963855386123615873381502832085497497 Dual objective:0.25374042722106534361356058555843570851601270240541088888521452575085700491232551953824596298 Duality gap:7.7361973785582506336447784019351697841744557597188962084617851049121739098800786197864505914e-16 [ Info: Creating the univariate constraint [ Info: Constructing trivariate constraint iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.7 1.000e+06 1.000e+00 5.001e+03 1.00e+00 1.00e+03 0.00e+00 2.36e+06 6.53e-01 5.28e-01 3.00e-01 2 0.9 5.015e+05 5.164e+02 3.088e+03 7.13e-01 3.47e+02 0.00e+00 1.12e+06 4.22e-01 6.07e-01 3.00e-01 3 1.0 3.499e+05 6.688e+02 8.065e+03 8.47e-01 2.00e+02 0.00e+00 4.38e+05 5.84e-01 4.21e-01 3.00e-01 4 1.2 2.030e+05 5.414e+02 1.758e+04 9.40e-01 8.32e+01 0.00e+00 2.54e+05 4.22e-01 9.53e-01 3.00e-01 5 1.7 1.588e+05 3.876e+02 6.630e+04 9.88e-01 4.81e+01 0.00e+00 1.18e+04 7.78e-01 1.00e+00 3.00e-01 6 1.9 5.705e+04 1.104e+02 1.123e+05 9.98e-01 1.07e+01 0.00e+00 1.48e-66 8.24e-01 1.00e+00 3.00e-01 7 2.1 1.728e+04 2.822e+01 1.690e+05 1.00e+00 1.88e+00 0.00e+00 2.28e-66 8.75e-01 1.00e+00 3.00e-01 8 2.3 4.993e+03 1.126e+01 1.883e+05 1.00e+00 2.35e-01 0.00e+00 5.52e-66 8.48e-01 9.86e-01 3.00e-01 9 2.5 1.681e+03 9.036e+00 9.790e+04 1.00e+00 3.57e-02 0.00e+00 7.51e-66 8.19e-01 1.00e+00 3.00e-01 10 2.7 5.450e+02 8.700e+00 3.672e+04 1.00e+00 6.44e-03 0.00e+00 8.72e-66 8.33e-01 1.00e+00 3.00e-01 11 3.2 1.723e+02 8.588e+00 1.271e+04 9.99e-01 1.08e-03 0.00e+00 2.04e-66 1.00e+00 1.00e+00 3.00e-01 12 3.4 5.146e+01 8.519e+00 4.074e+03 9.96e-01 5.20e-74 0.00e+00 7.08e-67 1.00e+00 1.00e+00 3.00e-01 13 3.6 1.544e+01 8.502e+00 1.228e+03 9.86e-01 2.29e-73 0.00e+00 6.45e-68 9.92e-01 9.92e-01 1.00e-01 14 3.8 1.654e+00 8.507e+00 1.392e+02 8.85e-01 1.00e-73 0.00e+00 3.59e-69 9.78e-01 9.78e-01 1.00e-01 15 4.0 1.981e-01 8.562e+00 2.421e+01 4.77e-01 1.01e-73 0.00e+00 7.83e-70 8.60e-01 8.60e-01 1.00e-01 16 4.2 4.484e-02 8.877e+00 1.242e+01 1.66e-01 2.90e-74 0.00e+00 1.47e-69 8.02e-01 8.02e-01 1.00e-01 17 4.7 1.245e-02 9.486e+00 1.047e+01 4.93e-02 3.84e-74 0.00e+00 2.62e-69 7.62e-01 7.62e-01 1.00e-01 18 4.9 3.917e-03 9.841e+00 1.015e+01 1.55e-02 6.66e-74 0.00e+00 6.69e-69 7.52e-01 7.52e-01 1.00e-01 19 5.1 1.267e-03 9.941e+00 1.004e+01 5.01e-03 1.18e-73 0.00e+00 3.31e-69 8.14e-01 8.14e-01 1.00e-01 20 5.3 3.392e-04 9.983e+00 1.001e+01 1.34e-03 8.40e-74 0.00e+00 1.46e-69 7.89e-01 7.89e-01 1.00e-01 21 5.5 9.835e-05 9.995e+00 1.000e+01 3.89e-04 7.24e-74 0.00e+00 1.46e-68 9.42e-01 9.42e-01 1.00e-01 22 5.7 1.496e-05 9.999e+00 1.000e+01 5.91e-05 3.65e-74 0.00e+00 2.52e-69 9.79e-01 9.79e-01 1.00e-01 23 6.3 1.780e-06 1.000e+01 1.000e+01 7.03e-06 7.52e-74 0.00e+00 3.80e-69 9.89e-01 9.89e-01 1.00e-01 24 6.5 1.951e-07 1.000e+01 1.000e+01 7.71e-07 8.62e-74 0.00e+00 2.24e-69 9.97e-01 9.97e-01 1.00e-01 25 6.7 2.009e-08 1.000e+01 1.000e+01 7.94e-08 1.56e-73 0.00e+00 3.53e-69 1.00e+00 1.00e+00 1.00e-01 26 6.9 2.016e-09 1.000e+01 1.000e+01 7.96e-09 5.40e-74 0.00e+00 6.76e-69 1.00e+00 1.00e+00 1.00e-01 27 7.1 2.017e-10 1.000e+01 1.000e+01 7.97e-10 1.09e-73 0.00e+00 9.03e-69 1.00e+00 1.00e+00 1.00e-01 28 7.3 2.017e-11 1.000e+01 1.000e+01 7.97e-11 1.24e-73 0.00e+00 1.27e-68 1.00e+00 1.00e+00 1.00e-01 29 7.9 2.017e-12 1.000e+01 1.000e+01 7.97e-12 9.29e-74 0.00e+00 7.65e-69 1.00e+00 1.00e+00 1.00e-01 30 8.1 2.018e-13 1.000e+01 1.000e+01 7.97e-13 1.40e-73 0.00e+00 7.01e-69 1.00e+00 1.00e+00 1.00e-01 31 8.3 2.018e-14 1.000e+01 1.000e+01 7.97e-14 2.87e-74 0.00e+00 1.05e-68 1.00e+00 1.00e+00 1.00e-01 32 8.4 2.018e-15 1.000e+01 1.000e+01 7.97e-15 1.25e-73 0.00e+00 1.16e-68 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 8.442014 seconds (12.09 M allocations: 801.700 MiB, 35.00% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:9.999999999999988697806312364629586633761075931040260493586399230528324306359606 Dual objective:10.0000000000000046419724074448082497942161656245626939603359779955727984532867 Duality gap:7.972083047540091986372085578494245942129327859993373175844167487250928694314984e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.0 1.000e+20 0.000e+00 1.000e+10 1.00e+00 1.00e+10 0.00e+00 2.00e+10 1.00e+00 9.00e-01 3.00e-01 2 0.0 1.600e+19 1.600e+10 1.000e+09 8.82e-01 0.00e+00 0.00e+00 2.00e+09 1.00e+00 9.00e-01 3.00e-01 3 0.0 2.560e+18 2.560e+10 1.000e+08 9.92e-01 0.00e+00 0.00e+00 2.00e+08 1.00e+00 9.00e-01 3.00e-01 4 0.0 4.096e+17 4.096e+10 1.000e+07 1.00e+00 0.00e+00 0.00e+00 2.00e+07 1.00e+00 9.00e-01 3.00e-01 5 0.0 6.554e+16 6.554e+10 1.000e+06 1.00e+00 0.00e+00 0.00e+00 2.00e+06 1.00e+00 9.00e-01 3.00e-01 6 0.0 1.049e+16 1.049e+11 1.000e+05 1.00e+00 0.00e+00 0.00e+00 2.00e+05 1.00e+00 9.00e-01 3.00e-01 7 0.0 1.678e+15 1.678e+11 1.000e+04 1.00e+00 0.00e+00 0.00e+00 2.00e+04 1.00e+00 9.00e-01 3.00e-01 8 0.0 2.684e+14 2.684e+11 1.000e+03 1.00e+00 0.00e+00 0.00e+00 2.00e+03 1.00e+00 9.00e-01 3.00e-01 9 0.1 4.292e+13 4.292e+11 1.000e+02 1.00e+00 0.00e+00 0.00e+00 1.99e+02 1.00e+00 9.05e-01 3.00e-01 10 0.1 6.817e+12 6.817e+11 1.000e+01 1.00e+00 0.00e+00 0.00e+00 1.90e+01 1.00e+00 9.47e-01 3.00e-01 11 0.1 1.014e+12 1.014e+12 1.000e+00 1.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e+00 3.00e-01 12 0.1 3.549e+11 7.098e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 3.00e-01 13 0.1 1.065e+11 2.130e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 14 0.1 1.065e+10 2.130e+10 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 15 0.1 1.065e+09 2.130e+09 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 16 0.1 1.065e+08 2.130e+08 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 17 0.1 1.065e+07 2.130e+07 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 18 0.1 1.065e+06 2.130e+06 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 19 0.1 1.065e+05 2.130e+05 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 20 0.1 1.065e+04 2.130e+04 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 21 0.1 1.065e+03 2.131e+03 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 22 0.1 1.067e+02 2.140e+02 5.003e-01 9.95e-01 0.00e+00 0.00e+00 4.91e-91 9.98e-01 9.98e-01 1.00e-01 23 0.1 1.090e+01 2.230e+01 5.026e-01 9.56e-01 0.00e+00 0.00e+00 0.00e+00 9.78e-01 9.78e-01 1.00e-01 24 0.1 1.302e+00 3.130e+00 5.247e-01 7.13e-01 0.00e+00 0.00e+00 1.47e-90 8.86e-01 8.86e-01 1.00e-01 25 0.1 2.642e-01 1.213e+00 6.845e-01 2.78e-01 0.00e+00 0.00e+00 4.91e-91 9.25e-01 9.25e-01 1.00e-01 26 0.1 4.423e-02 1.057e+00 9.685e-01 4.37e-02 9.82e-91 0.00e+00 9.82e-91 9.82e-01 9.82e-01 1.00e-01 27 0.1 5.135e-03 1.006e+00 9.954e-01 5.13e-03 4.91e-91 0.00e+00 9.82e-91 9.90e-01 9.90e-01 1.00e-01 28 0.1 5.586e-04 1.001e+00 9.995e-01 5.59e-04 4.91e-91 0.00e+00 1.47e-90 9.98e-01 9.98e-01 1.00e-01 29 0.1 5.683e-05 1.000e+00 9.999e-01 5.68e-05 9.82e-91 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 30 0.1 5.691e-06 1.000e+00 1.000e+00 5.69e-06 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 31 0.1 5.692e-07 1.000e+00 1.000e+00 5.69e-07 4.91e-91 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 32 0.1 5.692e-08 1.000e+00 1.000e+00 5.69e-08 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 33 0.1 5.692e-09 1.000e+00 1.000e+00 5.69e-09 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 34 0.1 5.692e-10 1.000e+00 1.000e+00 5.69e-10 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 35 0.1 5.692e-11 1.000e+00 1.000e+00 5.69e-11 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 36 0.1 5.692e-12 1.000e+00 1.000e+00 5.69e-12 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 37 0.1 5.692e-13 1.000e+00 1.000e+00 5.69e-13 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 38 0.1 5.692e-14 1.000e+00 1.000e+00 5.69e-14 4.91e-91 0.00e+00 2.45e-90 1.00e+00 1.00e+00 1.00e-01 39 0.1 5.692e-15 1.000e+00 1.000e+00 5.69e-15 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.127773 seconds (32.31 k allocations: 3.054 MiB, 79.46% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:1.0000000000000005691723278366416861879595763094229654106229723826343406620015981991860279668 Dual objective:0.9999999999999994308276721633712720975914346046825898890655777243547660499609509826264801335 Duality gap:5.691723278366352070451840708486824389848583387797514538933756972301949865323277923806982379e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.0 1.000e+20 0.000e+00 1.000e+10 1.00e+00 1.00e+10 0.00e+00 1.00e+10 1.00e+00 9.00e-01 3.00e-01 2 0.0 1.600e+19 1.600e+10 1.000e+09 8.82e-01 0.00e+00 8.43e-81 1.00e+09 1.00e+00 9.00e-01 3.00e-01 3 0.0 2.560e+18 2.560e+10 1.000e+08 9.92e-01 0.00e+00 0.00e+00 1.00e+08 1.00e+00 9.00e-01 3.00e-01 4 0.0 4.096e+17 4.096e+10 1.000e+07 1.00e+00 0.00e+00 0.00e+00 1.00e+07 1.00e+00 9.00e-01 3.00e-01 5 0.1 6.554e+16 6.554e+10 1.000e+06 1.00e+00 0.00e+00 3.37e-80 1.00e+06 1.00e+00 9.00e-01 3.00e-01 6 0.1 1.049e+16 1.049e+11 1.000e+05 1.00e+00 0.00e+00 0.00e+00 1.00e+05 1.00e+00 9.00e-01 3.00e-01 7 