Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1687 (b1350e5378*) started at 2026-02-05T16:18:09.676 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 10.71s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.14.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.18.0+0 [e37daf67] + LibGit2_jll v1.9.2+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.12.2 [4536629a] + OpenBLAS_jll v0.3.30+0 [458c3c95] + OpenSSL_jll v3.5.5+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.03s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling packages... 1501.4 ms ✓ Measurements 5136.6 ms ✓ StatsBase 6241.6 ms ✓ RayTraceHeatTransfer 3 dependencies successfully precompiled in 13 seconds. 58 already precompiled. Precompilation completed after 32.15s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_TjoPuD/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.16 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_TjoPuD/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.16 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.18.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.30+0 [458c3c95] OpenSSL_jll v3.5.5+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:04:35 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:06 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011009708188237243 Iteration 10: d = 1.1736469948249666e-5 Iteration 20: d = 1.8146926949958696e-7 Iteration 30: d = 3.0153860799929716e-9 Iteration 40: d = 5.103084273620225e-11 Iteration 50: d = 8.712619029304608e-13 Iteration 60: d = 1.4933565928293223e-14 Converged after 65 iterations. d = 1.9814386117891045e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 37%|████████████▎ | ETA: 0:00:02 Bin 1 progress: 76%|█████████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011686450415736354 Iteration 10: d = 9.465919817882009e-6 Iteration 20: d = 1.3668182572892784e-7 Iteration 30: d = 2.323543057938467e-9 Iteration 40: d = 4.0443171656234155e-11 Iteration 50: d = 7.083668649008972e-13 Iteration 60: d = 1.245477176457394e-14 Converged after 65 iterations. d = 1.6442006372435291e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 79%|██████████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010660363276634758 Iteration 10: d = 5.65329668843791e-6 Iteration 20: d = 6.09148731449824e-8 Iteration 30: d = 9.431197274387715e-10 Iteration 40: d = 1.5652919077739827e-11 Iteration 50: d = 2.654892167153972e-13 Iteration 60: d = 4.554315111599458e-15 Converged after 62 iterations. d = 2.0017355593103968e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|█████████████ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001072544399157182 Iteration 10: d = 1.1810603589348303e-5 Iteration 20: d = 1.888514537647796e-7 Iteration 30: d = 3.2590435634914736e-9 Iteration 40: d = 5.698307967039677e-11 Iteration 50: d = 1.0005901109813975e-12 Iteration 60: d = 1.758474501866003e-14 Converged after 66 iterations. d = 1.5460432870157975e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 95%|███████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014070594733514897 Iteration 10: d = 1.8426340842963584e-5 Iteration 20: d = 2.7086747855569136e-7 Iteration 30: d = 4.132660218478776e-9 Iteration 40: d = 6.343367566219703e-11 Iteration 50: d = 9.75813121600145e-13 Iteration 60: d = 1.5056839709190654e-14 Converged after 65 iterations. d = 1.8591868287613144e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 57%|██████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013555533837073359 Iteration 10: d = 1.5074614275891387e-5 Iteration 20: d = 2.1024427234177488e-7 Iteration 30: d = 3.192034565335401e-9 Iteration 40: d = 4.912176548926596e-11 Iteration 50: d = 7.586447725671413e-13 Iteration 60: d = 1.1744230988006215e-14 Converged after 64 iterations. d = 2.2200830551100558e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 66%|█████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015126541584124615 Iteration 10: d = 1.837794770543376e-5 Iteration 20: d = 2.5716942974931125e-7 Iteration 30: d = 3.892120701613678e-9 Iteration 40: d = 5.971310718227405e-11 Iteration 50: d = 9.193222774227452e-13 Iteration 60: d = 1.4146024302747039e-14 Converged after 65 iterations. d = 1.7803698175829292e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 68%|██████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012547771347515436 Iteration 10: d = 1.4754350975261178e-5 Iteration 20: d = 2.1139913569186124e-7 Iteration 30: d = 3.193674555937738e-9 Iteration 40: d = 4.8699999599847343e-11 Iteration 50: d = 7.448854758633897e-13 Iteration 60: d = 1.1418650291925559e-14 Converged after 64 iterations. d = 2.1690241067700243e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001322175795208069 Iteration 10: d = 1.5317217818005358e-5 Iteration 20: d = 2.144765631653402e-7 Iteration 30: d = 3.2265042921070336e-9 Iteration 40: d = 4.913492611690685e-11 Iteration 50: d = 7.512460020474539e-13 Iteration 60: d = 1.1473377243423155e-14 Converged after 64 iterations. d = 2.1872800469426957e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 66%|█████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013750182376520476 Iteration 10: d = 1.7785239860950963e-5 Iteration 20: d = 2.5162635864066137e-7 Iteration 30: d = 3.813417297192673e-9 Iteration 40: d = 5.843625940081936e-11 Iteration 50: d = 8.978192800394865e-13 Iteration 60: d = 1.3768881724188673e-14 Converged after 65 iterations. d = 1.7104798633178758e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.004943037201339273 Iteration 10: d = 5.870620882386581e-5 Iteration 20: d = 7.233142468585023e-7 Iteration 30: d = 9.91091819210413e-9 Iteration 40: d = 1.400193457904961e-10 Iteration 50: d = 2.0000224731820675e-12 Iteration 60: d = 2.869358095295477e-14 Converged after 67 iterations. d = 1.448375228915223e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.003927468837502384 Iteration 10: d = 5.034848267223943e-5 Iteration 20: d = 5.743958104846144e-7 Iteration 30: d = 7.202730718893176e-9 Iteration 40: d = 9.829479179396535e-11 Iteration 50: d = 1.4266122415818096e-12 Iteration 60: d = 2.1444624606066733e-14 Converged after 66 iterations. d = 1.7494617318965312e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.003205776592521183 Iteration 10: d = 4.0593535390678686e-5 Iteration 20: d = 5.743322961685571e-7 Iteration 30: d = 8.880088185040737e-9 Iteration 40: d = 1.4115467290018642e-10 Iteration 50: d = 2.270287660225619e-12 Iteration 60: d = 3.675211824630416e-14 Converged after 67 iterations. d = 2.0451795145042797e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002139235915691476 Iteration 10: d = 2.7036412770683607e-5 Iteration 20: d = 4.518559571771363e-7 Iteration 30: d = 8.111841358876917e-9 Iteration 40: d = 1.483898871213071e-10 Iteration 50: d = 2.7370030138738738e-12 Iteration 60: d = 5.0685088484931476e-14 Converged after 68 iterations. d = 2.050344597082936e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014070594733514897 Iteration 10: d = 1.8426340842963584e-5 Iteration 20: d = 2.7086747855569136e-7 Iteration 30: d = 4.132660218478776e-9 Iteration 40: d = 6.343367566219703e-11 Iteration 50: d = 9.75813121600145e-13 Iteration 60: d = 1.5056839709190654e-14 Converged after 65 iterations. d = 1.8591868287613144e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 67%|██████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015943081878172646 Iteration 10: d = 1.410931739647539e-5 Iteration 20: d = 1.3981902938244712e-7 Iteration 30: d = 1.707601863350812e-9 Iteration 40: d = 2.250295710453112e-11 Iteration 50: d = 3.062021631070681e-13 Iteration 60: d = 4.227377129064659e-15 Converged after 62 iterations. d = 1.7419249497047242e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013230795759955156 Iteration 10: d = 1.6502464291015e-5 Iteration 20: d = 2.23111202426807e-7 Iteration 30: d = 3.1632066288298558e-9 Iteration 40: d = 4.5098087872099595e-11 Iteration 50: d = 6.436603792712512e-13 Iteration 60: d = 9.209235487809537e-15 Converged after 64 iterations. d = 1.730929713187302e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.609872076757 Iteration 2: convergence error = 4826.979489873282 Iteration 3: convergence error = 1097.4182949971764 Iteration 4: convergence error = 322.5887465810531 Iteration 5: convergence error = 95.84928767490715 Iteration 6: convergence error = 28.626305531591242 Iteration 7: convergence error = 8.557830184671047 Iteration 8: convergence error = 2.5632480600095278 Iteration 9: convergence error = 0.7677094244720593 Iteration 10: convergence error = 0.22962612985952546 Iteration 11: convergence error = 0.06862999986469731 Iteration 12: convergence error = 0.020503032069882465 Iteration 13: convergence error = 0.006123712186308694 Iteration 14: convergence error = 0.0018287319139744795 Iteration 15: convergence error = 0.0005460722034058563 Iteration 16: convergence error = 0.00016305337044286716 Iteration 17: convergence error = 4.868529185841908e-5 Iteration 18: convergence error = 1.4536467688230914e-5 Iteration 19: convergence error = 4.340256509749452e-6 Iteration 20: convergence error = 1.295896709052613e-6 Iteration 21: convergence error = 3.86925876227906e-7 Iteration 22: convergence error = 1.1539668776094913e-7 Iteration 23: convergence error = 3.354625732754357e-8 Iteration 24: convergence error = 9.681798474048264e-9 Iteration 25: convergence error = 2.7951045922236517e-9 Iteration 26: convergence error = 8.026290743146092e-10 Iteration 27: convergence error = 2.3032953322399408e-10 Iteration 28: convergence error = 6.684786058031023e-11 Iteration 29: convergence error = 1.887201506178826e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015943081878172646 Iteration 10: d = 1.410931739647539e-5 Iteration 20: d = 1.3981902938244712e-7 Iteration 30: d = 1.707601863350812e-9 Iteration 40: d = 2.250295710453112e-11 Iteration 50: d = 3.062021631070681e-13 Iteration 60: d = 4.227377129064659e-15 Converged after 62 iterations. d = 1.7419249497047242e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.716139526596 Iteration 2: convergence error = 4820.6495545173675 Iteration 3: convergence error = 1093.2850935852084 Iteration 4: convergence error = 321.9261215790368 Iteration 5: convergence error = 95.5407458521513 Iteration 6: convergence error = 28.502428733143915 Iteration 7: convergence error = 8.518643757400469 Iteration 8: convergence error = 2.5547428383019906 Iteration 9: convergence error = 0.7643662200971448 Iteration 10: convergence error = 0.22838387403453453 Iteration 11: convergence error = 0.06818562677608497 Iteration 12: convergence error = 0.0203483357740879 Iteration 13: convergence error = 0.0060709401268468355 Iteration 14: convergence error = 0.0018110092357801477 Iteration 15: convergence error = 0.0005401937776241539 Iteration 16: convergence error = 0.00016112309731397545 Iteration 17: convergence error = 4.8056723244371824e-5 Iteration 18: convergence error = 1.4333212448036647e-5 Iteration 19: convergence error = 4.274930461178883e-6 Iteration 20: convergence error = 1.2750065252475906e-6 Iteration 21: convergence error = 3.802722403634107e-7 Iteration 22: convergence error = 1.1327756510581821e-7 Iteration 23: convergence error = 3.287800609541591e-8 Iteration 24: convergence error = 9.474433682044037e-9 Iteration 25: convergence error = 2.731894710450433e-9 Iteration 26: convergence error = 7.805738277966157e-10 Iteration 27: convergence error = 2.2214408090803772e-10 Iteration 28: convergence error = 6.45741238258779e-11 Iteration 29: convergence error = 1.9326762412674725e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 13:00:18 Bin 1 ray tracing: 9%|██▊ | ETA: 0:00:57 Bin 1 ray tracing: 18%|█████▍ | ETA: 0:00:30 Bin 1 ray tracing: 27%|████████▏ | ETA: 0:00:21 Bin 1 ray tracing: 35%|██████████▋ | ETA: 0:00:16 Bin 1 ray tracing: 44%|█████████████▏ | ETA: 0:00:13 Bin 1 ray tracing: 52%|███████████████▌ | ETA: 0:00:10 Bin 1 ray tracing: 60%|██████████████████ | ETA: 0:00:08 Bin 1 ray tracing: 68%|████████████████████▌ | ETA: 0:00:06 Bin 1 ray tracing: 76%|███████████████████████ | ETA: 0:00:04 Bin 1 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:03 Bin 1 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 2 ray tracing: 18%|█████▍ | ETA: 0:00:09 Bin 2 ray tracing: 27%|████████▏ | ETA: 0:00:08 Bin 2 ray tracing: 36%|██████████▋ | ETA: 0:00:07 Bin 2 ray tracing: 44%|█████████████▎ | ETA: 0:00:06 Bin 2 ray tracing: 53%|███████████████▉ | ETA: 0:00:05 Bin 2 ray tracing: 62%|██████████████████▋ | ETA: 0:00:04 Bin 2 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:03 Bin 2 ray tracing: 79%|███████████████████████▉ | ETA: 0:00:02 Bin 2 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:01 Bin 2 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 3 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 3 ray tracing: 25%|███████▍ | ETA: 0:00:09 Bin 3 ray tracing: 33%|█████████▉ | ETA: 0:00:08 Bin 3 ray tracing: 41%|████████████▍ | ETA: 0:00:07 Bin 3 ray tracing: 51%|███████████████▎ | ETA: 0:00:06 Bin 3 ray tracing: 60%|█████████████████▉ | ETA: 0:00:05 Bin 3 ray tracing: 68%|████████████████████▍ | ETA: 0:00:04 Bin 3 ray tracing: 77%|███████████████████████ | ETA: 0:00:03 Bin 3 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 3 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 9%|██▊ | ETA: 0:00:11 Bin 4 ray tracing: 18%|█████▎ | ETA: 0:00:10 Bin 4 ray tracing: 26%|███████▉ | ETA: 0:00:09 Bin 4 ray tracing: 35%|██████████▍ | ETA: 0:00:08 Bin 4 ray tracing: 43%|█████████████ | ETA: 0:00:07 Bin 4 ray tracing: 52%|███████████████▋ | ETA: 0:00:06 Bin 4 ray tracing: 61%|██████████████████▏ | ETA: 0:00:05 Bin 4 ray tracing: 69%|████████████████████▊ | ETA: 0:00:04 Bin 4 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:03 Bin 4 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:01 Bin 4 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 5 ray tracing: 18%|█████▍ | ETA: 0:00:09 Bin 5 ray tracing: 27%|████████▏ | ETA: 0:00:08 Bin 5 ray tracing: 36%|██████████▉ | ETA: 0:00:07 Bin 5 ray tracing: 47%|██████████████▏ | ETA: 0:00:06 Bin 5 ray tracing: 57%|█████████████████▎ | ETA: 0:00:05 Bin 5 ray tracing: 67%|████████████████████▎ | ETA: 0:00:04 Bin 5 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:02 Bin 5 ray tracing: 87%|██████████████████████████ | ETA: 0:00:01 Bin 5 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 6 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 6 ray tracing: 26%|███████▋ | ETA: 0:00:09 Bin 6 ray tracing: 34%|██████████▎ | ETA: 0:00:08 Bin 6 ray tracing: 43%|████████████▊ | ETA: 0:00:07 Bin 6 ray tracing: 52%|███████████████▌ | ETA: 0:00:06 Bin 6 ray tracing: 61%|██████████████████▎ | ETA: 0:00:05 Bin 6 ray tracing: 69%|████████████████████▊ | ETA: 0:00:04 Bin 6 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 6 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 6 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 10%|██▉ | ETA: 0:00:09 Bin 7 ray tracing: 20%|█████▉ | ETA: 0:00:08 Bin 7 ray tracing: 30%|████████▉ | ETA: 0:00:07 Bin 7 ray tracing: 38%|███████████▌ | ETA: 0:00:07 Bin 7 ray tracing: 47%|██████████████▎ | ETA: 0:00:06 Bin 7 ray tracing: 57%|█████████████████▏ | ETA: 0:00:05 Bin 7 ray tracing: 67%|████████████████████▏ | ETA: 0:00:04 Bin 7 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:02 Bin 7 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:01 Bin 7 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 8 ray tracing: 17%|█████▎ | ETA: 0:00:09 Bin 8 ray tracing: 26%|███████▉ | ETA: 0:00:09 Bin 8 ray tracing: 35%|██████████▍ | ETA: 0:00:08 Bin 8 ray tracing: 43%|████████████▉ | ETA: 0:00:07 Bin 8 ray tracing: 51%|███████████████▌ | ETA: 