Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1711 (41ad7d9eeb*) started at 2026-02-12T16:08:11.622 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 11.75s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.14.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.18.0+0 [e37daf67] + LibGit2_jll v1.9.2+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.12.2 [4536629a] + OpenBLAS_jll v0.3.30+0 [458c3c95] + OpenSSL_jll v3.5.5+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.45s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling packages... 1429.0 ms ✓ Measurements 4669.0 ms ✓ StatsBase 6403.0 ms ✓ RayTraceHeatTransfer 3 dependencies successfully precompiled in 13 seconds. 58 already precompiled. Precompilation completed after 34.83s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_xJbZOB/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.16 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_xJbZOB/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.16 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.18.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.30+0 [458c3c95] OpenSSL_jll v3.5.5+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:03:54 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:05 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001188514942723477 Iteration 10: d = 1.861958905152901e-5 Iteration 20: d = 3.1491604696500465e-7 Iteration 30: d = 5.493195172902647e-9 Iteration 40: d = 9.656682773907549e-11 Iteration 50: d = 1.7044997890320616e-12 Iteration 60: d = 3.0174810910198186e-14 Converged after 67 iterations. d = 1.8020914672258e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 35%|███████████▋ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011394813775345658 Iteration 10: d = 1.5721926418979637e-5 Iteration 20: d = 2.6001603215835135e-7 Iteration 30: d = 4.481792732414181e-9 Iteration 40: d = 7.761826727844653e-11 Iteration 50: d = 1.3459803770889714e-12 Iteration 60: d = 2.3355807040383562e-14 Converged after 66 iterations. d = 2.051196938176542e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010672996811170448 Iteration 10: d = 1.2531734083512468e-5 Iteration 20: d = 1.9070803049440134e-7 Iteration 30: d = 3.1385561511414224e-9 Iteration 40: d = 5.309990752866055e-11 Iteration 50: d = 9.115503256715328e-13 Iteration 60: d = 1.5759906781947232e-14 Converged after 65 iterations. d = 2.0773296926444545e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 45%|███████████████ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011864613712011002 Iteration 10: d = 1.2551622897549337e-5 Iteration 20: d = 1.7261968626324875e-7 Iteration 30: d = 2.7600858398495423e-9 Iteration 40: d = 4.622449865769729e-11 Iteration 50: d = 7.904733009975479e-13 Iteration 60: d = 1.3672181197236343e-14 Converged after 65 iterations. d = 1.8052261676714276e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 35%|███████████▋ | ETA: 0:00:02 Bin 1 progress: 77%|█████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001513495101907823 Iteration 10: d = 1.70282763831854e-5 Iteration 20: d = 2.1459776741739304e-7 Iteration 30: d = 3.0923326877693768e-9 Iteration 40: d = 4.6689182220133236e-11 Iteration 50: d = 7.194534797759772e-13 Iteration 60: d = 1.1183769856497514e-14 Converged after 64 iterations. d = 2.128647428026576e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 75%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001353745343008281 Iteration 10: d = 1.5266261868375355e-5 Iteration 20: d = 1.9990815224640028e-7 Iteration 30: d = 2.924570856793086e-9 Iteration 40: d = 4.421848143428249e-11 Iteration 50: d = 6.780343965623498e-13 Iteration 60: d = 1.0426658703889138e-14 Converged after 64 iterations. d = 1.998326320001389e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 77%|█████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010477240380800652 Iteration 10: d = 8.406529955594002e-6 Iteration 20: d = 9.5633265803448e-8 Iteration 30: d = 1.3622008353409694e-9 Iteration 40: d = 2.0518138508885214e-11 Iteration 50: d = 3.1512586755669425e-13 Iteration 60: d = 4.914743367173769e-15 Converged after 62 iterations. d = 2.117690292182379e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 77%|█████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00106249707397996 Iteration 10: d = 1.0998800508872952e-5 Iteration 20: d = 1.3515361467453172e-7 Iteration 30: d = 1.9060336611722283e-9 Iteration 40: d = 2.8251567657256886e-11 Iteration 50: d = 4.276579958260373e-13 Iteration 60: d = 6.572632614927273e-15 Converged after 63 iterations. d = 1.851213278667505e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 79%|██████████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011842765022054204 Iteration 10: d = 8.756855176004952e-6 Iteration 20: d = 9.790628293289222e-8 Iteration 30: d = 1.3605995905271193e-9 Iteration 40: d = 2.0097835110493046e-11 Iteration 50: d = 3.0354367909580625e-13 Iteration 60: d = 4.591386072634802e-15 Converged after 62 iterations. d = 2.006979485405816e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:01 Bin 1 progress: 79%|██████████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011913423048950632 Iteration 10: d = 8.972821180698896e-6 Iteration 20: d = 9.07097146564831e-8 Iteration 30: d = 1.212249371317945e-9 Iteration 40: d = 1.799993689742514e-11 Iteration 50: d = 2.773494903269533e-13 Iteration 60: d = 4.302022773259661e-15 Converged after 62 iterations. d = 1.861259491948212e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.005103114225406964 Iteration 10: d = 4.707361117644916e-5 Iteration 20: d = 3.8794206510329857e-7 Iteration 30: d = 3.90565778527539e-9 Iteration 40: d = 4.589716881965186e-11 Iteration 50: d = 5.97058832629807e-13 Iteration 60: d = 8.192078034680661e-15 Converged after 64 iterations. d = 1.5031300737212652e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0029146262877602857 Iteration 10: d = 2.9014905503855556e-5 Iteration 20: d = 3.216277288099493e-7 Iteration 30: d = 4.149165046960176e-9 Iteration 40: d = 5.818321983186653e-11 Iteration 50: d = 8.594610834476875e-13 Iteration 60: d = 1.3044031677814302e-14 Converged after 65 iterations. d = 1.6349232809471742e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0029263601293017995 Iteration 10: d = 2.3840153817339693e-5 Iteration 20: d = 2.4437503665492345e-7 Iteration 30: d = 2.8433694528861015e-9 Iteration 40: d = 3.486735568636078e-11 Iteration 50: d = 4.5348025650005457e-13 Iteration 60: d = 6.342730046715093e-15 Converged after 63 iterations. d = 1.7491949984664875e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001975433400869611 Iteration 10: d = 1.8996976982168264e-5 Iteration 20: d = 2.7588064944187144e-7 Iteration 30: d = 4.685100552690094e-9 Iteration 40: d = 8.188991549619694e-11 Iteration 50: d = 1.4410439925291818e-12 Iteration 60: d = 2.5403098543220703e-14 Converged after 67 iterations. d = 1.507865726921828e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 77%|█████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001513495101907823 Iteration 10: d = 1.70282763831854e-5 Iteration 20: d = 2.1459776741739304e-7 Iteration 30: d = 3.0923326877693768e-9 Iteration 40: d = 4.6689182220133236e-11 Iteration 50: d = 7.194534797759772e-13 Iteration 60: d = 1.1183769856497514e-14 Converged after 64 iterations. d = 2.128647428026576e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011074653473832617 Iteration 10: d = 9.541908798491369e-6 Iteration 20: d = 8.763062657919989e-8 Iteration 30: d = 9.704934673261825e-10 Iteration 40: d = 1.179391587370258e-11 Iteration 50: d = 1.5071172107541067e-13 Converged after 60 iterations. d = 2.022580257024491e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014703021183075232 Iteration 10: d = 1.942257767837711e-5 Iteration 20: d = 2.617223216466469e-7 Iteration 30: d = 3.682482424233664e-9 Iteration 40: d = 5.210187316372773e-11 Iteration 50: d = 7.373625491001656e-13 Iteration 60: d = 1.0429204465938246e-14 Converged after 64 iterations. d = 1.9125815071696244e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.513189230742 Iteration 2: convergence error = 4815.413496629587 Iteration 3: convergence error = 1099.063517447026 Iteration 4: convergence error = 320.7068537863197 Iteration 5: convergence error = 95.17208521386078 Iteration 6: convergence error = 28.391664844355546 Iteration 7: convergence error = 8.501486679437676 Iteration 8: convergence error = 2.549515952009415 Iteration 9: convergence error = 0.7627780835243811 Iteration 10: convergence error = 0.22790185913572714 Iteration 11: convergence error = 0.06803935258494676 Iteration 12: convergence error = 0.02030393802101571 Iteration 13: convergence error = 0.006057461217096716 Iteration 14: convergence error = 0.0018069165312226687 Iteration 15: convergence error = 0.0005389510361055727 Iteration 16: convergence error = 0.00016074578206826118 Iteration 17: convergence error = 4.7942176252036006e-5 Iteration 18: convergence error = 1.4298443602456246e-5 Iteration 19: convergence error = 4.264373274054378e-6 Iteration 20: convergence error = 1.271803057534271e-6 Iteration 21: convergence error = 3.7930340113234706e-7 Iteration 22: convergence error = 1.1298152458039112e-7 Iteration 23: convergence error = 3.279706106695812e-8 Iteration 24: convergence error = 9.453060556552373e-9 Iteration 25: convergence error = 2.7205260266782716e-9 Iteration 26: convergence error = 7.787548383930698e-10 Iteration 27: convergence error = 2.2259882825892419e-10 Iteration 28: convergence error = 6.45741238258779e-11 Iteration 29: convergence error = 1.864464138634503e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011074653473832617 Iteration 10: d = 9.541908798491369e-6 Iteration 20: d = 8.763062657919989e-8 Iteration 30: d = 9.704934673261825e-10 Iteration 40: d = 1.179391587370258e-11 Iteration 50: d = 1.5071172107541067e-13 Converged after 60 iterations. d = 2.022580257024491e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.815811259907 Iteration 2: convergence error = 4818.946727042389 Iteration 3: convergence error = 1095.009341572111 Iteration 4: convergence error = 318.4701478612624 Iteration 5: convergence error = 94.4708378043706 Iteration 6: convergence error = 28.355978675360348 Iteration 7: convergence error = 8.539207958572433 Iteration 8: convergence error = 2.5616085114656926 Iteration 9: convergence error = 0.7666595959592541 Iteration 10: convergence error = 0.22914497054921412 Iteration 11: convergence error = 0.0684361656406054 Iteration 12: convergence error = 0.02043016088236982 Iteration 13: convergence error = 0.006097474814396264 Iteration 14: convergence error = 0.0018195605166511086 Iteration 15: convergence error = 0.0005429345894754078 Iteration 16: convergence error = 0.00016199740025513165 Iteration 17: convergence error = 4.833443767893186e-5 Iteration 18: convergence error = 1.4421105788642308e-5 Iteration 19: convergence error = 4.302654133425676e-6 Iteration 20: convergence error = 1.283726533074514e-6 Iteration 21: convergence error = 3.8300868254736997e-7 Iteration 22: convergence error = 1.1414022083044983e-7 Iteration 23: convergence error = 3.31303908751579e-8 Iteration 24: convergence error = 9.570840120431967e-9 Iteration 25: convergence error = 2.746219252003357e-9 Iteration 26: convergence error = 7.980816008057445e-10 Iteration 27: convergence error = 2.2464519133791327e-10 Iteration 28: convergence error = 6.480149750132114e-11 Iteration 29: convergence error = 1.9554136088117957e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 13:33:02 Bin 1 ray tracing: 8%|██▍ | ETA: 0:01:09 Bin 1 ray tracing: 16%|████▋ | ETA: 0:00:37 Bin 1 ray tracing: 24%|███████▏ | ETA: 0:00:26 Bin 1 ray tracing: 32%|█████████▌ | ETA: 0:00:19 Bin 1 ray tracing: 40%|███████████▉ | ETA: 0:00:15 Bin 1 ray tracing: 48%|██████████████▎ | ETA: 0:00:12 Bin 1 ray tracing: 56%|████████████████▊ | ETA: 0:00:10 Bin 1 ray tracing: 63%|███████████████████ | ETA: 0:00:08 Bin 1 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:06 Bin 1 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:04 Bin 1 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 1 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 8%|██▌ | ETA: 0:00:12 Bin 2 ray tracing: 16%|████▊ | ETA: 0:00:11 Bin 2 ray tracing: 24%|███████▏ | ETA: 0:00:10 Bin 2 ray tracing: 31%|█████████▍ | ETA: 0:00:09 Bin 2 ray tracing: 39%|███████████▊ | ETA: 0:00:08 Bin 2 ray tracing: 47%|██████████████▏ | ETA: 0:00:07 Bin 2 ray tracing: 55%|████████████████▌ | ETA: 0:00:06 Bin 2 ray tracing: 63%|███████████████████ | ETA: 0:00:05 Bin 2 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:04 Bin 2 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:03 Bin 2 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 2 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 3 ray tracing: 16%|████▊ | ETA: 0:00:11 Bin 3 ray tracing: 24%|███████▏ | ETA: 0:00:10 Bin 3 ray tracing: 32%|█████████▌ | ETA: 0:00:09 Bin 3 ray tracing: 40%|███████████▉ | ETA: 0:00:08 Bin 3 ray tracing: 48%|██████████████▍ | ETA: 0:00:07 Bin 3 ray tracing: 56%|████████████████▋ | ETA: 0:00:06 Bin 3 ray tracing: 64%|███████████████████ | ETA: 0:00:05 Bin 3 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:04 Bin 3 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:03 Bin 3 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 3 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 4 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 4 ray tracing: 25%|███████▌ | ETA: 0:00:09 Bin 4 ray tracing: 33%|██████████ | ETA: 0:00:08 Bin 4 ray tracing: 41%|████████████▍ | ETA: 0:00:07 Bin 4 ray tracing: 49%|██████████████▊ | ETA: 0:00:06 Bin 4 ray tracing: 57%|█████████████████▏ | ETA: 0:00:05 Bin 4 ray tracing: 65%|███████████████████▌ | ETA: 0:00:04 Bin 4 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:03 Bin 4 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:02 Bin 4 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:01 Bin 4 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 5 ray tracing: 16%|████▊ | ETA: 0:00:11 Bin 5 ray tracing: 24%|███████▏ | ETA: 0:00:10 Bin 5 ray tracing: 31%|█████████▌ | ETA: 0:00:09 Bin 5 ray tracing: 39%|███████████▊ | ETA: 0:00:08 Bin 5 ray tracing: 47%|██████████████▏ | ETA: 0:00:07 Bin 5 ray tracing: 55%|████████████████▌ | ETA: 0:00:06 Bin 5 ray tracing: 63%|██████████████████▉ | ETA: 0:00:05 Bin 5 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:04 Bin 5 ray tracing: 79%|███████████████████████▌ | ETA: 0:00:03 Bin 5 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 5 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 6 ray tracing: 16%|████▊ | ETA: 0:00:11 Bin 6 ray tracing: 24%|███████▏ | ETA: 0:00:10 Bin 6 ray tracing: 32%|█████████▌ | ETA: 0:00:09 Bin 6 ray tracing: 39%|███████████▊ | ETA: 0:00:08 Bin 6 ray tracing: 47%|██████████████ | ETA: 0:00:07 Bin 6 ray tracing: 55%|████████████████▍ | ETA: 0:00:06 Bin 6 ray tracing: 63%|██████████████████▉ | ETA: 0:00:05 Bin 6 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:04 Bin 6 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:03 Bin 6 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 6 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 7 ray tracing: 16%|████▉ | ETA: 0:00:11 Bin 7 ray tracing: 24%|███████▎ | ETA: 0:00:10 Bin 7 ray tracing: 32%|█████████▋ | ETA: 0:00:09 Bin 7 ray tracing: 40%|███████████▉ | ETA: 0:00:08 Bin 7 ray tracing: 48%|██████████████▎ | ETA: 0:00:07 Bin 7 ray tracing: 56%|████████████████▋ | ETA: 0:00:06 Bin 7 ray tracing: 63%|███████████████████ | ETA: 0:00:05 Bin 7 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:04 Bin 7 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:03 Bin 7 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 7 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 8 ray tracing: 16%|████▊ | ETA: 0:00:11 Bin 8 ray tracing: 24%|███████▏ | ETA: 0:00:10 Bin 8 ray tracing: 32%|█████████▌ | ETA: 0:00:09 Bin 8 ray tracing: 40%|████████████ | ETA: 0:00:08 Bin 8 ray tracing: 48%|██████████████▍ | ETA: 0:00:07 Bin 8 ray tracing: 55%|████████████████▋ | ETA: 0:00:06 Bin 8 ray tracing: 63%|██████████████████▉ | ETA: 0:00:05 Bin 8 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:04 Bin 8 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:03 Bin 8 ray tracing: 88%|██████████████████████████▎ | ETA: 0:00:02 Bin 8 ray tracing: 96%|████████████████████████████▋ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 9 ray tracing: 16%|████▊ | ETA: 0:00:11 Bin 9 ray tracing: 24%|███████▎ | ETA: 0:00:09 Bin 9 ray tracing: 33%|█████████▊ | ETA: 0:00:08 Bin 9 ray tracing: 41%|████████████▍ | ETA: 0:00:07 Bin 9 ray tracing: 50%|███████████████ | ETA: 0:00:06 Bin 9 ray tracing: 58%|█████████████████▌ | ETA: 0:00:05 Bin 9 ray tracing: 67%|████████████████████ | ETA: 0:00:04 Bin 9 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:03 Bin 9 ray tracing: 83%|█████████████████████████ | ETA: 0:00:02 Bin 9 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 9%|██▌ | ETA: 0:00:11 Bin 10 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 10 ray tracing: 26%|███████▋ | ETA: 0:00:09 Bin 10 ray tracing: 35%|██████████▏ | ETA: 0:00:08 Bin 10 ray tracing: 43%|████████████▋ | ETA: 0:00:07 Bin 10 ray tracing: 52%|███████████████ | ETA: 0:00:06 Bin 10 ray tracing: 60%|█████████████████▌ | ETA: 0:00:05 Bin 10 ray tracing: 69%|███████████████████▉ | ETA: 0:00:04 Bin 10 ray tracing: 77%|██████████████████████▎ | ETA: 0:00:03 Bin 10 ray tracing: 85%|████████████████████████▊ | ETA: 0:00:02 Bin 10 ray tracing: 93%|███████████████████████████ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 20%|██████▋ | ETA: 0:00:04 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:03 Bin 1 progress: 62%|████████████████████▌ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 20%|██████▋ | ETA: 0:00:04 Bin 2 progress: 42%|█████████████▉ | ETA: 0:00:03 Bin 2 progress: 64%|█████████████████████▎ | ETA: 0:00:02 Bin 2 progress: 87%|████████████████████████████▋ | ETA: 0:00:01 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 20%|██████▋ | ETA: 0:00:04 Bin 3 progress: 40%|█████████████▎ | ETA: 0:00:03 Bin 3 progress: 62%|████████████████████▌ | ETA: 0:00:02 Bin 3 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 22%|███████▍ | ETA: 0:00:04 Bin 4 progress: 42%|█████████████▉ | ETA: 0:00:03 Bin 4 progress: 64%|█████████████████████▎ | ETA: 0:00:02 Bin 4 progress: 87%|████████████████████████████▋ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 22%|███████▍ | ETA: 0:00:04 Bin 5 progress: 42%|█████████████▉ | ETA: 0:00:03 Bin 5 progress: 64%|█████████████████████▎ | ETA: 0:00:02 Bin 5 progress: 87%|████████████████████████████▋ | ETA: 0:00:01 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 22%|███████▍ | ETA: 0:00:04 Bin 6 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 6 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 6 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 22%|███████▍ | ETA: 0:00:04 Bin 7 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 7 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 7 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 22%|███████▍ | ETA: 0:00:04 Bin 8 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 8 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 8 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 22%|███████▍ | ETA: 0:00:04 Bin 9 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 9 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 9 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 20%|██████▍ | ETA: 0:00:04 Bin 10 progress: 42%|█████████████▌ | ETA: 0:00:03 Bin 10 progress: 64%|████████████████████▋ | ETA: 0:00:02 Bin 10 progress: 87%|███████████████████████████▊ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:04 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011074653473832617 Iteration 10: d = 9.541908798491369e-6 Iteration 20: d = 8.763062657919989e-8 Iteration 30: d = 9.704934673261825e-10 Iteration 40: d = 1.179391587370258e-11 Iteration 50: d = 1.5071172107541067e-13 Converged after 60 iterations. d = 2.022580257024491e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014729496345685209 Iteration 10: d = 1.9288388112534924e-5 Iteration 20: d = 2.592195536970671e-7 Iteration 30: d = 3.642178028903195e-9 Iteration 40: d = 5.147134406764572e-11 Iteration 50: d = 7.276568662966082e-13 Iteration 60: d = 1.0287183903387353e-14 Converged after 64 iterations. d = 1.890896863248268e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016418149488012148 Iteration 10: d = 1.785474851900783e-5 Iteration 20: d = 2.0370086392371977e-7 Iteration 30: d = 2.664080393622564e-9 Iteration 40: d = 3.5793180897710704e-11 Iteration 50: d = 4.848785455926622e-13 Iteration 60: d = 6.610338286136742e-15 Converged after 63 iterations. d = 1.8018545568786946e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010590168903104491 Iteration 10: d = 1.006350285677117e-5 Iteration 20: d = 1.2194812541021743e-7 Iteration 30: d = 1.6336857070485465e-9 Iteration 40: d = 2.2532642268685012e-11 Iteration 50: d = 3.146048422132962e-13 Iteration 60: d = 4.393557701741341e-15 Converged after 62 iterations. d = 1.8945245314546487e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013664745670731403 Iteration 10: d = 1.601874139792944e-5 Iteration 20: d = 1.9767878307019128e-7 Iteration 30: d = 2.643667773755955e-9 Iteration 40: d = 3.580382163067175e-11 Iteration 50: d = 4.875966356765671e-13 Iteration 60: d = 6.704677071669913e-15 Converged after 63 iterations. d = 1.845183960426985e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001655845654738503 Iteration 10: d = 1.0862626389404657e-5 Iteration 20: d = 9.656337040225437e-8 Iteration 30: d = 1.2251826246851258e-9 Iteration 40: d = 1.6864704812511933e-11 Iteration 50: d = 2.3627615038218736e-13 Iteration 60: d = 3.3618744393645303e-15 Converged after 61 iterations. d = 2.1492470425518405e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014377660834950293 Iteration 10: d = 1.0899178526398929e-5 Iteration 20: d = 1.1079385268718441e-7 Iteration 30: d = 1.4281434403791068e-9 Iteration 40: d = 1.9534322331593084e-11 Iteration 50: d = 2.7226415876139533e-13 Iteration 60: d = 3.79146072900123e-15 Converged after 62 iterations. d = 1.669324120178401e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011721445997217746 Iteration 10: d = 1.2865813143699126e-5 Iteration 20: d = 1.6000635860749405e-7 Iteration 30: d = 2.1383838281755267e-9 Iteration 40: d = 2.9007884375034327e-11 Iteration 50: d = 3.9611376277673394e-13 Iteration 60: d = 5.483248232249588e-15 Converged after 63 iterations. d = 1.4660947545694291e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013731275443636855 Iteration 10: d = 1.5947435258139733e-5 Iteration 20: d = 1.9608697941349817e-7 Iteration 30: d = 2.672437853943919e-9 Iteration 40: d = 3.7249392000818507e-11 Iteration 50: d = 5.227676054304645e-13 Iteration 60: d = 7.372131408574412e-15 Converged after 63 iterations. d = 2.038652149964721e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015875220758152723 Iteration 10: d = 1.0799175561065722e-5 Iteration 20: d = 9.81847209691085e-8 Iteration 30: d = 1.2427444647894566e-9 Iteration 40: d = 1.692737127383995e-11 Iteration 50: d = 2.347478960079652e-13 Iteration 60: d = 3.207759138271752e-15 Converged after 61 iterations. d = 2.164603994037413e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8652.886166541019 Iteration 2: convergence error = 4806.676893169726 Iteration 3: convergence error = 1097.9986315387132 Iteration 4: convergence error = 323.92933339840056 Iteration 5: convergence error = 96.41595451639341 Iteration 6: convergence error = 28.85574117528813 Iteration 7: convergence error = 8.64839898885839 Iteration 8: convergence error = 2.5919985548887325 Iteration 9: convergence error = 0.7785663952886352 Iteration 10: convergence error = 0.23362446145188187 Iteration 11: convergence error = 0.07004851270858126 Iteration 12: convergence error = 0.020993523233073574 Iteration 13: convergence error = 0.0062901533585772995 Iteration 14: convergence error = 0.001884403888197994 Iteration 15: convergence error = 0.0005644825259878417 Iteration 16: convergence error = 0.00016908540692384122 Iteration 17: convergence error = 5.064652486908017e-5 Iteration 18: convergence error = 1.5170018286880804e-5 Iteration 19: convergence error = 4.543794830169645e-6 Iteration 20: convergence error = 1.3609717370854924e-6 Iteration 21: convergence error = 4.076421191712143e-7 Iteration 22: convergence error = 1.219723344547674e-7 Iteration 23: convergence error = 3.5643552109831944e-8 Iteration 24: convergence error = 1.0326175470254384e-8 Iteration 25: convergence error = 2.9829152481397614e-9 Iteration 26: convergence error = 8.610641089035198e-10 Iteration 27: convergence error = 2.4851942725945264e-10 Iteration 28: convergence error = 7.23048287909478e-11 Iteration 29: convergence error = 2.0463630789890885e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.3296534171393 K, F = -7443.969546427415, relative_change = 0.03267034658286069 Iter 2: T = 936.7346107281287 K, F = -6310.032936977442, relative_change = 0.031628351907679125 Iter 3: T = 908.1834972025293 K, F = -5347.317283627047, relative_change = 0.030479404944167114 Iter 5: T = 857.0745344855445 K, F = -3836.410928638781, relative_change = 0.027866307093403795 Iter 10: T = 762.0494878528704 K, F = -1661.132199386485, relative_change = 0.019942263424259542 Iter 15: T = 706.4392297351178 K, F = -711.1818423547714, relative_change = 0.011942217870066416 Iter 20: T = 677.8514667017481 K, F = -301.40988076859037, relative_change = 0.006112635527550546 Iter 25: T = 664.5240117401847 K, F = -126.88465198487448, relative_change = 0.0028229868583724946 Iter 30: T = 658.6576844881225 K, F = -53.222984142489224, relative_change = 0.0012347075958050097 Iter 35: T = 656.1481759133957 K, F = -22.28724761295419, relative_change = 0.0005264809499809047 Iter 40: T = 655.0884427457942 K, F = -9.325906290578164, relative_change = 0.0002220003971929662 Iter 45: T = 654.6434296285063 K, F = -3.9011059077895744, relative_change = 9.316537369307908e-5 Iter 50: T = 654.4569991526586 K, F = -1.6316470417607933, relative_change = 3.901950487188421e-5 Iter 55: T = 654.3789754414306 K, F = -0.6824019402777314, relative_change = 1.6328349248587743e-5 Iter 60: T = 654.3463351409761 K, F = -0.2853934814703577, relative_change = 6.830448332473311e-6 Iter 65: T = 654.3326828533536 K, F = -0.11935580902935788, relative_change = 2.856879099966044e-6 Iter 70: T = 654.3269730020014 K, F = -0.049916172849277574, relative_change = 1.1948341420587618e-6 Iter 75: T = 654.3245850212165 K, F = -0.020875565511029426, relative_change = 4.997032100195405e-7 Iter 80: T = 654.323586329906 K, F = -0.008730415332273811, relative_change = 2.0898347717164333e-7 Iter 85: T = 654.3231686636592 K, F = -0.0036511647470962583, relative_change = 8.739967051219431e-8 Iter 90: T = 654.3229939903645 K, F = -0.0015269608400302337, relative_change = 3.655163575635421e-8 Iter 95: T = 654.3229209398572 K, F = -0.0006385932827953633, relative_change = 1.528633928532314e-8 Iter 100: T = 654.322890389254 K, F = -0.0002670673410173907, relative_change = 6.392931157159295e-9 Iter 105: T = 654.3228776126253 K, F = -0.0001116907511401477, relative_change = 2.6736003982783423e-9 Iter 110: T = 654.3228722692866 K, F = -4.671040723785991e-5, relative_change = 1.1181316892896775e-9 Iter 115: T = 654.3228700346384 K, F = -1.953485071670702e-5, relative_change = 4.676160470154785e-10 Iter 120: T = 654.3228691000817 K, F = -8.169707143290683e-6, relative_change = 1.9556259942804423e-10 Iter 125: T = 654.322868709239 K, F = -3.4166688278047808e-6, relative_change = 8.178660844644932e-11 Iter 130: T = 654.3228685457839 K, F = -1.428890847698927e-6, relative_change = 3.420411585150456e-11 Iter 135: T = 654.322868477425 K, F = -5.975789891254912e-7, relative_change = 1.4304564283238131e-11 Iter 140: T = 654.3228684488365 K, F = -2.4991395297657704e-7, relative_change = 5.982322456830079e-12 Iter 145: T = 654.3228684368805 K, F = -1.0451790166676744e-7, relative_change = 2.50190028563494e-12 Iter 150: T = 654.3228684318804 K, F = -4.371021827820343e-8, relative_change = 1.046314610754889e-12 Iter 155: T = 654.3228684297892 K, F = -1.828048612484423e-8, relative_change = 4.3758966387856093e-13 Converged in 159 iterations to T = 654.3228684290344 K Iter 1: T = 970.3703233954341 K, F = -6751.149999449096, relative_change = 0.029629676604565943 Iter 2: T = 942.905477077902 K, F = -5718.026431076411, relative_change = 0.028303468949286772 Iter 3: T = 917.5605431940594 K, F = -4841.250689749877, relative_change = 0.026879612538032435 Iter 5: T = 873.0135860478433 K, F = -3466.2735568308003, relative_change = 0.023784260330919155 Iter 10: T = 793.9694894891063 K, F = -1491.902374726333, relative_change = 0.015478573314928032 Iter 15: T = 750.9217127310485 K, F = -635.0418429265291, relative_change = 0.008471006737325556 Iter 20: T = 730.0326659369291 K, F = -268.0475813911373, relative_change = 0.004074101792235159 Iter 25: T = 720.6325584830101 K, F = -112.5871582515953, relative_change = 0.0018186454590023362 Iter 30: T = 716.5686548203997 K, F = -47.17522970632005, relative_change = 0.0007827040844926901 Iter 35: T = 714.8444485677762 K, F = -19.745360241261338, relative_change = 0.0003313731746921871 Iter 40: T = 714.1189437885533 K, F = -8.260593408297554, relative_change = 0.00013930314206872112 Iter 45: T = 713.8147472440379 K, F = -3.4551790991893996, relative_change = 5.838493781151962e-5 Iter 50: T = 713.6873912498847 K, F = -1.4450848229129178, relative_change = 2.4439509078924514e-5 Iter 55: T = 713.6341053801563 K, F = -0.6043670743969205, relative_change = 1.0224787961287185e-5 Iter 60: T = 713.6118163794373 K, F = -0.2527562125933404, relative_change = 4.276809774865997e-6 Iter 65: T = 713.6024941159326 K, F = -0.10570613620517366, relative_change = 1.7887321184625066e-6 Iter 70: T = 713.5985953050458 K, F = -0.044207650681421296, relative_change = 7.480899831329603e-7 Iter 75: T = 713.5969647532153 K, F = -0.018488181825700112, relative_change = 3.1286381166650367e-7 Iter 80: T = 713.5962828330219 K, F = -0.007731980946155237, relative_change = 1.3084402022673552e-7 Iter 85: T = 713.5959976451632 K, F = -0.0032336072086667222, relative_change = 5.472064339350399e-8 Iter 90: T = 713.5958783760742 K, F = -0.0013523332282713296, relative_change = 2.2884846069828688e-8 Iter 95: T = 713.5958284962957 K, F = -0.0005655619201694329, relative_change = 9.570719348466405e-9 Iter 100: T = 713.595807635973 K, F = -0.00023652475215041324, relative_change = 4.0025897362115984e-9 Iter 105: T = 713.5957989119362 K, F = -9.891747623391733e-5, relative_change = 1.6739309292235955e-9 Iter 110: T = 713.5957952634398 K, F = -4.136847025038026e-5, relative_change = 7.000579287801197e-10 Iter 115: T = 713.5957937375949 K, F = -1.730078813322322e-5, relative_change = 2.927725863877716e-10 Iter 120: T = 713.5957930994683 K, F = -7.235394971827347e-6, relative_change = 1.2244097159886443e-10 Iter 125: T = 713.5957928325963 K, F = -3.0259294185874808e-6, relative_change = 5.120629075589591e-11 Iter 130: T = 713.5957927209872 K, F = -1.265480296774868e-6, relative_change = 2.1415090409152678e-11 Iter 135: T = 713.5957926743109 K, F = -5.292397786682557e-7, relative_change = 8.95606019367882e-12 Iter 140: T = 713.5957926547904 K, F = -2.2133568222670874e-7, relative_change = 3.74555309934878e-12 Iter 145: T = 713.5957926466266 K, F = -9.256434840843042e-8, relative_change = 1.5664201930810262e-12 Iter 150: T = 713.5957926432123 K, F = -3.871088460893901e-8, relative_change = 6.55084947795411e-13 Iter 155: T = 713.5957926417846 K, F = -1.6190003893079563e-8, relative_change = 2.739753421382029e-13 Converged in 157 iterations to T = 713.5957926414824 K Iter 1: T = 974.4522088353868 K, F = -5821.088519080381, relative_change = 0.025547791164613105 Iter 2: T = 951.0933808565555 K, F = -4924.797281173218, relative_change = 0.023971240217874386 Iter 3: T = 929.8484725525619 K, F = -4164.708539977986, relative_change = 0.022337352705430906 Iter 5: T = 893.3457155544903 K, F = -2974.3116380912124, relative_change = 0.018982219810991394 Iter 10: T = 831.8843807995809 K, F = -1271.7708345721076, relative_change = 0.011143085922329961 Iter 15: T = 800.7019120555684 K, F = -538.4831356314968, relative_change = 0.005620842650077251 Iter 20: T = 786.2872423319025 K, F = -226.56172753239215, relative_change = 0.0025744429443353457 Iter 25: T = 779.9703771036717 K, F = -95.00821796397909, relative_change = 0.0011214934982784286 Iter 30: T = 777.27368892616 K, F = -39.780173565885455, relative_change = 0.0004773508519170339 Iter 35: T = 776.1359380886635 K, F = -16.644816396227814, relative_change = 0.0002011288218870596 Iter 40: T = 775.6583467387474 K, F = -6.962517030075807, relative_change = 8.437883536934326e-5 Iter 45: T = 775.4583006266356 K, F = -2.912063106818662, relative_change = 3.533468714755319e-5 Iter 50: T = 775.3745842832625 K, F = -1.2179042762791643, relative_change = 1.478552810472884e-5 Iter 55: T = 775.3395635356009 K, F = -0.5093499361447742, relative_change = 6.184909268330497e-6 Iter 60: T = 775.3249157655321 K, F = -0.21301759469187165, relative_change = 2.586852209284093e-6 Iter 65: T = 775.3187896001114 K, F = -0.08908674142142581, relative_change = 1.0818960945735141e-6 Iter 70: T = 775.3162275133124 K, F = -0.037257181040914134, relative_change = 4.524694946268479e-7 Iter 75: T = 775.31515600905 K, F = -0.015581405375868718, relative_change = 1.8922948032285873e-7 Iter 80: T = 775.314707891603 K, F = -0.006516331089333138, relative_change = 7.91382618716837e-8 Iter 85: T = 775.3145204832608 K, F = -0.0027252077058169677, relative_change = 3.3096607021507866e-8 Iter 90: T = 775.314442106806 K, F = -0.001139714448048501, relative_change = 1.3841403456582295e-8 Iter 95: T = 775.3144093288282 K, F = -0.0004766422009412352, relative_change = 5.788641485549111e-9 Iter 100: T = 775.3143956206849 K, F = -0.00019933745975442285, relative_change = 2.4208791920163093e-9 Iter 105: T = 775.3143898877756 K, F = -8.336530849928359e-5, relative_change = 1.0124406523276445e-9 Iter 110: T = 775.3143874902044 K, F = -3.486436938393567e-5, relative_change = 4.2341479971948074e-10 Iter 115: T = 775.3143864875113 K, F = -1.4580696117261205e-5, relative_change = 1.7707713271074442e-10 Iter 120: T = 775.3143860681732 K, F = -6.097821981798646e-6, relative_change = 7.405578076754417e-11 Iter 125: T = 775.314385892801 K, F = -2.5501829549190447e-6, relative_change = 3.0971023849780854e-11 Iter 130: T = 775.3143858194583 K, F = -1.0665173251211968e-6, relative_change = 1.2952456396783829e-11 Iter 135: T = 775.3143857887854 K, F = -4.4603212268068404e-7, relative_change = 5.4168943022263554e-12 Iter 140: T = 775.3143857759577 K, F = -1.865353033148054e-7, relative_change = 2.2654019080437667e-12 Iter 145: T = 775.3143857705929 K, F = -7.801154278119782e-8, relative_change = 9.47421183718411e-13 Iter 150: T = 775.3143857683493 K, F = -3.2625425250287776e-8, relative_change = 3.9622366009431013e-13 Converged in 154 iterations to T = 775.3143857675395 K Iter 1: T = 970.3933404138642 K, F = -6745.905549904969, relative_change = 0.02960665958613588 Iter 2: T = 942.9519538812459 K, F = -5713.548731000119, relative_change = 0.028278622069803912 Iter 3: T = 917.6307828737382 K, F = -4837.426784392, relative_change = 0.026853087162377963 Iter 5: T = 873.131546030999 K, F = -3463.4839962944225, relative_change = 0.023755117001219267 Iter 10: T = 794.1978623710756 K, F = -1490.640061561949, relative_change = 0.015449521508996809 Iter 15: T = 751.2304434289284 K, F = -634.4813656311583, relative_change = 0.008450332722139502 Iter 20: T = 730.3876408338579 K, F = -267.80465825637066, relative_change = 0.004062689714879682 Iter 25: T = 721.0102196191438 K, F = -112.48372780128443, relative_change = 0.0018132109143135884 Iter 30: T = 716.9565207821917 K, F = -47.13161975182209, relative_change = 0.0007802975202876703 Iter 35: T = 715.2367198202469 K, F = -19.727057402196426, relative_change = 0.0003303417956600568 Iter 40: T = 714.5130824145152 K, F = -8.25292742945335, relative_change = 0.00013886732834588554 Iter 45: T = 714.2096712800842 K, F = -3.4519710660876206, relative_change = 5.820188301159516e-5 Iter 50: T = 714.0826445380683 K, F = -1.4437428290988938, relative_change = 2.4362814138274732e-5 Iter 55: T = 714.0294965030942 K, F = -0.6038057741969454, relative_change = 1.0192688819638472e-5 Iter 60: T = 714.0072651706084 K, F = -0.2525214592345679, relative_change = 4.263381259072439e-6 Iter 65: T = 713.9979670288636 K, F = -0.10560795763922459, relative_change = 1.7831154054710287e-6 Iter 70: T = 713.9940783067224 K, F = -0.044166590899139324, relative_change = 7.457408759601858e-7 Iter 75: T = 713.9924519742548 K, F = -0.01847101007651586, relative_change = 3.1188136413558063e-7 Iter 80: T = 713.9917718186719 K, F = -0.007724799504286728, relative_change = 1.3043314491896495e-7 Iter 85: T = 713.9914873687983 K, F = -0.003230603842602764, relative_change = 5.4548809741512934e-8 Iter 90: T = 713.9913684083441 K, F = -0.0013510771843460168, relative_change = 2.281298306115423e-8 Iter 95: T = 713.9913186576405 K, F = -0.0005650366252634154, relative_change = 9.540665320077356e-9 Iter 100: T = 713.9912978512984 K, F = -0.00023630506650129668, relative_change = 3.990020761353633e-9 Iter 105: T = 713.9912891498371 K, F = -9.882559992602236e-5, relative_change = 1.6686744138674904e-9 Iter 110: T = 713.9912855107821 K, F = -4.133004761830428e-5, relative_change = 6.978596103619366e-10 Iter 115: T = 713.9912839888857 K, F = -1.7284720201460324e-5, relative_change = 2.918532380804367e-10 Iter 120: T = 713.9912833524105 K, F = -7.228677651793802e-6, relative_change = 1.2205653109106016e-10 Iter 125: T = 713.9912830862288 K, F = -3.0231180095929844e-6, relative_change = 5.1045476885142367e-11 Iter 130: T = 713.9912829749086 K, F = -1.2643033612258492e-6, relative_change = 2.1347816342061325e-11 Iter 135: T = 713.9912829283531 K, F = -5.287471913639763e-7, relative_change = 8.927918949119021e-12 Iter 140: T = 713.9912829088831 K, F = -2.211292641218776e-7, relative_change = 3.733777086403034e-12 Iter 145: T = 713.9912829007404 K, F = -9.247895005337625e-8, relative_change = 1.5615110287363072e-12 Iter 150: T = 713.9912828973352 K, F = -3.867609033036956e-8, relative_change = 6.530474401557097e-13 Iter 155: T = 713.991282895911 K, F = -1.6175387029804256e-8, relative_change = 2.731221021362456e-13 Converged in 157 iterations to T = 713.9912828956096 K Iter 1: T = 969.3725330829883 K, F = -6978.49747128348, relative_change = 0.030627466917011698 Iter 2: T = 940.8873235764404 K, F = -5912.187633014059, relative_change = 0.02938520386579722 Iter 3: T = 914.5050336098973 K, F = -5007.116410494058, relative_change = 0.028039797439570625 Iter 5: T = 867.8619512143856 K, F = -3587.376054976131, relative_change = 0.02507211366864706 Iter 10: T = 783.88889540536 K, F = -1546.8805523914755, relative_change = 0.016799975279685637 Iter 15: T = 737.1692937043294 K, F = -659.5482971843254, relative_change = 0.00943610426102225 Iter 20: T = 714.1287781577571 K, F = -278.7017754352907, relative_change = 0.004616058137935323 Iter 25: T = 703.6618310785713 K, F = -117.13145383355469, relative_change = 0.0020790853491793604 Iter 30: T = 699.115456766823 K, F = -49.09290856431935, relative_change = 0.0008985238433473994 Iter 35: T = 697.1824666015754 K, F = -20.550506639303656, relative_change = 0.00038110236335932714 Iter 40: T = 696.3683662727107 K, F = -8.597877196044001, relative_change = 0.00016033312251049464 Iter 45: T = 696.0268900812188 K, F = -3.596334314958556, relative_change = 6.722111846055362e-5 Iter 50: T = 695.8839031205954 K, F = -1.5041350147010353, relative_change = 2.8142147061309866e-5 Iter 55: T = 695.8240731450347 K, F = -0.629065616641955, relative_change = 1.1774544705781654e-5 Iter 60: T = 695.7990460865627 K, F = -0.26308597114218246, relative_change = 4.925158759883968e-6 Iter 65: T = 695.7885785185618 K, F = -0.11002625787792275, relative_change = 2.0599182857585596e-6 Iter 70: T = 695.7842006898616 K, F = -0.046014393473880366, relative_change = 8.615100779335777e-7 Iter 75: T = 695.7823698004498 K, F = -0.019243786093448567, relative_change = 3.602986394281763e-7 Iter 80: T = 695.781604095531 K, F = -0.008047984172203204, relative_change = 1.5068203971941696e-7 Iter 85: T = 695.7812838676973 K, F = -0.0033657636188979545, relative_change = 6.301717644789876e-8 Iter 90: T = 695.781149944437 K, F = -0.0014076026340902326, relative_change = 2.6354561666675928e-8 Iter 95: T = 695.7810939361027 K, F = -0.0005886762465637796, relative_change = 1.1021796927607212e-8 Iter 100: T = 695.7810705127437 K, F = -0.00024619143803084054, relative_change = 4.609447868927854e-9 Iter 105: T = 695.7810607168144 K, F = -0.00010296019990685412, relative_change = 1.9277262834712356e-9 Iter 110: T = 695.7810566200397 K, F = -4.3059186080052214e-5, relative_change = 8.061981926360576e-10 Iter 115: T = 695.7810549067195 K, F = -1.800786509587038e-5, relative_change = 3.3716170195928096e-10 Iter 120: T = 695.7810541901886 K, F = -7.531104292635149e-6, relative_change = 1.4100505195199095e-10 Iter 125: T = 695.7810538905268 K, F = -3.1495979962992138e-6, relative_change = 5.89700013105678e-11 Iter 130: T = 695.7810537652047 K, F = -1.3171993119565073e-6, relative_change = 2.4661955370251638e-11 Iter 135: T = 695.7810537127934 K, F = -5.508685722022122e-7, relative_change = 1.0313925936704473e-11 Iter 140: T = 695.7810536908745 K, F = -2.3038020402488257e-7, relative_change = 4.3134142731229704e-12 Iter 145: T = 695.7810536817077 K, F = -9.634738318275993e-8, relative_change = 1.803914444748678e-12 Iter 150: T = 695.781053677874 K, F = -4.029250744164159e-8, relative_change = 7.543976161049852e-13 Iter 155: T = 695.7810536762706 K, F = -1.6849746042879588e-8, relative_change = 3.154782130467564e-13 Converged in 158 iterations to T = 695.7810536758013 K Iter 1: T = 963.5816570648972 K, F = -8297.954080550722, relative_change = 0.0364183429351028 Iter 2: T = 929.0422938988053 K, F = -7041.054260051044, relative_change = 0.03584477030343226 Iter 3: T = 896.3484506911021 K, F = -5973.615109637807, relative_change = 0.035190909415437545 Iter 5: T = 836.3786800227895 K, F = -4297.304929700989, relative_change = 0.033613149850110456 Iter 10: T = 716.8121806985441 K, F = -1877.8341960692028, relative_change = 0.02787453662383995 Iter 15: T = 637.3085541769975 K, F = -813.0941732350992, relative_change = 0.019951598477274055 Iter 20: T = 590.7755358351446 K, F = -348.1145050380477, relative_change = 0.011949932029885604 Iter 25: T = 566.8513669968846 K, F = -147.53757144489674, relative_change = 0.006117397121452483 Iter 30: T = 555.6972043388016 K, F = -62.10926497960441, relative_change = 0.0028254017884290017 Iter 35: T = 550.7872939213703 K, F = -26.052390306879825, relative_change = 0.001235809888994561 Iter 40: T = 548.686883480901 K, F = -10.909510602715216, relative_change = 0.0005269597697672778 Iter 45: T = 547.7998998263503 K, F = -4.564992655304664, relative_change = 0.0002222038992253947 Iter 50: T = 547.4274279881273 K, F = -1.9095756305314142, relative_change = 9.325106015947612e-5 Iter 55: T = 547.2713871810868 K, F = -0.798684722946393, relative_change = 3.905544210164581e-5 Iter 60: T = 547.2060819220503 K, F = -0.3340330414079415, relative_change = 1.6343396546291252e-5 Iter 65: T = 547.1787622290539 K, F = -0.13969897855884483, relative_change = 6.836744430316376e-6 Iter 70: T = 547.1673353628049 K, F = -0.05842419603916968, relative_change = 2.8595127524791636e-6 Iter 75: T = 547.1625562581952 K, F = -0.024433769075912132, relative_change = 1.1959356630980751e-6 Iter 80: T = 547.1605575353751 K, F = -0.010218506718118164, relative_change = 5.001638961033744e-7 Iter 85: T = 547.1597216378916 K, F = -0.004273503762804942, relative_change = 2.0917614452569801e-7 Iter 90: T = 547.1593720542293 K, F = -0.0017872306980483976, relative_change = 8.748024681616432e-8 Iter 95: T = 547.1592258539304 K, F = -0.0007474412896387728, relative_change = 3.658533380570737e-8 Iter 100: T = 547.1591647111779 K, F = -0.0003125888854661196, relative_change = 1.530043223645115e-8 Iter 105: T = 547.1591391405415 K, F = -0.00013072840687350373, relative_change = 6.398825002341764e-9 Iter 110: T = 547.1591284465947 K, F = -5.467218157356735e-5, relative_change = 2.6760653120780368e-9 Iter 115: T = 547.1591239742581 K, F = -2.2864558813562308e-5, relative_change = 1.1191624942868373e-9 Iter 120: T = 547.1591221038736 K, F = -9.562232143517368e-6, relative_change = 4.680471570920273e-10 Iter 125: T = 547.1591213216564 K, F = -3.9990391761945965e-6, relative_change = 1.9574288745182953e-10 Iter 130: T = 547.1591209945238 K, F = -1.6724462276185292e-6, relative_change = 8.186202740462063e-11 Iter 135: T = 547.1591208577131 K, F = -6.99436265544362e-7, relative_change = 3.423564229474104e-11 Iter 140: T = 547.1591208004972 K, F = -2.9251268224284033e-7, relative_change = 1.4317758535343628e-11 Iter 145: T = 547.1591207765688 K, F = -1.2233202922873332e-7, relative_change = 5.9878445015460295e-12 Iter 150: T = 547.1591207665617 K, F = -5.116067269828051e-8, relative_change = 2.504185981953085e-12 Iter 155: T = 547.1591207623767 K, F = -2.139622970465105e-8, relative_change = 1.0472915164930435e-12 Iter 160: T = 547.1591207606264 K, F = -8.948031565703118e-9, relative_change = 4.3798359232320596e-13 Converged in 164 iterations to T = 547.1591207599946 K Iter 1: T = 966.9319765727071 K, F = -7534.580593719641, relative_change = 0.03306802342729294 Iter 2: T = 935.9229602238373 K, F = -6387.529142169015, relative_change = 0.03206949102953578 Iter 3: T = 906.9424839350523 K, F = -5413.63777030618, relative_change = 0.03096459593410757 Iter 5: T = 854.9356779637579 K, F = -3885.063686370186, relative_change = 0.028436340889471102 Iter 10: T = 757.5911243490818 K, F = -1683.660876158087, relative_change = 0.02063429800223626 Iter 15: T = 699.9870452623893 K, F = -721.4988741435001, relative_change = 0.012538019832752026 Iter 20: T = 670.08319462909 K, F = -306.00169459067484, relative_change = 0.006488694261705425 Iter 25: T = 656.0520679353392 K, F = -128.87178147203375, relative_change = 0.003015831982976034 Iter 30: T = 649.854808829558 K, F = -54.06769421221833, relative_change = 0.001323178194351002 Iter 35: T = 647.1994730946914 K, F = -22.643082179753296, relative_change = 0.0005649962228167056 Iter 40: T = 646.0773666207041 K, F = -9.475183503535343, relative_change = 0.00023838509043818307 Iter 45: T = 645.6060188343688 K, F = -3.9636174553234653, relative_change = 0.00010006704203188142 Iter 50: T = 645.408530744721 K, F = -1.6578045444537526, relative_change = 4.191457271369766e-5 Iter 55: T = 645.3258748486223 K, F = -0.693343849406004, relative_change = 1.7540629247862934e-5 Iter 60: T = 645.2912959532962 K, F = -0.2899699613134046, relative_change = 7.337705935765891e-6 Iter 65: T = 645.2768326841019 K, F = -0.12126982502715661, relative_change = 3.069067123592956e-6 Iter 70: T = 645.2707836289218 K, F = -0.05071665075028642, relative_change = 1.2835819012573726e-6 Iter 75: T = 645.2682537817597 K, F = -0.021210337300565596, relative_change = 5.368200160369043e-7 Iter 80: T = 645.2671957589614 K, F = -0.008870421307766996, relative_change = 2.2450641940907313e-7 Iter 85: T = 645.2667532793548 K, F = -0.003709716989563294, relative_change = 9.389159415797965e-8 Iter 90: T = 645.2665682287778 K, F = -0.001551448099044006, relative_change = 3.9266643405288376e-8 Iter 95: T = 645.2664908383605 K, F = -0.0006488341490892835, relative_change = 1.6421789246601306e-8 Iter 100: T = 645.2664584727538 K, F = -0.0002713501943347185, relative_change = 6.867790133696293e-9 Iter 105: T = 645.2664449370689 K, F = -0.00011348189169591016, relative_change = 2.872192134927135e-9 Iter 110: T = 645.2664392762836 K, F = -4.745948349221818e-5, relative_change = 1.2011851306881054e-9 Iter 115: T = 645.2664369088753 K, F = -1.9848122190524453e-5, relative_change = 5.02349960629015e-10 Iter 120: T = 645.2664359187969 K, F = -8.300720382270477e-6, relative_change = 2.1008872011470894e-10 Iter 125: T = 645.2664355047344 K, F = -3.4714606194641284e-6, relative_change = 8.786161768052262e-11 Iter 130: T = 645.2664353315685 K, F = -1.4518056081214148e-6, relative_change = 3.674476061602901e-11 Iter 135: T = 645.2664352591485 K, F = -6.071623213088628e-7, relative_change = 1.53670946293948e-11 Iter 140: T = 645.2664352288615 K, F = -2.5392232727572406e-7, relative_change = 6.4266972697227465e-12 Iter 145: T = 645.2664352161951 K, F = -1.0619223128616184e-7, relative_change = 2.687693241702463e-12 Iter 150: T = 645.2664352108978 K, F = -4.441037360081168e-8, relative_change = 1.1240131179784571e-12 Iter 155: T = 645.2664352086827 K, F = -1.8573476534555766e-8, relative_change = 4.700890710648154e-13 Converged in 160 iterations to T = 645.2664352077562 K Iter 1: T = 965.192046945281 K, F = -7931.025214429023, relative_change = 0.03480795305471899 Iter 2: T = 932.3591842911143 K, F = -6726.783204197858, relative_change = 0.034016922081029285 Iter 3: T = 901.4719627133668 K, F = -5704.173335443065, relative_change = 0.03312802844456507 Iter 5: T = 845.421371714789 K, F = -4098.6200562145905, relative_change = 0.03103803410134164 Iter 10: T = 737.183135781417 K, F = -1783.4637716699367, relative_change = 0.024042283631464156 Iter 15: T = 669.5300507272703 K, F = -767.8928765559001, relative_change = 0.015737093539821716 Iter 20: T = 632.5317921259821 K, F = -326.9666813565177, relative_change = 0.008655883434364449 Iter 25: T = 614.522546459581 K, F = -138.04001972001103, relative_change = 0.004176492221574885 Iter 30: T = 606.4038350278429 K, F = -57.986950895470805, relative_change = 0.001867490544057768 Iter 35: T = 602.8908278106345 K, F = -24.298411638290414, relative_change = 0.0008043517585820476 Iter 40: T = 601.3997636231345 K, F = -10.170416887339615, relative_change = 0.00034065403657092865 Iter 45: T = 600.7722525186314 K, F = -4.254897807767472, relative_change = 0.00014322541304831538 Iter 50: T = 600.5091246877605 K, F = -1.77971401303376, relative_change = 6.0032515655513424e-5 Iter 55: T = 600.3989593187231 K, F = -0.7443440791491983, relative_change = 2.5129817774223646e-5 Iter 60: T = 600.3528654359486 K, F = -0.311301709310995, relative_change = 1.0513706222308903e-5 Iter 65: T = 600.3335846759827 K, F = -0.13019151426671532, relative_change = 4.397677864290621e-6 Iter 70: T = 600.3255205761978 K, F = -0.054447894764771076, relative_change = 1.839287424404978e-6 Iter 75: T = 600.322147958662 K, F = -0.02277080332921605, relative_change = 7.692340101308031e-7 Iter 80: T = 600.3207374696688 K, F = -0.009523029498139879, relative_change = 3.2170670515664397e-7 Iter 85: T = 600.3201475828181 K, F = -0.003982645993885425, relative_change = 1.3454226038768513e-7 Iter 90: T = 600.3199008844789 K, F = -0.0016655903497693192, relative_change = 5.62672980011868e-8 Iter 95: T = 600.3197977121798 K, F = -0.0006965698164837497, relative_change = 2.3531676632132474e-8 Iter 100: T = 600.3197545642735 K, F = -0.00029131382262231886, relative_change = 9.84123178461237e-9 Iter 105: T = 600.3197365193005 K, F = -0.00012183092130435558, relative_change = 4.115721306593147e-9 Iter 110: T = 600.3197289726767 K, F = -5.095114630143671e-5, relative_change = 1.7212439069951246e-9 Iter 115: T = 600.3197258165884 K, F = -2.1308377790629773e-5, relative_change = 7.198447732874248e-10 Iter 120: T = 600.3197244966746 K, F = -8.911418168167096e-6, relative_change = 3.0104768749237623e-10 Iter 125: T = 600.3197239446708 K, F = -3.7268611299268173e-6, relative_change = 1.2590172613481436e-10 Iter 130: T = 600.3197237138162 K, F = -1.5586172633641482e-6, relative_change = 5.265358631814366e-11 Iter 135: T = 600.31972361727 K, F = -6.518315333048363e-7, relative_change = 2.2020330928423996e-11 Iter 140: T = 600.3197235768934 K, F = -2.7260406720852615e-7, relative_change = 9.209176708364282e-12 Iter 145: T = 600.3197235600074 K, F = -1.1400666977134932e-7, relative_change = 3.851400966787377e-12 Iter 150: T = 600.3197235529456 K, F = -4.767933187155293e-8, relative_change = 1.6107147524302805e-12 Iter 155: T = 600.3197235499921 K, F = -1.993985832005052e-8, relative_change = 6.736131295788909e-13 Iter 160: T = 600.3197235487569 K, F = -8.339426427195207e-9, relative_change = 2.8172452604250326e-13 Converged in 162 iterations to T = 600.3197235484954 K Iter 1: T = 980.0866095696773 K, F = -4537.284952073535, relative_change = 0.01991339043032264 Iter 2: T = 962.219326571961 K, F = -3832.7145752444526, relative_change = 0.01823031028406887 Iter 3: T = 946.277644022764 K, F = -3236.0441982786656, relative_change = 0.016567618326677618 Iter 5: T = 919.6490862967393 K, F = -2303.7397619858493, relative_change = 0.01339240290759147 Iter 10: T = 877.3489078639794 K, F = -978.0766293943342, relative_change = 0.00704257007011353 Iter 15: T = 857.3126836699395 K, F = -412.1708818435188, relative_change = 0.0033043801742680006 Iter 20: T = 848.417700520265 K, F = -172.97857789374044, relative_change = 0.0014565925609254524 Iter 25: T = 844.5972380598664 K, F = -72.45213501124087, relative_change = 0.0006232828205934184 Iter 30: T = 842.981038726804 K, F = -30.320039470532606, relative_change = 0.000263218499453959 Iter 35: T = 842.3018332606496 K, F = -12.683675058850959, relative_change = 0.0001105343020564239 Iter 40: T = 842.0172006831822 K, F = -5.305073824572041, relative_change = 4.630650712516441e-5 Iter 45: T = 841.8980619956037 K, F = -2.218751975522286, relative_change = 1.9379916600894518e-5 Iter 50: T = 841.8482189160818 K, F = -0.9279272548690009, relative_change = 8.107360681216135e-6 Iter 55: T = 841.827370819663 K, F = -0.388073527908274, relative_change = 3.3910234265993693e-6 Iter 60: T = 841.8186513499959 K, F = -0.16229755558212178, relative_change = 1.418241430021194e-6 Iter 65: T = 841.8150046680084 K, F = -0.06787487595931685, relative_change = 5.931386106693302e-7 Iter 70: T = 841.8134795653227 K, F = -0.028386101205458703, relative_change = 2.480599430706633e-7 Iter 75: T = 841.8128417462402 K, F = -0.011871409582494108, relative_change = 1.0374203161500827e-7 Iter 80: T = 841.812575002171 K, F = -0.004964765795413051, relative_change = 4.338622668160482e-8 Iter 85: T = 841.8124634465262 K, F = -0.002076324439657551, relative_change = 1.8144650393400266e-8 Iter 90: T = 841.8124167926077 K, F = -0.0008683436954612933, relative_change = 7.588311649223515e-9 Iter 95: T = 841.812397281379 K, F = -0.0003631517063813483, relative_change = 3.173522929320458e-9 Iter 100: T = 841.8123891215497 K, F = -0.0001518743805479783, relative_change = 1.3272052500931002e-9 Iter 105: T = 841.8123857090116 K, F = -6.351567747886477e-5, relative_change = 5.550530769974831e-10 Iter 110: T = 841.8123842818474 K, F = -2.656301692649521e-5, relative_change = 2.321298454748752e-10 Iter 115: T = 841.8123836849902 K, F = -1.110897132572397e-5, relative_change = 9.707947757087488e-11 Iter 120: T = 841.8123834353773 K, F = -4.645902101696464e-6, relative_change = 4.059977618904225e-11 Iter 125: T = 841.8123833309863 K, F = -1.9429706032969563e-6, relative_change = 1.6979301318793647e-11 Iter 130: T = 841.8123832873289 K, F = -8.125749799692272e-7, relative_change = 7.100959432430686e-12 Iter 135: T = 841.8123832690707 K, F = -3.398279635469237e-7, relative_change = 2.9697008188620616e-12 Iter 140: T = 841.812383261435 K, F = -1.4212002108493493e-7, relative_change = 1.2419635471010164e-12 Iter 145: T = 841.8123832582415 K, F = -5.9434722921025696e-8, relative_change = 5.193902923584711e-13 Converged in 150 iterations to T = 841.8123832569061 K Iter 1: T = 976.3859468362297 K, F = -5380.484476128632, relative_change = 0.023614053163770302 Iter 2: T = 954.9345714552659 K, F = -4549.618771039688, relative_change = 0.02197018038867967 Iter 3: T = 935.5546627581489 K, F = -3845.3164090053897, relative_change = 0.020294488519337135 Iter 5: T = 902.5899038512915 K, F = -2743.1019106262925, relative_change = 0.016940716354894088 Iter 10: T = 848.2707442584415 K, F = -1169.796736513668, relative_change = 0.009541912525266597 