0.1 1.678e+15 1.678e+11 1.000e+04 1.00e+00 0.00e+00 0.00e+00 1.00e+04 1.00e+00 9.00e-01 3.00e-01 8 0.1 2.684e+14 2.684e+11 1.000e+03 1.00e+00 0.00e+00 0.00e+00 1.00e+03 1.00e+00 9.00e-01 3.00e-01 9 0.1 4.292e+13 4.292e+11 1.000e+02 1.00e+00 0.00e+00 2.70e-79 9.95e+01 1.00e+00 9.05e-01 3.00e-01 10 0.1 6.817e+12 6.817e+11 1.000e+01 1.00e+00 0.00e+00 0.00e+00 9.50e+00 1.00e+00 9.47e-01 3.00e-01 11 0.1 1.014e+12 1.014e+12 1.000e+00 1.00e+00 0.00e+00 0.00e+00 5.00e-01 1.00e+00 1.00e+00 3.00e-01 12 0.1 3.549e+11 7.098e+11 5.000e-01 1.00e+00 0.00e+00 5.40e-79 0.00e+00 1.00e+00 1.00e+00 3.00e-01 13 0.1 1.065e+11 2.130e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 14 0.1 1.065e+10 2.130e+10 5.000e-01 1.00e+00 0.00e+00 1.35e-79 2.45e-91 1.00e+00 1.00e+00 1.00e-01 15 0.1 1.065e+09 2.130e+09 5.000e-01 1.00e+00 0.00e+00 1.69e-80 1.23e-90 1.00e+00 1.00e+00 1.00e-01 16 0.1 1.065e+08 2.130e+08 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 17 0.1 1.065e+07 2.130e+07 5.000e-01 1.00e+00 0.00e+00 2.64e-82 1.23e-90 1.00e+00 1.00e+00 1.00e-01 18 0.1 1.065e+06 2.130e+06 5.000e-01 1.00e+00 0.00e+00 1.65e-83 9.82e-91 1.00e+00 1.00e+00 1.00e-01 19 0.1 1.065e+05 2.130e+05 5.000e-01 1.00e+00 0.00e+00 1.03e-84 7.36e-91 1.00e+00 1.00e+00 1.00e-01 20 0.1 1.065e+04 2.130e+04 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 21 0.1 1.065e+03 2.131e+03 5.000e-01 1.00e+00 0.00e+00 1.61e-86 4.91e-91 1.00e+00 1.00e+00 1.00e-01 22 0.1 1.067e+02 2.140e+02 5.003e-01 9.95e-01 0.00e+00 0.00e+00 7.36e-91 9.98e-01 9.98e-01 1.00e-01 23 0.1 1.090e+01 2.230e+01 5.026e-01 9.56e-01 0.00e+00 1.10e-88 9.82e-91 9.78e-01 9.78e-01 1.00e-01 24 0.1 1.302e+00 3.130e+00 5.247e-01 7.13e-01 0.00e+00 1.77e-89 4.91e-91 8.86e-01 8.86e-01 1.00e-01 25 0.1 2.642e-01 1.213e+00 6.845e-01 2.78e-01 9.82e-91 9.82e-91 1.47e-90 9.25e-01 9.25e-01 1.00e-01 26 0.1 4.423e-02 1.057e+00 9.685e-01 4.37e-02 4.91e-91 9.82e-91 1.47e-90 9.82e-01 9.82e-01 1.00e-01 27 0.1 5.135e-03 1.006e+00 9.954e-01 5.13e-03 4.91e-91 9.82e-91 4.91e-91 9.90e-01 9.90e-01 1.00e-01 28 0.1 5.586e-04 1.001e+00 9.995e-01 5.59e-04 4.91e-91 9.82e-91 2.45e-90 9.98e-01 9.98e-01 1.00e-01 29 0.1 5.683e-05 1.000e+00 9.999e-01 5.68e-05 9.82e-91 1.96e-90 4.91e-91 1.00e+00 1.00e+00 1.00e-01 30 0.1 5.691e-06 1.000e+00 1.000e+00 5.69e-06 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 31 0.1 5.692e-07 1.000e+00 1.000e+00 5.69e-07 4.91e-91 9.82e-91 1.47e-90 1.00e+00 1.00e+00 1.00e-01 32 0.1 5.692e-08 1.000e+00 1.000e+00 5.69e-08 0.00e+00 1.96e-90 1.47e-90 1.00e+00 1.00e+00 1.00e-01 33 0.1 5.692e-09 1.000e+00 1.000e+00 5.69e-09 4.91e-91 1.96e-90 1.47e-90 1.00e+00 1.00e+00 1.00e-01 34 0.1 5.692e-10 1.000e+00 1.000e+00 5.69e-10 0.00e+00 9.82e-91 1.96e-90 1.00e+00 1.00e+00 1.00e-01 35 0.2 5.692e-11 1.000e+00 1.000e+00 5.69e-11 0.00e+00 1.96e-90 1.47e-90 1.00e+00 1.00e+00 1.00e-01 36 0.2 5.692e-12 1.000e+00 1.000e+00 5.69e-12 0.00e+00 9.82e-91 4.91e-91 1.00e+00 1.00e+00 1.00e-01 37 0.2 5.692e-13 1.000e+00 1.000e+00 5.69e-13 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 38 0.2 5.692e-14 1.000e+00 1.000e+00 5.69e-14 4.91e-91 1.96e-90 1.96e-90 1.00e+00 1.00e+00 1.00e-01 39 0.2 5.692e-15 1.000e+00 1.000e+00 5.69e-15 4.91e-91 9.82e-91 1.58e-91 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.164238 seconds (36.09 k allocations: 3.238 MiB, 76.40% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:1.0000000000000005691723278366416861879595763094229654106229723826343406620015981991860279658 Dual objective:0.99999999999999943082767216337127209759143460468258988906557772435476604996095098262648013301 Duality gap:5.6917232783663520704518407084868243898485833877975145389337569723019498653208233770743335244e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.4 1.000e+20 0.000e+00 1.000e+10 1.00e+00 1.00e+10 0.00e+00 2.00e+10 1.00e+00 9.00e-01 3.00e-01 2 0.4 1.600e+19 1.600e+10 1.000e+09 8.82e-01 0.00e+00 0.00e+00 2.00e+09 1.00e+00 9.00e-01 3.00e-01 3 0.4 2.560e+18 2.560e+10 1.000e+08 9.92e-01 0.00e+00 0.00e+00 2.00e+08 1.00e+00 9.00e-01 3.00e-01 4 0.4 4.096e+17 4.096e+10 1.000e+07 1.00e+00 0.00e+00 0.00e+00 2.00e+07 1.00e+00 9.00e-01 3.00e-01 5 0.4 6.554e+16 6.554e+10 1.000e+06 1.00e+00 0.00e+00 0.00e+00 2.00e+06 1.00e+00 9.00e-01 3.00e-01 6 0.4 1.049e+16 1.049e+11 1.000e+05 1.00e+00 0.00e+00 0.00e+00 2.00e+05 1.00e+00 9.00e-01 3.00e-01 7 0.4 1.678e+15 1.678e+11 1.000e+04 1.00e+00 0.00e+00 0.00e+00 2.00e+04 1.00e+00 9.00e-01 3.00e-01 8 0.4 2.684e+14 2.684e+11 1.000e+03 1.00e+00 0.00e+00 0.00e+00 2.00e+03 1.00e+00 9.00e-01 3.00e-01 9 0.4 4.292e+13 4.292e+11 1.000e+02 1.00e+00 0.00e+00 0.00e+00 1.99e+02 1.00e+00 9.05e-01 3.00e-01 10 0.4 6.817e+12 6.817e+11 1.000e+01 1.00e+00 0.00e+00 0.00e+00 1.90e+01 1.00e+00 9.47e-01 3.00e-01 11 0.4 1.014e+12 1.014e+12 1.000e+00 1.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e+00 3.00e-01 12 0.4 3.549e+11 7.098e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 3.00e-01 13 0.4 1.065e+11 2.130e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 14 0.4 1.065e+10 2.130e+10 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 15 0.4 1.065e+09 2.130e+09 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 16 0.4 1.065e+08 2.130e+08 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 17 0.4 1.065e+07 2.130e+07 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 18 0.4 1.065e+06 2.130e+06 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 19 0.4 1.065e+05 2.130e+05 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 20 0.4 1.065e+04 2.130e+04 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 21 0.4 1.065e+03 2.131e+03 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 22 0.5 1.067e+02 2.140e+02 5.003e-01 9.95e-01 0.00e+00 0.00e+00 4.91e-91 9.98e-01 9.98e-01 1.00e-01 23 0.5 1.090e+01 2.230e+01 5.026e-01 9.56e-01 0.00e+00 0.00e+00 0.00e+00 9.78e-01 9.78e-01 1.00e-01 24 0.5 1.302e+00 3.130e+00 5.247e-01 7.13e-01 0.00e+00 0.00e+00 1.47e-90 8.86e-01 8.86e-01 1.00e-01 25 0.5 2.642e-01 1.213e+00 6.845e-01 2.78e-01 0.00e+00 0.00e+00 4.91e-91 9.25e-01 9.25e-01 1.00e-01 26 0.5 4.423e-02 1.057e+00 9.685e-01 4.37e-02 9.82e-91 0.00e+00 9.82e-91 9.82e-01 9.82e-01 1.00e-01 27 0.5 5.135e-03 1.006e+00 9.954e-01 5.13e-03 4.91e-91 0.00e+00 9.82e-91 9.90e-01 9.90e-01 1.00e-01 28 0.5 5.586e-04 1.001e+00 9.995e-01 5.59e-04 4.91e-91 0.00e+00 1.47e-90 9.98e-01 9.98e-01 1.00e-01 29 0.5 5.683e-05 1.000e+00 9.999e-01 5.68e-05 9.82e-91 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 30 0.5 5.691e-06 1.000e+00 1.000e+00 5.69e-06 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 31 0.5 5.692e-07 1.000e+00 1.000e+00 5.69e-07 4.91e-91 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 32 0.5 5.692e-08 1.000e+00 1.000e+00 5.69e-08 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 33 0.5 5.692e-09 1.000e+00 1.000e+00 5.69e-09 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 34 0.5 5.692e-10 1.000e+00 1.000e+00 5.69e-10 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 35 0.5 5.692e-11 1.000e+00 1.000e+00 5.69e-11 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 36 0.5 5.692e-12 1.000e+00 1.000e+00 5.69e-12 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 37 0.5 5.692e-13 1.000e+00 1.000e+00 5.69e-13 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 38 0.5 5.692e-14 1.000e+00 1.000e+00 5.69e-14 4.91e-91 0.00e+00 2.45e-90 1.00e+00 1.00e+00 1.00e-01 39 0.5 5.692e-15 1.000e+00 1.000e+00 5.69e-15 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.516977 seconds (423.51 k allocations: 24.103 MiB, 25.39% gc time, 64.70% compilation time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:1.0000000000000005691723278366416861879595763094229654106229723826343406620015981991860279668 Dual objective:0.9999999999999994308276721633712720975914346046825898890655777243547660499609509826264801335 Duality gap:5.691723278366352070451840708486824389848583387797514538933756972301949865323277923806982379e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.0 1.000e+20 0.000e+00 1.000e+10 1.00e+00 1.00e+10 0.00e+00 2.00e+10 1.00e+00 9.00e-01 3.00e-01 2 0.0 1.600e+19 1.600e+10 1.000e+09 8.82e-01 0.00e+00 0.00e+00 2.00e+09 1.00e+00 9.00e-01 3.00e-01 3 0.0 2.560e+18 2.560e+10 1.000e+08 9.92e-01 0.00e+00 0.00e+00 2.00e+08 1.00e+00 9.00e-01 3.00e-01 4 0.0 4.096e+17 4.096e+10 1.000e+07 1.00e+00 0.00e+00 0.00e+00 2.00e+07 1.00e+00 9.00e-01 3.00e-01 5 0.0 6.554e+16 6.554e+10 1.000e+06 1.00e+00 0.00e+00 0.00e+00 2.00e+06 1.00e+00 9.00e-01 3.00e-01 6 0.0 1.049e+16 1.049e+11 1.000e+05 1.00e+00 0.00e+00 0.00e+00 2.00e+05 1.00e+00 9.00e-01 3.00e-01 7 0.0 1.678e+15 1.678e+11 1.000e+04 1.00e+00 0.00e+00 0.00e+00 2.00e+04 1.00e+00 9.00e-01 3.00e-01 8 0.0 2.684e+14 2.684e+11 1.000e+03 1.00e+00 0.00e+00 0.00e+00 2.00e+03 1.00e+00 9.00e-01 3.00e-01 9 0.1 4.292e+13 4.292e+11 1.000e+02 1.00e+00 0.00e+00 0.00e+00 1.99e+02 1.00e+00 9.05e-01 3.00e-01 10 0.1 6.817e+12 6.817e+11 1.000e+01 1.00e+00 0.00e+00 0.00e+00 1.90e+01 1.00e+00 9.47e-01 3.00e-01 11 0.1 1.014e+12 1.014e+12 1.000e+00 1.