0:00:06 Bin 8 ray tracing: 60%|██████████████████ | ETA: 0:00:05 Bin 8 ray tracing: 69%|████████████████████▋ | ETA: 0:00:04 Bin 8 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 8 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 14%|████▎ | ETA: 0:00:06 Bin 9 ray tracing: 28%|████████▌ | ETA: 0:00:05 Bin 9 ray tracing: 42%|████████████▊ | ETA: 0:00:04 Bin 9 ray tracing: 56%|████████████████▉ | ETA: 0:00:03 Bin 9 ray tracing: 67%|████████████████████▎ | ETA: 0:00:03 Bin 9 ray tracing: 76%|███████████████████████ | ETA: 0:00:02 Bin 9 ray tracing: 87%|██████████████████████████▎ | ETA: 0:00:01 Bin 9 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:08 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 10%|██▉ | ETA: 0:00:09 Bin 10 ray tracing: 19%|█████▋ | ETA: 0:00:08 Bin 10 ray tracing: 29%|████████▌ | ETA: 0:00:07 Bin 10 ray tracing: 39%|███████████▍ | ETA: 0:00:06 Bin 10 ray tracing: 50%|██████████████▍ | ETA: 0:00:05 Bin 10 ray tracing: 59%|█████████████████▏ | ETA: 0:00:04 Bin 10 ray tracing: 70%|████████████████████▎ | ETA: 0:00:03 Bin 10 ray tracing: 82%|███████████████████████▊ | ETA: 0:00:02 Bin 10 ray tracing: 94%|███████████████████████████▍ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 22%|███████▍ | ETA: 0:00:04 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 22%|███████▍ | ETA: 0:00:04 Bin 2 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 2 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 27%|████████▊ | ETA: 0:00:03 Bin 3 progress: 53%|█████████████████▋ | ETA: 0:00:02 Bin 3 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 27%|████████▊ | ETA: 0:00:03 Bin 4 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 4 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 27%|████████▊ | ETA: 0:00:03 Bin 5 progress: 53%|█████████████████▋ | ETA: 0:00:02 Bin 5 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 33%|███████████ | ETA: 0:00:02 Bin 6 progress: 62%|████████████████████▌ | ETA: 0:00:01 Bin 6 progress: 87%|████████████████████████████▋ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 27%|████████▊ | ETA: 0:00:03 Bin 7 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 7 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 7 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 22%|███████▍ | ETA: 0:00:04 Bin 8 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 8 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 8 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 22%|███████▍ | ETA: 0:00:04 Bin 9 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 9 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 9 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 22%|███████▏ | ETA: 0:00:04 Bin 10 progress: 44%|██████████████▎ | ETA: 0:00:03 Bin 10 progress: 69%|██████████████████████ | ETA: 0:00:01 Bin 10 progress: 91%|█████████████████████████████▏ | ETA: 0:00:00 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:04 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015943081878172646 Iteration 10: d = 1.410931739647539e-5 Iteration 20: d = 1.3981902938244712e-7 Iteration 30: d = 1.707601863350812e-9 Iteration 40: d = 2.250295710453112e-11 Iteration 50: d = 3.062021631070681e-13 Iteration 60: d = 4.227377129064659e-15 Converged after 62 iterations. d = 1.7419249497047242e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013183046485790886 Iteration 10: d = 1.6463946946126708e-5 Iteration 20: d = 2.2235100182581428e-7 Iteration 30: d = 3.1508274774948363e-9 Iteration 40: d = 4.491641037851988e-11 Iteration 50: d = 6.410457503480793e-13 Iteration 60: d = 9.120948977157705e-15 Converged after 64 iterations. d = 1.656840013441891e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018368484857871428 Iteration 10: d = 2.0682414061908756e-5 Iteration 20: d = 2.5280337603705044e-7 Iteration 30: d = 3.264201935589553e-9 Iteration 40: d = 4.2518711227149307e-11 Iteration 50: d = 5.564205169588831e-13 Iteration 60: d = 7.269504612777202e-15 Converged after 63 iterations. d = 2.008659115922484e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014561614364951743 Iteration 10: d = 1.8782980064266058e-5 Iteration 20: d = 2.453105967725508e-7 Iteration 30: d = 3.4078723643054547e-9 Iteration 40: d = 4.785133628318067e-11 Iteration 50: d = 6.740294892853475e-13 Iteration 60: d = 9.514521945351394e-15 Converged after 64 iterations. d = 1.7540121190182726e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014646958304512145 Iteration 10: d = 1.2515637215096547e-5 Iteration 20: d = 9.601179001781368e-8 Iteration 30: d = 9.976276920043548e-10 Iteration 40: d = 1.228150297140301e-11 Iteration 50: d = 1.621000522735535e-13 Iteration 60: d = 2.221502151743502e-15 Converged after 61 iterations. d = 1.4536206530636003e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017483959130426482 Iteration 10: d = 2.2224302956182133e-5 Iteration 20: d = 2.8629409248467704e-7 Iteration 30: d = 3.945992447799036e-9 Iteration 40: d = 5.485106751178858e-11 Iteration 50: d = 7.637406541559632e-13 Iteration 60: d = 1.0638697890169995e-14 Converged after 64 iterations. d = 1.918519209586805e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00127906252727037 Iteration 10: d = 1.3865057489391621e-5 Iteration 20: d = 1.6241846685257166e-7 Iteration 30: d = 2.0856208933389862e-9 Iteration 40: d = 2.7226459113389644e-11 Iteration 50: d = 3.5681185416831293e-13 Iteration 60: d = 4.662648007509527e-15 Converged after 62 iterations. d = 1.976154146298084e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013984607063589945 Iteration 10: d = 1.382247140538727e-5 Iteration 20: d = 1.7141968323863125e-7 Iteration 30: d = 2.320945616925359e-9 Iteration 40: d = 3.183001493554087e-11 Iteration 50: d = 4.387759664222705e-13 Iteration 60: d = 6.050371228494848e-15 Converged after 63 iterations. d = 1.6799185006695224e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015061443877640336 Iteration 10: d = 8.860549466397537e-6 Iteration 20: d = 6.968110037368135e-8 Iteration 30: d = 8.546455060400274e-10 Iteration 40: d = 1.1563043659170836e-11 Iteration 50: d = 1.5998345302732583e-13 Iteration 60: d = 2.2420969890318433e-15 Converged after 61 iterations. d = 1.4482942634390471e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00143405582625926 Iteration 10: d = 1.5041479167487452e-5 Iteration 20: d = 1.7565317429810815e-7 Iteration 30: d = 2.324231438998275e-9 Iteration 40: d = 3.1482072570718096e-11 Iteration 50: d = 4.292543543215937e-13 Iteration 60: d = 5.906573103372443e-15 Converged after 63 iterations. d = 1.641122128032299e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.11136675205 Iteration 2: convergence error = 4815.202702140829 Iteration 3: convergence error = 1102.042892435814 Iteration 4: convergence error = 326.7370108529558 Iteration 5: convergence error = 97.47638121250657 Iteration 6: convergence error = 29.24540465396808 Iteration 7: convergence error = 8.786478095034454 Iteration 8: convergence error = 2.6395285822400183 Iteration 9: convergence error = 0.7934155412051496 Iteration 10: convergence error = 0.23861850540674823 Iteration 11: convergence error = 0.07170519075611992 Iteration 12: convergence error = 0.021537367101245763 Iteration 13: convergence error = 0.006467217035606154 Iteration 14: convergence error = 0.0019416676570926938 Iteration 15: convergence error = 0.0005828992473198014 Iteration 16: convergence error = 0.00017498047554909135 Iteration 17: convergence error = 5.252579467196483e-5 Iteration 18: convergence error = 1.5766959222673904e-5 Iteration 19: convergence error = 4.732810793939279e-6 Iteration 20: convergence error = 1.4206534615368582e-6 Iteration 21: convergence error = 4.264334165782202e-7 Iteration 22: convergence error = 1.2789087122655474e-7 Iteration 23: convergence error = 3.758827915589791e-8 Iteration 24: convergence error = 1.0936446415144019e-8 Iteration 25: convergence error = 3.1604940886609256e-9 Iteration 26: convergence error = 9.165432857116684e-10 Iteration 27: convergence error = 2.651177055668086e-10 Iteration 28: convergence error = 7.844391802791506e-11 Iteration 29: convergence error = 2.205524651799351e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.3515198985596 K, F = -7438.987247835425, relative_change = 0.032648480101440475 Iter 2: T = 936.7792088053034 K, F = -6305.772234480705, relative_change = 0.03160413816940311 Iter 3: T = 908.2516354290865 K, F = -5343.671519095186, relative_change = 0.030452825071340752 Iter 5: T = 857.1917644772413 K, F = -3833.737402751595, relative_change = 0.027835218973503974 Iter 10: T = 762.2925574463842 K, F = -1659.8963148174416, relative_change = 0.0199050480354549 Iter 15: T = 706.789119638217 K, F = -710.6173132690623, relative_change = 0.01191065247010801 Iter 20: T = 678.2710789257806 K, F = -301.1592327619437, relative_change = 0.006092938134488024 Iter 25: T = 664.9806227720446 K, F = -126.77635438666093, relative_change = 0.0028129529197389183 Iter 30: T = 659.1316253659603 K, F = -53.1769856656453, relative_change = 0.0012301194124984965 Iter 35: T = 656.6297386819901 K, F = -22.267878067501087, relative_change = 0.0005244864426909505 Iter 40: T = 655.5732627996138 K, F = -9.317781857338142, relative_change = 0.00022115245719446297 Iter 45: T = 655.1296244447577 K, F = -3.8977039472949273, relative_change = 9.280829496271198e-5 Iter 50: T = 654.9437711270139 K, F = -1.630223558299136, relative_change = 3.886973671916924e-5 Iter 55: T = 654.8659891796425 K, F = -0.6818064922623603, relative_change = 1.6265638345288955e-5 Iter 60: T = 654.833450055971 K, F = -0.28514443519960475, relative_change = 6.804208560677525e-6 Iter 65: T = 654.8198400936346 K, F = -0.11925165091548734, relative_change = 2.845902982502236e-6 Iter 70: T = 654.8141479453128 K, F = -0.04987261198432513, relative_change = 1.1902433907708878e-6 Iter 75: T = 654.8117673685124 K, F = -0.020857347715751096, relative_change = 4.977832316774598e-7 Iter 80: T = 654.8107717737005 K, F = -0.008722796410920386, relative_change = 2.081805068099247e-7 Iter 85: T = 654.8103554024575 K, F = -0.003647978418950759, relative_change = 8.706385652260445e-8 Iter 90: T = 654.810181270751 K, F = -0.0015256282788329023, relative_change = 3.6411193952232024e-8 Iter 95: T = 654.8101084467426 K, F = -0.0006380359899598176, relative_change = 1.5227604785692706e-8 Iter 100: T = 654.810077990864 K, F = -0.00026683427457058206, relative_change = 6.368367678540684e-9 Iter 105: T = 654.8100652538503 K, F = -0.00011159327970583499, relative_change = 2.6633276500139502e-9 Iter 110: T = 654.8100599270789 K, F = -4.6669641995733535e-5, relative_change = 1.1138354664830768e-9 Iter 115: T = 654.8100576993594 K, F = -1.9517801174429028e-5, relative_change = 4.658192906206123e-10 Iter 120: T = 654.8100567677005 K, F = -8.162577906367652e-6, relative_change = 1.9481120038858352e-10 Iter 125: T = 654.8100563780697 K, F = -3.413687707509716e-6, relative_change = 8.147237423815779e-11 Iter 130: T = 654.8100562151214 K, F = -1.4276455934103538e-6, relative_change = 3.4072734874872764e-11 Iter 135: T = 654.8100561469745 K, F = -5.970577224845286e-7, relative_change = 1.4249607596724616e-11 Iter 140: T = 654.8100561184746 K, F = -2.496970040177793e-7, relative_change = 5.959364048189872e-12 Iter 145: T = 654.8100561065556 K, F = -1.0442611081407094e-7, relative_change = 2.4922734374789915e-12 Iter 150: T = 654.810056101571 K, F = -4.367251849046738e-8, relative_change = 1.04230500338504e-12 Iter 155: T = 654.8100560994864 K, F = -1.8264836310066812e-8, relative_change = 4.3591555812004194e-13 Converged in 159 iterations to T = 654.8100560987339 K Iter 1: T = 970.3136878133483 K, F = -6764.054470701673, relative_change = 0.029686312186651662 Iter 2: T = 942.7911015082735 K, F = -5729.044473953776, relative_change = 0.02836462749185618 Iter 3: T = 917.3876649350318 K, F = -4850.660213536093, relative_change = 0.02694492611629595 Iter 5: T = 872.7231673286417 K, F = -3473.138306966203, relative_change = 0.02385607701989215 Iter 10: T = 793.4067762343604 K, F = -1495.0095294106031, relative_change = 0.015550321266086138 Iter 15: T = 750.1604792494181 K, F = -636.421845369517, relative_change = 0.008522162555492934 Iter 20: T = 729.1570373425362 K, F = -268.64583790668866, relative_change = 0.0041023749557384985 Iter 25: T = 719.7007670588878 K, F = -112.84191287521084, relative_change = 0.0018321181631154317 Iter 30: T = 715.6115902910318 K, F = -47.28264988610779, relative_change = 0.0007886719600282151 Iter 35: T = 713.8764720763936 K, F = -19.79044508173835, relative_change = 0.00033393115847123666 Iter 40: T = 713.1463414421223 K, F = -8.279477007592275, relative_change = 0.00014038408998767564 Iter 45: T = 712.8401992189454 K, F = -3.463081483582015, relative_change = 5.883897901828452e-5 Iter 50: T = 712.7120275649944 K, F = -1.448390578402261, relative_change = 2.4629741781406794e-5 Iter 55: T = 712.658400233857 K, F = -0.6057497356377525, relative_change = 1.030440640561372e-5 Iter 60: T = 712.6359683698778 K, F = -0.25333448512978113, relative_change = 4.310117811930784e-6 Iter 65: T = 712.6265863487482 K, F = -0.10594798142527984, relative_change = 1.8026638011809171e-6 Iter 70: T = 712.6226625446715 K, F = -0.0443087940688508, relative_change = 7.539167052451614e-7 Iter 75: T = 712.6210215400693 K, F = -0.01853048134399271, relative_change = 3.1530067347958087e-7 Iter 80: T = 712.6203352483456 K, F = -0.007749671135438452, relative_change = 1.3186315491711105e-7 Iter 85: T = 712.6200482322508 K, F = -0.0032410054612107553, relative_change = 5.5146859431083094e-8 Iter 90: T = 712.61992819857 K, F = -0.0013554272674228818, relative_change = 2.3063095025651774e-8 Iter 95: T = 712.6198779990299 K, F = -0.0005668558860889572, relative_change = 9.645265272183446e-9 Iter 100: T = 712.6198570049788 K, F = -0.0002370659024436561, relative_change = 4.033765711703474e-9 Iter 105: T = 712.6198482250153 K, F = -9.914379197317746e-5, relative_change = 1.6869690998449292e-9 Iter 110: T = 712.6198445531296 K, F = -4.146311878039377e-5, relative_change = 7.055106576982795e-10 Iter 115: T = 712.6198430175032 K, F = -1.7340371833318713e-5, relative_change = 2.9505299220661907e-10 Iter 120: T = 712.6198423752859 K, F = -7.251950806863583e-6, relative_change = 1.2339468926323357e-10 Iter 125: T = 712.6198421067029 K, F = -3.0328529295742257e-6, relative_change = 5.1605141218450267e-11 Iter 130: T = 712.6198419943782 K, F = -1.2683748272790396e-6, relative_change = 2.158187806949558e-11 Iter 135: T = 712.6198419474027 K, F = -5.304487366020183e-7, relative_change = 9.025786157877744e-12 Iter 140: T = 712.619841927757 K, F = -2.2183967030020568e-7, relative_change = 3.7746860112305755e-12 Iter 145: T = 712.6198419195409 K, F = -9.27747360046638e-8, relative_change = 1.5785972713434594e-12 Iter 150: T = 712.619841916105 K, F = -3.880014731727499e-8, relative_change = 6.601992020877491e-13 Iter 155: T = 712.619841914668 K, F = -1.6227648558242436e-8, relative_change = 2.761195864131413e-13 Converged in 157 iterations to T = 712.6198419143639 K Iter 1: T = 974.4106595416733 K, F = -5830.555565176609, relative_change = 0.025589340458326715 Iter 2: T = 951.0105831548884 K, F = -4932.862827064236, relative_change = 0.024014594008845813 Iter 3: T = 929.7250699425447 K, F = -4171.5789486431695, relative_change = 0.02238199404861627 Iter 5: T = 893.1444641177658 K, F = -2979.2922348195552, relative_change = 0.01902762502823555 Iter 10: T = 831.5222000313538 K, F = -1273.976880508271, relative_change = 0.011180194822488417 Iter 15: T = 800.2389131875469 K, F = -539.4409550215884, relative_change = 0.005643370305791982 Iter 20: T = 785.7720190622209 K, F = -226.9703861060273, relative_change = 