Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1699 (9484a92029*) started at 2026-02-10T18:08:37.093 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 7.5s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.14.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.18.0+0 [e37daf67] + LibGit2_jll v1.9.2+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.12.2 [4536629a] + OpenBLAS_jll v0.3.30+0 [458c3c95] + OpenSSL_jll v3.5.5+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 3.81s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling packages... 1103.8 ms ✓ Measurements 3430.1 ms ✓ StatsBase 4319.8 ms ✓ RayTraceHeatTransfer 3 dependencies successfully precompiled in 9 seconds. 58 already precompiled. Precompilation completed after 23.13s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_VYplbz/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.16 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_VYplbz/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.16 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.18.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.30+0 [458c3c95] OpenSSL_jll v3.5.5+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:02:59 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:04 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001242363636945706 Iteration 10: d = 1.027120593841389e-5 Iteration 20: d = 1.2108375208182235e-7 Iteration 30: d = 1.8574227438663375e-9 Iteration 40: d = 3.1324397280828774e-11 Iteration 50: d = 5.466236682176068e-13 Iteration 60: d = 9.69120024949925e-15 Converged after 64 iterations. d = 1.9320107001708766e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 62%|████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011078630473204416 Iteration 10: d = 9.835363079053737e-6 Iteration 20: d = 1.4451724329598844e-7 Iteration 30: d = 2.405038916550684e-9 Iteration 40: d = 4.120574774608791e-11 Iteration 50: d = 7.158260070789148e-13 Iteration 60: d = 1.254701928962884e-14 Converged after 65 iterations. d = 1.6746125053342074e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 58%|███████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010337492230687677 Iteration 10: d = 8.504431837846422e-6 Iteration 20: d = 1.1103638273152985e-7 Iteration 30: d = 1.6322137349377496e-9 Iteration 40: d = 2.5028839971438887e-11 Iteration 50: d = 3.975048321366856e-13 Iteration 60: d = 6.5099467547315126e-15 Converged after 63 iterations. d = 1.8751268341436248e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 52%|█████████████████ | ETA: 0:00:01 Bin 1 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012261248176254787 Iteration 10: d = 1.4379099848478837e-5 Iteration 20: d = 2.1799143759738932e-7 Iteration 30: d = 3.5698179872299226e-9 Iteration 40: d = 5.98249520604125e-11 Iteration 50: d = 1.0147026595331512e-12 Iteration 60: d = 1.728333653719049e-14 Converged after 66 iterations. d = 1.4951088503091029e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 56%|██████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001164611551394863 Iteration 10: d = 1.0612571134444928e-5 Iteration 20: d = 1.3646367114262526e-7 Iteration 30: d = 2.055023614749841e-9 Iteration 40: d = 3.1786562128774845e-11 Iteration 50: d = 4.952906649963555e-13 Iteration 60: d = 7.729282485945285e-15 Converged after 64 iterations. d = 1.481758180698639e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 62%|████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013248597670240175 Iteration 10: d = 1.6482435670237614e-5 Iteration 20: d = 2.3736221887329002e-7 Iteration 30: d = 3.6639064168195172e-9 Iteration 40: d = 5.7292500440889346e-11 Iteration 50: d = 8.995725106367332e-13 Iteration 60: d = 1.4144879752015352e-14 Converged after 65 iterations. d = 1.8082718494058147e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 51%|████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011795726888637888 Iteration 10: d = 1.5219318951236849e-5 Iteration 20: d = 2.244681369432903e-7 Iteration 30: d = 3.501966397309367e-9 Iteration 40: d = 5.48821021237191e-11 Iteration 50: d = 8.599952123807223e-13 Iteration 60: d = 1.3514835269452814e-14 Converged after 65 iterations. d = 1.6777871598548487e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 62%|████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012714493905262249 Iteration 10: d = 1.1786506555541684e-5 Iteration 20: d = 1.5289893386203419e-7 Iteration 30: d = 2.3326375751485976e-9 Iteration 40: d = 3.639387078424285e-11 Iteration 50: d = 5.70213480038707e-13 Iteration 60: d = 8.983910446560686e-15 Converged after 64 iterations. d = 1.6882280332572571e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 64%|█████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011923289307212953 Iteration 10: d = 1.482646927809741e-5 Iteration 20: d = 2.1797671361838994e-7 Iteration 30: d = 3.373167836862981e-9 Iteration 40: d = 5.259435921801009e-11 Iteration 50: d = 8.221642183497757e-13 Iteration 60: d = 1.2859600619735493e-14 Converged after 65 iterations. d = 1.6265918454547958e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 64%|█████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013506431007266504 Iteration 10: d = 1.7060517369661167e-5 Iteration 20: d = 2.4559241992663785e-7 Iteration 30: d = 3.769776783576675e-9 Iteration 40: d = 5.853150770710423e-11 Iteration 50: d = 9.121578130518173e-13 Iteration 60: d = 1.4245148289211146e-14 Converged after 65 iterations. d = 1.7486755383519377e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.004490485295979639 Iteration 10: d = 5.2509988003158516e-5 Iteration 20: d = 6.958392151643413e-7 Iteration 30: d = 9.87851609120043e-9 Iteration 40: d = 1.4216602622327813e-10 Iteration 50: d = 2.056069596076956e-12 Iteration 60: d = 2.9783367593756746e-14 Converged after 67 iterations. d = 1.5613821477024033e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0031522447124813884 Iteration 10: d = 2.4156679878079247e-5 Iteration 20: d = 2.9650927215402395e-7 Iteration 30: d = 4.342899393522393e-9 Iteration 40: d = 6.635146531192498e-11 Iteration 50: d = 1.0301642543038861e-12 Iteration 60: d = 1.614281075341489e-14 Converged after 65 iterations. d = 2.0111790502096187e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0029140872301643868 Iteration 10: d = 4.2086199531419744e-5 Iteration 20: d = 6.496028573698964e-7 Iteration 30: d = 1.0743342485286158e-8 Iteration 40: d = 1.819959944199217e-10 Iteration 50: d = 3.113869404735234e-12 Iteration 60: d = 5.353866581621284e-14 Converged after 68 iterations. d = 2.0536111256332814e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002024533274902908 Iteration 10: d = 1.604185094529866e-5 Iteration 20: d = 2.153041034859618e-7 Iteration 30: d = 3.5748127516836923e-9 Iteration 40: d = 6.338621461721111e-11 Iteration 50: d = 1.1509420305931858e-12 Iteration 60: d = 2.1117778994500316e-14 Converged after 66 iterations. d = 1.884081843317363e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 64%|█████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001164611551394863 Iteration 10: d = 1.0612571134444928e-5 Iteration 20: d = 1.3646367114262526e-7 Iteration 30: d = 2.055023614749841e-9 Iteration 40: d = 3.1786562128774845e-11 Iteration 50: d = 4.952906649963555e-13 Iteration 60: d = 7.729282485945285e-15 Converged after 64 iterations. d = 1.481758180698639e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 64%|█████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015838544755093305 Iteration 10: d = 2.0508246091540074e-5 Iteration 20: d = 2.534419952851594e-7 Iteration 30: d = 3.3247479988149652e-9 Iteration 40: d = 4.407999139000057e-11 Iteration 50: d = 5.866556661386141e-13 Iteration 60: d = 7.849374217282475e-15 Converged after 63 iterations. d = 2.112009703876295e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 56%|██████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013352416869508964 Iteration 10: d = 1.674153540127214e-5 Iteration 20: d = 2.2097438020222044e-7 Iteration 30: d = 3.038259725628102e-9 Iteration 40: d = 4.224396506714683e-11 Iteration 50: d = 5.907852336439968e-13 Iteration 60: d = 8.299490467628948e-15 Converged after 64 iterations. d = 1.5221862503426108e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.77004753249 Iteration 2: convergence error = 4824.637273771613 Iteration 3: convergence error = 1096.4136231929845 Iteration 4: convergence error = 319.589633623943 Iteration 5: convergence error = 94.77710730272793 Iteration 6: convergence error = 28.26256349228197 Iteration 7: convergence error = 8.454906654500064 Iteration 8: convergence error = 2.534203039139584 Iteration 9: convergence error = 0.7578074471896343 Iteration 10: convergence error = 0.2263031390739343 Iteration 11: convergence error = 0.06752874003632314 Iteration 12: convergence error = 0.020141751027949795 Iteration 13: convergence error = 0.006006174983895107 Iteration 14: convergence error = 0.001790759074538073 Iteration 15: convergence error = 0.0005338767589364579 Iteration 16: convergence error = 0.00015915655808385054 Iteration 17: convergence error = 4.744564080283453e-5 Iteration 18: convergence error = 1.4143643056740984e-5 Iteration 19: convergence error = 4.216205752527458e-6 Iteration 20: convergence error = 1.2568423244374571e-6 Iteration 21: convergence error = 3.746658876480069e-7 Iteration 22: convergence error = 1.1154679668834433e-7 Iteration 23: convergence error = 3.233844836358912e-8 Iteration 24: convergence error = 9.325731298304163e-9 Iteration 25: convergence error = 2.673004928510636e-9 Iteration 26: convergence error = 7.705693860771134e-10 Iteration 27: convergence error = 2.2100721253082156e-10 Iteration 28: convergence error = 6.230038707144558e-11 Iteration 29: convergence error = 1.864464138634503e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 62%|████████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015838544755093305 Iteration 10: d = 2.0508246091540074e-5 Iteration 20: d = 2.534419952851594e-7 Iteration 30: d = 3.3247479988149652e-9 Iteration 40: d = 4.407999139000057e-11 Iteration 50: d = 5.866556661386141e-13 Iteration 60: d = 7.849374217282475e-15 Converged after 63 iterations. d = 2.112009703876295e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.524467441792 Iteration 2: convergence error = 4827.736932899319 Iteration 3: convergence error = 1095.8688735168203 Iteration 4: convergence error = 318.095953490292 Iteration 5: convergence error = 94.2376892965658 Iteration 6: convergence error = 28.40779914824634 Iteration 7: convergence error = 8.544150431018352 Iteration 8: convergence error = 2.5595526823012733 Iteration 9: convergence error = 0.7649358183334698 Iteration 10: convergence error = 0.22829131820094517 Iteration 11: convergence error = 0.06807914840373996 Iteration 12: convergence error = 0.02029298585489414 Iteration 13: convergence error = 0.006047391113497724 Iteration 14: convergence error = 0.0018018867374394176 Iteration 15: convergence error = 0.0005368475463001232 Iteration 16: convergence error = 0.00015993876263564744 Iteration 17: convergence error = 4.764798222822719e-5 Iteration 18: convergence error = 1.4194773029885255e-5 Iteration 19: convergence error = 4.2287169890187215e-6 Iteration 20: convergence error = 1.2597477052622708e-6 Iteration 21: convergence error = 3.752879820240196e-7 Iteration 22: convergence error = 1.1165002433699556e-7 Iteration 23: convergence error = 3.235390977351926e-8 Iteration 24: convergence error = 9.321865945821628e-9 Iteration 25: convergence error = 2.6723228074843064e-9 Iteration 26: convergence error = 7.685230229981244e-10 Iteration 27: convergence error = 2.1873347577638924e-10 Iteration 28: convergence error = 6.048139766789973e-11 Iteration 29: convergence error = 1.9099388737231493e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 9:58:36 Bin 1 ray tracing: 12%|███▌ | ETA: 0:00:34 Bin 1 ray tracing: 24%|███████▎ | ETA: 0:00:18 Bin 1 ray tracing: 37%|███████████ | ETA: 0:00:11 Bin 1 ray tracing: 49%|██████████████▋ | ETA: 0:00:08 Bin 1 ray tracing: 60%|██████████████████▏ | ETA: 0:00:06 Bin 1 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:04 Bin 1 ray tracing: 84%|█████████████████████████▍ | ETA: 0:00:02 Bin 1 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 10%|███▏ | ETA: 0:00:09 Bin 2 ray tracing: 21%|██████▎ | ETA: 0:00:08 Bin 2 ray tracing: 33%|█████████▊ | ETA: 0:00:06 Bin 2 ray tracing: 45%|█████████████▍ | ETA: 0:00:05 Bin 2 ray tracing: 57%|█████████████████▏ | ETA: 0:00:04 Bin 2 ray tracing: 69%|████████████████████▊ | ETA: 0:00:03 Bin 2 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:02 Bin 2 ray tracing: 93%|███████████████████████████▊ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:08 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 12%|███▋ | ETA: 0:00:08 Bin 3 ray tracing: 24%|███████ | ETA: 0:00:07 Bin 3 ray tracing: 34%|██████████▍ | ETA: 0:00:06 Bin 3 ray tracing: 47%|██████████████ | ETA: 0:00:05 Bin 3 ray tracing: 59%|█████████████████▋ | ETA: 0:00:04 Bin 3 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:03 Bin 3 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:02 Bin 3 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 13%|████ | ETA: 0:00:06 Bin 4 ray tracing: 27%|████████▏ | ETA: 0:00:05 Bin 4 ray tracing: 41%|████████████▏ | ETA: 0:00:04 Bin 4 ray tracing: 54%|████████████████▏ | ETA: 0:00:04 Bin 4 ray tracing: 66%|███████████████████▉ | ETA: 0:00:03 Bin 4 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:02 Bin 4 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 12%|███▋ | ETA: 0:00:07 Bin 5 ray tracing: 24%|███████▍ | ETA: 0:00:06 Bin 5 ray tracing: 37%|███████████▎ | ETA: 0:00:05 Bin 5 ray tracing: 50%|███████████████ | ETA: 0:00:04 Bin 5 ray tracing: 62%|██████████████████▌ | ETA: 0:00:03 Bin 5 ray tracing: 73%|██████████████████████ | ETA: 0:00:02 Bin 5 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:01 Bin 5 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:08 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 10%|███ | ETA: 0:00:09 Bin 6 ray tracing: 20%|█████▉ | ETA: 0:00:08 Bin 6 ray tracing: 31%|█████████▏ | ETA: 0:00:07 Bin 6 ray tracing: 43%|████████████▉ | ETA: 0:00:05 Bin 6 ray tracing: 55%|████████████████▋ | ETA: 0:00:04 Bin 6 ray tracing: 67%|████████████████████▏ | ETA: 0:00:03 Bin 6 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:02 Bin 6 ray tracing: 92%|███████████████████████████▊ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:08 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 12%|███▋ | ETA: 0:00:07 Bin 7 ray tracing: 25%|███████▍ | ETA: 0:00:06 Bin 7 ray tracing: 37%|███████████▏ | ETA: 0:00:05 Bin 7 ray tracing: 50%|███████████████ | ETA: 0:00:04 Bin 7 ray tracing: 63%|██████████████████▉ | ETA: 0:00:03 Bin 7 ray tracing: 75%|██████████████████████▋ | ETA: 0:00:02 Bin 7 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:08 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 13%|███▉ | ETA: 0:00:07 Bin 8 ray tracing: 27%|████████ | ETA: 0:00:06 Bin 8 ray tracing: 40%|████████████▏ | ETA: 0:00:04 Bin 8 ray tracing: 54%|████████████████▏ | ETA: 0:00:03 Bin 8 ray tracing: 67%|████████████████████▏ | ETA: 0:00:02 Bin 8 ray tracing: 80%|████████████████████████▏ | ETA: 0:00:01 Bin 8 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 12%|███▊ | ETA: 0:00:07 Bin 9 ray tracing: 25%|███████▌ | ETA: 0:00:06 Bin 9 ray tracing: 38%|███████████▍ | ETA: 0:00:05 Bin 9 ray tracing: 51%|███████████████▎ | ETA: 0:00:04 Bin 9 ray tracing: 63%|███████████████████ | ETA: 0:00:03 Bin 9 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:02 Bin 9 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:08 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 13%|███▉ | ETA: 0:00:07 Bin 10 ray tracing: 27%|███████▊ | ETA: 0:00:06 Bin 10 ray tracing: 38%|███████████▏ | ETA: 0:00:05 Bin 10 ray tracing: 50%|██████████████▍ | ETA: 0:00:04 Bin 10 ray tracing: 61%|█████████████████▊ | ETA: 0:00:03 Bin 10 ray tracing: 73%|█████████████████████▏ | ETA: 0:00:02 Bin 10 ray tracing: 84%|████████████████████████▍ | ETA: 0:00:01 Bin 10 ray tracing: 95%|███████████████████████████▋ | ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:08 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 29%|█████████▌ | ETA: 0:00:03 Bin 1 progress: 56%|██████████████████▍ | ETA: 0:00:02 Bin 1 progress: 87%|████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 31%|██████████▎ | ETA: 0:00:02 Bin 2 progress: 62%|████████████████████▌ | ETA: 0:00:01 Bin 2 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 31%|██████████▎ | ETA: 0:00:02 Bin 3 progress: 62%|████████████████████▌ | ETA: 0:00:01 Bin 3 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 31%|██████████▎ | ETA: 0:00:02 Bin 4 progress: 62%|████████████████████▌ | ETA: 0:00:01 Bin 4 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 31%|██████████▎ | ETA: 0:00:02 Bin 5 progress: 62%|████████████████████▌ | ETA: 0:00:01 Bin 5 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 29%|█████████▌ | ETA: 0:00:02 Bin 6 progress: 60%|███████████████████▊ | ETA: 0:00:01 Bin 6 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 33%|███████████ | ETA: 0:00:02 Bin 7 progress: 64%|█████████████████████▎ | ETA: 0:00:01 Bin 7 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 31%|██████████▎ | ETA: 0:00:02 Bin 8 progress: 62%|████████████████████▌ | ETA: 0:00:01 Bin 8 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 31%|██████████▎ | ETA: 0:00:02 Bin 9 progress: 64%|█████████████████████▎ | ETA: 0:00:01 Bin 9 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 33%|██████████▋ | ETA: 0:00:02 Bin 10 progress: 64%|████████████████████▋ | ETA: 0:00:01 Bin 10 progress: 89%|████████████████████████████▌ | ETA: 0:00:00 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:03 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015838544755093305 Iteration 10: d = 2.0508246091540074e-5 Iteration 20: d = 2.534419952851594e-7 Iteration 30: d = 3.3247479988149652e-9 Iteration 40: d = 4.407999139000057e-11 Iteration 50: d = 5.866556661386141e-13 Iteration 60: d = 7.849374217282475e-15 Converged after 63 iterations. d = 2.112009703876295e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013554975144555654 Iteration 10: d = 1.6657937128523768e-5 Iteration 20: d = 2.189782252232956e-7 Iteration 30: d = 3.0043736623055337e-9 Iteration 40: d = 4.1688427423957106e-11 Iteration 50: d = 5.8185961932905e-13 Iteration 60: d = 8.155923372632406e-15 Converged after 64 iterations. d = 1.4641293012859923e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014844178826882751 Iteration 10: d = 1.863269814975818e-5 Iteration 20: d = 2.2967500145533405e-7 Iteration 30: d = 3.0977587060576854e-9 Iteration 40: d = 4.301863949186791e-11 Iteration 50: d = 6.050356926844551e-13 Iteration 60: d = 8.571390066426237e-15 Converged after 64 iterations. d = 1.549409605935397e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015758586143434857 Iteration 10: d = 1.0190622577610268e-5 Iteration 20: d = 7.539135103661458e-8 Iteration 30: d = 8.750928908628017e-10 Iteration 40: d = 1.2028462670811553e-11 Iteration 50: d = 1.7097312781475064e-13 Iteration 60: d = 2.3990477592587636e-15 Converged after 61 iterations. d = 1.5860177952582712e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012858917725551873 Iteration 10: d = 1.4828964215853307e-5 Iteration 20: d = 1.9468959167890353e-7 Iteration 30: d = 2.7318771921526536e-9 Iteration 40: d = 3.8701023930283495e-11 Iteration 50: d = 5.495591537247453e-13 Iteration 60: d = 7.825653960542315e-15 Converged after 63 iterations. d = 2.1846530306646934e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012625902865505204 Iteration 10: d = 1.0300803573239301e-5 Iteration 20: d = 9.094082521077418e-8 Iteration 30: d = 1.1232471172777042e-9 Iteration 40: d = 1.514761475241518e-11 Iteration 50: d = 2.0876181534189733e-13 Iteration 60: d = 2.9088511873421853e-15 Converged after 61 iterations. d = 1.912588183374038e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015747765246514327 Iteration 10: d = 2.1462049762818116e-5 Iteration 20: d = 2.6915622375634205e-7 Iteration 30: d = 3.517819059719929e-9 Iteration 40: d = 4.6373294848928695e-11 Iteration 50: d = 6.140785557994218e-13 Iteration 60: d = 8.131939919516929e-15 Converged after 64 iterations. d = 1.4310797338683461e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001541751670191066 Iteration 10: d = 1.4322154267436549e-5 Iteration 20: d = 1.847514354008635e-7 Iteration 30: d = 2.5814179281486933e-9 Iteration 40: d = 3.619034850884506e-11 Iteration 50: d = 5.075398403953768e-13 Iteration 60: d = 7.135246022062883e-15 Converged after 63 iterations. d = 1.980018025072374e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012518358855009646 Iteration 10: d = 1.1579697405893535e-5 Iteration 20: d = 1.198553833211058e-7 Iteration 30: d = 1.4132622637321732e-9 Iteration 40: d = 1.7616091885902098e-11 Iteration 50: d = 2.2633303692587223e-13 Iteration 60: d = 2.9596682179741304e-15 Converged after 61 iterations. d = 1.9011656430629387e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014353805028864816 Iteration 10: d = 1.2595910553733068e-5 Iteration 20: d = 1.516242924033057e-7 Iteration 30: d = 2.0744922248575548e-9 Iteration 40: d = 2.873951416580186e-11 Iteration 50: d = 3.9912501001111546e-13 Iteration 60: d = 5.54599382578752e-15 Converged after 63 iterations. d = 1.5192944173048534e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.141718736548 Iteration 2: convergence error = 4817.067732462991 Iteration 3: convergence error = 1096.825679680489 Iteration 4: convergence error = 320.38473708122524 Iteration 5: convergence error = 95.23072618212814 Iteration 6: convergence error = 28.459936522213184 Iteration 7: convergence error = 8.514551843821891 Iteration 8: convergence error = 2.5466827441123314 Iteration 9: convergence error = 0.7617911507420558 Iteration 10: convergence error = 0.22804003135206585 Iteration 11: convergence error = 0.06821123711802102 Iteration 12: convergence error = 0.020394484876078423 Iteration 13: convergence error = 0.006096242537751095 Iteration 14: convergence error = 0.0018220077404293988 Iteration 15: convergence error = 0.0005445061437967524 Iteration 16: convergence error = 0.00016271773074549856 Iteration 17: convergence error = 4.8624496230331715e-5 Iteration 18: convergence error = 1.4530095768350293e-5 Iteration 19: convergence error = 4.341874046076555e-6 Iteration 20: convergence error = 1.2974355740880128e-6 Iteration 21: convergence error = 3.876916707667988e-7 Iteration 22: convergence error = 1.1571455615921877e-7 Iteration 23: convergence error = 3.3609012461965904e-8 Iteration 24: convergence error = 9.70044311543461e-9 Iteration 25: convergence error = 2.7987425710307434e-9 Iteration 26: convergence error = 7.996732165338472e-10 Iteration 27: convergence error = 2.3374013835564256e-10 Iteration 28: convergence error = 6.639311322942376e-11 Iteration 29: convergence error = 1.9326762412674725e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.3649630602015 K, F = -7435.924210667556, relative_change = 0.03263503693979851 Iter 2: T = 936.8066253857285 K, F = -6303.15284729127, relative_change = 0.031589254150577804 Iter 3: T = 908.2935205752525 K, F = -5341.430208353607, relative_change = 0.030436489279455893 Iter 5: T = 857.2638162216549 K, F = -3832.093848254531, relative_change = 0.027816119616238914 Iter 10: T = 762.44188673062 K, F = -1659.1366594632161, relative_change = 0.01988221095588157 Iter 15: T = 707.0039789545747 K, F = -710.2703895439801, relative_change = 0.011891306144609455 Iter 20: T = 678.5286710257212 K, F = -301.0052305944895, relative_change = 0.006080876793421924 Iter 25: T = 665.2608776815866 K, F = -126.70982304685003, relative_change = 0.0028068120912105067 Iter 30: T = 659.4224918496337 K, F = -53.14872890255978, relative_change = 0.0012273121491828637 Iter 35: T = 656.9252715610247 K, F = -22.255979757187024, relative_change = 0.0005232662532716573 Iter 40: T = 655.8707897715142 K, F = -9.31279125195994, relative_change = 0.00022063373495928196 Iter 45: T = 655.4279930147572 K, F = -3.895614232614754, relative_change = 9.258985884276931e-5 Iter 50: T = 655.2424930157023 K, F = -1.6293491603490673, relative_change = 3.8778119723396446e-5 Iter 55: T = 655.1648590680771 K, F = -0.6814407289623245, relative_change = 1.6227276631939116e-5 Iter 60: T = 655.1323818813155 K, F = -0.28499145467910714, relative_change = 6.788157109278122e-6 Iter 65: T = 655.1187978290251 K, F = -0.11918767019658771, relative_change = 2.8391886520340763e-6 Iter 70: T = 655.1131165178693 K, F = -0.04984585405734565, relative_change = 1.1874351288578491e-6 Iter 75: T = 655.1107404735244 K, F = -0.020846157156679923, relative_change = 4.966087395037429e-7 Iter 80: T = 655.1097467742784 K, F = -0.008718116372376905, relative_change = 2.0768931254558644e-7 Iter 85: T = 655.1093311957906 K, F = -0.0036460211687647237, relative_change = 8.685843188674434e-8 Iter 90: T = 655.1091573956247 K, F = -0.0015248097313323439, relative_change = 3.632528264295457e-8 Iter 95: T = 655.1090847102711 K, F = -0.000637693664266803, relative_change = 1.519167562653102e-8 Iter 100: T = 655.1090543123796 K, F = -0.00026669111083266195, relative_change = 6.353341691035818e-9 Iter 105: T = 655.1090415996168 K, F = -0.00011153340858355287, relative_change = 2.6570436410636656e-9 Iter 110: T = 655.1090362829873 K, F = -4.6644603139245344e-5, relative_change = 1.1112074177935764e-9 Iter 115: T = 655.1090340595093 K, F = -1.9507329521106787e-5, relative_change = 4.647202067678886e-10 Iter 120: T = 655.1090331296243 K, F = -8.158197700558478e-6, relative_change = 1.943515304735138e-10 Iter 125: T = 655.1090327407352 K, F = -3.4118554482209795e-6, relative_change = 8.128012513656645e-11 Iter 130: T = 655.1090325780972 K, F = -1.4268775808679024e-6, relative_change = 3.3992292529585206e-11 Iter 135: T = 655.10903251008 K, F = -5.967370639292646e-7, relative_change = 1.421597838689023e-11 Iter 140: T = 655.1090324816346 K, F = -2.495635670896057e-7, relative_change = 5.945315769853103e-12 Iter 145: T = 655.1090324697382 K, F = -1.0436991898510328e-7, relative_change = 2.4863890692477494e-12 Iter 150: T = 655.1090324647631 K, F = -4.3649578895799124e-8, relative_change = 1.0398574311741754e-12 Iter 155: T = 655.1090324626824 K, F = -1.825512363495818e-8, relative_change = 4.3488909742789184e-13 Converged in 159 iterations to T = 655.1090324619314 K Iter 1: T = 970.4745526461911 K, F = -6727.401265516476, relative_change = 0.02952544735380884 Iter 2: T = 943.1159125671923 K, F = -5697.750247447083, relative_change = 0.028190991720906104 Iter 3: T = 917.8785257346883 K, F = -4823.935506683881, relative_change = 0.026759581188495613 Iter 5: T = 873.5474382653366 K, F = -3453.6428749259353, relative_change = 0.02365248868696806 Iter 10: T = 795.0021860455756 K, F = -1486.1882502764017, relative_change = 0.015347506766114422 Iter 15: T = 752.3168244028545 K, F = -632.5054698024743, relative_change = 0.008377917163042486 Iter 20: T = 731.6360619472889 K, F = -266.94850850235184, relative_change = 0.004022780498737573 Iter 25: T = 722.3380539302149 K, F = -112.1192608848574, relative_change = 0.0017942216888592309 Iter 30: T = 718.3200593922668 K, F = -46.977959680241966, relative_change = 0.0007718918423819376 Iter 35: T = 716.6156680627781 K, F = -19.662569448798425, relative_change = 0.00032673999423064783 Iter 40: T = 715.8985620657405 K, F = -8.225917640279631, relative_change = 0.00013734548167043236 