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e+00 3.00e-01 12 0.1 3.549e+11 7.098e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 3.00e-01 13 0.1 1.065e+11 2.130e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 14 0.1 1.065e+10 2.130e+10 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 15 0.1 1.065e+09 2.130e+09 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 16 0.1 1.065e+08 2.130e+08 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 17 0.1 1.065e+07 2.130e+07 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 18 0.1 1.065e+06 2.130e+06 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 19 0.1 1.065e+05 2.130e+05 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 20 0.1 1.065e+04 2.130e+04 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 21 0.1 1.065e+03 2.131e+03 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 22 0.1 1.067e+02 2.140e+02 5.003e-01 9.95e-01 0.00e+00 0.00e+00 4.91e-91 9.98e-01 9.98e-01 1.00e-01 23 0.1 1.090e+01 2.230e+01 5.026e-01 9.56e-01 0.00e+00 0.00e+00 0.00e+00 9.78e-01 9.78e-01 1.00e-01 24 0.1 1.302e+00 3.130e+00 5.247e-01 7.13e-01 0.00e+00 0.00e+00 1.47e-90 8.86e-01 8.86e-01 1.00e-01 25 0.1 2.642e-01 1.213e+00 6.845e-01 2.78e-01 0.00e+00 0.00e+00 4.91e-91 9.25e-01 9.25e-01 1.00e-01 26 0.1 4.423e-02 1.057e+00 9.685e-01 4.37e-02 9.82e-91 0.00e+00 9.82e-91 9.82e-01 9.82e-01 1.00e-01 27 0.1 5.135e-03 1.006e+00 9.954e-01 5.13e-03 4.91e-91 0.00e+00 9.82e-91 9.90e-01 9.90e-01 1.00e-01 28 0.1 5.586e-04 1.001e+00 9.995e-01 5.59e-04 4.91e-91 0.00e+00 1.47e-90 9.98e-01 9.98e-01 1.00e-01 29 0.1 5.683e-05 1.000e+00 9.999e-01 5.68e-05 9.82e-91 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 30 0.1 5.691e-06 1.000e+00 1.000e+00 5.69e-06 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 31 0.1 5.692e-07 1.000e+00 1.000e+00 5.69e-07 4.91e-91 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 32 0.1 5.692e-08 1.000e+00 1.000e+00 5.69e-08 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 33 0.1 5.692e-09 1.000e+00 1.000e+00 5.69e-09 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 34 0.1 5.692e-10 1.000e+00 1.000e+00 5.69e-10 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 35 0.1 5.692e-11 1.000e+00 1.000e+00 5.69e-11 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 36 0.1 5.692e-12 1.000e+00 1.000e+00 5.69e-12 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 37 0.1 5.692e-13 1.000e+00 1.000e+00 5.69e-13 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 38 0.1 5.692e-14 1.000e+00 1.000e+00 5.69e-14 4.91e-91 0.00e+00 2.45e-90 1.00e+00 1.00e+00 1.00e-01 39 0.1 5.692e-15 1.000e+00 1.000e+00 5.69e-15 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.149063 seconds (32.35 k allocations: 3.056 MiB, 74.85% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:1.0000000000000005691723278366416861879595763094229654106229723826343406620015981991860279668 Dual objective:0.9999999999999994308276721633712720975914346046825898890655777243547660499609509826264801335 Duality gap:5.691723278366352070451840708486824389848583387797514538933756972301949865323277923806982379e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.1 1.000e+20 0.000e+00 1.000e+10 1.00e+00 1.00e+10 0.00e+00 2.00e+10 1.00e+00 9.00e-01 3.00e-01 2 0.5 1.600e+19 1.600e+10 1.000e+09 8.82e-01 0.00e+00 0.00e+00 2.00e+09 1.00e+00 9.00e-01 3.00e-01 3 0.5 2.560e+18 2.560e+10 1.000e+08 9.92e-01 0.00e+00 0.00e+00 2.00e+08 1.00e+00 9.00e-01 3.00e-01 4 0.5 4.096e+17 4.096e+10 1.000e+07 1.00e+00 0.00e+00 0.00e+00 2.00e+07 1.00e+00 9.00e-01 3.00e-01 5 0.5 6.554e+16 6.554e+10 1.000e+06 1.00e+00 0.00e+00 0.00e+00 2.00e+06 1.00e+00 9.00e-01 3.00e-01 6 0.5 1.049e+16 1.049e+11 1.000e+05 1.00e+00 0.00e+00 0.00e+00 2.00e+05 1.00e+00 9.00e-01 3.00e-01 7 0.5 1.678e+15 1.678e+11 1.000e+04 1.00e+00 0.00e+00 0.00e+00 2.00e+04 1.00e+00 9.00e-01 3.00e-01 8 0.5 2.684e+14 2.684e+11 1.000e+03 1.00e+00 0.00e+00 0.00e+00 2.00e+03 1.00e+00 9.00e-01 3.00e-01 9 0.5 4.292e+13 4.292e+11 1.000e+02 1.00e+00 0.00e+00 0.00e+00 1.99e+02 1.00e+00 9.05e-01 3.00e-01 10 0.5 6.817e+12 6.817e+11 1.000e+01 1.00e+00 0.00e+00 0.00e+00 1.90e+01 1.00e+00 9.47e-01 3.00e-01 11 0.5 1.014e+12 1.014e+12 1.000e+00 1.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e+00 3.00e-01 12 0.5 3.549e+11 7.098e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 3.00e-01 13 0.5 1.065e+11 2.130e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 14 0.5 1.065e+10 2.130e+10 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 15 0.5 1.065e+09 2.130e+09 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 16 0.6 1.065e+08 2.130e+08 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 17 0.6 1.065e+07 2.130e+07 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 18 0.6 1.065e+06 2.130e+06 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 19 0.6 1.065e+05 2.130e+05 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 20 0.6 1.065e+04 2.130e+04 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 21 0.6 1.065e+03 2.131e+03 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 22 0.6 1.067e+02 2.140e+02 5.003e-01 9.95e-01 0.00e+00 0.00e+00 4.91e-91 9.98e-01 9.98e-01 1.00e-01 23 0.6 1.090e+01 2.230e+01 5.026e-01 9.56e-01 0.00e+00 0.00e+00 0.00e+00 9.78e-01 9.78e-01 1.00e-01 24 0.6 1.302e+00 3.130e+00 5.247e-01 7.13e-01 0.00e+00 0.00e+00 1.47e-90 8.86e-01 8.86e-01 1.00e-01 25 0.6 2.642e-01 1.213e+00 6.845e-01 2.78e-01 0.00e+00 0.00e+00 4.91e-91 9.25e-01 9.25e-01 1.00e-01 26 0.6 4.423e-02 1.057e+00 9.685e-01 4.37e-02 9.82e-91 0.00e+00 9.82e-91 9.82e-01 9.82e-01 1.00e-01 27 0.6 5.135e-03 1.006e+00 9.954e-01 5.13e-03 4.91e-91 0.00e+00 9.82e-91 9.90e-01 9.90e-01 1.00e-01 28 0.6 5.586e-04 1.001e+00 9.995e-01 5.59e-04 4.91e-91 0.00e+00 1.47e-90 9.98e-01 9.98e-01 1.00e-01 29 0.6 5.683e-05 1.000e+00 9.999e-01 5.68e-05 9.82e-91 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 30 0.6 5.691e-06 1.000e+00 1.000e+00 5.69e-06 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 31 0.6 5.692e-07 1.000e+00 1.000e+00 5.69e-07 4.91e-91 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 32 0.6 5.692e-08 1.000e+00 1.000e+00 5.69e-08 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 33 0.6 5.692e-09 1.000e+00 1.000e+00 5.69e-09 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 34 0.6 5.692e-10 1.000e+00 1.000e+00 5.69e-10 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 35 0.6 5.692e-11 1.000e+00 1.000e+00 5.69e-11 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 36 0.6 5.692e-12 1.000e+00 1.000e+00 5.69e-12 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 37 0.6 5.692e-13 1.000e+00 1.000e+00 5.69e-13 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 38 0.6 5.692e-14 1.000e+00 1.000e+00 5.69e-14 4.91e-91 0.00e+00 2.45e-90 1.00e+00 1.00e+00 1.00e-01 39 0.6 5.692e-15 1.000e+00 1.000e+00 5.69e-15 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.647712 seconds (39.65 k allocations: 3.401 MiB, 88.26% gc time, 1.73% compilation time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:1.0000000000000005691723278366416861879595763094229654106229723826343406620015981991860279668 Dual objective:0.9999999999999994308276721633712720975914346046825898890655777243547660499609509826264801335 Duality gap:5.691723278366352070451840708486824389848583387797514538933756972301949865323277923806982379e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.6 1.000e+20 1.000e+00 7.000e+10 1.00e+00 1.00e+10 0.00e+00 7.05e+10 6.66e-01 6.95e-01 3.00e-01 2 0.6 4.559e+19 1.338e+10 7.193e+10 6.86e-01 3.34e+09 0.00e+00 2.15e+10 7.05e-01 7.53e-01 3.00e-01 3 0.6 1.822e+19 2.640e+10 9.901e+10 5.79e-01 9.85e+08 0.00e+00 5.31e+09 6.16e-01 7.88e-01 3.00e-01 4 0.6 8.970e+18 3.260e+10 1.789e+11 6.92e-01 3.78e+08 0.00e+00 1.12e+09 7.73e-01 1.00e+00 3.00e-01 5 0.6 3.189e+18 1.238e+10 3.561e+11 9.33e-01 8.58e+07 0.00e+00 5.93e-142 8.40e-01 1.00e+00 3.00e-01 6 0.6 8.172e+17 2.052e+09 5.731e+11 9.93e-01 1.37e+07 0.00e+00 1.44e-141 8.95e-01 1.00e+00 3.00e-01 7 0.7 1.367e+17 2.121e+08 9.202e+11 1.00e+00 1.44e+06 0.00e+00 4.77e-141 8.90e-01 1.00e+00 3.00e-01 8 0.7 2.412e+16 2.361e+07 1.476e+12 1.00e+00 1.58e+05 0.00e+00 5.92e-142 8.97e-01 1.00e+00 3.00e-01 9 0.7 3.957e+15 2.403e+06 2.364e+12 1.00e+00 1.62e+04 0.00e+00 1.07e-140 8.94e-01 1.00e+00 3.00e-01 10 0.7 6.738e+14 2.573e+05 3.785e+12 1.00e+00 1.73e+03 0.00e+00 8.15e-141 8.99e-01 1.00e+00 3.00e-01 11 0.7 1.095e+14 2.604e+04 6.056e+12 1.00e+00 1.75e+02 0.00e+00 4.04e-140 8.99e-01 1.00e+00 3.00e-01 12 0.7 1.816e+13 2.738e+03 9.636e+12 1.00e+00 1.76e+01 0.00e+00 7.50e-141 9.13e-01 1.00e+00 3.00e-01 13 0.7 3.342e+12 3.449e+02 1.456e+13 1.00e+00 1.53e+00 0.00e+00 7.06e-141 1.00e+00 1.00e+00 