Iter 15: T = 821.434856521654 K, F = -494.3756812668107, relative_change = 0.004676617184064877 Iter 20: T = 809.2308222794994 K, F = -207.78767806008165, relative_change = 0.0021084816914027317 Iter 25: T = 803.9271280152017 K, F = -87.09207431800559, relative_change = 0.0009116581765972266 Iter 30: T = 801.6716046799996 K, F = -36.45762776841452, relative_change = 0.0003867534484673473 Iter 35: T = 800.7215669287228 K, F = -15.253154821662163, relative_change = 0.00016272501404710903 Iter 40: T = 800.3230538500143 K, F = -6.380130788299378, relative_change = 6.822649422494922e-5 Iter 45: T = 800.1561806195257 K, F = -2.6684360612745515, relative_change = 2.8563496816166644e-5 Iter 50: T = 800.0863553764548 K, F = -1.116004944311135, relative_change = 1.1950914160267832e-5 Iter 55: T = 800.0571471720492 K, F = -0.46673238967870556, relative_change = 4.9989458753353295e-6 Iter 60: T = 800.0449308229137 K, F = -0.19519407284014056, relative_change = 2.090781715979403e-6 Iter 65: T = 800.039821602275 K, F = -0.0816326696331029, relative_change = 8.744183687498164e-7 Iter 70: T = 800.0376848306356 K, F = -0.03413978833967801, relative_change = 3.65697186978972e-7 Iter 75: T = 800.0367912011744 K, F = -0.014277672618884685, relative_change = 1.5293980236864305e-7 Iter 80: T = 800.0364174736046 K, F = -0.00597109414517627, relative_change = 6.396140421565889e-8 Iter 85: T = 800.036261176087 K, F = -0.002497183049048779, relative_change = 2.674944978051337e-8 Iter 90: T = 800.0361958105661 K, F = -0.0010443518017461129, relative_change = 1.1186944005547708e-8 Iter 95: T = 800.036168473919 K, F = -0.0004367603998657321, relative_change = 4.6785143893735225e-9 Iter 100: T = 800.0361570414058 K, F = -0.00018265841477493883, relative_change = 1.9566107189912977e-9 Iter 105: T = 800.036152260192 K, F = -7.638993070546718e-5, relative_change = 8.1827799545088e-10 Iter 110: T = 800.0361502606313 K, F = -3.194718013244113e-5, relative_change = 3.4221362146486076e-10 Iter 115: T = 800.0361494243912 K, F = -1.3360692980413091e-5, relative_change = 1.4311783180572478e-10 Iter 120: T = 800.0361490746656 K, F = -5.587601663692432e-6, relative_change = 5.985358977550576e-11 Iter 125: T = 800.0361489284061 K, F = -2.3368000845458425e-6, relative_change = 2.5031468273472296e-11 Iter 130: T = 800.0361488672386 K, F = -9.772781066619274e-7, relative_change = 1.0468463302425155e-11 Iter 135: T = 800.0361488416577 K, F = -4.087090866855547e-7, relative_change = 4.378033281233519e-12 Iter 140: T = 800.0361488309593 K, F = -1.7092466875201495e-7, relative_change = 1.8309206054024074e-12 Iter 145: T = 800.0361488264853 K, F = -7.148171687898497e-8, relative_change = 7.657019276523631e-13 Iter 150: T = 800.0361488246141 K, F = -2.989511249662513e-8, relative_change = 3.2023216936797867e-13 Converged in 153 iterations to T = 800.0361488240662 K Iter 1: T = 980.7354953960844 K, F = -4389.435699276927, relative_change = 0.01926450460391563 Iter 2: T = 963.4878039219311 K, F = -3707.1582675642658, relative_change = 0.01758648642281225 Iter 3: T = 948.1319126921134 K, F = -3129.4751226544213, relative_change = 0.015937815888598467 Iter 5: T = 922.5597412815448 K, F = -2227.1053856373355, relative_change = 0.012814290190640988 Iter 10: T = 882.1754285901274 K, F = -944.8755890233108, relative_change = 0.006665953359297971 Iter 15: T = 863.1691259022615 K, F = -398.01106304798026, relative_change = 0.0031076034127296664 Iter 20: T = 854.760721541959 K, F = -167.00063567512223, relative_change = 0.0013654777880044795 Iter 25: T = 851.1552058563702 K, F = -69.94154737984063, relative_change = 0.0005834500841369012 Iter 30: T = 849.6310501782816 K, F = -29.268180301514267, relative_change = 0.00024624266331241013 Iter 35: T = 848.9907262028157 K, F = -12.243438029046919, relative_change = 0.00010337813948307446 Iter 40: T = 848.7224230247768 K, F = -5.120902178675391, relative_change = 4.330371645147417e-5 Iter 45: T = 848.6101255673312 K, F = -2.141718804562486, relative_change = 1.8122358577053202e-5 Iter 50: T = 848.5631456896141 K, F = -0.8957092439637626, relative_change = 7.581127455024041e-6 Iter 55: T = 848.5434953891177 K, F = -0.37459925273888506, relative_change = 3.170892600247768e-6 Iter 60: T = 848.5352769168775 K, F = -0.1566623971194694, relative_change = 1.326170676162372e-6 Iter 65: T = 848.5318397693445 K, F = -0.06551817565269635, relative_change = 5.546318752400336e-7 Iter 70: T = 848.5304022984545 K, F = -0.027400499286939217, relative_change = 2.319556784246024e-7 Iter 75: T = 848.5298011283828 K, F = -0.011459218789953374, relative_change = 9.700698542673206e-8 Iter 80: T = 848.5295497114284 K, F = -0.004792382630690151, relative_change = 4.056954111725992e-8 Iter 85: T = 848.5294445657768 K, F = -0.0020042317356319117, relative_change = 1.6966677339104113e-8 Iter 90: T = 848.5294005925957 K, F = -0.0008381936632397835, relative_change = 7.0956689728439325e-9 Iter 95: T = 848.5293822024838 K, F = -0.00035054260350042554, relative_change = 2.9674938395209878e-9 Iter 100: T = 848.5293745115189 K, F = -0.00014660110284991923, relative_change = 1.241041414094605e-9 Iter 105: T = 848.5293712950655 K, F = -6.131033195266866e-5, relative_change = 5.190183495162138e-10 Iter 110: T = 848.5293699499063 K, F = -2.564071312027849e-5, relative_change = 2.1705967462104866e-10 Iter 115: T = 848.5293693873447 K, F = -1.0723252746203116e-5, relative_change = 9.077695103092597e-11 Iter 120: T = 848.5293691520747 K, F = -4.484593274733939e-6, relative_change = 3.7964012810918875e-11 Iter 125: T = 848.5293690536819 K, F = -1.8755090533950636e-6, relative_change = 1.587699160379706e-11 Iter 130: T = 848.5293690125329 K, F = -7.843615015268313e-7, relative_change = 6.639957804744002e-12 Iter 135: T = 848.5293689953239 K, F = -3.280291696050597e-7, relative_change = 2.7769081486958063e-12 Iter 140: T = 848.5293689881269 K, F = -1.3718547919872037e-7, relative_change = 1.161334144593628e-12 Iter 145: T = 848.529368985117 K, F = -5.7371970063613276e-8, relative_change = 4.856784272487662e-13 Converged in 150 iterations to T = 848.5293689838581 K Iter 1: T = 967.3535211954015 K, F = -7438.53125044625, relative_change = 0.03264647880459847 Iter 2: T = 936.7832904161373 K, F = -6305.38228253338, relative_change = 0.03160192226466207 Iter 3: T = 908.2578711604418 K, F = -5343.337850681161, relative_change = 0.030450392900394245 Iter 5: T = 857.2024918263522 K, F = -3833.492720997413, relative_change = 0.027832375000560104 Iter 10: T = 762.3147933551631 K, F = -1659.7832171002744, relative_change = 0.019901646216456584 Iter 15: T = 706.8211178777428 K, F = -710.5656596581981, relative_change = 0.011907769495229023 Iter 20: T = 678.3094451613505 K, F = -301.1363018653469, relative_change = 0.006091140226786968 Iter 25: T = 665.0223668584679 K, F = -126.76644747498194, relative_change = 0.002812037387782028 Iter 30: T = 659.1749512541729 K, F = -53.17277797661103, relative_change = 0.0012297008442937625 Iter 35: T = 656.6737601952312 K, F = -22.266106283612004, relative_change = 0.0005243045033004947 Iter 40: T = 655.6175815810777 K, F = -9.31703870041035, relative_change = 0.00022107511056146406 Iter 45: T = 655.1740686881305 K, F = -3.8973927648587, relative_change = 9.277572374498005e-5 Iter 50: T = 654.9882680418591 K, F = -1.630093350335918, relative_change = 3.885607558212627e-5 Iter 55: T = 654.910508157791 K, F = -0.6817520258619064, relative_change = 1.6259918170182844e-5 Iter 60: T = 654.8779782674716 K, F = -0.285121654621802, relative_change = 6.801815102430528e-6 Iter 65: T = 654.8643721677214 K, F = -0.11924212344231822, relative_change = 2.844901797463116e-6 Iter 70: T = 654.8586816349696 K, F = -0.049868627418343914, relative_change = 1.189824646121164e-6 Iter 75: T = 654.856301733853 K, F = -0.020855681310395724, relative_change = 4.976081011426167e-7 Iter 80: T = 654.8553064216261 K, F = -0.008722099499351599, relative_change = 2.0810726401671795e-7 Iter 85: T = 654.8548901685645 K, F = -0.0036476869614601726, relative_change = 8.703322530335603e-8 Iter 90: T = 654.8547160862829 K, F = -0.0015255063874322072, relative_change = 3.639838356771946e-8 Iter 95: T = 654.8546432829448 K, F = -0.000637985013183906, relative_change = 1.5222247316046093e-8 Iter 100: T = 654.8546128357108 K, F = -0.0002668129555856713, relative_change = 6.366127122397908e-9 Iter 105: T = 654.8546001023125 K, F = -0.00011158436523489579, relative_change = 2.6623906555093576e-9 Iter 110: T = 654.8545947770529 K, F = -4.666591470914305e-5, relative_change = 1.113443624482165e-9 Iter 115: T = 654.8545925499656 K, F = -1.9516241639150333e-5, relative_change = 4.656553999692287e-10 Iter 120: T = 654.8545916185711 K, F = -8.161924617111627e-6, relative_change = 1.94742633756489e-10 Iter 125: T = 654.8545912290509 K, F = -3.413414832620365e-6, relative_change = 8.144370692873447e-11 Iter 130: T = 654.8545910661489 K, F = -1.4275306385314046e-6, relative_change = 3.4060725928464686e-11 Iter 135: T = 654.8545909980214 K, F = -5.970108278852138e-7, relative_change = 1.4244613492790342e-11 Iter 140: T = 654.8545909695297 K, F = -2.4967832190636585e-7, relative_change = 5.9572976363256385e-12 Iter 145: T = 654.8545909576139 K, F = -1.0441760894819296e-7, relative_change = 2.4913928060803498e-12 Iter 150: T = 654.8545909526306 K, F = -4.36676478865472e-8, relative_change = 1.041905334768901e-12 Iter 155: T = 654.8545909505466 K, F = -1.8262242329480927e-8, relative_change = 4.3573511808220764e-13 Converged in 159 iterations to T = 654.8545909497943 K Iter 1: T = 973.6146796478236 K, F = -6011.92034116261, relative_change = 0.026385320352176396 Iter 2: T = 949.422231716426 K, F = -5087.4129777441485, relative_change = 0.024848072278602452 Iter 3: T = 927.354433385695 K, F = -4303.262200194845, relative_change = 0.02324339750380137 Iter 5: T = 889.2670688504254 K, F = -3074.813038342838, relative_change = 0.019910549945490078 Iter 10: T = 824.496545020594 K, F = -1316.3675961263887, relative_change = 0.011915467981958762 Iter 15: T = 791.2140911802958 K, F = -557.8794480598332, relative_change = 0.006095988081091034 Iter 20: T = 775.7023551008951 K, F = -234.8464787996587, relative_change = 0.0028145166288399606 Iter 25: T = 768.875588300935 K, F = -98.50772743766396, relative_change = 0.0012308363973857616 Iter 30: T = 765.9554232694387 K, F = -41.250172945318674, relative_change = 0.0005247984768555171 Iter 35: T = 764.7223126584802 K, F = -17.260748748727963, relative_change = 0.00022128517826675503 Iter 40: T = 764.2044999783394 K, F = -7.220312688466057, relative_change = 9.28641967733392e-5 Iter 45: T = 763.9875725851234 K, F = -3.019912425609967, relative_change = 3.8893185367471185e-5 Iter 50: T = 763.8967857044676 K, F = -1.2630144752440104, relative_change = 1.627545710520384e-5 Iter 55: T = 763.8588061190211 K, F = -0.5282166674079548, relative_change = 6.808317029691633e-6 Iter 60: T = 763.8429206030161 K, F = -0.22090808076022683, relative_change = 2.8476215689032217e-6 Iter 65: T = 763.8362767406646 K, F = -0.09238667081443142, relative_change = 1.1909621898394612e-6 Iter 70: T = 763.8334981368913 K, F = -0.03863725685037589, relative_change = 4.980838535278121e-7 Iter 75: T = 763.8323360809065 K, F = -0.016158570596517485, relative_change = 2.0830623248382634e-7 Iter 80: T = 763.8318500933441 K, F = -0.006757708659383854, relative_change = 8.711643687412666e-8 Iter 85: T = 763.8316468472141 K, F = -0.002826154719984375, relative_change = 3.6433183729276185e-8 Iter 90: T = 763.8315618471979 K, F = -0.0011819316999643892, relative_change = 1.5236801188258782e-8 Iter 95: T = 763.8315262991661 K, F = -0.0004942979580025986, relative_change = 6.372213709918031e-9 Iter 100: T = 763.8315114325528 K, F = -0.00020672131066890032, relative_change = 2.664936139669809e-9 Iter 105: T = 763.8315052151574 K, F = -8.645332172918518e-5, relative_change = 1.114508173608149e-9 Iter 110: T = 763.8315026149683 K, F = -3.615581083171726e-5, relative_change = 4.661006256615019e-10 Iter 115: T = 763.8315015275381 K, F = -1.5120790240352733e-5, relative_change = 1.9492882823455656e-10 Iter 120: T = 763.8315010727619 K, F = -6.323695655230388e-6, relative_change = 8.152157182835136e-11 Iter 125: T = 763.831500882569 K, F = -2.644644843563526e-6, relative_change = 3.4093292369679083e-11 Iter 130: T = 763.8315008030282 K, F = -1.1060234101911703e-6, relative_change = 1.425823947658817e-11 Iter 135: T = 763.8315007697631 K, F = -4.6255267749373274e-7, relative_change = 5.962972200082344e-12 Iter 140: T = 763.8315007558514 K, F = -1.9344487489636464e-7, relative_change = 2.4937838812339087e-12 Iter 145: T = 763.8315007500333 K, F = -8.090136149885296e-8, relative_change = 1.0429354170851966e-12 Iter 150: T = 763.8315007476001 K, F = -3.383480873253575e-8, relative_change = 4.36179561186996e-13 Converged in 154 iterations to T = 763.8315007467218 K Iter 1: T = 969.9701900750044 K, F = -6842.3207571340345, relative_change = 0.03002980992499556 Iter 2: T = 942.0969522902265 K, F = -5795.876548714585, relative_change = 0.02873617980220884 Iter 3: T = 916.3377209302209 K, F = -4907.742810215508, relative_change = 0.027342442088773473 Iter 5: T = 870.956655846625 K, F = -3514.796865435124, relative_change = 0.02429492413830834 Iter 10: T = 789.9698611656 K, F = -1513.8888034520457, relative_change = 0.01599364754631771 Iter 15: T = 745.49484022074 K, F = -644.8193373258663, relative_change = 0.008841379208712523 Iter 20: T = 723.7785311611094 K, F = -272.29050546300454, relative_change = 0.0042799383066512596 Iter 25: T = 713.9708697633403 K, F = -114.39494067897098, relative_change = 0.0019170162131668903 Iter 30: T = 709.7232527538123 K, F = -47.93771080642435, relative_change = 0.0008263374033444389 Iter 35: T = 707.9196643790531 K, F = -20.065416885104234, relative_change = 0.0003500866112019074 Iter 40: T = 707.1604961893546 K, F = -8.394654856564555, relative_change = 0.0001472130290871887 Iter 45: T = 706.842138470326 K, F = -3.5112822091199827, relative_change = 6.170775970718996e-5 Iter 50: T = 706.7088455269446 K, F = -1.4685543084377968, relative_change = 2.5831756417636573e-5 Iter 55: T = 706.6530741967637 K, F = -0.6141834310874278, relative_change = 1.080749872710949e-5 Iter 60: T = 706.6297452989345 K, F = -0.25686172926944584, relative_change = 4.520586252760177e-6 Iter 65: T = 706.6199880596647 K, F = -0.10742314713618051, relative_change = 1.8906963283625775e-6 Iter 70: T = 706.6159073230074 K, F = -0.04492573124810806, relative_change = 7.907350780911076e-7 Iter 75: T = 706.6142006852489 K, F = -0.01878849276028327, relative_change = 3.3069892728063736e-7 Iter 80: T = 706.6134869445922 K, F = -0.007857574751143681, relative_change = 1.383029533511796e-7 Iter 85: T = 706.6131884489624 K, F = -0.003286132071943615, relative_change = 5.7840071411544854e-8 Iter 90: T = 706.6130636143916 K, F = -0.0013742997592910422, relative_change = 2.4189430412107764e-8 Iter 95: T = 706.61301140706 K, F = -0.000574748584760143, relative_change = 1.0116312465406172e-8 Iter 100: T = 706.6129895733263 K, F = -0.0002403667242286689, relative_change = 4.230763347291483e-9 Iter 105: T = 706.6129804421976 K, F = -0.00010052423618622797, relative_change = 1.7693558935921409e-9 Iter 110: T = 706.6129766234502 K, F = -4.2040434771739577e-5, relative_change = 7.399657611792576e-10 Iter 115: T = 706.6129750264045 K, F = -1.7581811932676494e-5, relative_change = 3.09462522457465e-10 Iter 120: T = 706.6129743585009 K, F = -7.352923108050469e-6, relative_change = 1.2942091244101461e-10 Iter 125: T = 706.6129740791756 K, F = -3.0750806002677322e-6, relative_change = 5.412537735225431e-11 Iter 130: T = 706.6129739623584 K, F = -1.2860343984177902e-6, relative_change = 2.263586104086841e-11 Iter 135: T = 706.6129739135042 K, F = -5.37836008618342e-7, relative_change = 9.466606159870827e-12 Iter 140: T = 706.6129738930728 K, F = -2.249299987377995e-7, relative_change = 3.959057552420466e-12 Iter 145: T = 706.6129738845281 K, F = -9.40682947092597e-8, relative_change = 1.6557230903983685e-12 Iter 150: T = 706.6129738809544 K, F = -3.933991377103041e-8, relative_change = 6.924331285887811e-13 Iter 155: T = 706.6129738794599 K, F = -1.6450394269007518e-8, relative_change = 2.8954811738074097e-13 Converged in 157 iterations to T = 706.6129738791436 K Iter 1: T = 973.4746979579056 K, F = -6043.815302367386, relative_change = 0.02652530204209438 Iter 2: T = 949.1424783580039 K, F = -5114.599090159902, relative_change = 0.024995225506060245 Iter 3: T = 926.9362374946513 K, F = -4326.432628878817, relative_change = 0.023396108982256192 Iter 5: T = 888.5808356154624 K, F = -3091.6321983023477, relative_change = 0.020068432278211434 Iter 10: T = 823.2434860544571 K, F = -1323.8482057350473, relative_change = 0.012049745083851494 Iter 15: T = 789.5955588981986 K, F = -561.1401047622445, relative_change = 0.006179951839149672 Iter 20: T = 773.8908756863511 K, F = -236.24120323242363, relative_change = 0.002857339052443257 Iter 25: T = 766.9739257880796 K, F = -99.09730312398567, relative_change = 0.0012504290645733575 Iter 30: T = 764.0141317334616 K, F = -41.4979143477386, relative_change = 0.0005333177394350359 Iter 35: T = 762.7640914419844 K, F = -17.364568373396054, relative_change = 0.00022490744537673462 Iter 40: T = 762.2391345402496 K, F = -7.26376868426566, relative_change = 9.438965416439647e-5 Iter 45: T = 762.0192080216715 K, F = -3.0380928146281874, relative_change = 3.953301492325456e-5 Iter 50: T = 761.9271648804479 K, F = -1.2706188830531122, relative_change = 1.6543368717700717e-5 Iter 55: T = 761.8886595629858 K, F = -0.5313971232349344, relative_change = 6.920418179258392e-6 Iter 60: T = 761.8725541185092 K, F = -0.22223822065452503, relative_change = 2.8945136382978995e-6 Iter 65: T = 761.8658182687606 K, F = -0.09294295737666936, relative_change = 1.2105747679302342e-6 Iter 70: T = 761.8630011928901 K, F = -0.0388699036145721, relative_change = 5.06286374838904e-7 Iter 75: T = 761.8618230470881 K, F = -0.016255866441098, relative_change = 2.1173667854487285e-7 Iter 80: T = 761.8613303305146 K, F = -0.0067983989755778795, relative_change = 8.855109976143636e-8 Iter 85: T = 761.8611242702219 K, F = -0.0028431719029498037, relative_change = 3.703317853748839e-8 Iter 90: T = 761.8610380932877 K, F = -0.0011890484898084974, relative_change = 1.548772646567935e-8 Iter 95: T = 761.8610020530543 K, F = -0.0004972742876576675, relative_change = 6.477153746312203e-9 Iter 100: T = 761.8609869805964 K, F = -0.00020796604620809678, relative_change = 2.7088233106321163e-9 Iter 105: T = 761.8609806771142 K, F = -8.697388232781211e-5, relative_change = 1.132862279407536e-9 Iter 110: T = 761.8609780409226 K, F = -3.6373516522414384e-5, relative_change = 4.737765454829405e-10 Iter 115: T = 761.8609769384358 K, F = -1.521183810293536e-5, relative_change = 1.9813899907283105e-10 Iter 120: T = 761.8609764773627 K, F = -6.361773273066973e-6, relative_change = 8.286410779264431e-11 Iter 125: T = 761.8609762845364 K, F = -2.660568330203894e-6, relative_change = 3.465474352925181e-11 Iter 130: T = 761.8609762038941 K, F = -1.1126824490670373e-6, relative_change = 1.4493040634816478e-11 Iter 135: T = 761.8609761701686 K, F = -4.6533546382843127e-7, relative_change = 6.061141517207251e-12 Iter 140: T = 761.8609761560641 K, F = -1.9460901590218072e-7, relative_change = 2.534843951731186e-12 Iter 145: T = 761.8609761501656 K, F = -8.138854490358227e-8, relative_change = 1.0601115258727376e-12 Iter 150: T = 761.8609761476986 K, F = -3.4035995022385634e-8, relative_change = 4.433295946140731e-13 Converged in 154 iterations to T = 761.8609761468082 K Iter 1: T = 964.2600344301686 K, F = -8143.385152570158, relative_change = 0.03573996556983136 Iter 2: T = 930.4417083787135 K, F = -6908.635306485062, relative_change = 0.035071790641452945 Iter 3: T = 898.51388884966 K, F = -5860.0494619742585, relative_change = 0.034314690798510634 Iter 5: T = 840.2165281003117 K, F = -4213.485945410271, relative_change = 0.03250783381285371 Iter 10: T = 725.5835568745608 K, F = -1837.8272856553572, relative_change = 0.02616832704185178 Iter 15: T = 651.4368315064004 K, F = -793.7428914708271, relative_change = 0.017985180546448938 Iter 20: T = 609.3893474186907 K, F = -338.94839184916316, relative_change = 0.010344694885088811 Iter 25: T = 588.3370585590362 K, F = -143.37950889728702, relative_change = 0.005143255302976909 Iter 30: T = 578.685358659691 K, F = -60.2937323942737, relative_change = 0.002336923221864796 Iter 35: T = 574.4736777852821 K, F = -25.27764176936937, relative_change = 0.0010141376238908075 Iter 40: T = 572.6792128044868 K, F = -10.58261524559676, relative_change = 0.00043092404091981626 Iter 45: T = 571.9227618741066 K, F = -4.427762064399069, relative_change = 0.00018143501545885273 Iter 50: T = 571.6053433949866 K, F = -1.8520923002154324, relative_change = 7.609333882179662e-5 Iter 55: T = 571.4724083914774 K, F = -0.7746283617712082, relative_change = 3.186091196571379e-5 Iter 60: T = 571.4167806306552 K, F = -0.32396955405561273, relative_change = 1.3331231227410549e-5 Iter 65: T = 571.3935107018506 K, F = -0.13548981259674758, relative_change = 5.576438332366367e-6 Iter 70: T = 571.3837779362418 K, F = -0.05666378589440196, relative_change = 2.332335743633378e-6 Iter 75: T = 571.3797074018887 K, F = -0.023697529367869757, relative_change = 9.754461076389782e-7 Iter 80: T = 571.3780050251052 K, F = -0.009910599827588157, relative_change = 4.079494112565041e-7 Iter 85: T = 571.3772930654334 K, F = -0.004144732960582209, relative_change = 1.7061040008086003e-7 Iter 90: T = 571.3769953144568 K, F = -0.0017333771299750111, relative_change = 7.135149650107904e-8 Iter 95: T = 571.3768707912782 K, F = -0.0007249190700502339, relative_change = 2.9840081112753615e-8 Iter 100: T = 571.3768187141691 K, F = -0.00030316982201894493, relative_change = 1.2479484095918225e-8 Iter 105: T = 571.3767969348951 K, F = -0.00012678924169734485, relative_change = 5.219070294975563e-9 Iter 110: T = 571.3767878265417 K, F = -5.3024775294507887e-5, relative_change = 2.182677701478436e-9 Iter 115: T = 571.3767840173194 K, F = -2.2175594069695492e-5, relative_change = 9.128219018448915e-10 Iter 120: T = 571.376782424257 K, F = -9.27409754514219e-6, relative_change = 3.817529958754144e-10 Iter 125: T = 571.3767817580193 K, F = -3.878538002433096e-6, relative_change = 1.5965364856880907e-10 Iter 130: T = 571.3767814793908 K, F = -1.622051146621395e-6, relative_change = 6.676907230561942e-11 Iter 135: T = 571.376781362865 K, F = -6.783606260607478e-7, relative_change = 2.792360144071598e-11 Iter 140: T = 571.3767813141326 K, F = -2.8369828308782985e-7, relative_change = 1.1677974052797222e-11 Iter 145: T = 571.3767812937522 K, F = -1.1864686760842957e-7, relative_change = 4.8839035137313264e-12 Iter 150: T = 571.3767812852288 K, F = -4.96196859711695e-8, relative_change = 2.0425129088265374e-12 Iter 155: T = 571.3767812816643 K, F = -2.0752251417288647e-8, relative_change = 8.542323591671402e-13 Iter 160: T = 571.3767812801735 K, F = -8.67884430988397e-9, relative_change = 3.5725037735386207e-13 Converged in 163 iterations to T = 571.3767812797371 K Iter 1: T = 963.5669905751232 K, F = -8301.29585419717, relative_change = 0.03643300942487684 Iter 2: T = 929.0120035630638 K, F = -7043.917668453989, relative_change = 0.035861530490406954 Iter 3: T = 896.3015180287666 K, F = -5976.071412788847, relative_change = 0.03520997081721415 Iter 5: T = 836.2952370774867 K, F = -4299.119092979727, relative_change = 0.033637387045411776 Iter 10: T = 716.6193046741126 K, F = -1878.7034276895695, relative_change = 0.027913047405588524 Iter 15: T = 636.9931519676488 K, F = -813.5180939711095, relative_change = 0.019997788992243932 Iter 20: T = 590.3538449175396 K, F = -348.3175556499145, relative_change = 0.01198919003774574 Iter 25: T = 566.3595467578336 K, F = -147.63057666964934, relative_change = 0.006141932715991242 Iter 30: T = 555.1679764230366 K, F = -62.150116994758726, relative_change = 0.0028379115092852947 Iter 35: T = 550.2405034385208 K, F = -26.069875773832496, relative_change = 0.0012415326691370438 Iter 40: T = 548.1323608281641 K, F = -10.916898474008793, relative_change = 0.0005294479811349806 Iter 45: T = 547.2420713137386 K, F = -4.56809592151965, relative_change = 0.00022326182101332196 Iter 50: T = 546.8682039542739 K, F = -1.9108758581060292, relative_change = 9.36965809866841e-5 Iter 55: T = 546.711577228701 K, F = -0.7992289165223246, relative_change = 3.924230800205192e-5 Iter 60: T = 546.6460265282177 K, F = -0.3342607037918882, relative_change = 1.6421641509184337e-5 Iter 65: T = 546.6186041179934 K, F = -0.1397942026652164, relative_change = 6.869484118311423e-6 Iter 70: T = 546.6071342817999 K, F = -0.05846402216895222, relative_change = 2.873207805266278e-6 Iter 75: T = 546.6023372044813 K, F = -0.024450425235811507, relative_change = 1.2016636092801787e-6 Iter 80: T = 546.6003309648811 K, F = -0.010225472592406193, relative_change = 5.025594810774769e-7 Iter 85: T = 546.599491923724 K, F = -0.004276416987003762, relative_change = 2.1017802243365728e-7 Iter 90: T = 546.5991410253282 K, F = -0.0017884490445236045, relative_change = 8.789924682029307e-8 Iter 95: T = 546.5989942751901 K, F = -0.000747950816736509, relative_change = 3.676056507436938e-8 Iter 100: T = 546.5989329024881 K, F = -0.0003128019758887046, relative_change = 1.537371613141521e-8 Iter 105: T = 546.5989072356839 K, F = -0.0001308175239081999, relative_change = 6.429473220149461e-9 Iter 110: T = 546.5988965015184 K, F = -5.470945067612143e-5, relative_change = 2.6888827306111995e-9 Iter 115: T = 546.5988920123622 K, F = -2.288014602994104e-5, relative_change = 1.1245229330397707e-9 Iter 120: T = 546.5988901349433 K, F = -9.5687497116137e-6, relative_change = 4.702888982046346e-10 Iter 125: T = 546.5988893497844 K, F = -4.0017657782775995e-6, relative_change = 1.9668045338518442e-10 Iter 130: T = 546.5988890214215 K, F = -1.673586184886e-6, relative_change = 8.225411200993537e-11 Iter 135: T = 546.5988888840963 K, F = -6.99913888901893e-7, relative_change = 3.4399659846515555e-11 Iter 140: T = 546.5988888266651 K, F = -2.92711985427907e-7, relative_change = 1.4386330799282732e-11 Iter 145: T = 546.5988888026468 K, F = -1.2241566743620425e-7, relative_change = 6.016536304607147e-12 Iter 150: T = 546.598888792602 K, F = -5.1195790856661816e-8, relative_change = 2.516192092157251e-12 Iter 155: T = 546.5988887884013 K, F = -2.1410838019209066e-8, relative_change = 1.0523088013856625e-12 Iter 160: T = 546.5988887866444 K, F = -8.954168656538641e-9, relative_change = 4.4008321757690413e-13 Converged in 164 iterations to T = 546.5988887860102 K Iter 1: T = 969.3387501567952 K, F = -6986.194943152434, relative_change = 0.030661249843204785 Iter 2: T = 940.8188775964485 K, F = -5918.7632844709115, relative_change = 0.02942198746901786 Iter 3: T = 914.4012160492896 K, F = -5012.735642147198, relative_change = 0.02807943396570579 Iter 5: T = 867.6862116125137 K, F = -3591.482335259388, relative_change = 0.025116570422783858 Iter 10: T = 783.5412311696308 K, F = -1548.750998326884, relative_change = 0.016846939541834333 Iter 15: T = 736.6904838827274 K, F = -660.3855180978659, relative_change = 0.009471318801615598 Iter 20: T = 713.5716997539367 K, F = -279.0669644563517, relative_change = 0.004636180131849917 Iter 25: T = 703.0655135772867 K, F = -117.28751747788435, relative_change = 0.0020888446548810637 Iter 30: T = 698.5012957979033 K, F = -49.15882902390224, relative_change = 0.000902882617930877 Iter 35: T = 696.5605647392596 K, F = -20.57819532760465, relative_change = 0.0003829774193737337 Iter 40: T = 695.7431760691741 K, F = -8.609478368079143, relative_change = 0.0001611267054957577 Iter 45: T = 695.4003155567328 K, F = -3.6011898458829426, relative_change = 6.755467233071032e-5 Iter 50: T = 695.2567480522478 K, F = -1.5061663197350623, relative_change = 2.82819366218117e-5 Iter 55: T = 695.1966750047436 K, F = -0.6299152489847877, relative_change = 1.183305779522622e-5 Iter 60: T = 695.1715462413642 K, F = -0.26344131789338554, relative_change = 4.949638635846371e-6 Iter 65: T = 695.1610361305255 