0.002585739483899606 Iter 25: T = 779.430989783294 K, F = -95.18073774052937, relative_change = 0.0011266196687990048 Iter 30: T = 776.7237334610539 K, F = -39.85262287635091, relative_change = 0.0004795716134971863 Iter 35: T = 775.5814772796468 K, F = -16.675169297266535, relative_change = 0.0002020715612876569 Iter 40: T = 775.1019863972303 K, F = -6.9752204762296515, relative_change = 8.477558784416642e-5 Iter 45: T = 774.9011431665624 K, F = -2.917377508928994, relative_change = 3.550105187964256e-5 Iter 50: T = 774.8170929824156 K, F = -1.2201271152117652, relative_change = 1.485518067106973e-5 Iter 55: T = 774.7819325351041 K, F = -0.5102796051356485, relative_change = 6.214052260691068e-6 Iter 60: T = 774.7672263263664 K, F = -0.21340640232459718, relative_change = 2.5990425116188293e-6 Iter 65: T = 774.7610757186409 K, F = -0.08924934698180498, relative_change = 1.0869946365288204e-6 Iter 70: T = 774.7585034093312 K, F = -0.037325184903579944, relative_change = 4.546018378364257e-7 Iter 75: T = 774.7574276298145 K, F = -0.015609845450322735, relative_change = 1.9012126431014748e-7 Iter 80: T = 774.7569777243914 K, F = -0.006528225074563632, relative_change = 7.951121876612006e-8 Iter 85: T = 774.7567895682938 K, F = -0.0027301819127343308, relative_change = 3.325258241950623e-8 Iter 90: T = 774.7567108791185 K, F = -0.0011417947198775202, relative_change = 1.3906634284027426e-8 Iter 95: T = 774.7566779703571 K, F = -0.0004775121944710081, relative_change = 5.815921795792975e-9 Iter 100: T = 774.7566642075186 K, F = -0.00019970130362012561, relative_change = 2.4322881720182314e-9 Iter 105: T = 774.756658451735 K, F = -8.351746958523698e-5, relative_change = 1.0172119907682829e-9 Iter 110: T = 774.7566560445975 K, F = -3.492800517901351e-5, relative_change = 4.2541023313726236e-10 Iter 115: T = 774.7566550379039 K, F = -1.4607309566261328e-5, relative_change = 1.7791164925356645e-10 Iter 120: T = 774.7566546168925 K, F = -6.108951319805378e-6, relative_change = 7.440477675907294e-11 Iter 125: T = 774.7566544408205 K, F = -2.554835986656734e-6, relative_change = 3.11169612422093e-11 Iter 130: T = 774.7566543671851 K, F = -1.0684633966473456e-6, relative_change = 1.3013490607961682e-11 Iter 135: T = 774.7566543363899 K, F = -4.4684378708303996e-7, relative_change = 5.442392735004419e-12 Iter 140: T = 774.756654323511 K, F = -1.8687559910635088e-7, relative_change = 2.2760759630243964e-12 Iter 145: T = 774.7566543181249 K, F = -7.815419578172111e-8, relative_change = 9.518893171972218e-13 Iter 150: T = 774.7566543158723 K, F = -3.2683765582852686e-8, relative_change = 3.9807622602141573e-13 Converged in 154 iterations to T = 774.7566543150592 K Iter 1: T = 970.4690823530956 K, F = -6728.647677001886, relative_change = 0.029530917646904378 Iter 2: T = 943.1048700100034 K, F = -5698.814380279714, relative_change = 0.028196892451990533 Iter 3: T = 917.8618425644312 K, F = -4824.844211901005, relative_change = 0.026765875406098264 Iter 5: T = 873.5194398819995 K, F = -3454.30568264135, relative_change = 0.023659391764516702 Iter 10: T = 794.9480795539256 K, F = -1486.4880138373817, relative_change = 0.01535435437616884 Iter 15: T = 752.2437908542887 K, F = -632.6384808732116, relative_change = 0.0083827691743855 Iter 20: T = 731.5521684283431 K, F = -267.00612980814816, relative_change = 0.004025451389405033 Iter 25: T = 722.248841985257 K, F = -112.14378764208328, relative_change = 0.0017954917532965941 Iter 30: T = 718.2284571336854 K, F = -46.98829962737454, relative_change = 0.0007724538844081875 Iter 35: T = 716.523034335179 K, F = -19.666908800760115, relative_change = 0.00032698079743287515 Iter 40: T = 715.8054911782644 K, F = -8.22773509145071, relative_change = 0.00013744722139635062 Iter 45: T = 715.5046431615867 K, F = -3.44142872481256, relative_change = 5.760541288850986e-5 Iter 50: T = 715.3786908877923 K, F = -1.4393327372000506, relative_change = 2.411291255282213e-5 Iter 55: T = 715.3259926541396 K, F = -0.6019612181361151, relative_change = 1.0088098014955053e-5 Iter 60: T = 715.3039495120197 K, F = -0.2517500083414268, relative_change = 4.219626310750613e-6 Iter 65: T = 715.294730087397 K, F = -0.10528532144626779, relative_change = 1.7648141446965932e-6 Iter 70: T = 715.2908742880868 K, F = -0.04403165950408028, relative_change = 7.380866470435206e-7 Iter 75: T = 715.2892617247584 K, F = -0.018414579964696975, relative_change = 3.0868020017034364e-7 Iter 80: T = 715.2885873276671 K, F = -0.007701199725154484, relative_change = 1.2909436698811167e-7 Iter 85: T = 715.2883052860763 K, F = -0.003220734126806457, relative_change = 5.398891455011427e-8 Iter 90: T = 715.288187332797 K, F = -0.0013469495508551255, relative_change = 2.2578827818740757e-8 Iter 95: T = 715.2881380033064 K, F = -0.0005633104013836876, relative_change = 9.442738764427495e-9 Iter 100: T = 715.2881173731207 K, F = -0.00023558313982374735, relative_change = 3.9490667075727046e-9 Iter 105: T = 715.2881087453301 K, F = -9.852368306439985e-5, relative_change = 1.651546962708502e-9 Iter 110: T = 715.2881051370848 K, F = -4.120378080274545e-5, relative_change = 6.906966787547194e-10 Iter 115: T = 715.2881036280735 K, F = -1.7231912050608145e-5, relative_change = 2.8885758320274355e-10 Iter 120: T = 715.2881029969869 K, F = -7.206591517205929e-6, relative_change = 1.2080369325355716e-10 Iter 125: T = 715.2881027330591 K, F = -3.0138820652503284e-6, relative_change = 5.0521537717691806e-11 Iter 130: T = 715.2881026226813 K, F = -1.2604417813921742e-6, relative_change = 2.1128715612518733e-11 Iter 135: T = 715.2881025765199 K, F = -5.271314378330061e-7, relative_change = 8.836275033276194e-12 Iter 140: T = 715.2881025572148 K, F = -2.2045368530676512e-7, relative_change = 3.695452890702622e-12 Iter 145: T = 715.288102549141 K, F = -9.21944799392449e-8, relative_change = 1.5454509501282629e-12 Iter 150: T = 715.2881025457646 K, F = -3.855665453578183e-8, relative_change = 6.46323059978188e-13 Iter 155: T = 715.2881025443525 K, F = -1.6125283663903645e-8, relative_change = 2.703072350609765e-13 Converged in 157 iterations to T = 715.2881025440536 K Iter 1: T = 969.3258947746513 K, F = -6989.124054202573, relative_change = 0.030674105225348795 Iter 2: T = 940.7928299205206 K, F = -5921.265541156715, relative_change = 0.029435987429969553 Iter 3: T = 914.3617041504979 K, F = -5014.87398105903, relative_change = 0.028094522969797357 Iter 5: T = 867.6193146916864 K, F = -3593.0449982615373, relative_change = 0.02513350244227849 Iter 10: T = 783.4088223216024 K, F = -1549.4629161208718, relative_change = 0.016864850917954248 Iter 15: T = 736.5080459762178 K, F = -660.7042393420954, relative_change = 0.009484765965507727 Iter 20: T = 713.3593776260965 K, F = -279.2060105617672, relative_change = 0.004643870548408426 Iter 25: T = 702.8382012355427 K, F = -117.34694454771422, relative_change = 0.0020925762685246965 Iter 30: T = 698.267164990691 K, F = -49.183931882492196, relative_change = 0.0009045496183424077 Iter 35: T = 696.323475561047 K, F = -20.588739548328522, relative_change = 0.0003836945970218453 Iter 40: T = 695.5048301031158 K, F = -8.613896288816417, relative_change = 0.00016143025006346996 Iter 45: T = 695.161440497818 K, F = -3.603038920551466, relative_change = 6.768225848248865e-5 Iter 50: T = 695.0176511050546 K, F = -1.5069398789620614, relative_change = 2.8335407265981307e-5 Iter 55: T = 694.9574851532274 K, F = -0.6302388052091721, relative_change = 1.1855439595421409e-5 Iter 60: T = 694.9323175172344 K, F = -0.2635766407621988, relative_change = 4.959002427585043e-6 Iter 65: T = 694.9217911460939 K, F = -0.11023146669677736, relative_change = 2.0740742916867876e-6 Iter 70: T = 694.9173887231294 K, F = -0.04610021511454454, relative_change = 8.67430670016572e-7 Iter 75: T = 694.9155475477372 K, F = -0.019279677878625612, relative_change = 3.627747684344579e-7 Iter 80: T = 694.9147775410347 K, F = -0.008062994572370474, relative_change = 1.5171759811879008e-7 Iter 85: T = 694.9144555141326 K, F = -0.0033720411543153306, relative_change = 6.345026141934326e-8 Iter 90: T = 694.9143208384783 K, F = -0.0014102279745118462, relative_change = 2.6535683318300425e-8 Iter 95: T = 694.9142645154835 K, F = -0.0005897741961951031, relative_change = 1.109754424219215e-8 Iter 100: T = 694.9142409605297 K, F = -0.00024665061541695454, relative_change = 4.641126343528903e-9 Iter 105: T = 694.9142311095659 K, F = -0.00010315223329826484, relative_change = 1.940974600272637e-9 Iter 110: T = 694.9142269897751 K, F = -4.3139496850974623e-5, relative_change = 8.117387994656475e-10 Iter 115: T = 694.9142252668292 K, F = -1.8041452120920454e-5, relative_change = 3.3947885179839627e-10 Iter 120: T = 694.9142245462727 K, F = -7.545150822907409e-6, relative_change = 1.4197411236545387e-10 Iter 125: T = 694.9142242449275 K, F = -3.155472575566698e-6, relative_change = 5.937527684329685e-11 Iter 130: T = 694.9142241189012 K, F = -1.319655793641239e-6, relative_change = 2.483144007007979e-11 Iter 135: T = 694.9142240661956 K, F = -5.518962964412566e-7, relative_change = 1.0384813889321233e-11 Iter 140: T = 694.9142240441535 K, F = -2.3081005207092886e-7, relative_change = 4.343061278647744e-12 Iter 145: T = 694.9142240349352 K, F = -9.6527090209797e-8, relative_change = 1.8163120024268067e-12 Iter 150: T = 694.9142240310799 K, F = -4.0368520859423995e-8, relative_change = 7.595984588343431e-13 Iter 155: T = 694.9142240294676 K, F = -1.6882717779331813e-8, relative_change = 3.176754097806755e-13 Converged in 158 iterations to T = 694.9142240289956 K Iter 1: T = 963.6105990964619 K, F = -8291.359611127718, relative_change = 0.036389400903538066 Iter 2: T = 929.1020627966376 K, F = -7035.403833950168, relative_change = 0.03581170270665513 Iter 3: T = 896.4410505373877 K, F = -5968.7681048467475, relative_change = 0.03515330938017604 Iter 5: T = 836.5432830053848 K, F = -4293.725210859622, relative_change = 0.0335653642876155 Iter 10: T = 717.192379562452 K, F = -1876.1194459799447, relative_change = 0.027798750974319872 Iter 15: T = 637.9296581851198 K, F = -812.2583517607834, relative_change = 0.01986094086508505 Iter 20: T = 591.6051194493689 K, F = -347.71446619010726, relative_change = 0.011873095115711272 Iter 25: T = 567.8182163707266 K, F = -147.3544623041787, relative_change = 0.006069476194783428 Iter 30: T = 556.737170749813 K, F = -62.02886976965538, relative_change = 0.0028009984939926674 Iter 35: T = 551.8615625659864 K, F = -26.01798708136166, relative_change = 0.0012246528309233942 Iter 40: T = 549.776248881321 K, F = -10.894976174438435, relative_change = 0.000522110079134004 Iter 45: T = 548.8957187907306 K, F = -4.558887751083298, relative_change = 0.00022014217594929565 Iter 50: T = 548.5259710518444 K, F = -1.9070178033492835, relative_change = 9.238285240276088e-5 Iter 55: T = 548.3710739434595 K, F = -0.79761418547993, relative_change = 3.869129504000792e-5 Iter 60: T = 548.3062477745179 K, F = -0.33358518547836274, relative_change = 1.619092127623612e-5 Iter 65: T = 548.2791285797084 K, F = -0.1395116545851332, relative_change = 6.772945118084739e-6 Iter 70: T = 548.2677855881751 K, F = -0.05834585049385993, relative_change = 2.83282545988649e-6 Iter 75: T = 548.2630415651687 K, F = -0.0244010032592977, relative_change = 1.1847737287351116e-6 Iter 80: T = 548.261057514628 K, F = -0.010204803527054412, relative_change = 4.954956687082157e-7 Iter 85: T = 548.2602277533953 K, F = -0.004267772901236033, relative_change = 2.0722380580653602e-7 Iter 90: T = 548.2598807360088 K, F = -0.00178483397871243, relative_change = 8.666375012938043e-8 Iter 95: T = 548.259735608961 K, F = -0.000746438952855033, relative_change = 3.6243864242527926e-8 Iter 100: T = 548.2596749150557 K, F = -0.0003121696961528586, relative_change = 1.5157625426411575e-8 Iter 105: T = 548.2596495321326 K, F = -0.0001305530973002289, relative_change = 6.339101481327353e-9 Iter 110: T = 548.2596389166898 K, F = -5.459886501757438e-5, relative_change = 2.651088217539704e-9 Iter 115: T = 548.2596344771845 K, F = -2.28338967387387e-5, relative_change = 1.1087167639614007e-9 Iter 120: T = 548.2596326205303 K, F = -9.549407858966408e-6, relative_change = 4.636785771162758e-10 Iter 125: T = 548.2596318440554 K, F = -3.9936763553960475e-6, relative_change = 1.9391591706704894e-10 Iter 130: T = 548.2596315193244 K, F = -1.6702032794024824e-6, relative_change = 8.1097959049536e-11 Iter 135: T = 548.2596313835179 K, F = -6.984983759728003e-7, relative_change = 3.391610677346884e-11 Iter 140: T = 548.2596313267221 K, F = -2.9212005311918254e-7, relative_change = 1.4184105873330936e-11 Iter 145: T = 548.2596313029694 K, F = -1.2216818440213828e-7, relative_change = 5.931966819008397e-12 Iter 150: T = 548.2596312930357 K, F = -5.109201958730658e-8, relative_change = 2.48081091175542e-12 Iter 155: T = 548.2596312888813 K, F = -2.1366766495001244e-8, relative_change = 1.0374791973345794e-12 Iter 160: T = 548.259631287144 K, F = -8.935881340432772e-9, relative_change = 4.3388834725450857e-13 Converged in 164 iterations to T = 548.2596312865169 K Iter 1: T = 966.8134047837866 K, F = -7561.597288616051, relative_change = 0.03318659521621337 Iter 2: T = 935.6807506586073 K, F = -6410.638630374588, relative_change = 0.03220130582709663 Iter 3: T = 906.571795836279 K, F = -5433.418001618871, relative_change = 0.031109921628546 Iter 5: T = 854.2954285449553 K, F = -3899.5812555339135, relative_change = 0.028608023920839706 Iter 10: T = 756.2477301079537 K, F = -1690.3974643118256, relative_change = 0.020846372044346615 Iter 15: T = 698.0297376788648 K, F = -724.5939228587881, relative_change = 0.012724018815276022 Iter 20: T = 667.7149304499471 K, F = -307.38350509929836, relative_change = 0.006607776110486785 Iter 25: T = 653.4619942418565 K, F = -129.4709955478197, relative_change = 0.0030774086687469482 Iter 30: T = 647.1598860388301 K, F = -54.32268756659237, relative_change = 0.0013515435995634874 Iter 35: T = 644.4582362162465 K, F = -22.750551460217117, relative_change = 0.0005773678132711993 Iter 40: T = 643.3162990949869 K, F = -9.520278006720948, relative_change = 0.00024365226107165796 Iter 45: T = 642.836574772472 K, F = -3.9825030352632753, relative_change = 0.0001022864648791296 Iter 50: T = 642.6355687959489 K, F = -1.6657073847586723, relative_change = 4.284569451747597e-5 Iter 55: T = 642.5514390896724 K, F = -0.6966497295308665, relative_change = 1.793055021762163e-5 Iter 60: T = 642.5162433757184 K, F = -0.2913526630641052, relative_change = 7.500865696646815e-6 Iter 65: T = 642.5015220661984 K, F = -0.1218481124699024, relative_change = 3.1373182619099663e-6 Iter 70: T = 642.4953650815781 K, F = -0.05095850184773265, relative_change = 1.3121281026253487e-6 Iter 75: T = 642.4927900946046 K, F = -0.021311483083676697, relative_change = 5.487588611616844e-7 Iter 80: T = 642.4917131933731 K, F = -0.008912721816475122, relative_change = 2.294994714739092e-7 Iter 85: T = 642.4912628185059 K, F = -0.0037274075899353942, relative_change = 9.597976290541532e-8 Iter 90: T = 642.4910744660237 K, F = -0.001558846524407853, relative_change = 4.013994312018593e-8 Iter 95: T = 642.4909956947079 K, F = -0.0006519282592386544, relative_change = 1.678701405777093e-8 Iter 100: T = 642.4909627515925 K, F = -0.00027264418812006364, relative_change = 7.020531586372384e-9 Iter 105: T = 642.4909489743866 K, F = -0.00011402305587254746, relative_change = 2.936070460818651e-9 Iter 110: T = 642.4909432125942 K, F = -4.7685803543418004e-5, relative_change = 1.2278997794848647e-9 Iter 115: T = 642.4909408029438 K, F = -1.9942772404191178e-5, relative_change = 5.135223579148119e-10 Iter 120: T = 642.4909397951992 K, F = -8.340306926479801e-6, relative_change = 