3.00e-01 14 0.7 1.007e+12 1.188e+02 1.410e+13 1.00e+00 1.91e-152 0.00e+00 6.04e-140 1.00e+00 1.00e+00 3.00e-01 15 0.8 3.022e+11 1.198e+02 4.231e+12 1.00e+00 9.55e-153 0.00e+00 1.20e-141 9.99e-01 9.99e-01 1.00e-01 16 0.8 3.062e+10 1.199e+02 4.287e+11 1.00e+00 9.55e-153 0.00e+00 6.91e-142 1.00e+00 1.00e+00 1.00e-01 17 0.8 3.063e+09 1.200e+02 4.288e+10 1.00e+00 9.55e-153 0.00e+00 6.66e-143 1.00e+00 1.00e+00 1.00e-01 18 0.8 3.063e+08 1.201e+02 4.288e+09 1.00e+00 9.55e-153 0.00e+00 5.46e-144 1.00e+00 1.00e+00 1.00e-01 19 0.8 3.063e+07 1.202e+02 4.289e+08 1.00e+00 9.55e-153 0.00e+00 1.14e-144 1.00e+00 1.00e+00 1.00e-01 20 0.8 3.064e+06 1.202e+02 4.289e+07 1.00e+00 9.55e-153 0.00e+00 2.50e-146 1.00e+00 1.00e+00 1.00e-01 21 0.8 3.064e+05 1.203e+02 4.290e+06 1.00e+00 9.55e-153 0.00e+00 3.72e-147 1.00e+00 1.00e+00 1.00e-01 22 0.8 3.065e+04 1.203e+02 4.293e+05 9.99e-01 9.55e-153 0.00e+00 2.55e-148 1.00e+00 1.00e+00 1.00e-01 23 0.9 3.075e+03 1.204e+02 4.317e+04 9.94e-01 9.55e-153 0.00e+00 5.49e-150 9.97e-01 9.97e-01 1.00e-01 24 0.9 3.167e+02 1.211e+02 4.554e+03 9.48e-01 9.55e-153 0.00e+00 5.88e-150 9.70e-01 9.70e-01 1.00e-01 25 0.9 4.021e+01 1.274e+02 6.904e+02 6.88e-01 9.55e-153 0.00e+00 1.83e-150 8.70e-01 8.70e-01 1.00e-01 26 0.9 8.743e+00 1.689e+02 2.913e+02 2.66e-01 1.91e-152 0.00e+00 9.78e-151 9.15e-01 9.15e-01 1.00e-01 27 0.9 1.547e+00 2.316e+02 2.532e+02 4.47e-02 1.91e-152 0.00e+00 1.89e-150 9.82e-01 9.82e-01 1.00e-01 28 0.9 1.800e-01 2.389e+02 2.414e+02 5.25e-03 1.91e-152 0.00e+00 1.38e-150 9.89e-01 9.89e-01 1.00e-01 29 0.9 1.986e-02 2.399e+02 2.401e+02 5.79e-04 1.91e-152 0.00e+00 5.00e-151 9.97e-01 9.97e-01 1.00e-01 30 0.9 2.030e-03 2.400e+02 2.400e+02 5.92e-05 1.91e-152 0.00e+00 3.78e-151 1.00e+00 1.00e+00 1.00e-01 31 1.0 2.034e-04 2.400e+02 2.400e+02 5.93e-06 1.91e-152 0.00e+00 5.58e-151 1.00e+00 1.00e+00 1.00e-01 32 1.0 2.035e-05 2.400e+02 2.400e+02 5.93e-07 1.91e-152 0.00e+00 2.54e-151 1.00e+00 1.00e+00 1.00e-01 33 1.0 2.035e-06 2.400e+02 2.400e+02 5.94e-08 1.91e-152 0.00e+00 1.56e-150 1.00e+00 1.00e+00 1.00e-01 34 1.0 2.035e-07 2.400e+02 2.400e+02 5.94e-09 3.82e-152 0.00e+00 8.58e-151 1.00e+00 1.00e+00 1.00e-01 35 1.0 2.035e-08 2.400e+02 2.400e+02 5.94e-10 9.55e-153 0.00e+00 5.97e-151 1.00e+00 1.00e+00 1.00e-01 36 1.0 2.036e-09 2.400e+02 2.400e+02 5.94e-11 1.91e-152 0.00e+00 1.41e-150 1.00e+00 1.00e+00 1.00e-01 37 1.0 2.036e-10 2.400e+02 2.400e+02 5.94e-12 1.91e-152 0.00e+00 5.51e-151 1.00e+00 1.00e+00 1.00e-01 38 1.0 2.036e-11 2.400e+02 2.400e+02 5.94e-13 1.91e-152 0.00e+00 1.99e-151 1.00e+00 1.00e+00 1.00e-01 39 1.0 2.036e-12 2.400e+02 2.400e+02 5.94e-14 1.91e-152 0.00e+00 5.57e-151 1.00e+00 1.00e+00 1.00e-01 40 1.1 2.036e-13 2.400e+02 2.400e+02 5.94e-15 1.91e-152 0.00e+00 1.58e-150 1.00e+00 1.00e+00 1.00e-01 41 1.1 2.037e-14 2.400e+02 2.400e+02 5.94e-16 9.55e-153 0.00e+00 2.10e-150 1.00e+00 1.00e+00 1.00e-01 42 1.1 2.037e-15 2.400e+02 2.400e+02 5.94e-17 1.91e-152 0.00e+00 3.98e-150 1.00e+00 1.00e+00 1.00e-01 43 1.1 2.037e-16 2.400e+02 2.400e+02 5.94e-18 1.91e-152 0.00e+00 5.13e-150 1.00e+00 1.00e+00 1.00e-01 44 1.1 2.037e-17 2.400e+02 2.400e+02 5.94e-19 1.91e-152 0.00e+00 4.24e-149 1.00e+00 1.00e+00 1.00e-01 45 1.1 2.037e-18 2.400e+02 2.400e+02 5.94e-20 1.91e-152 0.00e+00 9.78e-149 1.00e+00 1.00e+00 1.00e-01 46 1.1 2.038e-19 2.400e+02 2.400e+02 5.94e-21 9.55e-153 0.00e+00 7.53e-149 1.00e+00 1.00e+00 1.00e-01 47 1.1 2.038e-20 2.400e+02 2.400e+02 5.94e-22 3.82e-152 0.00e+00 2.09e-148 1.00e+00 1.00e+00 1.00e-01 48 1.2 2.038e-21 2.400e+02 2.400e+02 5.94e-23 1.91e-152 0.00e+00 9.27e-148 1.00e+00 1.00e+00 1.00e-01 49 1.2 2.038e-22 2.400e+02 2.400e+02 5.94e-24 4.77e-153 0.00e+00 7.90e-149 1.00e+00 1.00e+00 1.00e-01 50 1.2 2.038e-23 2.400e+02 2.400e+02 5.95e-25 9.55e-153 0.00e+00 3.12e-148 1.00e+00 1.00e+00 1.00e-01 51 1.2 2.039e-24 2.400e+02 2.400e+02 5.95e-26 1.91e-152 0.00e+00 6.27e-148 1.00e+00 1.00e+00 1.00e-01 52 1.2 2.039e-25 2.400e+02 2.400e+02 5.95e-27 1.91e-152 0.00e+00 7.95e-147 1.00e+00 1.00e+00 1.00e-01 53 1.2 2.039e-26 2.400e+02 2.400e+02 5.95e-28 1.91e-152 0.00e+00 8.79e-147 1.00e+00 1.00e+00 1.00e-01 54 1.2 2.039e-27 2.400e+02 2.400e+02 5.95e-29 1.91e-152 0.00e+00 2.49e-146 1.00e+00 1.00e+00 1.00e-01 55 1.2 2.039e-28 2.400e+02 2.400e+02 5.95e-30 1.91e-152 0.00e+00 9.63e-146 1.00e+00 1.00e+00 1.00e-01 56 1.3 2.040e-29 2.400e+02 2.400e+02 5.95e-31 1.91e-152 0.00e+00 1.80e-145 1.00e+00 1.00e+00 1.00e-01 57 1.3 2.040e-30 2.400e+02 2.400e+02 5.95e-32 1.91e-152 0.00e+00 1.36e-145 1.00e+00 1.00e+00 1.00e-01 58 1.3 2.040e-31 2.400e+02 2.400e+02 5.95e-33 1.91e-152 0.00e+00 3.34e-146 1.00e+00 1.00e+00 1.00e-01 59 1.3 2.040e-32 2.400e+02 2.400e+02 5.95e-34 3.82e-152 0.00e+00 6.56e-145 1.00e+00 1.00e+00 1.00e-01 60 1.3 2.040e-33 2.400e+02 2.400e+02 5.95e-35 3.82e-152 0.00e+00 9.17e-145 1.00e+00 1.00e+00 1.00e-01 61 1.3 2.041e-34 2.400e+02 2.400e+02 5.95e-36 1.91e-152 0.00e+00 1.41e-144 1.00e+00 1.00e+00 1.00e-01 62 1.3 2.041e-35 2.400e+02 2.400e+02 5.95e-37 3.82e-152 0.00e+00 3.08e-144 1.00e+00 1.00e+00 1.00e-01 63 1.3 2.041e-36 2.400e+02 2.400e+02 5.95e-38 1.91e-152 0.00e+00 7.50e-145 1.00e+00 1.00e+00 1.00e-01 64 1.3 2.041e-37 2.400e+02 2.400e+02 5.95e-39 1.91e-152 0.00e+00 3.31e-143 1.00e+00 1.00e+00 1.00e-01 65 1.4 2.041e-38 2.400e+02 2.400e+02 5.95e-40 1.91e-152 0.00e+00 2.73e-143 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 1.356866 seconds (870.25 k allocations: 54.841 MiB, 68.88% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:239.999999999999999999999999999999999999985708169427611424375441720061940307457779902353449313156538517169817513100742083202535233327029155449848409348539654 Dual objective:240.000000000000000000000000000000000000014291830572388575624558279938059692542255337086867596881216560733981795596489302049253661524107905599303018323313747 Duality gap:5.95492940516190651023261664085820522593238223612880910930792574253422551994733682254888219810891175689663555849398207689286511652425705895903735221630275489e-41 ** Starting computation of basis transformations ** Block 0 of size 1 x 1 Block 0 has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block 5 of size 1 x 1 Block 2 of size 1 x 1 Block 4 of size 1 x 1 Block 1 of size 1 x 1 Block 6 of size 1 x 1 Block 3 of size 1 x 1 Block B of size 3 x 3 Block B has 2 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block A of size 4 x 4 Block A has 4 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 ** Finished computation of basis transformations (8.778066021s) ** ** Transforming the problem and the solution ** (6.529760857s) ** Projection the solution into the affine space ** Reducing the system from 7 columns to 7 columns Constructing the linear system... (6.482048099s) Preprocessing to get an integer system... (6.725e-5s) Finding the pivots of A using RREF mod p... (0.000196588 7.9389e-5 s) Solving the system of size 7 x 7 using the pseudoinverse... 0.635082988s ┌ Warning: `zeros(R::NCRing, r::Int...)` is deprecated, use `zero_matrix(R, r...)` instead. │ caller = xrational_to_field(x::Vector{Rational{BigInt}}, FF::QQField) at rounding.jl:1321 └ @ Core ~/.julia/packages/ClusteredLowRankSolver/PUwUL/src/rounding.jl:1321 ** Finished projection into affine space (10.518199412s) ** ** Checking feasibility ** The slacks are satisfied (checked or ensured by solving the system) Checking sdp constraints done (0.143971267) [ Info: Creating the univariate constraint [ Info: Constructing trivariate constraint iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.3 1.000e+06 1.000e+00 5.001e+03 1.00e+00 1.00e+03 0.00e+00 2.36e+06 6.53e-01 5.28e-01 3.00e-01 2 1.0 5.015e+05 5.164e+02 3.088e+03 7.13e-01 3.47e+02 0.00e+00 1.12e+06 4.22e-01 6.07e-01 3.00e-01 3 1.2 3.499e+05 6.688e+02 8.065e+03 8.47e-01 2.00e+02 0.00e+00 4.38e+05 5.84e-01 4.21e-01 3.00e-01 4 1.4 2.030e+05 5.414e+02 1.758e+04 9.40e-01 8.32e+01 0.00e+00 2.54e+05 4.22e-01 9.53e-01 3.00e-01 5 1.6 1.588e+05 3.876e+02 6.630e+04 9.88e-01 4.81e+01 0.00e+00 1.18e+04 7.78e-01 1.00e+00 3.00e-01 6 1.9 5.705e+04 1.104e+02 1.123e+05 9.98e-01 1.07e+01 0.00e+00 1.48e-66 8.24e-01 1.00e+00 3.00e-01 7 2.1 1.728e+04 2.822e+01 1.690e+05 1.00e+00 1.88e+00 0.00e+00 2.28e-66 8.75e-01 1.00e+00 3.00e-01 8 2.3 4.993e+03 1.126e+01 1.883e+05 1.00e+00 2.35e-01 0.00e+00 5.52e-66 8.48e-01 9.86e-01 3.00e-01 9 2.5 1.681e+03 9.036e+00 9.790e+04 1.00e+00 3.57e-02 0.00e+00 7.51e-66 8.19e-01 1.00e+00 3.00e-01 10 3.2 5.450e+02 8.700e+00 3.672e+04 1.00e+00 6.44e-03 0.00e+00 8.72e-66 8.33e-01 1.00e+00 3.00e-01 11 3.4 1.723e+02 8.588e+00 1.271e+04 9.99e-01 1.08e-03 0.00e+00 2.04e-66 1.00e+00 1.00e+00 3.00e-01 12 3.6 5.146e+01 8.519e+00 4.074e+03 9.96e-01 5.20e-74 0.00e+00 7.08e-67 1.00e+00 1.00e+00 3.00e-01 13 3.8 1.544e+01 8.502e+00 1.228e+03 9.86e-01 2.29e-73 0.00e+00 6.45e-68 9.92e-01 9.92e-01 1.00e-01 14 4.0 1.654e+00 8.507e+00 1.392e+02 8.85e-01 1.00e-73 