Iter 45: T = 715.5978979037974 K, F = -3.4406681723006614, relative_change = 5.7562681412758645e-5 Iter 50: T = 715.4720227015374 K, F = -1.4390145821087204, relative_change = 2.4095009632391204e-5 Iter 55: T = 715.4193567319222 K, F = -0.6018281473500754, relative_change = 1.008060517316753e-5 Iter 60: T = 715.3973270885772 K, F = -0.25169435400722745, relative_change = 4.2164917299081465e-6 Iter 65: T = 715.388113310278 K, F = -0.10526204569520192, relative_change = 1.7635030532447894e-6 Iter 70: T = 715.3842598724981 K, F = -0.04402192522973902, relative_change = 7.375383028054118e-7 Iter 75: T = 715.3826482968198 K, F = -0.018410508962879102, relative_change = 3.084508708151697e-7 Iter 80: T = 715.3819743127807 K, F = -0.00769949718175944, relative_change = 1.289984578002588e-7 Iter 85: T = 715.3816924439341 K, F = -0.003220022103435083, relative_change = 5.3948804038256395e-8 Iter 90: T = 715.3815745628987 K, F = -0.0013466517742408701, relative_change = 2.2562053097727377e-8 Iter 95: T = 715.3815252636214 K, F = -0.0005631858680957835, relative_change = 9.435723378558433e-9 Iter 100: T = 715.3815046460712 K, F = -0.0002355310577365488, relative_change = 3.946132775541731e-9 Iter 105: T = 715.3814960235649 K, F = -9.850190240179302e-5, relative_change = 1.6503199686801519e-9 Iter 110: T = 715.3814924175297 K, F = -4.119467265195631e-5, relative_change = 6.901835482836542e-10 Iter 115: T = 715.3814909094426 K, F = -1.7228103937672046e-5, relative_change = 2.8864300308213904e-10 Iter 120: T = 715.3814902787426 K, F = -7.2049982434707616e-6, relative_change = 1.2071394196658653e-10 Iter 125: T = 715.3814900149763 K, F = -3.0132164449137022e-6, relative_change = 5.0484014487057936e-11 Iter 130: T = 715.3814899046661 K, F = -1.2601624698183045e-6, relative_change = 2.111300717757819e-11 Iter 135: T = 715.3814898585331 K, F = -5.270146388181018e-7, relative_change = 8.829705789505059e-12 Iter 140: T = 715.3814898392397 K, F = -2.2040376401744055e-7, relative_change = 3.692687542394969e-12 Iter 145: T = 715.3814898311709 K, F = -9.217590812848897e-8, relative_change = 1.5443330978973607e-12 Iter 150: T = 715.3814898277965 K, F = -3.8548409131422545e-8, relative_change = 6.458475463165212e-13 Iter 155: T = 715.3814898263853 K, F = -1.6121728729778795e-8, relative_change = 2.701065796803156e-13 Converged in 157 iterations to T = 715.3814898260866 K Iter 1: T = 974.3787615113173 K, F = -5837.823561736081, relative_change = 0.025621238488682703 Iter 2: T = 950.9470105243926 K, F = -4939.054992037495, relative_change = 0.024047887651595243 Iter 3: T = 929.6303089174226 K, F = -4176.853689731359, relative_change = 0.022416287522913723 Iter 5: T = 892.9898838413487 K, F = -2983.116282851053, relative_change = 0.019062528698635194 Iter 10: T = 831.2438471973037 K, F = -1275.670940281694, relative_change = 0.011208767018772312 Iter 15: T = 799.8829305103332 K, F = -540.1765934356303, relative_change = 0.005660736028198101 Iter 20: T = 785.3757934599741 K, F = -227.28428085811893, relative_change = 0.0025944533564130016 Iter 25: T = 779.0161365483387 K, F = -95.31325859333657, relative_change = 0.0011305751416894494 Iter 30: T = 776.3007319285136 K, F = -39.908276010213555, relative_change = 0.0004812854506870965 Iter 35: T = 775.1550017353131 K, F = -16.698485613600848, relative_change = 0.00020279915017540654 Iter 40: T = 774.6740460975058 K, F = -6.984978977883362, relative_change = 8.508180207681293e-5 Iter 45: T = 774.4725881888803 K, F = -2.921459920469987, relative_change = 3.562945386965023e-5 Iter 50: T = 774.3882805702256 K, F = -1.2218346544620744, relative_change = 1.4908939476305697e-5 Iter 55: T = 774.3530123960996 K, F = -0.5109937579975175, relative_change = 6.236545264788066e-6 Iter 60: T = 774.3382611234094 K, F = -0.21370507650014825, relative_change = 2.6084511796514337e-6 Iter 65: T = 774.3320916674217 K, F = -0.08937425729705473, relative_change = 1.0909297731137585e-6 Iter 70: T = 774.3295114751974 K, F = -0.03737742410003608, relative_change = 4.562476147885093e-7 Iter 75: T = 774.3284323988911 K, F = -0.01563169254247343, relative_change = 1.9080955764564706e-7 Iter 80: T = 774.3279811147008 K, F = -0.006537361797226637, relative_change = 7.979907298374214e-8 Iter 85: T = 774.3277923819845 K, F = -0.00273400300310489, relative_change = 3.337296682278822e-8 Iter 90: T = 774.3277134516597 K, F = -0.0011433927451057757, relative_change = 1.3956980524138872e-8 Iter 95: T = 774.3276804420469 K, F = -0.00047818050701875503, relative_change = 5.836977194993679e-9 Iter 100: T = 774.3276666370311 K, F = -0.00019998080109517868, relative_change = 2.441093807423053e-9 Iter 105: T = 774.3276608636083 K, F = -8.363435926861396e-5, relative_change = 1.02089461902333e-9 Iter 110: T = 774.327658449094 K, F = -3.497688672360333e-5, relative_change = 4.269503143052042e-10 Iter 115: T = 774.3276574393153 K, F = -1.4627752554008389e-5, relative_change = 1.7855573135030295e-10 Iter 120: T = 774.3276570170137 K, F = -6.117501524682822e-6, relative_change = 7.467414817004069e-11 Iter 125: T = 774.3276568404023 K, F = -2.558414122888486e-6, relative_change = 3.122964411688873e-11 Iter 130: T = 774.327656766541 K, F = -1.0699592000174007e-6, relative_change = 1.3060608426279538e-11 Iter 135: T = 774.3276567356514 K, F = -4.4746850680343897e-7, relative_change = 5.462087667891165e-12 Iter 140: T = 774.3276567227331 K, F = -1.871370065575917e-7, relative_change = 2.284314360148903e-12 Iter 145: T = 774.3276567173305 K, F = -7.82626875528436e-8, relative_change = 9.5532457387966e-13 Iter 150: T = 774.327656715071 K, F = -3.272909365747978e-8, relative_change = 3.9951231461508493e-13 Converged in 154 iterations to T = 774.3276567142555 K Iter 1: T = 970.404295851679 K, F = -6743.409342977554, relative_change = 0.029595704148321075 Iter 2: T = 942.974074268938 K, F = -5711.417493897311, relative_change = 0.02826679735446427 Iter 3: T = 917.6642110796557 K, F = -4835.606751694856, relative_change = 0.02684046558639948 Iter 5: T = 873.1876778319568 K, F = -3462.156309214972, relative_change = 0.023741254407763705 Iter 10: T = 794.3064970979709 K, F = -1490.039328405962, relative_change = 0.015435715313793882 Iter 15: T = 751.3772611244931 K, F = -634.2146681021444, relative_change = 0.008440515889119255 Iter 20: T = 730.5564196898266 K, F = -267.6890766181799, relative_change = 0.004057273668611636 Iter 25: T = 721.1897685296437 K, F = -112.43451874294583, relative_change = 0.0018106324489145372 Iter 30: T = 717.1409135394058 K, F = -47.1108720010196, relative_change = 0.0007791558512798322 Iter 35: T = 715.4232034496279 K, F = -19.718349794724073, relative_change = 0.00032985253890647223 Iter 40: T = 714.7004523225875 K, F = -8.24928034476669, relative_change = 0.00013866059568062703 Iter 45: T = 714.3974139485312 K, F = -3.4504448495216793, relative_change = 5.8115049978924375e-5 Iter 50: T = 714.2705434706844 K, F = -1.443104378270502, relative_change = 2.4326433632155513e-5 Iter 55: T = 714.2174608523919 K, F = -0.6035387368678382, relative_change = 1.0177462509405438e-5 Iter 60: T = 714.1952568893508 K, F = -0.2524097758602133, relative_change = 4.257011412831432e-6 Iter 65: T = 714.1859701958308 K, F = -0.105561249411396, relative_change = 1.7804511059930448e-6 Iter 70: T = 714.1820862618231 K, F = -0.04414705680185038, relative_change = 7.446265722277579e-7 Iter 75: T = 714.1804619318712 K, F = -0.018462840655700252, relative_change = 3.114153381798309e-7 Iter 80: T = 714.1797826137749 K, F = -0.007721382950556355, relative_change = 1.3023824541384814e-7 Iter 85: T = 714.1794985141503 K, F = -0.003229174999098028, relative_change = 5.44673001252898e-8 Iter 90: T = 714.1793797001748 K, F = -0.0013504796260728202, relative_change = 2.277889473013552e-8 Iter 95: T = 714.1793300107303 K, F = -0.0005647867213885993, relative_change = 9.526409199239171e-9 Iter 100: T = 714.1793092300074 K, F = -0.00023620055438622334, relative_change = 3.984058690977654e-9 Iter 105: T = 714.1793005392605 K, F = -9.878189239376223e-5, relative_change = 1.6661810160723385e-9 Iter 110: T = 714.179296904686 K, F = -4.1311767206564376e-5, relative_change = 6.968168179389688e-10 Iter 115: T = 714.1792953846636 K, F = -1.727707443544002e-5, relative_change = 2.914171183526628e-10 Iter 120: T = 714.1792947489721 K, F = -7.225478759642634e-6, relative_change = 1.218741179616398e-10 Iter 125: T = 714.1792944831183 K, F = -3.0217799982246163e-6, relative_change = 5.096918624513066e-11 Iter 130: T = 714.1792943719352 K, F = -1.2637447982521977e-6, relative_change = 2.1315927722738997e-11 Iter 135: T = 714.1792943254371 K, F = -5.285146481570635e-7, relative_change = 8.914600526623693e-12 Iter 140: T = 714.1792943059909 K, F = -2.210316910611354e-7, relative_change = 3.728201737946914e-12 Iter 145: T = 714.1792942978583 K, F = -9.243837406636146e-8, relative_change = 1.5591832339126383e-12 Iter 150: T = 714.1792942944572 K, F = -3.865931963442648e-8, relative_change = 6.520772743856504e-13 Iter 155: T = 714.1792942930348 K, F = -1.616723943609344e-8, relative_change = 2.7269723123994076e-13 Converged in 157 iterations to T = 714.1792942927337 K Iter 1: T = 969.3053636484987 K, F = -6993.8020908265635, relative_change = 0.0306946363515013 Iter 2: T = 940.7512273078619 K, F = -5925.26189068621, relative_change = 0.02945834967131307 Iter 3: T = 914.2985931103598 K, F = -5018.289154949217, relative_change = 0.02811862842124723 Iter 5: T = 867.512448471648 K, F = -3595.5408218692346, relative_change = 0.025160561397500704 Iter 10: T = 783.1972253600148 K, F = -1550.6000906928061, relative_change = 0.01689350289515102 Iter 15: T = 736.2164056771496 K, F = -661.2134180954444, relative_change = 0.009506296228338613 Iter 20: T = 713.019893925361 K, F = -279.42817194789643, relative_change = 0.004656191228588307 Iter 25: T = 702.474709506309 K, F = -117.44190087685953, relative_change = 0.002098556591384861 Iter 30: T = 697.8927507967671 K, F = -49.224044173046714, relative_change = 0.0009072215848842911 Iter 35: T = 695.9443219423481 K, F = -20.605588596307346, relative_change = 0.0003848442101748643 Iter 40: T = 695.1236629830734 K, F = -8.620955913977772, relative_change = 0.00016191683664792974 Iter 45: T = 694.7794257033931 K, F = -3.6059936612671772, relative_change = 6.788678355756004e-5 Iter 50: T = 694.6352808147619 K, F = -1.5081759943333286, relative_change = 2.842112302747773e-5 Iter 55: T = 694.574966016857 K, F = -0.630755834808038, relative_change = 1.1891318669579359e-5 Iter 60: T = 694.5497361012742 K, F = -0.26379288120780925, relative_change = 4.974013037958802e-6 Iter 65: T = 694.5391836787484 K, F = -0.11032190322089425, relative_change = 2.0803528798762525e-6 Iter 70: T = 694.534770359853 K, F = -0.04613803713085329, relative_change = 8.700566205402355e-7 Iter 75: T = 694.5329246274898 K, F = -0.019295495564014553, relative_change = 3.6387300202626144e-7 Iter 80: T = 694.532152714979 K, F = -0.00806960972918358, relative_change = 1.5217689772589315e-7 Iter 85: T = 694.53182989104 K, F = -0.003374807692249626, relative_change = 6.364234687781948e-8 Iter 90: T = 694.5316948820546 K, F = -0.001411384972597185, relative_change = 2.661601588226388e-8 Iter 95: T = 694.5316384196568 K, F = -0.0005902580664937096, relative_change = 1.1131140304200498e-8 Iter 100: T = 694.5316148064029 K, F = -0.0002468529758967719, relative_change = 4.655176625239708e-9 Iter 105: T = 694.5316049310572 K, F = -0.00010323686276103583, relative_change = 1.946850594676763e-9 Iter 110: T = 694.5316008010697 K, F = -4.317488801652836e-5, relative_change = 8.141961751044039e-10 Iter 115: T = 694.5315990738595 K, F = -1.80562554100705e-5, relative_change = 3.405065986512117e-10 Iter 120: T = 694.5315983515196 K, F = -7.551341741685036e-6, relative_change = 1.4240392850293366e-10 Iter 125: T = 694.5315980494285 K, F = -3.15806125383844e-6, relative_change = 5.955502284425232e-11 Iter 130: T = 694.5315979230903 K, F = -1.3207406672766098e-6, relative_change = 2.490665454430645e-11 Iter 135: T = 694.5315978702541 K, F = -5.523496584558529e-7, relative_change = 1.0416262992928027e-11 Iter 140: T = 694.5315978481574 K, F = -2.3099883539323685e-7, relative_change = 4.3561982596443154e-12 Iter 145: T = 694.5315978389162 K, F = -9.660558453195023e-8, relative_change = 1.821797406555167e-12 Iter 150: T = 694.5315978350516 K, F = -4.040092282941998e-8, relative_change = 7.618844893038287e-13 Iter 155: T = 694.5315978334353 K, F = -1.6897281240879636e-8, relative_change = 3.1865055516995963e-13 Converged in 158 iterations to T = 694.531597832962 K Iter 1: T = 963.5758109290086 K, F = -8299.286128174048, relative_change = 0.03642418907099139 Iter 2: T = 929.0302201981644 K, F = -7042.1956262874455, relative_change = 0.035851450751485665 Iter 3: T = 896.3297436884615 K, F = -5974.5941991368545, relative_change = 0.03519850678563272 Iter 5: T = 836.3454216468649 K, F = -4298.028054020297, relative_change = 0.033622809168585635 Iter 10: T = 716.7353162050265 K, F = -1878.1806539124836, relative_change = 0.027889878641083474 Iter 15: T = 637.1828862489695 K, F = -813.2631206629178, relative_change = 0.01996999005429654 Iter 20: T = 590.6075526258257 K, F = -348.1954153670841, relative_change = 0.011965554454415798 Iter 25: T = 566.6554761046355 K, F = -147.5746264541541, relative_change = 0.006127156692942106 Iter 30: T = 555.4864314351415 K, F = -62.1255397608617, relative_change = 0.0028303765710551176 Iter 35: T = 550.569535108978 K, F = -26.059355923782967, relative_change = 0.0012380854099210829 Iter 40: T = 548.466049242805 K, F = -10.912453620179061, relative_change = 0.0005279490911080641 Iter 45: T = 547.5777507431287 K, F = -4.566228855231876, relative_change = 0.00022262452265962328 Iter 50: T = 547.2047238694165 K, F = -1.910093580034349, relative_change = 9.342819483714353e-5 Iter 55: T = 547.048450028498 K, F = -0.7989015037244065, relative_change = 3.912973782575602e-5 Iter 60: T = 546.9830471517346 K, F = -0.33412373118925853, relative_change = 1.637450578543383e-5 Iter 65: T = 546.9556866057671 K, F = -0.13973691126793375, relative_change = 6.8497613198066574e-6 Iter 70: T = 546.9442426494039 K, F = -0.05844006085375966, relative_change = 2.8649577320854407e-6 Iter 75: T = 546.9394563966445 K, F = -0.024440404087726797, relative_change = 1.1982130216485388e-6 Iter 80: T = 546.9374546842325 K, F = -0.010221281586772574, relative_change = 5.011163501656653e-7 Iter 85: T = 546.9366175364397 K, F = -0.004274664250905946, relative_change = 2.0957447840594452e-7 Iter 90: T = 546.9362674298784 K, F = -0.001787716028064018, relative_change = 8.764683584898136e-8 Iter 95: T = 546.9361210108962 K, F = -0.0007476442604255062, relative_change = 3.665500351047803e-8 Iter 100: T = 546.9360597766877 K, F = -0.0003126737708492866, relative_change = 1.5329568999240374e-8 Iter 105: T = 546.9360341678032 K, F = -0.00013076390723573694, relative_change = 6.4110103638723535e-9 Iter 110: T = 546.9360234578605 K, F = -5.468702835037531e-5, relative_change = 2.6811613817599664e-9 Iter 115: T = 546.9360189788345 K, F = -2.2870768495192317e-5, relative_change = 1.1212937601650033e-9 Iter 120: T = 546.9360171056521 K, F = -9.56482839645223e-6, relative_change = 4.689384431974584e-10 Iter 125: T = 546.9360163222649 K, F = -4.000125417014111e-6, relative_change = 1.9611565630767127e-10 Iter 130: T = 546.9360159946431 K, F = -1.6729003683157995e-6, relative_change = 8.201791704074217e-11 Iter 135: T = 546.9360158576277 K, F = -6.996270429104889e-7, relative_change = 3.4300878833028886e-11 Iter 140: T = 546.9360158003262 K, F = -2.9259219824773197e-7, relative_change = 1.4345028034994021e-11 Iter 145: T = 546.9360157763621 K, F = -1.223659230054075e-7, relative_change = 5.99928025052957e-12 Iter 150: T = 546.93601576634 K, F = -5.117499141116255e-8, relative_change = 2.5089756018693522e-12 Iter 155: T = 546.9360157621486 K, F = -2.1402095068401294e-8, relative_change = 1.0492885856303946e-12 Iter 160: T = 546.9360157603958 K, F = -8.950890834080738e-9, relative_change = 4.3883870030250817e-13 Converged in 164 iterations to T = 546.9360157597631 K Iter 1: T = 966.9111297862546 K, F = -7539.330553843244, relative_change = 0.03308887021374539 Iter 2: T = 935.8803828629032 K, F = -6391.592049732927, relative_change = 0.032092656674880815 Iter 3: T = 906.877333349212 K, F = -5417.115245155478, relative_change = 0.030990124426980122 Iter 5: T = 854.8231964876904 K, F = -3887.615729376738, relative_change = 0.02846646776336125 Iter 10: T = 757.3554093058646 K, F = -1684.8446209469887, relative_change = 0.02067138895569029 Iter 15: T = 699.644059416993 K, F = -722.0423896563359, relative_change = 0.012570433143508192 Iter 20: T = 669.6685981483909 K, F = -306.2442031916147, relative_change = 0.006509387965873817 Iter 25: T = 655.598892502785 K, F = -128.97690109213835, relative_change = 0.0030265148567456784 Iter 30: T = 649.383415708441 K, F = -54.11241792712224, relative_change = 0.00132809523444279 Iter 35: T = 646.7200367169542 K, F = -22.661929533612298, relative_change = 0.0005671399974616672 Iter 40: T = 645.5944870383743 K, F = -9.483091580190393, relative_change = 0.000239297650205723 Iter 45: T = 645.1216849634357 K, F = -3.96692929715314, relative_change = 0.0001004515403424822 Iter 50: T = 644.9235861410795 K, F = -1.6591904036062188, relative_change = 4.207587794419091e-5 Iter 55: T = 644.8406743841563 K, F = -0.6939235737990763, relative_change = 1.7608177378457508e-5 Iter 60: T = 644.8059884067585 K, F = -0.29021243375918837, relative_change = 7.365970846675855e-6 Iter 65: T = 644.7914803409053 K, F = -0.121371234236761, relative_change = 3.0808905553167757e-6 Iter 70: T = 644.7854125488375 K, F = -0.05075906205127806, relative_change = 1.2885270754259609e-6 Iter 75: T = 644.7828748652672 K, F = -0.02122807434540852, relative_change = 5.388882298022952e-7 Iter 80: T = 644.7818135651164 K, F = -0.008877839175770619, relative_change = 2.2537138562270692e-7 Iter 85: T = 644.781369714869 K, F = -0.0037128192343243716, relative_change = 9.425333588656947e-8 Iter 90: T = 644.7811840910715 K, F = -0.001552745495159047, relative_change = 3.941792854949263e-8 Iter 95: T = 644.781106460926 K, F = -0.0006493767363852654, relative_change = 1.6485058593950256e-8 Iter 100: T = 644.7810739950622 K, F = -0.00027157711132785867, relative_change = 6.894250156203633e-9 Iter 105: T = 644.7810604174485 K, F = -0.00011357679266865706, relative_change = 2.8832580745546365e-9 Iter 110: T = 644.7810547391279 K, F = -4.7499170388265455e-5, relative_change = 1.2058129929618187e-9 Iter 115: T = 644.7810523643865 K, F = -1.98647213787706e-5, relative_change = 5.042854299203121e-10 Iter 120: T = 644.7810513712412 K, F = -8.307663663165155e-6, relative_change = 2.1089818945118887e-10 Iter 125: T = 644.781050955896 K, F = -3.4743649590107673e-6, relative_change = 8.820016207975315e-11 Iter 130: T = 644.7810507821937 K, F = -1.4530214444974376e-6, relative_change = 3.688637451342903e-11 Iter 135: T = 644.7810507095493 K, F = -6.076707191327024e-7, relative_change = 1.5426317225861458e-11 Iter 140: T = 644.7810506791685 K, F = -2.5413545984287467e-7, relative_change = 6.451477912826154e-12 Iter 145: T = 644.7810506664629 K, F = -1.0628190699746298e-7, relative_change = 2.698070454298033e-12 Iter 150: T = 644.7810506611492 K, F = -4.4448040414923895e-8, relative_change = 1.1283571022348986e-12 Iter 155: T = 644.781050658927 K, F = -1.858845216640148e-8, relative_change = 4.718860905016318e-13 Converged in 160 iterations to T = 644.7810506579978 K Iter 1: T = 965.1580272167969 K, F = -7938.776641925261, relative_change = 0.03484197278320317 Iter 2: T = 932.2892984613928 K, F = -6733.419498999349, relative_change = 0.03405528196267175 Iter 3: T = 901.3643321038797 K, F = -5709.859981172562, relative_change = 0.0331709978957714 Iter 5: T = 845.232744909205 K, F = -4102.806949906913, relative_change = 0.031090719269499602 Iter 10: T = 736.7684208930018 K, F = -1785.4364547924677, relative_change = 0.0241158361267822 Iter 15: T = 668.8937893722316 K, F = -768.82289639153, relative_change = 0.01581140333549463 Iter 20: T = 631.7297068794755 K, F = -327.39337836523265, relative_change = 0.00870939244271988 Iter 25: T = 613.6234819471048 K, F = -138.2286682929487, relative_change = 0.004206256754930488 Iter 30: T = 605.4567973183008 K, F = -58.06807961904044, relative_change = 0.0018817217999389047 Iter 35: T = 601.922126293292 K, F = -24.332774452228332, relative_change = 0.0008106655159070285 Iter 40: T = 600.4216940200976 K, F = -10.184867276390971, relative_change = 0.0003433621291248188 Iter 45: T = 599.7902089196876 K, F = -4.260955305124228, relative_change = 0.0001443701281258388 Iter 50: T = 599.525409121167 K, F = -1.7822498301619478, relative_change = 6.051340086639341e-5 Iter 55: T = 599.4145427541382 K, F = -0.7454050268286774, relative_change = 2.533130790974115e-5 Iter 60: T = 599.3681553966461 K, F = -0.31174548713822403, relative_change = 1.0598038087465315e-5 Iter 65: T = 599.3487518479361 K, F = -0.13037712090125467, relative_change = 4.432958060662856e-6 Iter 70: T = 599.3406363869624 K, F = -0.05452552002747435, relative_change = 1.8540440539792906e-6 Iter 75: T = 599.3372422879077 K, F = -0.022803267552935547, relative_change = 7.754057639895112e-7 Iter 80: T = 599.3358228147969 K, F = -0.00953660649629573, relative_change = 3.242878684465066e-7 Iter 85: T = 599.3352291706303 K, F = -0.003988324070410221, relative_change = 1.3562174460480137e-7 Iter 90: T = 599.3349809009277 K, F = -0.0016679649917400452, relative_change = 5.671875310478851e-8 Iter 95: T = 599.3348770714642 K, F = -0.0006975629198917033, relative_change = 2.3720480859669713e-8 Iter 100: T = 599.3348336487236 K, F = -0.000291729150874942, relative_change = 9.920192041693111e-9 Iter 105: T = 599.3348154888115 K, F = -0.00012200461607536628, relative_change = 4.14874342315951e-9 Iter 110: T = 599.3348078941189 K, F = -5.1023788004922466e-5, relative_change = 1.7350541683626242e-9 Iter 115: T = 599.3348047179276 K, F = -2.1338757101307948e-5, relative_change = 7.256203790057777e-10 Iter 120: T = 599.3348033896065 K, F = -8.924123082953983e-6, relative_change = 3.0346311227652497e-10 Iter 125: T = 599.3348028340865 K, F = -3.7321741779838824e-6, relative_change = 1.2691187538306696e-10 Iter 130: T = 599.3348026017616 K, F = -1.5608395332322722e-6, relative_change = 5.307605252419484e-11 Iter 135: T = 599.3348025046006 K, F = -6.527614330731346e-7, relative_change = 2.219702884033953e-11 Iter 140: T = 599.3348024639668 K, F = -2.7299406102354595e-7, relative_change = 9.283111318646327e-12 Iter 145: T = 599.3348024469732 K, F = -1.1416990253199089e-7, relative_change = 3.8823259034017275e-12 Iter 150: T = 599.3348024398662 K, F = -4.7747558129529466e-8, relative_change = 1.6236466673778174e-12 Iter 155: T = 599.3348024368939 K, F = -1.9968647679835527e-8, relative_change = 6.790300808727818e-13 Iter 160: T = 599.3348024356509 K, F = -8.350560631864568e-9, relative_change = 2.8395923210012593e-13 Converged in 162 iterations to T = 599.3348024353879 K Iter 1: T = 980.1135340308814 K, F = -4531.150187976415, relative_change = 0.01988646596911858 Iter 2: T = 962.2720121095341 K, F = -3827.5039407014506, relative_change = 0.018203525716016813 Iter 3: T = 946.3547351663071 K, F = -3231.620738909189, relative_change = 0.016541348748502393 Iter 5: T = 919.7703207372507 K, F = -2300.5575971134967, relative_change = 0.01336816814346203 Iter 10: T = 877.5506783114939 K, F = -976.6966906459913, relative_change = 0.007026620414299732 Iter 15: T = 857.5580302936701 K, F = -411.5819649141918, relative_change = 0.0032959956755317468 Iter 20: T = 848.6837087754648 K, F = -172.72986170737227, relative_change = 0.0014526983813618875 Iter 25: T = 844.8723894217783 K, F = -72.34766273286193, relative_change = 0.0006215780447375658 Iter 30: T = 843.2601083277004 K, F = -30.276265539260645, relative_change = 0.0002624915267136427 Iter 35: T = 842.5825585686389 K, F = -12.66535367319354, relative_change = 0.0001102277689226232 Iter 40: T = 842.2986214501587 K, F = -5.297409033223101, relative_change = 4.617786929911101e-5 Iter 45: T = 842.1797741434407 K, F = -2.2155460178269086, relative_change = 1.932604112428049e-5 Iter 50: T = 842.1300530160715 K, F = -0.9265864062193476, relative_change = 8.08481571936199e-6 Iter 55: T = 842.1092559378156 K, F = -0.3875127551934653, relative_change = 3.381592475109909e-6 Iter 60: T = 842.1005578074083 K, F = -0.16206303132054667, relative_change = 1.4142968772235108e-6 Iter 65: T = 842.0969200502537 K, F = -0.06777679469145403, relative_change = 5.914888787834056e-7 Iter 70: T = 842.0953986801269 K, F = -0.028345082371988184, relative_change = 2.47369992740887e-7 Iter 75: T = 842.0947624220604 K, F = -0.011854255003650449, relative_change = 1.0345348392078662e-7 Iter 80: T = 842.0944963308294 K, F = -0.004957591542346318, relative_change = 4.326555219102047e-8 Iter 85: T = 842.0943850482099 K, F = -0.0020733240831793953, relative_change = 1.8094182831602262e-8 Iter 90: T = 842.0943385084738 K, F = -0.0008670889090018896, relative_change = 7.567205487319828e-9 Iter 95: T = 842.0943190449976 K, F = -0.000362626938062105, relative_change = 3.16469606409131e-9 Iter 100: T = 842.094310905139 K, F = -0.00015165491700996903, relative_change = 1.323513756631222e-9 Iter 105: T = 842.0943075009528 K, F = -6.342389786051505e-5, relative_change = 5.53509273476068e-10 Iter 110: T = 842.0943060772815 K, F = -2.6524631656865694e-5, relative_change = 2.3148419146489492e-10 Iter 115: T = 842.0943054818853 K, F = -1.1092919486310748e-5, relative_change = 9.680946903002991e-11 Iter 120: T = 842.0943052328834 K, F = -4.639191904631801e-6, relative_change = 4.048688050087804e-11 Iter 125: T = 842.0943051287478 K, F = -1.9401649313799396e-6, relative_change = 1.6932092353540786e-11 Iter 130: T = 842.0943050851971 K, F = -8.114031808670319e-7, relative_change = 7.081229732365438e-12 Iter 135: T = 842.0943050669837 K, F = -3.3933993592860645e-7, relative_change = 2.961467369842453e-12 Iter 140: T = 842.0943050593665 K, F = -1.419154604942463e-7, relative_change = 1.2385161929081017e-12 Iter 145: T = 842.0943050561809 K, F = -5.935061397899233e-8, relative_change = 5.179611595335949e-13 Converged in 150 iterations to T = 842.0943050548487 K Iter 1: T = 976.4338101395336 K, F = -5369.578776941069, relative_change = 0.02356618986046634 Iter 2: T = 955.0293437521306 K, F = -4540.337402523105, relative_change = 0.02192106230359272 Iter 3: T = 935.6949888078547 K, F = -3837.4198774765546, relative_change = 0.020244775797479565 Iter 5: T = 902.8157381884265 K, F = -2737.393566084475, relative_change = 0.016891909844824967 Iter 10: T = 848.6651694251033 K, F = -1167.2893563401049, relative_change = 0.009505183461662198 Iter 15: T = 821.9289701477172 K, F = -493.2949648941696, relative_change = 0.0046555780705046885 Iter 20: T = 809.774725549922 K, F = -207.32867141461185, relative_change = 0.0020982640668634474 Iter 25: T = 804.4936379490297 K, F = -86.89874217692773, relative_change = 0.0009070918625455081 Iter 30: T = 802.2479157595889 K, F = -36.376522686280815, relative_change = 0.00038478857445451597 Iter 35: T = 801.3020404705544 K, F = -15.219190856270275, relative_change = 0.00016189331972161534 Iter 40: T = 800.9052795103166 K, F = -6.365918739988012, relative_change = 6.787690432694242e-5 Iter 45: T = 800.7391410342385 K, F = -2.6624910240477524, relative_change = 2.841698364888377e-5 Iter 50: T = 800.6696234248218 K, F = -1.1135184154556168, relative_change = 1.1889586170658366e-5 Iter 55: T = 800.640543937891 K, F = -0.4656924510381839, relative_change = 4.9732882479136366e-6 Iter 60: T = 800.6283814306875 K, F = -0.19475915063208415, relative_change = 2.0800497223254683e-6 Iter 65: T = 800.6232947292676 K, F = -0.08145077866841188, relative_change = 8.699298291460146e-7 Iter 70: T = 800.6211673757634 K, F = -0.03406371913737616, relative_change = 3.638199750842935e-7 Iter 75: T = 800.6202776851364 K, F = -0.014245859529141147, relative_change = 1.5215472100104338e-7 Iter 80: T = 800.6199056048442 K, F = -0.005957789526558566, relative_change = 6.363307227697727e-8 Iter 85: T = 800.6197499962393 K, F = -0.002491618894033154, relative_change = 2.6612137133294347e-8 Iter 90: T = 800.6196849188304 K, F = -0.0010420248070130977, relative_change = 1.1129518185546772e-8 Iter 95: T = 800.6196577026753 K, F = -0.000435787223688866, relative_change = 4.654498226373924e-9 Iter 100: T = 800.6196463205532 K, F = -0.00018225142155803287, relative_change = 1.9465668787516368e-9 Iter 105: T = 800.6196415604136 K, F = -7.621972145310796e-5, relative_change = 8.140775430993021e-10 Iter 110: T = 800.6196395696663 K, F = -3.187599532328278e-5, relative_change = 3.404569285890344e-10 Iter 115: T = 800.6196387371122 K, F = -1.3330922663423728e-5, relative_change = 1.4238316205309265e-10 Iter 120: T = 800.6196383889279 K, F = -5.5751507748169615e-6, relative_change = 5.954633583336734e-11 Iter 125: T = 800.6196382433131 K, F = -2.331593904392193e-6, relative_change = 2.490298099296817e-11 Iter 130: T = 800.6196381824153 K, F = -9.751001360802647e-7, relative_change = 1.0414721070465262e-11 Iter 135: T = 800.6196381569472 K, F = -4.0779942811486336e-7, relative_change = 4.3555704075968e-12 Iter 140: T = 800.6196381462961 K, F = -1.7054715462094805e-7, relative_change = 1.8215575810093064e-12 Iter 145: T = 800.6196381418416 K, F = -7.132463608616746e-8, relative_change = 7.617947767448233e-13 Iter 150: T = 800.6196381399787 K, F = -2.983007829637785e-8, relative_change = 3.1860517043323023e-13 Converged in 153 iterations to T = 800.6196381394333 K Iter 1: T = 980.788417638683 K, F = -4377.377315958792, relative_change = 0.019211582361317054 Iter 2: T = 963.5911437335593 K, F = -3696.920018916387, relative_change = 0.017534132332564917 Iter 3: T = 948.2828097957291 K, F = -3120.786926225501, relative_change = 0.015886752423352593 Iter 5: T = 922.7961129404088 K, F = -2220.860372580074, relative_change = 0.012767682286583641 Iter 10: T = 882.5657831437519 K, F = -942.1728380121954, relative_change = 0.006635937432976273 Iter 15: T = 863.641655278245 K, F = -396.85921870457685, relative_change = 0.003092028156531405 Iter 20: T = 855.2719168068909 K, F = -166.51454602776687, relative_change = 0.001358290623161424 Iter 25: T = 851.6834486860001 K, F = -69.73743957064235, relative_change = 0.0005803129528784421 Iter 30: T = 850.1665867485739 K, F = -29.182672354091604, relative_change = 0.0002449065881004628 Iter 35: T = 849.5293426855341 K, F = -12.2076514361122, relative_change = 0.00010281507821834845 Iter 40: T = 849.2623328024506 K, F = -5.105931200369879, relative_change = 4.306747929157843e-5 Iter 45: T = 849.1505771374703 K, F = -2.1354569566922446, relative_change = 1.802342829254012e-5 Iter 50: T = 849.1038240052818 K, F = -0.8930903233061588, relative_change = 7.53973031764573e-6 Iter 55: T = 849.084268560737 K, F = -0.3735039641560348, relative_change = 3.1535757433755676e-6 Iter 60: T = 849.0760897633338 K, F = -0.15620433003562217, relative_change = 1.318927846098556e-6 Iter 65: T = 849.0726692091565 K, F = -0.06532660577502147, relative_change = 5.516027123886114e-7 Iter 70: T = 849.0712386779575 K, F = -0.02732038234680445, relative_change = 2.306888245305879e-7 Iter 75: T = 849.0706404101737 K, F = -0.011425712903877061, relative_change = 9.647716816439027e-8 Iter 80: T = 849.0703902069955 K, F = -0.004778370067520354, relative_change = 4.034796456457207e-8 Iter 85: T = 849.0702855689601 K, F = -0.0019983715104798794, relative_change = 1.6874011234842108e-8 Iter 90: T = 849.0702418080705 K, F = -0.0008357428431353675, relative_change = 7.056914848523993e-9 Iter 95: T = 849.0702235067415 K, F = -0.00034951764247859174, relative_change = 2.9512864087573328e-9 Iter 100: T = 849.0702158529067 K, F = -0.00014617245110537525, relative_change = 1.2342632656207145e-9 Iter 105: T = 849.0702126519816 K, F = -6.113106607785745e-5, relative_change = 5.16183658629902e-10 Iter 110: T = 849.0702113133165 K, F = -2.556574163881109e-5, relative_change = 2.1587417004907566e-10 Iter 115: T = 849.0702107534707 K, F = -1.0691900146353461e-5, relative_change = 9.028117041141777e-11 Iter 120: T = 849.0702105193365 K, F = -4.471480046674969e-6, relative_change = 3.7756661312706233e-11 Iter 125: T = 849.0702104214187 K, F = -1.8700238011426507e-6, relative_change = 1.5790265104216387e-11 Iter 130: T = 849.0702103804683 K, F = -7.820673155745084e-7, relative_change = 6.6036861335959594e-12 Iter 135: T = 849.0702103633424 K, F = -3.2706787300718076e-7, relative_change = 2.7617233643667055e-12 Iter 140: T = 849.0702103561802 K, F = -1.367831286014365e-7, relative_change = 1.154980948301949e-12 Iter 145: T = 849.0702103531848 K, F = -5.720305829015615e-8, relative_change = 4.830160209550299e-13 Converged in 150 iterations to T = 849.0702103519322 K Iter 1: T = 967.3493922474443 K, F = -7439.472035165968, relative_change = 0.032650607752555794 Iter 2: T = 936.7748694674458 K, F = -6306.186806960798, relative_change = 0.031606494018634405 Iter 3: T = 908.2450059022137 K, F = -5344.026254929385, relative_change = 0.030455410894456688 Iter 5: T = 857.1803594856034 K, F = -3833.9975343782594, relative_change = 0.0278382427468609 Iter 10: T = 762.2689156856082 K, F = -1660.0165558076424, relative_change = 0.019908665415717855 Iter 15: T = 706.7550965751012 K, F = -710.6722306767922, relative_change = 0.011913718566870306 Iter 20: T = 678.2302833859133 K, F = -301.18361313363357, relative_change = 0.006094850448325419 Iter 25: T = 664.9362345733795 K, F = -126.78688767611838, relative_change = 0.002813926770269564 Iter 30: T = 659.0855547100872 K, F = -53.18145942573836, relative_change = 0.001230564656675241 Iter 35: T = 656.5829281229123 K, F = -22.269761895872662, relative_change = 0.0005246799799906752 Iter 40: T = 655.5261360480038 K, F = -9.318572011409975, relative_change = 0.00022123473485056164 Iter 45: T = 655.0823642437947 K, F = -3.8980348090851593, relative_change = 9.284294275581885e-5 Iter 50: T = 654.8964549012065 K, F = -1.630362000725372, relative_change = 3.888426883612939e-5 Iter 55: T = 654.8186494858398 K, F = -0.6818644031733412, relative_change = 1.6271723218796655e-5 Iter 60: T = 654.7861005409591 K, F = -0.28516865644776135, relative_change = 6.8067546179922345e-6 Iter 65: T = 654.772486470118 K, F = -0.11926178091779693, relative_change = 2.8469679999156643e-6 Iter 70: T = 654.7667926033679 K, F = -0.04987684854012531, relative_change = 1.1906888332842043e-6 Iter 75: T = 654.7644113078649 K, F = -0.020859119506022206, relative_change = 4.979695279716799e-7 Iter 80: T = 654.7634154124765 K, F = -0.008723537395881553, relative_change = 2.0825841933079797e-7 Iter 85: T = 654.762998915528 K, F = -0.0036482883079518302, relative_change = 8.709644067782022e-8 Iter 90: T = 654.7628247312496 K, F = -0.001525757877153311, relative_change = 3.642482104760974e-8 Iter 95: T = 654.762751885255 K, F = -0.0006380901898325742, relative_change = 1.5233303813262136e-8 Iter 100: T = 654.7627214201816 K, F = -0.00026685694161426854, relative_change = 6.370751081242607e-9 Iter 105: T = 654.7627086793226 K, F = -0.00011160276070826258, relative_change = 2.6643244504715185e-9 Iter 110: T = 654.762703350943 K, F = -4.667360757643069e-5, relative_change = 1.1142523525982956e-9 Iter 115: T = 654.7627011225509 K, F = -1.951945987815895e-5, relative_change = 4.659936433559466e-10 Iter 120: T = 654.7627001906106 K, F = -8.163271493000224e-6, relative_change = 1.948841143274371e-10 Iter 125: T = 654.7626998008622 K, F = -3.413977145649838e-6, relative_change = 8.150285272517726e-11 Iter 130: T = 654.7626996378647 K, F = -1.4277654026284559e-6, relative_change = 3.4085451808817183e-11 Iter 135: T = 654.7626995696972 K, F = -5.971089123701923e-7, relative_change = 1.4254951849813136e-11 Iter 140: T = 654.7626995411888 K, F = -2.4971831907860675e-7, relative_change = 5.9615968569110736e-12 Iter 145: T = 654.7626995292662 K, F = -1.0443524006698013e-7, relative_change = 2.4932123573683615e-12 Iter 150: T = 654.76269952428 K, F = -4.367578937403138e-8, relative_change = 1.042684612198543e-12 Iter 155: T = 654.7626995221948 K, F = -1.826689882689081e-8, relative_change = 4.3609090053447614e-13 Converged in 159 iterations to T = 654.7626995214421 K Iter 1: T = 973.5339134267778 K, F = -6030.323001456424, relative_change = 0.02646608657322228 Iter 2: T = 949.2608359773726 K, F = -5103.098492560071, relative_change = 0.024932955200261512 Iter 3: T = 927.1131913789294 K, F = -4316.63054853227, relative_change = 0.02333146355462956 Iter 5: T = 888.8712882727967 K, F = -3084.5165440371366, relative_change = 0.0200015477836832 Iter 10: T = 823.7742113584945 K, F = -1320.6827795538247, relative_change = 0.011992755082050712 Iter 15: T = 790.2814150668897 K, F = -559.7600949851144, relative_change = 0.006144265944372139 Iter 20: T = 774.6587054391946 K, F = -235.6508394471159, relative_change = 0.0028391241146697244 Iter 25: T = 767.7800884590177 K, F = -98.84772920708521, relative_change = 0.001242091827307024 Iter 30: T = 764.8371428407809 K, F = -41.39303950635947, relative_change = 0.0005296919058312084 Iter 35: T = 763.5943009975912 K, F = -17.32061847267265, relative_change = 0.00022336567515857182 Iter 40: T = 763.072381928359 K, F = -7.2453723799089325, relative_change = 9.374034224523429e-5 Iter 45: T = 762.853730707134 K, F = -3.0303964598648587, relative_change = 3.9260667339822407e-5 Iter 50: T = 762.762221761007 K, F = -1.2673996847041942, relative_change = 1.642932975603115e-5 Iter 55: T = 762.7239399993697 K, F = -0.530050730109997, relative_change = 6.872701213090594e-6 Iter 60: T = 762.7079280747007 K, F = -0.2216751279382977, relative_change = 2.8745535438851275e-6 Iter 65: T = 762.7012313406174 K, F = -0.09270746264652618, relative_change = 1.2022264676672687e-6 Iter 70: T = 762.698430624184 K, F = -0.03877141644442239, relative_change = 5.027948846924261e-7 Iter 75: T = 762.6972593202337 K, F = -0.016214677850125203, relative_change = 2.1027647271368703e-7 Iter 80: T = 762.6967694650286 K, F = -0.006781173400735363, relative_change = 8.794042022725393e-8 Iter 85: T = 762.6965646013987 K, F = -0.002835967959356034, relative_change = 3.6777784360725747e-8 Iter 90: T = 762.6964789249237 K, F = -0.0011860357134817479, relative_change = 1.53809174396369e-8 Iter 95: T = 762.6964430939885 K, F = -0.0004960143061297773, relative_change = 6.432484883224625e-9 Iter 100: T = 762.6964281090618 K, F = -0.0002074391069786241, relative_change = 2.690142256304174e-9 Iter 105: T = 762.6964218421862 K, F = -8.675351213893734e-5, relative_change = 1.1250496659820677e-9 Iter 110: T = 762.6964192213038 K, F = -3.628135489752715e-5, relative_change = 4.705092147889272e-10 Iter 115: T = 762.6964181252195 K, F = -1.5173294479087218e-5, relative_change = 1.967725554938485e-10 Iter 120: T = 762.696417666824 K, F = -6.345651862194046e-6, relative_change = 8.229261868556623e-11 Iter 125: T = 762.6964174751175 K, F = -2.6538281925336804e-6, relative_change = 3.441576634035951e-11 Iter 130: T = 762.6964173949435 K, F = -1.1098622527683233e-6, relative_change = 1.4393079434396027e-11 Iter 135: T = 762.696417361414 K, F = -4.6415839582980567e-7, relative_change = 6.019367399922842e-12 Iter 140: T = 762.6964173473915 K, F = -1.9411757889997716e-7, relative_change = 2.517384230863295e-12 Iter 145: T = 762.6964173415271 K, F = -8.118359073883141e-8, relative_change = 1.0528170209849011e-12 Iter 150: T = 762.6964173390744 K, F = -3.3950852684760946e-8, relative_change = 4.4028645762914713e-13 Converged in 154 iterations to T = 762.6964173381891 K Iter 1: T = 969.9868190181562 K, F = -6838.531836618701, relative_change = 0.03001318098184382 Iter 2: T = 942.1305745200858 K, F = -5792.6408859471385, relative_change = 0.02871816807394053 Iter 3: T = 916.3886059768857 K, F = -4904.978877360126, relative_change = 0.02732314313895694 Iter 5: T = 871.0423765748901 K, F = -3512.779216635906, relative_change = 0.024273548906226412 Iter 10: T = 790.1372044810995 K, F = -1512.9734802665153, relative_change = 0.01597185713977081 Iter 15: T = 745.72266352072 K, F = -644.4116969889484, relative_change = 0.008825562127378155 Iter 20: T = 724.0416392750072 K, F = -272.11341114938097, relative_change = 0.004271093712816365 Iter 25: T = 714.2514280703023 K, F = -114.3194372256238, relative_change = 0.0019127756634588447 Iter 30: T = 710.0116921534808 K, F = -47.905855189427875, relative_change = 0.0008244536442374875 Iter 35: T = 708.2115121312946 K, F = -20.052043400593107, relative_change = 0.00034927817491020043 Iter 40: T = 707.4537898565643 K, F = -8.389052796326842, relative_change = 0.00014687121956161205 Iter 45: T = 707.136040486857 K, F = -3.508937754334756, relative_change = 6.15641538223868e-5 Iter 50: T = 707.0030026057173 K, F = -1.4675735475399296, relative_change = 2.5771583219217754e-5 Iter 55: T = 706.9473380584802 K, F = -0.613773215791604, relative_change = 1.0782313332644652e-5 Iter 60: T = 706.9240538383204 K, F = -0.25669016369347525, relative_change = 4.51004987614963e-6 Iter 65: T = 706.9143152872447 K, F = -0.1073513948510193, relative_change = 1.8862892697632067e-6 Iter 70: T = 706.9102423668184 K, F = -0.04489572332143321, relative_change = 7.888918850934019e-7 Iter 75: T = 706.9085389980069 K, F = -0.018775943039028298, relative_change = 3.299280629548881e-7 Iter 80: T = 706.9078266244815 K, F = -0.007852326299762735, relative_change = 1.3798056536604829e-7 Iter 85: T = 706.9075287006054 K, F = -0.0032839371045747523, relative_change = 5.7705244309727243e-8 Iter 90: T = 706.9074041051496 K, F = -0.0013733817959032946, relative_change = 2.4133043978811053e-8 Iter 95: T = 706.9073519978188 K, F = -0.0005743646815818959, relative_change = 1.0092730969947056e-8 Iter 100: T = 706.9073302059065 K, F = -0.0002402061698226765, relative_change = 4.220901254736958e-9 Iter 105: T = 706.907321092268 K, F = -0.00010045708954287136, relative_change = 1.7652314328094539e-9 Iter 110: T = 706.9073172808355 K, F = -4.201235429113215e-5, relative_change = 7.382408807807592e-10 Iter 115: T = 706.9073156868488 K, F = -1.757006807701078e-5, relative_change = 3.087411522315178e-10 Iter 120: T = 706.9073150202246 K, F = -7.3480140293513685e-6, relative_change = 1.2911926796626298e-10 Iter 125: T = 706.9073147414344 K, F = -3.0730273329337976e-6, relative_change = 5.399922194334721e-11 Iter 130: T = 706.907314624841 K, F = -1.2851769021215986e-6, relative_change = 2.258312254006871e-11 Iter 135: T = 706.9073145760802 K, F = -5.37476899986622e-7, relative_change = 9.444541587078662e-12 Iter 140: T = 706.907314555688 K, F = -2.247807533439783e-7, relative_change = 3.949846352980919e-12 Iter 145: T = 706.9073145471596 K, F = -9.400564404682399e-8, relative_change = 1.6518667403480584e-12 Iter 150: T = 706.9073145435929 K, F = -3.9314082544983364e-8, relative_change = 6.908268758051261e-13 Iter 155: T = 706.9073145421013 K, F = -1.644097258335364e-8, relative_change = 2.889006938435944e-13 Converged in 157 iterations to T = 706.9073145417856 K Iter 1: T = 973.4786088292286 K, F = -6042.924206616242, relative_change = 0.02652139117077139 Iter 2: T = 949.1502959606795 K, F = -5113.839524764871, relative_change = 0.024991111923669266 Iter 3: T = 926.9479265170588 K, F = -4325.785232180098, relative_change = 0.023391837455151 Iter 5: T = 888.6000257477893 K, F = -3091.162212080141, relative_change = 0.02006401052773033 Iter 10: T = 823.2785672851609 K, F = -1323.6391025477815, relative_change = 0.012045972658882565 Iter 15: T = 789.640909700101 K, F = -561.0489315946321, relative_change = 0.006177587348482951 Iter 20: T = 773.9416564793936 K, F = -236.20219628095032, relative_change = 0.002856131484415187 Iter 25: T = 767.0272466348795 K, F = -99.08081234876997, relative_change = 0.0012498761919444439 Iter 30: T = 764.0685691848554 K, F = -41.490984523062714, relative_change = 0.0005330772675860092 Iter 35: T = 762.8190059929716 K, F = -17.36166426526545, relative_change = 0.00022480518695770243 Iter 40: T = 762.2942504390747 K, F = -7.262553094164934, relative_change = 9.434658736846804e-5 Iter 45: T = 762.0744084483986 K, F = -3.0375842544442326, relative_change = 3.951495080284267e-5 Iter 50: T = 761.9824007143136 K, F = -1.2704061645288487, relative_change = 1.6535804774322178e-5 Iter 55: T = 761.9439102144524 K, F = -0.5313081561032903, relative_change = 6.917253216819412e-6 Iter 60: T = 761.9278109686087 K, F = -0.22220101254301294, relative_change = 2.893189727830887e-6 Iter 65: T = 761.9210777115057 K, F = -0.09292739632368918, relative_change = 1.2100210428060858e-6 Iter 70: T = 761.9182617199638 K, F = -0.03886339576250186, relative_change = 5.060547916015272e-7 Iter 75: T = 761.9170840276503 K, F = -0.016253144773475614, relative_change = 2.1163982613090467e-7 Iter 80: T = 761.9165915007327 K, F = -0.006797260740449174, relative_change = 8.851059465426773e-8 Iter 85: T = 761.9163855197567 K, F = -0.0028426958784296685, relative_change = 3.701623876036382e-8 Iter 90: T = 761.9162993759935 K, F = -0.001188849410496684, relative_change = 1.5480642038535016e-8 Iter 95: T = 761.9162633496327 K, F = -0.0004971910277628, relative_change = 6.4741909197123354e-9 Iter 100: T = 761.9162482829767 K, F = -0.0002079312265325095, relative_change = 2.707584228830744e-9 Iter 105: T = 761.9162419819208 K, F = -8.695932305813336e-5, relative_change = 1.1323441161737774e-9 Iter 110: T = 761.9162393467439 K, F = -3.636742546075933e-5, relative_change = 4.735598147593187e-10 Iter 115: T = 761.9162382446814 K, F = -1.5209290785245244e-5, relative_change = 1.9804836018032027e-10 Iter 120: T = 761.9162377837857 K, F = -6.3607062530390834e-6, relative_change = 8.282617936750611e-11 Iter 125: T = 761.9162375910337 K, F = -2.660122698561196e-6, relative_change = 3.463888934200028e-11 Iter 130: T = 761.9162375104225 K, F = -1.112495011668102e-6, relative_change = 1.4486396301551668e-11 Iter 135: T = 761.91623747671 K, F = -4.6525969799038336e-7, relative_change = 6.058396935679566e-12 Iter 140: T = 761.916237462611 K, F = -1.9457755207064054e-7, relative_change = 2.533699029622431e-12 Iter 145: T = 761.9162374567146 K, F = -8.137604790015018e-8, relative_change = 1.0596413173697571e-12 Iter 150: T = 761.9162374542486 K, F = -3.4031804818646094e-8, relative_change = 4.431464469164735e-13 Converged in 154 iterations to T = 761.9162374533586 K Iter 1: T = 964.3499538588717 K, F = -8122.8969252047, relative_change = 0.035650046141128267 Iter 2: T = 930.6269639533659 K, F = -6891.086585596842, relative_change = 0.03496965989427623 Iter 3: T = 898.80013406037 K, F = -5845.003164891261, relative_change = 0.03419934208417228 Iter 5: T = 840.7220806142703 K, F = -4202.38919129233, relative_change = 0.03236360316864535 Iter 10: T = 726.7248134537838 K, F = -1832.5527432567342, relative_change = 0.025952696438472832 Iter 15: T = 653.2455075555954 K, F = -791.2136161061579, relative_change = 0.017747356040187984 Iter 20: T = 611.7357450173064 K, F = -337.7639289144579, relative_change = 0.010158945786811218 Iter 25: T = 591.0167038292201 K, F = -142.84734650212138, relative_change = 0.005034092039303187 Iter 30: T = 581.5357477118866 K, F = -60.06273088354511, relative_change = 0.0022831635796936086 Iter 35: T = 577.4025536230756 K, F = -25.179353592214177, relative_change = 0.0009899529553090104 Iter 40: T = 575.6423052295079 K, F = -10.541198661257667, relative_change = 0.00042048702930985206 Iter 45: T = 574.9004204641209 K, F = -4.41038534971582, relative_change = 0.0001770117018447252 Iter 50: T = 574.5891395633785 K, F = -1.8448152880349746, relative_change = 7.423308574288896e-5 Iter 55: T = 574.4587794593132 K, F = -0.77158329581988, relative_change = 3.1081106894880455e-5 Iter 60: T = 574.4042299727896 K, F = -0.32269576752643986, relative_change = 1.3004787411545193e-5 Iter 65: T = 574.3814112400427 K, F = -0.1349570467203102, relative_change = 5.439859597237024e-6 Iter 70: T = 574.3718672135706 K, F = -0.056440967544596765, relative_change = 2.275207080850814e-6 Iter 75: T = 574.3678756197987 K, F = -0.023604342447540838, relative_change = 9.515525034752197e-7 Iter 80: T = 574.366206258242 K, F = -0.00987162765977273, relative_change = 3.979565206232336e-7 Iter 85: T = 574.3655081061655 K, F = -0.004128434284721538, relative_change = 1.6643120140083328e-7 Iter 90: T = 574.3652161297309 K, F = -0.0017265608202216565, relative_change = 6.960369651854837e-8 Iter 95: T = 574.3650940215418 K, F = -0.0007220684061751137, relative_change = 2.910912867348901e-8 Iter 100: T = 574.3650429544115 K, F = -0.00030197763959816104, relative_change = 1.2173790756239199e-8 Iter 105: T = 574.3650215975229 K, F = -0.00012629065641511783, relative_change = 5.09122562809292e-9 Iter 110: T = 574.3650126658162 K, F = -5.28162612908889e-5, relative_change = 2.1292115395160875e-9 Iter 115: T = 574.3650089304697 K, F = -2.2088391318453304e-5, relative_change = 8.904617250689474e-10 Iter 120: T = 574.3650073683032 K, F = -9.237629584102347e-6, relative_change = 3.724017545202159e-10 Iter 125: T = 574.3650067149864 K, F = -3.86328705098693e-6, relative_change = 1.5574286354474708e-10 Iter 130: T = 574.3650064417615 K, F = -1.6156721379112504e-6, relative_change = 6.513349967441812e-11 Iter 135: T = 574.3650063274956 K, F = -6.756939042729115e-7, relative_change = 2.7239628451194922e-11 Iter 140: T = 574.3650062797083 K, F = -2.8258335721398353e-7, relative_change = 1.1391941841375919e-11 Iter 145: T = 574.365006259723 K, F = -1.1818011425024366e-7, relative_change = 4.764261426583194e-12 Iter 150: T = 574.3650062513649 K, F = -4.942386572226454e-8, relative_change = 1.992452101805614e-12 Iter 155: T = 574.3650062478694 K, F = -2.0669186473476486e-8, relative_change = 8.332485415913497e-13 Iter 160: T = 574.3650062464076 K, F = -8.644329307916365e-9, relative_change = 3.4848371019280124e-13 Converged in 163 iterations to T = 574.3650062459797 K Iter 1: T = 963.5787825825926 K, F = -8298.609034078172, relative_change = 0.036421217417407434 Iter 2: T = 929.036357419215 K, F = -7041.615457152342, relative_change = 0.03584805496733394 Iter 3: T = 896.3392527563667 K, F = -5974.096516584732, relative_change = 0.035194644861561875 Iter 5: T = 836.3623276332559 K, F = -4297.660480482066, relative_change = 0.03361789894383595 Iter 10: T = 716.7743900417715 K, F = -1878.0045419963428, relative_change = 0.02788207871013121 Iter 15: T = 637.2467733710138 K, F = -813.1772379920644, relative_change = 0.019960638078210222 Iter 20: T = 590.6929576465163 K, F = -348.1542833690615, relative_change = 0.011957609108639126 Iter 25: T = 566.7550745378792 K, F = -147.55578812855217, relative_change = 0.006122192421586372 Iter 30: T = 555.5935993248095 K, F = -62.117265621155056, relative_change = 0.002827845911012661 Iter 35: T = 550.6802564255006 K, F = -26.05581453544596, relative_change = 0.001236927812285421 Iter 40: T = 548.5783349304436 K, F = -10.910957351188047, relative_change = 0.0005274457969971816 Iter 45: T = 547.6907052574508 K, F = -4.565600353040064, relative_change = 0.00022241053868752818 Iter 50: T = 547.3179607167392 K, F = -1.9098302465825265, relative_change = 9.33380807323113e-5 Iter 55: T = 547.1618054146832 K, F = -0.7987912890033859, relative_change = 3.9091941151230424e-5 Iter 60: T = 547.096452193804 K, F = -0.3340776230824336, relative_change = 1.635867948489695e-5 Iter 65: T = 547.0691124288068 K, F = -0.1397176256822294, relative_change = 6.8431391953288476e-6 Iter 70: T = 547.0576771657942 K, F = -0.05843199493263687, relative_change = 2.8621876896629316e-6 Iter 75: T = 547.0528945491354 K, F = -0.024437030743563654, relative_change = 1.197054453487947e-6 Iter 80: T = 547.0508943574607 K, F = -0.010219870800244168, relative_change = 5.00631805059464e-7 Iter 85: T = 547.0500578456716 K, F = -0.004274074240700171, relative_change = 2.0937183269451376e-7 Iter 90: T = 547.0497080050972 K, F = -0.0017874692787264168, relative_change = 8.756208645915165e-8 Iter 95: T = 547.0495616973541 K, F = -0.0007475410668824067, relative_change = 3.6619560209337633e-8 Iter 100: T = 547.0495005096673 K, F = -0.00031263061399780523, relative_change = 1.5314746167236167e-8 Iter 105: T = 547.0494749202386 K, F = -0.0001307458583701404, relative_change = 6.404811268068023e-9 Iter 110: T = 547.0494642184327 K, F = -5.4679479957020494e-5, relative_change = 2.67856883838386e-9 Iter 115: T = 547.0494597428094 K, F = -2.2867611475158034e-5, relative_change = 1.1202095180785057e-9 Iter 120: T = 547.0494578710503 K, F = -9.56350846736953e-6, relative_change = 4.684850185390703e-10 Iter 125: T = 547.0494570882582 K, F = -3.9995734132936e-6, relative_change = 1.9592602901259472e-10 Iter 130: T = 547.0494567608853 K, F = -1.6726692943225263e-6, relative_change = 8.193860188497722e-11 Iter 135: T = 547.0494566239739 K, F = -6.995301426448997e-7, relative_change = 3.4267695430035893e-11 Iter 140: T = 547.049456566716 K, F = -2.9255148445428425e-7, relative_change = 1.4331141091326522e-11 Iter 145: T = 547.0494565427701 K, F = -1.2234912544206722e-7, relative_change = 5.993483788833999e-12 Iter 150: T = 547.0494565327556 K, F = -5.1167252906880734e-8, relative_change = 2.506516493152182e-12 Iter 155: T = 547.0494565285675 K, F = -2.13990363484573e-8, relative_change = 1.0482688536072144e-12 Iter 160: T = 547.0494565268159 K, F = -8.949848667727522e-9, relative_change = 4.384238360198938e-13 Converged in 164 iterations to T = 547.0494565261838 K Iter 1: T = 969.2629998504918 K, F = -7003.454722500812, relative_change = 0.030737000149508205 Iter 2: T = 940.6653758555722 K, F = -5933.50807032646, relative_change = 0.02950450393683742 Iter 3: T = 914.1683421244962 K, F = -5025.336263431264, relative_change = 0.028168394852394626 Iter 5: T = 867.291839402253 K, F = -3600.6911531721953, relative_change = 0.025216461219411204 Iter 10: T = 782.7601154097384 K, F = -1552.9472383881773, relative_change = 0.01695280265282369 Iter 15: T = 735.6135776284373 K, F = -662.2646553979276, relative_change = 0.00955093275511356 Iter 20: T = 712.3178934040587 K, F = -279.886941628206, relative_change = 0.004681764099771774 Iter 25: T = 701.7229072232753 K, F = -117.63801400145532, relative_change = 0.002110977133340745 Iter 30: T = 697.1182827417215 K, F = -49.30689332403394, relative_change = 0.0009127726273432457 Iter 35: T = 695.1600171880449 K, F = -20.640390138036043, relative_change = 0.00038723285450921983 Iter 40: T = 694.3351788876984 K, F = -8.635537681078084, relative_change = 0.00016292791297885 Iter 45: T = 693.9891820701683 K, F = -3.6120967569476994, relative_change = 6.831177533354387e-5 Iter 50: T = 693.8442992605427 K, F = -1.5107292292227492, relative_change = 2.8599237379740767e-5 Iter 55: T = 693.7836754934879 K, F = -0.6318237765766952, relative_change = 1.1965874436434587e-5 Iter 60: T = 693.7583162999489 K, F = -0.2642395331918454, relative_change = 5.005204742947713e-6 Iter 65: T = 693.7477098007479 K, F = -0.11050870296050547, relative_change = 2.0933996518542012e-6 Iter 70: T = 693.7432738644011 K, F = -0.04621615980977756, relative_change = 8.755132912643975e-7 Iter 75: T = 693.74141867281 K, F = -0.019328167540238916, relative_change = 3.6615510895204717e-7 Iter 