2.147612189417769e-10 Iter 125: T = 642.4909393737485 K, F = -3.4880162838590856e-6, relative_change = 8.981571514730379e-11 Iter 130: T = 642.4909391974927 K, F = -1.458731174353023e-6, relative_change = 3.756203329944006e-11 Iter 135: T = 642.4909391237804 K, F = -6.100594047708796e-7, relative_change = 1.570890654292109e-11 Iter 140: T = 642.490939092953 K, F = -2.551344413515011e-7, relative_change = 6.569660371832003e-12 Iter 145: T = 642.4909390800607 K, F = -1.067008029709271e-7, relative_change = 2.7475241416817013e-12 Iter 150: T = 642.4909390746689 K, F = -4.462401009819317e-8, relative_change = 1.149059253862774e-12 Iter 155: T = 642.4909390724139 K, F = -1.8661870770930733e-8, relative_change = 4.805394059588509e-13 Converged in 160 iterations to T = 642.4909390714708 K Iter 1: T = 965.2343960908001 K, F = -7921.375921338041, relative_change = 0.034765603909199805 Iter 2: T = 932.446169964979 K, F = -6718.522238505317, relative_change = 0.03396918536949511 Iter 3: T = 901.6059095343788 K, F = -5697.094688815508, relative_change = 0.03307457462317479 Iter 5: T = 845.6560400075609 K, F = -4093.4086568602006, relative_change = 0.030972549766994678 Iter 10: T = 737.6985008594495 K, F = -1781.0092937561421, relative_change = 0.023951128215427768 Iter 15: T = 670.3196892485003 K, F = -766.7364996221738, relative_change = 0.01564532890526013 Iter 20: T = 633.5261188348017 K, F = -326.4365417159367, relative_change = 0.008590014907088968 Iter 25: T = 615.6363159234952 K, F = -137.80577413779045, relative_change = 0.004139928392592526 Iter 30: T = 607.5766126522096 K, F = -57.88624610498306, relative_change = 0.0018500273311986798 Iter 35: T = 604.0902351438637 K, F = -24.255763913582857, relative_change = 0.0007966080390704276 Iter 40: T = 602.6106830672343 K, F = -10.152483747815532, relative_change = 0.00033733333977150845 Iter 45: T = 601.9880548458401 K, F = -4.247380592385318, relative_change = 0.00014182188152589298 Iter 50: T = 601.7269812652627 K, F = -1.7765671620046612, relative_change = 5.944292727118721e-5 Iter 55: T = 601.6176771525093 K, F = -0.7430274911040604, relative_change = 2.488278530526552e-5 Iter 60: T = 601.5719438335918 K, F = -0.31075100234730796, relative_change = 1.041031375013138e-5 Iter 65: T = 601.5528139316185 K, F = -0.12996118556593733, relative_change = 4.3544237984176215e-6 Iter 70: T = 601.5448129339766 K, F = -0.054351565669925384, relative_change = 1.82119559064279e-6 Iter 75: T = 601.5414667085274 K, F = -0.022730516847834448, relative_change = 7.61667357687822e-7 Iter 80: T = 601.5400672573729 K, F = -0.00950618112323981, relative_change = 3.1854216529271263e-7 Iter 85: T = 601.5394819867398 K, F = -0.003975599786975814, relative_change = 1.3321879882646988e-7 Iter 90: T = 601.5392372189687 K, F = -0.0016626435388910066, relative_change = 5.571380825181251e-8 Iter 95: T = 601.5391348540583 K, F = -0.000695337424951592, relative_change = 2.3300200219774372e-8 Iter 100: T = 601.5390920438117 K, F = -0.0002907984221416915, relative_change = 9.744425529432267e-9 Iter 105: T = 601.5390741400521 K, F = -0.00012161537399540956, relative_change = 4.0752357400379404e-9 Iter 110: T = 601.5390666524854 K, F = -5.0861001425872576e-5, relative_change = 1.7043123435672838e-9 Iter 115: T = 601.5390635210956 K, F = -2.127067815194117e-5, relative_change = 7.127637917568736e-10 Iter 120: T = 601.539062211511 K, F = -8.895651363194368e-6, relative_change = 2.9808632410327177e-10 Iter 125: T = 601.539061663827 K, F = -3.7202680969739e-6, relative_change = 1.246632766096197e-10 Iter 130: T = 601.539061434779 K, F = -1.5558600035547876e-6, relative_change = 5.213565293812432e-11 Iter 135: T = 601.5390613389884 K, F = -6.50678998681542e-7, relative_change = 2.1803744808400774e-11 Iter 140: T = 601.5390612989277 K, F = -2.721213816503365e-7, relative_change = 9.118574867664487e-12 Iter 145: T = 601.5390612821739 K, F = -1.1380527159543519e-7, relative_change = 3.813525725989886e-12 Iter 150: T = 601.5390612751671 K, F = -4.759464200532193e-8, relative_change = 1.5948592641812176e-12 Iter 155: T = 601.539061272237 K, F = -1.9905109838180834e-8, relative_change = 6.670046772734184e-13 Iter 160: T = 601.5390612710114 K, F = -8.324732736486595e-9, relative_change = 2.789552892439114e-13 Converged in 162 iterations to T = 601.5390612707521 K Iter 1: T = 979.9886672935752 K, F = -4559.60119285058, relative_change = 0.020011332706424852 Iter 2: T = 962.0276358958331 K, F = -3851.6697809367024, relative_change = 0.01832779500128805 Iter 3: T = 945.9971011098976 K, F = -3252.1364116231784, relative_change = 0.016663278878686252 Iter 5: T = 919.2077361539008 K, F = -2315.317145587497, relative_change = 0.01348074329617963 Iter 10: T = 876.6138217652759 K, F = -983.0981013142198, relative_change = 0.007100830803122762 Iter 15: T = 856.418451879898 K, F = -414.3141903100251, relative_change = 0.0033350455998596247 Iter 20: T = 847.4479535473063 K, F = -173.88382476356475, relative_change = 0.0014708441306034092 Iter 25: T = 843.5940623882436 K, F = -72.83239383228499, relative_change = 0.0006295236012568 Iter 30: T = 841.9635350367795 K, F = -30.479370551220935, relative_change = 0.0002658801063778527 Iter 35: T = 841.2782746478931 K, F = -12.750362820304616, relative_change = 0.00011165664664403796 Iter 40: T = 840.991098702059 K, F = -5.3329728718316325, relative_change = 4.677751391154145e-5 Iter 45: T = 840.8708943902731 K, F = -2.230421343403535, relative_change = 1.957718324537746e-5 Iter 50: T = 840.820605310859 K, F = -0.9328078133044828, relative_change = 8.18991004624423e-6 Iter 55: T = 840.7995706318871 K, F = -0.3901146863750258, relative_change = 3.4255553250412292e-6 Iter 60: T = 840.790773120657 K, F = -0.16315120128878924, relative_change = 1.432684616335584e-6 Iter 65: T = 840.7870937989171 K, F = -0.06823188233584077, relative_change = 5.991791919811459e-7 Iter 70: T = 840.7855550455755 K, F = -0.02853540580556868, relative_change = 2.505862332378813e-7 Iter 75: T = 840.7849115175695 K, F = -0.01193385059469354, relative_change = 1.0479856452400399e-7 Iter 80: T = 840.7846423859504 K, F = -0.004990879379508817, relative_change = 4.382808278695424e-8 Iter 85: T = 840.784529831802 K, F = -0.0020872454520244332, relative_change = 1.832944012865817e-8 Iter 90: T = 840.784482760297 K, F = -0.0008729109900662557, relative_change = 7.665592937112573e-9 Iter 95: T = 840.7844630744288 K, F = -0.00036506180159001644, relative_change = 3.2058428770978167e-9 Iter 100: T = 840.7844548415632 K, F = -0.0001526732072758552, relative_change = 1.3407218579326328e-9 Iter 105: T = 840.7844513984803 K, F = -6.384975838669149e-5, relative_change = 5.607059017709404e-10 Iter 110: T = 840.784449958542 K, F = -2.6702732722760913e-5, relative_change = 2.3449391714963143e-10 Iter 115: T = 840.7844493563425 K, F = -1.116740333695354e-5, relative_change = 9.806817111157541e-11 Iter 120: T = 840.7844491044955 K, F = -4.670342282464546e-6, relative_change = 4.101328777514331e-11 Iter 125: T = 840.7844489991701 K, F = -1.9531907167191775e-6, relative_change = 1.7152227427333085e-11 Iter 130: T = 840.7844489551218 K, F = -8.168498828453608e-7, relative_change = 7.173285664383643e-12 Iter 135: T = 840.7844489367002 K, F = -3.4161468587257104e-7, relative_change = 2.999938887953762e-12 Iter 140: T = 840.784448928996 K, F = -1.4286574967492527e-7, relative_change = 1.2545962921074366e-12 Iter 145: T = 840.7844489257741 K, F = -5.974726713375844e-8, relative_change = 5.246792879433559e-13 Converged in 150 iterations to T = 840.7844489244266 K Iter 1: T = 976.5481044193307 K, F = -5343.536716567382, relative_change = 0.023451895580669284 Iter 2: T = 955.2555943958738 K, F = -4518.175098399449, relative_change = 0.021803851676224083 Iter 3: T = 936.029901304375 K, F = -3818.565249015997, relative_change = 0.02012622925663949 Iter 5: T = 903.354445528692 K, F = -2723.765224406294, relative_change = 0.016775689188687656 Iter 10: T = 849.6049439580765 K, F = -1161.305032265652, relative_change = 0.009418002261038094 Iter 15: T = 823.1053773893609 K, F = -490.7163177962372, relative_change = 0.004605747308016667 Iter 20: T = 811.0691609277529 K, F = -206.2336302074389, relative_change = 0.0020740920371452357 Iter 25: T = 805.8416267095516 K, F = -86.43755040030346, relative_change = 0.0008962951765815714 Iter 30: T = 803.6191154134418 K, F = -36.18305419327709, relative_change = 0.0003801439099878019 Iter 35: T = 802.6830962540281 K, F = -15.13817426652302, relative_change = 0.00015992752369930132 Iter 40: T = 802.2904838264596 K, F = -6.332017979458351, relative_change = 6.705064833265788e-5 Iter 45: T = 802.1260850036459 K, F = -2.648310046616167, relative_change = 2.807070601369138e-5 Iter 50: T = 802.0572957606454 K, F = -1.107587187763922, relative_change = 1.17446411906893e-5 Iter 55: T = 802.028521029337 K, F = -0.46321184040449437, relative_change = 4.912648198216887e-6 Iter 60: T = 802.0164859997905 K, F = -0.19372171207642574, relative_change = 2.0546854225295356e-6 Iter 65: T = 802.0114526154609 K, F = -0.08101690640372461, relative_change = 8.593214926484575e-7 Iter 70: T = 802.0093475605722 K, F = -0.033882268038243124, relative_change = 3.593833225404334e-7 Iter 75: T = 802.0084671956274 K, F = -0.014169974418497544, relative_change = 1.5029923901422391e-7 Iter 80: T = 802.0080990154705 K, F = -0.005926053450157731, relative_change = 6.285708388956155e-8 Iter 85: T = 802.0079450379529 K, F = -0.0024783464846342973, relative_change = 2.62876088790757e-8 Iter 90: T = 802.007880642685 K, F = -0.0010364741266157829, relative_change = 1.0993796484397733e-8 Iter 95: T = 802.0078537118094 K, F = -0.0004334658618279086, relative_change = 4.597737760542695e-9 Iter 100: T = 802.0078424489947 K, F = -0.00018128060080058184, relative_change = 1.92282897612628e-9 Iter 105: T = 802.0078377387508 K, F = -7.581371134190995e-5, relative_change = 8.041500546031527e-10 Iter 110: T = 802.0078357688706 K, F = -3.1706199466130514e-5, relative_change = 3.363051600934213e-10 Iter 115: T = 802.0078349450432 K, F = -1.3259911856300377e-5, relative_change = 1.4064684120313067e-10 Iter 120: T = 802.0078346005088 K, F = -5.545455410871369e-6, relative_change = 5.88202091099557e-11 Iter 125: T = 802.0078344564204 K, F = -2.3191780460507516e-6, relative_change = 2.4599339033758156e-11 Iter 130: T = 802.0078343961608 K, F = -9.699073570956784e-7, relative_change = 1.0287731016468151e-11 Iter 135: T = 802.0078343709595 K, F = -4.056262012941403e-7, relative_change = 4.3024451997826795e-12 Iter 140: T = 802.00783436042 K, F = -1.696385203420192e-7, relative_change = 1.7993424371029835e-12 Iter 145: T = 802.0078343560123 K, F = -7.094467924240178e-8, relative_change = 7.525046303957494e-13 Iter 150: T = 802.007834354169 K, F = -2.9669350976035958e-8, relative_change = 3.147004712540047e-13 Converged in 153 iterations to T = 802.0078343536293 K Iter 1: T = 980.6227356040683 K, F = -4415.128125150038, relative_change = 0.01937726439593168 Iter 2: T = 963.2675629504814 K, F = -3728.973571034909, relative_change = 0.01769811368170659 Iter 3: T = 947.8102330216389 K, F = -3147.9885199763185, relative_change = 0.01604676677941573 Iter 5: T = 922.0556022165749 K, F = -2240.4140406584042, relative_change = 0.01291386676816113 Iter 10: T = 881.3420735544306 K, F = -950.6367910064257, relative_change = 0.006730253786828721 Iter 15: T = 862.1597823003519 K, F = -400.46675889771666, relative_change = 0.003141022106744648 Iter 20: T = 853.6684920869965 K, F = -168.03705786211717, relative_change = 0.0013809109839952054 Iter 25: T = 850.0264161549946 K, F = -70.37675697800566, relative_change = 0.0005901889450627127 Iter 30: T = 848.4866151959869 K, F = -29.45050833831858, relative_change = 0.0002491131265888102 Iter 35: T = 847.8396841576252 K, F = -12.3197461570045, relative_change = 0.00010458791637886359 Iter 40: T = 847.568606488647 K, F = -5.152825060601859, relative_change = 4.3811302712202775e-5 Iter 45: T = 847.4551467123937 K, F = -2.1550710724676208, relative_change = 1.8334925623983095e-5 Iter 50: T = 847.407680389623 K, F = -0.9012936260282226, relative_change = 7.67007605149828e-6 Iter 55: T = 847.3878265908207 K, F = -0.37693476122872427, relative_change = 3.208100806889672e-6 Iter 60: T = 847.379523002455 K, F = -0.15763914396935852, relative_change = 1.3417331392849728e-6 Iter 65: T = 847.3760502564694 K, F = -0.06592666448224138, relative_change = 5.611405537643176e-7 Iter 70: T = 847.374597897554 K, F = -0.027571334481228726, relative_change = 2.3467773285853082e-7 Iter 75: T = 847.3739905010749 K, F = -0.011530664158801995, relative_change = 9.814538938104889e-8 Iter 80: T = 847.3737364801525 K, F = -0.004822261945841566, relative_change = 4.104563669351809e-8 Iter 85: T = 847.3736302454886 K, F = -0.002016727623100012, relative_change = 1.7165786444026798e-8 Iter 90: T = 847.3735858168693 K, F = -0.0008434195928062049, relative_change = 7.17893882211134e-9 Iter 95: T = 847.3735672362876 K, F = -0.00035272814973064115, relative_change = 3.0023182929589728e-9 Iter 100: T = 847.3735594656662 K, F = -0.00014751512643895737, relative_change = 1.255605435153239e-9 Iter 105: T = 847.3735562158993 K, F = -6.169258871335792e-5, relative_change = 5.251092073169625e-10 Iter 110: T = 847.373554856808 K, F = -2.5800578815182718e-5, relative_change = 2.19606955648588e-10 Iter 115: T = 847.3735542884198 K, F = -1.0790110327230096e-5, relative_change = 9.184225302142263e-11 Iter 120: T = 847.373554050713 K, F = -4.512552559399197e-6, relative_change = 3.840952334291387e-11 Iter 125: T = 847.3735539513012 K, F = -1.8872038187733864e-6, relative_change = 1.606332518377435e-11 Iter 130: T = 847.373553909726 K, F = -7.892504876316764e-7, relative_change = 6.7178685794955565e-12 Iter 135: T = 847.3735538923387 K, F = -3.300742226208797e-7, relative_change = 2.8094949373001406e-12 Iter 140: T = 847.373553885067 K, F = -1.380395955319358e-7, relative_change = 1.1749525356156842e-12 Iter 145: T = 847.373553882026 K, F = -5.772994460251368e-8, relative_change = 4.913803501919335e-13 Converged in 150 iterations to T = 847.3735538807543 K Iter 1: T = 967.3531062220262 K, F = -7438.62580252456, relative_change = 0.0326468937779738 Iter 2: T = 936.7824440872246 K, F = -6305.463139907954, relative_change = 0.031602381734416145 Iter 3: T = 908.2565781747312 K, F = -5343.407037508103, relative_change = 0.03045089720942439 Iter 5: T = 857.2002675133882 K, F = -3833.5434561866286, relative_change = 0.027832964686518864 Iter 10: T = 762.310182836702 K, F = -1659.8066679615426, relative_change = 0.01990235153254525 Iter 15: T = 706.8144833140849 K, F = -710.5763699563016, relative_change = 0.011908367203980955 Iter 20: T = 678.301490361472 K, F = -301.14105651026773, relative_change = 0.006091512960075605 Iter 25: T = 665.0137117692576 K, F = -126.768501628372, relative_change = 0.0028122271867806648 Iter 30: T = 659.1659682337308 K, F = -53.17365041935965, relative_change = 0.0012297876166854178 Iter 35: T = 656.6646329622769 K, F = -22.2664736534203, relative_change = 0.000524342220530509 Iter 40: T = 655.6083927205711 K, F = -9.317192789890507, relative_change = 0.00022109114499000812 Iter 45: T = 655.1648538177789 K, F = -3.8974572867997117, relative_change = 9.278247595050016e-5 Iter 50: T = 654.9790422520492 K, F = -1.6301203482269153, relative_change = 3.8858907615248745e-5 Iter 55: T = 654.9012777939822 K, F = -0.6817633191649992, relative_change = 1.6261103995555422e-5 Iter 60: T = 654.8687459894735 K, F = -0.2851263780484635, relative_change = 6.802311280165028e-6 Iter 65: T = 654.8551390889609 K, F = -0.1192440989118893, relative_change = 2.845109348923497e-6 Iter 70: T = 654.8494482212811 K, F = -0.04986945359556266, relative_change = 1.1899114542936827e-6 Iter 75: T = 654.847068180087 K, F = -0.020856026831723273, relative_change = 4.976444067470716e-7 Iter 80: T = 654.8460728092765 K, F = -0.008722244000165358, relative_change = 2.081224476719741e-7 Iter 85: T = 654.8456565317144 K, F = -0.0036477473935666027, relative_change = 8.703957533215919e-8 Iter 90: T = 654.8454824391864 K, F = -0.0015255316602624802, relative_change = 3.640103921823044e-8 Iter 95: T = 654.8454096315633 K, F = -0.0006379955839423412, relative_change = 1.5223357974439654e-8 Iter 100: T = 654.845379182537 K, F = -0.00026681737713785125, relative_change = 6.3665916307453775e-9 Iter 105: T = 654.8453664483892 K, F = -0.00011158621422319159, relative_change = 2.662584914723447e-9 Iter 110: T = 654.8453611228161 K, F = -4.6666687097129955e-5, relative_change = 1.1135248449907505e-9 Iter 115: T = 654.8453588955979 K, F = -1.9516566506228017e-5, relative_change = 4.6568941138407e-10 Iter 120: T = 654.8453579641487 K, F = -8.162061070293714e-6, relative_change = 1.9475687181111156e-10 Iter 125: T = 654.8453575746054 K, F = -3.4134717151190763e-6, relative_change = 8.144965706697326e-11 Iter 130: T = 654.8453574116937 K, F = -1.4275541655450752e-6, relative_change = 3.406320809716723e-11 Iter 135: T = 654.8453573435621 K, F = -5.970199260518783e-7, relative_change = 1.4245633882178624e-11 Iter 140: T = 654.8453573150687 K, F = -2.4968054346263813e-7, relative_change = 5.957686595036522e-12 Iter 145: T = 654.8453573031524 K, F = -1.0441892861479118e-7, relative_change = 2.4915647919654706e-12 Iter 150: T = 654.845357298169 K, F = -4.367053496601159e-8, relative_change = 1.0420329801788533e-12 Iter 155: T = 654.8453572960848 K, F = -1.826334666832352e-8, relative_change = 4.3578604136479526e-13 Converged in 159 iterations to T = 654.8453572953324 K Iter 1: T = 973.6419065906981 K, F = -6005.716656329135, relative_change = 0.02635809340930185 Iter 2: T = 949.4766299767746 K, F = -5082.125416901043, relative_change = 0.024819470536699313 Iter 3: T = 927.4357288758898 K, F = -4298.755903314672, relative_change = 0.02321373734224921 Iter 5: T = 889.4003913170739 K, F = -3071.542377334017, relative_change = 0.01987993309710276 Iter 10: T = 824.7396498552149 K, F = -1314.9134991513356, relative_change = 0.011889528526402564 Iter 15: T = 791.5277824090485 K, F = -557.2458809345626, relative_change = 0.006079815109955611 Iter 20: T = 776.0532417209712 K, F = -234.57554428512813, relative_change = 0.002806282086655936 Iter 25: T = 769.2438424642988 K, F = -98.3932138047827, relative_change = 0.0012270719212908302 Iter 30: T = 766.3313056030706 K, F = -41.20205697148657, relative_change = 0.0005231622156395422 Iter 35: T = 765.1014530951092 K, F = -17.240585598759015, relative_change = 0.00022058957443682814 Iter 40: T = 764.585015191276 K, F = -7.211873054286106, relative_change = 9.257127457736869e-5 Iter 45: T = 764.3686649036814 K, F = -3.0163816104983154, relative_change = 3.877032715839935e-5 Iter 50: T = 764.2781197546724 K, F = -1.2615376254807462, relative_change = 1.622401410872058e-5 Iter 55: T = 764.240241330739 K, F = -0.5275989925620016, relative_change = 6.786792056250504e-6 Iter 60: T = 764.2243981333189 K, F = -0.22064975500445316, relative_change = 2.83861766084167e-6 Iter 65: T = 764.2177719711402 K, F = -0.09227863471591069, relative_change = 1.1871963143245655e-6 Iter 70: T = 764.2150007701465 K, F = -0.03859207465717196, relative_change = 4.965088610579094e-7 Iter 75: T = 764.2138418101549 K, F = -0.016139674826211037, relative_change = 2.0764754159887875e-7 Iter 80: T = 764.2133571173845 K, F = -0.006749806215035514, relative_change = 8.684096267864612e-8 Iter 85: T = 764.213154412754 K, F = -0.0028228498235000066, relative_change = 3.6317976834387176e-8 Iter 90: T = 764.2130696391998 K, F = -0.0011805495521788334, relative_change = 1.5188620229023467e-8 Iter 95: T = 764.2130341858771 K, F = -0.0004937199272888604, relative_change = 6.352063848253344e-9 Iter 100: T = 764.2130193588723 K, F = -0.00020647957096886493, relative_change = 2.6565092207504408e-9 Iter 105: T = 764.2130131580416 K, F = -8.635222092845396e-5, relative_change = 1.1109839046760986e-9 Iter 110: T = 764.2130105647802 K, F = -3.611353230625891e-5, relative_change = 4.646267733486872e-10 Iter 115: T = 764.2130094802473 K, F = -1.5103111933201241e-5, relative_change = 1.9431248521890537e-10 Iter 120: T = 764.2130090266826 K, F = -6.316300891762161e-6, relative_change = 8.126379070520203e-11 Iter 125: T = 764.2130088369964 K, F = -2.6415541628521666e-6, relative_change = 3.3985509645388476e-11 Iter 130: T = 764.2130087576675 K, F = -1.104730548373567e-6, relative_change = 1.4213159530797918e-11 Iter 135: T = 764.213008724491 K, F = -4.620106924813072e-7, relative_change = 5.944102558036635e-12 Iter 140: T = 764.2130087106164 K, F = -1.9321899513702334e-7, relative_change = 2.485902473785274e-12 Iter 145: T = 764.2130087048138 K, F = -8.080600122362114e-8, relative_change = 1.0396277974808029e-12 Iter 150: T = 764.213008702387 K, F = -3.379503521472316e-8, relative_change = 4.3479763253437145e-13 Converged in 154 iterations to T = 764.2130087015112 K Iter 1: T = 969.9261144473497 K, F = -6852.363430821905, relative_change = 0.030073885552650267 Iter 2: T = 942.0078264483394 K, F = -5804.452929955493, relative_change = 0.028783932696685617 Iter 3: T = 916.2028203269522 K, F = -4915.068976434476, relative_change = 0.02739362179046868 Iter 5: T = 870.7293496569017 K, F = -3520.1451778769892, relative_change = 0.02435164457377043 Iter 10: T = 789.5258340071092 K, F = -1516.3155797253348, relative_change = 0.016051568442044244 Iter 15: T = 744.890007654352 K, F = -645.9003591923414, relative_change = 0.00888348681971269 Iter 20: T = 723.0797829234373 K, F = -272.76022865409084, relative_change = 0.0043035077488430325 Iter 25: T = 713.2256459753604 K, F = -114.59522660511462, relative_change = 0.0019283226147048436 Iter 30: T = 708.9570324338014 K, F = -48.022217692511916, relative_change = 0.0008313612364651272 Iter 35: T = 707.1443623470154 K, F = -20.100895012538167, relative_change = 0.000352242879673131 Iter 40: T = 706.3813412117755 K, F = -8.40951654662269, relative_change = 0.00014812474877836241 Iter 45: T = 706.0613623749688 K, F = -3.517501832869232, relative_change = 6.209081185924114e-5 Iter 50: T = 705.9273897390196 K, F = -1.4711561818392829, relative_change = 2.599226280940046e-5 Iter 55: T = 705.8713338511958 K, F = -0.6152716974157376, relative_change = 1.0874678647797097e-5 Iter 60: T = 705.8478858950552 K, F = -0.2573168783107677, relative_change = 4.548691191365629e-6 Iter 65: T = 705.8380788549191 K, F = -0.10761349993502928, relative_change = 1.9024518103472878e-6 Iter 70: T = 705.8339772893252 K, F = -0.0450053397703315, relative_change = 7.95651651654976e-7 Iter 75: T = 705.8322619403731 K, F = -0.0188217861181742, relative_change = 3.32755147878903e-7 Iter 80: T = 705.8315445565418 K, F = -0.007871498452575953, relative_change = 1.3916289825025804e-7 Iter 85: T = 705.8312445372842 K, F = -0.0032919551342941444, relative_change = 5.819971219918746e-8 Iter 90: T = 705.8311190655126 K, F = -0.0013767350338893536, relative_change = 2.433983675147486e-8 Iter 95: T = 705.8310665916956 K, F = -0.0005757670471014942, relative_change = 1.017921426327519e-8 Iter 100: T = 705.8310446465147 K, F = -0.00024079265726095755, relative_change = 4.257069636849636e-9 Iter 105: T = 705.8310354687771 K, F = -0.00010070236536963151, relative_change = 1.7803574801245366e-9 Iter 110: T = 705.8310316305376 K, F = -4.211493191008664e-5, relative_change = 7.445667807017631e-10 Iter 115: T = 705.8310300253399 K, F = -1.76129673455927e-5, relative_change = 3.113867206316779e-10 Iter 120: T = 705.8310293540271 K, F = -7.365953155979987e-6, relative_change = 1.3022564358114535e-10 Iter 125: T = 705.831029073276 K, F = -3.0805287482005284e-6, relative_change = 5.4461904803001515e-11 Iter 130: T = 705.8310289558626 K, F = -1.2883139675068378e-6, relative_change = 2.2776620004371176e-11 Iter 135: T = 705.831028906759 K, F = -5.387886843344347e-7, relative_change = 9.525461525154264e-12 Iter 140: T = 705.8310288862232 K, F = -2.2532809973441204e-7, relative_change = 3.9836659663797e-12 Iter 145: T = 705.8310288776348 K, F = -9.423456259760599e-8, relative_change = 1.6660106766132595e-12 Iter 150: T = 705.8310288740431 K, F = -3.9410124719196915e-8, relative_change = 6.967474219708531e-13 Iter 155: T = 705.831028872541 K, F = -1.648071623616687e-8, relative_change = 2.913692009785853e-13 Converged in 157 iterations to T = 705.8310288722232 K Iter 1: T = 973.5771922731951 K, F = -6020.461875131419, relative_change = 0.02642280772680492 Iter 2: T = 949.3473256830539 K, F = -5094.693273535244, relative_change = 0.024887463246306304 Iter 3: T = 927.2424777841561 K, F = -4309.466919896961, relative_change = 0.023284257827337708 Iter 5: T = 889.0834229061135 K, F = -3079.3166296479717, relative_change = 0.019952753561523182 Iter 10: T = 824.1614970902007 K, F = -1318.3701504434719, relative_change = 0.011951277113863103 Iter 15: T = 790.7815915388915 K, F = -558.7521151634201, relative_change = 0.006118339668123141 Iter 20: T = 775.2184663455755 K, F = -235.2196973733511, relative_change = 0.002825904397381375 Iter 25: T = 768.3676952683335 K, F = -98.6654807608486, relative_change = 0.001236044037696094 Iter 30: T = 765.4369851569636 K, F = -41.31645881448462, relative_change = 0.0005270623425681548 Iter 35: T = 764.1993702258452 K, F = -17.288526339435535, relative_change = 0.00022224764680403927 Iter 40: T = 763.6796568550733 K, F = -7.231939529665959, relative_change = 9.32695075081085e-5 Iter 45: T = 763.4619315755477 K, F = -3.0247766534162777, relative_change = 3.9063183728690135e-5 Iter 50: T = 763.3708104830216 K, F = -1.2650490590707864, relative_change = 1.6346638877174877e-5 Iter 55: T = 763.332691033948 K, F = -0.5290676081705807, relative_change = 6.838101233249293e-6 Iter 60: T = 763.3167470091589 K, F = -0.2212639637130921, relative_change = 2.8600803274090003e-6 Iter 65: T = 763.3100786749104 K, F = -0.09253550695296742, relative_change = 1.196173054830018e-6 Iter 70: T = 763.3072898362033 K, F = -0.03869950218683704, relative_change = 5.002631805462906e-7 Iter 75: T = 763.3061234997608 K, F = -0.016184602389924585, relative_change = 2.0921766724994677e-7 Iter 80: T = 763.3056357220445 K, F = -0.006768595473502059, relative_change = 8.749761223802648e-8 Iter 85: T = 763.3054317272481 K, F = -0.0028307077171723094, relative_change = 3.6592596251995735e-8 Iter 90: T = 763.3053464141303 K, F = -0.0011838358163139828, relative_change = 1.5303469462708746e-8 Iter 95: T = 763.3053107351557 K, F = -0.0004950942842518735, relative_change = 6.400095217596012e-9 Iter 100: T = 763.3052958137806 K, F = -0.00020705434344880924, relative_change = 2.6765965166212462e-9 Iter 105: T = 763.3052895734829 K, F = -8.659259999777014e-5, relative_change = 1.1193846826893516e-9 Iter 110: T = 763.3052869637158 K, F = -3.621405755771523e-5, relative_change = 4.68140025695953e-10 Iter 115: T = 763.3052858722803 K, F = -1.5145152729933997e-5, relative_change = 1.9578176858888666e-10 Iter 120: T = 763.3052854158287 K, F = -6.333883376452576e-6, relative_change = 8.187826924698813e-11 Iter 125: T = 763.3052852249352 K, F = -2.648905878643859e-6, relative_change = 3.424247276261928e-11 Iter 130: T = 763.3052851451014 K, F = -1.1078043649082048e-6, relative_change = 1.4320614830599734e-11 Iter 135: T = 763.3052851117139 K, F = -4.632975199037048e-7, relative_change = 5.989058669618593e-12 Iter 140: T = 763.3052850977509 K, F = -1.9375862880810502e-7, relative_change = 2.504722658603597e-12 Iter 145: T = 763.3052850919113 K, F = -8.103170134887705e-8, relative_change = 1.047498837546661e-12 Iter 150: T = 763.3052850894692 K, F = -3.388828040407077e-8, relative_change = 4.380746515172622e-13 Converged in 154 iterations to T = 763.3052850885878 K Iter 1: T = 964.2953886014317 K, F = -8135.329671017374, relative_change = 0.03570461139856831 Iter 2: T = 930.514553077295 K, F = -6901.735470574834, relative_change = 0.03503162612146346 Iter 3: T = 898.6264554780471 K, F = -5854.13342454675, relative_change = 0.03426931636242662 Iter 5: T = 840.4153866900377 K, F = -4209.122591436725, relative_change = 0.03245106294074271 Iter 10: T = 726.0328538427241 K, F = -1835.7526861144606, relative_change = 0.026083264428643234 Iter 15: T = 652.14966184858 K, F = -792.7474893627349, relative_change = 0.0178910869290043 Iter 20: T = 610.3150360387009 K, F = -338.4818991011916, relative_change = 0.010270996110081839 Iter 25: T = 589.3949358033502 K, F = -143.16979351447597, relative_change = 0.005099857186519461 Iter 30: T = 579.8110513156024 K, F = -60.20266621136651, relative_change = 0.002315527667339318 Iter 35: T = 575.630564092351 K, F = -25.238887396423358, relative_change = 0.0010045074908134632 Iter 40: T = 573.8497022209272 K, F = -10.56628365727039, relative_change = 0.00042676715657823295 Iter 45: T = 573.0990429665685 K, F = -4.420909757652728, relative_change = 0.00017967311159692187 Iter 50: T = 572.7840649974501 K, F = -1.8492226525526532, relative_change = 7.535232799760218e-5 Iter 55: T = 572.6521538859229 K, F = -0.7734275502433984, relative_change = 3.1550279993363436e-5 Iter 60: T = 572.5969548981259 K, F = -0.32346723932294263, relative_change = 1.32011927964733e-5 Iter 65: T = 572.5738643870327 K, F = -0.1352797173952215, relative_change = 5.522032220485038e-6 Iter 70: T = 572.5642066735052 K, F = -0.056575917866159564, relative_change = 2.3095785230919247e-6 Iter 75: T = 572.5601675298818 K, F = -0.023660781260702757, relative_change = 9.659280778923075e-7 Iter 80: T = 572.5584782816105 K, F = -0.009895231216751732, relative_change = 4.039687371411908e-7 Iter 85: T = 572.5577718125327 K, F = -0.004138305603728909, relative_change = 1.6894561355051864e-7 Iter 90: T = 572.5574763578044 K, F = -0.0017306891282436454, relative_change = 7.065525917359746e-8 Iter 95: T = 572.5573527949472 K, F = -0.0007237949152477108, relative_change = 2.95489057128469e-8 Iter 100: T = 572.5573011194564 K, F = -0.00030269968649110357, relative_change = 1.2357710934877883e-8 Iter 105: T = 572.5572795081441 K, F = -0.0001265926259047534, relative_change = 5.168143306246062e-9 Iter 110: T = 572.5572704700345 K, F = -5.2942549344792145e-5, relative_change = 2.161379469138849e-9 Iter 115: T = 572.5572666901887 K, F = -2.2141205895609417e-5, relative_change = 9.039147139889684e-10 Iter 120: T = 572.5572651094121 K, F = -9.259715953335856e-6, relative_change = 3.780279017800417e-10 Iter 125: T = 572.5572644483125 K, F = -3.87252418893036e-6, relative_change = 1.580958000395035e-10 Iter 130: T = 572.5572641718327 K, F = -1.6195358004122973e-6, relative_change = 6.611754921488411e-11 Iter 135: T = 572.5572640562056 K, F = -6.773084731404033e-7, relative_change = 2.765111851073258e-11 Iter 140: T = 572.5572640078489 K, F = -2.8325858691946593e-7, relative_change = 1.1564031855273308e-11 Iter 145: T = 572.5572639876256 K, F = -1.1846141367843899e-7, relative_change = 4.8361872327563965e-12 Iter 150: T = 572.557263979168 K, F = -4.954280341529227e-8, relative_change = 2.0225849576574424e-12 Iter 155: T = 572.5572639756309 K, F = -2.0719488069698144e-8, relative_change = 8.45873103911426e-13 Iter 160: T = 572.5572639741516 K, F = -8.665323625312027e-9, relative_change = 3.5376183845726814e-13 Converged in 163 iterations to T = 572.5572639737185 K Iter 1: T = 963.5620009314322 K, F = -8302.432749258543, relative_change = 0.036437999068567845 Iter 2: T = 929.0016982375969 K, F = -7044.891825250655, relative_change = 0.03586723289256678 Iter 3: T = 896.2855500816861 K, F = -5976.907074357176, relative_change = 0.03521645678148537 