0.00e+00 3.59e-69 9.78e-01 9.78e-01 1.00e-01 15 4.3 1.981e-01 8.562e+00 2.421e+01 4.77e-01 1.01e-73 0.00e+00 7.83e-70 8.60e-01 8.60e-01 1.00e-01 16 4.5 4.484e-02 8.877e+00 1.242e+01 1.66e-01 2.90e-74 0.00e+00 1.47e-69 8.02e-01 8.02e-01 1.00e-01 17 4.7 1.245e-02 9.486e+00 1.047e+01 4.93e-02 3.84e-74 0.00e+00 2.62e-69 7.62e-01 7.62e-01 1.00e-01 18 5.4 3.917e-03 9.841e+00 1.015e+01 1.55e-02 6.66e-74 0.00e+00 6.69e-69 7.52e-01 7.52e-01 1.00e-01 19 5.6 1.267e-03 9.941e+00 1.004e+01 5.01e-03 1.18e-73 0.00e+00 3.31e-69 8.14e-01 8.14e-01 1.00e-01 20 5.7 3.392e-04 9.983e+00 1.001e+01 1.34e-03 8.40e-74 0.00e+00 1.46e-69 7.89e-01 7.89e-01 1.00e-01 21 5.9 9.835e-05 9.995e+00 1.000e+01 3.89e-04 7.24e-74 0.00e+00 1.46e-68 9.42e-01 9.42e-01 1.00e-01 22 6.0 1.496e-05 9.999e+00 1.000e+01 5.91e-05 3.65e-74 0.00e+00 2.52e-69 9.79e-01 9.79e-01 1.00e-01 23 6.2 1.780e-06 1.000e+01 1.000e+01 7.03e-06 7.52e-74 0.00e+00 3.80e-69 9.89e-01 9.89e-01 1.00e-01 24 6.4 1.951e-07 1.000e+01 1.000e+01 7.71e-07 8.62e-74 0.00e+00 2.24e-69 9.97e-01 9.97e-01 1.00e-01 25 6.6 2.009e-08 1.000e+01 1.000e+01 7.94e-08 1.56e-73 0.00e+00 3.53e-69 1.00e+00 1.00e+00 1.00e-01 26 7.2 2.016e-09 1.000e+01 1.000e+01 7.96e-09 5.40e-74 0.00e+00 6.76e-69 1.00e+00 1.00e+00 1.00e-01 27 7.4 2.017e-10 1.000e+01 1.000e+01 7.97e-10 1.09e-73 0.00e+00 9.03e-69 1.00e+00 1.00e+00 1.00e-01 28 7.5 2.017e-11 1.000e+01 1.000e+01 7.97e-11 1.24e-73 0.00e+00 1.27e-68 1.00e+00 1.00e+00 1.00e-01 29 7.7 2.017e-12 1.000e+01 1.000e+01 7.97e-12 9.29e-74 0.00e+00 7.65e-69 1.00e+00 1.00e+00 1.00e-01 30 7.9 2.018e-13 1.000e+01 1.000e+01 7.97e-13 1.40e-73 0.00e+00 7.01e-69 1.00e+00 1.00e+00 1.00e-01 31 8.1 2.018e-14 1.000e+01 1.000e+01 7.97e-14 2.87e-74 0.00e+00 1.05e-68 1.00e+00 1.00e+00 1.00e-01 32 8.2 2.018e-15 1.000e+01 1.000e+01 7.97e-15 1.25e-73 0.00e+00 1.16e-68 1.00e+00 1.00e+00 1.00e-01 33 8.5 2.018e-16 1.000e+01 1.000e+01 7.97e-16 1.06e-73 0.00e+00 2.48e-69 1.00e+00 1.00e+00 1.00e-01 34 9.1 2.018e-17 1.000e+01 1.000e+01 7.97e-17 8.57e-74 0.00e+00 1.04e-68 1.00e+00 1.00e+00 1.00e-01 35 9.3 2.019e-18 1.000e+01 1.000e+01 7.97e-18 1.53e-73 0.00e+00 1.01e-68 1.00e+00 1.00e+00 1.00e-01 36 9.4 2.019e-19 1.000e+01 1.000e+01 7.97e-19 2.09e-73 0.00e+00 7.46e-69 1.00e+00 1.00e+00 1.00e-01 37 9.6 2.019e-20 1.000e+01 1.000e+01 7.98e-20 7.79e-74 0.00e+00 1.06e-68 1.00e+00 1.00e+00 1.00e-01 38 9.8 2.019e-21 1.000e+01 1.000e+01 7.98e-21 1.18e-73 0.00e+00 5.27e-69 1.00e+00 1.00e+00 1.00e-01 39 10.0 2.019e-22 1.000e+01 1.000e+01 7.98e-22 3.59e-74 0.00e+00 1.50e-68 1.00e+00 1.00e+00 1.00e-01 40 10.2 2.020e-23 1.000e+01 1.000e+01 7.98e-23 2.51e-73 0.00e+00 9.26e-69 1.00e+00 1.00e+00 1.00e-01 41 10.4 2.020e-24 1.000e+01 1.000e+01 7.98e-24 2.20e-73 0.00e+00 6.34e-69 1.00e+00 1.00e+00 1.00e-01 42 11.1 2.020e-25 1.000e+01 1.000e+01 7.98e-25 1.82e-73 0.00e+00 7.06e-68 1.00e+00 1.00e+00 1.00e-01 43 11.3 2.020e-26 1.000e+01 1.000e+01 7.98e-26 9.12e-74 0.00e+00 1.15e-67 1.00e+00 1.00e+00 1.00e-01 44 11.5 2.020e-27 1.000e+01 1.000e+01 7.98e-27 7.13e-74 0.00e+00 3.77e-68 1.00e+00 1.00e+00 1.00e-01 45 11.7 2.021e-28 1.000e+01 1.000e+01 7.98e-28 2.41e-73 0.00e+00 3.80e-67 1.00e+00 1.00e+00 1.00e-01 46 11.8 2.021e-29 1.000e+01 1.000e+01 7.98e-29 1.08e-73 0.00e+00 2.58e-67 1.00e+00 1.00e+00 1.00e-01 47 12.0 2.021e-30 1.000e+01 1.000e+01 7.98e-30 1.40e-73 0.00e+00 6.93e-67 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 12.033557 seconds (17.72 M allocations: 1.147 GiB, 32.65% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:9.999999999999999999999999999988680840486164945127713739788275650369666256828954 Dual objective:10.0000000000000000000000000000046489405146108261082604283244516865152603560218 Duality gap:7.984050014222940490273344268090680840901830913002519384164968896587007525658183e-31 ** Starting computation of basis transformations ** Block (:trivariatesos, 2, 2) of size 1 x 1 Block (:F, 4) of size 1 x 1 Block (:F, 4) has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block (:trivariatesos, 4, 3) of size 1 x 1 Block (:trivariatesos, 4, 1) of size 2 x 2 Block (:trivariatesos, 1, 2) of size 2 x 2 Block (:F, 3) of size 2 x 2 Block (:F, 3) has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block (:trivariatesos, 3, 3) of size 3 x 3 Block (:trivariatesos, 3, 3) has 1 kernel vectors. The maximum numerator and denominator are 7 and 6 After reduction, the maximum number of the basis transformation matrix is 7 Block (:F, 2) of size 3 x 3 Block (:F, 2) has 1 kernel vectors. The maximum numerator and denominator are 1 and 2 After reduction, the maximum number of the basis transformation matrix is 2 Block (:trivariatesos, 5, 3) of size 3 x 3 Block (:trivariatesos, 5, 3) has 2 kernel vectors. The maximum numerator and denominator are 1 and 2 After reduction, the maximum number of the basis transformation matrix is 2 Block (:trivariatesos, 3, 1) of size 4 x 4 Block (:trivariatesos, 3, 1) has 1 kernel vectors. The maximum numerator and denominator are 49 and 36 After reduction, the maximum number of the basis transformation matrix is 49 Block (:univariatesos, 2) of size 4 x 4 Block (:univariatesos, 2) has 1 kernel vectors. The maximum numerator and denominator are 22 and 27 After reduction, the maximum number of the basis transformation matrix is 27 Block (:trivariatesos, 5, 1) of size 4 x 4 Block (:trivariatesos, 5, 1) has 3 kernel vectors. The maximum numerator and denominator are 1 and 6 After reduction, the maximum number of the basis transformation matrix is 3 Block (:F, 1) of size 4 x 4 Block (:F, 0) of size 5 x 5 Block (:F, 0) has 1 kernel vectors. The maximum numerator and denominator are 23 and 144 After reduction, the maximum number of the basis transformation matrix is 144 Block (:univariatesos, 1) of size 5 x 5 Block (:univariatesos, 1) has 2 kernel vectors. The maximum numerator and denominator are 35 and 81 After reduction, the maximum number of the basis transformation matrix is 81 Block (:trivariatesos, 2, 3) of size 6 x 6 Block (:trivariatesos, 2, 3) has 2 kernel vectors. The maximum numerator and denominator are 13 and 36 After reduction, the maximum number of the basis transformation matrix is 36 Block (:trivariatesos, 2, 1) of size 7 x 7 Block (:trivariatesos, 2, 1) has 2 kernel vectors. The maximum numerator and denominator are 67 and 36 After reduction, the maximum number of the basis transformation matrix is 66 Block (:trivariatesos, 1, 3) of size 11 x 11 Block (:trivariatesos, 1, 3) has 2 kernel vectors. The maximum numerator and denominator are 67 and 72 After reduction, the maximum number of the basis transformation matrix is 72 Block (:trivariatesos, 1, 1) of size 11 x 11 Block (:trivariatesos, 1, 1) has 3 kernel vectors. The maximum numerator and denominator are 49 and 432 After reduction, the maximum number of the basis transformation matrix is 432 ** Finished computation of basis transformations (6.294981799s) ** ** Transforming the problem and the solution ** (1.348961997s) ** Projection the solution into the affine space ** Reducing the system from 161 columns to 161 columns Constructing the linear system... (2.656102245s) Preprocessing to get an integer system... (0.016745944s) Finding the pivots of A using RREF mod p... (0.016233199 0.011747971 s) Solving the system of size 50 x 52 using the pseudoinverse... 0.261314962s ** Finished projection into affine space (3.941888062s) ** ** Checking feasibility ** The slacks are satisfied (checked or ensured by solving the system) Checking sdp constraints done (0.2509277) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.6 1.000e+20 1.000e+00 1.900e+11 1.00e+00 1.00e+10 0.00e+00 2.18e+11 3.69e-01 5.95e-01 3.00e-01 2 0.6 6.494e+19 1.223e+10 1.739e+11 8.69e-01 6.31e+09 0.00e+00 8.84e+10 7.31e-01 6.03e-01 3.00e-01 3 0.7 2.817e+19 3.102e+10 2.208e+11 7.54e-01 1.70e+09 0.00e+00 3.51e+10 6.85e-01 7.10e-01 3.00e-01 4 0.7 1.230e+19 3.546e+10 3.600e+11 8.21e-01 5.34e+08 0.00e+00 1.02e+10 5.57e-01 1.00e+00 3.00e-01 5 0.7 8.216e+18 2.178e+10 8.065e+11 9.47e-01 2.37e+08 0.00e+00 3.31e-78 7.69e-01 1.00e+00 3.00e-01 6 0.8 3.035e+18 5.560e+09 1.290e+12 9.91e-01 5.47e+07 0.00e+00 2.96e-77 8.01e-01 1.00e+00 3.00e-01 7 0.8 9.665e+17 1.150e+09 2.064e+12 9.99e-01 1.09e+07 0.00e+00 4.49e-77 8.65e-01 1.00e+00 3.00e-01 8 0.9 2.092e+17 1.573e+08 3.302e+12 1.00e+00 1.47e+06 0.00e+00 1.93e-76 8.98e-01 1.00e+00 3.00e-01 9 0.9 3.428e+16 1.603e+07 5.284e+12 1.00e+00 1.51e+05 0.00e+00 3.88e-77 8.88e-01 1.00e+00 3.00e-01 10 1.0 6.127e+15 1.797e+06 8.453e+12 1.00e+00 1.68e+04 0.00e+00 9.12e-77 8.99e-01 1.00e+00 3.00e-01 11 1.0 9.935e+14 1.816e+05 1.352e+13 1.00e+00 1.71e+03 0.00e+00 4.02e-77 8.93e-01 1.00e+00 3.00e-01 12 1.0 1.699e+14 1.946e+04 2.163e+13 1.00e+00 1.82e+02 0.00e+00 7.58e-76 9.00e-01 1.00e+00 3.00e-01 13 1.1 2.794e+13 2.009e+03 3.442e+13 1.00e+00 1.82e+01 0.00e+00 2.12e-75 8.98e-01 1.00e+00 3.00e-01 