80: T = 693.7406428042777 K, F = -0.008083273563178617, relative_change = 1.5313131293348782e-7 Iter 85: T = 693.7403183258731 K, F = -0.003380522074798664, relative_change = 6.40414966093681e-8 Iter 90: T = 693.7401826249685 K, F = -0.0014137747962876812, relative_change = 2.6782945397315744e-8 Iter 95: T = 693.7401258732016 K, F = -0.000591257520695998, relative_change = 1.1200952302913569e-8 Iter 100: T = 693.74010213893 K, F = -0.00024727095929166776, relative_change = 4.68437284113495e-9 Iter 105: T = 693.7400922129732 K, F = -0.00010341166839877847, relative_change = 1.959060802330398e-9 Iter 110: T = 693.7400880618194 K, F = -4.324799245147837e-5, relative_change = 8.193026040176451e-10 Iter 115: T = 693.7400863257573 K, F = -1.8086827229590874e-5, relative_change = 3.426421432348029e-10 Iter 120: T = 693.7400855997154 K, F = -7.56412718050381e-6, relative_change = 1.4329703760881295e-10 Iter 125: T = 693.740085296076 K, F = -3.1634077707343167e-6, relative_change = 5.992852214435702e-11 Iter 130: T = 693.7400851690904 K, F = -1.3229743404119532e-6, relative_change = 2.506281291282451e-11 Iter 135: T = 693.7400851159836 K, F = -5.532848487144193e-7, relative_change = 1.0481590029604078e-11 Iter 140: T = 693.7400850937736 K, F = -2.3138955662638239e-7, relative_change = 4.383511451099084e-12 Iter 145: T = 693.7400850844851 K, F = -9.67705803267549e-8, relative_change = 1.833250182953628e-12 Iter 150: T = 693.7400850806006 K, F = -4.0469499307249635e-8, relative_change = 7.666660338351093e-13 Iter 155: T = 693.740085078976 K, F = -1.692542483944237e-8, relative_change = 3.2064019953045646e-13 Converged in 158 iterations to T = 693.7400850785003 K Iter 1: T = 966.4731580847291 K, F = -7639.122822654482, relative_change = 0.03352684191527093 Iter 2: T = 934.9851915737744 K, F = -6476.960249035684, relative_change = 0.03258028042222591 Iter 3: T = 905.5063848960527 K, F = -5490.193622010256, relative_change = 0.0315286348312134 Iter 5: T = 852.4517029930594 K, F = -3941.2687866591336, relative_change = 0.029105131866862022 Iter 10: T = 752.3559173231675 K, F = -1709.779063339247, relative_change = 0.021470212270351535 Iter 15: T = 692.3237952135588 K, F = -733.5256775297049, relative_change = 0.013280718890819821 Iter 20: T = 660.7783898523616 K, F = -311.3831034718875, relative_change = 0.00696908522257012 Iter 25: T = 645.8551783601556 K, F = -131.2088849075935, relative_change = 0.0032657637439677824 Iter 30: T = 639.2346481776209 K, F = -55.06302356855655, relative_change = 0.001438661073243838 Iter 35: T = 636.3920099515623 K, F = -23.062726299793614, relative_change = 0.0006154336985696078 Iter 40: T = 635.1896411308896 K, F = -9.65129589983065, relative_change = 0.0002598715350182798 Iter 45: T = 634.6843787023956 K, F = -4.03737836854346, relative_change = 0.00010912306022811266 Iter 50: T = 634.4726454594531 K, F = -1.688671348290074, relative_change = 4.5714279151747456e-5 Iter 55: T = 634.3840212301577 K, F = -0.7062560659683979, relative_change = 1.913188343464625e-5 Iter 60: T = 634.3469444064068 K, F = -0.2953705911175026, relative_change = 8.003567823446284e-6 Iter 65: T = 634.331436141052 K, F = -0.12352853555644772, relative_change = 3.347605088441973e-6 Iter 70: T = 634.3249499977916 K, F = -0.05166128842471879, relative_change = 1.400081451059987e-6 Iter 75: T = 634.3222373449922 K, F = -0.02160539919752502, relative_change = 5.855435562430998e-7 Iter 80: T = 634.3211028689125 K, F = -0.009035641459504251, relative_change = 2.4488354210213866e-7 Iter 85: T = 634.3206284153192 K, F = -0.0037788141273614184, relative_change = 1.0241361257293069e-7 Iter 90: T = 634.3204299927846 K, F = -0.0015803453646236476, relative_change = 4.283066419509793e-8 Iter 95: T = 634.3203470100453 K, F = -0.0006609193341322039, relative_change = 1.7912307224161642e-8 Iter 100: T = 634.3203123056612 K, F = -0.000276404363710292, relative_change = 7.491142889660408e-9 Iter 105: T = 634.3202977918712 K, F = -0.00011559560651569489, relative_change = 3.1328857784092355e-9 Iter 110: T = 634.3202917220307 K, F = -4.8343463473821124e-5, relative_change = 1.3102103156110917e-9 Iter 115: T = 634.3202891835507 K, F = -2.021781353700458e-5, relative_change = 5.479456053937007e-10 Iter 120: T = 634.3202881219281 K, F = -8.455330817780382e-6, relative_change = 2.2915739094091166e-10 Iter 125: T = 634.3202876779449 K, F = -3.5361202770367584e-6, relative_change = 9.583635660184019e-11 Iter 130: T = 634.3202874922658 K, F = -1.4788491560779882e-6, relative_change = 4.0079947562899374e-11 Iter 135: T = 634.3202874146125 K, F = -6.18471476754312e-7, relative_change = 1.6761888303503326e-11 Iter 140: T = 634.3202873821369 K, F = -2.5865145597547823e-7, relative_change = 7.0100028515600015e-12 Iter 145: T = 634.3202873685553 K, F = -1.0817058859746709e-7, relative_change = 2.931652295328103e-12 Iter 150: T = 634.3202873628753 K, F = -4.523789320920457e-8, relative_change = 1.226042819844021e-12 Iter 155: T = 634.3202873604998 K, F = -1.8918123623201666e-8, relative_change = 5.127212606099466e-13 Converged in 160 iterations to T = 634.3202873595066 K Iter 1: T = 966.4517319105918 K, F = -7644.004796813218, relative_change = 0.03354826808940822 Iter 2: T = 934.9413642353437 K, F = -6481.1370808590145, relative_change = 0.03260418149694323 Iter 3: T = 905.4392084595702 K, F = -5493.769688987598, relative_change = 0.03155508666567802 Iter 5: T = 852.3352744816609 K, F = -3943.8953860401907, relative_change = 0.029136659081224398 Iter 10: T = 752.1089813717712 K, F = -1711.0021196311109, relative_change = 0.021510274830224076 Iter 15: T = 691.9599276933293 K, F = -734.0906963694811, relative_change = 0.013316965728281107 Iter 20: T = 660.3343577556841 K, F = -311.6367378781529, relative_change = 0.006992867881311516 Iter 25: T = 645.3671624091015 K, F = -131.3192765258431, relative_change = 0.0032782429828034244 Iter 30: T = 638.7256530838979 K, F = -55.110091548191726, relative_change = 0.0014444517168561329 Iter 35: T = 635.8737080401584 K, F = -23.082581429733512, relative_change = 0.0006179676392874438 Iter 40: T = 634.6673466502845 K, F = -9.659630475449985, relative_change = 0.00026095189511891225 Iter 45: T = 634.1603963671761 K, F = -4.040869476987548, relative_change = 0.00010957856653620609 Iter 50: T = 633.9479540323421 K, F = -1.6901323376562953, relative_change = 4.590542795695675e-5 Iter 55: T = 633.8590326875843 K, F = -0.7068672385892262, relative_change = 1.921193837138824e-5 Iter 60: T = 633.8218315075874 K, F = -0.2956262204700082, relative_change = 8.037067763306576e-6 Iter 65: T = 633.8062712176311 K, F = -0.12363544799478948, relative_change = 3.3616186653016966e-6 Iter 70: T = 633.799763314028 K, F = -0.05170600139105114, relative_change = 1.405942708916984e-6 Iter 75: T = 633.7970415602631 K, F = -0.021624098853877505, relative_change = 5.879949114722522e-7 Iter 80: T = 633.795903277958 K, F = -0.00904346190759564, relative_change = 2.4590874689790793e-7 Iter 85: T = 633.7954272325395 K, F = -0.003782084737021185, relative_change = 1.028423687409093e-7 Iter 90: T = 633.7952281442817 K, F = -0.001581713173339272, relative_change = 4.3009975714225045e-8 Iter 95: T = 633.7951448831285 K, F = -0.0006614913670594524, relative_change = 1.798729751160041e-8 Iter 100: T = 633.7951100623083 K, F = -0.0002766435938503786, relative_change = 7.52250471684531e-9 Iter 105: T = 633.7950954998234 K, F = -0.00011569565628233303, relative_change = 3.1460016955212205e-9 Iter 110: T = 633.795089409618 K, F = -4.838530477718761e-5, relative_change = 1.3156955301744295e-9 Iter 115: T = 633.7950868626212 K, F = -2.0235312039651454e-5, relative_change = 5.502395868794418e-10 Iter 120: T = 633.7950857974369 K, F = -8.462649780549558e-6, relative_change = 2.3011678531517683e-10 Iter 125: T = 633.795085351964 K, F = -3.539181101075428e-6, relative_change = 9.623758532757858e-11 Iter 130: T = 633.7950851656619 K, F = -1.4801279382692378e-6, relative_change = 4.0247711232121685e-11 Iter 135: T = 633.7950850877481 K, F = -6.190074679501834e-7, relative_change = 1.683208132960423e-11 Iter 140: T = 633.7950850551637 K, F = -2.58876017789067e-7, relative_change = 7.0393693329833884e-12 Iter 145: T = 633.7950850415366 K, F = -1.08265594322976e-7, relative_change = 2.9439633345772944e-12 Iter 150: T = 633.7950850358375 K, F = -4.527833163958661e-8, relative_change = 1.2312106079224868e-12 Iter 155: T = 633.795085033454 K, F = -1.893640083627801e-8, relative_change = 5.149195374842664e-13 Converged in 160 iterations to T = 633.7950850324572 K Iter 1: T = 976.3152799192776 K, F = -5396.58600037775, relative_change = 0.023684720080722355 Iter 2: T = 954.7946198768929 K, F = -4563.322517962452, relative_change = 0.02204273607616183 Iter 3: T = 935.3474010360063 K, F = -3856.9758910760956, relative_change = 0.020367960225198958 Iter 5: T = 902.2562168084032 K, F = -2751.53115781854, relative_change = 0.017012923693350432 Iter 10: T = 847.6874550790513 K, F = -1173.5001325963249, relative_change = 0.009596379858469511 Iter 15: T = 820.703738054377 K, F = -495.9722085683824, relative_change = 0.004707867062863796 Iter 20: T = 808.425796941266 K, F = -208.465841522829, relative_change = 0.0021236712462809992 Iter 25: T = 803.0885288436197 K, F = -87.37773116967529, relative_change = 0.0009184492296475572 Iter 30: T = 800.8184461777581 K, F = -36.57746727122647, relative_change = 0.00038967614501924795 Iter 35: T = 799.8622245839273 K, F = -15.303339970819376, relative_change = 0.000163962231329527 Iter 40: T = 799.4611084096642 K, F = -6.401130608760501, relative_change = 6.874655624663999e-5 Iter 45: T = 799.2931435461963 K, F = -2.677220506892248, relative_change = 2.8781457826101148e-5 Iter 50: T = 799.2228612448639 K, F = -1.1196790669599592, relative_change = 1.2042149553869921e-5 Iter 55: T = 799.193461801398 K, F = -0.46826901510491736, relative_change = 5.037115874336193e-6 Iter 60: T = 799.1811654577314 K, F = -0.19583671904438882, relative_change = 2.1067473618737563e-6 Iter 65: T = 799.1760227796127 K, F = -0.08190143389213989, relative_change = 8.810958292425607e-7 Iter 70: T = 799.1738720151639 K, F = -0.034252189101733554, relative_change = 3.6848985708475835e-7 Iter 75: T = 799.1729725336567 K, F = -0.01432468001910514, relative_change = 1.5410774371644036e-7 Iter 80: T = 799.1725963586763 K, F = -0.005990753213771405, relative_change = 6.444985359411274e-8 Iter 85: T = 799.1724390376196 K, F = -0.0025054047055840245, relative_change = 2.6953725525288636e-8 Iter 90: T = 799.1723732440421 K, F = -0.0010477901986417626, relative_change = 1.1272374650525074e-8 Iter 95: T = 799.1723457283764 K, F = -0.000438198379167809, relative_change = 4.714242524293837e-9 Iter 100: T = 799.1723342209955 K, F = -0.00018325979542566095, relative_change = 1.9715526594576683e-9 Iter 105: T = 799.1723294084712 K, F = -7.664143476870944e-5, relative_change = 8.245268883134188e-10 Iter 110: T = 799.1723273958161 K, F = -3.205236444236981e-5, relative_change = 3.4482700791556085e-10 Iter 115: T = 799.1723265540996 K, F = -1.3404681351580905e-5, relative_change = 1.4421077090950902e-10 Iter 120: T = 799.1723262020837 K, F = -5.605998002367052e-6, relative_change = 6.031066864850608e-11 Iter 125: T = 799.1723260548665 K, F = -2.344496300210608e-6, relative_change = 2.522265251859966e-11 Iter 130: T = 799.1723259932986 K, F = -9.804982522565453e-7, relative_change = 1.054843495321827e-11 Iter 135: T = 799.17232596755 K, F = -4.1005615813993757e-7, relative_change = 4.411482327494763e-12 Iter 140: T = 799.1723259567817 K, F = -1.7148995212767915e-7, relative_change = 1.8449299643112286e-12 Iter 145: T = 799.1723259522782 K, F = -7.171902971503386e-8, relative_change = 7.715704931658617e-13 Iter 150: T = 799.1723259503949 K, F = -2.9993909467229685e-8, relative_change = 3.2268165941195306e-13 Converged in 153 iterations to T = 799.1723259498435 K Iter 1: T = 965.1420315904904 K, F = -7942.4212605949315, relative_change = 0.03485796840950952 Iter 2: T = 932.2564363329939 K, F = -6736.539837775966, relative_change = 0.03407332204080186 Iter 3: T = 901.3137166683224 K, F = -5712.533846411014, relative_change = 0.03319121054973224 Iter 5: T = 845.1440199047247 K, F = -4104.7757245870425, relative_change = 0.03111551599409496 Iter 10: T = 736.5732068536618 K, F = -1786.3642815845162, relative_change = 0.02415052041822686 Iter 15: T = 668.5940292836602 K, F = -769.2605151306497, relative_change = 0.01584652741235033 Iter 20: T = 631.3515444997674 K, F = -327.5942625711512, relative_change = 0.008734737585990575 Iter 25: T = 613.1994000229585 K, F = -138.31751621895907, relative_change = 0.0042203743508220344 Iter 30: T = 605.0099805127749 K, F = -58.106297179343876, relative_change = 0.001888476670680136 Iter 35: T = 601.4650384248459 K, F = -24.348963542714042, relative_change = 0.0008136633449078234 Iter 40: T = 599.9601637694766 K, F = -10.191675494345173, relative_change = 0.00034464814424053415 Iter 45: T = 599.3267940262677 K, F = -4.263809317193785, relative_change = 0.00014491376274525364 Iter 50: T = 599.0612012791664 K, F = -1.7834445997673467, relative_change = 6.074178323140193e-5 Iter 55: T = 598.9500024513254 K, F = -0.7459049022024982, relative_change = 2.5427000814206815e-5 Iter 60: T = 598.9034759073312 K, F = -0.31195457750247707, relative_change = 1.0638089668505345e-5 Iter 65: T = 598.884014123346 K, F = -0.13046457137733555, relative_change = 4.449713653293005e-6 Iter 70: T = 598.8758743031668 K, F = -0.05456209397957118, relative_change = 1.8610524128045727e-6 Iter 75: T = 598.872470016011 K, F = -0.02281856341273303, relative_change = 7.783369130266263e-7 Iter 80: T = 598.8710462819764 K, F = -0.009543003441625564, relative_change = 3.25513739649883e-7 Iter 85: T = 598.8704508558163 K, F = -0.003990999354394953, relative_change = 1.3613442374055007e-7 Iter 90: T = 598.8702018408587 K, F = -0.0016690838281567255, relative_change = 5.6933162538176845e-8 Iter 95: T = 598.87009769972 K, F = -0.0006980308316523187, relative_change = 2.3810149632220274e-8 Iter 100: T = 598.8700541466328 K, F = -0.00029192483671092173, relative_change = 9.957692604554114e-9 Iter 105: T = 598.8700359322083 K, F = -0.00012208645503142268, relative_change = 4.16442663843164e-9 Iter 110: T = 598.8700283147178 K, F = -5.105801384019948e-5, relative_change = 1.7416130705336361e-9 Iter 115: T = 598.8700251289922 K, F = -2.135307071005066e-5, relative_change = 7.283633888089244e-10 Iter 120: T = 598.8700237966837 K, F = -8.93010906405367e-6, relative_change = 3.046102669513504e-10 Iter 125: T = 598.8700232394964 K, F = -3.7346779447333667e-6, relative_change = 1.2739164131163688e-10 Iter 130: T = 598.870023006474 K, F = -1.5618867831856953e-6, relative_change = 5.327670127545037e-11 Iter 135: T = 598.8700229090213 K, F = -6.532000155767825e-7, relative_change = 2.2280963322440386e-11 Iter 140: T = 598.8700228682654 K, F = -2.73175815135307e-7, relative_change = 9.318157033730426e-12 Iter 145: T = 598.8700228512208 K, F = -1.1424579965391146e-7, relative_change = 3.8969785858832846e-12 Iter 150: T = 598.8700228440925 K, F = -4.777908813036191e-8, relative_change = 1.629767430151882e-12 Iter 155: T = 598.8700228411114 K, F = -1.9981885868158855e-8, relative_change = 6.815916346677794e-13 Iter 160: T = 598.8700228398646 K, F = -8.356796588060433e-9, relative_change = 2.8505430792071227e-13 Converged in 162 iterations to T = 598.8700228396008 K Iter 1: T = 964.6368620866976 K, F = -8057.524612574388, relative_change = 0.035363137913302374 Iter 2: T = 931.2176922343444 K, F = -6835.098929882977, relative_change = 0.03464430104823177 Iter 3: T = 899.712241512078 K, F = -5797.0053613005675, relative_change = 0.033832530228966096 Iter 5: T = 842.3302802905247 K, F = -4167.003474841077, relative_change = 0.03190690197400867 Iter 10: T = 730.3340172906587 K, F = -1815.7661305677163, relative_change = 0.025280164422501993 Iter 15: T = 658.9232250132129 K, F = -783.195556669899, relative_change = 0.017020197098405934 Iter 20: T = 619.0519742182739 K, F = -334.0274569824803, relative_change = 0.00960165548488339 Iter 25: T = 599.3345877367381 K, F = -141.17525644469683, relative_change = 0.004710839620997828 Iter 30: T = 590.3625265499893 K, F = -59.338607550466435, relative_change = 0.0021251048908979457 Iter 35: T = 586.4622509178345 K, F = -24.871603226204417, relative_change = 0.000919088088641793 Iter 40: T = 584.8033428339988 K, F = -10.41158619585415, relative_change = 0.00038995071462517026 Iter 45: T = 584.1045618236111 K, F = -4.356017367059516, relative_change = 0.00016407839327605727 Iter 50: T = 583.8114363730101 K, F = -1.8220492436425464, relative_change = 6.879537291105634e-5 Iter 55: T = 583.6886918468464 K, F = -0.7620572227324721, relative_change = 2.8801915105589532e-5 Iter 60: T = 583.6373312799839 K, F = -0.31871096670374177, relative_change = 1.2050712319518594e-5 Iter 65: T = 583.6158468911642 K, F = -0.13329040082630778, relative_change = 5.040698200953114e-6 Iter 70: T = 583.6068610257053 K, F = -0.055743929280426374, relative_change = 2.108245756878627e-6 Iter 75: T = 583.6031028829569 K, F = -0.02331282798883466, relative_change = 8.817225149713622e-7 Iter 80: T = 583.6015311571533 K, F = -0.009749712004198996, relative_change = 3.6875195135192625e-7 Iter 85: T = 583.6008738381701 K, F = -0.004077447556461111, relative_change = 1.542173558468358e-7 Iter 90: T = 583.6005989387374 K, F = -0.001705237535279791, relative_change = 6.449569488967045e-8 Iter 95: T = 583.6004839723747 K, F = -0.0007131507502315948, relative_change = 2.697289696212546e-8 Iter 100: T = 583.6004358920449 K, F = -0.00029824816885676286, relative_change = 1.1280392372096116e-8 Iter 105: T = 583.6004157842725 K, F = -0.00012473094735426793, relative_change = 4.71759562948368e-9 Iter 110: T = 583.6004073749613 K, F = -5.216397246016191e-5, relative_change = 1.972954993099824e-9 Iter 115: T = 583.6004038580867 K, F = -2.1815596124630243e-5, relative_change = 8.25113359019282e-10 Iter 120: T = 583.6004023872878 K, F = -9.123542866751322e-6, relative_change = 3.4507226610997013e-10 Iter 125: T = 583.6004017721821 K, F = -3.815574686427681e-6, relative_change = 1.4431334728118815e-10 Iter 130: T = 583.6004015149375 K, F = -1.5957186511039723e-6, relative_change = 6.035355595639048e-11 Iter 135: T = 583.6004014073549 K, F = -6.673490801079041e-7, relative_change = 2.5240596176664266e-11 Iter 140: T = 583.6004013623624 K, F = -2.7909343736087777e-7, relative_change = 1.055592187139847e-11 Iter 145: T = 583.600401343546 K, F = -1.1671977823146662e-7, relative_change = 4.414596314761476e-12 Iter 150: T = 583.6004013356768 K, F = -4.881305681880832e-8, relative_change = 1.846216159964337e-12 Iter 155: T = 583.6004013323858 K, F = -2.0414362089660187e-8, relative_change = 7.721156518881155e-13 Iter 160: T = 583.6004013310095 K, F = -8.537989204526752e-9, relative_change = 3.229253538066649e-13 Converged in 163 iterations to T = 583.6004013306065 K Iter 1: T = 964.3571653791803 K, F = -8121.253773442473, relative_change = 0.035642834620819734 Iter 2: T = 930.6418190057665 K, F = -6889.679217284953, relative_change = 0.03496147235050317 Iter 3: T = 898.8230829381365 K, F = -5843.796524875994, relative_change = 0.03419009915288664 Iter 5: T = 840.7625941066859 K, F = -4201.499370042812, relative_change = 0.03235205868686992 Iter 10: T = 726.8161310929255 K, F = -1832.1300070409627, relative_change = 0.02593550486650983 Iter 15: T = 653.3899475121891 K, F = -791.0111128128196, relative_change = 0.017728494136309905 Iter 20: T = 611.9227918072222 K, F = -337.6692203825121, relative_change = 0.01014428839062228 Iter 25: T = 591.2300588900252 K, F = -142.80484078793427, relative_change = 0.00502550850913827 Iter 30: T = 581.762551318895 K, F = -60.04429168813992, relative_change = 0.002278944682495368 Iter 35: T = 577.6355319230273 K, F = -25.17151041138217, relative_change = 0.0009880567750726 Iter 40: T = 575.8779739476411 K, F = -10.537894175097495, relative_change = 0.00041966905982389184 Iter 45: T = 575.1372342348615 K, F = -4.408999006129099, relative_change = 0.00017666509898726348 Iter 50: T = 574.826435763162 K, F = -1.8442347307214684, relative_change = 7.408733052929921e-5 Iter 55: T = 574.6962780440399 K, F = -0.7713403642325399, relative_change = 3.1020009240615534e-5 Iter 60: T = 574.6418133074625 K, F = -0.3225941468791682, relative_change = 1.2979210904375072e-5 Iter 65: T = 574.6190300374506 K, F = -0.13491454359423263, relative_change = 5.429158865100453e-6 Iter 70: T = 574.6095008452949 K, F = -0.05642319150310404, relative_change = 2.270731149009612e-6 Iter 75: T = 574.6055154560021 K, F = -0.023596908166431868, relative_change = 9.496804827016722e-7 Iter 80: T = 574.603848689336 K, F = -0.009868518532998083, relative_change = 3.9717359601375653e-7 Iter 85: T = 574.6031516224917 K, F = -0.004127134006886857, relative_change = 1.661037689231541e-7 Iter 90: T = 574.6028600999175 K, F = -0.0017260170275940623, relative_change = 6.946675962740373e-8 Iter 95: T = 574.6027381815387 K, F = -0.0007218409854649055, relative_change = 2.9051859905386628e-8 Iter 100: T = 574.6026871937894 K, F = -0.00030188252922813685, relative_change = 1.2149840240043001e-8 Iter 105: T = 574.6026658700989 K, F = -0.00012625088057205414, relative_change = 5.0812092506625095e-9 Iter 110: T = 574.6026569522761 K, F = -5.2799626283739354e-5, relative_change = 2.125022559147602e-9 Iter 115: T = 574.602653222736 K, F = -2.208143442888888e-5, relative_change = 8.887098461183061e-10 Iter 120: T = 574.6026516629977 K, F = -9.23472027275496e-6, relative_change = 3.7166910351937345e-10 Iter 125: T = 574.6026510106965 K, F = -3.862069937188295e-6, relative_change = 1.5543644383866248e-10 Iter 130: T = 574.6026507378963 K, F = -1.6151632329930443e-6, relative_change = 6.500535562689267e-11 Iter 135: T = 574.602650623808 K, F = -6.754802348019062e-7, relative_change = 2.718600326381454e-11 Iter 140: T = 574.602650576095 K, F = -2.8249386024858936e-7, relative_change = 1.1369509593443585e-11 Iter 145: T = 574.6026505561409 K, F = -1.1814306899449178e-7, relative_change = 4.754895399750643e-12 Iter 150: T = 574.6026505477959 K, F = -4.940974579481505e-8, relative_change = 1.988590401437876e-12 Iter 155: T = 574.6026505443058 K, F = -2.066327059457862e-8, relative_change = 8.316331304054751e-13 Iter 160: T = 574.6026505428462 K, F = -8.641710735890484e-9, relative_change = 3.4780229579530777e-13 Converged in 163 iterations to T = 574.6026505424188 K Iter 1: T = 980.0671427451152 K, F = -4541.72048656775, relative_change = 0.01993285725488479 Iter 2: T = 962.1812312536263 K, F = -3836.4819964308035, relative_change = 0.018249679752951956 Iter 3: T = 946.2218976856377 K, F = -3239.2425151712187, relative_change = 0.016586619079230206 Iter 5: T = 919.5614067755995 K, F = -2306.040646132642, relative_change = 0.01340993848622277 Iter 10: T = 877.2029425443657 K, F = -979.0744738451514, relative_change = 0.007054119695650222 Iter 15: T = 857.1351656673443 K, F = -412.5967538432654, relative_change = 0.003310454476793741 Iter 20: T = 848.2252176890748 K, F = -173.15844057882424, relative_change = 0.001459414431117544 Iter 25: T = 844.3981321688149 K, F = -72.52768662289884, relative_change = 0.0006245182973267542 Iter 30: T = 842.7790943838049 K, F = -30.35169581079223, relative_change = 0.0002637453718577211 Iter 35: T = 842.0986894592373 K, F = -12.696924712723295, relative_change = 0.00011075646583902353 Iter 40: T = 841.8135530588866 K, F = -5.31061685167822, relative_change = 4.6399739792671466e-5 Iter 45: T = 841.6942032804848 K, F = -2.221070462389097, relative_change = 1.9418963994029285e-5 Iter 50: T = 841.6442718525757 K, F = -0.928896930973937, relative_change = 8.123700643699757e-6 Iter 55: T = 841.6233867959564 K, F = -0.38847906804453125, relative_change = 3.3978587225746306e-6 Iter 60: T = 841.6146518670187 K, F = -0.16246715906115483, relative_change = 1.4211003348338724e-6 Iter 65: T = 841.610998719417 K, F = -0.0679458064661691, relative_change = 5.943342917031454e-7 Iter 70: T = 841.6094709126705 K, F = -0.02841576524263867, relative_change = 2.485600003980387e-7 Iter 75: T = 841.6088319627065 K, F = -0.011883815445251633, relative_change = 1.0395116316880506e-7 Iter 80: T = 841.6085647456873 K, F = -0.004969954076720962, relative_change = 4.3473688275421295e-8 Iter 85: T = 841.6084529922487 K, F = -0.002078494239085016, relative_change = 1.8181227907890553e-8 Iter 90: T = 841.6084062556105 K, F = -0.0008692511296228833, relative_change = 7.603608794473218e-9 Iter 95: T = 841.6083867097875 K, F = -0.0003635312057319595, relative_change = 3.179920375625937e-9 Iter 100: T = 841.6083785354904 K, F = -0.0001520330918707291, relative_change = 1.3298807402051722e-9 Iter 105: T = 841.6083751169016 K, F = -6.358205496148628e-5, relative_change = 5.561720209123323e-10 Iter 110: T = 841.6083736872071 K, F = -2.6590776949220185e-5, relative_change = 2.3259780266702236e-10 Iter 115: T = 841.6083730892916 K, F = -1.1120580172052641e-5, relative_change = 9.727517650541474e-11 Iter 120: T = 841.6083728392362 K, F = -4.650758903768093e-6, relative_change = 4.068163592985115e-11 Iter 125: T = 841.6083727346601 K, F = -1.9450027632927913e-6, relative_change = 1.7013544667201784e-11 Iter 130: T = 841.6083726909251 K, F = -8.134256785918836e-7, relative_change = 7.1152876390607035e-12 Iter 135: T = 841.6083726726346 K, F = -3.4018327177420815e-7, relative_change = 2.975688981334881e-12 Iter 140: T = 841.6083726649853 K, F = -1.4226924371918415e-7, relative_change = 1.2444733649846708e-12 Iter 145: T = 841.6083726617862 K, F = -5.9498289406434424e-8, relative_change = 5.204500599999527e-13 Converged in 150 iterations to T = 841.6083726604484 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 8%|██▌ | ETA: 0:00:12 Bin 1 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 1 ray tracing: 26%|███████▉ | ETA: 0:00:09 Bin 1 ray tracing: 35%|██████████▌ | ETA: 0:00:08 Bin 1 ray tracing: 44%|█████████████▏ | ETA: 0:00:07 Bin 1 ray tracing: 52%|███████████████▋ | ETA: 0:00:06 Bin 1 ray tracing: 60%|██████████████████ | ETA: 0:00:05 Bin 1 ray tracing: 68%|████████████████████▎ | ETA: 0:00:04 Bin 1 ray tracing: 75%|██████████████████████▋ | ETA: 0:00:03 Bin 1 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:02 Bin 1 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 2 ray tracing: 17%|█████▎ | ETA: 0:00:10 Bin 2 ray tracing: 26%|███████▉ | ETA: 0:00:09 Bin 2 ray tracing: 35%|██████████▍ | ETA: 0:00:08 Bin 2 ray tracing: 43%|█████████████ | ETA: 0:00:07 Bin 2 ray tracing: 52%|███████████████▋ | ETA: 0:00:06 Bin 2 ray tracing: 61%|██████████████████▌ | ETA: 0:00:04 Bin 2 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:03 Bin 2 ray tracing: 80%|████████████████████████▏ | ETA: 0:00:02 Bin 2 ray tracing: 90%|███████████████████████████ | ETA: 0:00:01 Bin 2 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 3 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 3 ray tracing: 27%|████████▎ | ETA: 0:00:08 Bin 3 ray tracing: 36%|███████████ | ETA: 0:00:07 Bin 3 ray tracing: 45%|█████████████▍ | ETA: 0:00:07 Bin 3 ray tracing: 54%|████████████████▏ | ETA: 0:00:05 Bin 3 ray tracing: 63%|██████████████████▊ | ETA: 0:00:04 Bin 3 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:03 Bin 3 ray tracing: 81%|████████████████████████▏ | ETA: 0:00:02 Bin 3 ray tracing: 90%|██████████████████████████▉ | ETA: 0:00:01 Bin 3 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 10%|███ | ETA: 0:00:10 Bin 4 ray tracing: 19%|█████▉ | ETA: 0:00:09 Bin 4 ray tracing: 29%|████████▊ | ETA: 0:00:07 Bin 4 ray tracing: 39%|███████████▊ | ETA: 0:00:06 Bin 4 ray tracing: 49%|██████████████▊ | ETA: 0:00:05 Bin 4 ray tracing: 59%|█████████████████▊ | ETA: 0:00:04 Bin 4 ray tracing: 69%|████████████████████▋ | ETA: 0:00:03 Bin 4 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:02 Bin 4 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:01 Bin 4 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 10%|███ | ETA: 0:00:10 Bin 5 ray tracing: 20%|██████ | ETA: 0:00:09 Bin 5 ray tracing: 30%|████████▉ | ETA: 0:00:08 Bin 5 ray tracing: 39%|███████████▌ | ETA: 0:00:07 Bin 5 ray tracing: 49%|██████████████▋ | ETA: 0:00:06 Bin 5 ray tracing: 59%|█████████████████▋ | ETA: 0:00:04 Bin 5 ray tracing: 69%|████████████████████▊ | ETA: 0:00:03 Bin 5 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:02 Bin 5 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:01 Bin 5 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 6 ray tracing: 19%|█████▊ | ETA: 0:00:09 Bin 6 ray tracing: 29%|████████▋ | ETA: 0:00:07 Bin 6 ray tracing: 39%|███████████▋ | ETA: 0:00:06 Bin 6 ray tracing: 48%|██████████████▌ | ETA: 0:00:05 Bin 6 ray tracing: 58%|█████████████████▎ | ETA: 0:00:04 Bin 6 ray tracing: 67%|████████████████████ | ETA: 0:00:04 Bin 6 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:03 Bin 6 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 6 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 10%|███▏ | ETA: 0:00:09 Bin 7 ray tracing: 20%|██████▏ | ETA: 0:00:08 Bin 7 ray tracing: 30%|█████████▏ | ETA: 0:00:07 Bin 7 ray tracing: 40%|████████████ | ETA: 0:00:06 Bin 7 ray tracing: 49%|██████████████▉ | ETA: 0:00:05 Bin 7 ray tracing: 59%|█████████████████▊ | ETA: 0:00:04 Bin 7 ray tracing: 69%|████████████████████▋ | ETA: 0:00:03 Bin 7 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:02 Bin 7 ray tracing: 87%|██████████████████████████▎ | ETA: 0:00:01 Bin 7 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 8 ray tracing: 14%|████▍ | ETA: 0:00:12 Bin 8 ray tracing: 23%|███████ | ETA: 0:00:10 Bin 8 ray tracing: 32%|█████████▊ | ETA: 0:00:09 Bin 8 ray tracing: 42%|████████████▋ | ETA: 0:00:07 Bin 8 ray tracing: 52%|███████████████▋ | ETA: 0:00:06 Bin 8 ray tracing: 62%|██████████████████▋ | ETA: 0:00:04 Bin 8 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:03 Bin 8 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:02 Bin 8 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 10%|███ | ETA: 0:00:11 Bin 9 ray tracing: 18%|█████▌ | ETA: 0:00:11 Bin 9 ray tracing: 28%|████████▎ | ETA: 0:00:09 Bin 9 ray tracing: 38%|███████████▍ | ETA: 0:00:07 Bin 9 ray tracing: 48%|██████████████▍ | ETA: 0:00:06 Bin 9 ray tracing: 58%|█████████████████▍ | ETA: 0:00:05 Bin 9 ray tracing: 67%|████████████████████▏ | ETA: 0:00:04 Bin 9 ray tracing: 76%|███████████████████████ | ETA: 0:00:03 Bin 9 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 9 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 10%|███ | ETA: 0:00:09 Bin 10 ray tracing: 20%|█████▉ | ETA: 0:00:09 Bin 10 ray tracing: 30%|████████▋ | ETA: 0:00:08 Bin 10 ray tracing: 39%|███████████▍ | ETA: 0:00:07 Bin 10 ray tracing: 48%|██████████████ | ETA: 0:00:06 Bin 10 ray tracing: 58%|████████████████▊ | ETA: 0:00:05 Bin 10 ray tracing: 68%|███████████████████▋ | ETA: 0:00:03 Bin 10 ray tracing: 78%|██████████████████████▌ | ETA: 0:00:02 Bin 10 ray tracing: 87%|█████████████████████████▎ | ETA: 0:00:01 Bin 10 ray tracing: 97%|████████████████████████████▎| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2534762464487 K, F = -7461.326587232453, relative_change = 0.03274652375355124 Iter 2: T = 936.5792173513225 K, F = -6324.876505560987, relative_change = 0.03171274091891778 Iter 3: T = 907.9460402893736 K, F = -5360.018920834957, relative_change = 0.030572082458678145 Iter 5: T = 856.6658303023617 K, F = -3845.726160725121, relative_change = 0.027974816903886465 Iter 10: T = 761.2010227063606 K, F = -1665.4400159299441, relative_change = 0.02007258221908779 Iter 15: T = 705.2163895967445 K, F = -713.150725867048, relative_change = 0.012053129862342393 Iter 20: T = 676.3836436268275 K, F = -302.2845353134248, relative_change = 0.0061820256090065135 Iter 25: T = 662.9259649946046 K, F = -127.26269919638584, relative_change = 0.0028583873516719554 Iter 30: T = 656.9985867807316 K, F = -53.383586085529, relative_change = 0.00125090690611308 Iter 35: T = 654.4622156826518 K, F = -22.35488138941559, relative_change = 0.0005335251892185694 Iter 40: T = 653.3910003968986 K, F = -9.354275899409497, relative_change = 0.00022499559235721942 Iter 45: T = 652.941140770662 K, F = -3.9129853589372097, relative_change = 9.442676564667899e-5 Iter 50: T = 652.7526755450815 K, F = -1.6366177974221066, relative_change = 3.954857898200109e-5 Iter 55: T = 652.6737994920137 K, F = -0.6844812302090545, relative_change = 1.6549885441837062e-5 Iter 60: T = 652.6408024892592 K, F = -0.28626314597852276, relative_change = 6.923144890721454e-6 Iter 65: T = 652.6270009819793 K, F = -0.11971952721940982, relative_change = 2.895654216027101e-6 Iter 70: T = 652.6212287177492 K, F = -0.0500682866078096, relative_change = 1.2110518121542954e-6 Iter 75: T = 652.6188146338529 K, F = -0.020939181733848455, relative_change = 5.064858875918251e-7 Iter 80: T = 652.6178050256818 K, F = -0.00875702047142446, relative_change = 2.118201183918183e-7 Iter 85: T = 652.6173827938337 K, F = -0.003662291346789359, relative_change = 8.858599551425243e-8 Iter 90: T = 652.6172062111431 K, F = -0.0015316141183985832, relative_change = 3.704777238065396e-8 Iter 95: T = 652.6171323621024 K, F = -0.0006405393390685465, relative_change = 1.5493829767203154e-8 Iter 100: T = 652.6171014775429 K, F = -0.00026788120486043177, relative_change = 6.479706191246219e-9 Iter 105: T = 652.6170885612497 K, F = -0.00011203112006114013, relative_change = 2.7098907930235412e-9 Iter 110: T = 652.6170831595014 K, F = -4.6852751642567636e-5, relative_change = 1.1333087202744004e-9 Iter 115: T = 652.6170809004257 K, F = -1.9594379882581503e-5, relative_change = 4.739632396552773e-10 Iter 120: T = 652.6170799556534 K, F = -8.194604504629943e-6, relative_change = 1.982171086174778e-10 Iter 125: T = 652.6170795605382 K, F = -3.4270811133940704e-6, relative_change = 8.289675369553453e-11 Iter 130: T = 652.6170793952964 K, F = -1.4332471206524033e-6, relative_change = 3.466843350291031e-11 Iter 135: T = 652.6170793261903 K, F = -5.994017789889838e-7, relative_change = 1.4498770259118372e-11 Iter 140: T = 652.6170792972891 K, F = -2.506765541809841e-7, relative_change = 6.063548518848541e-12 Iter 145: T = 652.6170792852024 K, F = -1.0483578283260186e-7, relative_change = 2.5358448772758164e-12 Iter 150: T = 652.6170792801477 K, F = -4.384419083347524e-8, relative_change = 1.0605354748483453e-12 Iter 155: T = 652.6170792780337 K, F = -1.8336200391377844e-8, relative_change = 4.4352947607455813e-13 Converged in 159 iterations to T = 652.6170792772706 K Iter 1: T = 970.3061024331002 K, F = -6765.782806806764, relative_change = 0.029693897566899767 Iter 2: T = 942.7757812181428 K, F = -5730.520179898002, relative_change = 0.028372820850990698 Iter 3: T = 917.3645057557462 K, F = -4851.920507702143, relative_change = 0.026953678667437975 Iter 5: T = 872.6842526077462 K, F = -3474.0578074448836, relative_change = 0.023865707195440247 Iter 10: T = 793.3313258830209 K, F = -1495.4258006627585, relative_change = 0.015559959223999135 Iter 15: T = 750.0583545302812 K, F = -636.6067703029873, relative_change = 0.00852904501923014 Iter 20: T = 729.0395253970138 K, F = -268.7260207564774, relative_change = 0.004106182625422185 Iter 25: T = 719.5756959496671 K, F = -112.87606052696793, relative_change = 0.001833933543083559 Iter 30: T = 715.4831165254898 K, F = -47.297049346837085, relative_change = 0.0007894762973231722 Iter 35: T = 713.7465289677712 K, F = -19.79648874838756, relative_change = 0.0003342759546779219 Iter 40: T = 713.0157754042456 K, F = -8.282008396482484, relative_change = 0.0001405297999278342 Iter 45: T = 712.7093711643528 K, F = -3.4641408202128003, relative_change = 5.890018417192198e-5 Iter 50: T = 712.5810896675897 K, F = -1.448833724876701, relative_change = 2.4655385522817517e-5 Iter 55: T = 712.527416352512 K, F = -0.6059350856706037, relative_change = 1.0315139164180429e-5 Iter 60: T = 712.5049652493802 K, F = -0.25341200438282774, relative_change = 4.314607822099193e-6 Iter 65: T = 712.4955751807863 K, F = -0.10598040154215516, relative_change = 1.8045418294136115e-6 Iter 70: T = 712.4916480109156 K, F = -0.04432235266211859, relative_change = 7.547021632477528e-7 Iter 75: T = 712.4900055986544 K, F = -0.018536151729787953, relative_change = 3.1562916912818396e-7 Iter 80: T = 712.4893187182234 K, F = -0.00775204256094475, relative_change = 1.3200053705433746e-7 Iter 85: T = 712.4890314559229 K, F = -0.0032419972211956694, relative_change = 5.520431453338901e-8 Iter 90: T = 712.4889113192756 K, F = -0.0013558420333538157, relative_change = 2.308712347616838e-8 Iter 95: T = 712.4888610766736 K, F = -0.000567029344115566, relative_change = 9.655314229368654e-9 Iter 100: T = 712.4888400646137 K, F = -0.0002371384468572435, relative_change = 4.037968344184588e-9 Iter 105: T = 712.4888312771186 K, F = -9.917412964710604e-5, relative_change = 1.6887266695892875e-9 Iter 110: T = 712.4888276020831 K, F = -4.147580561109088e-5, relative_change = 7.062456816859104e-10 Iter 115: T = 712.4888260651394 K, F = -1.7345677511881874e-5, relative_change = 2.953603862301729e-10 Iter 120: T = 712.4888254223711 K, F = -7.254169222314921e-6, relative_change = 1.235232368996379e-10 Iter 125: T = 712.4888251535577 K, F = -3.0337793781587408e-6, relative_change = 5.165887891751001e-11 Iter 130: T = 712.4888250411368 K, F = -1.2687627949370395e-6, relative_change = 2.1604360593851698e-11 Iter 135: T = 712.488824994121 K, F = -5.306122944359615e-7, relative_change = 9.03521083205783e-12 Iter 140: T = 712.4888249744585 K, F = -2.2190810933242489e-7, relative_change = 3.778628151759154e-12 Iter 145: T = 712.4888249662354 K, F = -9.280576174219846e-8, relative_change = 1.580286836018537e-12 Iter 150: T = 712.4888249627963 K, F = -3.8811735714183726e-8, relative_change = 6.608821896634073e-13 Iter 155: T = 712.4888249613581 K, F = -1.6231495258978157e-8, relative_change = 2.763882091582826e-13 Converged in 157 iterations to T = 712.4888249610538 K Iter 1: T = 974.4822283195822 K, F = -5814.248551050589, relative_change = 0.025517771680417845 Iter 2: T = 951.1531954987639 K, F = -4918.970012616772, relative_change = 0.023939926396654092 Iter 3: T = 929.9376102593061 K, F = -4159.744854360418, relative_change = 0.022305119027995084 Iter 5: T = 893.4910502516868 K, F = -2970.71347940819, relative_change = 0.018949455964945735 Iter 10: T = 832.1457819672089 K, F = -1270.1773667865127, relative_change = 0.01111635056467063 Iter 15: T = 801.035944386996 K, F = -537.791387893525, relative_change = 0.005604631005158037 Iter 20: T = 786.6588706516422 K, F = -226.26661789401248, relative_change = 0.0025663188304026383 Iter 25: T = 780.3593942781221 K, F = -94.88364021950039, relative_change = 0.0011178080683010307 Iter 30: T = 777.6703097517716 K, F = -39.72785857907238, relative_change = 0.00047575447058320776 Iter 35: T = 776.5358001993162 K, F = -16.622899056212717, relative_change = 0.00020045117976864844 Iter 40: T = 776.0595753864835 K, F = -6.953344114550218, relative_change = 8.409365647045948e-5 Iter 45: T = 775.8601027189608 K, F = -2.908225685368682, relative_change = 3.521510829279764e-5 Iter 50: T = 775.776626538165 K, F = -1.2162992107602442, relative_change = 1.473546378585109e-5 Iter 55: T = 775.7417062891454 K, F = -0.5086786418102546, relative_change = 6.163962138650841e-6 Iter 60: T = 775.7271005592731 K, F = -0.21273684495296963, relative_change = 2.5780901837196815e-6 Iter 65: T = 775.7209919773954 K, F = -0.08896932740163155, relative_change = 1.078231415922525e-6 Iter 70: T = 775.7184372445643 K, F = -0.037208076897408904, relative_change = 4.509368306483789e-7 Iter 75: T = 775.7173688158751 K, F = -0.015560869400650934, relative_change = 1.8858849290192434e-7 Iter 80: T = 775.7169219846795 K, F = -0.006507742692704932, relative_change = 7.887019169288916e-8 Iter 85: T = 775.7167351142647 K, F = -0.00272161593608633, relative_change = 3.2984496611798456e-8 Iter 90: T = 775.7166569627777 K, F = -0.0011382123264019883, relative_change = 1.3794517490425238e-8 Iter 95: T = 775.7166242788843 K, F = -0.00047601399269570077, relative_change = 5.769033169722771e-9 Iter 100: T = 775.7166106100882 K, F = -0.00019907473685376598, relative_change = 2.4126787744458916e-9 Iter 105: T = 775.7166048936342 K, F = -8.32554313651146e-5, relative_change = 1.0090110997223785e-9 Iter 110: T = 775.716602502945 K, F = -3.4818416544735165e-5, relative_change = 4.219805087531365e-10 Iter 115: T = 775.7166015031302 K, F = -1.4561478658192684e-5, relative_change = 1.7647730195298523e-10 Iter 120: T = 775.7166010849957 K, F = -6.089785076213161e-6, relative_change = 7.380492515278809e-11 Iter 125: T = 775.7166009101267 K, F = -2.546819322879479e-6, relative_change = 3.0866082686357856e-11 Iter 130: T = 775.7166008369944 K, F = -1.065109771158923e-6, relative_change = 1.2908558524766557e-11 Iter 135: T = 775.7166008064097 K, F = -4.4544057653528313e-7, relative_change = 5.398500613072424e-12 Iter 140: T = 775.7166007936188 K, F = -1.8628901243822327e-7, relative_change = 2.257722805043333e-12 Iter 145: T = 775.7166007882694 K, F = -7.790799805285076e-8, relative_change = 9.442031046425659e-13 Iter 150: T = 775.7166007860324 K, F = -3.2581934927833345e-8, relative_change = 3.9487555685457663e-13 Converged in 154 iterations to T = 775.7166007852248 K Iter 1: T = 970.3414585869565 K, F = -6757.72687351822, relative_change = 0.02965854141304346 Iter 2: T = 942.8471872455635 K, F = -5723.641829532923, relative_change = 0.02833463529573503 Iter 3: T = 917.4724426277173 K, F = -4846.046256173009, relative_change = 0.026912892100761372 Iter 5: T = 872.8656013320209 K, F = -3469.7720987504135, relative_change = 0.023820843338583527 Iter 10: T = 793.6828366358787 K, F = -1493.4857648285304, relative_change = 0.015515093396648864 Iter 15: T = 750.5340234877187 K, F = -635.7450137368857, relative_change = 0.0084970278406494 Iter 20: T = 729.5867824685051 K, F = -268.35239514999324, relative_change = 0.0040884770696112665 Iter 25: T = 720.1581120238918 K, F = -112.71695084522555, relative_change = 0.001825493996809485 Iter 30: T = 716.0813568272074 K, F = -47.22995705391447, relative_change = 0.0007857373962560626 Iter 35: T = 714.3516021096412 K, F = -19.768329390878943, relative_change = 0.0003326732695466273 Iter 40: T = 713.6237452584038 K, F = -8.270213902331225, relative_change = 0.00013985252287042297 Iter 45: T = 713.3185594210365 K, F = -3.459205064200762, relative_change = 5.861569772940818e-5 Iter 50: T = 713.1907887013481 K, F = -1.4467689786773583, relative_change = 2.453619177937072e-5 Iter 55: T = 713.1373292145216 K, F = -0.605071487108037, relative_change = 1.026525269147538e-5 Iter 60: T = 713.1149675746008 K, F = -0.25305082016802255, relative_change = 4.2937380120815925e-6 Iter 65: T = 713.1056149271843 K, F = -0.10582934701984259, relative_change = 1.7958126548986886e-6 Iter 70: T = 713.1017034084502 K, F = -0.04425917933672319, relative_change = 7.510513134148293e-7 Iter 75: T = 713.1000675418832 K, F = -0.018509731798198148, relative_change = 3.1410230428041643e-7 Iter 80: T = 713.099383398975 K, F = -0.007740993414176445, relative_change = 1.3136197767591716e-7 Iter 85: T = 713.0990972815454 K, F = -0.0032373763335932226, relative_change = 5.493726028485893e-8 Iter 90: T = 713.0989776236979 K, F = -0.0013539095223835673, relative_change = 2.2975438006709142e-8 Iter 95: T = 713.0989275813357 K, F = -0.0005662211439148024, relative_change = 9.608605982610622e-9 Iter 100: T = 713.0989066530185 K, F = -0.000236800446146046, relative_change = 4.018434362459467e-9 Iter 105: T = 713.0988979005458 K, F = -9.903277512068875e-5, relative_change = 1.6805573481260984e-9 Iter 110: T = 713.098894240157 K, F = -4.1416690317652716e-5, relative_change = 7.028291882623549e-10 Iter 115: T = 713.0988927093388 K, F = -1.7320955375765834e-5, relative_change = 2.9393157777056285e-10 Iter 120: T = 713.0988920691323 K, F = -7.2438320132262035e-6, relative_change = 1.2292572411061237e-10 Iter 125: T = 713.0988918013902 K, F = -3.0294562791688406e-6, relative_change = 5.140899274914642e-11 Iter 130: T = 713.0988916894173 K, F = -1.2669547915233892e-6, relative_change = 2.149985467276189e-11 Iter 135: T = 713.0988916425888 K, F = -5.298548402254966e-7, relative_change = 8.991482681376393e-12 Iter 140: T = 713.0988916230046 K, F = -2.2159239454477841e-7, relative_change = 3.760358548931398e-12 Iter 145: T = 713.0988916148143 K, F = -9.267136857893377e-8, relative_change = 1.5726061980236586e-12 Iter 150: T = 713.098891611389 K, F = -3.8756168496689725e-8, relative_change = 6.576809183412906e-13 Iter 155: T = 713.0988916099566 K, F = -1.6209098729902394e-8, relative_change = 2.750636957102543e-13 Converged in 157 iterations to T = 713.0988916096535 K Iter 1: T = 969.3261626781963 K, F = -6989.063012124984, relative_change = 0.03067383732180372 Iter 2: T = 940.7933727600173 K, F = -5921.213394463875, relative_change = 0.02943569565825437 Iter 3: T = 914.3625276059145 K, F = -5014.829418182804, relative_change = 0.02809420848338077 Iter 5: T = 867.6207089388175 K, F = -3593.012432095559, relative_change = 0.02513314949836295 Iter 10: T = 783.4115823287909 K, F = -1549.4480790041662, relative_change = 0.016864477422420348 Iter 15: T = 736.5118492801213 K, F = -660.6975964987018, relative_change = 0.009484485464038545 Iter 20: T = 713.3638042798133 K, F = -279.2031124119307, relative_change = 0.004643710092951325 Iter 25: T = 702.8429406132196 K, F = -117.34570587218944, relative_change = 0.0020924984012174043 Iter 30: T = 698.2720466248553 K, F = -49.18340864127932, relative_change = 0.0009045148311380533 Iter 35: T = 696.3284189190238 K, F = -20.58851976450047, relative_change = 0.0003836796304709213 Iter 40: T = 695.5097996832521 K, F = -8.613804201411465, relative_change = 0.0001614239154193745 Iter 45: T = 695.1664211172432 K, F = -3.603000378288377, relative_change = 6.767959588629804e-5 Iter 50: T = 695.0226363540929 K, F = -1.5069237548253471, relative_change = 2.8334291384640215e-5 Iter 55: T = 694.9624723406804 K, F = -0.6302320609729426, relative_change = 1.1854972508209083e-5 Iter 60: T = 694.9373055157508 K, F = -0.26357382007841795, relative_change = 4.958807013933589e-6 Iter 65: T = 694.9267794838759 K, F = -0.110230287024426, relative_change = 2.073992554729363e-6 Iter 70: T = 694.9223772028083 K, F = -0.046099721757467016, relative_change = 8.673964844536423e-7 Iter 75: T = 694.9205360867612 K, F = -0.019279471549921934, relative_change = 3.627604712371209e-7 Iter 80: T = 694.9197661048779 K, F = -0.008062908282793102, relative_change = 1.5171161878693757e-7 Iter 85: T = 694.9194440883554 K, F = -0.00337200506455948, relative_change = 6.344776073442159e-8 Iter 90: T = 694.9193094170421 K, F = -0.001410212880718853, relative_change = 2.6534637488240907e-8 Iter 95: T = 694.9192530958629 K, F = -0.0005897678843153065, relative_change = 1.109710687309807e-8 Iter 100: T = 694.9192295416684 K, F = -0.00024664797614681877, relative_change = 4.6409434386441256e-9 Iter 105: T = 694.919219691022 K, F = -0.00010315112860559417, relative_change = 1.9408980899746893e-9 Iter 110: T = 694.919215571364 K, F = -4.313903536701247e-5, relative_change = 8.117068115712633e-10 Iter 115: T = 694.9192138484738 K, F = -1.8041259620460437e-5, relative_change = 3.3946548344269303e-10 Iter 120: T = 694.9192131279405 K, F = -7.545069735770404e-6, relative_change = 1.4196851062447138e-10 Iter 125: T = 694.9192128266048 K, F = -3.1554392304622425e-6, relative_change = 5.937294478748388e-11 Iter 130: T = 694.9192127005828 K, F = -1.319642905062146e-6, relative_change = 2.483048466048941e-11 Iter 135: T = 694.9192126478788 K, F = -5.518904482304521e-7, relative_change = 1.0384405706602734e-11 Iter 140: T = 694.9192126258374 K, F = -2.3080868172264957e-7, relative_change = 4.342910807137671e-12 Iter 145: T = 694.9192126166193 K, F = -9.652728027997881e-8, relative_change = 1.816263433460201e-12 Iter 150: T = 694.9192126127642 K, F = -4.036863299194948e-8, relative_change = 7.595787610644738e-13 Iter 155: T = 694.9192126111519 K, F = -1.6882119480143842e-8, relative_change = 3.176550318552777e-13 Converged in 158 iterations to T = 694.9192126106799 K Iter 1: T = 963.4893272371794 K, F = -8318.991519624575, relative_change = 0.036510672762820655 Iter 2: T = 928.8515826382031 K, F = -7059.080614502406, relative_change = 0.035950314777539454 Iter 3: T = 896.0529137704577 K, F = -5989.0789734182545, relative_change = 0.03531098991572782 Iter 5: T = 835.8530485848966 K, F = -4308.727035819689, relative_change = 0.03376597357015218 Iter 10: T = 715.5956190618664 K, F = -1883.3093597646614, relative_change = 0.02811817153458596 Iter 15: T = 635.3155935526814 K, F = -815.7670038449371, relative_change = 0.0202452187635628 Iter 20: T = 588.1061438118682 K, F = -349.3965114496776, relative_change = 0.012200748568894028 Iter 25: T = 563.7339536596892 K, F = -148.12550846266052, relative_change = 0.006274756440579453 Iter 30: T = 552.3402025292203 K, F = -62.3677153171616, relative_change = 0.002905812220215713 Iter 35: T = 547.3176535915195 K, F = -26.163056401842347, relative_change = 0.0012726352608204245 Iter 40: T = 545.1676204735116 K, F = -10.956277239579945, relative_change = 0.0005429789729725238 Iter 45: T = 544.2594147993694 K, F = -4.5846384859879485, relative_change = 0.00022901628647460092 Iter 50: T = 543.8779833005962 K, F = -1.9178072525711538, relative_change = 9.612020725827151e-5 Iter 55: T = 543.7181805294135 K, F = -0.8021300118442191, relative_change = 4.025890104293544e-5 Iter 60: T = 543.6512993484839 K, F = -0.335474380307233, relative_change = 1.6847319905764253e-5 Iter 65: T = 543.6233201263266 K, F = -0.14030184737335233, relative_change = 7.047600214275231e-6 Iter 70: T = 543.6116173566166 K, F = -0.05867633761742952, relative_change = 2.9477142375040312e-6 Iter 75: T = 543.6067228518019 K, F = -0.02453922025569985, relative_change = 1.2328259150190986e-6 Iter 80: T = 543.6046758647744 K, F = -0.010262608108317667, relative_change = 5.155924237936299e-7 Iter 85: T = 543.6038197821922 K, F = -0.004291947569398463, relative_change = 2.1562864118056564e-7 Iter 90: T = 543.6034617568051 K, F = -0.0017949441315354697, relative_change = 9.017877581575318e-8 Iter 95: T = 543.6033120260629 K, F = -0.0007506671422819466, relative_change = 3.7713893996270265e-8 Iter 100: T = 543.6032494068346 K, F = -0.00031393797566181547, relative_change = 1.577241011598868e-8 Iter 105: T = 543.6032232187179 K, F = -0.00013129261223035482, relative_change = 6.596211865985491e-9 Iter 110: T = 543.6032122665334 K, F = -5.490813886491197e-5, relative_change = 2.7586148657386445e-9 Iter 115: T = 543.6032076861989 K, F = -2.2963239680706682e-5, relative_change = 1.1536857413011324e-9 Iter 120: T = 543.6032057706482 K, F = -9.603501123417457e-6, relative_change = 4.824851655333584e-10 Iter 125: T = 543.603204969542 K, F = -4.016298862652423e-6, relative_change = 2.0178105987292864e-10 Iter 130: T = 543.6032046345098 K, F = -1.6796635759763756e-6, relative_change = 8.438722046723057e-11 Iter 135: T = 543.6032044943954 K, F = -7.02455202089558e-7, relative_change = 3.5291735159148065e-11 Iter 140: T = 543.6032044357979 K, F = -2.9377585730738787e-7, relative_change = 1.475946042783081e-11 Iter 145: T = 543.6032044112916 K, F = -1.2285994399618971e-7, relative_change = 6.172551068650592e-12 Iter 150: T = 543.603204401043 K, F = -5.138166045415282e-8, relative_change = 2.581442843435012e-12 Iter 155: T = 543.6032043967568 K, F = -2.148884584163291e-8, relative_change = 1.0796114182246194e-12 Iter 160: T = 543.6032043949642 K, F = -8.986831029345055e-9, relative_change = 4.5150332710243346e-13 Converged in 165 iterations to T = 543.6032043942146 K Iter 1: T = 966.898910549612 K, F = -7542.114718535761, relative_change = 0.03310108945038802 Iter 2: T = 935.8554249951304 K, F = -6393.973522755941, relative_change = 0.032106236976557914 Iter 3: T = 906.8391412643747 K, F = -5419.153589027352, relative_change = 0.031005092192425622 Iter 5: T = 854.7572493170413 K, F = -3889.111670407716, relative_change = 0.02848413790261768 Iter 10: T = 757.2171522296555 K, F = -1685.538596154181, relative_change = 0.020693168131786333 Iter 15: T = 699.4427950124405 K, F = -722.3610953981771, relative_change = 0.012589488775239412 Iter 20: T = 669.4252332514174 K, F = -306.38643419721427, relative_change = 0.006521565140803627 Iter 25: T = 655.3328325394234 K, F = -129.03856203377745, relative_change = 0.003032804659976668 Iter 30: T = 649.1066350787282 K, F = -54.138653785175286, relative_change = 0.001330991055570334 Iter 35: T = 646.4385220638022 K, F = -22.67298614768952, relative_change = 0.0005684026992687384 Iter 40: T = 645.3109456721306 K, F = -9.487730842342767, relative_change = 0.00023983518451688756 Iter 45: T = 644.8372875586585 K, F = -3.968872196513544, relative_change = 0.00010067803040287193 Iter 50: T = 644.6388292358008 K, F = -1.6600034230640965, relative_change = 4.2170896253910264e-5 Iter 55: T = 644.5557668686479 K, F = -0.6942636716545773, relative_change = 1.7647967376708658e-5 Iter 60: T = 644.5210178581849 K, F = -0.2903546813467891, relative_change = 7.382620643298609e-6 Iter 65: T = 644.5064834230861 K, F = -0.12143072643076547, relative_change = 3.087855299370118e-6 Iter 70: T = 644.5004046016742 K, F = -0.0507839428451779, relative_change = 1.2914400945521763e-6 Iter 75: T = 644.4978623052534 K, F = -0.021238479869152838, relative_change = 5.401065381711828e-7 Iter 80: T = 644.4967990759102 K, F = -0.008882190901708331, relative_change = 2.258809052459534e-7 Iter 85: T = 644.4963544188441 K, F = -0.0037146391811555546, relative_change = 9.446642459335886e-8 Iter 90: T = 644.496168457624 K, F = -0.0015535066201297631, relative_change = 3.950704508024482e-8 Iter 95: T = 644.4960906863643 K, F = -0.0006496950490663123, relative_change = 1.6522328264056763e-8 Iter 100: T = 644.4960581614846 K, F = -0.00027171023378297354, relative_change = 6.909836792427146e-9 Iter 105: T = 644.4960445591896 K, F = -0.0001136324647002529, relative_change = 2.88977655852459e-9 Iter 110: T = 644.4960388705472 K, F = -4.752245326461457e-5, relative_change = 1.2085391052717564e-9 Iter 115: T = 644.4960364914889 K, F = -1.9874456851975975e-5, relative_change = 5.054254794050907e-10 Iter 120: T = 644.4960354965384 K, F = -8.311736017563298e-6, relative_change = 2.113749937183543e-10 Iter 125: T = 644.4960350804381 K, F = -3.4760663784050294e-6, relative_change = 8.839952443218297e-11 Iter 130: T = 644.4960349064202 K, F = -1.4537330232378132e-6, relative_change = 3.6969750885409533e-11 Iter 135: T = 644.4960348336436 K, F = -6.079680340276283e-7, relative_change = 1.5461179196656652e-11 Iter 140: T = 644.4960348032077 K, F = -2.542598943611196e-7, relative_change = 6.4660600066112685e-12 Iter 145: T = 644.4960347904791 K, F = -1.0633569985651903e-7, relative_change = 2.704213410886439e-12 Iter 150: T = 644.4960347851558 K, F = -4.447058538081805e-8, relative_change = 1.1309273700532772e-12 Iter 155: T = 644.4960347829295 K, F = -1.8598669881964014e-8, relative_change = 4.729810645919059e-13 Converged in 160 iterations to T = 644.4960347819984 K Iter 1: T = 965.2204466044033 K, F = -7924.554325082973, relative_change = 0.034779553395596755 