K, F = -0.11017487169428153, relative_change = 2.07015763752948e-6 Iter 70: T = 695.1566405083925 K, F = -0.04607654617111279, relative_change = 8.657925727219747e-7 Iter 75: T = 695.1548021772904 K, F = -0.01926977920247963, relative_change = 3.6208967808944306e-7 Iter 80: T = 695.1540333601216 K, F = -0.00805885481955515, relative_change = 1.5143108190132117e-7 Iter 85: T = 695.1537118306999 K, F = -0.0033703098582608115, relative_change = 6.333043633611887e-8 Iter 90: T = 695.1535773630984 K, F = -0.0014095039249970576, relative_change = 2.6485570927110405e-8 Iter 95: T = 695.1535211271141 K, F = -0.0005894713924344819, relative_change = 1.1076586670140396e-8 Iter 100: T = 695.1534976085491 K, F = -0.00024652397996105524, relative_change = 4.632361646724714e-9 Iter 105: T = 695.1534877728034 K, F = -0.00010309927203844271, relative_change = 1.937309083865294e-9 Iter 110: T = 695.1534836593768 K, F = -4.311734604323103e-5, relative_change = 8.102058032368259e-10 Iter 115: T = 695.1534819390928 K, F = -1.8032188898398083e-5, relative_change = 3.3883774404927875e-10 Iter 120: T = 695.1534812196495 K, F = -7.541277194267337e-6, relative_change = 1.4170600023904042e-10 Iter 125: T = 695.1534809187697 K, F = -3.1538518784346437e-6, relative_change = 5.926313599771561e-11 Iter 130: T = 695.1534807929381 K, F = -1.3189774731303672e-6, relative_change = 2.4784531565956266e-11 Iter 135: T = 695.1534807403139 K, F = -5.516118793957858e-7, relative_change = 1.036518236321504e-11 Iter 140: T = 695.1534807183058 K, F = -2.306904889337602e-7, relative_change = 4.3348395437699106e-12 Iter 145: T = 695.1534807091017 K, F = -9.647698095971435e-8, relative_change = 1.8128715842903884e-12 Iter 150: T = 695.1534807052525 K, F = -4.0348108631960145e-8, relative_change = 7.58169864905018e-13 Iter 155: T = 695.1534807036427 K, F = -1.6873914709947258e-8, relative_change = 3.170729451755978e-13 Converged in 158 iterations to T = 695.1534807031713 K Iter 1: T = 966.4662874117538 K, F = -7640.68831202759, relative_change = 0.03353371258824618 Iter 2: T = 934.9711379196045 K, F = -6478.29961722685, relative_change = 0.032587944248417454 Iter 3: T = 905.4848447081639 K, F = -5491.340339787915, relative_change = 0.03153711597670303 Iter 5: T = 852.4143723840676 K, F = -3942.1110326010485, relative_change = 0.0291152387159793 Iter 10: T = 752.2767572971571 K, F = -1710.1712242577069, relative_change = 0.02148304880263441 Iter 15: T = 692.2071746234263 K, F = -733.7068268856067, relative_change = 0.013292326222379944 Iter 20: T = 660.6360987668554 K, F = -311.46441230022685, relative_change = 0.006976697684729372 Iter 25: T = 645.6988069645561 K, F = -131.2442712239313, relative_change = 0.0032697570604083375 Iter 30: T = 639.0715619802293 K, F = -55.07811077013285, relative_change = 0.001440513805994124 Iter 35: T = 636.225945159156 K, F = -23.069090566177337, relative_change = 0.0006162443894620384 Iter 40: T = 635.0222985850745 K, F = -9.65396740370997, relative_change = 0.0002602171683651539 Iter 45: T = 634.5164959959745 K, F = -4.0384973792722665, relative_change = 0.00010926878604872577 Iter 50: T = 634.3045358253129 K, F = -1.689139640973663, relative_change = 4.5775431283781645e-5 Iter 55: T = 634.2158165116574 K, F = -0.7064519657539695, relative_change = 1.9157494476994594e-5 Iter 60: T = 634.1786998908514 K, F = -0.2954525282363483, relative_change = 8.014285059468414e-6 Iter 65: T = 634.1631749763534 K, F = -0.12356280429837058, relative_change = 3.3520882832810023e-6 Iter 70: T = 634.1566818692532 K, F = -0.05167562031251738, relative_change = 1.4019565724117212e-6 Iter 75: T = 634.1539663039235 K, F = -0.02161139301556886, relative_change = 5.863277886385374e-7 Iter 80: T = 634.152830609759 K, F = -0.009038148154016323, relative_change = 2.4521152342585055e-7 Iter 85: T = 634.152355646743 K, F = -0.0037798624585400065, relative_change = 1.0255077932796316e-7 Iter 90: T = 634.1521570111607 K, F = -0.0015807837893229149, relative_change = 4.2888029148168224e-8 Iter 95: T = 634.1520739393222 K, F = -0.0006611026877606507, relative_change = 1.7936297941208768e-8 Iter 100: T = 634.1520391976758 K, F = -0.0002764810447973276, relative_change = 7.501176110538477e-9 Iter 105: T = 634.1520246683023 K, F = -0.00011562767526274165, relative_change = 3.1370817867281495e-9 Iter 110: T = 634.1520185919444 K, F = -4.835687542237288e-5, relative_change = 1.3119651478447357e-9 Iter 115: T = 634.152016050739 K, F = -2.0223422963816517e-5, relative_change = 5.486795077866849e-10 Iter 120: T = 634.1520149879765 K, F = -8.457677143691722e-6, relative_change = 2.2946432844472685e-10 Iter 125: T = 634.1520145435165 K, F = -3.537101802231213e-6, relative_change = 9.596472868479173e-11 Iter 130: T = 634.152014357638 K, F = -1.479257005609913e-6, relative_change = 4.013356282451032e-11 Iter 135: T = 634.1520142799014 K, F = -6.186432437438327e-7, relative_change = 1.6784343362298486e-11 Iter 140: T = 634.1520142473911 K, F = -2.58724854207415e-7, relative_change = 7.019436216838292e-12 Iter 145: T = 634.1520142337948 K, F = -1.0820152568369323e-7, relative_change = 2.9356039662502426e-12 Iter 150: T = 634.1520142281087 K, F = -4.525038849179097e-8, relative_change = 1.227683427725976e-12 Iter 155: T = 634.1520142257307 K, F = -1.892430545602508e-8, relative_change = 5.134332977984449e-13 Converged in 160 iterations to T = 634.1520142247361 K Iter 1: T = 966.4857460683344 K, F = -7636.254638615758, relative_change = 0.03351425393166566 Iter 2: T = 935.0109389002407 K, F = -6474.5063614848295, relative_change = 0.032566240419099036 Iter 3: T = 905.5458466883634 K, F = -5488.092707270226, relative_change = 0.0315130989232427 Iter 5: T = 852.5200873214912 K, F = -3939.7257258431086, relative_change = 0.029086621870821398 Iter 10: T = 752.5008896428662 K, F = -1709.0606538332404, relative_change = 0.021446719028694567 Iter 15: T = 692.5373133494254 K, F = -733.1938702872919, relative_change = 0.013259491405793696 Iter 20: T = 661.038852689283 K, F = -311.23419215525695, relative_change = 0.006955171985323396 Iter 25: T = 646.141379961047 K, F = -131.14408341025404, relative_change = 0.0032584678544370495 Iter 30: T = 639.5331216525201 K, F = -55.03539636505628, relative_change = 0.0014352767026966627 Iter 35: T = 636.6959264762808 K, F = -23.051072526174426, relative_change = 0.0006139529395498807 Iter 40: T = 635.4958924953424 K, F = -9.646404089048277, relative_change = 0.0002592402447216725 Iter 45: T = 634.9916170823944 K, F = -4.035329348442237, relative_change = 0.00010885689987942463 Iter 50: T = 634.7802984924898 K, F = -1.6878138593041436, relative_change = 4.5602588799742085e-5 Iter 55: T = 634.6918480051885 K, F = -0.7058973548771488, relative_change = 1.9085106674286745e-5 Iter 60: T = 634.6548439001172 K, F = -0.29522055652823576, relative_change = 7.983993570723113e-6 Iter 65: T = 634.6393660566847 K, F = -0.12346578626704091, relative_change = 3.3394168627304458e-6 Iter 70: T = 634.6328926380033 K, F = -0.05163504539291397, relative_change = 1.3966566805022705e-6 Iter 75: T = 634.630185307084 K, F = -0.021594423956279973, relative_change = 5.841112139066027e-7 Iter 80: T = 634.6290530567322 K, F = -0.009031051467231543, relative_change = 2.4428450853971146e-7 Iter 85: T = 634.6285795339743 K, F = -0.0037768945341914995, relative_change = 1.0216308765362875e-7 Iter 90: T = 634.6283815007278 K, F = -0.001579542566314207, relative_change = 4.272589132028949e-8 Iter 95: T = 634.6282986807937 K, F = -0.0006605835945260319, relative_change = 1.7868489906945045e-8 Iter 100: T = 634.6282640444967 K, F = -0.00027626395306223905, relative_change = 7.47281794544044e-9 Iter 105: T = 634.6282495591818 K, F = -0.00011553688549031937, relative_change = 3.125222076589262e-9 Iter 110: T = 634.6282435012497 K, F = -4.831890571971309e-5, relative_change = 1.3070052658407095e-9 Iter 115: T = 634.6282409677501 K, F = -2.0207543114991733e-5, relative_change = 5.466052132096817e-10 Iter 120: T = 634.6282399082103 K, F = -8.451035545031793e-6, relative_change = 2.2859682131400317e-10 Iter 125: T = 634.6282394650981 K, F = -3.5343245735619533e-6, relative_change = 9.560193675542813e-11 Iter 130: T = 634.6282392797832 K, F = -1.4780962767635408e-6, relative_change = 3.998185905818528e-11 Iter 135: T = 634.6282392022824 K, F = -6.181575650798798e-7, relative_change = 1.672089230294317e-11 Iter 140: T = 634.6282391698707 K, F = -2.5852136492643396e-7, relative_change = 6.992890075586578e-12 Iter 145: T = 634.6282391563157 K, F = -1.0811695799750609e-7, relative_change = 2.9245165206187088e-12 Iter 150: T = 634.6282391506468 K, F = -4.52165849762487e-8, relative_change = 1.2230888865525888e-12 Iter 155: T = 634.628239148276 K, F = -1.8909328269867132e-8, relative_change = 5.114890757806914e-13 Converged in 160 iterations to T = 634.6282391472845 K Iter 1: T = 976.3744836858202 K, F = -5383.096365853701, relative_change = 0.023625516314179768 Iter 2: T = 954.91187154043 K, F = -4551.841672776455, relative_change = 0.02198194699268329 Iter 3: T = 935.5210485134367 K, F = -3847.2076741335086, relative_change = 0.020306400627015657 Iter 5: T = 902.5357961163736 K, F = -2744.4691485340963, relative_change = 0.016952417393365105 Iter 10: T = 848.176203534519 K, F = -1170.3973633914418, relative_change = 0.009550728444392058 Iter 15: T = 821.3163883113948 K, F = -494.6345851535784, relative_change = 0.004681671146145706 Iter 20: T = 809.1003975176249 K, F = -207.89764728393473, relative_change = 0.0021109371984429815 Iter 25: T = 803.7912730951051 K, F = -87.13839434493092, relative_change = 0.0009127557786775222 Iter 30: T = 801.5333952376855 K, F = -36.47705981171848, relative_change = 0.00038722578614169806 Iter 35: T = 800.5823574910725 K, F = -15.26129232602159, relative_change = 0.00016292495335393462 Iter 40: T = 800.1834234721915 K, F = -6.38353589366865, relative_change = 6.831053698602717e-5 Iter 45: T = 800.0163737180118 K, F = -2.669860451204658, relative_change = 2.8598719385366347e-5 Iter 50: T = 799.9464745661198 K, F = -1.1166006997316658, relative_change = 1.1965657787183798e-5 Iter 55: T = 799.9172354373609 K, F = -0.4669815519557894, relative_change = 5.005114134513837e-6 Iter 60: T = 799.9050061527013 K, F = -0.19529827727186455, relative_change = 2.093361757770935e-6 Iter 65: T = 799.8998915218187 K, F = -0.08167624948532681, relative_change = 8.754974433962965e-7 Iter 70: T = 799.8977524874714 K, F = -0.034158014007549475, relative_change = 3.661484811703495e-7 Iter 75: T = 799.896857911705 K, F = -0.014285294820150507, relative_change = 1.531285411381207e-7 Iter 80: T = 799.8964837883766 K, F = -0.005974281845348095, relative_change = 6.404033743051519e-8 Iter 85: T = 799.8963273253473 K, F = -0.002498516178707888, relative_change = 2.678246060678905e-8 Iter 90: T = 799.8962618906077 K, F = -0.0010449093322510983, relative_change = 1.12007495357198e-8 Iter 95: T = 799.8962345250123 K, F = -0.00043699356522197697, relative_change = 4.684288022880519e-9 Iter 100: T = 799.8962230803926 K, F = -0.00018275592779293248, relative_change = 1.959025326961532e-9 Iter 105: T = 799.8962182941158 K, F = -7.643071218699227e-5, relative_change = 8.192878173965733e-10 Iter 110: T = 799.8962162924378 K, F = -3.196423778584201e-5, relative_change = 3.4263596626258877e-10 Iter 115: T = 799.896215455312 K, F = -1.3367825949961443e-5, relative_change = 1.432944534672084e-10 Iter 120: T = 799.896215105216 K, F = -5.590584329806525e-6, relative_change = 5.992745048970962e-11 Iter 125: T = 799.8962149588017 K, F = -2.3380491362967604e-6, relative_change = 2.5062375543289815e-11 Iter 130: T = 799.8962148975694 K, F = -9.777990858106378e-7, relative_change = 1.048137420337475e-11 Iter 135: T = 799.8962148719614 K, F = -4.0892883079735043e-7, relative_change = 4.3834527573069684e-12 Iter 140: T = 799.8962148612519 K, F = -1.710185556502708e-7, relative_change = 1.8332083798100358e-12 Iter 145: T = 799.896214856773 K, F = -7.152200542925868e-8, relative_change = 7.666696704266298e-13 Iter 150: T = 799.8962148548999 K, F = -2.991251890627211e-8, relative_change = 3.206428689201166e-13 Converged in 153 iterations to T = 799.8962148543515 K Iter 1: T = 965.2147487755287 K, F = -7925.852580812053, relative_change = 0.034785251224471216 Iter 2: T = 932.4058156587595 K, F = -6722.354779474599, relative_change = 0.03399133007280568 Iter 3: T = 901.5437716964763 K, F = -5700.378687119727, relative_change = 0.03309936879842245 Iter 5: T = 845.5471883933566 K, F = -4095.8263303389417, relative_change = 0.031002916521282467 Iter 10: T = 737.4595265357151 K, F = -1782.1478506932826, relative_change = 0.023993362763062864 Iter 15: T = 669.9536777130385 K, F = -767.2727996045438, relative_change = 0.015687800510454365 Iter 20: T = 633.0653828420512 K, F = -326.68235148619465, relative_change = 0.008620472267558086 Iter 25: T = 615.1203412822567 K, F = -137.91436808847402, relative_change = 0.004156824998971653 Iter 30: T = 607.0333590956704 K, F = -57.93292734117434, relative_change = 0.0018580947037736965 Iter 35: T = 603.5346732909381 K, F = -24.275532150295895, relative_change = 0.0008001848221484889 Iter 40: T = 602.0498007600387 K, F = -10.160796014043346, relative_change = 0.00033886705155177616 Iter 45: T = 601.4249159430876 K, F = -4.250864898240211, relative_change = 0.00014247010471352971 Iter 50: T = 601.1628930180512 K, F = -1.7780257540395936, relative_change = 5.971522636179407e-5 Iter 55: T = 601.0531908898338 K, F = -0.7436377398256548, relative_change = 2.499687572101629e-5 Iter 60: T = 601.007290942714 K, F = -0.3110062591080974, relative_change = 1.0458064824105777e-5 Iter 65: T = 600.9880913244729 K, F = -0.13006794459633036, relative_change = 4.374400362111706e-6 Iter 70: T = 600.9800611653416 K, F = -0.054396214901977824, relative_change = 1.8295511644209981e-6 Iter 75: T = 600.9767027432799 K, F = -0.022749189921908275, relative_change = 7.651619571681361e-7 Iter 80: T = 600.9752981911937 K, F = -0.009513990466258948, relative_change = 3.200036832867479e-7 Iter 85: T = 600.9747107872618 K, F = -0.003978865755204897, relative_change = 1.338300292064239e-7 Iter 90: T = 600.9744651273145 K, F = -0.0016640094070146105, relative_change = 5.596943315849365e-8 Iter 95: T = 600.9743623892845 K, F = -0.0006959086469623954, relative_change = 2.3407105775536517e-8 Iter 100: T = 600.9743194229948 K, F = -0.0002910373138857447, relative_change = 9.789134736688948e-9 Iter 105: T = 600.9743014539761 K, F = -0.00012171528217674865, relative_change = 4.093933696831309e-9 Iter 110: T = 600.9742939391173 K, F = -5.0902785433792896e-5, relative_change = 1.7121320940915804e-9 Iter 115: T = 600.9742907963134 K, F = -2.1288152457332732e-5, relative_change = 7.160340960316426e-10 Iter 120: T = 600.9742894819553 K, F = -8.902959395873378e-6, relative_change = 2.994540067384763e-10 Iter 125: T = 600.974288932275 K, F = -3.723324195237243e-6, relative_change = 1.2523525087872654e-10 Iter 130: T = 600.9742887023922 K, F = -1.5571380387879863e-6, relative_change = 5.237485727001929e-11 Iter 135: T = 600.9742886062525 K, F = -6.512144467563097e-7, relative_change = 2.1903815125832313e-11 Iter 140: T = 600.9742885660457 K, F = -2.7234588773072943e-7, relative_change = 9.160444776291941e-12 Iter 145: T = 600.9742885492308 K, F = -1.1389876547474032e-7, relative_change = 3.831022968812926e-12 Iter 150: T = 600.9742885421986 K, F = -4.7633579414174676e-8, relative_change = 1.6021713323408616e-12 Iter 155: T = 600.9742885392576 K, F = -1.9921233940234373e-8, relative_change = 6.700573485591355e-13 Iter 160: T = 600.9742885380276 K, F = -8.330977407933204e-9, relative_change = 2.8021520402136803e-13 Converged in 162 iterations to T = 600.9742885377674 K Iter 1: T = 964.5422204197895 K, F = -8079.088806406885, relative_change = 0.03545777958021056 Iter 2: T = 931.0228927188728 K, F = -6853.566505916249, relative_change = 0.034751540151688146 Iter 3: T = 899.4115724778479 K, F = -5812.8364539832955, relative_change = 0.03395332218814732 Iter 5: T = 841.800606237982 K, F = -4178.672544813483, relative_change = 0.032056966898858216 Iter 10: T = 729.1488295442176 K, F = -1821.2963113878566, relative_change = 0.02549944660599019 Iter 15: T = 657.0657397504906 K, F = -785.8318316603098, relative_change = 0.017254895712037338 Iter 20: T = 616.6665294257783 K, F = -335.2529874275066, relative_change = 0.009779796629760588 Iter 25: T = 596.6286296436539 K, F = -141.7226153882039, relative_change = 0.004813480234039583 Iter 30: T = 587.4944276538572 K, F = -59.575377214977784, relative_change = 0.0021751097217197544 Iter 35: T = 583.5201035890246 K, F = -24.972172970634936, relative_change = 0.0009414688027250089 Iter 40: T = 581.829010246868 K, F = -10.45393154538295, relative_change = 0.00039958740279528684 Iter 45: T = 581.1165456679481 K, F = -4.373777852680359, relative_change = 0.00016815856776404814 Iter 50: T = 580.8176577270945 K, F = -1.8294859245519395, relative_change = 7.051061467961838e-5 Iter 55: T = 580.6924962274512 K, F = -0.7651689179225827, relative_change = 2.952080890749626e-5 Iter 60: T = 580.6401236192171 K, F = -0.3200125927323964, relative_change = 1.2351635653437617e-5 Iter 65: T = 580.6182157664219 K, F = -0.13383480502229947, relative_change = 5.166595791921158e-6 Iter 70: T = 580.6090527654359 K, F = -0.05597161412729498, relative_change = 2.160906007031827e-6 Iter 75: T = 580.6052205358756 K, F = -0.0234080500003514, relative_change = 9.037471253991674e-7 Iter 80: T = 580.6036178249246 K, F = -0.009789535247613723, relative_change = 3.7796316271426933e-7 Iter 85: T = 580.6029475473802 K, F = -0.004094102158341051, relative_change = 1.5806963927247493e-7 Iter 90: T = 580.6026672284871 K, F = -0.001712202697538523, relative_change = 6.610677369635882e-8 Iter 95: T = 580.6025499956351 K, F = -0.0007160636651945551, relative_change = 2.764667071261032e-8 Iter 100: T = 580.6025009674313 K, F = -0.0002994663860582114, relative_change = 1.1562172884576172e-8 Iter 105: T = 580.6024804632465 K, F = -0.0001252404206567026, relative_change = 4.835439657504537e-9 Iter 110: T = 580.6024718881507 K, F = -5.237703992683196e-5, relative_change = 2.0222387667286574e-9 Iter 115: T = 580.6024683019432 K, F = -2.190470400814659e-5, relative_change = 8.457244430667809e-10 Iter 120: T = 580.6024668021483 K, F = -9.160808993324832e-6, relative_change = 3.5369207346149393e-10 Iter 125: T = 580.6024661749162 K, F = -3.83115961832825e-6, relative_change = 1.4791824577122363e-10 Iter 130: T = 580.6024659126002 K, F = -1.6022367349544098e-6, relative_change = 6.186117814581359e-11 Iter 135: T = 580.6024658028965 K, F = -6.70074838116097e-7, relative_change = 2.5871095116412332e-11 Iter 140: T = 580.6024657570171 K, F = -2.802325980155729e-7, relative_change = 1.0819573856989985e-11 Iter 145: T = 580.6024657378298 K, F = -1.1719683090660737e-7, relative_change = 4.524883175540637e-12 Iter 150: T = 580.6024657298055 K, F = -4.9013220926319434e-8, relative_change = 1.892364298996146e-12 Iter 155: T = 580.6024657264496 K, F = -2.0498432395932298e-8, relative_change = 7.914293514973994e-13 Iter 160: T = 580.6024657250462 K, F = -8.572595688871587e-9, relative_change = 3.309815948714916e-13 Converged in 163 iterations to T = 580.6024657246352 K Iter 1: T = 964.3371107559466 K, F = -8125.823238423137, relative_change = 0.035662889244053406 Iter 2: T = 930.6005074861138 K, F = -6893.5930016861275, relative_change = 0.03498424243300833 Iter 3: T = 898.7592611500907 K, F = -5847.152113642189, relative_change = 0.03421580590154384 Iter 5: T = 840.6499178852607 K, F = -4203.9739371465075, relative_change = 0.03238417127372448 Iter 10: T = 726.5621071828002 K, F = -1833.3057035123863, relative_change = 0.02598335048603456 Iter 15: T = 652.9880471439928 K, F = -791.574383098011, relative_change = 0.017781024614143857 Iter 20: T = 611.4022167817809 K, F = -337.93270078360933, relative_change = 0.010185136374429188 Iter 25: T = 590.6361710530944 K, F = -142.92310877376983, relative_change = 0.005049440612627877 Iter 30: T = 581.1311754450521 K, F = -60.095601193480526, relative_change = 0.0022907105567641257 Iter 35: T = 576.986941352424 K, F = -25.193335992985894, relative_change = 0.0009933455773615512 Iter 40: T = 575.2218821124351 K, F = -10.547089890288408, relative_change = 0.0004219506521156462 Iter 45: T = 574.4779497333885 K, F = -4.412856949907354, relative_change = 0.0001776319132052375 Iter 50: T = 574.1658061224858 K, F = -1.845850322279044, relative_change = 7.44939041458004e-5 Iter 55: T = 574.0350840977293 K, F = -0.772016402181447, relative_change = 3.1190437417164336e-5 Iter 60: T = 573.9803830541305 K, F = -0.3228769403019567, relative_change = 1.305055513131794e-5 Iter 65: T = 573.9575009038025 K, F = -0.1350328227813725, relative_change = 5.45900797632279e-6 Iter 70: T = 573.9479303492848 K, F = -0.056472659301544464, relative_change = 2.283216521664613e-6 Iter 75: T = 573.9439276601078 K, F = -0.023617596545882497, relative_change = 9.549023851513047e-7 Iter 80: T = 573.942253658135 K, F = -0.00987717072225075, relative_change = 3.993575227756612e-7 Iter 85: T = 573.9415535653484 K, F = -0.004130752466099397, relative_change = 1.670171244897991e-7 Iter 90: T = 573.94126077728 K, F = -0.001727530311750436, relative_change = 6.984873779131773e-8 Iter 95: T = 573.9411383296551 K, F = -0.0007224738592838675, relative_change = 2.9211608081146724e-8 Iter 100: T = 573.9410871205685 K, F = -0.0003021472049301588, relative_change = 1.2216648905773137e-8 Iter 105: T = 573.9410657043121 K, F = -0.0001263615712245314, relative_change = 5.109149447302621e-9 Iter 110: T = 573.9410567477771 K, F = -5.284591889487267e-5, relative_change = 2.1367075033734652e-9 Iter 115: T = 573.9410530020469 K, F = -2.2100794389023903e-5, relative_change = 8.935966230950924e-10 Iter 120: T = 573.9410514355378 K, F = -9.242815917076541e-6, relative_change = 3.737127749044157e-10 Iter 125: T = 573.941050780405 K, F = -3.865455670548634e-6, relative_change = 1.562911331050302e-10 Iter 130: T = 573.9410505064207 K, F = -1.6165796092870721e-6, relative_change = 6.53628138563866e-11 Iter 135: T = 573.941050391837 K, F = -6.760726858900945e-7, relative_change = 2.7335500775437612e-11 Iter 140: T = 573.9410503439169 K, F = -2.827416836215235e-7, relative_change = 1.1432033383779373e-11 Iter 145: T = 573.9410503238761 K, F = -1.1824589196685054e-7, relative_change = 4.781010593733417e-12 Iter 150: T = 573.9410503154947 K, F = -4.945080533946822e-8, relative_change = 1.9994337247619907e-12 Iter 155: T = 573.9410503119897 K, F = -2.0680790913107927e-8, relative_change = 8.361819493891835e-13 Iter 160: T = 573.9410503105238 K, F = -8.64896831931361e-9, relative_change = 3.4970186681559743e-13 Converged in 163 iterations to T = 573.9410503100946 K Iter 1: T = 980.0771774686389 K, F = -4539.43406526739, relative_change = 0.019922822531361094 Iter 2: T = 962.2008688545266 K, F = -3834.5399679993106, relative_change = 0.01823969481697716 Iter 3: T = 946.2506345644612 K, F = -3237.5938437979694, relative_change = 0.01657682382791208 Iter 5: T = 919.6066062821621 K, F = -2304.854577215255, relative_change = 0.01340089786757921 Iter 10: T = 877.278193082709 K, F = -978.5600935546463, relative_change = 0.007048164251631859 Iter 15: T = 857.2266857942836 K, F = -412.3772182003123, relative_change = 0.00330732202855359 Iter 20: T = 848.3244546015917 K, F = -173.0657214239456, relative_change = 0.001457959155611436 Iter 25: T = 844.5007844305725 K, F = -72.48873968890925, relative_change = 0.0006238811319547827 Iter 30: T = 842.8832103831411 K, F = -30.335376915603263, relative_change = 0.00026347364840525014 Iter 35: T = 842.2034240004709 K, F = -12.690094491072307, relative_change = 0.00011064188904526412 Iter 40: T = 841.9185474142513 K, F = -5.307759410109433, relative_change = 4.6351656716639975e-5 Iter 45: T = 841.7993064924163 K, F = -2.219875277659443, relative_change = 1.9398825987177428e-5 Iter 50: T = 841.7494206245449 K, F = -0.9283970609351271, relative_change = 8.115273592683647e-6 Iter 55: T = 841.7285546277915 K, F = -0.3882700112639751, relative_change = 3.394333537327538e-6 Iter 60: T = 841.7198276709869 K, F = -0.1623797281159256, relative_change = 1.4196259042295405e-6 Iter 65: T = 841.7161778576136 K, F = -0.06790924164324563, relative_change = 5.937176399262199e-7 Iter 70: T = 841.7146514453141 K, F = -0.02840047336720808, relative_change = 2.4830210446754025e-7 Iter 75: T = 841.7140130785301 K, F = -0.011877420194827959, relative_change = 1.0384330716996887e-7 Iter 80: T = 841.7137461054048 K, F = -0.004967279507130717, relative_change = 4.342858147446949e-8 Iter 85: T = 841.7136344539658 K, F = -0.0020773757048115904, relative_change = 1.81623637041543e-8 Iter 90: T = 841.7135877599849 K, F = -0.0008687833446214821, relative_change = 7.595719549608877e-9 Iter 95: T = 841.7135682320018 K, F = -0.0003633355735079835, relative_change = 3.1766210076482965e-9 Iter 100: T = 841.7135600651654 K, F = -0.00015195127525235996, relative_change = 1.328500897240023e-9 Iter 105: T = 841.7135566496969 K, F = -6.35478368213871e-5, relative_change = 5.555949413767128e-10 Iter 110: T = 841.7135552213072 K, F = -2.6576465280703232e-5, relative_change = 2.323564503138128e-10 Iter 115: T = 841.7135546239375 K, F = -1.1114594388406118e-5, relative_change = 9.717423593459493e-11 Iter 120: T = 841.7135543741105 K, F = -4.648256540784601e-6, relative_change = 4.06394298012549e-11 Iter 125: T = 841.7135542696298 K, F = -1.9439563401224547e-6, relative_change = 1.699589439064539e-11 Iter 130: T = 841.7135542259348 K, F = -8.129871664763755e-7, relative_change = 7.107898331156635e-12 Iter 135: T = 841.7135542076609 K, F = -3.400003514286709e-7, relative_change = 2.9726028040967324e-12 Iter 140: T = 841.7135542000186 K, F = -1.421926925093686e-7, relative_change = 1.2431822341288408e-12 Iter 145: T = 841.7135541968224 K, F = -5.9465496526911465e-8, relative_change = 5.199032912494603e-13 Converged in 150 iterations to T = 841.7135541954858 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 6%|█▋ | ETA: 0:00:17 Bin 1 ray tracing: 11%|███▍ | ETA: 0:00:16 Bin 1 ray tracing: 17%|█████ | ETA: 0:00:15 Bin 1 ray tracing: 22%|██████▊ | ETA: 0:00:14 Bin 1 ray tracing: 28%|████████▌ | ETA: 0:00:13 Bin 1 ray tracing: 34%|██████████▏ | ETA: 0:00:12 Bin 1 ray tracing: 39%|███████████▉ | ETA: 0:00:11 Bin 1 ray tracing: 45%|█████████████▌ | ETA: 0:00:10 Bin 1 ray tracing: 51%|███████████████▏ | ETA: 0:00:09 Bin 1 ray tracing: 56%|████████████████▊ | ETA: 0:00:08 Bin 1 ray tracing: 62%|██████████████████▌ | ETA: 0:00:07 Bin 1 ray tracing: 67%|████████████████████▏ | ETA: 0:00:06 Bin 1 ray tracing: 73%|█████████████████████▊ | ETA: 0:00:05 Bin 1 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:04 Bin 1 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:03 Bin 1 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:02 Bin 1 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:18 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 6%|█▊ | ETA: 0:00:17 Bin 2 ray tracing: 11%|███▍ | ETA: 0:00:16 Bin 2 ray tracing: 17%|█████▏ | ETA: 0:00:15 Bin 2 ray tracing: 23%|██████▊ | ETA: 0:00:14 Bin 2 ray tracing: 28%|████████▌ | ETA: 0:00:13 Bin 2 ray tracing: 34%|██████████▏ | ETA: 0:00:12 Bin 2 ray tracing: 39%|███████████▉ | ETA: 0:00:11 Bin 2 ray tracing: 45%|█████████████▌ | ETA: 0:00:10 Bin 2 ray tracing: 51%|███████████████▎ | ETA: 0:00:09 Bin 2 ray tracing: 56%|████████████████▉ | ETA: 0:00:08 Bin 2 ray tracing: 62%|██████████████████▋ | ETA: 0:00:07 Bin 2 ray tracing: 68%|████████████████████▍ | ETA: 0:00:06 Bin 2 ray tracing: 74%|██████████████████████ | ETA: 0:00:05 Bin 2 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:04 Bin 2 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:03 Bin 2 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:02 Bin 2 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 6%|█▋ | ETA: 0:00:17 Bin 3 ray tracing: 11%|███▍ | ETA: 0:00:16 Bin 3 ray tracing: 17%|█████ | ETA: 0:00:15 Bin 3 ray tracing: 23%|██████▊ | ETA: 0:00:14 Bin 3 ray tracing: 28%|████████▌ | ETA: 0:00:13 Bin 3 ray tracing: 34%|██████████▏ | ETA: 0:00:12 Bin 3 ray tracing: 40%|███████████▉ | ETA: 0:00:11 Bin 3 ray tracing: 45%|█████████████▋ | ETA: 0:00:10 Bin 3 ray tracing: 51%|███████████████▎ | ETA: 0:00:09 Bin 3 ray tracing: 57%|█████████████████ | ETA: 0:00:08 Bin 3 ray tracing: 63%|██████████████████▊ | ETA: 0:00:07 Bin 3 ray tracing: 68%|████████████████████▌ | ETA: 0:00:06 Bin 3 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:05 Bin 3 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:04 Bin 3 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:03 Bin 3 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:02 Bin 3 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 4 ray tracing: 12%|███▋ | ETA: 0:00:15 Bin 4 ray tracing: 18%|█████▍ | ETA: 0:00:14 Bin 4 ray tracing: 24%|███████▎ | ETA: 0:00:13 Bin 4 ray tracing: 30%|█████████ | ETA: 0:00:12 Bin 4 ray tracing: 36%|██████████▊ | ETA: 0:00:11 Bin 4 ray tracing: 42%|████████████▋ | ETA: 0:00:10 Bin 4 ray tracing: 48%|██████████████▍ | ETA: 0:00:09 Bin 4 ray tracing: 54%|████████████████▏ | ETA: 0:00:08 Bin 4 ray tracing: 60%|█████████████████▉ | ETA: 0:00:07 Bin 4 ray tracing: 66%|███████████████████▋ | ETA: 0:00:06 Bin 4 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:05 Bin 4 ray tracing: 78%|███████████████████████▎ | ETA: 0:00:04 Bin 4 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:03 Bin 4 ray tracing: 90%|██████████████████████████▉ | ETA: 0:00:02 Bin 4 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 5 ray tracing: 12%|███▌ | ETA: 0:00:15 Bin 5 ray tracing: 17%|█████▎ | ETA: 0:00:14 Bin 5 ray tracing: 23%|███████ | ETA: 0:00:13 Bin 5 ray tracing: 29%|████████▉ | ETA: 0:00:12 Bin 5 ray tracing: 35%|██████████▋ | ETA: 0:00:11 Bin 5 ray tracing: 42%|████████████▌ | ETA: 0:00:10 Bin 5 ray tracing: 48%|██████████████▎ | ETA: 0:00:09 Bin 5 ray tracing: 54%|████████████████ | ETA: 0:00:08 Bin 5 ray tracing: 60%|█████████████████▉ | ETA: 0:00:07 Bin 5 ray tracing: 66%|███████████████████▋ | ETA: 0:00:06 Bin 5 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:05 Bin 5 ray tracing: 78%|███████████████████████▎ | ETA: 0:00:04 Bin 5 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:03 Bin 5 ray tracing: 90%|███████████████████████████ | ETA: 0:00:02 Bin 5 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 6 ray tracing: 12%|███▊ | ETA: 0:00:14 Bin 6 ray tracing: 19%|█████▋ | ETA: 0:00:13 Bin 6 ray tracing: 25%|███████▌ | ETA: 0:00:12 Bin 6 ray tracing: 31%|█████████▍ | ETA: 0:00:11 Bin 6 ray tracing: 37%|███████████▏ | ETA: 0:00:10 Bin 6 ray tracing: 43%|█████████████ | ETA: 0:00:09 Bin 6 ray tracing: 49%|██████████████▉ | ETA: 0:00:08 Bin 6 ray tracing: 55%|████████████████▋ | ETA: 0:00:07 Bin 6 ray tracing: 61%|██████████████████▍ | ETA: 0:00:06 Bin 6 ray tracing: 67%|████████████████████▎ | ETA: 0:00:05 Bin 6 ray tracing: 73%|██████████████████████ | ETA: 0:00:04 Bin 6 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:03 Bin 6 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 6 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 6 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 7 ray tracing: 12%|███▌ | ETA: 0:00:15 Bin 7 ray tracing: 18%|█████▎ | ETA: 0:00:14 Bin 7 ray tracing: 23%|███████ | ETA: 0:00:13 Bin 7 ray tracing: 29%|████████▊ | ETA: 0:00:12 Bin 7 ray tracing: 35%|██████████▋ | ETA: 0:00:11 Bin 7 ray tracing: 41%|████████████▍ | ETA: 0:00:10 Bin 7 ray tracing: 47%|██████████████▏ | ETA: 0:00:09 Bin 7 ray tracing: 53%|███████████████▉ | ETA: 0:00:08 Bin 7 ray tracing: 59%|█████████████████▋ | ETA: 0:00:07 Bin 7 ray tracing: 65%|███████████████████▍ | ETA: 0:00:06 Bin 7 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:05 Bin 7 ray tracing: 77%|███████████████████████ | ETA: 0:00:04 Bin 7 ray tracing: 83%|████████████████████████▊ | ETA: 0:00:03 Bin 7 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:02 Bin 7 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 8 ray tracing: 12%|███▌ | ETA: 0:00:15 Bin 8 ray tracing: 18%|█████▎ | ETA: 0:00:14 Bin 8 ray tracing: 24%|███████▏ | ETA: 0:00:13 Bin 8 ray tracing: 30%|████████▉ | ETA: 0:00:12 Bin 8 ray tracing: 35%|██████████▋ | ETA: 0:00:11 Bin 8 ray tracing: 41%|████████████▍ | ETA: 0:00:10 Bin 8 ray tracing: 47%|██████████████▎ | ETA: 0:00:09 Bin 8 ray tracing: 54%|████████████████▏ | ETA: 0:00:08 Bin 8 ray tracing: 60%|█████████████████▉ | ETA: 0:00:07 Bin 8 ray tracing: 66%|███████████████████▊ | ETA: 0:00:06 Bin 8 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:05 Bin 8 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:04 Bin 8 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:03 Bin 8 ray tracing: 90%|███████████████████████████ | ETA: 0:00:02 Bin 8 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 9 ray tracing: 12%|███▋ | ETA: 0:00:15 Bin 9 ray tracing: 18%|█████▍ | ETA: 0:00:14 Bin 9 ray tracing: 24%|███████▎ | ETA: 0:00:13 Bin 9 ray tracing: 30%|█████████ | ETA: 0:00:12 Bin 9 ray tracing: 36%|██████████▊ | ETA: 0:00:11 Bin 9 ray tracing: 42%|████████████▌ | ETA: 0:00:10 Bin 9 ray tracing: 48%|██████████████▎ | ETA: 0:00:09 Bin 9 ray tracing: 54%|████████████████ | ETA: 0:00:08 Bin 9 ray tracing: 59%|█████████████████▊ | ETA: 0:00:07 Bin 9 ray tracing: 65%|███████████████████▋ | ETA: 0:00:06 Bin 9 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:05 Bin 9 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:04 Bin 9 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:03 Bin 9 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:02 Bin 9 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 10 ray tracing: 12%|███▍ | ETA: 0:00:15 Bin 10 ray tracing: 17%|█████ | ETA: 0:00:14 Bin 10 ray tracing: 23%|██████▊ | ETA: 0:00:13 Bin 10 ray tracing: 29%|████████▌ | ETA: 0:00:12 Bin 10 ray tracing: 35%|██████████▎ | ETA: 0:00:11 Bin 10 ray tracing: 41%|███████████▉ | ETA: 0:00:10 Bin 10 ray tracing: 47%|█████████████▋ | ETA: 0:00:09 Bin 10 ray tracing: 53%|███████████████▎ | ETA: 0:00:08 Bin 10 ray tracing: 59%|█████████████████ | ETA: 0:00:07 Bin 10 ray tracing: 65%|██████████████████▊ | ETA: 0:00:06 Bin 10 ray tracing: 71%|████████████████████▌ | ETA: 0:00:05 Bin 10 ray tracing: 77%|██████████████████████▎ | ETA: 0:00:04 Bin 10 ray tracing: 83%|████████████████████████ | ETA: 0:00:03 Bin 10 ray tracing: 89%|█████████████████████████▊ | ETA: 0:00:02 Bin 10 ray tracing: 96%|███████████████████████████▊ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2335480891456 K, F = -7465.867236830552, relative_change = 0.032766451910854415 Iter 2: T = 936.5385595528908 K, F = -6328.759721890591, relative_change = 0.03173482619259387 Iter 3: T = 907.8839001407154 K, F = -5363.341892742188, relative_change = 0.03059634771029113 Iter 5: T = 856.5588338020327 K, F = -3848.1633997814274, relative_change = 0.028003256517517706 Iter 10: T = 760.9786312089551 K, F = -1666.5675478613207, relative_change = 0.020106846804290337 Iter 15: T = 704.8954815887222 K, F = -713.6663612430823, relative_change = 0.012082389848895597 Iter 20: T = 675.9981060557517 K, F = -302.5137251553511, relative_change = 0.006200378168263568 Iter 25: T = 662.5060152130508 K, F = -127.36179572888544, relative_change = 0.00286776400991112 Iter 30: T = 656.5624895018565 K, F = -53.42569196668262, relative_change = 0.0012552007733839725 Iter 35: T = 654.0190104715317 K, F = -22.37261479788403, relative_change = 0.0005353929741943431 Iter 40: T = 652.944756403886 K, F = -9.361714613855453, relative_change = 0.00022578988141450505 Iter 45: T = 652.4936140300354 K, F = -3.91610028475691, relative_change = 9.476129113754206e-5 Iter 50: T = 652.3046102398093 K, F = -1.6379211941033918, relative_change = 3.9688894750921395e-5 Iter 55: T = 652.2255085827404 K, F = -0.6850264485366223, relative_change = 1.6608639678787405e-5 Iter 60: T = 652.1924171648819 K, F = -0.28649118419822805, relative_change = 6.947729313008198e-6 Iter 65: T = 652.1785761607321 K, F = -0.11981489927261635, relative_change = 2.9059379373441066e-6 Iter 70: T = 652.1727873764539 K, F = -0.05010817299382775, relative_change = 1.2153529759769551e-6 Iter 75: T = 652.1703663833291 K, F = -0.020955862812533366, relative_change = 5.082847536996188e-7 Iter 80: T = 652.1693538855753 K, F = -0.008763996718558154, relative_change = 2.125724375940165e-7 Iter 85: T = 652.1689304452585 K, F = -0.003665208899488459, relative_change = 8.890062645322706e-8 Iter 90: T = 652.1687533571701 K, F = -0.0015328342740200673, relative_change = 3.717935515157953e-8 Iter 95: T = 652.1686792967657 K, F = -0.0006410496244303454, relative_change = 1.5548859355848236e-8 Iter 100: T = 652.1686483238112 K, F = -0.00026809461254723166, relative_change = 6.502720239209273e-9 Iter 105: T = 652.1686353705502 K, F = -0.00011212036906282918, relative_change = 2.719515529050671e-9 Iter 110: T = 652.1686299533416 K, F = -4.689007780728227e-5, relative_change = 1.137333928385877e-9 Iter 115: T = 652.1686276878002 K, F = -1.960999051747736e-5, relative_change = 4.756466391758259e-10 Iter 120: T = 652.1686267403236 K, F = -8.201131720564359e-6, relative_change = 1.9892109401224302e-10 Iter 125: T = 652.1686263440777 K, F = -3.4298112658315283e-6, relative_change = 8.319117830012918e-11 Iter 130: T = 652.1686261783627 K, F = -1.4343870858857244e-6, relative_change = 3.479152137216847e-11 Iter 135: T = 652.1686261090589 K, F = -5.998775544635571e-7, relative_change = 1.455022355731459e-11 Iter 140: T = 652.1686260800752 K, F = -2.50875991425481e-7, relative_change = 6.085078086377729e-12 Iter 145: T = 652.1686260679538 K, F = -1.0491918756017071e-7, relative_change = 2.5448487337979666e-12 Iter 150: T = 652.1686260628845 K, F = -4.3877489031007855e-8, relative_change = 1.06426264826812e-12 Iter 155: T = 652.1686260607645 K, F = -1.8349549768537088e-8, relative_change = 4.450742479291009e-13 Converged in 159 iterations to T = 652.1686260599993 K Iter 1: T = 970.3136417834855 K, F = -6764.064958649688, relative_change = 0.02968635821651442 Iter 2: T = 942.7910085423165 K, F = -5729.053428864979, relative_change = 0.028364677209506303 Iter 3: T = 917.3875244033131 K, F = -4850.6678612623855, relative_change = 0.026944979225332913 Iter 5: T = 872.7229311978632 K, F = -3473.1438866511203, relative_change = 0.023856135449820882 Iter 10: T = 793.4063184441916 K, F = -1495.012055356159, relative_change = 0.015550379731094454 Iter 15: T = 750.159859654346 K, F = -636.4229674681117, relative_change = 0.008522204297720078 Iter 20: T = 729.1563244213305 K, F = -268.6463244346339, relative_change = 0.00410239804656868 Iter 25: T = 719.7000082934588 K, F = -112.8421200714534, relative_change = 0.0018321291714324985 Iter 30: T = 715.6108108901949 K, F = -47.28273725658475, relative_change = 0.0007886768373243019 Iter 35: T = 713.8756837648737 K, F = -19.79048175232483, relative_change = 0.00033393324920117203 Iter 40: T = 713.1455493529376 K, F = -8.27949236704458, relative_change = 0.00014038497351972622 Iter 45: T = 712.8394055408028 K, F = -3.4630879112070017, relative_change = 5.883935014319523e-5 Iter 50: T = 712.7112332207287 K, F = -1.4483932672336293, relative_change = 2.4629897275192058e-5 Iter 55: T = 712.6576056107298 K, F = -0.6057508602651263, relative_change = 1.030447148489703e-5 Iter 60: T = 712.6351736300782 K, F = -0.25333495548511875, relative_change = 4.3101450376154205e-6 Iter 65: T = 712.6257915601461 K, F = -0.10594817813801993, relative_change = 1.8026751888277343e-6 Iter 70: T = 712.6218677356583 K, F = -0.0443088763388525, relative_change = 7.539214679916259e-7 Iter 75: T = 712.6202267225193 K, F = -0.018530515749530796, relative_change = 3.153026653488913e-7 Iter 80: T = 712.6195404272256 K, F = -0.0077496855232142, relative_change = 1.3186398793093053e-7 Iter 85: T = 712.6192534096378 K, F = -0.003241011479521938, relative_change = 5.51472078287145e-8 Iter 90: T = 712.6191333753325 K, F = -0.0013554297825117967, relative_change = 2.3063240698621337e-8 Iter 95: T = 712.619083175531 K, F = -0.0005668569343770802, relative_change = 9.645326133960538e-9 Iter 100: T = 712.619062181371 K, F = -0.00023706634141873462, relative_change = 4.03379117450544e-9 Iter 105: T = 712.6190534013618 K, F = -9.91439772147773e-5, relative_change = 1.6869797768883403e-9 Iter 110: T = 712.6190497294571 K, F = -4.1463194697888284e-5, relative_change = 7.055150965448078e-10 Iter 115: T = 712.6190481938226 K, F = -1.7340404233290307e-5, relative_change = 2.950548596516353e-10 Iter 120: T = 712.619047551602 K, F = -7.25196453466026e-6, relative_change = 1.2339547327541904e-10 Iter 125: T = 712.6190472830176 K, F = -3.032859525409215e-6, relative_change = 5.160548364496733e-11 Iter 130: T = 712.6190471706924 K, F = -1.2683784382794272e-6, relative_change = 2.1582035782731594e-11 Iter 135: T = 712.6190471237167 K, F = -5.304508428061183e-7, relative_change = 9.025862257280638e-12 Iter 140: T = 712.6190471040709 K, F = -2.218423355015986e-7, relative_change = 3.774748198610251e-12 Iter 145: T = 712.6190470958549 K, F = -9.277808477037297e-8, relative_change = 1.5786612937735464e-12 Iter 150: T = 712.6190470924187 K, F = -3.8802296264961456e-8, relative_change = 6.602387123644923e-13 Iter 155: T = 712.6190470909817 K, F = -1.6227954202641115e-8, relative_change = 2.761260187799669e-13 Converged in 157 iterations to T = 712.6190470906776 K Iter 1: T = 974.3938621610024 K, F = -5834.382864340894, relative_change = 0.025606137838997556 Iter 2: T = 950.9771068701189 K, F = -4936.12358426607, relative_change = 0.024032125201353473 Iter 3: T = 929.6751716346581 K, F = -4174.356582968738, relative_change = 0.022400050518114223 Iter 5: T = 893.0630710189454 K, F = -2981.305924070185, relative_change = 0.01904600024877925 Iter 10: T = 831.3756531367219 K, F = -1274.8689177237386, relative_change = 0.01119523181209292 Iter 15: T = 800.0515117048332 K, F = -539.8283062306457, relative_change = 0.005652507328815943 Iter 20: T = 785.5634420406673 K, F = -227.1356643807049, relative_change = 0.0025903236828642537 Iter 25: T = 779.2126118351163 K, F = -95.25051460012828, relative_change = 0.0011287004281655309 Iter 30: T = 776.5010684505153 K, F = -39.8819260562584, relative_change = 0.0004804731434386421 Iter 35: T = 775.3569845184883 K, F = -16.687446068539366, relative_change = 0.00020245429006908314 Iter 40: T = 774.8767230029825 K, F = -6.980358628645924, relative_change = 8.493666282883784e-5 Iter 45: T = 774.6755563806086 K, F = -2.919527023853398, relative_change = 3.55685938145271e-5 Iter 50: T = 774.5913707563042 K, F = -1.2210261868739782, relative_change = 1.4883458817521312e-5 Iter 55: T = 774.5561536323293 K, F = -0.5106556284436765, relative_change = 6.225884000778616e-6 Iter 60: T = 774.5414237147878 K, F = -0.213563663403726, relative_change = 2.6039916458584527e-6 Iter 65: T = 774.5352631907172 K, F = -0.08931511608217346, relative_change = 1.089064591405053e-6 Iter 70: T = 774.5326867340913 K, F = -0.037352690435515146, relative_change = 4.5546754700550374e-7 Iter 75: T = 774.5316092200858 K, F = -0.015621348611533192, relative_change = 1.9048331935466785e-7 Iter 80: T = 774.5311585892732 K, F = -0.006533035839400458, relative_change = 7.966263543229583e-8 Iter 85: T = 774.530970129808 K, F = -0.002732193833070662, relative_change = 3.33159068398948e-8 Iter 90: T = 774.5308913137604 K, F = -0.0011426361274982089, relative_change = 1.3933117320889072e-8 Iter 95: T = 774.5308583519396 K, F = -0.00047786408049199647, relative_change = 5.826997314193319e-9 Iter 100: T = 774.530844566911 K, F = -0.00019984846467546724, relative_change = 2.4369200639469508e-9 Iter 105: T = 774.5308388018473 K, F = -8.357901441169435e-5, relative_change = 1.0191491072678951e-9 Iter 110: T = 774.5308363908288 K, F = -3.495374280471086e-5, relative_change = 4.2622034435095427e-10 Iter 115: T = 774.5308353825119 K, F = -1.4618072873173737e-5, relative_change = 1.782504416531539e-10 Iter 120: T = 774.5308349608218 K, F = -6.113452909239925e-6, relative_change = 7.454646678649381e-11 Iter 125: T = 774.5308347844658 K, F = -2.556716799606562e-6, relative_change = 3.117619568196873e-11 Iter 130: T = 774.5308347107118 K, F = -1.0692499702313896e-6, relative_change = 1.3038263105681623e-11 Iter 135: T = 774.530834679867 K, F = -4.47173278628199e-7, relative_change = 5.452759433258176e-12 Iter 140: T = 774.5308346669674 K, F = -1.870146016935692e-7, relative_change = 2.2804261398417713e-12 Iter 145: T = 774.5308346615726 K, F = -7.821424041765113e-8, relative_change = 9.537319372229992e-13 Iter 150: T = 774.5308346593164 K, F = -3.2708570851802676e-8, relative_change = 3.9884308121054323e-13 Converged in 154 iterations to T = 774.5308346585019 K Iter 1: T = 970.3184819774993 K, F = -6762.962115839441, relative_change = 0.029681518022500665 Iter 2: T = 942.8007841467654 K, F = -5728.1117911971305, relative_change = 0.02835944933734859 Iter 3: T = 917.4023015427109 K, F = -4849.86367951747, relative_change = 0.02693939486594738 Iter 5: T = 872.7477602794361 K, F = -3472.557168079261, relative_change = 0.023849991897619983 Iter 10: T = 793.454452586 K, F = -1494.7464494709861, relative_change = 0.015544233301653835 Iter 15: T = 750.2250040197781 K, F = -636.3049796717909, relative_change = 0.008517816444329572 Iter 20: T = 729.2312791914061 K, F = -268.59516709081197, relative_change = 0.004099970970532227 Iter 25: T = 719.7797819633236 K, F = -112.82033401031696, relative_change = 0.001830972133271084 Iter 30: T = 715.6927535934672 K, F = -47.273550548053734, relative_change = 0.0007881642144829679 Iter 35: T = 713.9585630799297 K, F = -19.786625971340214, relative_change = 0.0003337135070863012 Iter 40: T = 713.2288257407118 K, F = -8.27787737670757, relative_change = 0.0001402921119128727 Iter 45: T = 712.9228489446099 K, F = -3.462412069931706, relative_change = 5.88003439648506e-5 Iter 50: T = 712.7947466409556 K, F = -1.4481105463558586, relative_change = 2.4613554487998783e-5 Iter 55: T = 712.7411483421879 K, F = -0.605632609709771, relative_change = 1.0297631489421818e-5 Iter 60: T = 712.7187286250143 K, F = -0.2532854993610766, relative_change = 4.3072835513801556e-6 Iter 65: T = 712.70935168472 K, F = -0.10592749458941364, relative_change = 1.801478320428672e-6 Iter 70: T = 712.7054300056662 K, F = -0.04430022615936191, relative_change = 7.534208952042235e-7 Iter 75: T = 712.7037898898012 K, F = -0.01852689812760644, relative_change = 3.150933148959386e-7 Iter 80: T = 712.703103969763 K, F = -0.007748172588612157, relative_change = 1.3177643421600178e-7 Iter 85: T = 712.7028171091124 K, F = -0.0032403787525064898, relative_change = 5.511059168076409e-8 Iter 90: T = 712.7026971404403 K, F = -0.0013551651690435484, relative_change = 2.3047927372046026e-8 Iter 95: T = 712.7026469680876 K, F = -0.0005667462716187899, relative_change = 9.638921943352198e-9 Iter 100: T = 712.7026259854067 K, F = -0.00023702006216197447, relative_change = 4.031112885670847e-9 Iter 105: T = 712.7026172101982 K, F = -9.912462072347861e-5, relative_change = 1.6858596511414407e-9 Iter 110: T = 712.7026135403013 K, F = -4.1455100315168636e-5, relative_change = 7.050466590304542e-10 Iter 115: T = 712.7026120055065 K, F = -1.7337017489182927e-5, relative_change = 2.9485892666276644e-10 Iter 120: T = 712.702611363637 K, F = -7.2505477098916415e-6, relative_change = 1.2331352413740473e-10 Iter 125: T = 712.7026110951994 K, F = -3.0322654679393324e-6, relative_change = 5.1571185599147134e-11 Iter 130: T = 712.7026109829355 K, F = -1.2681284438098572e-6, relative_change = 2.1567665522625405e-11 Iter 135: T = 712.7026109359856 K, F = -5.303461690919775e-7, relative_change = 9.01985035159746e-12 Iter 140: T = 712.7026109163505 K, F = -2.2179724690207792e-7, relative_change = 3.77221160877003e-12 Iter 145: T = 712.7026109081389 K, F = -9.275883861015188e-8, relative_change = 1.577593828271983e-12 Iter 150: T = 712.7026109047048 K, F = -3.879304899534475e-8, relative_change = 6.597718944447264e-13 Iter 155: T = 712.7026109032686 K, F = -1.6224941945530702e-8, relative_change = 2.7594532943378065e-13 Converged in 157 iterations to T = 712.7026109029646 K Iter 1: T = 969.2886080067289 K, F = -6997.619879742541, relative_change = 0.030711391993271095 Iter 2: T = 940.7172729491554 K, F = -5928.52338056071, relative_change = 0.029476602553215152 Iter 3: T = 914.2470810290636 K, F = -5021.07637086173, relative_change = 0.028138307524754592 Iter 5: T = 867.4252100573816 K, F = -3597.577795449169, relative_change = 0.02518266005680737 Iter 10: T = 783.0244214767575 K, F = -1551.5283154538272, relative_change = 0.016916928065303545 Iter 15: T = 735.9781472303803 K, F = -661.6291043581742, relative_change = 0.009523916684380922 Iter 20: T = 712.7424840967544 K, F = -279.6095649649672, relative_change = 0.004666281445491246 Iter 25: T = 702.1776448016645 K, F = -117.51943794727323, relative_change = 0.002103456080192851 Iter 30: T = 697.5867421277696 K, F = -49.25679930905053, relative_change = 0.0009094110226616943 Iter 35: T = 695.6344319597321 K, F = -20.619347527944864, relative_change = 0.00038578628751663495 Iter 40: T = 694.8121239876708 K, F = -8.62672084585838, relative_change = 0.00016231559443914342 Iter 45: T = 694.4671924686243 K, F = -3.608406527613909, relative_change = 6.805439420863379e-5 Iter 50: T = 694.3227564290929 K, F = -1.5091854179587347, relative_change = 2.849136848735217e-5 Iter 55: T = 694.2623197259402 K, F = -0.6311780463506576, relative_change = 1.192072222553128e-5 Iter 60: T = 694.2370388031734 K, F = -0.26396946536312865, relative_change = 4.986314519638977e-6 Iter 65: T = 694.2264650444667 K, F = -0.11039575461324114, relative_change = 2.0854983048476292e-6 Iter 70: T = 694.222042801762 K, F = -0.0461689229793627, relative_change = 8.722086384037449e-7 Iter 75: T = 694.2201933372213 K, F = -0.019308412449304035, relative_change = 3.6477302602391674e-7 Iter 80: T = 694.219419863846 K, F = -0.008075011734309356, relative_change = 1.5255330278051387e-7 Iter 85: T = 694.2190963871309 K, F = -0.00337706687771, relative_change = 6.379976472795166e-8 Iter 90: T = 694.2189611051458 K, F = -0.0014123297909166554, relative_change = 2.6681850031904018e-8 Iter 95: T = 694.2189045285763 K, F = -0.0005906532026529465, relative_change = 1.1158672988706363e-8 Iter 100: T = 694.2188808675744 K, F = -0.00024701822627237746, relative_change = 4.666691121168557e-9 Iter 105: T = 694.2188709722599 K, F = -0.00010330597364160976, relative_change = 1.9516661177160123e-9 Iter 110: T = 694.218866833921 K, F = -4.320379150102305e-5, relative_change = 8.162100936685044e-10 Iter 115: T = 694.2188651032181 K, F = -1.80683400968773e-5, relative_change = 3.413487850390184e-10 Iter 120: T = 694.2188643794177 K, F = -7.556395943963956e-6, relative_change = 1.4275614548541577e-10 Iter 125: T = 694.2188640767157 K, F = -3.160175504057783e-6, relative_change = 5.970233406226406e-11 Iter 130: T = 694.2188639501221 K, F = -1.3216227904289113e-6, relative_change = 2.4968222589434594e-11 Iter 135: T = 694.2188638971792 K, F = -5.527193012166975e-7, relative_change = 1.0442025248964868e-11 Iter 140: T = 694.2188638750378 K, F = -2.311539752941627e-7, relative_change = 4.366982736939844e-12 Iter 145: T = 694.218863865778 K, F = -9.667063738394432e-8, relative_change = 1.8263108134490595e-12 Iter 150: T = 694.2188638619054 K, F = -4.0429160463872904e-8, relative_change = 7.637915186443409e-13 Iter 155: T = 694.2188638602859 K, F = -1.6909034838974435e-8, relative_change = 3.194470835018822e-13 Converged in 158 iterations to T = 694.2188638598118 K Iter 1: T = 963.547314846925 K, F = -8305.778987583559, relative_change = 0.03645268515307495 Iter 2: T = 928.9713654383127 K, F = -7047.759088549973, relative_change = 0.03588401822707098 Iter 3: T = 896.2385481019747 K, F = -5979.366717137814, relative_change = 0.03523555036693052 Iter 5: T = 836.1832633387498 K, F = -4301.5530049206645, relative_change = 0.03366992520965007 Iter 10: T = 716.360332127349 K, F = -1879.869830694329, relative_change = 0.027964823803326606 Iter 15: T = 636.5693308295603 K, F = -814.0871891195413, relative_change = 0.02006002107186791 Iter 20: T = 589.7867496088237 K, F = -348.5903072370072, relative_change = 0.01204219902087257 Iter 25: T = 565.6977609692128 K, F = -147.75557532583395, relative_change = 0.006175117891300679 Iter 30: T = 554.4556257692541 K, F = -62.205040703696895, relative_change = 0.0028548477031907597 Iter 35: T = 549.5043989354908 K, F = -26.09338829991706, relative_change = 0.0012492840895031894 Iter 40: T = 547.3857954310884 K, F = -10.92683365936188, relative_change = 0.000532818944233258 Iter 45: T = 546.4910328497843 K, F = -4.5722693283397655, relative_change = 0.00022469519717845996 Iter 50: T = 546.1152771498276 K, F = -1.912624486198435, relative_change = 9.430023977590093e-5 Iter 55: T = 545.9578575747475 K, F = -0.7999607869204541, relative_change = 3.949550624146761e-5 Iter 60: T = 545.8919747462649 K, F = -0.3345668812267172, relative_change = 1.652766204424417e-5 Iter 65: T = 545.8644133399519 K, F = -0.13992226731844332, relative_change = 6.9138459414304396e-6 Iter 70: T = 545.8528853570955 K, F = -0.058517583414130464, relative_change = 2.891764434069106e-6 Iter 75: T = 545.8480639592019 K, F = -0.02447282572653789, relative_change = 1.2094249101273444e-6 Iter 80: T = 545.8460475479314 K, F = -0.010234840838974607, relative_change = 5.058054716945591e-7 Iter 85: T = 545.8452042527705 K, F = -0.004280334916425627, relative_change = 2.1153555581904033e-7 Iter 90: T = 545.8448515752837 K, F = -0.001790087572927368, relative_change = 8.846698725635011e-8 Iter 95: T = 545.8447040811055 K, F = -0.000748636069793196, relative_change = 3.699800157731541e-8 Iter 100: T = 545.8446423972366 K, F = -0.0003130885568381203, relative_change = 1.547301501919093e-8 Iter 105: T = 545.8446166002985 K, F = -0.00013093737549080275, relative_change = 6.471001220402538e-9 Iter 110: T = 545.8446058117098 K, F = -5.475957462916514e-5, relative_change = 2.706250268644841e-9 Iter 115: T = 545.844601299793 K, F = -2.2901108970602158e-5, relative_change = 1.1317862704852186e-9 Iter 120: T = 545.8445994128552 K, F = -9.577517260772606e-6, relative_change = 4.733265421072332e-10 Iter 125: T = 545.8445986237155 K, F = -4.005431866682674e-6, relative_change = 1.979508025443312e-10 Iter 130: T = 545.8445982936877 K, F = -1.6751195795194906e-6, relative_change = 8.27853967099727e-11 Iter 135: T = 545.8445981556662 K, F = -7.005550932415172e-7, relative_change = 3.462184556259779e-11 Iter 140: T = 545.844598097944 K, F = -2.929803641082973e-7, relative_change = 1.4479262262162935e-11 Iter 145: T = 545.8445980738038 K, F = -1.225281129613176e-7, relative_change = 6.055411555747121e-12 Iter 150: T = 545.8445980637082 K, F = -5.1243069038031663e-8, relative_change = 2.5324626727102972e-12 Iter 155: T = 545.844598059486 K, F = -2.1430388297272174e-8, relative_change = 1.0591024200023724e-12 Iter 160: T = 545.8445980577202 K, F = -8.962525138711541e-9, relative_change = 4.4293327457328076e-13 Converged in 164 iterations to T = 545.8445980570829 K Iter 1: T = 966.8849213718574 K, F = -7545.302165994281, relative_change = 0.03311507862814257 Iter 2: T = 935.8268507712233 K, F = -6396.6999679026785, relative_change = 0.0321217860720876 Iter 3: T = 906.7954131066657 K, F = -5421.487220642203, relative_change = 0.031022231987287582 Iter 5: T = 854.6817345903928 K, F = -3890.8243639306065, relative_change = 0.02850437791717152 Iter 10: T = 757.0587834434056 K, F = -1686.3332102695592, relative_change = 0.020718137018139283 Iter 15: T = 699.2121730292619 K, F = -722.7260807130567, relative_change = 0.012611356287696971 Iter 20: T = 669.1462974620893 K, F = -306.54934533403593, relative_change = 0.006535549654980648 Iter 25: T = 655.0278393262075 K, F = -129.10919603998994, relative_change = 0.0030400311844212256 Iter 30: T = 648.7893295645929 K, F = -54.1687092670812, relative_change = 0.0013343188687897458 Iter 35: T = 646.1157789957343 K, F = -22.685652805195947, relative_change = 0.0005698539110064754 Iter 40: T = 644.9858745657978 K, F = -9.493045726413847, relative_change = 0.00024045299412137826 Iter 45: T = 644.5112331168045 K, F = -3.9710980538234213, relative_change = 0.0001009383491535569 Iter 50: T = 644.3123618297691 K, F = -1.6609348501302301, relative_change = 