14 1.1 5.597e+12 2.662e+02 5.231e+13 1.00e+00 1.86e+00 0.00e+00 2.60e-75 8.79e-01 1.00e+00 3.00e-01 15 1.2 2.030e+12 9.171e+01 5.562e+13 1.00e+00 2.25e-01 0.00e+00 1.13e-75 7.97e-01 1.00e+00 3.00e-01 16 1.2 7.056e+11 7.350e+01 2.417e+13 1.00e+00 4.58e-02 0.00e+00 3.91e-76 8.24e-01 1.00e+00 3.00e-01 17 1.3 2.136e+11 7.073e+01 7.703e+12 1.00e+00 8.06e-03 0.00e+00 1.58e-76 1.00e+00 1.00e+00 3.00e-01 18 1.3 6.305e+10 6.979e+01 2.396e+12 1.00e+00 6.28e-89 0.00e+00 2.17e-75 1.00e+00 1.00e+00 3.00e-01 19 1.4 1.891e+10 6.985e+01 7.188e+11 1.00e+00 6.28e-89 0.00e+00 9.84e-75 9.94e-01 9.94e-01 1.00e-01 20 1.4 1.996e+09 6.986e+01 7.583e+10 1.00e+00 3.14e-89 0.00e+00 6.49e-77 1.00e+00 1.00e+00 1.00e-01 21 1.5 2.003e+08 6.986e+01 7.613e+09 1.00e+00 6.28e-89 0.00e+00 4.03e-77 1.00e+00 1.00e+00 1.00e-01 22 1.5 2.005e+07 6.987e+01 7.619e+08 1.00e+00 3.14e-89 0.00e+00 1.24e-78 1.00e+00 1.00e+00 1.00e-01 23 1.5 2.005e+06 6.987e+01 7.619e+07 1.00e+00 6.28e-89 0.00e+00 5.88e-80 1.00e+00 1.00e+00 1.00e-01 24 1.6 2.005e+05 6.988e+01 7.620e+06 1.00e+00 6.28e-89 0.00e+00 3.06e-80 1.00e+00 1.00e+00 1.00e-01 25 1.6 2.006e+04 6.988e+01 7.622e+05 1.00e+00 3.14e-89 0.00e+00 1.14e-81 1.00e+00 1.00e+00 1.00e-01 26 1.7 2.008e+03 6.989e+01 7.636e+04 9.98e-01 6.28e-89 0.00e+00 1.58e-82 9.99e-01 9.99e-01 1.00e-01 27 1.7 2.026e+02 6.998e+01 7.769e+03 9.82e-01 6.28e-89 0.00e+00 1.22e-83 9.90e-01 9.90e-01 1.00e-01 28 1.8 2.205e+01 7.086e+01 9.088e+02 8.55e-01 6.28e-89 0.00e+00 3.01e-84 9.26e-01 9.26e-01 1.00e-01 29 1.8 3.667e+00 7.788e+01 2.172e+02 4.72e-01 6.28e-89 0.00e+00 2.44e-84 8.10e-01 8.10e-01 1.00e-01 30 2.4 9.926e-01 1.015e+02 1.392e+02 1.57e-01 3.14e-89 0.00e+00 4.21e-84 6.72e-01 6.72e-01 1.00e-01 31 2.4 3.920e-01 1.120e+02 1.269e+02 6.23e-02 1.26e-88 0.00e+00 1.67e-84 8.04e-01 8.04e-01 1.00e-01 32 2.5 1.082e-01 1.179e+02 1.220e+02 1.71e-02 1.89e-88 0.00e+00 6.25e-85 8.72e-01 8.72e-01 1.00e-01 33 2.5 2.331e-02 1.195e+02 1.204e+02 3.69e-03 6.28e-89 0.00e+00 1.90e-84 9.67e-01 9.67e-01 1.00e-01 34 2.6 3.027e-03 1.199e+02 1.201e+02 4.79e-04 1.26e-88 0.00e+00 4.98e-84 9.83e-01 9.83e-01 1.00e-01 35 2.6 3.478e-04 1.200e+02 1.200e+02 5.51e-05 6.28e-89 0.00e+00 3.35e-84 9.94e-01 9.94e-01 1.00e-01 36 2.6 3.681e-05 1.200e+02 1.200e+02 5.83e-06 1.26e-88 0.00e+00 2.41e-84 9.99e-01 9.99e-01 1.00e-01 37 2.7 3.725e-06 1.200e+02 1.200e+02 5.90e-07 6.28e-89 0.00e+00 4.22e-85 1.00e+00 1.00e+00 1.00e-01 38 2.7 3.731e-07 1.200e+02 1.200e+02 5.91e-08 6.28e-89 0.00e+00 4.96e-84 1.00e+00 1.00e+00 1.00e-01 39 2.8 3.732e-08 1.200e+02 1.200e+02 5.91e-09 6.28e-89 0.00e+00 6.14e-85 1.00e+00 1.00e+00 1.00e-01 40 2.8 3.733e-09 1.200e+02 1.200e+02 5.91e-10 6.28e-89 0.00e+00 1.18e-84 1.00e+00 1.00e+00 1.00e-01 41 2.9 3.733e-10 1.200e+02 1.200e+02 5.91e-11 3.14e-89 0.00e+00 3.06e-84 1.00e+00 1.00e+00 1.00e-01 42 2.9 3.733e-11 1.200e+02 1.200e+02 5.91e-12 6.28e-89 0.00e+00 5.73e-84 1.00e+00 1.00e+00 1.00e-01 43 3.0 3.734e-12 1.200e+02 1.200e+02 5.91e-13 6.28e-89 0.00e+00 2.71e-84 1.00e+00 1.00e+00 1.00e-01 44 3.0 3.734e-13 1.200e+02 1.200e+02 5.91e-14 1.26e-88 0.00e+00 3.64e-85 1.00e+00 1.00e+00 1.00e-01 45 3.0 3.734e-14 1.200e+02 1.200e+02 5.91e-15 6.28e-89 0.00e+00 3.72e-84 1.00e+00 1.00e+00 1.00e-01 46 3.1 3.735e-15 1.200e+02 1.200e+02 5.91e-16 6.28e-89 0.00e+00 1.43e-83 1.00e+00 1.00e+00 1.00e-01 47 3.1 3.735e-16 1.200e+02 1.200e+02 5.91e-17 6.28e-89 0.00e+00 2.22e-83 1.00e+00 1.00e+00 1.00e-01 48 3.2 3.736e-17 1.200e+02 1.200e+02 5.91e-18 6.28e-89 0.00e+00 5.73e-83 1.00e+00 1.00e+00 1.00e-01 49 3.2 3.736e-18 1.200e+02 1.200e+02 5.92e-19 1.26e-88 0.00e+00 1.45e-82 1.00e+00 1.00e+00 1.00e-01 50 3.3 3.736e-19 1.200e+02 1.200e+02 5.92e-20 1.26e-88 0.00e+00 9.72e-83 1.00e+00 1.00e+00 1.00e-01 51 3.3 3.737e-20 1.200e+02 1.200e+02 5.92e-21 6.28e-89 0.00e+00 8.73e-83 1.00e+00 1.00e+00 1.00e-01 52 3.4 3.737e-21 1.200e+02 1.200e+02 5.92e-22 6.28e-89 0.00e+00 8.97e-82 1.00e+00 1.00e+00 1.00e-01 53 3.4 3.737e-22 1.200e+02 1.200e+02 5.92e-23 3.14e-89 0.00e+00 1.36e-81 1.00e+00 1.00e+00 1.00e-01 54 3.5 3.738e-23 1.200e+02 1.200e+02 5.92e-24 6.28e-89 0.00e+00 7.95e-81 1.00e+00 1.00e+00 1.00e-01 55 3.5 3.738e-24 1.200e+02 1.200e+02 5.92e-25 6.28e-89 0.00e+00 1.15e-80 1.00e+00 1.00e+00 1.00e-01 56 3.5 3.739e-25 1.200e+02 1.200e+02 5.92e-26 6.28e-89 0.00e+00 3.26e-81 1.00e+00 1.00e+00 1.00e-01 57 3.6 3.739e-26 1.200e+02 1.200e+02 5.92e-27 6.28e-89 0.00e+00 2.92e-80 1.00e+00 1.00e+00 1.00e-01 58 3.6 3.739e-27 1.200e+02 1.200e+02 5.92e-28 6.28e-89 0.00e+00 2.57e-80 1.00e+00 1.00e+00 1.00e-01 59 3.7 3.740e-28 1.200e+02 1.200e+02 5.92e-29 6.28e-89 0.00e+00 1.74e-79 1.00e+00 1.00e+00 1.00e-01 60 3.7 3.740e-29 1.200e+02 1.200e+02 5.92e-30 3.14e-89 0.00e+00 2.28e-79 1.00e+00 1.00e+00 1.00e-01 61 3.8 3.740e-30 1.200e+02 1.200e+02 5.92e-31 6.28e-89 0.00e+00 6.23e-79 1.00e+00 1.00e+00 1.00e-01 62 4.3 3.741e-31 1.200e+02 1.200e+02 5.92e-32 3.14e-89 0.00e+00 2.13e-78 1.00e+00 1.00e+00 1.00e-01 63 4.4 3.741e-32 1.200e+02 1.200e+02 5.92e-33 6.28e-89 0.00e+00 1.71e-78 1.00e+00 1.00e+00 1.00e-01 64 4.4 3.742e-33 1.200e+02 1.200e+02 5.92e-34 6.28e-89 0.00e+00 1.67e-78 1.00e+00 1.00e+00 1.00e-01 65 4.5 3.742e-34 1.200e+02 1.200e+02 5.92e-35 6.28e-89 0.00e+00 1.97e-78 1.00e+00 1.00e+00 1.00e-01 66 4.5 3.742e-35 1.200e+02 1.200e+02 5.93e-36 3.14e-89 0.00e+00 1.39e-77 1.00e+00 1.00e+00 1.00e-01 67 4.6 3.743e-36 1.200e+02 1.200e+02 5.93e-37 6.28e-89 0.00e+00 1.85e-77 1.00e+00 1.00e+00 1.00e-01 68 4.6 3.743e-37 1.200e+02 1.200e+02 5.93e-38 6.28e-89 0.00e+00 9.48e-77 1.00e+00 1.00e+00 1.00e-01 69 4.6 3.743e-38 1.200e+02 1.200e+02 5.93e-39 6.28e-89 0.00e+00 6.88e-77 1.00e+00 1.00e+00 1.00e-01 70 4.7 3.744e-39 1.200e+02 1.200e+02 5.93e-40 1.26e-88 0.00e+00 2.86e-76 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 4.677037 seconds (6.70 M allocations: 431.678 MiB, 47.64% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:119.99999999999999999999999999999999999999176273620507005257838616803050672593897611158515414 Dual objective:120.00000000000000000000000000000000000000599073730540359812481005961417692658989302548191855 Duality gap:5.9283337918056439776766214931959169378821029493139321160776747113317617725618261892320355143e-41 ** Starting computation of basis transformations ** Block 14 of size 1 x 1 Block 11 of size 1 x 1 Block 0 of size 1 x 1 Block 0 has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block 8 of size 1 x 1 Block 5 of size 1 x 1 Block 16 of size 1 x 1 Block 2 of size 1 x 1 Block 13 of size 1 x 1 Block 10 of size 1 x 1 Block 7 of size 1 x 1 Block 18 of size 1 x 1 Block 15 of size 1 x 1 Block 4 of size 1 x 1 Block 1 of size 1 x 1 Block 12 of size 1 x 1 Block 12 has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block 9 of size 1 x 1 Block 6 of size 1 x 1 Block 17 of size 1 x 1 Block 3 of size 1 x 1 Block B of size 9 x 9 Block B has 6 kernel vectors. The maximum numerator and denominator are 18 and 2 After reduction, the maximum number of the basis transformation matrix is 10 Block A of size 10 x 10 Block A has 8 kernel vectors. The maximum numerator and denominator are 12 and 1 After reduction, the maximum number of the basis transformation matrix is 1 ** Finished computation of basis transformations (11.891185916s) ** ** Transforming the problem and the solution ** (2.143983073s) ** Projection the solution into the affine space ** Reducing the system from 26 columns to 26 columns Constructing the linear system... (1.737601735s) Computing an approximate solution in the extension field... (0.459628471s) Preprocessing to get an integer system... (0.005840156s) Finding the pivots of A using RREF mod p... (0.002964113 0.003432898 s) Solving the system of size 38 x 40 using the pseudoinverse... 0.020138592s ┌ Warning: `zeros(R::NCRing, r::Int...)` is deprecated, use `zero_matrix(R, r...)