Iter 5: T = 836.2668446352211 K, F = -4299.7363035802955, relative_change = 0.033645636037068244 Iter 10: T = 716.5536548179542 K, F = -1878.9991887069893, relative_change = 0.027926165364324018 Iter 15: T = 636.8857490633233 K, F = -813.6623709516688, relative_change = 0.02001354180265761 Iter 20: T = 590.2101828769464 K, F = -348.3866856864112, relative_change = 0.012002595493197312 Iter 25: T = 566.1919380886626 K, F = -147.66225074754234, relative_change = 0.006150318899041465 Iter 30: T = 554.9875863033252 K, F = -62.16403236511502, relative_change = 0.002842189651943758 Iter 35: T = 550.0541105106328 K, F = -26.075832418395088, relative_change = 0.0012434903061059762 Iter 40: T = 547.9433246573403 K, F = -10.91941535976108, relative_change = 0.0005302992467476722 Iter 45: T = 547.0519049550174 K, F = -4.569153157143625, relative_change = 0.00022362377562655387 Iter 50: T = 546.6775604886291 K, F = -1.9113188295910415, relative_change = 9.384901370614085e-5 Iter 55: T = 546.5207334441154 K, F = -0.7994143172107675, relative_change = 3.93062438301087e-5 Iter 60: T = 546.4550988295213 K, F = -0.33433826594507043, relative_change = 1.6448412985643678e-5 Iter 65: T = 546.427641301169 K, F = -0.13982664452581983, relative_change = 6.880686005162885e-6 Iter 70: T = 546.416156773911 K, F = -0.058477590519072004, relative_change = 2.877893571837935e-6 Iter 75: T = 546.4113535518712 K, F = -0.02445609981797367, relative_change = 1.203623428424342e-6 Iter 80: T = 546.4093447423454 K, F = -0.010227845794245682, relative_change = 5.033791315652405e-7 Iter 85: T = 546.4085046263921 K, F = -0.004277409492827899, relative_change = 2.1052081544403185e-7 Iter 90: T = 546.4081532784998 K, F = -0.001788864123809436, relative_change = 8.804260792850048e-8 Iter 95: T = 546.408006340376 K, F = -0.000748124408769063, relative_change = 3.682052060514839e-8 Iter 100: T = 546.407944889056 K, F = -0.0003128745741563521, relative_change = 1.5398790278374497e-8 Iter 105: T = 546.4079191893728 K, F = -0.0001308478853663253, relative_change = 6.439959532465431e-9 Iter 110: T = 546.407908441457 K, F = -5.472214821039545e-5, relative_change = 2.693268232954584e-9 Iter 115: T = 546.40790394655 K, F = -2.2885455763732576e-5, relative_change = 1.1263569767421574e-9 Iter 120: T = 546.4079020667263 K, F = -9.570970717409644e-6, relative_change = 4.710559374309437e-10 Iter 125: T = 546.4079012805615 K, F = -4.002694099669579e-6, relative_change = 1.970012123070028e-10 Iter 130: T = 546.4079009517781 K, F = -1.6739744685412283e-6, relative_change = 8.238825960882694e-11 Iter 135: T = 546.4079008142769 K, F = -7.000761400033362e-7, relative_change = 3.445575540223416e-11 Iter 140: T = 546.4079007567722 K, F = -2.9277942728556106e-7, relative_change = 1.4409770254938086e-11 Iter 145: T = 546.4079007327231 K, F = -1.224436905755688e-7, relative_change = 6.02633001604139e-12 Iter 150: T = 546.4079007226655 K, F = -5.12078932313198e-8, relative_change = 2.5203067844049603e-12 Iter 155: T = 546.4079007184592 K, F = -2.141557395307636e-8, relative_change = 1.0540136084886055e-12 Iter 160: T = 546.4079007167 K, F = -8.955880759220491e-9, relative_change = 4.4078296556737106e-13 Converged in 164 iterations to T = 546.4079007160651 K Iter 1: T = 969.2684966624255 K, F = -7002.202268672912, relative_change = 0.03073150333757456 Iter 2: T = 940.6765159781576 K, F = -5932.438096863417, relative_change = 0.029498514377307612 Iter 3: T = 914.1852446600801 K, F = -5024.421863179796, relative_change = 0.02816193544550292 Iter 5: T = 867.3204717581177 K, F = -3600.022849082072, relative_change = 0.025209203007558467 Iter 10: T = 782.8168698005585 K, F = -1552.642635946204, relative_change = 0.016945094672244608 Iter 15: T = 735.6918768844629 K, F = -662.1282088264516, relative_change = 0.009545124926285078 Iter 20: T = 712.4090951260507 K, F = -279.8273873649211, relative_change = 0.00467843445017068 Iter 25: T = 701.8205910142649 K, F = -117.61255401635339, relative_change = 0.002109359356065764 Iter 30: T = 697.2189172961671 K, F = -49.29613719609657, relative_change = 0.000912049478565559 Iter 35: T = 695.2619324698117 K, F = -20.635871851637244, relative_change = 0.00038692165592634165 Iter 40: T = 694.4376383386802 K, F = -8.633644515451445, relative_change = 0.00016279618313248017 Iter 45: T = 694.0918706252145 K, F = -3.611304383379328, relative_change = 6.825640377740594e-5 Iter 50: T = 693.9470838987818 K, F = -1.5103977386830163, relative_change = 2.857603098786894e-5 Iter 55: T = 693.8865003621036 K, F = -0.6316851239254678, relative_change = 1.1956160595317325e-5 Iter 60: T = 693.8611580016625 K, F = -0.26418154361074647, relative_change = 5.001140784045991e-6 Iter 65: T = 693.850558543712 K, F = -0.11048445043232913, relative_change = 2.0916997906977164e-6 Iter 70: T = 693.8461255523536 K, F = -0.04620601700741367, relative_change = 8.748023426366177e-7 Iter 75: T = 693.8442715924364 K, F = -0.019323925682677157, relative_change = 3.6585777366804275e-7 Iter 80: T = 693.8434962390127 K, F = -0.008081499566331973, relative_change = 1.5300696238294083e-7 Iter 85: T = 693.8431719760338 K, F = -0.0033797801691448637, relative_change = 6.398949150572117e-8 Iter 90: T = 693.843036365223 K, F = -0.001413464523049801, relative_change = 2.6761196211095735e-8 Iter 95: T = 693.8429796511344 K, F = -0.0005911277609007559, relative_change = 1.1191856529600174e-8 Iter 100: T = 693.8429559326203 K, F = -0.00024721669163729754, relative_change = 4.680568868264984e-9 Iter 105: T = 693.8429460132535 K, F = -0.00010338897189154928, relative_change = 1.957469913908308e-9 Iter 110: T = 693.8429418648559 K, F = -4.323850412912833e-5, relative_change = 8.186373441575515e-10 Iter 115: T = 693.8429401299463 K, F = -1.8082859116419492e-5, relative_change = 3.42363923919818e-10 Iter 120: T = 693.8429394043865 K, F = -7.562467706612175e-6, relative_change = 1.4318068369466178e-10 Iter 125: T = 693.8429391009487 K, F = -3.162714478199824e-6, relative_change = 5.987987517177877e-11 Iter 130: T = 693.8429389740472 K, F = -1.3226836891311322e-6, relative_change = 2.504245476846495e-11 Iter 135: T = 693.8429389209756 K, F = -5.531611481091048e-7, relative_change = 1.0473035352343997e-11 Iter 140: T = 693.8429388987805 K, F = -2.3133874371694674e-7, relative_change = 4.3799512130695704e-12 Iter 145: T = 693.8429388894982 K, F = -9.674844170248775e-8, relative_change = 1.831744427309911e-12 Iter 150: T = 693.8429388856163 K, F = -4.04613329507697e-8, relative_change = 7.66057001558628e-13 Iter 155: T = 693.8429388839928 K, F = -1.6922373613503794e-8, relative_change = 3.203923806843681e-13 Converged in 158 iterations to T = 693.8429388835174 K Iter 1: T = 966.5788777393727 K, F = -7615.0344987785675, relative_change = 0.03342112226062726 Iter 2: T = 935.2013960328306 K, F = -6456.351879803117, relative_change = 0.0324624119450319 Iter 3: T = 905.8376951600866 K, F = -5472.550150960153, relative_change = 0.03139826458483309 Iter 5: T = 853.0256126095818 K, F = -3928.311277826215, relative_change = 0.02894996090753337 Iter 10: T = 753.5710845316547 K, F = -1703.7487879453236, relative_change = 0.02127390376696105 Iter 15: T = 694.1111753709239 K, F = -730.7423003719754, relative_change = 0.013103979960744479 Iter 20: T = 662.9565729884755 K, F = -310.1347595457048, relative_change = 0.006853575762622771 Iter 25: T = 648.2472184052583 K, F = -130.66588316850257, relative_change = 0.003205296512509547 Iter 30: T = 641.7285439507117 K, F = -54.83157635069958, relative_change = 0.0014106360514337093 Iter 35: T = 638.9310597307955 K, F = -22.96510727249591, relative_change = 0.0006031767341941002 Iter 40: T = 637.7480557111255 K, F = -9.61032109572436, relative_change = 0.0002546469208838262 Iter 45: T = 637.2509786443701 K, F = -4.02021570694985, relative_change = 0.00010692045182218568 Iter 50: T = 637.0426839957438 K, F = -1.6814890530486437, relative_change = 4.47900142172654e-5 Iter 55: T = 636.9555005323273 K, F = -0.7032515262593373, relative_change = 1.874479922396779e-5 Iter 60: T = 636.9190267282265 K, F = -0.29411391349342286, relative_change = 7.84158901338455e-6 Iter 65: T = 636.9037707359018 K, F = -0.12300295290298319, relative_change = 3.2798468894112485e-6 Iter 70: T = 636.8973901107599 K, F = -0.05144147909694785, relative_change = 1.3717412367684338e-6 Iter 75: T = 636.8947215894389 K, F = -0.02151347154501987, relative_change = 5.736908283242856e-7 Iter 80: T = 636.8936055701147 K, F = -0.008997196083120718, relative_change = 2.399265002038545e-7 Iter 85: T = 636.8931388354347 K, F = -0.0037627357876023337, relative_change = 1.0034050277234228e-7 Iter 90: T = 636.8929436410555 K, F = -0.0015736212059573318, relative_change = 4.1963662156637094e-8 Iter 95: T = 636.8928620083716 K, F = -0.0006581072095661056, relative_change = 1.754971612807017e-8 Iter 100: T = 636.8928278685972 K, F = -0.00027522829975601404, relative_change = 7.339502885875757e-9 Iter 105: T = 636.8928135909341 K, F = -0.00011510376331230754, relative_change = 3.0694681249033807e-9 Iter 110: T = 636.8928076198445 K, F = -4.8137769207201586e-5, relative_change = 1.2836883046114027e-9 Iter 115: T = 636.8928051226634 K, F = -2.0131789924215937e-5, relative_change = 5.368537882964975e-10 Iter 120: T = 636.8928040783125 K, F = -8.419355132849304e-6, relative_change = 2.245186717319008e-10 Iter 125: T = 636.8928036415524 K, F = -3.52107510753763e-6, relative_change = 9.389639661466072e-11 Iter 130: T = 636.8928034588942 K, F = -1.472556225567967e-6, relative_change = 3.926860954659024e-11 Iter 135: T = 636.8928033825043 K, F = -6.158413457524325e-7, relative_change = 1.6422621386481243e-11 Iter 140: T = 636.8928033505571 K, F = -2.575529551851474e-7, relative_change = 6.868156385013977e-12 Iter 145: T = 636.8928033371965 K, F = -1.077120239112439e-7, relative_change = 2.872353082925668e-12 Iter 150: T = 636.8928033316088 K, F = -4.504705586327873e-8, relative_change = 1.2012683922608114e-12 Iter 155: T = 636.892803329272 K, F = -1.8839449056340385e-8, relative_change = 5.023909830660708e-13 Converged in 160 iterations to T = 636.8928033282948 K Iter 1: T = 966.5251645744266 K, F = -7627.273094505955, relative_change = 0.0334748354255734 Iter 2: T = 935.0915581368854 K, F = -6466.8222663669985, relative_change = 0.0325222845608804 Iter 3: T = 905.669396411692 K, F = -5481.514023112215, relative_change = 0.031464471547380114 Iter 5: T = 852.7341425842532 K, F = -3934.894104338283, relative_change = 0.029028718228820343 Iter 10: T = 752.9543659445511 K, F = -1706.8116772243625, relative_change = 0.021373359851382577 Iter 15: T = 693.2047123397437 K, F = -732.1555234571936, relative_change = 0.013193340866301298 Iter 20: T = 661.8525318791203 K, F = -310.76836233934563, relative_change = 0.006911884409295344 Iter 25: T = 647.0351746439472 K, F = -130.94141894792222, relative_change = 0.0032357905082967364 Iter 30: T = 640.465091421839 K, F = -54.949004552740135, relative_change = 0.0014247623842690385 Iter 35: T = 637.6448235232118 K, F = -23.01463274964855, relative_change = 0.000609353637012284 Iter 40: T = 636.4520497094353 K, F = -9.63110846690353, relative_change = 0.0002572796163948088 Iter 45: T = 635.9508432464647 K, F = -4.028922584057851, relative_change = 0.00010803030649341178 Iter 50: T = 635.7408139169297 K, F = -1.6851327223907497, relative_change = 4.52557267181993e-5 Iter 55: T = 635.6529036318516 K, F = -0.7047757642582725, relative_change = 1.8939839261294344e-5 Iter 60: T = 635.6161256242921 K, F = -0.2947514401584385, relative_change = 7.923204997042137e-6 Iter 65: T = 635.6007423687881 K, F = -0.12326958678836414, relative_change = 3.3139880535187574e-6 Iter 70: T = 635.5943085133756 K, F = -0.05155299078051084, relative_change = 1.3860209462965182e-6 Iter 75: T = 635.5916177292445 K, F = -0.0215601074489965, relative_change = 5.79663029984464e-7 Iter 80: T = 635.5904923991243 K, F = -0.00901669984332737, relative_change = 2.42424191160508e-7 Iter 85: T = 635.5900217705191 K, F = -0.0037708925039131036, relative_change = 1.0138507478351231e-7 Iter 90: T = 635.5898249476471 K, F = -0.0015770324446651718, relative_change = 4.240051603191641e-8 Iter 95: T = 635.5897426339069 K, F = -0.00065953383050954, relative_change = 1.773241387093187e-8 Iter 100: T = 635.5897082093065 K, F = -0.0002758249294290138, relative_change = 7.415909297632789e-9 Iter 105: T = 635.5896938125255 K, F = -0.00011535328108946974, relative_change = 3.1014222092539434e-9 Iter 110: T = 635.5896877916194 K, F = -4.8242120554431445e-5, relative_change = 1.2970518865510778e-9 Iter 115: T = 635.5896852736046 K, F = -2.0175431420632606e-5, relative_change = 5.424426119529806e-10 Iter 120: T = 635.5896842205407 K, F = -8.437606640376849e-6, relative_change = 2.2685598762764079e-10 Iter 125: T = 635.5896837801366 K, F = -3.528707050171054e-6, relative_change = 9.487386170922992e-11 Iter 130: T = 635.5896835959545 K, F = -1.4757467591830498e-6, relative_change = 3.967736401777944e-11 Iter 135: T = 635.5896835189274 K, F = -6.171759103779095e-7, relative_change = 1.6593574148693392e-11 Iter 140: T = 635.5896834867137 K, F = -2.581105420507157e-7, relative_change = 6.939636410126462e-12 Iter 145: T = 635.5896834732415 K, F = -1.0794523047641391e-7, relative_change = 2.9022474085619537e-12 Iter 150: T = 635.5896834676073 K, F = -4.514434182034677e-8, relative_change = 1.21376413285341e-12 Iter 155: T = 635.589683465251 K, F = -1.888023271057193e-8, relative_change = 5.076195235189804e-13 Converged in 160 iterations to T = 635.5896834642656 K Iter 1: T = 976.4902429722183 K, F = -5356.7205023323795, relative_change = 0.023509757027781644 Iter 2: T = 955.1410654791557 K, F = -4529.394588410412, relative_change = 0.02186317543540477 Iter 3: T = 935.8603830224857 K, F = -3828.110091777246, relative_change = 0.020186214532612146 Iter 5: T = 903.0818253297896 K, F = -2730.664076837898, relative_change = 0.016834468532772345 Iter 10: T = 849.1295500184395 K, F = -1164.3340447000505, relative_change = 0.009462045516735924 Iter 15: T = 822.5104367456244 K, F = -492.0214006441644, relative_change = 0.004630902392796156 Iter 20: T = 810.41462040281 K, F = -206.78781274973034, relative_change = 0.002086289369452113 Iter 25: T = 805.160050103672 K, F = -86.6709457313801, relative_change = 0.0009017421989584863 Iter 30: T = 802.9258222085213 K, F = -36.280961602202574, relative_change = 0.0003824869864043016 Iter 35: T = 801.9848280200138 K, F = -15.179173617195726, relative_change = 0.0001609191657059721 Iter 40: T = 801.5901216004493 K, F = -6.349173799878918, relative_change = 6.746744523507947e-5 Iter 45: T = 801.4248446866305 K, F = -2.6554864659629027, relative_change = 2.824538132649932e-5 Iter 50: T = 801.3556878015578 K, F = -1.1105887411178301, relative_change = 1.1817756631657223e-5 Iter 55: T = 801.3267592454442 K, F = -0.4644671764546283, relative_change = 4.943237177655318e-6 Iter 60: T = 801.3146598718391 K, F = -0.19424671745474176, relative_change = 2.0674800637656317e-6 Iter 65: T = 801.3095995758362 K, F = -0.08123647147082058, relative_change = 8.646727081031237e-7 Iter 70: T = 801.307483265776 K, F = -0.03397409304327048, relative_change = 3.6162132487751175e-7 Iter 75: T = 801.3065981937162 K, F = -0.014208376779101584, relative_change = 1.512352088284266e-7 Iter 80: T = 801.3062280449757 K, F = -0.005942113785413983, relative_change = 6.324851949489687e-8 Iter 85: T = 801.3060732441709 K, F = -0.002485063110781671, relative_change = 2.645131225291632e-8 Iter 90: T = 801.3060085045939 K, F = -0.0010392830974638168, relative_change = 1.106225921819577e-8 Iter 95: T = 801.3059814297242 K, F = -0.00043464060695419526, relative_change = 4.626369702461899e-9 Iter 100: T = 801.3059701066893 K, F = -0.00018177189208956612, relative_change = 1.934803185542416e-9 Iter 105: T = 801.3059653712608 K, F = -7.601917645017053e-5, relative_change = 8.091578252600424e-10 Iter 110: T = 801.305963390848 K, F = -3.179212784032437e-5, relative_change = 3.3839947402274047e-10 Iter 115: T = 801.3059625626157 K, F = -1.3295848232841578e-5, relative_change = 1.415227094398878e-10 Iter 120: T = 801.3059622162391 K, F = -5.56048362865269e-6, relative_change = 5.91864991809172e-11 Iter 125: T = 801.3059620713801 K, F = -2.325459743879321e-6, relative_change = 2.475249106671435e-11 Iter 130: T = 801.3059620107985 K, F = -9.725337457577865e-7, relative_change = 1.0351773633567784e-11 Iter 135: T = 801.3059619854625 K, F = -4.067267238561101e-7, relative_change = 4.3292512934183835e-12 Iter 140: T = 801.3059619748667 K, F = -1.7009723496386187e-7, relative_change = 1.8105367346874167e-12 Iter 145: T = 801.3059619704354 K, F = -7.113750166709565e-8, relative_change = 7.571966705568082e-13 Iter 150: T = 801.3059619685822 K, F = -2.975072077582297e-8, relative_change = 3.166704788676366e-13 Converged in 153 iterations to T = 801.3059619680396 K Iter 1: T = 965.204779131159 K, F = -7928.124173765297, relative_change = 0.034795220868841036 Iter 2: T = 932.3853376490468 K, F = -6724.299542180542, relative_change = 0.034002568358245146 Iter 3: T = 901.5122377712655 K, F = -5702.04511696566, relative_change = 0.03311195342863919 Iter 5: T = 845.4919408207605 K, F = -4097.053187547778, relative_change = 0.03101833468121261 Iter 10: T = 737.3381827416835 K, F = -1782.7256982502236, relative_change = 0.02401483075444583 Iter 15: T = 669.7677336499686 K, F = -767.5450572146628, relative_change = 0.015709418905674406 Iter 20: T = 632.8312154765703 K, F = -326.8071763102298, relative_change = 0.008635994297443467 Iter 25: T = 614.8580283770306 K, F = -137.96952559135084, relative_change = 0.004165442902387998 Iter 30: T = 606.7571398774817 K, F = -57.95664085779587, relative_change = 0.0018622110855016395 Iter 35: T = 603.2521779534871 K, F = -24.285574787182465, relative_change = 0.0008020102319571411 Iter 40: T = 601.7645921653916 K, F = -10.165018915161937, relative_change = 0.000339649847239096 Iter 45: T = 601.1385565025092 K, F = -4.252635059098205, relative_change = 0.00014280096524916963 Iter 50: T = 600.8760494092547 K, F = -1.7787667782752106, relative_change = 5.985421305838436e-5 Iter 55: T = 600.7661442903136 K, F = -0.74394777169558, relative_change = 2.505511003842926e-5 Iter 60: T = 600.7201593613124 K, F = -0.31113594032844677, relative_change = 1.0482438113047052e-5 Iter 65: T = 600.7009241870933 K, F = -0.1301221827154091, relative_change = 4.384596888962306e-6 Iter 70: T = 600.6928791553079 K, F = -0.054418898609676025, relative_change = 1.8338160556796891e-6 Iter 75: T = 600.6895145128489 K, F = -0.022758676638010344, relative_change = 7.669456874244448e-7 Iter 80: T = 600.688107359235 K, F = -0.009517957944636557, relative_change = 3.207496783762898e-7 Iter 85: T = 600.6875188672985 K, F = -0.0039805250053412955, relative_change = 1.341420163649997e-7 Iter 90: T = 600.6872727523323 K, F = -0.0016647033261336097, relative_change = 5.6099910467594093e-8 Iter 95: T = 600.6871698240075 K, F = -0.0006961988524304963, relative_change = 2.3461673042882803e-8 Iter 100: T = 600.6871267781341 K, F = -0.0002911586814538514, relative_change = 9.811955441472576e-9 Iter 105: T = 600.6871087758325 K, F = -0.00012176603813829345, relative_change = 4.103477543600332e-9 Iter 110: T = 600.6871012470544 K, F = -5.0924011989805784e-5, relative_change = 1.7161234388050477e-9 Iter 115: T = 600.6870980984295 K, F = -2.1297030138756057e-5, relative_change = 7.177033403702339e-10 Iter 120: T = 600.6870967816369 K, F = -8.906673109987384e-6, relative_change = 3.001521370674982e-10 Iter 125: T = 600.6870962309386 K, F = -3.724877270683269e-6, relative_change = 1.2552721585077103e-10 Iter 130: T = 600.6870960006299 K, F = -1.5577884807660425e-6, relative_change = 5.249699171861284e-11 Iter 135: T = 600.6870959043121 K, F = -6.514860814155199e-7, relative_change = 2.1954880183831348e-11 Iter 140: T = 600.6870958640308 K, F = -2.724595820069453e-7, relative_change = 9.181803956290208e-12 Iter 145: T = 600.6870958471847 K, F = -1.1394565335720586e-7, relative_change = 3.839933406747602e-12 Iter 150: T = 600.6870958401395 K, F = -4.7653907764289016e-8, relative_change = 1.6059220075972137e-12 Iter 155: T = 600.6870958371929 K, F = -1.9929125294471106e-8, relative_change = 6.716053814853049e-13 Iter 160: T = 600.6870958359607 K, F = -8.333951972971931e-9, relative_change = 2.808516134772603e-13 Converged in 162 iterations to T = 600.6870958356999 K Iter 1: T = 964.512429286688 K, F = -8085.8767444227515, relative_change = 0.035487570713312086 Iter 2: T = 930.96156135519 K, F = -6859.379884747392, relative_change = 0.034785314230020584 Iter 3: T = 899.3168865976893 K, F = -5817.820106886177, relative_change = 0.033991387046567165 Iter 5: T = 841.6337099532227 K, F = -4182.3464305857715, relative_change = 0.03210432307133678 Iter 10: T = 728.7746704026584 K, F = -1823.038546167211, relative_change = 0.025568989354830325 Iter 15: T = 656.4779381698626 K, F = -786.6634116656226, relative_change = 0.01732980776803127 Iter 20: T = 615.9100371795142 K, F = -335.64016317888047, relative_change = 0.009837001088685326 Iter 25: T = 595.7692834370782 K, F = -141.89575264006967, relative_change = 0.00484657666495165 Iter 30: T = 586.5829115736971 K, F = -59.650324613957046, relative_change = 0.0021912699064467953 Iter 35: T = 582.5847297690325 K, F = -25.004018654117704, relative_change = 0.0009487092845073365 Iter 40: T = 580.8832602157324 K, F = -10.467342428938977, relative_change = 0.0004027064643246905 Iter 45: T = 580.1663830020228 K, F = -4.379403027049166, relative_change = 0.00016947944232459665 Iter 50: T = 579.8656365785226 K, F = -1.8318413685629258, relative_change = 7.106593657616902e-5 Iter 55: T = 579.7396955339979 K, F = -0.7661545071224182, relative_change = 2.975356420208302e-5 Iter 60: T = 579.6869965061201 K, F = -0.3204248680280993, relative_change = 1.2449066647906428e-5 Iter 65: T = 579.6649520698469 K, F = -0.13400723924810576, relative_change = 5.207358345839338e-6 Iter 70: T = 579.6557319356135 K, F = -0.05604373093914633, relative_change = 2.1779561494701497e-6 Iter 75: T = 579.6518758100764 K, F = -0.023438210595038145, relative_change = 9.108781806298386e-7 Iter 80: T = 579.650263105163 K, F = -0.009802148852926185, relative_change = 3.809455394895967e-7 Iter 85: T = 579.6495886479578 K, F = -0.0040993773338654504, relative_change = 1.5931691961883898e-7 Iter 90: T = 579.6493065810689 K, F = -0.0017144088409075664, relative_change = 6.662840378826191e-8 Iter 95: T = 579.6491886171822 K, F = -0.0007169863014793165, relative_change = 2.7864823110529857e-8 Iter 100: T = 579.6491392832505 K, F = -0.00029985224241246833, relative_change = 1.1653406853753421e-8 Iter 105: T = 579.6491186512067 K, F = -0.00012540179003911467, relative_change = 4.873594792551703e-9 Iter 110: T = 579.6491100226388 K, F = -5.2444526252748425e-5, relative_change = 2.0381956914447176e-9 Iter 115: T = 579.6491064140685 K, F = -2.1932927342316333e-5, relative_change = 8.523978102003563e-10 Iter 120: T = 579.6491049049212 K, F = -9.172611581398371e-6, relative_change = 3.5648292636398293e-10 Iter 125: T = 579.6491042737779 K, F = -3.8360957747562985e-6, relative_change = 1.4908542049897757e-10 Iter 130: T = 579.6491040098261 K, F = -1.604300775004397e-6, relative_change = 6.234929214771401e-11 Iter 135: T = 579.6491038994384 K, F = -6.709372475932618e-7, relative_change = 2.607519933460649e-11 Iter 140: T = 579.6491038532729 K, F = -2.805942598826938e-7, relative_change = 1.0904971049986114e-11 Iter 145: T = 579.6491038339659 K, F = -1.1734770716254062e-7, relative_change = 4.560582779304409e-12 Iter 150: T = 579.6491038258915 K, F = -4.907622136451906e-8, relative_change = 1.9072905253546007e-12 Iter 155: T = 579.6491038225147 K, F = -2.0523562072050083e-8, relative_change = 7.97624478805826e-13 Iter 160: T = 579.6491038211025 K, F = -8.583034893927532e-9, relative_change = 3.335697141600882e-13 Converged in 163 iterations to T = 579.649103820689 K Iter 1: T = 964.279759161374 K, F = -8138.890853801931, relative_change = 0.035720240838625905 Iter 2: T = 930.4823508128209 K, F = -6904.78574763666, relative_change = 0.03504938066723139 Iter 3: T = 898.576695299338 K, F = -5856.748766932046, relative_change = 0.034289372050541084 Iter 5: T = 840.3274888837398 K, F = -4211.051491341676, relative_change = 0.03247615026373095 Iter 10: T = 725.8343210394562 K, F = -1836.6697048739966, relative_change = 0.026120823852730884 Iter 15: T = 651.8348057309407 K, F = -793.1873858941537, relative_change = 0.01793258952133412 Iter 20: T = 609.9063112000284 K, F = -338.68799993733325, relative_change = 0.01030346924094415 Iter 25: T = 588.9279609346876 K, F = -143.26242720805084, relative_change = 0.005118965286992912 Iter 30: T = 579.314207126298 K, F = -60.24288588278335, relative_change = 0.0023249442947697505 Iter 35: T = 575.1199839924369 K, F = -25.256002273051873, relative_change = 0.0010087450992415858 Iter 40: T = 573.333132757289 K, F = -10.573495873290724, relative_change = 0.0004285961812211026 Iter 45: T = 572.579923589288 K, F = -4.423935776239481, relative_change = 0.0001804483191470855 Iter 50: T = 572.2638711540237 K, F = -1.850489898870611, relative_change = 7.567835505801792e-5 Iter 55: T = 572.1315092647536 K, F = -0.7739578315628117, relative_change = 3.1686949756059526e-5 Iter 60: T = 572.0761215064357 K, F = -0.3236890625317769, relative_change = 1.325840607420883e-5 Iter 65: T = 572.0529520054796 K, F = -0.13537249582709304, relative_change = 5.5459693630218965e-6 Iter 70: T = 572.0432612497863 K, F = -0.056614720544189145, relative_change = 2.3195910484091177e-6 Iter 75: T = 572.0392082861941 K, F = -0.023677009288958106, relative_change = 9.701157375597207e-7 Iter 80: T = 572.0375132580125 K, F = -0.009902018022316134, relative_change = 4.057201192712615e-7 Iter 85: T = 572.0368043716661 K, F = -0.004141143936439717, relative_change = 1.6967807174764145e-7 Iter 90: T = 572.036507906 K, F = -0.0017318761548614225, relative_change = 7.096158357367115e-8 Iter 95: T = 572.0363839203553 K, F = -0.0007242913441384835, relative_change = 2.9677014514455724e-8 Iter 100: T = 572.0363320680494 K, F = -0.0003029072992353776, relative_change = 1.2411287623522593e-8 Iter 105: T = 572.0363103827909 K, F = -0.00012667945130795388, relative_change = 5.1905496959066135e-9 Iter 110: T = 572.0363013137561 K, F = -5.2978860019814444e-5, relative_change = 2.17075005995065e-9 Iter 115: T = 572.0362975209772 K, F = -2.215639208263953e-5, relative_change = 9.078336329226518e-10 Iter 120: T = 572.0362959347917 K, F = -9.266068159430318e-6, relative_change = 3.796668879914938e-10 Iter 125: T = 572.03629527143 K, F = -3.8751804665726475e-6, relative_change = 1.587812317972848e-10 Iter 130: T = 572.0362949940043 K, F = -1.6206472824853435e-6, relative_change = 6.640422933481869e-11 Iter 135: T = 572.0362948779815 K, F = -6.777744498420724e-7, relative_change = 2.7771058227446565e-11 Iter 140: T = 572.0362948294593 K, F = -2.8345296559928457e-7, relative_change = 1.161417167232145e-11 Iter 145: T = 572.0362948091667 K, F = -1.1854354309281945e-7, relative_change = 4.85719053052391e-12 Iter 150: T = 572.0362948006801 K, F = -4.95759759355785e-8, relative_change = 2.0313207669542585e-12 Iter 155: T = 572.036294797131 K, F = -2.0732442651549832e-8, relative_change = 8.494889009093996e-13 Iter 160: T = 572.0362947956467 K, F = -8.670746731720413e-9, relative_change = 3.552742547069491e-13 Converged in 163 iterations to T = 572.0362947952121 K Iter 1: T = 980.0998831667334 K, F = -4534.260550357868, relative_change = 0.01990011683326661 Iter 2: T = 962.2453007892107 K, F = -3830.1457543108913, relative_change = 0.01821710489326261 Iter 3: T = 946.315651133384 K, F = -3233.8634426990443, relative_change = 0.01655466609476971 Iter 5: T = 919.7088591682359 K, F = -2302.1709484025014, relative_change = 0.013380452617906572 Iter 10: T = 877.4483959197482 K, F = -977.3963025971611, relative_change = 0.007034703425431873 Iter 15: T = 857.4336638166109 K, F = -411.8805342196618, relative_change = 0.0033002442278602024 Iter 20: T = 848.5488719629009 K, F = -172.85595493081615, relative_change = 0.0014546714888163872 Iter 25: T = 844.7329194923192 K, F = -72.40062751017265, relative_change = 0.0006224417962630188 Iter 30: T = 843.1186529296051 K, F = -30.29845776829061, relative_change = 0.00026285985403546653 Iter 35: T = 842.4402641889058 K, F = -12.674642126169617, relative_change = 0.00011038307584007173 Iter 40: T = 842.1559746678029 K, F = -5.301294876485712, relative_change = 4.6243044299453534e-5 Iter 45: T = 842.0369797129151 K, F = -2.2171713520334526, relative_change = 1.9353337377959665e-5 Iter 50: T = 841.987196790127 K, F = -0.9272661803345301, relative_change = 8.096238221410478e-6 Iter 55: T = 841.9663738600271 K, F = -0.38779705183452207, relative_change = 3.386370706479883e-6 Iter 60: T = 841.9576649166243 K, F = -0.16218192879149118, relative_change = 1.4162954013737112e-6 Iter 65: T = 841.9540226370927 K, F = -0.0678265192420946, relative_change = 5.923247222664238e-7 Iter 70: T = 841.9524993756098 K, F = -0.02836587781040456, relative_change = 2.477195589162521e-7 Iter 75: T = 841.9518623265479 K, F = -0.011862951909231478, relative_change = 1.035996777833114e-7 Iter 80: T = 841.951595904512 K, F = -0.004961228697283326, relative_change = 4.33266924425558e-8 Iter 85: T = 841.9514844835455 K, F = -0.002074845183441809, relative_change = 1.8119752435763763e-8 Iter 90: T = 841.9514378859511 K, F = -0.0008677250518758228, relative_change = 7.57789901192776e-9 Iter 95: T = 841.951418398278 K, F = -0.0003628929836940742, relative_change = 3.169168251722434e-9 Iter 100: T = 841.9514102482998 K, F = -0.00015176618100909423, relative_change = 1.32538408378842e-9 Iter 105: T = 841.9514068398814 K, F = -6.347043072185699e-5, relative_change = 5.542914747677447e-10 Iter 110: T = 841.9514054144402 K, F = -2.6544093114866385e-5, relative_change = 2.318113249001082e-10 Iter 115: T = 841.9514048183036 K, F = -1.110105594603894e-5, relative_change = 9.69462578427872e-11 Iter 120: T = 841.9514045689922 K, F = -4.642595017312345e-6, relative_change = 4.054409025865322e-11 Iter 125: T = 841.9514044647273 K, F = -1.9415905239128506e-6, relative_change = 1.695603885321356e-11 Iter 130: T = 841.9514044211223 K, F = -8.119959138408461e-7, relative_change = 7.0912141862869574e-12 Iter 135: T = 841.9514044028863 K, F = -3.3958688372415224e-7, relative_change = 2.965634785278018e-12 Iter 140: T = 841.9514043952597 K, F = -1.4201930165214094e-7, relative_change = 1.2402639835782645e-12 Iter 145: T = 841.9514043920702 K, F = -5.939396952037157e-8, relative_change = 5.186914763151157e-13 Converged in 150 iterations to T = 841.9514043907362 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 6%|█▊ | ETA: 0:00:17 Bin 1 ray tracing: 12%|███▌ | ETA: 0:00:15 Bin 1 ray tracing: 18%|█████▎ | ETA: 0:00:14 Bin 1 ray tracing: 24%|███████▎ | ETA: 0:00:13 Bin 1 ray tracing: 32%|█████████▋ | ETA: 0:00:11 Bin 1 ray tracing: 40%|████████████ | ETA: 0:00:09 Bin 1 ray tracing: 48%|██████████████▎ | ETA: 0:00:08 Bin 1 ray tracing: 55%|████████████████▋ | ETA: 0:00:07 Bin 1 ray tracing: 63%|██████████████████▊ | ETA: 0:00:05 Bin 1 ray tracing: 71%|█████████████████████▏ | ETA: 0:00:04 Bin 1 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:03 Bin 1 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:02 Bin 1 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 7%|██ | ETA: 0:00:14 Bin 2 