Iter 2: T = 932.4175188999427 K, F = -6721.243317585578, relative_change = 0.033984907613446885 Iter 3: T = 901.5617928973596 K, F = -5699.426301742214, relative_change = 0.03309217746035746 Iter 5: T = 845.5787594442522 K, F = -4095.1251766628934, relative_change = 0.03099410753503419 Iter 10: T = 737.5288521794383 K, F = -1781.8176335755118, relative_change = 0.023981104589216224 Iter 15: T = 670.059881873144 K, F = -767.1172366750396, relative_change = 0.015675465502668615 Iter 20: T = 633.1990998616175 K, F = -326.61104017918274, relative_change = 0.008611621460782256 Iter 25: T = 615.2701089049577 K, F = -137.88286083543798, relative_change = 0.004151913064192471 Iter 30: T = 607.1910549804817 K, F = -57.91938253072331, relative_change = 0.0018557490148639927 Iter 35: T = 603.6959468412655 K, F = -24.269796128017934, relative_change = 0.0007991447332380393 Iter 40: T = 602.21262089439 K, F = -10.158384066776165, relative_change = 0.00033842104735983143 Iter 45: T = 601.5883920542599 K, F = -4.2498538614013315, relative_change = 0.00014228159786290717 Iter 50: T = 601.3266450998195 K, F = -1.777602515177525, relative_change = 5.9636039727929316e-5 Iter 55: T = 601.217058673562 K, F = -0.7434606641147552, relative_change = 2.496369726583262e-5 Iter 60: T = 601.1712071648684 K, F = -0.3109321912906829, relative_change = 1.0444178391514197e-5 Iter 65: T = 601.1520278129967 K, F = -0.13003696633917988, relative_change = 4.368590998517472e-6 Iter 70: T = 601.1440061310504 K, F = -0.05438325903691765, relative_change = 1.8271212881811858e-6 Iter 75: T = 601.1406512545194 K, F = -0.02274377155734253, relative_change = 7.641456960304218e-7 Iter 80: T = 601.1392481852639 K, F = -0.009511724429909274, relative_change = 3.195786606242933e-7 Iter 85: T = 601.1386614014776 K, F = -0.003977918070158071, relative_change = 1.3365227789833772e-7 Iter 90: T = 601.1384160008841 K, F = -0.0016636130733779786, relative_change = 5.589509512653246e-8 Iter 95: T = 601.1383133713192 K, F = -0.0006957428959262213, relative_change = 2.33760166849726e-8 Iter 100: T = 601.138270450391 K, F = -0.0002909679949917865, relative_change = 9.776132904311039e-9 Iter 105: T = 601.138252500343 K, F = -0.00012168629156428246, relative_change = 4.088496152705843e-9 Iter 110: T = 601.138244993418 K, F = -5.089066143515453e-5, relative_change = 1.7098580553482997e-9 Iter 115: T = 601.1382418539321 K, F = -2.1283081588718833e-5, relative_change = 7.150830501253367e-10 Iter 120: T = 601.1382405409618 K, F = -8.900839521430726e-6, relative_change = 2.990562956456348e-10 Iter 125: T = 601.1382399918617 K, F = -3.7224370144084418e-6, relative_change = 1.2506890237308954e-10 Iter 130: T = 601.1382397622216 K, F = -1.556767685151339e-6, relative_change = 5.230531107235575e-11 Iter 135: T = 601.1382396661834 K, F = -6.510589980468495e-7, relative_change = 2.1874711153121067e-11 Iter 140: T = 601.138239626019 K, F = -2.7228054461092555e-7, relative_change = 9.148261963571703e-12 Iter 145: T = 601.1382396092218 K, F = -1.1387137199836417e-7, relative_change = 3.825925729726709e-12 Iter 150: T = 601.138239602197 K, F = -4.762218719367439e-8, relative_change = 1.600041767327567e-12 Iter 155: T = 601.1382395992591 K, F = -1.991581460858427e-8, relative_change = 6.691447218758057e-13 Iter 160: T = 601.1382395980304 K, F = -8.3289709018608e-9, relative_change = 2.7984227746774235e-13 Converged in 162 iterations to T = 601.1382395977704 K Iter 1: T = 980.0938376711912 K, F = -4535.638022267918, relative_change = 0.01990616232880885 Iter 2: T = 962.2334708982067 K, F = -3831.315728431198, relative_change = 0.018223119140737168 Iter 3: T = 946.2983410883764 K, F = -3234.8566696570997, relative_change = 0.016560564864736466 Iter 5: T = 919.6816366644869 K, F = -2302.885462629068, relative_change = 0.013385894758921164 Iter 10: T = 877.4030877832093 K, F = -977.7061531633886, relative_change = 0.007038285450751924 Iter 15: T = 857.3785692933552 K, F = -412.01277017730155, relative_change = 0.0033021273670986897 Iter 20: T = 848.489137050214 K, F = -172.91180210838516, relative_change = 0.0014555461409181084 Iter 25: T = 844.6711310944279 K, F = -72.42408594461165, relative_change = 0.0006228247030239238 Iter 30: T = 843.0559845122821 K, F = -30.30828687056334, relative_change = 0.00026302313916669675 Iter 35: T = 842.3772239056651 K, F = -12.678756054918686, relative_change = 0.00011045192634231499 Iter 40: T = 842.0927781867177 K, F = -5.303015947729546, relative_change = 4.627193771433876e-5 Iter 45: T = 841.9737177885881 K, F = -2.217891225762743, relative_change = 1.936543838501913e-5 Iter 50: T = 841.9239074757157 K, F = -0.9275672578411047, relative_change = 8.101302061495634e-6 Iter 55: T = 841.9030730870895 K, F = -0.3879229691431755, relative_change = 3.3884889994540578e-6 Iter 60: T = 841.8943593509528 K, F = -0.16223458945706093, relative_change = 1.4171813903264423e-6 Iter 65: T = 841.8907150669306 K, F = -0.06784854265791274, relative_change = 5.926952698017918e-7 Iter 70: T = 841.889190967126 K, F = -0.028375088283807193, relative_change = 2.4787452919358417e-7 Iter 75: T = 841.8885535674646 K, F = -0.011866803843728624, relative_change = 1.0366448871866455e-7 Iter 80: T = 841.888286998803 K, F = -0.004962839619634174, relative_change = 4.33537972096147e-8 Iter 85: T = 841.8881755165158 K, F = -0.0020755188918213374, relative_change = 1.8131087999931334e-8 Iter 90: T = 841.8881288932765 K, F = -0.0008680068047473011, relative_change = 7.582639682619815e-9 Iter 95: T = 841.8881093948781 K, F = -0.00036301081311518324, relative_change = 3.171150831109741e-9 Iter 100: T = 841.8881012404147 K, F = -0.0001518154587323295, relative_change = 1.326213222700782e-9 Iter 105: T = 841.8880978301205 K, F = -6.349103651426269e-5, relative_change = 5.546382066444538e-10 Iter 110: T = 841.8880964038948 K, F = -2.6552709658567153e-5, relative_change = 2.3195632318996373e-10 Iter 115: T = 841.8880958074301 K, F = -1.1104658611316154e-5, relative_change = 9.700689020333353e-11 Iter 120: T = 841.8880955579815 K, F = -4.644100946915586e-6, relative_change = 4.0569440903577865e-11 Iter 125: T = 841.8880954536592 K, F = -1.9422194974527685e-6, relative_change = 1.696663360052659e-11 Iter 130: T = 841.8880954100304 K, F = -8.12261918392565e-7, relative_change = 7.095670895335075e-12 Iter 135: T = 841.8880953917843 K, F = -3.396990839732439e-7, relative_change = 2.9675069691063915e-12 Iter 140: T = 841.8880953841535 K, F = -1.4206760012847042e-7, relative_change = 1.2410589647538048e-12 Iter 145: T = 841.8880953809621 K, F = -5.941377523299707e-8, relative_change = 5.190205107809989e-13 Converged in 150 iterations to T = 841.8880953796275 K Iter 1: T = 976.3654956860072 K, F = -5385.144290160885, relative_change = 0.023634504313992756 Iter 2: T = 954.8940724586517 K, F = -4553.584609884579, relative_change = 0.021991173717450282 Iter 3: T = 935.4946905839412 K, F = -3848.69059014035, relative_change = 0.020315742273654763 Iter 5: T = 902.4933657899011 K, F = -2745.5411969363017, relative_change = 0.016961595160710136 Iter 10: T = 848.1020554773349 K, F = -1170.8683326474836, relative_change = 0.009557646063916087 Iter 15: T = 821.2234650649019 K, F = -494.83760615919, relative_change = 0.004685637951516954 Iter 20: T = 808.9980907159653 K, F = -207.98388203855575, relative_change = 0.002112864788393965 Iter 25: T = 803.6847043107725 K, F = -87.17471756316135, relative_change = 0.000913617464197118 Iter 30: T = 801.4249783797725 K, F = -36.49229809155906, relative_change = 0.0003875966118711233 Iter 35: T = 800.4731557193776 K, F = -15.267673631799637, relative_change = 0.00016308192499044132 Iter 40: T = 800.0738912947812 K, F = -6.3862061271403245, relative_change = 6.837651902555195e-5 Iter 45: T = 799.906702982628 K, F = -2.6709774371926125, relative_change = 2.862637271753947e-5 Iter 50: T = 799.836745817731 K, F = -1.117067882586149, relative_change = 1.1977233058983798e-5 Iter 55: T = 799.8074824156091 K, F = -0.46717694145192434, relative_change = 5.009956857837459e-6 Iter 60: T = 799.7952429775036 K, F = -0.19537999289874997, relative_change = 2.095387358555961e-6 Iter 65: T = 799.7901240999727 K, F = -0.08171042418292196, relative_change = 8.763446291296725e-7 Iter 70: T = 799.787983289564 K, F = -0.03417230632038548, relative_change = 3.6650279406595954e-7 Iter 75: T = 799.7870879710165 K, F = -0.014291272041353942, relative_change = 1.5327672068992093e-7 Iter 80: T = 799.7867135370465 K, F = -0.005976781593493019, relative_change = 6.410230820105214e-8 Iter 85: T = 799.7865569441028 K, F = -0.002499561606263634, relative_change = 2.680837760484936e-8 Iter 90: T = 799.7864914550313 K, F = -0.0010453465443434062, relative_change = 1.1211588361775778e-8 Iter 95: T = 799.7864640667137 K, F = -0.0004371764143089596, relative_change = 4.688820969847055e-9 Iter 100: T = 799.7864526125912 K, F = -0.00018283239771366144, relative_change = 1.9609210624454594e-9 Iter 105: T = 799.7864478223403 K, F = -7.64626922638012e-5, relative_change = 8.20080630687643e-10 Iter 110: T = 799.786445819 K, F = -3.197760980200304e-5, relative_change = 3.429675041599382e-10 Iter 115: T = 799.7864449811793 K, F = -1.3373419180839896e-5, relative_change = 1.4343311616513413e-10 Iter 120: T = 799.7864446307926 K, F = -5.59292271573586e-6, relative_change = 5.998543262679022e-11 Iter 125: T = 799.7864444842569 K, F = -2.339029607778542e-6, relative_change = 2.5086651506394807e-11 Iter 130: T = 799.7864444229737 K, F = -9.782090399923504e-7, relative_change = 1.0491525722477914e-11 Iter 135: T = 799.7864443973443 K, F = -4.090978569237791e-7, relative_change = 4.387672280778396e-12 Iter 140: T = 799.7864443866258 K, F = -1.7108793159970048e-7, relative_change = 1.834958952726751e-12 Iter 145: T = 799.7864443821433 K, F = -7.155143433301703e-8, relative_change = 7.674062324893014e-13 Iter 150: T = 799.7864443802686 K, F = -2.992314906968829e-8, relative_change = 3.209329247708073e-13 Converged in 153 iterations to T = 799.7864443797198 K Iter 1: T = 980.8790998435679 K, F = -4356.715289314691, relative_change = 0.019120900156432023 Iter 2: T = 963.7681759679255 K, F = -3679.377475985584, relative_change = 0.01744447799771791 Iter 3: T = 948.5412549463504 K, F = -3105.9009129324445, relative_change = 0.015799360677460086 Iter 5: T = 923.2007813744729 K, F = -2210.161357671406, relative_change = 0.01268800756614838 Iter 10: T = 883.2335183752208 K, F = -937.543436005407, relative_change = 0.006584744726399872 Iter 15: T = 864.449574107982 K, F = -394.8865719887416, relative_change = 0.0030655006744633342 Iter 20: T = 856.1457434305889 K, F = -165.68213470714068, relative_change = 0.0013460579057818012 Iter 25: T = 852.5863225070841 K, F = -69.38792493531919, relative_change = 0.0005749751255871266 Iter 30: T = 851.0818861922664 K, F = -29.036250715386792, relative_change = 0.00024263355898319447 Iter 35: T = 850.4498886867937 K, F = -12.14637180219491, relative_change = 0.00010185721112741125 Iter 40: T = 850.1850818327822 K, F = -5.080295526626411, relative_change = 4.2665607512089536e-5 Iter 45: T = 850.074249057852 K, F = -2.1247344446973813, relative_change = 1.7855135996694382e-5 Iter 50: T = 850.0278821622143 K, F = -0.8886058014111125, relative_change = 7.469309108327744e-6 Iter 55: T = 850.0084882941834 K, F = -0.3716284416701551, relative_change = 3.124117864058263e-6 Iter 60: T = 850.0003770783673 K, F = -0.15541995680827347, relative_change = 1.3066070040333023e-6 Iter 65: T = 849.996984789079 K, F = -0.06499857024319677, relative_change = 5.464497782978805e-7 Iter 70: T = 849.9955660788498 K, F = -0.027183193744384937, relative_change = 2.2853376907260074e-7 Iter 75: T = 849.9949727547815 K, F = -0.011368338954169221, relative_change = 9.557589179808388e-8 Iter 80: T = 849.994724619132 K, F = -0.0047543755871444215, relative_change = 3.997103887517001e-8 Iter 85: T = 849.9946208457633 K, F = -0.0019883367308008992, relative_change = 1.671637621090883e-8 Iter 90: T = 849.9945774464878 K, F = -0.000831546181163656, relative_change = 6.990989989273444e-9 Iter 95: T = 849.9945592963901 K, F = -0.0003477625448538024, relative_change = 2.9237158103396326e-9 Iter 100: T = 849.9945517058021 K, F = -0.0001454384496790695, relative_change = 1.2227329225946726e-9 Iter 105: T = 849.9945485313275 K, F = -6.082409835039826e-5, relative_change = 5.113615349088276e-10 Iter 110: T = 849.9945472037243 K, F = -2.5437365158031966e-5, relative_change = 2.138575094536737e-10 Iter 115: T = 849.9945466485049 K, F = -1.063821097413431e-5, relative_change = 8.943777379900612e-11 Iter 120: T = 849.9945464163054 K, F = -4.449029568753815e-6, relative_change = 3.7403967798752e-11 Iter 125: T = 849.9945463191968 K, F = -1.8606369964757619e-6, relative_change = 1.564278350226765e-11 Iter 130: T = 849.9945462785847 K, F = -7.781382485028132e-7, relative_change = 6.541979000733527e-12 Iter 135: T = 849.9945462616004 K, F = -3.2542765082688163e-7, relative_change = 2.7359416688053356e-12 Iter 140: T = 849.9945462544973 K, F = -1.3609850868512297e-7, relative_change = 1.1442100265376408e-12 Iter 145: T = 849.9945462515267 K, F = -5.691732263279903e-8, relative_change = 4.785164207190834e-13 Converged in 150 iterations to T = 849.9945462502844 K Iter 1: T = 967.2856213960425 K, F = -7454.00228431957, relative_change = 0.03271437860395742 Iter 2: T = 936.6447948354826 K, F = -6318.612762180429, relative_change = 0.031677123987780754 Iter 3: T = 908.0462574120551 K, F = -5354.658960016704, relative_change = 0.03053295932579302 Iter 5: T = 856.8383526745466 K, F = -3841.7950728202723, relative_change = 0.027928988823085428 Iter 10: T = 761.5593747810676 K, F = -1663.6217694358095, relative_change = 0.020017463058655295 Iter 15: T = 705.7331464208116 K, F = -712.3194786061683, relative_change = 0.012006147014488438 Iter 20: T = 677.00417622249 K, F = -301.91517142044427, relative_change = 0.006152597573395632 Iter 25: T = 663.601702976449 K, F = -127.10302530976395, relative_change = 0.0028433640853555604 Iter 30: T = 657.700216525657 K, F = -53.31574779934981, relative_change = 0.0012440299834798692 Iter 35: T = 655.175240039725 K, F = -22.326311775260088, relative_change = 0.0005305343318238769 Iter 40: T = 654.1088956810402 K, F = -9.342291911891106, relative_change = 0.00022372380550928772 Iter 45: T = 653.6610921083034 K, F = -3.9079671647003513, relative_change = 9.389115284219456e-5 Iter 50: T = 653.4734901058239 K, F = -1.6345180125159313, relative_change = 3.932392075832437e-5 Iter 55: T = 653.3949756529537 K, F = -0.6836028794301353, relative_change = 1.6455815135130863e-5 Iter 60: T = 653.3621299791193 K, F = -0.28589577494034907, relative_change = 6.883783327007241e-6 Iter 65: T = 653.3483917775012 K, F = -0.11956588227175569, relative_change = 2.8791891983745837e-6 Iter 70: T = 653.3426459916216 K, F = -0.05000402940788673, relative_change = 1.2041653255640527e-6 Iter 75: T = 653.3402429818416 K, F = -0.020912308421734527, relative_change = 5.036057682729814e-7 Iter 80: T = 653.3392380050952 K, F = -0.008745781700428834, relative_change = 2.1061559916844133e-7 Iter 85: T = 653.3388177101812 K, F = -0.003657591153954476, relative_change = 8.808224789931474e-8 Iter 90: T = 653.3386419375424 K, F = -0.0015296484411361222, relative_change = 3.683709854416619e-8 Iter 95: T = 653.3385684272756 K, F = -0.0006397172697050757, relative_change = 1.540572336390315e-8 Iter 100: T = 653.3385376843954 K, F = -0.0002675374059201707, relative_change = 6.442859031098609e-9 Iter 105: T = 653.3385248273543 K, F = -0.00011188733846539956, relative_change = 2.6944808489803757e-9 Iter 110: T = 653.3385194503859 K, F = -4.679262062912137e-5, relative_change = 1.1268641012321323e-9 Iter 115: T = 653.3385172016734 K, F = -1.9569233126626173e-5, relative_change = 4.712680410696116e-10 Iter 120: T = 653.338516261235 K, F = -8.184087046947397e-6, relative_change = 1.9708992539633187e-10 Iter 125: T = 653.3385158679324 K, F = -3.42268227304654e-6, relative_change = 8.242534468583132e-11 Iter 130: T = 653.3385157034486 K, F = -1.4314060015618857e-6, relative_change = 3.447124909450263e-11 Iter 135: T = 653.3385156346595 K, F = -5.98631576032016e-7, relative_change = 1.441629989050063e-11 Iter 140: T = 653.3385156058911 K, F = -2.503547227861169e-7, relative_change = 6.029065134464985e-12 Iter 145: T = 653.3385155938598 K, F = -1.0470123212868998e-7, relative_change = 2.521424565883842e-12 Iter 150: T = 653.3385155888283 K, F = -4.37885316895148e-8, relative_change = 1.054519390700846e-12 Iter 155: T = 653.3385155867239 K, F = -1.831244456074188e-8, relative_change = 4.410019504115201e-13 Converged in 159 iterations to T = 653.3385155859644 K Iter 1: T = 973.4124163861691 K, F = -6058.006217732629, relative_change = 0.026587583613830932 Iter 2: T = 949.0179677545893 K, F = -5126.695566392445, relative_change = 0.025060753510978445 Iter 3: T = 926.7500460603732 K, F = -4336.742971994156, relative_change = 0.02346417291434731 Iter 5: T = 888.2750896285019 K, F = -3099.117501773507, relative_change = 0.02013893337740467 Iter 10: T = 822.6842430601001 K, F = -1327.1790534910426, relative_change = 0.012109985304461881 Iter 15: T = 788.8723107181529 K, F = -562.5926480078227, relative_change = 0.006217753256038722 Iter 20: T = 773.0808452426965 K, F = -236.86271470336627, relative_change = 0.0028766576246572004 Iter 25: T = 766.123283691939 K, F = -99.36007073407315, relative_change = 0.0012592768011528365 Iter 30: T = 763.145633390356 K, F = -41.60833846479387, relative_change = 0.000537166632854242 Iter 35: T = 761.8879628893457 K, F = -17.410844739247043, relative_change = 0.000226544256469402 Iter 40: T = 761.3597857340186 K, F = -7.283138953281605, relative_change = 9.507902649206366e-5 Iter 45: T = 761.138507299101 K, F = -3.0461966705642496, relative_change = 3.982217149380142e-5 Iter 50: T = 761.0458978620762 K, F = -1.2740085343810919, relative_change = 1.6664447095773125e-5 Iter 55: T = 761.0071555537721 K, F = -0.5328148072815673, relative_change = 6.971080812061002e-6 Iter 60: T = 760.9909509690317 K, F = -0.22283112904473468, relative_change = 2.915705943025854e-6 Iter 65: T = 760.9841736527654 K, F = -0.093190921541361, relative_change = 1.2194384452288445e-6 Iter 70: T = 760.9813392342494 K, F = -0.03897360567776187, relative_change = 5.099934108801927e-7 Iter 75: T = 760.9801538353968 K, F = -0.01629923596721472, relative_change = 2.1328702982793674e-7 Iter 80: T = 760.9796580854847 K, F = -0.0068165366434962404, relative_change = 8.919947946617752e-8 Iter 85: T = 760.979450756609 K, F = -0.0028507572934719505, relative_change = 3.730433940558602e-8 Iter 90: T = 760.9793640491374 K, F = -0.0011922207906341908, relative_change = 1.5601129303358782e-8 Iter 95: T = 760.9793277870268 K, F = -0.0004986009816694281, relative_change = 6.524580188298973e-9 Iter 100: T = 760.9793126217772 K, F = -0.00020852088421619008, relative_change = 2.728657602195557e-9 Iter 105: T = 760.9793062794885 K, F = -8.720592344380051e-5, relative_change = 1.1411572337145874e-9 Iter 110: T = 760.9793036270676 K, F = -3.64705600508497e-5, relative_change = 4.772456097795498e-10 Iter 115: T = 760.9793025177936 K, F = -1.5252425256795377e-5, relative_change = 1.9958983444913578e-10 Iter 120: T = 760.9793020538818 K, F = -6.37874677433814e-6, relative_change = 8.347085758123757e-11 Iter 125: T = 760.9793018598684 K, F = -2.667667916789185e-6, relative_change = 3.4908507408141936e-11 Iter 130: T = 760.9793017787297 K, F = -1.1156518607835508e-6, relative_change = 1.4599171441742387e-11 Iter 135: T = 760.9793017447965 K, F = -4.6657931551674636e-7, relative_change = 6.105552869388811e-12 Iter 140: T = 760.9793017306051 K, F = -1.951284064327652e-7, relative_change = 2.5534068105465717e-12 Iter 145: T = 760.9793017246702 K, F = -8.160521469680049e-8, relative_change = 1.0678676405962495e-12 Iter 150: T = 760.9793017221881 K, F = -3.41270469661481e-8, relative_change = 4.4657892587166685e-13 Converged in 155 iterations to T = 760.9793017211501 K Iter 1: T = 969.9998070324291 K, F = -6835.572505211833, relative_change = 0.03000019296757093 Iter 2: T = 942.1568338421439 K, F = -5790.113695568523, relative_change = 0.028704101782727864 Iter 3: T = 916.4283456649651 K, F = -4902.820148621068, relative_change = 0.027308073616849126 Iter 5: T = 871.1093142381479 K, F = -3511.203400756875, relative_change = 0.02425686308414447 Iter 10: T = 790.2678392418061 K, F = -1512.258665650329, relative_change = 0.015954861360172334 Iter 15: T = 745.9004643578471 K, F = -644.0933897517541, relative_change = 0.008813234512903332 Iter 20: T = 724.2469432175066 K, F = -271.9751388700385, relative_change = 0.004264203728044307 Iter 25: T = 714.4703295753034 K, F = -114.26048843450246, relative_change = 0.0019094731051435222 Iter 30: T = 710.2367338351225 K, F = -47.88098476352937, relative_change = 0.0008229867408758051 Iter 35: T = 708.439209083771 K, F = -20.041602525051452, relative_change = 0.00034864867010443295 Iter 40: T = 707.6826132126024 K, F = -8.384679206777259, relative_change = 0.0001466050688442348 Iter 45: T = 707.3653377560331 K, F = -3.5071074166338496, relative_change = 6.145233585431382e-5 Iter 50: T = 707.2324985710931 K, F = -1.4668078590234859, relative_change = 2.572472986087151e-5 Iter 55: T = 707.176917208718 K, F = -0.6134529572753022, relative_change = 1.0762702968291692e-5 Iter 60: T = 707.1536677928267 K, F = -0.2565562210306858, relative_change = 4.5018458338869235e-6 Iter 65: T = 707.1439438000007 K, F = -0.10729537725376337, relative_change = 1.8828577595226672e-6 Iter 70: T = 707.1398769684788 K, F = -0.044872295890074465, relative_change = 7.874567022958033e-7 Iter 75: T = 707.1381761462021 K, F = -0.018766145374910503, relative_change = 3.2932783768837784e-7 Iter 80: T = 707.1374648376822 K, F = -0.007848228792702971, relative_change = 1.3772954140213914e-7 Iter 85: T = 707.1371673592067 K, F = -0.00328222347629048, relative_change = 5.7600262625246274e-8 Iter 90: T = 707.1370429500232 K, F = -0.0013726651370760123, relative_change = 2.4089139326473404e-8 Iter 95: T = 707.1369909205938 K, F = -0.0005740649679762955, relative_change = 1.0074369536226458e-8 Iter 100: T = 707.136969161261 K, F = -0.00024008082811854958, relative_change = 4.2132223185492506e-9 Iter 105: T = 707.1369600612475 K, F = -0.00010040466963290307, relative_change = 1.7620200005887449e-9 Iter 110: T = 707.1369562555129 K, F = -4.19904316451003e-5, relative_change = 7.368978211709801e-10 Iter 115: T = 707.1369546639094 K, F = -1.756089995474941e-5, relative_change = 3.081794719926472e-10 Iter 120: T = 707.1369539982818 K, F = -7.344179219770375e-6, relative_change = 1.288843561630505e-10 Iter 125: T = 707.1369537199083 K, F = -3.0714229659611902e-6, relative_change = 5.390096842253263e-11 Iter 130: T = 707.1369536034892 K, F = -1.2845061910793376e-6, relative_change = 2.2542036204550637e-11 Iter 135: T = 707.1369535548013 K, F = -5.371959685973593e-7, relative_change = 9.427351196224813e-12 Iter 140: T = 707.1369535344395 K, F = -2.2466100213502926e-7, relative_change = 3.942617389782673e-12 Iter 145: T = 707.1369535259239 K, F = -9.395600342188004e-8, relative_change = 1.6488512446151214e-12 Iter 150: T = 707.1369535223625 K, F = -3.9293005404950065e-8, relative_change = 6.895602038037149e-13 Iter 155: T = 707.1369535208732 K, F = -1.6434145155841406e-8, relative_change = 2.884058464432918e-13 Converged in 157 iterations to T = 707.136953520558 K Iter 1: T = 973.5108982247184 K, F = -6035.567037138746, relative_change = 0.026489101775281583 Iter 2: T = 949.2148367750212 K, F = -5107.568372240427, relative_change = 0.024957154043168003 Iter 3: T = 927.0444231994396 K, F = -4320.440231186478, relative_change = 0.023356581372986233 Iter 5: T = 888.7584263470021 K, F = -3087.2820433749607, relative_change = 0.020027526832355185 Iter 10: T = 823.5680489791617 K, F = -1321.9129147867295, relative_change = 0.01201487248249786 Iter 15: T = 790.0150504484318 K, F = -560.2963433055666, relative_change = 0.006158106620688072 Iter 20: T = 774.3605420225849 K, F = -235.88023185109958, relative_change = 0.0028461861379359766 Iter 25: T = 767.4670583935196 K, F = -98.94470106739293, relative_change = 0.0012453236353746385 Iter 30: T = 764.5175791274442 K, F = -41.43378803518063, relative_change = 0.000531097293750989 Iter 35: T = 763.2719459289802 K, F = -17.33769485742275, relative_change = 0.0002239632507927593 Iter 40: T = 762.7488488970534 K, F = -7.252520099696743, relative_change = 9.399200572561854e-5 Iter 45: T = 762.5297031652628 K, F = -3.0333868065876533, relative_change = 3.9366224489757454e-5 Iter 50: T = 762.437987079836 K, F = -1.2686504735806219, relative_change = 1.6473529143930325e-5 Iter 55: T = 762.3996186323982 K, F = -0.5305738582433517, relative_change = 6.891195404624905e-6 Iter 60: T = 762.383570444597 K, F = -0.22189391219654997, relative_change = 2.8822896946075454e-6 Iter 65: T = 762.3768585430724 K, F = -0.09279896185483727, relative_change = 1.2054621085053891e-6 Iter 70: T = 762.374051483125 K, F = -0.03880968268628271, relative_change = 5.041481191232156e-7 Iter 75: T = 762.3728775261873 K, F = -0.016230681279510106, relative_change = 2.1084242037815528e-7 Iter 80: T = 762.3723865614617 K, F = -0.006787866230068107, relative_change = 8.817710783404957e-8 Iter 85: T = 762.3721812338154 K, F = -0.0028387669811494876, relative_change = 3.6876770212046856e-8 Iter 90: T = 762.3720953632829 K, F = -0.0011872062974592756, relative_change = 1.5422314545391546e-8 Iter 95: T = 762.3720594511906 K, F = -0.0004965038594958449, relative_change = 6.449797670294787e-9 Iter 100: T = 762.372044432323 K, F = -0.0002076438463356478, relative_change = 2.6973827017674328e-9 Iter 105: T = 762.3720381512528 K, F = -8.68391359857279e-5, relative_change = 1.1280776992260815e-9 Iter 110: T = 762.3720355244342 K, F = -3.63171642947524e-5, relative_change = 4.717755807573759e-10 Iter 115: T = 762.3720344258672 K, F = -1.5188271607069481e-5, relative_change = 1.9730218056486018e-10 Iter 120: T = 762.3720339664335 K, F = -6.3519163470138196e-6, relative_change = 8.251412550747333e-11 Iter 125: T = 762.3720337742926 K, F = -2.6564453763366913e-6, relative_change = 3.450836810104832e-11 Iter 130: T = 762.3720336939372 K, F = -1.1109565434264113e-6, relative_change = 1.443180338115374e-11 Iter 135: T = 762.3720336603315 K, F = -4.6461434755062925e-7, relative_change = 6.0355402315204265e-12 Iter 140: T = 762.3720336462773 K, F = -1.9430618569682423e-7, relative_change = 2.524120934473728e-12 Iter 145: T = 762.3720336403996 K, F = -8.126266060060061e-8, relative_change = 1.0556369169872038e-12 Iter 150: T = 762.3720336379415 K, F = -3.398538162002751e-8, relative_change = 4.414847263354926e-13 Converged in 154 iterations to T = 762.3720336370542 K Iter 1: T = 964.2678994990483 K, F = -8141.593089144298, relative_change = 0.03573210050095162 Iter 2: T = 930.4579145245444 K, F = -6907.100322878848, relative_change = 0.03506285441221121 Iter 3: T = 898.5389334445191 K, F = -5858.733328560139, relative_change = 0.034304594094764274 Iter 5: T = 840.2607770011277 K, F = -4212.5152093843735, relative_change = 0.032495197223646737 Iter 10: T = 725.6835752000495 K, F = -1837.3656725498379, relative_change = 0.026149371845197694 Iter 15: T = 651.595603186338 K, F = -793.5213420452316, relative_change = 0.017964181643328254 Iter 20: T = 609.5956356440479 K, F = -338.8445242022681, relative_change = 0.010328223756490932 Iter 25: T = 588.5728863712548 K, F = -143.33279998174626, relative_change = 0.00513354631044507 Iter 30: T = 578.9363508108693 K, F = -60.273445921292996, relative_change = 0.002332133953183093 Iter 35: T = 574.7316475668576 K, F = -25.26900781738822, relative_change = 0.001011981402174722 Iter 40: T = 572.9402259057088 K, F = -10.578976638791792, relative_change = 0.00042999318978022955 Iter 45: T = 572.1850707908214 K, F = -4.426235373281613, relative_change = 0.00018104045238579702 Iter 50: T = 571.8681983612831 K, F = -1.8514529391068342, relative_change = 7.592739233872133e-5 Iter 55: T = 571.7354924503053 K, F = -0.7743608186086887, relative_change = 3.179134652360515e-5 Iter 60: T = 571.6799606265572 K, F = -0.32385763720000166, relative_change = 1.3302109257561217e-5 Iter 65: T = 571.6567308421791 K, F = -0.1354430028858058, relative_change = 5.564254121661311e-6 Iter 70: T = 571.6470148693687 K, F = -0.05664420868340117, relative_change = 2.3272392766300164e-6 Iter 75: T = 571.6429513586503 K, F = -0.023689341799566305, relative_change = 9.73314549550349e-7 Iter 80: T = 571.6412519193545 K, F = -0.00990717566304683, relative_change = 4.0705794112961646e-7 Iter 85: T = 571.6405411881962 K, F = -0.004143300928667659, relative_change = 1.7023757185366524e-7 Iter 90: T = 571.6402439510023 K, F = -0.001732778235635446, relative_change = 7.11955744266151e-8 Iter 95: T = 571.6401196426945 K, F = -0.0007246686052174711, relative_change = 2.9774872497119196e-8 Iter 100: T = 571.640067655447 K, F = -0.00030306507493371715, relative_change = 1.2452213062025283e-8 Iter 105: T = 571.6400459137542 K, F = -0.00012674543497037671, relative_change = 5.207665208601211e-9 Iter 110: T = 571.6400368211177 K, F = -5.300645462708031e-5, relative_change = 2.1779079503824277e-9 Iter 115: T = 571.6400330184683 K, F = -2.2167931630179272e-5, relative_change = 9.108271135958906e-10 Iter 120: T = 571.640031428155 K, F = -9.270893214230469e-6, relative_change = 3.8091875956166197e-10 Iter 125: T = 571.6400307630669 K, F = -3.877197734647453e-6, relative_change = 1.5930475367475998e-10 Iter 130: T = 571.6400304849193 K, F = -1.6214905895761689e-6, relative_change = 6.662315858911206e-11 Iter 135: T = 571.6400303685946 K, F = -6.781274440870178e-7, relative_change = 2.786262996852632e-11 Iter 140: T = 571.6400303199462 K, F = -2.836009987405852e-7, relative_change = 1.1652484733829816e-11 Iter 145: T = 571.6400302996009 K, F = -1.1860548282394134e-7, relative_change = 4.873214778248569e-12 Iter 150: T = 571.6400302910921 K, F = -4.960215321814232e-8, relative_change = 2.038033490167937e-12 Iter 155: T = 571.6400302875336 K, F = -2.074346716618436e-8, relative_change = 8.522993064880285e-13 Iter 160: T = 571.6400302860454 K, F = -8.674358009663763e-9, relative_change = 3.564085625959928e-13 Converged in 163 iterations to T = 571.6400302856098 K Iter 1: T = 963.5861191371803 K, F = -8296.93739313651, relative_change = 0.036413880862819784 Iter 2: T = 929.0515090106983 K, F = -7040.183112836193, relative_change = 0.0358396716604896 Iter 3: T = 896.3627283133156 K, F = -5972.867822674039, relative_change = 0.03518511124554475 Iter 5: T = 836.4040623914716 K, F = -4296.7530130411, relative_change = 0.033605778919249325 Iter 10: T = 716.8708326223359 K, F = -1877.5697813829183, relative_change = 0.027862834442967714 Iter 15: T = 637.4044232397764 K, F = -812.9652501178791, relative_change = 0.0199375790476872 Iter 20: T = 590.9036559114298 K, F = -348.05277382990863, relative_change = 0.011938031312080972 Iter 25: T = 567.0007465860342 K, F = -147.50930457239457, relative_change = 0.006109966263729078 Iter 30: T = 555.8579170020417 K, F = -62.09685126144731, relative_change = 0.0028216151218550317 Iter 35: T = 550.9533256123012 K, F = -26.047077502521326, relative_change = 0.0012340780700003159 Iter 40: T = 548.855256587219 K, F = -10.907265962167294, relative_change = 0.0005262068797583637 Iter 45: T = 547.9692739276707 K, F = -4.564049814837333, relative_change = 0.00022188380653180977 Iter 50: T = 547.5972246327782 K, F = -1.9091805960332802, relative_change = 9.311626296205347e-5 Iter 55: T = 547.4413612310765 K, F = -0.7985193868887339, relative_change = 3.899890429205476e-5 Iter 60: T = 547.3761302868046 K, F = -0.3339638734705914, relative_change = 1.6319722981327598e-5 Iter 65: T = 547.3488416944646 K, F = -0.13967004777629316, relative_change = 6.8268388227386034e-6 Iter 70: T = 547.3374278386159 K, F = -0.058412096152923976, relative_change = 2.855369227064731e-6 Iter 75: T = 547.3326541757644 K, F = -0.024428708638400548, relative_change = 1.1942026369663585e-6 Iter 80: T = 547.330657728867 K, F = -0.010216390360771876, relative_change = 4.994390968434906e-7 Iter 85: T = 547.3298227832215 K, F = -0.0042726186736516125, relative_change = 2.0887302012012832e-7 Iter 90: T = 547.3294735976327 K, F = -0.0017868605421918204, relative_change = 8.735347572644953e-8 Iter 95: T = 547.3293275638133 K, F = -0.00074728648523123, relative_change = 3.6532316443634215e-8 Iter 100: T = 547.329266490685 K, F = -0.0003125241442658855, relative_change = 1.527825971093182e-8 Iter 105: T = 547.3292409491661 K, F = -0.00013070133170731135, relative_change = 6.389552201562997e-9 Iter 110: T = 547.3292302673966 K, F = -5.4660857923327644e-5, relative_change = 2.672187291223155e-9 Iter 115: T = 547.3292258001528 K, F = -2.285982376865059e-5, relative_change = 1.1175406908819528e-9 Iter 120: T = 547.3292239318981 K, F = -9.560251579887602e-6, relative_change = 4.673688842635297e-10 Iter 125: T = 547.3292231505717 K, F = -3.998211794836726e-6, relative_change = 1.954592703640787e-10 Iter 130: T = 547.3292228238116 K, F = -1.6720999437558337e-6, relative_change = 8.174340247140699e-11 Iter 135: T = 547.3292226871567 K, F = -6.992928348603655e-7, relative_change = 3.418609989598601e-11 Iter 140: T = 547.3292226300058 K, F = -2.9245175123260303e-7, relative_change = 1.4296993032053948e-11 Iter 145: T = 547.3292226061047 K, F = -1.2230687695957698e-7, relative_change = 5.979176259526363e-12 Iter 150: T = 547.3292225961089 K, F = -5.1149982083220635e-8, relative_change = 2.5005524315273194e-12 Iter 155: T = 547.3292225919287 K, F = -2.1391708626694594e-8, relative_change = 1.0457694576690277e-12 Iter 160: T = 547.3292225901804 K, F = -8.94560561737201e-9, relative_change = 4.373208937348884e-13 Converged in 164 iterations to T = 547.3292225895493 K Iter 1: T = 969.3238043633891 K, F = -6989.600356397146, relative_change = 0.03067619563661094 Iter 2: T = 940.7885942087529 K, F = -5921.67243424882, relative_change = 0.02943826410347662 Iter 3: T = 914.3552787992444 K, F = -5015.221698992831, relative_change = 0.028096976910886286 Iter 5: T = 867.6084354015038 K, F = -3593.2991080388633, relative_change = 0.025136256533767814 Iter 10: T = 783.387285471744 K, F = -1549.578689230446, relative_change = 0.0168677655784685 Iter 15: T = 736.4783674121196 K, F = -660.7560735630246, relative_change = 0.009486955064769967 Iter 20: T = 713.324834324338 K, F = -279.22862506025365, relative_change = 0.0046451228346227925 Iter 25: T = 702.8012173110685 K, F = -117.35661008032602, relative_change = 0.0020931840036942304 Iter 30: T = 698.2290708243571 K, F = -49.18801480572262, relative_change = 0.0009048211268832164 Iter 35: T = 696.2848996676871 K, F = -20.59045455364053, relative_change = 0.00038381140911051425 Iter 40: T = 695.4660495568471 K, F = -8.614614860620897, relative_change = 0.000161479691283283 Iter 45: T = 695.12257379445 K, F = -3.603339671660703, relative_change = 6.770303977918782e-5 Iter 50: T = 694.9787482694466 K, F = -1.5070656980675596, relative_change = 2.8344116611638204e-5 Iter 55: T = 694.9185671890791 K, F = -0.6302914315133273, relative_change = 1.1859085166288387e-5 Iter 60: T = 694.8933932230665 K, F = -0.26359865098167473, relative_change = 4.960527612353163e-6 Iter 65: T = 694.8828642040963 K, F = -0.11024067185616915, relative_change = 2.0747122407758895e-6 Iter 70: T = 694.8784606736833 K, F = -0.04610406486076668, relative_change = 8.676974851870611e-7 Iter 75: T = 694.8766190351264 K, F = -0.01928128789469452, relative_change = 3.628863567311243e-7 Iter 80: T = 694.87584883472 K, F = -0.008063667901547444, relative_change = 1.5176426620550077e-7 Iter 85: T = 694.8755267268081 K, F = -0.003372322748746326, relative_change = 6.346977866132346e-8 Iter 90: T = 694.8753920172745 K, F = -0.0014103457413345843, relative_change = 2.6543845690025517e-8 Iter 95: T = 694.8753356801111 K, F = -0.0005898234488668219, relative_change = 1.1100957868436329e-8 Iter 100: T = 694.8753121192317 K, F = -0.0002466712128934567, relative_change = 4.64255395236829e-9 Iter 105: T = 694.8753022657897 K, F = -0.00010316084815942261, relative_change = 1.9415716575453894e-9 Iter 110: T = 694.8752981449625 K, F = -4.31430988335757e-5, relative_change = 8.119884798698362e-10 Iter 115: T = 694.8752964215832 K, F = -1.8042959253117274e-5, relative_change = 3.395832850534052e-10 Iter 120: T = 694.8752957008455 K, F = -7.54578103678849e-6, relative_change = 1.4201778596699094e-10 Iter 125: T = 694.8752953994244 K, F = -3.1557363004974803e-6, relative_change = 5.939354471497443e-11 Iter 130: T = 694.8752952733664 K, F = -1.319766249729959e-6, relative_change = 2.483908298104515e-11 Iter 135: T = 694.8752952206476 K, F = -5.519426936606564e-7, relative_change = 1.0388014071716107e-11 Iter 140: T = 694.8752951985997 K, F = -2.3082798250584347e-7, relative_change = 4.344371903676305e-12 Iter 145: T = 694.8752951893792 K, F = -9.653551724664311e-8, relative_change = 1.8168775912992014e-12 Iter 150: T = 694.8752951855231 K, F = -4.037274636825572e-8, relative_change = 7.598481913161225e-13 Iter 155: T = 694.8752951839105 K, F = -1.688557060841589e-8, relative_change = 3.178002846092135e-13 Converged in 158 iterations to T = 694.8752951834382 K Iter 1: T = 966.4746116388516 K, F = -7638.791628964994, relative_change = 0.033525388361148475 Iter 2: T = 934.9881647126579 K, F = -6476.676893981969, relative_change = 0.032578659125667146 Iter 3: T = 905.510941788367 K, F = -5489.951024503975, relative_change = 0.03152684069894066 Iter 5: T = 852.459600118439 K, F = -3941.090604018365, relative_change = 0.029102994020241604 Iter 10: T = 752.3726614231265 K, F = -1709.696102102714, relative_change = 0.021467497818783373 Iter 15: T = 692.3484601446509 K, F = -733.4873577879458, relative_change = 0.013278265165845233 Iter 20: T = 660.8084813082859 K, F = -311.36590467026855, relative_change = 0.006967476408148319 Iter 25: T = 645.8882457549706 K, F = -131.20140013568448, relative_change = 0.003264919930181899 Iter 30: T = 639.2691346400755 K, F = -55.05983245163401, relative_change = 0.0014382696094068302 Iter 35: T = 636.4271258640892 K, F = -23.061380197432243, relative_change = 0.0006152624138102691 Iter 40: T = 635.225027058456 K, F = -9.6507308540122, relative_change = 0.0002597985098826155 Iter 45: T = 634.7198787757742 K, F = -4.037141688683325, relative_change = 0.00010909227159532 Iter 50: T = 634.508193486629 K, F = -1.6885723006620355, relative_change = 4.5701359098607805e-5 Iter 55: T = 634.4195893502908 K, F = -0.7062146316199143, relative_change = 1.912647241080706e-5 Iter 60: T = 634.382520936335 K, F = -0.295353260772709, relative_change = 8.001303519192584e-6 Iter 65: T = 634.3670161892265 K, F = -0.12352128744762664, relative_change = 3.34665789316375e-6 Iter 70: T = 634.3605315175434 K, F = -0.051658257118002926, relative_change = 1.399685281372926e-6 Iter 75: T = 634.3578194802112 K, F = -0.021604131458513365, relative_change = 5.853778661318737e-7 Iter 80: T = 634.3566852615335 K, F = -0.009035111274380558, relative_change = 2.448142472641665e-7 Iter 85: T = 634.3562109155897 K, F = -0.0037785923967464385, relative_change = 1.0238463240850409e-7 Iter 90: T = 634.3560125380757 K, F = -0.0015802526337372336, relative_change = 4.281854429370496e-8 Iter 95: T = 634.3559295741645 K, F = -0.0006608805530295969, relative_change = 1.790723853183289e-8 Iter 100: T = 634.3558948776546 K, F = -0.00027638814535685396, relative_change = 7.48902311079948e-9 Iter 105: T = 634.3558803671577 K, F = -0.0001155888240370051, relative_change = 3.131999267620132e-9 Iter 110: T = 634.3558742986943 K, F = -4.834062659236915e-5, relative_change = 1.3098395562084994e-9 Iter 115: T = 634.3558717607904 K, F = -2.0216627283298205e-5, relative_change = 5.47790553822881e-10 Iter 120: T = 634.3558706994086 K, F = -8.454834313165183e-6, relative_change = 2.290925357074661e-10 Iter 125: T = 634.3558702555262 K, F = -3.5359138094159803e-6, relative_change = 9.580926524833871e-11 Iter 130: T = 634.3558700698892 K, F = -1.478761429418718e-6, relative_change = 4.006858024941111e-11 Iter 135: T = 634.3558699922536 K, F = -6.184362147942934e-7, relative_change = 1.675717301188092e-11 Iter 140: T = 634.3558699597855 K, F = -2.586382529812248e-7, relative_change = 7.0080727002618075e-12 Iter 145: T = 634.3558699462069 K, F = -1.0816568213334321e-7, relative_change = 2.9308617553806254e-12 Iter 150: T = 634.3558699405282 K, F = -4.5236709045326506e-8, relative_change = 1.2257357220050203e-12 Iter 155: T = 634.3558699381533 K, F = -1.8918649646870733e-8, relative_change = 5.126205060904222e-13 Converged in 160 iterations to T = 634.3558699371602 K Iter 1: T = 966.4069477201921 K, F = -7654.208917196548, relative_change = 0.033593052279807904 Iter 2: T = 934.8497479073134 K, F = -6489.867490450219, relative_change = 0.03265415246374619 Iter 3: T = 905.2987662333177 K, F = -5501.244544192453, relative_change = 0.03161040770471016 Iter 5: T = 852.0917951845047 K, F = -3949.385955992344, relative_change = 0.029202642074553215 Iter 10: T = 751.5921245685026 K, F = -1713.559492769628, relative_change = 0.021594316058533538 Iter 15: T = 691.1976060767041 K, F = -735.2726799943589, relative_change = 0.013393199816580617 Iter 20: T = 659.4034154683116 K, F = -312.1675727397796, relative_change = 0.007042991408273674 Iter 25: T = 644.3435737329349 K, F = -131.55039041051543, relative_change = 0.0033045768032127156 Iter 30: T = 637.6578403119979 K, F = -55.208648977835395, relative_change = 0.0014566788783433513 Iter 35: T = 634.7862691900708 K, F = -23.124160140832185, relative_change = 0.0006233196780983093 Iter 40: T = 633.5714869407657 K, F = -9.677084553012214, relative_change = 0.00026323404983538153 Iter 45: T = 633.0609764955573 K, F = -4.048180585046428, relative_change = 0.0001105408294828348 Iter 50: T = 632.8470384408237 K, F = -1.6931919727946037, relative_change = 4.6309241202285263e-5 Iter 55: T = 632.7574903689645 K, F = -0.7081471727118555, relative_change = 1.9381060765722267e-5 Iter 60: T = 632.7200268739732 K, F = -0.2961615669189281, relative_change = 8.1078393143388e-6 Iter 65: T = 632.7043568439465 K, F = -0.12385934724659292, relative_change = 3.3912236193962294e-6 Iter 70: T = 632.6978030392952 K, F = -0.051799640651540524, relative_change = 1.4183251569915493e-6 Iter 75: T = 632.695062088037 K, F = -0.02166326024634213, relative_change = 5.93173626998609e-7 Iter 80: T = 632.6939157769141 K, F = -0.00905983972872243, relative_change = 2.4807458744537685e-7 Iter 85: T = 632.6934363737136 K, F = -0.003788934147795908, relative_change = 1.037481560977679e-7 Iter 90: T = 632.6932358811852 K, F = -0.0015845776800372802, relative_change = 4.338878801024056e-8 Iter 95: T = 632.6931520327482 K, F = -0.0006626893391772914, relative_change = 1.8145721575245627e-8 Iter 100: T = 632.6931169663187 K, F = -0.0002771446010316203, relative_change = 7.588759613463468e-9 Iter 105: T = 632.6931023011172 K, F = -0.00011590518292986518, relative_change = 3.1737102761557867e-9 Iter 110: T = 632.6930961679543 K, F = -4.847293192700164e-5, relative_change = 1.3272836070253716e-9 Iter 115: T = 632.6930936029923 K, F = -2.027195962556183e-5, relative_change = 5.550858828416053e-10 Iter 120: T = 632.6930925302945 K, F = -8.477975714293873e-6, relative_change = 2.3214354995712708e-10 Iter 125: T = 632.6930920816795 K, F = -3.545590626319317e-6, relative_change = 9.708520349726211e-11 Iter 130: T = 632.6930918940634 K, F = -1.482808176300754e-6, relative_change = 4.0602187031459e-11 Iter 135: T = 632.6930918156 K, F = -6.201273360373349e-7, relative_change = 1.6980298934410294e-11 Iter 140: T = 632.6930917827857 K, F = -2.593447833709739e-7, relative_change = 7.101367241680974e-12 Iter 145: T = 632.6930917690624 K, F = -1.0846136200282075e-7, relative_change = 2.969884156461796e-12 Iter 150: T = 632.6930917633232 K, F = -4.535998637811289e-8, relative_change = 1.2420451154208708e-12 Iter 155: T = 632.6930917609229 K, F = -1.8970319703992544e-8, relative_change = 5.1944444450078e-13 Converged in 160 iterations to T = 632.6930917599192 K Iter 1: T = 976.4040412422358 K, F = -5376.361648507919, relative_change = 0.023595958757764202 Iter 2: T = 954.9704012146308 K, F = -4546.1099828331235, relative_change = 0.02195160929520123 Iter 3: T = 935.6077172275214 K, F = -3842.331126598443, relative_change = 0.020275690181058844 Iter 5: T = 902.6752956081898 K, F = -2740.943827390359, relative_change = 0.01692225588168925 Iter 10: T = 848.4199148894348 K, F = -1168.8487468459612, relative_change = 0.009528012000643968 Iter 15: T = 821.6217551177373 K, F = -493.96706436236707, relative_change = 0.004668651509293269 Iter 20: T = 809.4365688689082 K, F = -207.6141234032062, relative_change = 0.002104612336121114 Iter 25: T = 804.1414334901511 K, F = -87.01897258910394, relative_change = 0.000909928764569709 Iter 30: T = 801.8896210836376 K, F = -36.42696054262811, relative_change = 0.0003860092533658608 Iter 35: T = 800.9411593713186 K, F = -15.240312426300038, relative_change = 0.00016241000419740394 Iter 40: T = 800.5433097067705 K, F = -6.3747569469574765, relative_change = 6.809408361921129e-5 Iter 45: T = 800.3767146815951 K, F = -2.6661881303509087, relative_change = 2.850800332783167e-5 Iter 50: T = 800.3070059202726 K, F = -1.11506474056204, relative_change = 1.1927685470530412e-5 Iter 55: T = 800.2778464532145 K, F = -0.4663391691085449, relative_change = 4.98922774460487e-6 Iter 60: T = 800.2656504906955 K, F = -0.19502962047775463, relative_change = 2.0867168450604496e-6 Iter 65: T = 800.2605497966965 K, F = -0.08156389319837487, relative_change = 8.7271828053978e-7 Iter 70: T = 800.2584165911244 K, F = -0.03411102512615283, relative_change = 3.649861704222895e-7 Iter 75: T = 800.2575244530569 K, F = -0.014265643485145696, relative_change = 1.5264244337616e-7 Iter 80: T = 800.2571513492097 K, F = -0.005966063418135992, relative_change = 6.383704457370302e-8 Iter 85: T = 800.2569953125409 K, F = -0.0024950791369128256, relative_change = 2.669744097295384e-8 Iter 90: T = 800.2569300561101 K, F = -0.001043471919731087, relative_change = 1.1165193274952622e-8 Iter 95: T = 800.2569027650859 K, F = -0.0004363924235786243, relative_change = 4.6694179804854565e-9 Iter 100: T = 800.2568913516526 K, F = -0.00018250452178303345, relative_change = 1.9528064818680257e-9 Iter 105: T = 800.2568865784184 K, F = -7.632557017267505e-5, relative_change = 8.166870110513113e-10 Iter 110: T = 800.2568845821947 K, F = -3.19202636916982e-5, relative_change = 3.4154825174553993e-10 Iter 115: T = 800.2568837473503 K, F = -1.334943799446986e-5, relative_change = 1.4283958539570576e-10 Iter 120: T = 800.2568833982085 K, F = -5.582896564604312e-6, relative_change = 5.973724381371607e-11 Iter 125: T = 800.256883252193 K, F = -2.3348344474483085e-6, relative_change = 2.4982833401810874e-11 Iter 130: T = 800.2568831911277 K, F = -9.764573658532782e-7, relative_change = 1.044813765301732e-11 Iter 135: T = 800.2568831655893 K, F = -4.0836480086348104e-7, relative_change = 4.3695217035805065e-12 Iter 140: T = 800.256883154909 K, F = -1.7078392144931343e-7, relative_change = 1.827395627303974e-12 Iter 145: T = 800.2568831504424 K, F = -7.142588365205427e-8, relative_change = 7.642601619514441e-13 Iter 150: T = 800.2568831485743 K, F = -2.987111269447951e-8, relative_change = 3.196222469856681e-13 Converged in 153 iterations to T = 800.2568831480274 K Iter 1: T = 965.176572977039 K, F = -7934.550972812519, relative_change = 0.03482342702296104 Iter 2: T = 932.3273975081053 K, F = -6729.801726752414, relative_change = 0.03403436882809127 Iter 3: T = 901.4230098396375 K, F = -5706.759893523226, relative_change = 0.03314756999640684 Iter 5: T = 845.3355868997531 K, F = -4100.5244217271875, relative_change = 0.031061989186510153 Iter 10: T = 736.9945805920954 K, F = -1784.3609455533128, relative_change = 0.024075703071374025 Iter 15: T = 669.2408596828884 K, F = -768.3157784927828, relative_change = 0.015770827575609544 Iter 20: T = 632.1673307107 K, F = -327.16067380141266, relative_change = 0.008680155797787189 Iter 25: T = 614.1140883820049 K, F = -138.12577420598785, relative_change = 0.00418998694713342 Iter 30: T = 605.9736198809701 K, F = -58.02382683235167, relative_change = 0.001873941030542195 Iter 35: T = 602.4507891378864 K, F = -24.314030176306716, relative_change = 0.0008072131897870626 Iter 40: T = 600.9554772668239 K, F = -10.176984745281072, relative_change = 0.00034188129308739847 Iter 45: T = 600.3261643267097 K, F = -4.257650985496431, relative_change = 0.00014374416433565122 Iter 50: T = 600.0622784248625 K, F = -1.780866557246553, relative_change = 6.0250436595233485e-5 Iter 55: T = 599.9517952247531 K, F = -0.7448262856523866, relative_change = 2.5221125925677693e-5 Iter 60: T = 599.905568281446 K, F = -0.31150340864227655, relative_change = 1.055192235372068e-5 Iter 65: T = 599.8862318494963 K, F = -0.130275873427805, relative_change = 4.413665553496407e-6 Iter 70: T = 599.8781444627389 K, F = -0.05448317583818607, relative_change = 1.8459745849078623e-6 Iter 75: T = 599.8747621055637 K, F = -0.022785558481891732, relative_change = 7.72030821093973e-7 Iter 80: T = 599.873347543206 K, F = -0.009529200312030195, relative_change = 3.228763929969296e-7 Iter 85: T = 599.8727559528028 K, F = -0.003985226708356604, relative_change = 1.3503144274781972e-7 Iter 90: T = 599.8725085420133 K, F = -0.0016666696360599365, relative_change = 5.6471880754650094e-8 Iter 95: T = 599.8724050717584 K, F = -0.000697021185937341, relative_change = 2.3617235694637318e-8 Iter 100: T = 599.8723617992433 K, F = -0.00029150259140670043, relative_change = 9.877013654863102e-9 Iter 105: T = 599.8723437021574 K, F = -0.00012190986588833663, relative_change = 4.1306856902221335e-9 Iter 110: T = 599.8723361337394 K, F = -5.0984161938660844e-5, relative_change = 1.7275021940477812e-9 Iter 115: T = 599.8723329685364 K, F = -2.1322184654837262e-5, relative_change = 7.224620411088791e-10 Iter 120: T = 599.8723316448107 K, F = -8.91719150458714e-6, relative_change = 3.0214223107684974e-10 Iter 125: T = 599.872331091213 K, F = -3.7292768512164898e-6, relative_change = 1.263595194182883e-10 Iter 130: T = 599.8723308596916 K, F = -1.5596273584272957e-6, relative_change = 5.2845034495179233e-11 Iter 135: T = 599.8723307628667 K, F = -6.522547804643786e-7, relative_change = 2.2100424318364533e-11 Iter 140: T = 599.8723307223734 K, F = -2.727803161128861e-7, relative_change = 9.242647067205492e-12 Iter 145: T = 599.8723307054385 K, F = -1.1407919836559088e-7, relative_change = 3.865358700985787e-12 Iter 150: T = 599.8723306983562 K, F = -4.770994815883611e-8, relative_change = 1.6165617035518048e-12 Iter 155: T = 599.8723306953942 K, F = -1.9951582441724014e-8, relative_change = 6.760217804875661e-13 Iter 160: T = 599.8723306941556 K, F = -8.344367474766301e-9, relative_change = 2.8273317035709097e-13 Converged in 162 iterations to T = 599.8723306938934 K Iter 1: T = 964.5436324556227 K, F = -8078.767072699077, relative_change = 0.035456367544377275 Iter 2: T = 931.0257995427501 K, F = -6853.290966465447, relative_change = 0.03474993954139734 Iter 3: T = 899.4160598882139 K, F = -5812.600243921025, relative_change = 0.03395151849718928 Iter 5: T = 841.8085147836006 K, F = -4178.498419032976, relative_change = 0.03205472373469632 Iter 10: T = 729.1665509126209 K, F = -1821.2137505312821, relative_change = 0.02549615661253774 Iter 15: T = 657.0935631476789 K, F = -785.7924373322454, relative_change = 0.017251357456168542 Iter 20: T = 616.7023183292879 K, F = -335.23465298266626, relative_change = 0.009777098883224696 Iter 25: T = 596.6692699156035 K, F = -141.71441915667623, relative_change = 0.004811921059882635 Iter 30: T = 587.5375269859957 K, F = -59.571829892586564, relative_change = 0.0021743488501837498 Iter 35: T = 583.5643270834055 K, F = -24.970665823390632, relative_change = 0.0009411279906167629 Iter 40: T = 581.8737225847891 K, F = -10.453296879693976, relative_change = 0.0003994406049675818 Iter 45: T = 581.1614658793969 K, F = -4.373511647754654, relative_change = 0.00016809640432069675 Iter 50: T = 580.8626654866985 K, F = -1.8293744566841932, relative_change = 7.048448049774604e-5 Iter 55: T = 580.7375407088803 K, F = -0.7651222765305316, relative_change = 2.9509855235234287e-5 Iter 60: T = 580.685183477135 K, F = -0.3199930825052957, relative_change = 1.2347050481131306e-5 Iter 65: T = 580.6632820582962 K, F = -0.13382664487073423, relative_change = 5.164677480036811e-6 Iter 70: T = 580.6541217486495 K, F = -0.055968201323778555, relative_change = 2.1601036169127515e-6 Iter 75: T = 580.6502906447412 K, F = -0.023406622701883373, relative_change = 9.034115336549279e-7 Iter 80: T = 580.6486884045692 K, F = -0.009788938330588137, relative_change = 3.7782281029555707e-7 Iter 85: T = 580.6480183239132 K, F = -0.0040938525193832676, relative_change = 1.580109415068906e-7 Iter 90: T = 580.6477380873617 K, F = -0.0017120982940659335, relative_change = 6.608222541650504e-8 Iter 95: T = 580.647620888946 K, F = -0.0007160200019528662, relative_change = 2.7636404290629445e-8 Iter 100: T = 580.6475718751439 K, F = -0.00029944812382698416, relative_change = 1.1557879273488975e-8 Iter 105: T = 580.6475513769822 K, F = -0.00012523278294823692, relative_change = 4.833644008753405e-9 Iter 110: T = 580.6475428044054 K, F = -5.237384546902257e-5, relative_change = 2.0214877941787313e-9 Iter 115: T = 580.6475392192513 K, F = -2.190336791907388e-5, relative_change = 8.454103723884796e-10 Iter 120: T = 580.647537719897 K, F = -9.16025017289046e-6, relative_change = 3.5356072333951385e-10 Iter 125: T = 580.6475370928491 K, F = -3.830925820624831e-6, relative_change = 1.478633100188067e-10 Iter 130: T = 580.6475368306103 K, F = -1.6021395968235375e-6, relative_change = 6.183822801592605e-11 Iter 135: T = 580.6475367209388 K, F = -6.700340350329625e-7, relative_change = 2.5861490194865557e-11 Iter 140: T = 580.6475366750727 K, F = -2.8021562281654866e-7, relative_change = 1.0815560412967845e-11 Iter 145: T = 580.6475366558911 K, F = -1.1718955889028493e-7, relative_change = 4.5231980337372516e-12 Iter 150: T = 580.6475366478692 K, F = -4.900993189060898e-8, relative_change = 1.8916499872085258e-12 Iter 155: T = 580.6475366445143 K, F = -2.0497109454176154e-8, relative_change = 7.911326407148133e-13 Iter 160: T = 580.6475366431112 K, F = -8.571703680182452e-9, relative_change = 3.3084443360983215e-13 Converged in 163 iterations to T = 580.6475366427004 K Iter 1: T = 964.2845591073515 K, F = -8137.797181545048, relative_change = 0.035715440892648484 Iter 2: T = 930.492240605587 K, F = -6903.848976622194, relative_change = 0.03504392783500172 Iter 3: T = 898.5919777005439 K, F = -5855.945565835719, relative_change = 0.034283212167660386 Iter 5: T = 840.354485471959 K, F = -4210.459098176242, relative_change = 0.032468444019835084 Iter 10: T = 725.8953080162202 K, F = -1836.3880589839455, relative_change = 0.026109281391578257 Iter 15: T = 651.9315469691096 K, F = -793.0522638761823, relative_change = 0.01791982780093647 Iter 20: T = 610.0319193983794 K, F = -338.6246830689217, relative_change = 0.010293478343763712 Iter 25: T = 589.0714898532807 K, F = -143.23396548353298, relative_change = 0.005113084022066844 Iter 30: T = 579.4669277576509 K, F = -60.23052748857863, relative_change = 0.0023220453244972607 Iter 35: T = 575.276932148089 K, F = -25.250743156919075, relative_change = 0.0010074403876645561 Iter 40: T = 573.4919243821088 K, F = -10.571279644072852, relative_change = 0.0004280330192408436 Iter 45: T = 572.7395000741994 K, F = -4.423005909857382, relative_change = 0.00018020962576836667 Iter 50: T = 572.4237783619704 K, F = -1.8501004851340102, relative_change = 7.55779675522236e-5 Iter 55: T = 572.2915552237423 K, F = -0.7737948805378585, relative_change = 3.16448674060038e-5 Iter 60: T = 572.2362255697996 K, F = -0.3236208980746589, relative_change = 1.3240789355728002e-5 Iter 65: T = 572.2130803822822 K, F = -0.1353439857677175, relative_change = 5.538598798379345e-6 Iter 70: T = 572.2033997971213 K, F = -0.056602796794422566, relative_change = 2.3165080578410182e-6 Iter 75: T = 572.1993510873806 K, F = -0.02367202254706166, relative_change = 9.688263009709423e-7 Iter 80: T = 572.1976578382826 K, F = -0.009899932491852725, relative_change = 4.0518084519665143e-7 Iter 85: T = 572.1969496959829 K, F = -0.004140271739720591, relative_change = 1.6945253802832054e-7 Iter 90: T = 572.1966535414882 K, F = -0.0017315113915581937, relative_change = 7.08672621907283e-8 Iter 95: T = 572.1965296859794 K, F = -0.0007241387955022605, relative_change = 2.9637568090969153e-8 Iter 100: T = 572.1964778880981 K, F = -0.00030284350097131707, relative_change = 1.2394790618815499e-8 Iter 105: T = 572.1964562256006 K, F = -0.00012665277029361155, relative_change = 5.18365045640698e-9 Iter 110: T = 572.1964471660847 K, F = -5.296770213086832e-5, relative_change = 2.167864732728898e-9 Iter 115: T = 572.1964433772866 K, F = -2.2151725174557324e-5, relative_change = 9.066269322054743e-10 Iter 120: T = 572.196441792766 K, F = -9.264115621188118e-6, relative_change = 3.7916219932223317e-10 Iter 125: T = 572.1964411301007 K, F = -3.874363646461099e-6, relative_change = 1.5857015492186754e-10 Iter 130: T = 572.1964408529661 K, F = -1.6203055999697291e-6, relative_change = 6.631595122339802e-11 Iter 135: T = 572.1964407370651 K, F = -6.776314129819383e-7, relative_change = 2.773413347144352e-11 Iter 140: T = 572.1964406885938 K, F = -2.8339355495621277e-7, relative_change = 1.1598746059728145e-11 Iter 145: T = 572.1964406683227 K, F = -1.1851856834832475e-7, relative_change = 4.850734089838459e-12 Iter 150: T = 572.196440659845 K, F = -4.9566062143568956e-8, relative_change = 2.028642352894396e-12 Iter 155: T = 572.1964406562996 K, F = -2.0729556127196958e-8, relative_change = 8.484203444640609e-13 Iter 160: T = 572.1964406548168 K, F = -8.669588935639183e-9, relative_change = 3.5482938400100487e-13 Converged in 163 iterations to T = 572.1964406543826 K Iter 1: T = 980.2587243813431 K, F = -4498.068428512042, relative_change = 0.019741275618656896 Iter 2: T = 962.5560413746196 K, F = -3799.406869140775, relative_change = 0.018059194543660888 Iter 3: T = 946.7702234733606 K, F = -3207.769515796169, relative_change = 0.01639989488686321 Iter 5: T = 920.4233865687892 K, F = -2283.401261525496, relative_change = 0.01323785308711387 Iter 10: T = 878.6364660494363 K, F = -969.2588431227189, relative_change = 0.006941100364735627 Iter 15: T = 858.8775273216227 K, F = -408.4083050149862, relative_change = 0.0032511163636340774 Iter 20: T = 850.1139062510122 K, F = -171.3896718336303, relative_change = 0.0014318721651102298 Iter 25: T = 846.3515496593533 K, F = -71.78474802838055, relative_change = 0.0006124644111883706 Iter 30: T = 844.7602467709895 K, F = -30.040408990702055, relative_change = 0.0002586058320632024 Iter 35: T = 844.0915608177171 K, F = -12.566637844358414, relative_change = 0.00010858945673812368 Iter 40: T = 843.8113466820356 K, F = -5.256111209395198, relative_change = 4.549036605621594e-5 Iter 45: T = 843.6940591910347 K, F = -2.1982723754334828, relative_change = 1.9038107980995927e-5 Iter 50: T = 843.6449908915693 K, F = -0.919361942623985, relative_change = 7.964326629184522e-6 Iter 55: T = 843.6244669202844 K, F = -0.3844913247417441, relative_change = 3.331189895560169e-6 Iter 60: T = 843.6158830216169 K, F = -0.1607994201640508, relative_change = 1.3932157116114957e-6 Iter 65: T = 843.6122930401891 K, F = -0.06724833516434692, relative_change = 5.826720978621202e-7 Iter 70: T = 843.6107916509051 K, F = -0.0281240738930435, relative_change = 2.4368264220360525e-7 Iter 75: T = 843.6101637491469 K, F = -0.011761826549961496, relative_change = 1.0191137809436057e-7 Iter 80: T = 843.6099011526379 K, F = -0.004918936848806288, relative_change = 4.2620623068584004e-8 Iter 85: T = 843.6097913315552 K, F = -0.002057158224977762, relative_change = 1.7824465395450617e-8 Iter 90: T = 843.6097454030518 K, F = -0.000860328151913281, relative_change = 7.454406356015014e-9 Iter 95: T = 843.6097261952006 K, F = -0.0003597995085311556, relative_change = 3.1175221083750474e-9 Iter 100: T = 843.6097181622473 K, F = -0.0001504724514977962, relative_change = 1.3037850369190355e-9 Iter 105: T = 843.6097148027702 K, F = -6.29293759668581e-5, relative_change = 5.452584809193873e-10 Iter 110: T = 843.6097133977968 K, F = -2.6317817367838003e-5, relative_change = 2.2803361724814868e-10 Iter 115: T = 843.6097128102202 K, F = -1.1006425616244542e-5, relative_change = 9.536638314221949e-11 Iter 120: T = 843.6097125644887 K, F = -4.603021617421987e-6, relative_change = 3.988338622303587e-11 Iter 125: T = 843.6097124617207 K, F = -1.9250382305990854e-6, relative_change = 1.6679705130871297e-11 Iter 130: T = 843.6097124187419 K, F = -8.050731694630997e-7, relative_change = 6.9756448808285775e-12 Iter 135: T = 843.6097124007676 K, F = -3.3669070043096383e-7, relative_change = 2.9172935457387015e-12 Iter 140: T = 843.6097123932506 K, F = -1.4080563781604383e-7, relative_change = 1.2200259107127297e-12 Iter 145: T = 843.6097123901069 K, F = -5.888662957254098e-8, relative_change = 5.102296682763303e-13 Converged in 150 iterations to T = 843.6097123887922 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 60%|███████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015838544755093305 Iteration 10: d = 2.0508246091540074e-5 Iteration 20: d = 2.534419952851594e-7 Iteration 30: d = 3.3247479988149652e-9 Iteration 40: d = 4.407999139000057e-11 Iteration 50: d = 5.866556661386141e-13 Iteration 60: d = 7.849374217282475e-15 Converged after 63 iterations. d = 2.112009703876295e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.524467441792 Iteration 2: convergence error = 4827.736932899319 Iteration 3: convergence error = 1095.8688735168203 Iteration 4: convergence error = 318.095953490292 Iteration 5: convergence error = 94.2376892965658 Iteration 6: convergence error = 28.40779914824634 Iteration 7: convergence error = 8.544150431018352 Iteration 8: convergence error = 2.5595526823012733 Iteration 9: convergence error = 0.7649358183334698 Iteration 10: convergence error = 0.22829131820094517 Iteration 11: convergence error = 0.06807914840373996 Iteration 12: convergence error = 0.02029298585489414 Iteration 13: convergence error = 0.006047391113497724 Iteration 14: convergence error = 0.0018018867374394176 Iteration 15: convergence error = 0.0005368475463001232 Iteration 16: convergence error = 0.00015993876263564744 Iteration 17: convergence error = 4.764798222822719e-5 Iteration 18: convergence error = 1.4194773029885255e-5 Iteration 19: convergence error = 4.2287169890187215e-6 Iteration 20: convergence error = 1.2597477052622708e-6 Iteration 21: convergence error = 3.752879820240196e-7 Iteration 22: convergence error = 1.1165002433699556e-7 Iteration 23: convergence error = 3.235390977351926e-8 Iteration 24: convergence error = 9.321865945821628e-9 Iteration 25: convergence error = 2.6723228074843064e-9 Iteration 26: convergence error = 7.685230229981244e-10 Iteration 27: convergence error = 2.1873347577638924e-10 Iteration 28: convergence error = 6.048139766789973e-11 Iteration 29: convergence error = 1.9099388737231493e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 62%|████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013074725622292966 Iteration 10: d = 1.339391625215515e-5 Iteration 20: d = 1.3387215143291689e-7 Iteration 30: d = 1.4843897616946845e-9 Iteration 40: d = 1.714918762135827e-11 Iteration 50: d = 2.0300483739707625e-13 Iteration 60: d = 2.4716689448907427e-15 Converged after 61 iterations. d = 1.5511375118245773e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12281.205827646829 Iteration 2: convergence error = 8327.205192627756 Iteration 3: convergence error = 1951.414522458306 Iteration 4: convergence error = 479.71698272782464 Iteration 5: convergence error = 122.21752390895472 Iteration 6: convergence error = 32.62659266310584 Iteration 7: convergence error = 8.889189547542628 Iteration 8: convergence error = 2.4360235125893723 Iteration 9: convergence error = 0.6684264791742862 Iteration 10: convergence error = 0.18344081094573994 Iteration 11: convergence error = 0.05034070819260705 Iteration 12: convergence error = 0.013814026560339698 Iteration 13: convergence error = 0.003790595855889478 Iteration 14: convergence error = 0.0010401298495708033 Iteration 15: convergence error = 0.0002854067465705157 Iteration 16: convergence error = 7.831399284441432e-5 Iteration 17: convergence error = 2.1488883248821367e-5 Iteration 18: convergence error = 5.896414904782432e-6 Iteration 19: convergence error = 1.6179394606297137e-6 Iteration 20: convergence error = 4.439530130184721e-7 Iteration 21: convergence error = 1.226692347700009e-7 Iteration 22: convergence error = 3.3001242627506144e-8 Iteration 23: convergence error = 8.826873454381712e-9 Iteration 24: convergence error = 2.3599113774253055e-9 Iteration 25: convergence error = 6.27096596872434e-10 Iteration 26: convergence error = 1.6916601452976465e-10 Iteration 27: convergence error = 4.433786671143025e-11 Iteration 28: convergence error = 1.2505552149377763e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 66%|█████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013074725622292966 Iteration 10: d = 1.339391625215515e-5 Iteration 20: d = 1.3387215143291689e-7 Iteration 30: d = 1.4843897616946845e-9 Iteration 40: d = 1.714918762135827e-11 Iteration 50: d = 2.0300483739707625e-13 Iteration 60: d = 2.4716689448907427e-15 Converged after 61 iterations. d = 1.5511375118245773e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10994.477738884512 Iteration 2: convergence error = 5731.135387384495 Iteration 3: convergence error = 2013.3875465014316 Iteration 4: convergence error = 892.4591085812808 Iteration 5: convergence error = 410.58516841253777 Iteration 6: convergence error = 193.69385351157007 Iteration 7: convergence error = 91.46426104260127 Iteration 8: convergence error = 43.21471224502193 Iteration 9: convergence error = 20.419335192274957 Iteration 10: convergence error = 9.646672430211765 Iteration 11: convergence error = 4.556317876397316 Iteration 12: convergence error = 2.151595392640047 Iteration 13: convergence error = 1.0158674681251796 Iteration 14: convergence error = 0.47958180752948465 Iteration 15: convergence error = 0.2263878476728678 Iteration 16: convergence error = 0.10677391723311302 Iteration 17: convergence error = 0.04992587756987632 Iteration 18: convergence error = 0.022808278438333218 Iteration 19: convergence error = 0.010380365564742533 Iteration 20: convergence error = 0.004714056969987723 Iteration 21: convergence error = 0.00213815678625906 Iteration 22: convergence error = 0.0009691112431937654 Iteration 23: convergence error = 0.00043906256405534805 Iteration 24: convergence error = 0.00019887138341800892 Iteration 25: convergence error = 9.006468326333561e-5 Iteration 26: convergence error = 4.0784822431305656e-5 Iteration 27: convergence error = 1.8467980680725304e-5 Iteration 28: convergence error = 8.362306743947556e-6 Iteration 29: convergence error = 3.7863810575800017e-6 Iteration 30: convergence error = 1.7144216144515667e-6 Iteration 31: convergence error = 7.762569111946505e-7 Iteration 32: convergence error = 3.5148013921570964e-7 Iteration 33: convergence error = 1.591424734215252e-7 Iteration 34: convergence error = 7.205198926385492e-8 Iteration 35: convergence error = 3.2622210710542277e-8 Iteration 36: convergence error = 1.4771103451494128e-8 Iteration 37: convergence error = 6.687514542136341e-9 Iteration 38: convergence error = 3.0258888727985322e-9 Iteration 39: convergence error = 1.3801582099404186e-9 Iteration 40: convergence error = 6.230038707144558e-10 Iteration 41: convergence error = 2.823981049004942e-10 Iteration 42: convergence error = 1.3005774235352874e-10 Iteration 43: convergence error = 5.866240826435387e-11 Iteration 44: convergence error = 2.637534635141492e-11 Iteration 45: convergence error = 1.2278178473934531e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 66%|█████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013074725622292966 Iteration 10: d = 1.339391625215515e-5 Iteration 20: d = 1.3387215143291689e-7 Iteration 30: d = 1.4843897616946845e-9 Iteration 40: d = 1.714918762135827e-11 Iteration 50: d = 2.0300483739707625e-13 Iteration 60: d = 2.4716689448907427e-15 Converged after 61 iterations. d = 1.5511375118245773e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.618840748702 Iteration 2: convergence error = 7347.402162170265 Iteration 3: convergence error = 1729.2048544622512 Iteration 4: convergence error = 505.55726485294144 Iteration 5: convergence error = 157.1027879455428 Iteration 6: convergence error = 48.81748685144612 Iteration 7: convergence error = 15.144804804940577 Iteration 8: convergence error = 4.690882087964383 Iteration 9: convergence error = 1.4513027343177782 Iteration 10: convergence error = 0.4487054371247723 Iteration 11: convergence error = 0.138672166480319 Iteration 12: convergence error = 0.04284667498859562 Iteration 13: convergence error = 0.013236959733603726 Iteration 14: convergence error = 0.0040890962468438374 Iteration 15: convergence error = 0.0012631307263291092 Iteration 16: convergence error = 0.0003901745967596071 Iteration 17: convergence error = 0.0001205213134198857 Iteration 18: convergence error = 3.722763176483568e-5 Iteration 19: convergence error = 1.1499143511173315e-5 Iteration 20: convergence error = 3.551920144673204e-6 Iteration 21: convergence error = 1.097128460969543e-6 Iteration 22: convergence error = 3.387426659173798e-7 Iteration 23: convergence error = 1.0341500455979258e-7 Iteration 24: convergence error = 3.080185706494376e-8 Iteration 25: convergence error = 9.140421752817929e-9 Iteration 26: convergence error = 2.7098394639324397e-9 Iteration 27: convergence error = 7.980816008057445e-10 Iteration 28: convergence error = 2.3510438040830195e-10 Iteration 29: convergence error = 7.275957614183426e-11 Iteration 30: convergence error = 2.1373125491663814e-11 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 66%|█████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013074725622292966 Iteration 10: d = 1.339391625215515e-5 Iteration 20: d = 1.3387215143291689e-7 Iteration 30: d = 1.4843897616946845e-9 Iteration 40: d = 1.714918762135827e-11 Iteration 50: d = 2.0300483739707625e-13 Iteration 60: d = 2.4716689448907427e-15 Converged after 61 iterations. d = 1.5511375118245773e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.693595734378 Iteration 2: convergence error = 5516.08938137775 Iteration 3: convergence error = 936.0728641326832 Iteration 4: convergence error = 170.1959522794989 Iteration 5: convergence error = 30.887251679751444 Iteration 6: convergence error = 5.622286694065451 Iteration 7: convergence error = 1.0289549526914925 Iteration 8: convergence error = 0.18837491620979563 Iteration 9: convergence error = 0.03444684312808022 Iteration 10: convergence error = 0.006295482540735975 Iteration 11: convergence error = 0.0011502298543746292 Iteration 12: convergence error = 0.00021012467641412513 Iteration 13: convergence error = 3.838279008050449e-5 Iteration 14: convergence error = 7.011012257862603e-6 Iteration 15: convergence error = 1.280600372410845e-6 Iteration 16: convergence error = 2.339070306334179e-7 Iteration 17: convergence error = 4.272260412108153e-8 Iteration 18: convergence error = 7.801190804457292e-9 Iteration 19: convergence error = 1.4297256711870432e-9 Iteration 20: convergence error = 2.6057023205794394e-10 Iteration 21: convergence error = 4.547473508864641e-11 Iteration 22: convergence error = 1.000444171950221e-11 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 66%|█████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013074725622292966 Iteration 10: d = 1.339391625215515e-5 Iteration 20: d = 1.3387215143291689e-7 Iteration 30: d = 1.4843897616946845e-9 Iteration 40: d = 1.714918762135827e-11 Iteration 50: d = 2.0300483739707625e-13 Iteration 60: d = 2.4716689448907427e-15 Converged after 61 iterations. d = 1.5511375118245773e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.480512080964 Iteration 2: convergence error = 2712.443749220788 Iteration 3: convergence error = 204.88659358846857 Iteration 4: convergence error = 19.43989168099387 Iteration 5: convergence error = 1.608568566585731 Iteration 6: convergence error = 0.13112090083064357 Iteration 7: convergence error = 0.010700308167689092 Iteration 8: convergence error = 0.0008751689464907812 Iteration 9: convergence error = 7.168528060068066e-5 Iteration 10: convergence error = 5.8766312850382305e-6 Iteration 11: convergence error = 4.819683964912635e-7 Iteration 12: convergence error = 3.9537478923133715e-8 Iteration 13: convergence error = 3.2447453177638304e-9 Iteration 14: convergence error = 2.653109986356756e-10 Iteration 15: convergence error = 2.3533175408374518e-11 Iteration 16: convergence error = 4.774847184307873e-12 Converged after 16 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346352 Iteration 2: convergence error = 858.4060420534064 Iteration 3: convergence error = 199.12106737711963 Iteration 4: convergence error = 59.265629268140174 Iteration 5: convergence error = 17.985482911037252 Iteration 6: convergence error = 5.463033078096487 Iteration 7: convergence error = 1.660989611064224 Iteration 8: convergence error = 0.5052487627317532 Iteration 9: convergence error = 0.15371874094239502 Iteration 10: convergence error = 0.04677131697644654 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.004330236512828378 Iteration 13: convergence error = 0.0013175920926187246 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198903971238906 Iteration 16: convergence error = 3.711853855747904e-5 Iteration 17: convergence error = 1.1294342471046548e-5 Iteration 18: convergence error = 3.4366166801191866e-6 Iteration 19: convergence error = 1.045686303768889e-6 Iteration 20: convergence error = 3.1818046863918426e-7 Iteration 21: convergence error = 9.68161657510791e-8 Iteration 22: convergence error = 2.946035237982869e-8 Iteration 23: convergence error = 8.963752406998537e-9 Iteration 24: convergence error = 2.7299620342091657e-9 Iteration 25: convergence error = 8.292317943414673e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.696598913753405e-11 Iteration 28: convergence error = 2.3646862246096134e-11 Iteration 29: convergence error = 9.094947017729282e-12 Converged after 29 iterations Energy conservation errors by band: [1.5428857128674637e-25, 8.401053096241687e-26, 1.1490863489811346e-25, 9.400697635337753e-26, 1.2440020930973268e-25, -3.2610768469290563e-19, 2.7533531010703882e-14, 1.7053025658242404e-12, 5.6701310313655995e-12, 2.6432189770275727e-12, 7.176481631177012e-13, 8.526512829121202e-14, 4.9960036108132044e-15, 2.636779683484747e-16, 2.0166160408230382e-17, 1.0062751413381088e-18, 3.560185356428231e-20, 1.2755125045567687e-21, 4.105530024647957e-23, 5.6284752489113644e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 58%|███████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015838544755093305 Iteration 10: d = 2.0508246091540074e-5 Iteration 20: d = 2.534419952851594e-7 Iteration 30: d = 3.3247479988149652e-9 Iteration 40: d = 4.407999139000057e-11 Iteration 50: d = 5.866556661386141e-13 Iteration 60: d = 7.849374217282475e-15 Converged after 63 iterations. d = 2.112009703876295e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.288396528561 Iteration 2: convergence error = 3614.8086671695664 Iteration 3: convergence error = 592.7662443857927 Iteration 4: convergence error = 104.1325138661764 Iteration 5: convergence error = 18.50236675654878 Iteration 6: convergence error = 3.2586935342492325 Iteration 7: convergence error = 0.5718288030050189 Iteration 8: convergence error = 0.10018906858886112 Iteration 9: convergence error = 0.017542799730108527 Iteration 10: convergence error = 0.0030708943502304464 Iteration 11: convergence error = 0.0005375083189846919 Iteration 12: convergence error = 9.407780112269393e-5 Iteration 13: convergence error = 1.6465765384054976e-5 Iteration 14: convergence error = 2.88185037788935e-6 Iteration 15: convergence error = 5.043903001933359e-7 Iteration 16: convergence error = 8.827646524878219e-8 Iteration 17: convergence error = 1.5465957403648645e-8 Iteration 18: convergence error = 2.6839188649319112e-9 Iteration 19: convergence error = 4.761204763781279e-10 Iteration 20: convergence error = 8.139977580867708e-11 Iteration 21: convergence error = 1.432454155292362e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.492427513024 Iteration 2: convergence error = 871.304602661783 Iteration 3: convergence error = 207.75299581225158 Iteration 4: convergence error = 62.49550550490892 Iteration 5: convergence error = 18.97931530918413 Iteration 6: convergence error = 5.76621559404623 Iteration 7: convergence error = 1.7533061530655232 Iteration 8: convergence error = 0.5333443698997371 Iteration 9: convergence error = 0.16226812526508638 Iteration 10: convergence error = 0.04937275063014113 Iteration 11: convergence error = 0.015022831428041172 Iteration 12: convergence error = 0.0045710916562029524 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318846916256 Iteration 15: convergence error = 0.0001287742984459328 Iteration 16: convergence error = 3.9183143599075265e-5 Iteration 17: convergence error = 1.1922556950594299e-5 Iteration 18: convergence error = 3.6277691606301232e-6 Iteration 19: convergence error = 1.1038513321182108e-6 Iteration 20: convergence error = 3.3587832604098367e-7 Iteration 21: convergence error = 1.0220117019343888e-7 Iteration 22: convergence error = 3.1099034458748065e-8 Iteration 23: convergence error = 9.464656613999978e-9 Iteration 24: convergence error = 2.880597094190307e-9 Iteration 25: convergence error = 8.786855687503703e-10 Iteration 26: convergence error = 2.6830093702301383e-10 Iteration 27: convergence error = 8.185452315956354e-11 Iteration 28: convergence error = 2.6261659513693303e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [9.81469183839774e-26, 1.2278462217584005e-25, 1.7064639101740927e-25, 1.3045866106183005e-25, 1.2440020930973268e-25, -2.642742795433417e-19, -7.993605777301127e-15, 8.526512829121202e-14, 7.013056801952189e-12, 4.575895218295045e-12, 5.826450433232822e-13, 8.79296635503124e-14, 5.218048215738236e-15, 3.642919299551295e-16, 2.0166160408230382e-17, 8.775261333554552e-19, 3.7613556814011274e-20, 1.2358078351542233e-21, 3.6499344528902346e-23, 4.998575315730623e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729987 Iteration 2: convergence error = 2115.1156110176394 Iteration 3: convergence error = 714.8959934551629 Iteration 4: convergence error = 296.01907471323966 Iteration 5: convergence error = 115.88799395378669 Iteration 6: convergence error = 44.11524923618913 Iteration 7: convergence error = 16.599581025126554 Iteration 8: convergence error = 6.215983404932786 Iteration 9: convergence error = 2.323124567003788 Iteration 10: convergence error = 0.867563639824084 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.12090784413658184 Iteration 13: convergence error = 0.04513241840754745 Iteration 14: convergence error = 0.016846741615154315 Iteration 15: convergence error = 0.0062884074741305085 Iteration 16: convergence error = 0.0023472777563711134 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782211112615 Iteration 19: convergence error = 0.00012207719146317686 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985607473878e-6 Iteration 23: convergence error = 2.3698869426880265e-6 Iteration 24: convergence error = 8.846079708746402e-7 Iteration 25: convergence error = 3.302000095573021e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7174670574604534e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.949427865445614e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.248281478183344e-10 Iteration 34: convergence error = 4.774847184307873e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.9952501103574007e-25, 1.4136387421560532e-25, 1.0339757656912846e-25, 1.6478988765704848e-25, 2.1729646950855903e-25, 9.486769009248164e-20, 5.240252676230739e-14, 2.9274360713316128e-12, 1.2093437362636905e-11, 5.6203930398623925e-12, 2.0961010704922955e-13, 1.84297022087776e-14, 1.582067810090848e-15, 1.723881454251952e-16, 7.101524229780054e-18, 4.641740550953566e-19, 1.4770137017746862e-20, 4.963083675318166e-22, 1.7991178323028352e-23, 9.298117831235686e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238243 Iteration 2: convergence error = 864.8522700482431 Iteration 3: convergence error = 203.43244494690748 Iteration 4: convergence error = 60.87736397590345 Iteration 5: convergence error = 18.481426659698286 Iteration 6: convergence error = 5.6143306186266955 Iteration 7: convergence error = 1.7070587705935623 Iteration 8: convergence error = 0.5192694771476454 Iteration 9: convergence error = 0.1579851928424887 Iteration 10: convergence error = 0.04806952669207476 Iteration 11: convergence error = 0.014626287390910875 Iteration 12: convergence error = 0.004450431969985402 Iteration 13: convergence error = 0.0013541649049102489 Iteration 14: convergence error = 0.0004120419150694943 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.8148852013364376e-5 Iteration 17: convergence error = 1.1607843930505624e-5 Iteration 18: convergence error = 3.532008690854127e-6 Iteration 19: convergence error = 1.0747122587417834e-6 Iteration 20: convergence error = 3.270116621933994e-7 Iteration 21: convergence error = 9.950440471584443e-8 Iteration 22: convergence error = 3.027832917723572e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8029489840264432e-9 Iteration 25: convergence error = 8.546976459911093e-10 Iteration 26: convergence error = 2.609112925711088e-10 Iteration 27: convergence error = 8.003553375601768e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.753886504564434e-12 Converged after 29 iterations Energy conservation errors by band: [1.4621063561728321e-25, 7.674038885990003e-26, 1.32882041762669e-25, 1.3116548043290807e-25, 1.126872025890111e-25, -1.5246593050577406e-19, -3.6637359812630166e-14, 2.5721647034515627e-12, 7.627676268384675e-12, 2.8421709430404007e-12, 4.973799150320701e-13, 7.194245199571014e-14, 4.385380947269368e-15, 4.198030811863873e-16, 2.3310346708438345e-17, 9.84252284709497e-19, 4.1081097941833566e-20, 9.880672416945916e-22, 2.4156258825962636e-23, 4.8210806556121566e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 7m34.2s Testing RayTraceHeatTransfer tests passed Testing completed after 462.95s PkgEval succeeded after 508.74s