` instead. │ caller = xrational_to_field(x::Vector{Rational{BigInt}}, FF::AbsSimpleNumField) at rounding.jl:1321 └ @ Core ~/.julia/packages/ClusteredLowRankSolver/PUwUL/src/rounding.jl:1321 ** Finished projection into affine space (3.814189277s) ** ** Checking feasibility ** The slacks are satisfied (checked or ensured by solving the system) Checking sdp constraints done (0.189028436) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.1 1.000e+20 1.000e+00 7.000e+10 1.00e+00 1.00e+10 0.00e+00 7.05e+10 6.66e-01 6.95e-01 3.00e-01 2 0.2 4.559e+19 1.338e+10 7.193e+10 6.86e-01 3.34e+09 0.00e+00 2.15e+10 7.05e-01 7.53e-01 3.00e-01 3 0.2 1.822e+19 2.640e+10 9.901e+10 5.79e-01 9.85e+08 0.00e+00 5.31e+09 6.16e-01 7.88e-01 3.00e-01 4 0.2 8.970e+18 3.260e+10 1.789e+11 6.92e-01 3.78e+08 0.00e+00 1.12e+09 7.73e-01 1.00e+00 3.00e-01 5 0.2 3.189e+18 1.238e+10 3.561e+11 9.33e-01 8.58e+07 0.00e+00 7.62e-143 8.40e-01 1.00e+00 3.00e-01 6 0.2 8.172e+17 2.052e+09 5.731e+11 9.93e-01 1.37e+07 0.00e+00 4.26e-142 8.95e-01 1.00e+00 3.00e-01 7 0.2 1.367e+17 2.121e+08 9.202e+11 1.00e+00 1.44e+06 0.00e+00 3.89e-141 8.90e-01 1.00e+00 3.00e-01 8 0.2 2.412e+16 2.361e+07 1.476e+12 1.00e+00 1.58e+05 0.00e+00 3.46e-141 8.97e-01 1.00e+00 3.00e-01 9 0.2 3.957e+15 2.403e+06 2.364e+12 1.00e+00 1.62e+04 0.00e+00 4.05e-141 8.94e-01 1.00e+00 3.00e-01 10 0.3 6.738e+14 2.573e+05 3.785e+12 1.00e+00 1.73e+03 0.00e+00 1.90e-141 8.99e-01 1.00e+00 3.00e-01 11 0.3 1.095e+14 2.604e+04 6.056e+12 1.00e+00 1.75e+02 0.00e+00 3.25e-140 8.99e-01 1.00e+00 3.00e-01 12 0.3 1.816e+13 2.738e+03 9.636e+12 1.00e+00 1.76e+01 0.00e+00 4.83e-140 9.13e-01 1.00e+00 3.00e-01 13 0.3 3.342e+12 3.449e+02 1.456e+13 1.00e+00 1.53e+00 0.00e+00 5.36e-140 1.00e+00 1.00e+00 3.00e-01 14 0.3 1.007e+12 1.188e+02 1.410e+13 1.00e+00 9.55e-153 0.00e+00 2.33e-140 1.00e+00 1.00e+00 3.00e-01 15 0.3 3.022e+11 1.198e+02 4.231e+12 1.00e+00 9.55e-153 0.00e+00 9.23e-142 9.99e-01 9.99e-01 1.00e-01 16 0.3 3.062e+10 1.199e+02 4.287e+11 1.00e+00 9.55e-153 0.00e+00 9.66e-142 1.00e+00 1.00e+00 1.00e-01 17 0.3 3.063e+09 1.200e+02 4.288e+10 1.00e+00 9.55e-153 0.00e+00 3.39e-144 1.00e+00 1.00e+00 1.00e-01 18 0.4 3.063e+08 1.201e+02 4.288e+09 1.00e+00 1.19e-153 0.00e+00 2.25e-144 1.00e+00 1.00e+00 1.00e-01 19 0.4 3.063e+07 1.202e+02 4.289e+08 1.00e+00 9.55e-153 0.00e+00 4.37e-145 1.00e+00 1.00e+00 1.00e-01 20 0.4 3.064e+06 1.202e+02 4.289e+07 1.00e+00 9.55e-153 0.00e+00 6.85e-146 1.00e+00 1.00e+00 1.00e-01 21 0.4 3.064e+05 1.203e+02 4.290e+06 1.00e+00 9.55e-153 0.00e+00 2.37e-147 1.00e+00 1.00e+00 1.00e-01 22 0.4 3.065e+04 1.203e+02 4.292e+05 9.99e-01 1.91e-152 0.00e+00 4.97e-148 1.00e+00 1.00e+00 1.00e-01 23 0.4 3.075e+03 1.204e+02 4.317e+04 9.94e-01 9.55e-153 0.00e+00 2.06e-149 9.97e-01 9.97e-01 1.00e-01 24 0.4 3.167e+02 1.211e+02 4.554e+03 9.48e-01 4.77e-153 0.00e+00 6.40e-150 9.70e-01 9.70e-01 1.00e-01 25 0.4 4.021e+01 1.274e+02 6.904e+02 6.88e-01 9.55e-153 0.00e+00 1.55e-151 8.70e-01 8.70e-01 1.00e-01 26 0.5 8.743e+00 1.689e+02 2.913e+02 2.66e-01 1.91e-152 0.00e+00 1.85e-150 9.15e-01 9.15e-01 1.00e-01 27 0.5 1.547e+00 2.316e+02 2.532e+02 4.47e-02 1.91e-152 0.00e+00 2.12e-151 9.82e-01 9.82e-01 1.00e-01 28 1.1 1.800e-01 2.389e+02 2.414e+02 5.25e-03 9.55e-153 0.00e+00 2.25e-150 9.89e-01 9.89e-01 1.00e-01 29 1.1 1.986e-02 2.399e+02 2.401e+02 5.79e-04 1.91e-152 0.00e+00 1.95e-150 9.97e-01 9.97e-01 1.00e-01 30 1.1 2.030e-03 2.400e+02 2.400e+02 5.92e-05 1.91e-152 0.00e+00 5.46e-151 1.00e+00 1.00e+00 1.00e-01 31 1.1 2.034e-04 2.400e+02 2.400e+02 5.93e-06 1.91e-152 0.00e+00 2.76e-151 1.00e+00 1.00e+00 1.00e-01 32 1.1 2.035e-05 2.400e+02 2.400e+02 5.93e-07 9.55e-153 0.00e+00 2.39e-151 1.00e+00 1.00e+00 1.00e-01 33 1.1 2.035e-06 2.400e+02 2.400e+02 5.94e-08 1.91e-152 0.00e+00 1.97e-151 1.00e+00 1.00e+00 1.00e-01 34 1.2 2.035e-07 2.400e+02 2.400e+02 5.94e-09 1.91e-152 0.00e+00 3.11e-151 1.00e+00 1.00e+00 1.00e-01 35 1.2 2.035e-08 2.400e+02 2.400e+02 5.94e-10 1.91e-152 0.00e+00 1.33e-150 1.00e+00 1.00e+00 1.00e-01 36 1.2 2.036e-09 2.400e+02 2.400e+02 5.94e-11 1.91e-152 0.00e+00 1.61e-150 1.00e+00 1.00e+00 1.00e-01 37 1.2 2.036e-10 2.400e+02 2.400e+02 5.94e-12 1.91e-152 0.00e+00 6.51e-151 1.00e+00 1.00e+00 1.00e-01 38 1.2 2.036e-11 2.400e+02 2.400e+02 5.94e-13 9.55e-153 0.00e+00 1.32e-150 1.00e+00 1.00e+00 1.00e-01 39 1.2 2.036e-12 2.400e+02 2.400e+02 5.94e-14 1.91e-152 0.00e+00 5.88e-151 1.00e+00 1.00e+00 1.00e-01 40 1.2 2.036e-13 2.400e+02 2.400e+02 5.94e-15 1.91e-152 0.00e+00 7.58e-151 1.00e+00 1.00e+00 1.00e-01 41 1.2 2.037e-14 2.400e+02 2.400e+02 5.94e-16 1.91e-152 0.00e+00 3.77e-150 1.00e+00 1.00e+00 1.00e-01 42 1.3 2.037e-15 2.400e+02 2.400e+02 5.94e-17 1.91e-152 0.00e+00 4.09e-150 1.00e+00 1.00e+00 1.00e-01 43 1.3 2.037e-16 2.400e+02 2.400e+02 5.94e-18 1.91e-152 0.00e+00 1.94e-149 1.00e+00 1.00e+00 1.00e-01 44 1.3 2.037e-17 2.400e+02 2.400e+02 5.94e-19 1.91e-152 0.00e+00 1.05e-149 1.00e+00 1.00e+00 1.00e-01 45 1.3 2.037e-18 2.400e+02 2.400e+02 5.94e-20 1.91e-152 0.00e+00 2.58e-149 1.00e+00 1.00e+00 1.00e-01 46 1.3 2.038e-19 2.400e+02 2.400e+02 5.94e-21 1.91e-152 0.00e+00 3.59e-149 1.00e+00 1.00e+00 1.00e-01 47 1.3 2.038e-20 2.400e+02 2.400e+02 5.94e-22 1.91e-152 0.00e+00 1.21e-148 1.00e+00 1.00e+00 1.00e-01 48 1.3 2.038e-21 2.400e+02 2.400e+02 5.94e-23 1.91e-152 0.00e+00 1.03e-148 1.00e+00 1.00e+00 1.00e-01 49 1.3 2.038e-22 2.400e+02 2.400e+02 5.94e-24 1.91e-152 0.00e+00 8.62e-148 1.00e+00 1.00e+00 1.00e-01 50 1.4 2.038e-23 2.400e+02 2.400e+02 5.95e-25 1.91e-152 0.00e+00 2.42e-147 1.00e+00 1.00e+00 1.00e-01 51 1.4 2.039e-24 2.400e+02 2.400e+02 5.95e-26 1.91e-152 0.00e+00 6.06e-147 1.00e+00 1.00e+00 1.00e-01 52 1.4 2.039e-25 2.400e+02 2.400e+02 5.95e-27 4.33e-153 0.00e+00 1.01e-146 1.00e+00 1.00e+00 1.00e-01 53 1.4 2.039e-26 2.400e+02 2.400e+02 5.95e-28 1.91e-152 0.00e+00 4.53e-147 1.00e+00 1.00e+00 1.00e-01 54 1.4 2.039e-27 2.400e+02 2.400e+02 5.95e-29 3.82e-152 0.00e+00 9.87e-147 1.00e+00 1.00e+00 1.00e-01 55 1.4 2.039e-28 2.400e+02 2.400e+02 5.95e-30 3.82e-152 0.00e+00 1.88e-146 1.00e+00 1.00e+00 1.00e-01 56 1.4 2.040e-29 2.400e+02 2.400e+02 5.95e-31 1.91e-152 0.00e+00 2.92e-146 1.00e+00 1.00e+00 1.00e-01 57 1.4 2.040e-30 2.400e+02 2.400e+02 5.95e-32 9.55e-153 0.00e+00 5.76e-145 1.00e+00 1.00e+00 1.00e-01 58 1.4 2.040e-31 2.400e+02 2.400e+02 5.95e-33 1.91e-152 0.00e+00 1.16e-145 1.00e+00 1.00e+00 1.00e-01 59 1.5 2.040e-32 2.400e+02 2.400e+02 5.95e-34 1.91e-152 0.00e+00 9.23e-145 1.00e+00 1.00e+00 1.00e-01 60 1.5 2.040e-33 2.400e+02 2.400e+02 5.95e-35 1.91e-152 0.00e+00 1.19e-144 1.00e+00 1.00e+00 1.00e-01 61 1.5 2.041e-34 2.400e+02 2.400e+02 5.95e-36 1.91e-152 0.00e+00 5.30e-144 1.00e+00 1.00e+00 1.00e-01 62 1.5 2.041e-35 2.400e+02 2.400e+02 5.95e-37 1.91e-152 0.00e+00 2.53e-144 1.00e+00 1.00e+00 1.00e-01 63 1.5 2.041e-36 2.400e+02 2.400e+02 5.95e-38 1.91e-152 0.00e+00 1.42e-143 1.00e+00 1.00e+00 1.00e-01 64 1.5 2.041e-37 2.400e+02 2.400e+02 5.95e-39 1.91e-152 0.00e+00 3.44e-143 1.00e+00 1.00e+00 1.00e-01 65 1.5 2.041e-38 2.400e+02 2.400e+02 5.95e-40 1.91e-152 0.00e+00 4.94e-143 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 1.516592 seconds (870.25 k allocations: 54.698 MiB, 74.02% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:239.999999999999999999999999999999999999985708623651088031028775333061265354847095945064156212651233664189398631033410796886099933647811631474127307080078537 Dual objective:240.000000000000000000000000000000000000014291376348911968971224666938734645152939292136233957082035314829883607078499073584613600840792492461220891164859663 Duality gap:5.95474014537998707134361122447276881371736397334953008975034388343437000939339054171457280240631554035282794795125091129371028485047337374437810068289260476e-41 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.0 1.000e+20 1.000e+00 5.000e+10 1.00e+00 1.00e+10 0.00e+00 4.78e+10 6.47e-01 7.68e-01 3.00e-01 2 0.0 4.452e+19 9.876e+09 4.917e+10 6.66e-01 3.53e+09 0.00e+00 1.11e+10 7.56e-01 1.00e+00 3.00e-01 3 0.0 1.650e+19 7.446e+09 1.024e+11 8.64e-01 8.62e+08 0.00e+00 8.29e-79 8.44e-01 1.00e+00 3.00e-01 4 0.1 4.113e+18 8.652e+08 1.659e+11 9.90e-01 1.34e+08 0.00e+00 3.69e-79 8.90e-01 1.00e+00 3.00e-01 5 0.1 7.249e+17 1.033e+08 2.675e+11 9.99e-01 1.48e+07 0.00e+00 1.50e-78 8.93e-01 1.00e+00 3.00e-01 6 0.1 1.243e+17 1.043e+07 4.302e+11 1.00e+00 1.58e+06 0.00e+00 1.84e-78 8.95e-01 1.00e+00 3.00e-01 7 0.1 2.095e+16 1.151e+06 6.904e+11 1.00e+00 1.67e+05 0.00e+00 2.24e-78 8.96e-01 1.00e+00 3.00e-01 8 0.1 3.493e+15 1.156e+05 1.107e+12 1.00e+00 1.74e+04 0.00e+00 2.09e-78 8.97e-01 1.00e+00 3.00e-01 9 0.1 5.780e+14 1.233e+04 1.773e+12 1.00e+00 1.80e+03 0.00e+00 1.36e-77 8.97e-01 1.00e+00 3.00e-01 10 0.1 9.513e+13 1.239e+03 2.837e+12 1.00e+00 1.85e+02 0.00e+00 2.70e-78 9.00e-01 1.00e+00 3.00e-01 11 0.1 1.555e+13 1.320e+02 4.519e+12 1.00e+00 1.85e+01 0.00e+00 2.04e-77 9.06e-01 1.00e+00 3.00e-01 12 0.1 2.876e+12 1.774e+01 6.894e+12 1.00e+00 1.74e+00 0.00e+00 1.46e-77 9.63e-01 1.00e+00 3.00e-01 13 0.1 8.243e+11 6.641e+00 7.341e+12 1.00e+00 6.37e-02 0.00e+00 2.13e-77 1.00e+00 1.00e+00 3.00e-01 14 0.2 2.525e+11 6.501e+00 2.525e+12 1.00e+00 9.82e-91 0.00e+00 7.35e-78 1.00e+00 1.00e+00 3.00e-01 15 0.2 7.575e+10 6.597e+00 7.575e+11 1.00e+00 7.85e-90 0.00e+00 3.29e-78 1.00e+00 1.00e+00 1.00e-01 16 0.2 7.582e+09 6.607e+00 7.582e+10 1.00e+00 3.93e-90 0.00e+00 1.77e-78 1.00e+00 1.00e+00 1.00e-01 17 0.2 7.583e+08 6.615e+00 7.583e+09 1.00e+00 1.96e-90 0.00e+00 1.56e-80 1.00e+00 1.00e+00 1.00e-01 18 0.2 7.583e+07 6.623e+00 7.583e+08 1.00e+00 3.93e-90 0.00e+00 4.07e-81 1.00e+00 1.00e+00 1.00e-01 19 0.2 7.584e+06 6.629e+00 7.584e+07 1.00e+00 1.96e-90 0.00e+00 2.81e-82 1.00e+00 1.00e+00 1.00e-01 20 0.2 7.585e+05 6.635e+00 7.585e+06 1.00e+00 3.93e-90 0.00e+00 1.24e-82 1.00e+00 1.00e+00 1.00e-01 21 0.2 7.586e+04 6.641e+00 7.586e+05 1.00e+00 3.93e-90 0.00e+00 3.80e-84 1.00e+00 1.00e+00 1.00e-01 22 0.2 7.587e+03 6.646e+00 7.588e+04 1.00e+00 4.91e-91 0.00e+00 6.04e-85 