4.228010738422332e-5 Iter 55: T = 644.229126453404 K, F = -0.6946533014709404, relative_change = 1.76937009256204e-5 Iter 60: T = 644.1943050353715 K, F = -0.2905176459778831, relative_change = 7.401757495179879e-6 Iter 65: T = 644.1797403092754 K, F = -0.12149888312373996, relative_change = 3.0958604031778027e-6 Iter 70: T = 644.1736488181815 K, F = -0.05081244729980666, relative_change = 1.2947882470730232e-6 Iter 75: T = 644.1711012228643 K, F = -0.021250400861818564, relative_change = 5.415068319491477e-7 Iter 80: T = 644.1700357774097 K, F = -0.008887176419691223, relative_change = 2.264665347150553e-7 Iter 85: T = 644.1695901935307 K, F = -0.0037167241873489187, relative_change = 9.471134356450375e-8 Iter 90: T = 644.1694038447048 K, F = -0.0015543785950339895, relative_change = 3.960947341912067e-8 Iter 95: T = 644.1693259113431 K, F = -0.0006500597180040812, relative_change = 1.6565165034157556e-8 Iter 100: T = 644.1692933186706 K, F = -0.00027186274155188705, relative_change = 6.92775162120761e-9 Iter 105: T = 644.1692796880241 K, F = -0.00011369624628149166, relative_change = 2.8972687811394022e-9 Iter 110: T = 644.1692739875245 K, F = -4.7549127269286284e-5, relative_change = 1.21167243702026e-9 Iter 115: T = 644.1692716035076 K, F = -1.988561338128747e-5, relative_change = 5.067359052763413e-10 Iter 120: T = 644.1692706064832 K, F = -8.316401338692714e-6, relative_change = 2.1192301747271302e-10 Iter 125: T = 644.1692701895156 K, F = -3.4780182592286657e-6, relative_change = 8.862873454208396e-11 Iter 130: T = 644.1692700151349 K, F = -1.4545489614437024e-6, relative_change = 3.706560010326058e-11 Iter 135: T = 644.1692699422067 K, F = -6.083097761622192e-7, relative_change = 1.55012773801074e-11 Iter 140: T = 644.1692699117073 K, F = -2.544027442041852e-7, relative_change = 6.482827762424293e-12 Iter 145: T = 644.169269898952 K, F = -1.0639370134901682e-7, relative_change = 2.711181607238975e-12 Iter 150: T = 644.1692698936178 K, F = -4.449628410174711e-8, relative_change = 1.1338782796563336e-12 Iter 155: T = 644.1692698913868 K, F = -1.860881060355979e-8, relative_change = 4.741997355490266e-13 Converged in 160 iterations to T = 644.1692698904537 K Iter 1: T = 965.2048529804812 K, F = -7928.107347126992, relative_change = 0.034795147019518864 Iter 2: T = 932.3854893407209 K, F = -6724.285136473238, relative_change = 0.03400248510812655 Iter 3: T = 901.512471364395 K, F = -5702.032772950656, relative_change = 0.03311186020082307 Iter 5: T = 845.4923500947017 K, F = -4097.044099564429, relative_change = 0.031018220449808464 Iter 10: T = 737.3390817864674 K, F = -1782.7214176213934, relative_change = 0.024014671640585836 Iter 15: T = 669.769111557596 K, F = -767.5430401845156, relative_change = 0.015709258602829214 Iter 20: T = 632.8329509848423 K, F = -326.80625144862637, relative_change = 0.008635879152653387 Iter 25: T = 614.8599726588467 K, F = -137.96911688351082, relative_change = 0.004165378956396985 Iter 30: T = 606.75918732874 K, F = -57.95646513719729, relative_change = 0.0018621805371233078 Iter 35: T = 603.2542719704953 K, F = -24.285500368278104, relative_change = 0.0008019966843949408 Iter 40: T = 601.7667063142092 K, F = -10.164987621935781, relative_change = 0.0003396440374338635 Iter 45: T = 601.1406791905064 K, F = -4.252621941513692, relative_change = 0.00014279850961650576 Iter 50: T = 600.8781756897642 K, F = -1.778761286985776, relative_change = 5.985318149978159e-5 Iter 55: T = 600.768272077012 K, F = -0.743945474232624, relative_change = 2.5054677822679723e-5 Iter 60: T = 600.7222877785762 K, F = -0.3111349793364937, relative_change = 1.0482257214036522e-5 Iter 65: T = 600.7030528681825 K, F = -0.13012178078817235, relative_change = 4.3845212101158535e-6 Iter 70: T = 600.6950079467522 K, F = -0.05441873051354135, relative_change = 1.8337844015469831e-6 Iter 75: T = 600.6916433504487 K, F = -0.022758606337912934, relative_change = 7.669324485517191e-7 Iter 80: T = 600.6902362161383 K, F = -0.009517928544501453, relative_change = 3.2074414160140947e-7 Iter 85: T = 600.6896477322748 K, F = -0.003980512710287598, relative_change = 1.3413970081201142e-7 Iter 90: T = 600.6894016206846 K, F = -0.0016646981837681318, relative_change = 5.6098942057396607e-8 Iter 95: T = 600.6892986937719 K, F = -0.000696196701574614, relative_change = 2.3461268032824403e-8 Iter 100: T = 600.6892556484889 K, F = -0.0002911577815926658, relative_change = 9.811786049597609e-9 Iter 105: T = 600.6892376464344 K, F = -0.00012176566347088524, relative_change = 4.103406757993681e-9 Iter 110: T = 600.6892301177596 K, F = -5.092385447619252e-5, relative_change = 1.7160938076729888e-9 Iter 115: T = 600.6892269691779 K, F = -2.1296965175110483e-5, relative_change = 7.17690978956967e-10 Iter 120: T = 600.6892256524033 K, F = -8.906645029782556e-6, relative_change = 3.0014693665507404e-10 Iter 125: T = 600.6892251017124 K, F = -3.7248650585075538e-6, relative_change = 1.255250251812929e-10 Iter 130: T = 600.689224871407 K, F = -1.55778309507415e-6, relative_change = 5.2496066171979415e-11 Iter 135: T = 600.6892247750905 K, F = -6.514833597592862e-7, relative_change = 2.195447729412358e-11 Iter 140: T = 600.6892247348097 K, F = -2.724578906931896e-7, relative_change = 9.181616824331885e-12 Iter 145: T = 600.6892247179638 K, F = -1.1394552823507098e-7, relative_change = 3.839874765889277e-12 Iter 150: T = 600.6892247109187 K, F = -4.765311745202894e-8, relative_change = 1.6058726135590618e-12 Iter 155: T = 600.6892247079722 K, F = -1.9929007555319345e-8, relative_change = 6.715918949366388e-13 Iter 160: T = 600.68922470674 K, F = -8.333495893353415e-9, relative_change = 2.8083226337202807e-13 Converged in 162 iterations to T = 600.6892247064793 K Iter 1: T = 980.2130958485704 K, F = -4508.464933108224, relative_change = 0.01978690415142952 Iter 2: T = 962.466794508907 K, F = -3808.236612281834, relative_change = 0.018104534019003773 Iter 3: T = 946.6396903232107 K, F = -3215.2647471653954, relative_change = 0.016444311924311072 Iter 5: T = 920.2182751532407 K, F = -2288.7922934401017, relative_change = 0.013278739473528025 Iter 10: T = 878.2956488583357 K, F = -971.5956812731152, relative_change = 0.006967888026871602 Iter 15: T = 858.4634939122274 K, F = -409.4053046828901, relative_change = 0.0032651600228806852 Iter 20: T = 849.6652131282635 K, F = -171.810665534022, relative_change = 0.0014383858617970833 Iter 25: T = 845.8875309007282 K, F = -71.96157150146162, relative_change = 0.0006153141838610955 Iter 30: T = 844.2896625372383 K, F = -30.11449564859707, relative_change = 0.00025982074353483506 Iter 35: T = 843.618202660241 K, F = -12.59764604843203, relative_change = 0.00010910167433855804 Iter 40: T = 843.3368234456107 K, F = -5.2690834810833564, relative_change = 4.570530987349051e-5 Iter 45: T = 843.2190478269326 K, F = -2.203698283046532, relative_change = 1.912812790985408e-5 Iter 50: T = 843.1697752327688 K, F = -0.9216312530605457, relative_change = 8.001996435958576e-6 Iter 55: T = 843.1491657960623 K, F = -0.38544040040132044, relative_change = 3.346947778527253e-6 Iter 60: T = 843.1405461500215 K, F = -0.1611963389516582, relative_change = 1.399806532245142e-6 Iter 65: T = 843.1369412177905 K, F = -0.0674143320446412, relative_change = 5.854285777319072e-7 Iter 70: T = 843.1354335757578 K, F = -0.028193495893377607, relative_change = 2.4483545598471544e-7 Iter 75: T = 843.1348030590002 K, F = -0.011790859678534549, relative_change = 1.0239350223314042e-7 Iter 80: T = 843.1345393688629 K, F = -0.00493107885196542, relative_change = 4.282225376833594e-8 Iter 85: T = 843.1344290904111 K, F = -0.0020622361567408376, relative_change = 1.7908789877605682e-8 Iter 90: T = 843.1343829706302 K, F = -0.0008624518043116591, relative_change = 7.489671886117437e-9 Iter 95: T = 843.1343636827845 K, F = -0.0003606876482036281, relative_change = 3.132270602436814e-9 Iter 100: T = 843.1343556163766 K, F = -0.00015084388246400238, relative_change = 1.3099530368596325e-9 Iter 105: T = 843.1343522429083 K, F = -6.308471280380701e-5, relative_change = 5.4783801199746e-10 Iter 110: T = 843.1343508320837 K, F = -2.6382778435252163e-5, relative_change = 2.291123849456386e-10 Iter 115: T = 843.1343502420599 K, F = -1.1033594960130344e-5, relative_change = 9.581755274436193e-11 Iter 120: T = 843.1343499953049 K, F = -4.614379514267242e-6, relative_change = 4.007203044017528e-11 Iter 125: T = 843.1343498921091 K, F = -1.929790091503847e-6, relative_change = 1.675861447803696e-11 Iter 130: T = 843.1343498489513 K, F = -8.07058603724542e-7, relative_change = 7.008629624457669e-12 Iter 135: T = 843.1343498309021 K, F = -3.37519954873855e-7, relative_change = 2.931078788948785e-12 Iter 140: T = 843.1343498233538 K, F = -1.411528849359911e-7, relative_change = 1.2257948636165106e-12 Iter 145: T = 843.134349820197 K, F = -5.9031412202870115e-8, relative_change = 5.126384905587338e-13 Converged in 150 iterations to T = 843.1343498188768 K Iter 1: T = 976.4551034897992 K, F = -5364.727066827857, relative_change = 0.023544896510200784 Iter 2: T = 955.0715012050392 K, F = -4536.208398820287, relative_change = 0.021899217084673024 Iter 3: T = 935.7574028105442 K, F = -3833.9070198571007, relative_change = 0.020222672721493525 Iter 5: T = 902.9161617161868 K, F = -2734.854268881529, relative_change = 0.016870222816794504 Iter 10: T = 848.8404746291677 K, F = -1166.174125954172, relative_change = 0.009488885367447146 Iter 15: T = 822.1485116392493 K, F = -492.8143391595057, relative_change = 0.004646250883465438 Iter 20: T = 810.0163482555428 K, F = -207.12455175772843, relative_change = 0.0020937365932827546 Iter 25: T = 804.7452835566625 K, F = -86.81277051090274, relative_change = 0.0009050689854661085 Iter 30: T = 802.503906227294 K, F = -36.340457117656456, relative_change = 0.00038391822559536397 Iter 35: T = 801.559876055602 K, F = -15.20408795895889, relative_change = 0.0001615249337164366 Iter 40: T = 801.1638917472609 K, F = -6.359599027031765, relative_change = 6.772206184514669e-5 Iter 45: T = 800.9980789583263 K, F = -2.6598474300889006, relative_change = 2.8352089657016266e-5 Iter 50: T = 800.9286977099669 K, F = -1.1124127252499598, relative_change = 1.1862422708053315e-5 Iter 55: T = 800.8996752779733 K, F = -0.46523001935199493, relative_change = 4.961923958205152e-6 Iter 60: T = 800.887536636571 K, F = -0.1945657528830559, relative_change = 2.075296304852138e-6 Iter 65: T = 800.8824599169445 K, F = -0.08136989684571216, relative_change = 8.679417644984435e-7 Iter 70: T = 800.8803367380907 K, F = -0.034029893292840896, relative_change = 3.6298852019744706e-7 Iter 75: T = 800.8794487933777 K, F = -0.014231713140745339, relative_change = 1.5180699271474573e-7 Iter 80: T = 800.879077443252 K, F = -0.0059518733352460496, relative_change = 6.348764746983066e-8 Iter 85: T = 800.8789221400123 K, F = -0.0024891446722662414, relative_change = 2.655131862852735e-8 Iter 90: T = 800.8788571903108 K, F = -0.0010409900564558594, relative_change = 1.1104083124821068e-8 Iter 95: T = 800.8788300275644 K, F = -0.0004353544772341955, relative_change = 4.6438609616273086e-9 Iter 100: T = 800.8788186677785 K, F = -0.00018207044094931124, relative_change = 1.942118237679043e-9 Iter 105: T = 800.8788139169803 K, F = -7.614403423572558e-5, relative_change = 8.1221707919918e-10 Iter 110: T = 800.8788119301397 K, F = -3.184434373970646e-5, relative_change = 3.3967887867243564e-10 Iter 115: T = 800.8788110992192 K, F = -1.331768600221217e-5, relative_change = 1.4205777663582417e-10 Iter 120: T = 800.8788107517183 K, F = -5.569615306733056e-6, relative_change = 5.941025856102073e-11 Iter 125: T = 800.8788106063893 K, F = -2.3292789506079714e-6, relative_change = 2.4846072343386768e-11 Iter 130: T = 800.8788105456109 K, F = -9.74131177500226e-7, relative_change = 1.0390912479824353e-11 Iter 135: T = 800.8788105201927 K, F = -4.0739242768150774e-7, relative_change = 4.345594473718015e-12 Iter 140: T = 800.8788105095625 K, F = -1.703765600824525e-7, relative_change = 1.817381442767029e-12 Iter 145: T = 800.8788105051169 K, F = -7.125379963834888e-8, relative_change = 7.600536900740893e-13 Iter 150: T = 800.8788105032577 K, F = -2.980002422603434e-8, relative_change = 3.1787242915471074e-13 Converged in 153 iterations to T = 800.8788105027133 K Iter 1: T = 980.9634508686249 K, F = -4337.495828016935, relative_change = 0.019036549131375112 Iter 2: T = 963.9328024980147 K, F = -3663.060481389356, relative_change = 0.017361144653789084 Iter 3: T = 948.7815238049454 K, F = -3092.055561824876, relative_change = 0.015718189747049728 Iter 5: T = 923.5767962966472 K, F = -2200.2113654365867, relative_change = 0.01261410779860069 Iter 10: T = 883.8533505701606 K, F = -933.2392329787111, relative_change = 0.006537395831142735 Iter 15: T = 865.1991017770273 K, F = -393.05282017586916, relative_change = 0.0030410057831722088 Iter 20: T = 856.9561884046193 K, F = -164.90840679111844, relative_change = 0.0013347717922093647 Iter 25: T = 853.4236027576961 K, F = -69.0630647294378, relative_change = 0.0005700521881019175 Iter 30: T = 851.9306434956677 K, F = -28.90016015148484, relative_change = 0.000240537541484273 Iter 35: T = 851.3034915975659 K, F = -12.089416346924274, relative_change = 0.00010097399801088752 Iter 40: T = 851.0407193375435 K, F = -5.056468909337586, relative_change = 4.229506734368482e-5 Iter 45: T = 850.9307388786615 K, F = -2.1147686127562837, relative_change = 1.7699966343179238e-5 Iter 50: T = 850.8847286814652 K, F = -0.8844377515933075, relative_change = 7.40437934128298e-6 Iter 55: T = 850.8654840326931 K, F = -0.3698852749876337, relative_change = 3.0969571659334774e-6 Iter 60: T = 850.8574352298008 K, F = -0.15469093695251446, relative_change = 1.295246974568113e-6 Iter 65: T = 850.8540690436805 K, F = -0.0646936842568997, relative_change = 5.416986857061261e-7 Iter 70: T = 850.852661250342 K, F = -0.027055686577752702, relative_change = 2.265467717203811e-7 Iter 75: T = 850.8520724918887 K, F = -0.011315013900184967, relative_change = 9.474489989903146e-8 Iter 80: T = 850.851826265641 K, F = -0.0047320744068815035, relative_change = 3.962350711206997e-8 Iter 85: T = 850.8517232908082 K, F = -0.001979010109555146, relative_change = 1.657103409508233e-8 Iter 90: T = 850.8516802254902 K, F = -0.000827645676703348, relative_change = 6.930206150162661e-9 Iter 95: T = 850.8516622150576 K, F = -0.00034613130861038677, relative_change = 2.898295288643195e-9 Iter 100: T = 850.8516546828791 K, F = -0.00014475624726206782, relative_change = 1.2121017564385503e-9 Iter 105: T = 850.8516515328322 K, F = -6.053879133793849e-5, relative_change = 5.069154388482061e-10 Iter 110: T = 850.8516502154448 K, F = -2.5318046092737134e-5, relative_change = 2.1199809670546376e-10 Iter 115: T = 850.8516496644977 K, F = -1.0588306795566993e-5, relative_change = 8.866011566185651e-11 Iter 120: T = 850.8516494340851 K, F = -4.428159354308292e-6, relative_change = 3.707874437418879e-11 Iter 125: T = 850.8516493377238 K, F = -1.8519086208979019e-6, relative_change = 1.5506769495286854e-11 Iter 130: T = 850.8516492974243 K, F = -7.744916274976532e-7, relative_change = 6.485127295601146e-12 Iter 135: T = 850.8516492805705 K, F = -3.239003938393381e-7, relative_change = 2.7121471824405545e-12 Iter 140: T = 850.8516492735222 K, F = -1.354609684423025e-7, relative_change = 1.134268716228187e-12 Iter 145: T = 850.8516492705745 K, F = -5.66532183388091e-8, relative_change = 4.74379992815323e-13 Converged in 150 iterations to T = 850.8516492693417 K Iter 1: T = 967.3170081767456 K, F = -7446.850776479848, relative_change = 0.03268299182325439 Iter 2: T = 936.7088184851654 K, F = -6312.496895147842, relative_change = 0.031642356572714844 Iter 3: T = 908.1440885924825 K, F = -5349.425647928173, relative_change = 0.030494780586006895 Iter 5: T = 857.0067233431556 K, F = -3837.9570901900875, relative_change = 0.027884297218044085 Iter 10: T = 761.9088247316535 K, F = -1661.847038177043, relative_change = 0.01996382385966878 Iter 15: T = 706.2366627554396 K, F = -711.508434494357, relative_change = 0.011960526926212155 Iter 20: T = 677.6084584499131 K, F = -301.55491388200574, relative_change = 0.006124071041700036 Iter 25: T = 664.2595301864723 K, F = -126.94732432185484, relative_change = 0.002828815202344901 Iter 30: T = 658.3831418685314 K, F = -53.249605396222044, relative_change = 0.0012373733828688678 Iter 35: T = 655.869207644015 K, F = -22.298457916058734, relative_change = 0.0005276399144381238 Iter 40: T = 654.8075830093536 K, F = -9.330608441981875, relative_change = 0.0002224931408914748 Iter 45: T = 654.3617715612145 K, F = -3.903074860052988, relative_change = 9.337287891648783e-5 Iter 50: T = 654.1750059230114 K, F = -1.6324709130179753, relative_change = 3.91065387526304e-5 Iter 55: T = 654.0968418160261 K, F = -0.6827465687866464, relative_change = 1.636479219943462e-5 Iter 60: T = 654.0641427606315 K, F = -0.2855376224827292, relative_change = 6.845696975703149e-6 Iter 65: T = 654.050465894032 K, F = -0.1194160928410789, relative_change = 2.8632576237066833e-6 Iter 70: T = 654.0447457622404 K, F = -0.04994138466541087, relative_change = 1.197501954626488e-6 Iter 75: T = 654.0423534818401 K, F = -0.020886109465478087, relative_change = 5.00818962704313e-7 Iter 80: T = 654.0413529923416 K, F = -0.008734824951888764, relative_change = 2.0945010553198425e-7 Iter 85: T = 654.0409345740645 K, F = -0.0036530089033807722, relative_change = 8.759482130216064e-8 Iter 90: T = 654.0407595862608 K, F = -0.0015277320889307555, relative_change = 3.663325037795743e-8 Iter 95: T = 654.0406864042219 K, F = -0.0006389158293352293, relative_change = 1.5320471556981975e-8 Iter 100: T = 654.0406557986106 K, F = -0.00026720223411036415, relative_change = 6.4072056939658904e-9 Iter 105: T = 654.0406429989769 K, F = -0.0001117471664828229, relative_change = 2.6795702156774215e-9 Iter 110: T = 654.040637646017 K, F = -4.673399980287263e-5, relative_change = 1.1206283143667193e-9 Iter 115: T = 654.0406354073452 K, F = -1.9544717917208132e-5, relative_change = 4.686601776788982e-10 Iter 120: T = 654.0406344711059 K, F = -8.173834579849881e-6, relative_change = 1.9599928783035632e-10 Iter 125: T = 654.0406340795594 K, F = -3.418394590670726e-6, relative_change = 8.196922762003987e-11 Iter 130: T = 654.04063391581 K, F = -1.4296138145519777e-6, relative_change = 3.4280518882536455e-11 Iter 135: T = 654.040633847328 K, F = -5.978805590056702e-7, relative_change = 1.433649814662407e-11 Iter 140: T = 654.0406338186881 K, F = -2.5004147208296246e-7, relative_change = 5.995711096218966e-12 Iter 145: T = 654.0406338067105 K, F = -1.0457081972559124e-7, relative_change = 2.507489733607386e-12 Iter 150: T = 654.0406338017013 K, F = -4.373292450399191e-8, relative_change = 1.0486659615574248e-12 Iter 155: T = 654.0406337996063 K, F = -1.8288681458145106e-8, relative_change = 4.3854185249982647e-13 Converged in 159 iterations to T = 654.0406337988503 K Iter 1: T = 973.5294776287683 K, F = -6031.333702252404, relative_change = 0.026470522371231698 Iter 2: T = 949.2519706625407 K, F = -5103.959983371479, relative_change = 0.02493761876154028 Iter 3: T = 927.0999382716295 K, F = -4317.3647937248825, relative_change = 0.023336303821892432 Iter 5: T = 888.8495387734589 K, F = -3085.0495349511802, relative_change = 0.020006553147231765 Iter 10: T = 823.7344882416893 K, F = -1320.919851192409, relative_change = 0.011997014602973076 Iter 15: T = 790.2300980739188 K, F = -559.8634362575114, relative_change = 0.006146930614038163 Iter 20: T = 774.6012658473396 K, F = -235.6950447509789, relative_change = 0.002840483472354007 Iter 25: T = 767.7197867375091 K, F = -98.86641598969494, relative_change = 0.001242713855770777 Iter 30: T = 764.7755833270922 K, F = -41.40089182139908, relative_change = 0.0005299623907130859 Iter 35: T = 763.5322041328383 K, F = -17.323909112823078, relative_change = 0.0002234806841869342 Iter 40: T = 763.0100583016564 K, F = -7.246749752437878, relative_change = 9.378877687429297e-5 Iter 45: T = 762.7913118858161 K, F = -3.030972702261012, relative_change = 3.928098258455744e-5 Iter 50: T = 762.6997630648872 K, F = -1.2676407127467741, relative_change = 1.643783623987636e-5 Iter 55: T = 762.6614646160419 K, F = -0.5301515373203958, relative_change = 6.876260548666796e-6 Iter 60: T = 762.6454457106422 K, F = -0.22171728783759725, relative_change = 2.87604241945053e-6 Iter 65: T = 762.6387460567943 K, F = -0.09272509461798184, relative_change = 1.2028491890301205e-6 Iter 70: T = 762.6359441192209 K, F = -0.03877879037777143, relative_change = 5.030553239370205e-7 Iter 75: T = 762.6347723045649 K, F = -0.016217761722710056, relative_change = 2.1038539321784833e-7 Iter 80: T = 762.6342822357749 K, F = -0.0067824631148317716, relative_change = 8.798597239055909e-8 Iter 85: T = 762.6340772828208 K, F = -0.002836507332996896, relative_change = 3.6796834866714593e-8 Iter 90: T = 762.6339915689894 K, F = -0.0011862612853763554, relative_change = 1.5388884589636363e-8 Iter 95: T = 762.6339557224313 K, F = -0.0004961086447846652, relative_change = 6.435816865302268e-9 Iter 100: T = 762.6339407309708 K, F = -0.00020747856225034056, relative_change = 2.6915357535718654e-9 Iter 105: T = 762.6339344613627 K, F = -8.67700117845871e-5, relative_change = 1.1256324299936272e-9 Iter 110: T = 762.6339318393377 K, F = -3.628825549018e-5, relative_change = 4.707529368291384e-10 Iter 115: T = 762.6339307427755 K, F = -1.5176182255993709e-5, relative_change = 1.9687450717231952e-10 Iter 120: T = 762.6339302841801 K, F = -6.346862227113448e-6, relative_change = 8.233529062538587e-11 Iter 125: T = 762.6339300923901 K, F = -2.654333199458847e-6, relative_change = 3.443359692323551e-11 Iter 130: T = 762.633930012181 K, F = -1.1100733431357312e-6, relative_change = 1.4400534974168979e-11 Iter 135: T = 762.6339299786368 K, F = -4.6424732480510045e-7, relative_change = 6.022493811116457e-12 Iter 140: T = 762.6339299646082 K, F = -1.9415510243980805e-7, relative_change = 2.5186960494252233e-12 Iter 145: T = 762.6339299587412 K, F = -8.119728900357615e-8, relative_change = 1.0533397704973473e-12 Iter 150: T = 762.6339299562876 K, F = -3.395815306728167e-8, relative_change = 4.4052546086085235e-13 Converged in 154 iterations to T = 762.633929955402 K Iter 1: T = 969.9850166153052 K, F = -6838.942515822816, relative_change = 0.030014983384694757 Iter 2: T = 942.1269303120542 K, F = -5792.991596445266, relative_change = 0.02872012023490812 Iter 3: T = 916.3830908507375 K, F = -4905.278456065026, relative_change = 0.027325234671712207 Iter 5: T = 871.0330863484285 K, F = -3512.9979039917935, relative_change = 0.024275865112457676 Iter 10: T = 790.1190709845041 K, F = -1513.0726849237808, relative_change = 0.01597421735121479 Iter 15: T = 745.6979796164371 K, F = -644.4558753804956, relative_change = 0.008827274704199004 Iter 20: T = 724.0131347655771 K, F = -272.1326030458403, relative_change = 0.004272051116711838 Iter 25: T = 714.221034361195 K, F = -114.32761940232547, relative_change = 0.0019132346323966173 Iter 30: T = 709.9804452837992 K, F = -47.90930728334469, relative_change = 0.0008246575175277209 Iter 35: T = 708.17989630631 K, F = -20.053492635289462, relative_change = 0.0003493656671010898 Iter 40: T = 707.4220175131599 K, F = -8.389659869259646, relative_change = 0.00014690821113075089 Iter 45: T = 707.1042022908489 K, F = -3.5091918132934854, relative_change = 6.157969517319913e-5 Iter 50: T = 706.9711367998034 K, F = -1.4676798285345998, relative_change = 2.5778095284662e-5 Iter 55: T = 706.9154606935693 K, F = -0.6138176691161309, relative_change = 1.0785038944791705e-5 Iter 60: T = 706.8921716371615 K, F = -0.25670875554002587, relative_change = 4.511190142833183e-6 Iter 65: T = 706.8824310631351 K, F = -0.1073591703484385, relative_change = 1.886766209969866e-6 Iter 70: T = 706.8783572966212 K, F = -0.04489897515823471, relative_change = 7.89091358950416e-7 Iter 75: T = 706.8766535739542 K, F = -0.018777303001852985, relative_change = 3.3001148736981376e-7 Iter 80: T = 706.8759410524401 K, F = -0.007852895052462672, relative_change = 1.3801545479611196e-7 Iter 85: T = 706.8756430666732 K, F = -0.003284174964236497, relative_change = 5.77198355547152e-8 Iter 90: T = 706.8755184453338 K, F = -0.001373481272832322, relative_change = 2.413914624291919e-8 Iter 95: T = 706.8754663271781 K, F = -0.0005744062849089016, relative_change = 1.0095283027099945e-8 Iter 100: T = 706.875444530739 K, F = -0.00024022356949482404, relative_change = 4.221968567500542e-9 Iter 105: T = 706.8754354152071 K, F = -0.00010046436584887353, relative_change = 1.7656777879950448e-9 Iter 110: T = 706.8754316029828 K, F = -4.201539875714477e-5, relative_change = 7.384275769550895e-10 Iter 115: T = 706.8754300086649 K, F = -1.75713408844258e-5, relative_change = 3.0881922333927846e-10 Iter 120: T = 706.8754293419022 K, F = -7.3485454369359715e-6, relative_change = 1.2915190249999818e-10 Iter 125: T = 706.8754290630541 K, F = -3.0732500257979467e-6, relative_change = 5.4012878037118745e-11 Iter 130: T = 706.8754289464364 K, F = -1.2852704850407903e-6, relative_change = 2.2588841592776144e-11 Iter 135: T = 706.8754288976655 K, F = -5.375149739750285e-7, relative_change = 9.44691467373912e-12 Iter 140: T = 706.875428877269 K, F = -2.2479555705778864e-7, relative_change = 3.950819139321287e-12 Iter 145: T = 706.8754288687389 K, F = -9.401244982498724e-8, relative_change = 1.6522843733468377e-12 Iter 150: T = 706.8754288651714 K, F = -3.931763048470316e-8, relative_change = 6.910138664548947e-13 Iter 155: T = 706.8754288636795 K, F = -1.6442889716472564e-8, relative_change = 2.8898650958139244e-13 Converged in 157 iterations to T = 706.8754288633638 K Iter 1: T = 973.4887706815271 K, F = -6040.608818903628, relative_change = 0.026511229318472957 Iter 2: T = 949.1706084437401 K, F = -5111.865907701363, relative_change = 0.024980423986567583 Iter 3: T = 926.9782973882567 K, F = -4324.103076049284, relative_change = 0.023380739835454738 Iter 5: T = 888.649883823188 K, F = -3089.9410414522335, relative_change = 0.020052524125576256 Iter 10: T = 823.3697013623988 K, F = -1323.0958058621127, relative_change = 0.012036176192582328 Iter 15: T = 789.7587119278994 K, F = -560.812051230973, relative_change = 0.006171448604067369 Iter 20: T = 774.0735571305069 K, F = -236.10085311213848, relative_change = 0.002852996816378493 Iter 25: T = 767.165741713685 K, F = -99.03796849333237, relative_change = 0.0012484411167751003 Iter 30: T = 764.2099630489711 K, F = -41.47298058917865, relative_change = 0.0005324531015197632 Iter 35: T = 762.9616384196202 K, F = -17.354119305369405, relative_change = 0.00022453976973626637 Iter 40: T = 762.4374055657779 K, F = -7.259394957804225, relative_change = 9.423480582743892e-5 Iter 45: T = 762.2177830092755 K, F = -3.0362630017110837, relative_change = 3.946806479010948e-5 Iter 50: T = 762.1258671918894 K, F = -1.2698535163038525, relative_change = 1.651617233284631e-5 Iter 55: T = 762.0874151584004 K, F = -0.5310770172154542, relative_change = 6.90903846558345e-6 Iter 60: T = 762.0713320041534 K, F = -0.2221043449079212, relative_change = 2.889753480521706e-6 Iter 65: T = 762.0646054775359 K, F = -0.09288696831223664, relative_change = 1.20858383366292e-6 Iter 70: T = 762.0617923009013 K, F = -0.03884648820796954, relative_change = 5.054537109479167e-7 Iter 75: T = 762.0606157858396 K, F = -0.01624607381883625, relative_change = 2.1138844306712056e-7 Iter 80: T = 762.060123751267 K, F = -0.006794303580501815, relative_change = 8.840546256389291e-8 Iter 85: T = 762.0599179761962 K, F = -0.002841459158233084, relative_change = 3.6972271141270106e-8 Iter 90: T = 762.0598319185453 K, F = -0.001188332199080322, relative_change = 1.5462254231527365e-8 Iter 95: T = 762.0597959281977 K, F = -0.0004969747256774459, relative_change = 6.4665009404989644e-9 Iter 100: T = 762.0597808766028 K, F = -0.0002078407661586512, relative_change = 2.7043681837064156e-9 Iter 105: T = 762.0597745818458 K, F = -8.692149225442147e-5, relative_change = 1.1309991380543564e-9 Iter 110: T = 762.059771949303 K, F = -3.635160639703372e-5, relative_change = 4.729973578665397e-10 