1.00e+00 1.00e+00 1.00e-01 23 0.2 7.595e+02 6.651e+00 7.602e+03 9.98e-01 3.93e-90 0.00e+00 6.46e-86 9.99e-01 9.99e-01 1.00e-01 24 0.3 7.667e+01 6.662e+00 7.734e+02 9.83e-01 3.93e-90 0.00e+00 1.14e-86 9.90e-01 9.90e-01 1.00e-01 25 0.3 8.371e+00 6.736e+00 9.045e+01 8.61e-01 3.93e-90 0.00e+00 1.05e-87 9.21e-01 9.21e-01 1.00e-01 26 0.3 1.433e+00 7.334e+00 2.167e+01 4.94e-01 3.93e-90 0.00e+00 1.22e-88 8.84e-01 8.84e-01 1.00e-01 27 0.3 2.925e-01 1.016e+01 1.309e+01 1.26e-01 3.93e-90 0.00e+00 7.66e-89 9.45e-01 9.45e-01 1.00e-01 28 0.3 4.385e-02 1.181e+01 1.225e+01 1.82e-02 1.96e-90 0.00e+00 1.28e-89 9.76e-01 9.76e-01 1.00e-01 29 0.3 5.337e-03 1.197e+01 1.203e+01 2.22e-03 7.85e-90 0.00e+00 2.85e-89 9.89e-01 9.89e-01 1.00e-01 30 0.3 5.875e-04 1.200e+01 1.200e+01 2.45e-04 7.85e-90 0.00e+00 4.12e-89 9.98e-01 9.98e-01 1.00e-01 31 0.3 5.979e-05 1.200e+01 1.200e+01 2.49e-05 7.85e-90 0.00e+00 1.77e-89 1.00e+00 1.00e+00 1.00e-01 32 0.3 5.986e-06 1.200e+01 1.200e+01 2.49e-06 3.93e-90 0.00e+00 1.62e-89 1.00e+00 1.00e+00 1.00e-01 33 0.3 5.987e-07 1.200e+01 1.200e+01 2.49e-07 7.85e-90 0.00e+00 3.14e-89 1.00e+00 1.00e+00 1.00e-01 34 0.3 5.988e-08 1.200e+01 1.200e+01 2.49e-08 7.85e-90 0.00e+00 9.82e-90 1.00e+00 1.00e+00 1.00e-01 35 0.4 5.988e-09 1.200e+01 1.200e+01 2.50e-09 7.85e-90 0.00e+00 1.18e-89 1.00e+00 1.00e+00 1.00e-01 36 0.4 5.989e-10 1.200e+01 1.200e+01 2.50e-10 7.85e-90 0.00e+00 2.45e-89 1.00e+00 1.00e+00 1.00e-01 37 0.4 5.989e-11 1.200e+01 1.200e+01 2.50e-11 7.85e-90 0.00e+00 9.43e-89 1.00e+00 1.00e+00 1.00e-01 38 0.4 5.990e-12 1.200e+01 1.200e+01 2.50e-12 3.93e-90 0.00e+00 7.16e-88 1.00e+00 1.00e+00 1.00e-01 39 0.4 5.991e-13 1.200e+01 1.200e+01 2.50e-13 7.85e-90 0.00e+00 8.91e-88 1.00e+00 1.00e+00 1.00e-01 40 0.4 5.991e-14 1.200e+01 1.200e+01 2.50e-14 7.85e-90 0.00e+00 1.40e-87 1.00e+00 1.00e+00 1.00e-01 41 0.4 5.992e-15 1.200e+01 1.200e+01 2.50e-15 7.85e-90 0.00e+00 1.47e-88 1.00e+00 1.00e+00 1.00e-01 42 0.4 5.992e-16 1.200e+01 1.200e+01 2.50e-16 7.85e-90 0.00e+00 9.14e-87 1.00e+00 1.00e+00 1.00e-01 43 0.4 5.993e-17 1.200e+01 1.200e+01 2.50e-17 7.85e-90 0.00e+00 9.24e-87 1.00e+00 1.00e+00 1.00e-01 44 0.4 5.994e-18 1.200e+01 1.200e+01 2.50e-18 7.85e-90 0.00e+00 1.34e-86 1.00e+00 1.00e+00 1.00e-01 45 0.4 5.994e-19 1.200e+01 1.200e+01 2.50e-19 1.96e-90 0.00e+00 1.95e-86 1.00e+00 1.00e+00 1.00e-01 46 0.5 5.995e-20 1.200e+01 1.200e+01 2.50e-20 7.85e-90 0.00e+00 1.44e-85 1.00e+00 1.00e+00 1.00e-01 47 0.5 5.995e-21 1.200e+01 1.200e+01 2.50e-21 3.93e-90 0.00e+00 2.83e-86 1.00e+00 1.00e+00 1.00e-01 48 0.5 5.996e-22 1.200e+01 1.200e+01 2.50e-22 7.85e-90 0.00e+00 1.61e-85 1.00e+00 1.00e+00 1.00e-01 49 0.5 5.997e-23 1.200e+01 1.200e+01 2.50e-23 7.85e-90 0.00e+00 1.32e-85 1.00e+00 1.00e+00 1.00e-01 50 0.5 5.997e-24 1.200e+01 1.200e+01 2.50e-24 1.96e-90 0.00e+00 7.56e-85 1.00e+00 1.00e+00 1.00e-01 51 0.5 5.998e-25 1.200e+01 1.200e+01 2.50e-25 3.93e-90 0.00e+00 3.65e-84 1.00e+00 1.00e+00 1.00e-01 52 0.5 5.998e-26 1.200e+01 1.200e+01 2.50e-26 7.85e-90 0.00e+00 1.26e-83 1.00e+00 1.00e+00 1.00e-01 53 0.5 5.999e-27 1.200e+01 1.200e+01 2.50e-27 7.85e-90 0.00e+00 6.84e-84 1.00e+00 1.00e+00 1.00e-01 54 0.5 6.000e-28 1.200e+01 1.200e+01 2.50e-28 7.85e-90 0.00e+00 2.85e-83 1.00e+00 1.00e+00 1.00e-01 55 0.5 6.000e-29 1.200e+01 1.200e+01 2.50e-29 3.93e-90 0.00e+00 3.41e-84 1.00e+00 1.00e+00 1.00e-01 56 0.6 6.001e-30 1.200e+01 1.200e+01 2.50e-30 1.96e-90 0.00e+00 2.87e-83 1.00e+00 1.00e+00 1.00e-01 57 0.6 6.001e-31 1.200e+01 1.200e+01 2.50e-31 7.85e-90 0.00e+00 1.78e-82 1.00e+00 1.00e+00 1.00e-01 58 0.6 6.002e-32 1.200e+01 1.200e+01 2.50e-32 7.85e-90 0.00e+00 1.83e-82 1.00e+00 1.00e+00 1.00e-01 59 0.6 6.003e-33 1.200e+01 1.200e+01 2.50e-33 3.93e-90 0.00e+00 2.43e-82 1.00e+00 1.00e+00 1.00e-01 60 0.6 6.003e-34 1.200e+01 1.200e+01 2.50e-34 1.96e-90 0.00e+00 1.87e-82 1.00e+00 1.00e+00 1.00e-01 61 0.6 6.004e-35 1.200e+01 1.200e+01 2.50e-35 3.93e-90 0.00e+00 8.71e-82 1.00e+00 1.00e+00 1.00e-01 62 0.6 6.004e-36 1.200e+01 1.200e+01 2.50e-36 3.93e-90 0.00e+00 3.00e-81 1.00e+00 1.00e+00 1.00e-01 63 0.7 6.005e-37 1.200e+01 1.200e+01 2.50e-37 3.93e-90 0.00e+00 3.55e-81 1.00e+00 1.00e+00 1.00e-01 64 0.7 6.006e-38 1.200e+01 1.200e+01 2.50e-38 7.85e-90 0.00e+00 3.39e-81 1.00e+00 1.00e+00 1.00e-01 65 0.7 6.006e-39 1.200e+01 1.200e+01 2.50e-39 3.93e-90 0.00e+00 1.84e-80 1.00e+00 1.00e+00 1.00e-01 66 0.7 6.007e-40 1.200e+01 1.200e+01 2.50e-40 7.85e-90 0.00e+00 3.80e-80 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.680706 seconds (482.64 k allocations: 27.736 MiB, 63.94% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:11.99999999999999999999999999999999999999969962682840473896916744933665528678844809644440258 Dual objective:12.000000000000000000000000000000000000000300373171595261030832550663344713211552241583975986 Duality gap:2.5031097632938419236045888612059434296006047482225253249136428585916645938347560937480752772e-41 ┌ Warning: `zeros(R::NCRing, r::Int...)` is deprecated, use `zero_matrix(R, r...)` instead. │ caller = detecteigenvectors(block::Matrix{BigFloat}, bits::Int64, errbound::Float64; FF::QQField, g::BigFloat) at rounding.jl:660 └ @ Core ~/.julia/packages/ClusteredLowRankSolver/PUwUL/src/rounding.jl:660 ┌ Warning: `zeros(R::NCRing, r::Int...)` is deprecated, use `zero_matrix(R, r...)` instead. │ caller = basis_transformations(primalsol::PrimalSolution{BigFloat}, sol::DualSolution{BigFloat}; FF::QQField, g::BigFloat, settings::RoundingSettings, verbose::Bool) at rounding.jl:767 └ @ Core ~/.julia/packages/ClusteredLowRankSolver/PUwUL/src/rounding.jl:767 ┌ Warning: `zeros(R::NCRing, r::Int...)` is deprecated, use `zero_matrix(R, r...)` instead. │ caller = simplify_kernelvectors(dm::Matrix{BigFloat}, finalvectors::Vector{Vector{QQFieldElem}}; FF::QQField, g::BigFloat, settings::RoundingSettings, verbose::Bool) at rounding.jl:1021 └ @ Core ~/.julia/packages/ClusteredLowRankSolver/PUwUL/src/rounding.jl:1021 ┌ Warning: `zeros(R::NCRing, r::Int...)` is deprecated, use `zero_matrix(R, r...)` instead. │ caller = simplify_kernelvectors(dm::Matrix{BigFloat}, finalvectors::Vector{Any}; FF::QQField, g::BigFloat, settings::RoundingSettings, verbose::Bool) at rounding.jl:1021 └ @ Core ~/.julia/packages/ClusteredLowRankSolver/PUwUL/src/rounding.jl:1021 ┌ Warning: `zeros(R::NCRing, r::Int...)` is deprecated, use `zero_matrix(R, r...)` instead. │ caller = detecteigenvectors(block::Matrix{BigFloat}, bits::Int64, errbound::Float64; FF::AbsSimpleNumField, g::BigFloat) at rounding.jl:675 └ @ Core ~/.julia/packages/ClusteredLowRankSolver/PUwUL/src/rounding.jl:675 ┌ Warning: `zeros(R::NCRing, r::Int...)` is deprecated, use `zero_matrix(R, r...)` instead. │ caller = basis_transformations(primalsol::PrimalSolution{BigFloat}, sol::DualSolution{BigFloat}; FF::AbsSimpleNumField, g::BigFloat, settings::RoundingSettings, verbose::Bool) at rounding.jl:767 └ @ Core ~/.julia/packages/ClusteredLowRankSolver/PUwUL/src/rounding.jl:767 ┌ Warning: `zeros(R::NCRing, r::Int...)` is deprecated, use `zero_matrix(R, r...)` instead. │ caller = simplify_kernelvectors(dm::Matrix{BigFloat}, finalvectors::Vector{Vector{AbsSimpleNumFieldElem}}; FF::AbsSimpleNumField, g::BigFloat, settings::RoundingSettings, verbose::Bool) at rounding.jl:968 └ @ Core ~/.julia/packages/ClusteredLowRankSolver/PUwUL/src/rounding.jl:968 ┌ Warning: `zeros(R::NCRing, r::Int...)` is deprecated, use `zero_matrix(R, r...)` instead. │ caller = simplify_kernelvectors(dm::Matrix{BigFloat}, finalvectors::Vector{Vector{AbsSimpleNumFieldElem}}; FF::AbsSimpleNumField, g::BigFloat, settings::RoundingSettings, verbose::Bool) at rounding.jl:971 └ @ Core ~/.julia/packages/ClusteredLowRankSolver/PUwUL/src/rounding.jl:971 ┌ Warning: `zeros(R::NCRing, r::Int...)` is deprecated, use `zero_matrix(R, r...)` instead. │ caller = simplify_kernelvectors(dm::Matrix{BigFloat}, finalvectors::Vector{Any}; FF::AbsSimpleNumField, g::BigFloat, settings::RoundingSettings, verbose::Bool) at rounding.jl:968 └ @ Core ~/.julia/packages/ClusteredLowRankSolver/PUwUL/src/rounding.jl:968 ┌ Warning: `zeros(R::NCRing, r::Int...)` is deprecated, use `zero_matrix(R, r...)` instead. │ caller = simplify_kernelvectors(dm::Matrix{BigFloat}, finalvectors::Vector{Any}; FF::AbsSimpleNumField, g::BigFloat, settings::RoundingSettings, verbose::Bool) at rounding.jl:971 └ @ Core ~/.julia/packages/ClusteredLowRankSolver/PUwUL/src/rounding.jl:971 [ Info: Empty constraint found and removed. [ Info: Empty constraint found and removed. [ Info: The coefficient for the PSD variable 1 has an empty decomposition in a constraint, so we remove it from that constraint. [ Info: The matrix variable 1 is not used in any constraint and will be removed. Test Summary: | Pass Total Time ClusteredLowRankSolver.jl | 39 39 7m50.6s Testing ClusteredLowRankSolver tests passed Testing completed after 486.13s PkgEval succeeded after 662.02s