Iter 115: T = 762.0597708483423 K, F = -1.520267664167907e-5, relative_change = 1.9781315452576842e-10 Iter 120: T = 762.0597703879073 K, F = -6.3579412246106415e-6, relative_change = 8.272782768395098e-11 Iter 125: T = 762.0597701953479 K, F = -2.658967660384981e-6, relative_change = 3.459777480148679e-11 Iter 130: T = 762.0597701148173 K, F = -1.1120123422081463e-6, relative_change = 1.4469206671727001e-11 Iter 135: T = 762.0597700811384 K, F = -4.650564349173436e-7, relative_change = 6.05118973669807e-12 Iter 140: T = 762.0597700670534 K, F = -1.9449212029787333e-7, relative_change = 2.5306793626624722e-12 Iter 145: T = 762.059770061163 K, F = -8.133891016282035e-8, relative_change = 1.0583601074574363e-12 Iter 150: T = 762.0597700586995 K, F = -3.401711945461017e-8, relative_change = 4.4262164479287914e-13 Converged in 154 iterations to T = 762.0597700578104 K Iter 1: T = 964.2841892976595 K, F = -8137.88144303515, relative_change = 0.03571581070234048 Iter 2: T = 930.4914786565578 K, F = -6903.921149642925, relative_change = 0.03504434793825129 Iter 3: T = 898.5908002933363 K, F = -5856.0074479413115, relative_change = 0.03428368673432624 Iter 5: T = 840.352405606179 K, F = -4210.504738523941, relative_change = 0.032469037690537925 Iter 10: T = 725.8906097972551 K, F = -1836.4097576058923, relative_change = 0.026110170435216403 Iter 15: T = 651.9240950347012 K, F = -793.0626734806194, relative_change = 0.017920810520558862 Iter 20: T = 610.0222446530814 K, F = -338.62956061380936, relative_change = 0.010294247516534601 Iter 25: T = 589.0604354118187 K, F = -143.23615789222927, relative_change = 0.005113536731158825 Iter 30: T = 579.4551657312613 K, F = -60.231479428448885, relative_change = 0.002322268452038499 Iter 35: T = 575.2648447014163 K, F = -25.251148249128335, relative_change = 0.0010075408042216037 Iter 40: T = 573.4796950350778 K, F = -10.571450351709844, relative_change = 0.0004280763619340177 Iter 45: T = 572.7272103135145 K, F = -4.423077533696439, relative_change = 0.00018022799620185441 Iter 50: T = 572.4114631443996 K, F = -1.8501304800601615, relative_change = 7.558569359668715e-5 Iter 55: T = 572.2792293260491 K, F = -0.7738074319746103, relative_change = 3.164810615209587e-5 Iter 60: T = 572.2238951996256 K, F = -0.32362614849669313, relative_change = 1.3242145174571491e-5 Iter 65: T = 572.2007481406255 K, F = -0.13534618177772978, relative_change = 5.539166052031316e-6 Iter 70: T = 572.1910667726063 K, F = -0.056603715231294816, relative_change = 2.3167453310672332e-6 Iter 75: T = 572.1870177354331 K, F = -0.023672406654463463, relative_change = 9.689255386055854e-7 Iter 80: T = 572.1853243493935 K, F = -0.009900093131826826, relative_change = 4.052223488336141e-7 Iter 85: T = 572.1846161498221 K, F = -0.004140338921507336, relative_change = 1.694698955651073e-7 Iter 90: T = 572.1843199713755 K, F = -0.0017315394876051826, relative_change = 7.08745213494481e-8 Iter 95: T = 572.1841961058498 K, F = -0.000724150545290736, relative_change = 2.9640603951433553e-8 Iter 100: T = 572.1841443037792 K, F = -0.000302848415318413, relative_change = 1.239606027126656e-8 Iter 105: T = 572.1841226395297 K, F = -0.00012665482485896273, relative_change = 5.184181412862494e-9 Iter 110: T = 572.1841135792811 K, F = -5.296856038533582e-5, relative_change = 2.168086744603131e-9 Iter 115: T = 572.1841097901768 K, F = -2.2152085271787136e-5, relative_change = 9.06719827910741e-10 Iter 120: T = 572.184108205528 K, F = -9.264266352115857e-6, relative_change = 3.7920105489864834e-10 Iter 125: T = 572.184107542809 K, F = -3.874427094707755e-6, relative_change = 1.5858642160120184e-10 Iter 130: T = 572.184107265652 K, F = -1.6203313388252205e-6, relative_change = 6.632272156473268e-11 Iter 135: T = 572.1841071497416 K, F = -6.776425725552038e-7, relative_change = 2.773698108926145e-11 Iter 140: T = 572.1841071012665 K, F = -2.8339800395293935e-7, relative_change = 1.1599928041574259e-11 Iter 145: T = 572.1841070809936 K, F = -1.1852043202420504e-7, relative_change = 4.8512285336959604e-12 Iter 150: T = 572.1841070725153 K, F = -4.956684590551319e-8, relative_change = 2.028849313930877e-12 Iter 155: T = 572.1841070689695 K, F = -2.0729804317554112e-8, relative_change = 8.485036419102436e-13 Iter 160: T = 572.1841070674867 K, F = -8.669924500548376e-9, relative_change = 3.5487370749869643e-13 Converged in 163 iterations to T = 572.1841070670525 K Iter 1: T = 963.5537847690881 K, F = -8304.304809664225, relative_change = 0.036446215230911905 Iter 2: T = 928.9847286697961 K, F = -7046.495919324078, relative_change = 0.03587662323133971 Iter 3: T = 896.2592553293447 K, F = -5978.2831215976075, relative_change = 0.035227138111635865 Iter 5: T = 836.2200873683486 K, F = -4300.7526506276035, relative_change = 0.03365922286382412 Iter 10: T = 716.4455174236957 K, F = -1879.4862483431511, relative_change = 0.02794778404335425 Iter 15: T = 636.7087830293929 K, F = -813.9000058793886, relative_change = 0.02003952376137985 Iter 20: T = 589.9734010581581 K, F = -348.5005745394448, relative_change = 0.012024724651962544 Iter 25: T = 565.9156266827208 K, F = -147.71444335356884, relative_change = 0.006164171375911001 Iter 30: T = 554.6901670707044 K, F = -62.18696515933989, relative_change = 0.0028492590176199626 Iter 35: T = 549.7467757186882 K, F = -26.08564974128827, relative_change = 0.0012467257713790624 Iter 40: T = 547.6316232330565 K, F = -10.923563641398225, relative_change = 0.0005317062831271916 Iter 45: T = 546.7383363737512 K, F = -4.570895695389297, relative_change = 0.00022422206284773152 Iter 50: T = 546.3632036741541 K, F = -1.9120489403812813, relative_change = 9.410097876673733e-5 Iter 55: T = 546.2060456778369 K, F = -0.7997198975300609, relative_change = 3.941192780972882e-5 Iter 60: T = 546.1402724261953 K, F = -0.3344661052287618, relative_change = 1.6492665539136627e-5 Iter 65: T = 546.1127568780313 K, F = -0.13988011578365772, relative_change = 6.8992024528936045e-6 Iter 70: T = 546.1012480791682 K, F = -0.05849995412275272, relative_change = 2.8856390341672546e-6 Iter 75: T = 546.0964347052238 K, F = -0.024465452768273055, relative_change = 1.206862964125657e-6 Iter 80: T = 546.0944216498351 K, F = -0.01023175734873305, relative_change = 5.047339949478872e-7 Iter 85: T = 546.0935797581736 K, F = -0.004279045357802352, relative_change = 2.1108744435595285e-7 Iter 90: T = 546.0932276676524 K, F = -0.0017895482633455972, relative_change = 8.827958046617934e-8 Iter 95: T = 546.0930804189513 K, F = -0.0007484105241069849, relative_change = 3.6919625613021407e-8 Iter 100: T = 546.0930188377439 K, F = -0.0003129942308383038, relative_change = 1.5440237213675027e-8 Iter 105: T = 546.0929930837402 K, F = -0.0001308979271110733, relative_change = 6.457293138423167e-9 Iter 110: T = 546.092982313107 K, F = -5.47430766383028e-5, relative_change = 2.7005173737029035e-9 Iter 115: T = 546.0929778086993 K, F = -2.2894208014129225e-5, relative_change = 1.1293886409729949e-9 Iter 120: T = 546.0929759249021 K, F = -9.57463057313368e-6, relative_change = 4.723237939362746e-10 Iter 125: T = 546.0929751370758 K, F = -4.004224881892782e-6, relative_change = 1.9753145424602798e-10 Iter 130: T = 546.0929748075973 K, F = -1.674614655333695e-6, relative_change = 8.261001289307526e-11 Iter 135: T = 546.0929746698056 K, F = -7.003440933295302e-7, relative_change = 3.454850610841759e-11 Iter 140: T = 546.0929746121793 K, F = -2.928923246159343e-7, relative_change = 1.4448600862868472e-11 Iter 145: T = 546.0929745880794 K, F = -1.224909020047793e-7, relative_change = 6.0425692448321505e-12 Iter 150: T = 546.0929745780005 K, F = -5.1227240643880734e-8, relative_change = 2.5270786954238485e-12 Iter 155: T = 546.0929745737853 K, F = -2.1423635615525072e-8, relative_change = 1.056844219286943e-12 Iter 160: T = 546.0929745720226 K, F = -8.96001273176239e-9, relative_change = 4.420042344999496e-13 Converged in 164 iterations to T = 546.0929745713863 K Iter 1: T = 969.2921787647286 K, F = -6996.806279135637, relative_change = 0.030707821235271375 Iter 2: T = 940.72450904484 K, F = -5927.828329201617, relative_change = 0.029472712506868025 Iter 3: T = 914.2580591513145 K, F = -5020.482388810368, relative_change = 0.028134113270205124 Iter 5: T = 867.4438030461779 K, F = -3597.143692279357, relative_change = 0.02517794948414873 Iter 10: T = 783.0612562064192 K, F = -1551.330490988728, relative_change = 0.01691193280684886 Iter 15: T = 736.0289406877681 K, F = -661.5405077485769, relative_change = 0.00952015789517705 Iter 20: T = 712.8016290229505 K, F = -279.570902276236, relative_change = 0.0046641284810800265 Iter 25: T = 702.2409829988896 K, F = -117.50291099587047, relative_change = 0.002102410532368056 Iter 30: T = 697.6519886245541 K, F = -49.249817489627766, relative_change = 0.0009089437692637086 Iter 35: T = 695.7005066097576 K, F = -20.61641476781801, relative_change = 0.0003855852309804637 Iter 40: T = 694.8785504918836 K, F = -8.625492029052534, relative_change = 0.00016223049124595773 Iter 45: T = 694.5337671054896 K, F = -3.6078922155545405, relative_change = 6.801862243999984e-5 Iter 50: T = 694.3893931901721 K, F = -1.5089702551985735, relative_change = 2.8476376543311505e-5 Iter 55: T = 694.328982498536 K, F = -0.6310880502221763, relative_change = 1.1914446847087759e-5 Iter 60: T = 694.3037124594258 K, F = -0.2639318257198974, relative_change = 4.9836891065366245e-6 Iter 65: T = 694.2931432533273 K, F = -0.11038001288539645, relative_change = 2.0844001552144507e-6 Iter 70: T = 694.2887229147407 K, F = -0.04616233953346516, relative_change = 8.717493492657885e-7 Iter 75: T = 694.2868742465535 K, F = -0.019305659163141198, relative_change = 3.645809406255038e-7 Iter 80: T = 694.2861011062276 K, F = -0.00807386027477297, relative_change = 1.524729694537231e-7 Iter 85: T = 694.2857777687987 K, F = -0.003376585322894754, relative_change = 6.376616820545368e-8 Iter 90: T = 694.285642545065 K, F = -0.0014121283993917544, relative_change = 2.6667799546731137e-8 Iter 95: T = 694.2855859928568 K, F = -0.0005905689775197454, relative_change = 1.115279688836084e-8 Iter 100: T = 694.285562342043 K, F = -0.000246983001961687, relative_change = 4.664233658321667e-9 Iter 105: T = 694.2855524509895 K, F = -0.00010329124165830983, relative_change = 1.950638362980483e-9 Iter 110: T = 694.2855483144326 K, F = -4.3197630987812374e-5, relative_change = 8.157802852608298e-10 Iter 115: T = 694.285546584475 K, F = -1.8065765270414147e-5, relative_change = 3.4116906375604567e-10 Iter 120: T = 694.2855458609862 K, F = -7.555319684771078e-6, relative_change = 1.4268099454612817e-10 Iter 125: T = 694.2855455584145 K, F = -3.1597244419812043e-6, relative_change = 5.967088695369774e-11 Iter 130: T = 694.2855454318753 K, F = -1.3214348072443372e-6, relative_change = 2.495508343086403e-11 Iter 135: T = 694.2855453789551 K, F = -5.52639431772306e-7, relative_change = 1.043650663389709e-11 Iter 140: T = 694.2855453568234 K, F = -2.3112117408796706e-7, relative_change = 4.364686137638925e-12 Iter 145: T = 694.2855453475676 K, F = -9.66571196414634e-8, relative_change = 1.8253541325011138e-12 Iter 150: T = 694.2855453436966 K, F = -4.042317613972557e-8, relative_change = 7.633851690504399e-13 Iter 155: T = 694.2855453420777 K, F = -1.6904940336459617e-8, relative_change = 3.1924707479867765e-13 Converged in 158 iterations to T = 694.2855453416038 K Iter 1: T = 966.4813960238389 K, F = -7637.245800392017, relative_change = 0.03351860397616116 Iter 2: T = 935.0020414874925 K, F = -6475.35435249984, relative_change = 0.03257109207259887 Iter 3: T = 905.5322102228574 K, F = -5488.818719336236, relative_change = 0.03151846729420148 Iter 5: T = 852.4964571735848 K, F = -3940.2589565683393, relative_change = 0.02909301735504796 Iter 10: T = 752.4508000629404 K, F = -1709.3089035764249, relative_change = 0.02145483396350762 Iter 15: T = 692.4635490107178 K, F = -733.3085212675985, relative_change = 0.0132668213612644 Iter 20: T = 660.9488783303536 K, F = -311.28564325240484, relative_change = 0.006959975063125206 Iter 25: T = 646.0425195302516 K, F = -131.16647242262147, relative_change = 0.0032609861261720494 Iter 30: T = 639.4300248735435 K, F = -55.044941405121165, relative_change = 0.0014364447721002323 Iter 35: T = 636.590950799107 K, F = -23.055098798797392, relative_change = 0.0006144639854140803 Iter 40: T = 635.3901108661173 K, F = -9.648094157895692, relative_change = 0.0002594581150043634 Iter 45: T = 634.8854947530082 K, F = -4.036037261910664, relative_change = 0.0001089487562822812 Iter 50: T = 634.6740330327983 K, F = -1.6881101119059254, relative_change = 4.564113490972814e-5 Iter 55: T = 634.5855225731734 K, F = -0.7060212854019574, relative_change = 1.910125005697206e-5 Iter 60: T = 634.5484933670587 K, F = -0.2952723917332767, relative_change = 7.9907489445355e-6 Iter 65: T = 634.5330050225858 K, F = -0.1234874654153077, relative_change = 3.3422427440195504e-6 Iter 70: T = 634.5265272116342 K, F = -0.0516441120537553, relative_change = 1.3978386208191892e-6 Iter 75: T = 634.5238180437085 K, F = -0.02159821577376353, relative_change = 5.84605536974271e-7 Iter 80: T = 634.52268502508 K, F = -0.009032637256944753, relative_change = 2.4449124413496025e-7 Iter 85: T = 634.5222111810164 K, F = -0.003777557732225878, relative_change = 1.0224954763013627e-7 Iter 90: T = 634.5220130133954 K, F = -0.0015798199247381017, relative_change = 4.2762050054902226e-8 Iter 95: T = 634.5219301372641 K, F = -0.00066069958836662, relative_change = 1.788361192022453e-8 Iter 100: T = 634.5218954774649 K, F = -0.0002763124636094294, relative_change = 7.479142169920766e-9 Iter 105: T = 634.521880982321 K, F = -0.00011555717411981803, relative_change = 3.127866968813268e-9 Iter 110: T = 634.5218749202783 K, F = -4.832739057669677e-5, relative_change = 1.3081113890227177e-9 Iter 115: T = 634.5218723850595 K, F = -2.0211091639521506e-5, relative_change = 5.470678086623529e-10 Iter 120: T = 634.5218713248007 K, F = -8.45251930825519e-6, relative_change = 2.2879027688875392e-10 Iter 125: T = 634.5218708813878 K, F = -3.534944105931803e-6, relative_change = 9.568281526234647e-11 Iter 130: T = 634.5218706959473 K, F = -1.478355657780206e-6, relative_change = 4.001569112645458e-11 Iter 135: T = 634.5218706183938 K, F = -6.182647950270237e-7, relative_change = 1.673500754460327e-11 Iter 140: T = 634.5218705859601 K, F = -2.585655413667176e-7, relative_change = 6.998775154924287e-12 Iter 145: T = 634.521870572396 K, F = -1.0813590406444362e-7, relative_change = 2.926990482947418e-12 Iter 150: T = 634.5218705667232 K, F = -4.522393109995804e-8, relative_change = 1.2241079138506596e-12 Iter 155: T = 634.5218705643508 K, F = -1.8912730437303793e-8, relative_change = 5.119241613487558e-13 Converged in 160 iterations to T = 634.5218705633586 K Iter 1: T = 966.4401823876691 K, F = -7646.636366597585, relative_change = 0.03355981761233091 Iter 2: T = 934.9177383407854 K, F = -6483.388571550943, relative_change = 0.032617066861815425 Iter 3: T = 905.4029936256533 K, F = -5495.697362797289, relative_change = 0.031569349371328055 Iter 5: T = 852.2724990662117 K, F = -3945.31129362998, relative_change = 0.02915366448666574 Iter 10: T = 751.9757810578818 K, F = -1711.6615200852996, relative_change = 0.021531909047283037 Iter 15: T = 691.7635611328321 K, F = -734.3953915293789, relative_change = 0.013336564631886039 Iter 20: T = 660.0946432748838 K, F = -311.7735458611845, relative_change = 0.0070057405846955245 Iter 25: T = 645.103647752957 K, F = -131.37883014486047, relative_change = 0.0032850017496767305 Iter 30: T = 638.4507820138953 K, F = -55.135485731087456, relative_change = 0.0014475889119193474 Iter 35: T = 635.5937980842389 K, F = -23.093294119057376, relative_change = 0.000619340645717325 Iter 40: T = 634.3852748656695 K, F = -9.6641274120309, relative_change = 0.0002615373201433504 Iter 45: T = 633.8774106395665 K, F = -4.042753125251494, relative_change = 0.00010982540250598171 Iter 50: T = 633.6645843384922 K, F = -1.6909206255811338, relative_change = 4.600901141299126e-5 Iter 55: T = 633.5755021076485 K, F = -0.7071970018538382, relative_change = 1.9255320306738867e-5 Iter 60: T = 633.5382335893792 K, F = -0.29576414748679514, relative_change = 8.055221484758324e-6 Iter 65: T = 633.5226451283359 K, F = -0.12369313353438144, relative_change = 3.3692126722453093e-6 Iter 70: T = 633.5161254416 K, F = -0.05173012666464588, relative_change = 1.4091189463798916e-6 Iter 75: T = 633.5133987597 K, F = -0.021634188417190225, relative_change = 5.893233101642986e-7 Iter 80: T = 633.5122584163395 K, F = -0.00904768149717039, relative_change = 2.4646430924882033e-7 Iter 85: T = 633.5117815089542 K, F = -0.003783849422517749, relative_change = 1.0307471333622279e-7 Iter 90: T = 633.5115820602101 K, F = -0.0015824511855516699, relative_change = 4.310714528876369e-8 Iter 95: T = 633.511498648297 K, F = -0.0006618000137527114, relative_change = 1.802793507232643e-8 Iter 100: T = 633.5114637644272 K, F = -0.00027677267491893476, relative_change = 7.539499875542391e-9 Iter 105: T = 633.5114491755742 K, F = -0.00011574963930893745, relative_change = 3.1531092695502387e-9 Iter 110: T = 633.5114430743413 K, F = -4.8407881907519545e-5, relative_change = 1.3186680241239625e-9 Iter 115: T = 633.5114405227328 K, F = -2.0244754398324183e-5, relative_change = 5.514827284581206e-10 Iter 120: T = 633.5114394556194 K, F = -8.466597937240028e-6, relative_change = 2.30636661564965e-10 Iter 125: T = 633.51143900934 K, F = -3.540832401061067e-6, relative_change = 9.64550074226093e-11 Iter 130: T = 633.5114388227006 K, F = -1.4808183669834385e-6, relative_change = 4.033863527018802e-11 Iter 135: T = 633.5114387446458 K, F = -6.192961410911302e-7, relative_change = 1.68701048902128e-11 Iter 140: T = 633.5114387120024 K, F = -2.5899732553069654e-7, relative_change = 7.0552870575959004e-12 Iter 145: T = 633.5114386983504 K, F = -1.0831511182418652e-7, relative_change = 2.950587250689844e-12 Iter 150: T = 633.5114386926411 K, F = -4.529927039031989e-8, relative_change = 1.2339870903878703e-12 Iter 155: T = 633.5114386902533 K, F = -1.8944136703780146e-8, relative_change = 5.16052906150618e-13 Converged in 160 iterations to T = 633.5114386892546 K Iter 1: T = 976.4141746781462 K, F = -5374.052735496343, relative_change = 0.023585825321853778 Iter 2: T = 954.9904660934006 K, F = -4544.144966097895, relative_change = 0.021941210134323826 Iter 3: T = 935.6374266717684 K, F = -3840.6593016085176, relative_change = 0.02026516505531214 Iter 5: T = 902.7231088710577 K, F = -2739.735276119276, relative_change = 0.01691192247994049 Iter 10: T = 848.5034228298126 K, F = -1168.3178912600888, relative_change = 0.009520235424292364 Iter 15: T = 821.7263699015926 K, F = -493.73825751657756, relative_change = 0.004664196847372424 Iter 20: T = 809.5517256483635 K, F = -207.51694340187535, relative_change = 0.0021024489107759163 Iter 25: T = 804.2613768240633 K, F = -86.97804065122347, relative_change = 0.000908961912711581 Iter 30: T = 802.0116396398718 K, F = -36.409789112876766, relative_change = 0.00038559321840335144 Iter 35: T = 801.0640592577093 K, F = -15.233121632412871, relative_change = 0.00016223390423245136 Iter 40: T = 800.666580574464 K, F = -6.371747995702263, relative_change = 6.802006268209926e-5 Iter 45: T = 800.50014112108 K, F = -2.6649294569156985, relative_change = 2.847698113920998e-5 Iter 50: T = 800.4304974959749 K, F = -1.114538296788086, relative_change = 1.1914700094361384e-5 Iter 55: T = 800.401365282664 K, F = -0.466118995021912, relative_change = 4.983795087278832e-6 Iter 60: T = 800.3891807202631 K, F = -0.1949375394695474, relative_change = 2.0844444898156396e-6 Iter 65: T = 800.3840847943276 K, F = -0.08152538354421113, relative_change = 8.717678926625786e-7 Iter 70: T = 800.3819535828861 K, F = -0.03409491988083169, relative_change = 3.6458869606058005e-7 Iter 75: T = 800.3810622788002 K, F = -0.014258908069930798, relative_change = 1.5247621295259495e-7 Iter 80: T = 800.3806895237361 K, F = -0.005963246583564286, relative_change = 6.376752467331473e-8 Iter 85: T = 800.3805336329328 K, F = -0.002493901101224605, relative_change = 2.666836684575103e-8 Iter 90: T = 800.380468437505 K, F = -0.0010429792518054093, relative_change = 1.1153034125264056e-8 Iter 95: T = 800.380441171993 K, F = -0.0004361863827562207, relative_change = 4.664332864228473e-9 Iter 100: T = 800.3804297692292 K, F = -0.00018241835568244547, relative_change = 1.950679853385725e-9 Iter 105: T = 800.3804250004571 K, F = -7.628953397520455e-5, relative_change = 8.157976241729265e-10 Iter 110: T = 800.3804230060996 K, F = -3.190519566964589e-5, relative_change = 3.411763288962447e-10 Iter 115: T = 800.3804221720355 K, F = -1.3343134645071864e-5, relative_change = 1.4268402437951834e-10 Iter 120: T = 800.38042182322 K, F = -5.580259295534518e-6, relative_change = 5.967217420790307e-11 Iter 125: T = 800.3804216773411 K, F = -2.333732726178539e-6, relative_change = 2.49556335175137e-11 Iter 130: T = 800.3804216163328 K, F = -9.759944972209667e-7, relative_change = 1.0436739701756521e-11 Iter 135: T = 800.3804215908184 K, F = -4.0817338464727015e-7, relative_change = 4.3647780612748744e-12 Iter 140: T = 800.3804215801481 K, F = -1.7070522140283373e-7, relative_change = 1.8254262364885347e-12 Iter 145: T = 800.3804215756855 K, F = -7.139266600120209e-8, relative_change = 7.634332713665516e-13 Iter 150: T = 800.3804215738191 K, F = -2.9855546146428935e-8, relative_change = 3.19258525278669e-13 Converged in 153 iterations to T = 800.3804215732728 K Iter 1: T = 965.1953250973598 K, F = -7930.278284359544, relative_change = 0.0348046749026402 Iter 2: T = 932.3659180942924 K, F = -6726.1437349046255, relative_change = 0.03401322628635397 Iter 3: T = 901.4823326668559 K, F = -5703.625380585391, relative_change = 0.03312388926716773 Iter 5: T = 845.439542482409 K, F = -4098.216629099898, relative_change = 0.031032961136432776 Iter 10: T = 737.2230641918178 K, F = -1783.2737286458614, relative_change = 0.024035211461163632 Iter 15: T = 669.5912699188231 K, F = -767.8033106868596, relative_change = 0.015729961081945576 Iter 20: T = 632.6089242288308 K, F = -326.9256037748533, relative_change = 0.00865075548513643 Iter 25: T = 614.6089748119842 K, F = -138.02186395107688, relative_change = 0.0041736426840270156 Iter 30: T = 606.4948590480782 K, F = -57.97914422618276, relative_change = 0.0018661288280070517 Iter 35: T = 602.9839264873077 K, F = -24.2951053078285, relative_change = 0.0008037477774586289 Iter 40: T = 601.4937593144285 K, F = -10.169026543716212, relative_change = 0.00034039500557506364 Iter 45: T = 600.8666287049016 K, F = -4.2543149944908025, relative_change = 0.0001431159253112314 Iter 50: T = 600.6036609543185 K, F = -1.7794700346072507, relative_change = 5.9986521674927246e-5 Iter 55: T = 600.4935627006389 K, F = -0.7442420025188744, relative_change = 2.511054652809148e-5 Iter 60: T = 600.4474969157601 K, F = -0.3112590123000562, relative_change = 1.0505640445144558e-5 Iter 65: T = 600.4282279118274 K, F = -0.13017365658016222, relative_change = 4.3943035550056276e-6 Iter 70: T = 600.4201687294586 K, F = -0.05444042624156453, relative_change = 1.8378760546267186e-6 Iter 75: T = 600.416798168603 K, F = -0.022767679864731993, relative_change = 7.686437246326408e-7 Iter 80: T = 600.4153885397657 K, F = -0.009521723221831369, relative_change = 3.2145983482123524e-7 Iter 85: T = 600.4147990126472 K, F = -0.003982099693578933, relative_change = 1.3443901527281666e-7 Iter 90: T = 600.414552464753 K, F = -0.0016653618801703018, relative_change = 5.622411947763124e-8 Iter 95: T = 600.4144493553721 K, F = -0.0006964742674439028, relative_change = 2.3513618816538837e-8 Iter 100: T = 600.4144062337789 K, F = -0.0002912738631243861, relative_change = 9.833679793664203e-9 Iter 105: T = 600.4143881998104 K, F = -0.00012181420981682844, relative_change = 4.112562974596115e-9 Iter 110: T = 600.4143806577889 K, F = -5.094415837686439e-5, relative_change = 1.7199230890819529e-9 Iter 115: T = 600.4143775036252 K, F = -2.1305456176179405e-5, relative_change = 7.192924190884715e-10 Iter 120: T = 600.4143761845163 K, F = -8.910195502309648e-6, relative_change = 3.008166589556657e-10 Iter 125: T = 600.4143756328491 K, F = -3.726349906918447e-6, relative_change = 1.2580511097785442e-10 Iter 130: T = 600.4143754021354 K, F = -1.5584038169924597e-6, relative_change = 5.26131926418707e-11 Iter 135: T = 600.4143753056482 K, F = -6.51743225554835e-7, relative_change = 2.2003470173451045e-11 Iter 140: T = 600.414375265296 K, F = -2.7256678758469377e-7, relative_change = 9.202113574263099e-12 Iter 145: T = 600.4143752484202 K, F = -1.1399040716897346e-7, relative_change = 3.848424390149943e-12 Iter 150: T = 600.4143752413627 K, F = -4.767229278002105e-8, relative_change = 1.6094618734654818e-12 Iter 155: T = 600.414375238411 K, F = -1.9936916062501808e-8, relative_change = 6.730892182151734e-13 Iter 160: T = 600.4143752371766 K, F = -8.337567580785077e-9, relative_change = 2.8148419882134526e-13 Converged in 162 iterations to T = 600.4143752369154 K Iter 1: T = 964.5938170769118 K, F = -8067.332459000455, relative_change = 0.03540618292308816 Iter 2: T = 931.1291009619018 K, F = -6843.49825677107, relative_change = 0.03469306512498794 Iter 3: T = 899.5755159942125 K, F = -5804.205451680023, relative_change = 0.03388744368003635 Iter 5: T = 842.089473077973 K, F = -4172.31038264823, relative_change = 0.031975083446366286 Iter 10: T = 729.7956190307743 K, F = -1818.2805032521062, relative_change = 0.02537958994133246 Iter 15: T = 658.0802527821422 K, F = -784.393553686368, relative_change = 0.017126328859538964 Iter 20: T = 617.970357817651 K, F = -334.5840183755162, relative_change = 0.00968200968866317 Iter 25: T = 598.1083560920574 K, F = -141.42370801193397, relative_change = 0.00475705823546694 Iter 30: T = 589.0632176906473 K, F = -59.44604792107997, relative_change = 0.002147600892852294 Iter 35: T = 585.1295869506237 K, F = -24.917232774669134, relative_change = 0.0009291522222353638 Iter 40: T = 583.456184738375 K, F = -10.43079748437364, relative_change = 0.0003942832888339235 Iter 45: T = 582.7512422343702 K, F = -4.364074741119261, relative_change = 0.00016591265323615171 Iter 50: T = 582.4555221491183 K, F = -1.8254229922664358, relative_change = 6.956644018026098e-5 Iter 55: T = 582.3316893716196 K, F = -0.7634688774071512, relative_change = 2.912508081345354e-5 Iter 60: T = 582.2798731331733 K, F = -0.3193014624113141, relative_change = 1.2185986127968472e-5 Iter 65: T = 582.2581980803868 K, F = -0.1335373750369612, relative_change = 5.0972926910525365e-6 Iter 70: T = 582.249132460062 K, F = -0.055847220668092, relative_change = 2.1319179873375143e-6 Iter 75: T = 582.2453409599165 K, F = -0.023356026349598658, relative_change = 8.916231784955022e-7 Iter 80: T = 582.2437552831333 K, F = -0.009767778192012633, relative_change = 3.7289264149383063e-7 Iter 85: T = 582.2430921295934 K, F = -0.004085003072807236, relative_change = 1.5594906193810318e-7 Iter 90: T = 582.2428147900636 K, F = -0.0017083973471065383, relative_change = 6.521991859859033e-8 Iter 95: T = 582.2426988032202 K, F = -0.0007144722211915866, relative_change = 2.7275776551464305e-8 Iter 100: T = 582.2426502961126 K, F = -0.0002988008243098861, relative_change = 1.1407060356057966e-8 Iter 105: T = 582.2426300098567 K, F = -0.00012496207484369304, relative_change = 4.770569725511676e-9 Iter 110: T = 582.2426215259014 K, F = -5.226063163599193e-5, relative_change = 1.9951093539858967e-9 Iter 115: T = 582.2426179778098 K, F = -2.1856020053334646e-5, relative_change = 8.343785742605321e-10 Iter 120: T = 582.2426164939556 K, F = -9.140448196054418e-6, relative_change = 3.489470730650236e-10 Iter 125: T = 582.24261587339 K, F = -3.822644310258472e-6, relative_change = 1.4593382311140176e-10 Iter 130: T = 582.2426156138621 K, F = -1.598675343883471e-6, relative_change = 6.10312617147913e-11 Iter 135: T = 582.2426155053245 K, F = -6.685853545240761e-7, relative_change = 2.5524011452961795e-11 Iter 140: T = 582.2426154599327 K, F = -2.79611088671583e-7, relative_change = 1.0674473474456743e-11 Iter 145: T = 582.2426154409494 K, F = -1.1693710333382512e-7, relative_change = 4.4642078175111365e-12 Iter 150: T = 582.2426154330103 K, F = -4.890494303966264e-8, relative_change = 1.8670021988104085e-12 Iter 155: T = 582.24261542969 K, F = -2.0452191440423206e-8, relative_change = 7.80785826901592e-13 Iter 160: T = 582.2426154283015 K, F = -8.553599162297587e-9, relative_change = 3.2654344227363226e-13 Converged in 163 iterations to T = 582.242615427895 K Iter 1: T = 964.3440424543487 K, F = -8124.24384434847, relative_change = 0.0356559575456513 Iter 2: T = 930.6147867503729 K, F = -6892.240233024118, relative_change = 0.03497637172946244 Iter 3: T = 898.7813216011683 K, F = -5845.992275765733, relative_change = 0.03420691955730074 Iter 5: T = 840.6888675136162 K, F = -4203.118607817927, relative_change = 0.03237306889433858 Iter 10: T = 726.649935560573 K, F = -1832.8992982880563, relative_change = 0.025966799896055257 Iter 15: T = 653.1270399085382 K, F = -791.3796493616501, relative_change = 0.017762840673151113 Iter 20: T = 611.582295053432 K, F = -337.8415944074951, relative_change = 0.01017098687922381 Iter 25: T = 590.8416428803026 K, F = -142.88220817512942, relative_change = 0.005041146762673861 Iter 30: T = 581.3496360607085 K, F = -60.07785533306215, relative_change = 0.002286631949426758 Iter 35: T = 577.2113674186197 K, F = -25.18578710145556, relative_change = 0.0009915120033162543 Iter 40: T = 575.4489077971753 K, F = -10.543909275864461, relative_change = 0.0004211596041624935 Iter 45: T = 574.7060818949142 K, F = -4.411522553315072, relative_change = 0.0001772967024587614 Iter 50: T = 574.3944044727974 K, F = -1.8452915149475508, relative_change = 7.435293684641647e-5 Iter 55: T = 574.2638780221799 K, F = -0.7717825711086096, relative_change = 3.113134627521892e-5 Iter 60: T = 574.2092588768446 K, F = -0.3227791263702706, relative_change = 1.3025818498884636e-5 Iter 65: T = 574.1864109960621 K, F = -0.1349919118036345, relative_change = 5.448658617134387e-6 Iter 70: T = 574.1768547767527 K, F = -0.05645554913800918, relative_change = 2.278887560420099e-6 Iter 75: T = 574.1728580833043 K, F = -0.023610440748737166, relative_change = 9.530918332029013e-7 Iter 80: T = 574.1711865889166 K, F = -0.00987417806038765, relative_change = 3.9860030579902336e-7 Iter 85: T = 574.1704875448498 K, F = -0.00412950089529962, relative_change = 1.6670044336607062e-7 Iter 90: T = 574.1701951953718 K, F = -0.001727006889397087, relative_change = 6.971629728135375e-8 Iter 95: T = 574.170072931171 K, F = -0.0007222549579453674, relative_change = 2.9156219768135276e-8 Iter 100: T = 574.1700217987947 K, F = -0.0003020556581477263, relative_change = 1.2193484846566379e-8 Iter 105: T = 574.1700004146194 K, F = -0.00012632328523493053, relative_change = 5.09946195626814e-9 Iter 110: T = 574.169991471501 K, F = -5.282990697819123e-5, relative_change = 2.1326560678419065e-9 Iter 115: T = 574.169987731382 K, F = -2.209409762771175e-5, relative_change = 8.919022486629459e-10 Iter 120: T = 574.1699861672196 K, F = -9.240015879874441e-6, relative_change = 3.730041926442215e-10 Iter 125: T = 574.1699855130681 K, F = -3.864284578214416e-6, relative_change = 1.5599479219533805e-10 Iter 130: T = 574.1699852394942 K, F = -1.616089989053826e-6, relative_change = 6.523888639168997e-11 Iter 135: T = 574.1699851250822 K, F = -6.758677837948035e-7, relative_change = 2.7283667310158627e-11 Iter 140: T = 574.1699850772338 K, F = -2.8265555895856664e-7, relative_change = 1.1410338563190795e-11 Iter 145: T = 574.169985057223 K, F = -1.1821014916924e-7, relative_change = 4.771948688431192e-12 Iter 150: T = 574.1699850488544 K, F = -4.943732134776724e-8, relative_change = 1.9957030968943854e-12 Iter 155: T = 574.1699850453545 K, F = -2.0675107403889115e-8, relative_change = 8.346199743612628e-13 Iter 160: T = 574.1699850438907 K, F = -8.646811711088276e-9, relative_change = 3.49057522542554e-13 Converged in 163 iterations to T = 574.1699850434621 K Iter 1: T = 980.2107652936302 K, F = -4508.995952268296, relative_change = 0.019789234706369792 Iter 2: T = 962.462235725249 K, F = -3808.687612307036, relative_change = 0.01810685027833223 Iter 3: T = 946.6330221095989 K, F = -3215.6475892025933, relative_change = 0.016446581515712374 Iter 5: T = 920.2077956510046 K, F = -2289.0676652507846, relative_change = 0.013280829469508407 Iter 10: T = 878.2782309700775 K, F = -971.7150547755574, relative_change = 0.006969258422183167 Iter 15: T = 858.4423307188498 K, F = -409.4562373884358, relative_change = 0.003265878807356299 Iter 20: T = 849.6422764504039 K, F = -171.83217301237, relative_change = 0.001438719326415816 Iter 25: T = 845.8638099272105 K, F = -71.97060507404409, relative_change = 0.0006154600920155424 Iter 30: T = 844.2656055525773 K, F = -30.118280616022137, relative_change = 0.0002598829498384561 Iter 35: T = 843.5940037066538 K, F = -12.599230211312813, relative_change = 0.00010912790159894873 Iter 40: T = 843.3125648628346 K, F = -5.269746215784748, relative_change = 4.57163158108583e-5 Iter 45: T = 843.194764261479 K, F = -2.203975484981376, relative_change = 1.913273728730346e-5 Iter 50: T = 843.1454812113654 K, F = -0.921747188939186, relative_change = 8.003925282349988e-6 Iter 55: T = 843.1248674004737 K, F = -0.385488887343146, relative_change = 3.3477546463137486e-6 Iter 60: T = 843.1162459248545 K, F = -0.16121661697885314, relative_change = 1.4001440092214748e-6 Iter 65: T = 843.1126402274298 K, F = -0.0674228125929619, relative_change = 5.855697207844634e-7 Iter 70: T = 843.1111322653766 K, F = -0.0281970425685103, relative_change = 2.4489448479149853e-7 Iter 75: T = 843.1105016147811 K, F = -0.011792342943349077, relative_change = 1.024181889892477e-7 Iter 80: T = 843.110237868671 K, F = -0.004931699172186166, relative_change = 4.283257810592253e-8 Iter 85: T = 843.1101275668107 K, F = -0.0020624955811701096, relative_change = 1.7913107636577673e-8 Iter 90: T = 843.1100814372402 K, F = -0.0008625602998846293, relative_change = 7.491477635675606e-9 Iter 95: T = 843.1100621453 K, F = -0.00036073301946948355, relative_change = 3.1330257636355713e-9 Iter 100: T = 843.11005407718 K, F = -0.000150862857588141, relative_change = 1.3102688570905137e-9 Iter 105: T = 843.1100507029957 K, F = -6.3092649339902e-5, relative_change = 5.479700997202543e-10 Iter 110: T = 843.1100492918716 K, F = -2.638610079475079e-5, relative_change = 2.2916765344654712e-10 Iter 115: T = 843.1100487017226 K, F = -1.1034981590940518e-5, relative_change = 9.584064220480971e-11 Iter 120: T = 843.1100484549152 K, F = -4.614960227522502e-6, relative_change = 4.008169374156531e-11 Iter 125: T = 843.1100483516973 K, F = -1.930029336350003e-6, relative_change = 1.676262437876728e-11 Iter 130: T = 843.1100483085304 K, F = -8.071600614556473e-7, relative_change = 7.010318792671672e-12 Iter 135: T = 843.1100482904776 K, F = -3.375640036384908e-7, relative_change = 2.931799269664052e-12 Iter 140: T = 843.1100482829277 K, F = -1.4117446078820706e-7, relative_change = 1.2261235694282845e-12 Iter 145: T = 843.1100482797701 K, F = -5.904110711441035e-8, relative_change = 5.127817920835761e-13 Converged in 150 iterations to T = 843.1100482784498 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011074653473832617 Iteration 10: d = 9.541908798491369e-6 Iteration 20: d = 8.763062657919989e-8 Iteration 30: d = 9.704934673261825e-10 Iteration 40: d = 1.179391587370258e-11 Iteration 50: d = 1.5071172107541067e-13 Converged after 60 iterations. d = 2.022580257024491e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.815811259907 Iteration 2: convergence error = 4818.946727042389 Iteration 3: convergence error = 1095.009341572111 Iteration 4: convergence error = 318.4701478612624 Iteration 5: convergence error = 94.4708378043706 Iteration 6: convergence error = 28.355978675360348 Iteration 7: convergence error = 8.539207958572433 Iteration 8: convergence error = 2.5616085114656926 Iteration 9: convergence error = 0.7666595959592541 Iteration 10: convergence error = 0.22914497054921412 Iteration 11: convergence error = 0.0684361656406054 Iteration 12: convergence error = 0.02043016088236982 Iteration 13: convergence error = 0.006097474814396264 Iteration 14: convergence error = 0.0018195605166511086 Iteration 15: convergence error = 0.0005429345894754078 Iteration 16: convergence error = 0.00016199740025513165 Iteration 17: convergence error = 4.833443767893186e-5 Iteration 18: convergence error = 1.4421105788642308e-5 Iteration 19: convergence error = 4.302654133425676e-6 Iteration 20: convergence error = 1.283726533074514e-6 Iteration 21: convergence error = 3.8300868254736997e-7 Iteration 22: convergence error = 1.1414022083044983e-7 Iteration 23: convergence error = 3.31303908751579e-8 Iteration 24: convergence error = 9.570840120431967e-9 Iteration 25: convergence error = 2.746219252003357e-9 Iteration 26: convergence error = 7.980816008057445e-10 Iteration 27: convergence error = 2.2464519133791327e-10 Iteration 28: convergence error = 6.480149750132114e-11 Iteration 29: convergence error = 1.9554136088117957e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0020923130583825012 Iteration 10: d = 2.3037728982426994e-5 Iteration 20: d = 2.738008239361457e-7 Iteration 30: d = 3.570049277111191e-9 Iteration 40: d = 4.706401868373709e-11 Iteration 50: d = 6.216245875623375e-13 Iteration 60: d = 8.181164182453655e-15 Converged after 64 iterations. d = 1.4249970042094583e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12279.145889128718 Iteration 2: convergence error = 8307.30557643092 Iteration 3: convergence error = 1955.7059876134651 Iteration 4: convergence error = 481.74503011201887 Iteration 5: convergence error = 122.86697036135524 Iteration 6: convergence error = 32.80890014410147 Iteration 7: convergence error = 8.937594278773531 Iteration 8: convergence error = 2.44850268506093 Iteration 9: convergence error = 0.6715801270852353 Iteration 10: convergence error = 0.18422502592306955 Iteration 11: convergence error = 0.05053271025508366 Iteration 12: convergence error = 0.013860229390729728 Iteration 13: convergence error = 0.0038014798758467805 Iteration 14: convergence error = 0.0010426223070680862 Iteration 15: convergence error = 0.00028595489425242704 Iteration 16: convergence error = 7.842713307582017e-5 Iteration 17: convergence error = 2.1509703174160677e-5 Iteration 18: convergence error = 5.899321422475623e-6 Iteration 19: convergence error = 1.6179674275917932e-6 Iteration 20: convergence error = 4.4375065044732764e-7 Iteration 21: convergence error = 1.2255122783244587e-7 Iteration 22: convergence error = 3.2947127692750655e-8 Iteration 23: convergence error = 8.809365681372583e-9 Iteration 24: convergence error = 2.3528627934865654e-9 Iteration 25: convergence error = 6.257323548197746e-10 Iteration 26: convergence error = 1.6848389350343496e-10 Iteration 27: convergence error = 4.3655745685100555e-11 Iteration 28: convergence error = 1.2050804798491299e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 75%|████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0020923130583825012 Iteration 10: d = 2.3037728982426994e-5 Iteration 20: d = 2.738008239361457e-7 Iteration 30: d = 3.570049277111191e-9 Iteration 40: d = 4.706401868373709e-11 Iteration 50: d = 6.216245875623375e-13 Iteration 60: d = 8.181164182453655e-15 Converged after 64 iterations. d = 1.4249970042094583e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10995.214649731794 Iteration 2: convergence error = 5728.307846715958 Iteration 3: convergence error = 2013.550581396884 Iteration 4: convergence error = 891.8218107440998 Iteration 5: convergence error = 411.34435626050663 Iteration 6: convergence error = 194.13177561002112 Iteration 7: convergence error = 91.68333202537406 Iteration 8: convergence error = 43.31701738245738 Iteration 9: convergence error = 20.465193610771166 Iteration 10: convergence error = 9.666639978186595 Iteration 11: convergence error = 4.5648018781757855 Iteration 12: convergence error = 2.155113607025669 Iteration 13: convergence error = 1.0172864214164292 Iteration 14: convergence error = 0.4801339612231459 Iteration 15: convergence error = 0.22659191847242255 Iteration 16: convergence error = 0.10684100234402649 Iteration 17: convergence error = 0.04994002562943933 Iteration 18: convergence error = 0.022814123432453925 Iteration 19: convergence error = 0.010382422598922858 Iteration 20: convergence error = 0.0047145837647804 Iteration 21: convergence error = 0.0021381666483648587 Iteration 22: convergence error = 0.0009689984894976078 Iteration 23: convergence error = 0.0004389545201775036 Iteration 24: convergence error = 0.00019879556020896416 Iteration 25: convergence error = 9.001787066154066e-5 Iteration 26: convergence error = 4.0757889564702054e-5 Iteration 27: convergence error = 1.8453170923748985e-5 Iteration 28: convergence error = 8.354405963473255e-6 Iteration 29: convergence error = 3.782261501328321e-6 Iteration 30: convergence error = 1.7123115867434535e-6 Iteration 31: convergence error = 7.75189164414769e-7 Iteration 32: convergence error = 3.50938080373453e-7 Iteration 33: convergence error = 1.5887644622125663e-7 Iteration 34: convergence error = 7.192784323706292e-8 Iteration 35: convergence error = 3.2558091334067285e-8 Iteration 36: convergence error = 1.4741999621037394e-8 Iteration 37: convergence error = 6.671143637504429e-9 Iteration 38: convergence error = 3.0236151360441e-9 Iteration 39: convergence error = 1.3656062947120517e-9 Iteration 40: convergence error = 6.180016498547047e-10 Iteration 41: convergence error = 2.8194335754960775e-10 Iteration 42: convergence error = 1.2869350030086935e-10 Iteration 43: convergence error = 5.775291356258094e-11 Iteration 44: convergence error = 2.773958840407431e-11 Iteration 45: convergence error = 1.1823431123048067e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0020923130583825012 Iteration 10: d = 2.3037728982426994e-5 Iteration 20: d = 2.738008239361457e-7 Iteration 30: d = 3.570049277111191e-9 Iteration 40: d = 4.706401868373709e-11 Iteration 50: d = 6.216245875623375e-13 Iteration 60: d = 8.181164182453655e-15 Converged after 64 iterations. d = 1.4249970042094583e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.863215900066 Iteration 2: convergence error = 7343.430084876831 Iteration 3: convergence error = 1728.6503262680717 Iteration 4: convergence error = 506.34169351065293 Iteration 5: convergence error = 157.43837364834917 Iteration 6: convergence error = 48.9281237847249 Iteration 7: convergence error = 15.17768127449881 Iteration 8: convergence error = 4.700084045636231 Iteration 9: convergence error = 1.4537611611895045 Iteration 10: convergence error = 0.449331480663659 Iteration 11: convergence error = 0.13882188819115981 Iteration 12: convergence error = 0.04287901601901467 Iteration 13: convergence error = 0.013242580948826799 Iteration 14: convergence error = 0.004089470376129611 Iteration 15: convergence error = 0.0012628232625502278 Iteration 16: convergence error = 0.00038994857959551155 Iteration 17: convergence error = 0.00012041094896630966 Iteration 18: convergence error = 3.7181014704401605e-5 Iteration 19: convergence error = 1.14808476610051e-5 Iteration 20: convergence error = 3.545090748957591e-6 Iteration 21: convergence error = 1.0946559996227734e-6 Iteration 22: convergence error = 3.3784044717322104e-7 Iteration 23: convergence error = 1.0310486686648801e-7 Iteration 24: convergence error = 3.0694536690134555e-8 Iteration 25: convergence error = 9.10176822799258e-9 Iteration 26: convergence error = 2.703473001020029e-9 Iteration 27: convergence error = 7.948983693495393e-10 Iteration 28: convergence error = 2.346496330574155e-10 Iteration 29: convergence error = 7.503331289626658e-11 Iteration 30: convergence error = 2.000888343900442e-11 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0020923130583825012 Iteration 10: d = 2.3037728982426994e-5 Iteration 20: d = 2.738008239361457e-7 Iteration 30: d = 3.570049277111191e-9 Iteration 40: d = 4.706401868373709e-11 Iteration 50: d = 6.216245875623375e-13 Iteration 60: d = 8.181164182453655e-15 Converged after 64 iterations. d = 1.4249970042094583e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.765738922988 Iteration 2: convergence error = 5512.349639056664 Iteration 3: convergence error = 935.4098861023429 Iteration 4: convergence error = 169.88990798706118 Iteration 5: convergence error = 30.817513290285433 Iteration 6: convergence error = 5.609801708918894 Iteration 7: convergence error = 1.0292416492370648 Iteration 8: convergence error = 0.18836926019457678 Iteration 9: convergence error = 0.03443369757906112 Iteration 10: convergence error = 0.0062907274541430525 Iteration 11: convergence error = 0.0011489178855299542 Iteration 12: convergence error = 0.00020980275075999089 Iteration 13: convergence error = 3.830885225397651e-5 Iteration 14: convergence error = 6.9947095653333236e-6 Iteration 15: convergence error = 1.2771311048709322e-6 Iteration 16: convergence error = 2.331812538614031e-7 Iteration 17: convergence error = 4.2576630221446976e-8 Iteration 18: convergence error = 7.761173037579283e-9 Iteration 19: convergence error = 1.4233592082746327e-9 Iteration 20: convergence error = 2.587512426543981e-10 Iteration 21: convergence error = 4.774847184307873e-11 Iteration 22: convergence error = 7.958078640513122e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0020923130583825012 Iteration 10: d = 2.3037728982426994e-5 Iteration 20: d = 2.738008239361457e-7 Iteration 30: d = 3.570049277111191e-9 Iteration 40: d = 4.706401868373709e-11 Iteration 50: d = 6.216245875623375e-13 Iteration 60: d = 8.181164182453655e-15 Converged after 64 iterations. d = 1.4249970042094583e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.493404518788 Iteration 2: convergence error = 2711.2565434776543 Iteration 3: convergence error = 204.26909567396604 Iteration 4: convergence error = 19.32202550080654 Iteration 5: convergence error = 1.5957089213380753 Iteration 6: convergence error = 0.12991393085998457 Iteration 7: convergence error = 0.010606144920246174 Iteration 8: convergence error = 0.0008682920367254986 Iteration 9: convergence error = 7.114470141025866e-5 Iteration 10: convergence error = 5.832094001511052e-6 Iteration 11: convergence error = 4.78204367800304e-7 Iteration 12: convergence error = 3.921566869956591e-8 Iteration 13: convergence error = 3.2170249857119724e-9 Iteration 14: convergence error = 2.6290488868263977e-10 Iteration 15: convergence error = 2.1184317055498212e-11 Converged after 15 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346352 Iteration 2: convergence error = 858.4060420534064 Iteration 3: convergence error = 199.12106737711963 Iteration 4: convergence error = 59.265629268140174 Iteration 5: convergence error = 17.985482911037252 Iteration 6: convergence error = 5.463033078096487 Iteration 7: convergence error = 1.660989611064224 Iteration 8: convergence error = 0.5052487627317532 Iteration 9: convergence error = 0.15371874094239502 Iteration 10: convergence error = 0.04677131697644654 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.004330236512828378 Iteration 13: convergence error = 0.0013175920926187246 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198903971238906 Iteration 16: convergence error = 3.711853855747904e-5 Iteration 17: convergence error = 1.1294342471046548e-5 Iteration 18: convergence error = 3.4366166801191866e-6 Iteration 19: convergence error = 1.045686303768889e-6 Iteration 20: convergence error = 3.1818046863918426e-7 Iteration 21: convergence error = 9.68161657510791e-8 Iteration 22: convergence error = 2.946035237982869e-8 Iteration 23: convergence error = 8.963752406998537e-9 Iteration 24: convergence error = 2.7299620342091657e-9 Iteration 25: convergence error = 8.292317943414673e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.696598913753405e-11 Iteration 28: convergence error = 2.3646862246096134e-11 Iteration 29: convergence error = 9.094947017729282e-12 Converged after 29 iterations Energy conservation errors by band: [1.5428857128674637e-25, 8.401053096241687e-26, 1.1490863489811346e-25, 9.400697635337753e-26, 1.2440020930973268e-25, -3.2610768469290563e-19, 2.7533531010703882e-14, 1.7053025658242404e-12, 5.6701310313655995e-12, 2.6432189770275727e-12, 7.176481631177012e-13, 8.526512829121202e-14, 4.9960036108132044e-15, 2.636779683484747e-16, 2.0166160408230382e-17, 1.0062751413381088e-18, 3.560185356428231e-20, 1.2755125045567687e-21, 4.105530024647957e-23, 5.6284752489113644e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011074653473832617 Iteration 10: d = 9.541908798491369e-6 Iteration 20: d = 8.763062657919989e-8 Iteration 30: d = 9.704934673261825e-10 Iteration 40: d = 1.179391587370258e-11 Iteration 50: d = 1.5071172107541067e-13 Converged after 60 iterations. d = 2.022580257024491e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.376541649648 Iteration 2: convergence error = 3607.8068364220935 Iteration 3: convergence error = 592.8922880409883 Iteration 4: convergence error = 104.16500997120306 Iteration 5: convergence error = 18.534130135528812 Iteration 6: convergence error = 3.2693110632071694 Iteration 7: convergence error = 0.5746423955831688 Iteration 8: convergence error = 0.10085553350404552 Iteration 9: convergence error = 0.017690503396352142 Iteration 10: convergence error = 0.0031022338928323734 Iteration 11: convergence error = 0.0005439589031084324 Iteration 12: convergence error = 9.537629239275702e-5 Iteration 13: convergence error = 1.6722760165066575e-5 Iteration 14: convergence error = 2.932056077042944e-6 Iteration 15: convergence error = 5.140936991665512e-7 Iteration 16: convergence error = 9.013388080347795e-8 Iteration 17: convergence error = 1.5815658116480336e-8 Iteration 18: convergence error = 2.7564510673983023e-9 Iteration 19: convergence error = 4.904450179310516e-10 Iteration 20: convergence error = 8.503775461576879e-11 Iteration 21: convergence error = 1.3415046851150692e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.492427513024 Iteration 2: convergence error = 871.304602661783 Iteration 3: convergence error = 207.75299581225158 Iteration 4: convergence error = 62.49550550490892 Iteration 5: convergence error = 18.97931530918413 Iteration 6: convergence error = 5.76621559404623 Iteration 7: convergence error = 1.7533061530655232 Iteration 8: convergence error = 0.5333443698997371 Iteration 9: convergence error = 0.16226812526508638 Iteration 10: convergence error = 0.04937275063014113 Iteration 11: convergence error = 0.015022831428041172 Iteration 12: convergence error = 0.0045710916562029524 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318846916256 Iteration 15: convergence error = 0.0001287742984459328 Iteration 16: convergence error = 3.9183143599075265e-5 Iteration 17: convergence error = 1.1922556950594299e-5 Iteration 18: convergence error = 3.6277691606301232e-6 Iteration 19: convergence error = 1.1038513321182108e-6 Iteration 20: convergence error = 3.3587832604098367e-7 Iteration 21: convergence error = 1.0220117019343888e-7 Iteration 22: convergence error = 3.1099034458748065e-8 Iteration 23: convergence error = 9.464656613999978e-9 Iteration 24: convergence error = 2.880597094190307e-9 Iteration 25: convergence error = 8.786855687503703e-10 Iteration 26: convergence error = 2.6830093702301383e-10 Iteration 27: convergence error = 8.185452315956354e-11 Iteration 28: convergence error = 2.6261659513693303e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [9.81469183839774e-26, 1.2278462217584005e-25, 1.7064639101740927e-25, 1.3045866106183005e-25, 1.2440020930973268e-25, -2.642742795433417e-19, -7.993605777301127e-15, 8.526512829121202e-14, 7.013056801952189e-12, 4.575895218295045e-12, 5.826450433232822e-13, 8.79296635503124e-14, 5.218048215738236e-15, 3.642919299551295e-16, 2.0166160408230382e-17, 8.775261333554552e-19, 3.7613556814011274e-20, 1.2358078351542233e-21, 3.6499344528902346e-23, 4.998575315730623e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729987 Iteration 2: convergence error = 2115.1156110176394 Iteration 3: convergence error = 714.8959934551629 Iteration 4: convergence error = 296.01907471323966 Iteration 5: convergence error = 115.88799395378669 Iteration 6: convergence error = 44.11524923618913 Iteration 7: convergence error = 16.599581025126554 Iteration 8: convergence error = 6.215983404932786 Iteration 9: convergence error = 2.323124567003788 Iteration 10: convergence error = 0.867563639824084 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.12090784413658184 Iteration 13: convergence error = 0.04513241840754745 Iteration 14: convergence error = 0.016846741615154315 Iteration 15: convergence error = 0.0062884074741305085 Iteration 16: convergence error = 0.0023472777563711134 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782211112615 Iteration 19: convergence error = 0.00012207719146317686 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985607473878e-6 Iteration 23: convergence error = 2.3698869426880265e-6 Iteration 24: convergence error = 8.846079708746402e-7 Iteration 25: convergence error = 3.302000095573021e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7174670574604534e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.949427865445614e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.248281478183344e-10 Iteration 34: convergence error = 4.774847184307873e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.9952501103574007e-25, 1.4136387421560532e-25, 1.0339757656912846e-25, 1.6478988765704848e-25, 2.1729646950855903e-25, 9.486769009248164e-20, 5.240252676230739e-14, 2.9274360713316128e-12, 1.2093437362636905e-11, 5.6203930398623925e-12, 2.0961010704922955e-13, 1.84297022087776e-14, 1.582067810090848e-15, 1.723881454251952e-16, 7.101524229780054e-18, 4.641740550953566e-19, 1.4770137017746862e-20, 4.963083675318166e-22, 1.7991178323028352e-23, 9.298117831235686e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238243 Iteration 2: convergence error = 864.8522700482431 Iteration 3: convergence error = 203.43244494690748 Iteration 4: convergence error = 60.87736397590345 Iteration 5: convergence error = 18.481426659698286 Iteration 6: convergence error = 5.6143306186266955 Iteration 7: convergence error = 1.7070587705935623 Iteration 8: convergence error = 0.5192694771476454 Iteration 9: convergence error = 0.1579851928424887 Iteration 10: convergence error = 0.04806952669207476 Iteration 11: convergence error = 0.014626287390910875 Iteration 12: convergence error = 0.004450431969985402 Iteration 13: convergence error = 0.0013541649049102489 Iteration 14: convergence error = 0.0004120419150694943 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.8148852013364376e-5 Iteration 17: convergence error = 1.1607843930505624e-5 Iteration 18: convergence error = 3.532008690854127e-6 Iteration 19: convergence error = 1.0747122587417834e-6 Iteration 20: convergence error = 3.270116621933994e-7 Iteration 21: convergence error = 9.950440471584443e-8 Iteration 22: convergence error = 3.027832917723572e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8029489840264432e-9 Iteration 25: convergence error = 8.546976459911093e-10 Iteration 26: convergence error = 2.609112925711088e-10 Iteration 27: convergence error = 8.003553375601768e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.753886504564434e-12 Converged after 29 iterations Energy conservation errors by band: [1.4621063561728321e-25, 7.674038885990003e-26, 1.32882041762669e-25, 1.3116548043290807e-25, 1.126872025890111e-25, -1.5246593050577406e-19, -3.6637359812630166e-14, 2.5721647034515627e-12, 7.627676268384675e-12, 2.8421709430404007e-12, 4.973799150320701e-13, 7.194245199571014e-14, 4.385380947269368e-15, 4.198030811863873e-16, 2.3310346708438345e-17, 9.84252284709497e-19, 4.1081097941833566e-20, 9.880672416945916e-22, 2.4156258825962636e-23, 4.8210806556121566e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 10m51.1s Testing RayTraceHeatTransfer tests passed Testing completed after 662.78s PkgEval succeeded after 727.19s