ray tracing: 14%|████▏ | ETA: 0:00:14 Bin 2 ray tracing: 20%|██████ | ETA: 0:00:13 Bin 2 ray tracing: 26%|███████▉ | ETA: 0:00:12 Bin 2 ray tracing: 32%|█████████▋ | ETA: 0:00:11 Bin 2 ray tracing: 38%|███████████▌ | ETA: 0:00:10 Bin 2 ray tracing: 44%|█████████████▍ | ETA: 0:00:09 Bin 2 ray tracing: 51%|███████████████▎ | ETA: 0:00:08 Bin 2 ray tracing: 57%|█████████████████▎ | ETA: 0:00:07 Bin 2 ray tracing: 65%|███████████████████▍ | ETA: 0:00:06 Bin 2 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:04 Bin 2 ray tracing: 83%|████████████████████████▊ | ETA: 0:00:03 Bin 2 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:02 Bin 2 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 3 ray tracing: 13%|███▊ | ETA: 0:00:14 Bin 3 ray tracing: 19%|█████▋ | ETA: 0:00:13 Bin 3 ray tracing: 25%|███████▌ | ETA: 0:00:12 Bin 3 ray tracing: 31%|█████████▍ | ETA: 0:00:11 Bin 3 ray tracing: 38%|███████████▍ | ETA: 0:00:10 Bin 3 ray tracing: 45%|█████████████▍ | ETA: 0:00:09 Bin 3 ray tracing: 51%|███████████████▎ | ETA: 0:00:08 Bin 3 ray tracing: 57%|█████████████████▏ | ETA: 0:00:07 Bin 3 ray tracing: 64%|███████████████████▏ | ETA: 0:00:06 Bin 3 ray tracing: 71%|█████████████████████▏ | ETA: 0:00:05 Bin 3 ray tracing: 77%|███████████████████████▎ | ETA: 0:00:04 Bin 3 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:03 Bin 3 ray tracing: 90%|███████████████████████████ | ETA: 0:00:02 Bin 3 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 7%|██ | ETA: 0:00:14 Bin 4 ray tracing: 13%|████ | ETA: 0:00:13 Bin 4 ray tracing: 21%|██████▎ | ETA: 0:00:12 Bin 4 ray tracing: 28%|████████▌ | ETA: 0:00:10 Bin 4 ray tracing: 35%|██████████▋ | ETA: 0:00:09 Bin 4 ray tracing: 42%|████████████▋ | ETA: 0:00:08 Bin 4 ray tracing: 49%|██████████████▊ | ETA: 0:00:07 Bin 4 ray tracing: 56%|████████████████▊ | ETA: 0:00:06 Bin 4 ray tracing: 63%|███████████████████ | ETA: 0:00:05 Bin 4 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:04 Bin 4 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:03 Bin 4 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 4 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 5 ray tracing: 14%|████▎ | ETA: 0:00:12 Bin 5 ray tracing: 23%|███████ | ETA: 0:00:10 Bin 5 ray tracing: 32%|█████████▊ | ETA: 0:00:09 Bin 5 ray tracing: 43%|████████████▊ | ETA: 0:00:07 Bin 5 ray tracing: 53%|███████████████▊ | ETA: 0:00:06 Bin 5 ray tracing: 60%|██████████████████ | ETA: 0:00:05 Bin 5 ray tracing: 68%|████████████████████▎ | ETA: 0:00:04 Bin 5 ray tracing: 75%|██████████████████████▋ | ETA: 0:00:03 Bin 5 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:02 Bin 5 ray tracing: 90%|███████████████████████████ | ETA: 0:00:01 Bin 5 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 10%|███ | ETA: 0:00:12 Bin 6 ray tracing: 18%|█████▍ | ETA: 0:00:12 Bin 6 ray tracing: 24%|███████▎ | ETA: 0:00:11 Bin 6 ray tracing: 31%|█████████▎ | ETA: 0:00:10 Bin 6 ray tracing: 38%|███████████▌ | ETA: 0:00:09 Bin 6 ray tracing: 46%|█████████████▊ | ETA: 0:00:08 Bin 6 ray tracing: 55%|████████████████▌ | ETA: 0:00:06 Bin 6 ray tracing: 64%|███████████████████▎ | ETA: 0:00:05 Bin 6 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:04 Bin 6 ray tracing: 80%|████████████████████████ | ETA: 0:00:03 Bin 6 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 6 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 6%|██ | ETA: 0:00:15 Bin 7 ray tracing: 13%|███▉ | ETA: 0:00:13 Bin 7 ray tracing: 20%|█████▉ | ETA: 0:00:12 Bin 7 ray tracing: 26%|███████▉ | ETA: 0:00:11 Bin 7 ray tracing: 33%|█████████▉ | ETA: 0:00:10 Bin 7 ray tracing: 39%|███████████▉ | ETA: 0:00:09 Bin 7 ray tracing: 46%|█████████████▊ | ETA: 0:00:08 Bin 7 ray tracing: 53%|███████████████▊ | ETA: 0:00:07 Bin 7 ray tracing: 59%|█████████████████▊ | ETA: 0:00:06 Bin 7 ray tracing: 66%|███████████████████▊ | ETA: 0:00:05 Bin 7 ray tracing: 73%|█████████████████████▊ | ETA: 0:00:04 Bin 7 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:03 Bin 7 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 7 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 7 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 7%|██▏ | ETA: 0:00:14 Bin 8 ray tracing: 14%|████▏ | ETA: 0:00:13 Bin 8 ray tracing: 20%|██████ | ETA: 0:00:12 Bin 8 ray tracing: 27%|████████▏ | ETA: 0:00:11 Bin 8 ray tracing: 34%|██████████▎ | ETA: 0:00:10 Bin 8 ray tracing: 41%|████████████▎ | ETA: 0:00:09 Bin 8 ray tracing: 48%|██████████████▍ | ETA: 0:00:08 Bin 8 ray tracing: 55%|████████████████▍ | ETA: 0:00:07 Bin 8 ray tracing: 62%|██████████████████▌ | ETA: 0:00:06 Bin 8 ray tracing: 69%|████████████████████▋ | ETA: 0:00:05 Bin 8 ray tracing: 75%|██████████████████████▋ | ETA: 0:00:04 Bin 8 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:03 Bin 8 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:02 Bin 8 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 7%|██ | ETA: 0:00:14 Bin 9 ray tracing: 14%|████ | ETA: 0:00:13 Bin 9 ray tracing: 20%|██████▏ | ETA: 0:00:12 Bin 9 ray tracing: 27%|████████▏ | ETA: 0:00:11 Bin 9 ray tracing: 34%|██████████▏ | ETA: 0:00:10 Bin 9 ray tracing: 40%|████████████ | ETA: 0:00:09 Bin 9 ray tracing: 47%|██████████████ | ETA: 0:00:08 Bin 9 ray tracing: 53%|████████████████ | ETA: 0:00:07 Bin 9 ray tracing: 60%|██████████████████ | ETA: 0:00:06 Bin 9 ray tracing: 66%|███████████████████▉ | ETA: 0:00:05 Bin 9 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:04 Bin 9 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:03 Bin 9 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 9 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 9 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 10 ray tracing: 13%|███▊ | ETA: 0:00:14 Bin 10 ray tracing: 19%|█████▋ | ETA: 0:00:12 Bin 10 ray tracing: 26%|███████▋ | ETA: 0:00:11 Bin 10 ray tracing: 33%|█████████▌ | ETA: 0:00:10 Bin 10 ray tracing: 39%|███████████▍ | ETA: 0:00:09 Bin 10 ray tracing: 46%|█████████████▎ | ETA: 0:00:08 Bin 10 ray tracing: 52%|███████████████▏ | ETA: 0:00:07 Bin 10 ray tracing: 59%|█████████████████ | ETA: 0:00:06 Bin 10 ray tracing: 65%|██████████████████▉ | ETA: 0:00:05 Bin 10 ray tracing: 72%|████████████████████▊ | ETA: 0:00:04 Bin 10 ray tracing: 78%|██████████████████████▋ | ETA: 0:00:03 Bin 10 ray tracing: 85%|████████████████████████▌ | ETA: 0:00:02 Bin 10 ray tracing: 91%|██████████████████████████▍ | ETA: 0:00:01 Bin 10 ray tracing: 98%|████████████████████████████▍| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2717245129269 K, F = -7457.168702356825, relative_change = 0.0327282754870731 Iter 2: T = 936.6164454536564 K, F = -6321.320669709479, relative_change = 0.03169252060449405 Iter 3: T = 908.002934632045 K, F = -5356.976135291755, relative_change = 0.030549870184857 Iter 5: T = 856.7637787587155 K, F = -3843.4945013633705, relative_change = 0.027948794026848234 Iter 10: T = 761.404510252784 K, F = -1664.4077488199268, relative_change = 0.020041269097732732 Iter 15: T = 705.5098775755129 K, F = -712.6787651299076, relative_change = 0.012026426011291287 Iter 20: T = 676.736115102486 K, F = -302.0748035330051, relative_change = 0.006165293314306794 Iter 25: T = 663.3098214043508 K, F = -127.17202871378935, relative_change = 0.0028498435504112187 Iter 30: T = 657.3971648861543 K, F = -53.345063235629496, relative_change = 0.0012469955599894139 Iter 35: T = 654.867273002455 K, F = -22.33865756586961, relative_change = 0.0005318240174124879 Iter 40: T = 653.7988275023301 K, F = -9.347470517589015, relative_change = 0.0002242721972285513 Iter 45: T = 653.3501370361239 K, F = -3.9101356559414038, relative_change = 9.412210530738386e-5 Iter 50: T = 653.1621626785445 K, F = -1.6354253826289504, relative_change = 3.9420791340223674e-5 Iter 55: T = 653.0834922482521 K, F = -0.683982436795459, relative_change = 1.649637731465372e-5 Iter 60: T = 653.0505812982694 K, F = -0.28605452512992324, relative_change = 6.9007556271771274e-6 Iter 65: T = 653.036815789592 K, F = -0.11963227608078969, relative_change = 2.8862887416510544e-6 Iter 70: T = 653.0310585822103 K, F = -0.050031796543941576, relative_change = 1.2071347060802089e-6 Iter 75: T = 653.0286507955832 K, F = -0.02092392104793306, relative_change = 5.04847645303384e-7 Iter 80: T = 653.0276438210605 K, F = -0.008750638252586318, relative_change = 2.111349751188311e-7 Iter 85: T = 653.0272226906452 K, F = -0.0036596222226704667, relative_change = 8.829945850794735e-8 Iter 90: T = 653.0270465685887 K, F = -0.001530497858893809, relative_change = 3.692793886778038e-8 Iter 95: T = 653.0269729121911 K, F = -0.0006400725074756641, relative_change = 1.544371394097188e-8 Iter 100: T = 653.0269421081971 K, F = -0.0002676859707785306, relative_change = 6.458747155787947e-9 Iter 105: T = 653.0269292255974 K, F = -0.00011194947062176386, relative_change = 2.701125467199426e-9 Iter 110: T = 653.0269238379401 K, F = -4.6818605517584544e-5, relative_change = 1.1296429716673815e-9 Iter 115: T = 653.0269215847575 K, F = -1.9580099485383418e-5, relative_change = 4.724301778542278e-10 Iter 120: T = 653.0269206424496 K, F = -8.188631779815214e-6, relative_change = 1.9757595192946473e-10 Iter 125: T = 653.0269202483651 K, F = -3.424583100208878e-6, relative_change = 8.26286107524324e-11 Iter 130: T = 653.0269200835543 K, F = -1.4322011162026804e-6, relative_change = 3.455626136941731e-11 Iter 135: T = 653.0269200146284 K, F = -5.989640679548991e-7, relative_change = 1.445185222897908e-11 Iter 140: T = 653.0269199858027 K, F = -2.504923327650843e-7, relative_change = 6.043898744601546e-12 Iter 145: T = 653.0269199737476 K, F = -1.0475925721342705e-7, relative_change = 2.5276396136525773e-12 Iter 150: T = 653.0269199687059 K, F = -4.381046431189972e-8, relative_change = 1.0570623354624876e-12 Iter 155: T = 653.0269199665976 K, F = -1.8322957984207022e-8, relative_change = 4.420977742160974e-13 Converged in 159 iterations to T = 653.0269199658366 K Iter 1: T = 970.3743751550895 K, F = -6750.226802157384, relative_change = 0.0296256248449105 Iter 2: T = 942.9136587932053 K, F = -5717.23820319903, relative_change = 0.02829909472567779 Iter 3: T = 917.5729085071507 K, F = -4840.5775479557215, relative_change = 0.026874942418892475 Iter 5: T = 873.0343537629146 K, F = -3465.7824884428983, relative_change = 0.02377912832085344 Iter 10: T = 794.009703963615 K, F = -1491.6801467716293, relative_change = 0.01547345476101602 Iter 15: T = 750.9760862991157 K, F = -634.943165111647, relative_change = 0.0084673625823584 Iter 20: T = 730.0951903122999 K, F = -268.0048100066859, relative_change = 0.0040720896227030255 Iter 25: T = 720.6990821728167 K, F = -112.56894674398887, relative_change = 0.0018176870965590905 Iter 30: T = 716.6369776631128 K, F = -47.16755097604882, relative_change = 0.0007822796653016958 Iter 35: T = 714.913548113295 K, F = -19.742137502946985, relative_change = 0.0003311912760769958 Iter 40: T = 714.188372579081 K, F = -8.25924358971831, relative_change = 0.0001392262789917785 Iter 45: T = 713.8843145147886 K, F = -3.4546142309793546, relative_change = 5.835265283920937e-5 Iter 50: T = 713.7570165731796 K, F = -1.4448485254724628, relative_change = 2.4425982529221456e-5 Iter 55: T = 713.7037550060081 K, F = -0.6042682409839049, relative_change = 1.021912668741966e-5 Iter 60: T = 713.6814761731623 K, F = -0.25271487735497433, relative_change = 4.274441408210373e-6 Iter 65: T = 713.6721581627279 K, F = -0.10568884897898212, relative_change = 1.787741507280676e-6 Iter 70: T = 713.6682611306561 K, F = -0.04420042089766252, relative_change = 7.476756746130937e-7 Iter 75: T = 713.6666313227701 K, F = -0.018485158233292998, relative_change = 3.126905388542674e-7 Iter 80: T = 713.665949713707 K, F = -0.007730716440014662, relative_change = 1.3077155472918978e-7 Iter 85: T = 713.6656646559676 K, F = -0.003233078377693821, relative_change = 5.469033734891165e-8 Iter 90: T = 713.6655454412961 K, F = -0.0013521120655412, relative_change = 2.2872171711193237e-8 Iter 95: T = 713.6654955842756 K, F = -0.0005654694269329186, relative_change = 9.565418770925508e-9 Iter 100: T = 713.6654747334705 K, F = -0.00023648606886972345, relative_change = 4.000372945294435e-9 Iter 105: T = 713.6654660134143 K, F = -9.890129911604983e-5, relative_change = 1.6730038523862338e-9 Iter 110: T = 713.6654623665825 K, F = -4.1361703645215186e-5, relative_change = 6.996701948480904e-10 Iter 115: T = 713.6654608414339 K, F = -1.729795995775163e-5, relative_change = 2.926104601752654e-10 Iter 120: T = 713.6654602035985 K, F = -7.234214136508932e-6, relative_change = 1.2237320132939856e-10 Iter 125: T = 713.665459936848 K, F = -3.0254338834190264e-6, relative_change = 5.117791972936384e-11 Iter 130: T = 713.6654598252899 K, F = -1.265271768469134e-6, relative_change = 2.1403203489463935e-11 Iter 135: T = 713.665459778635 K, F = -5.291520426276008e-7, relative_change = 8.951080021687398e-12 Iter 140: T = 713.6654597591233 K, F = -2.2129771970469392e-7, relative_change = 3.743448835830285e-12 Iter 145: T = 713.6654597509632 K, F = -9.254913979628299e-8, relative_change = 1.5655514666335794e-12 Iter 150: T = 713.6654597475507 K, F = -3.870529585725535e-8, relative_change = 6.547346937051266e-13 Iter 155: T = 713.6654597461236 K, F = -1.618867195851692e-8, relative_change = 2.738458637661185e-13 Converged in 157 iterations to T = 713.6654597458215 K Iter 1: T = 974.4202919365949 K, F = -5828.360814830949, relative_change = 0.025579708063405114 Iter 2: T = 951.0297791827752 K, F = -4930.992971297686, relative_change = 0.024004541928547736 Iter 3: T = 929.7536814461748 K, F = -4169.98614888613, relative_change = 0.022371641984631676 Iter 5: T = 893.191130374984 K, F = -2978.137532212436, relative_change = 0.01901709276039322 Iter 10: T = 831.6062040669087 K, F = -1273.4653934267794, relative_change = 0.011171580955624873 Iter 15: T = 800.3463200962861 K, F = -539.2188631674228, relative_change = 0.005638138425028655 Iter 20: T = 785.8915527496486 K, F = -226.87562543723325, relative_change = 0.0025831151897838943 Iter 25: T = 779.5561354519931 K, F = -95.14073259275723, relative_change = 0.0011254286445070822 Iter 30: T = 776.8513337255395 K, F = -39.835822632077566, relative_change = 0.0004790556054382374 Iter 35: T = 775.7101240084837 K, F = -16.668130743423, relative_change = 0.0002018525039491805 Iter 40: T = 775.2310743405243 K, F = -6.972274660435642, relative_change = 8.468339638241295e-5 Iter 45: T = 775.0304162619699 K, F = -2.916145145546858, relative_change = 3.546239432448313e-5 Iter 50: T = 774.9464436214814 K, F = -1.2196116581316458, relative_change = 1.4838995730615658e-5 Iter 55: T = 774.9113156232738 K, F = -0.5100640229229984, relative_change = 6.207280392600797e-6 Iter 60: T = 774.8966229885382 K, F = -0.21331624118593728, relative_change = 2.5962098873215805e-6 Iter 65: T = 774.8904780582172 K, F = -0.0892116401555646, relative_change = 1.0858099033566274e-6 Iter 70: T = 774.8879081233698 K, F = -0.037309415393927514, relative_change = 4.5410635149006534e-7 Iter 75: T = 774.8868333368998 K, F = -0.015603250441241112, relative_change = 1.899140430606281e-7 Iter 80: T = 774.8863838467839 K, F = -0.0065254669624230655, relative_change = 7.942455586833473e-8 Iter 85: T = 774.8861958643733 K, F = -0.002729028437421732, relative_change = 3.321633887659674e-8 Iter 90: T = 774.8861172478361 K, F = -0.0011413123225918476, relative_change = 1.3891476784939484e-8 Iter 95: T = 774.8860843694529 K, F = -0.0004773104511600623, relative_change = 5.809582758148683e-9 Iter 100: T = 774.8860706193188 K, F = -0.0001996169333099429, relative_change = 2.4296371243322707e-9 Iter 105: T = 774.8860648688483 K, F = -8.348218581988309e-5, relative_change = 1.0161033019185828e-9 Iter 110: T = 774.8860624639328 K, F = -3.4913246984680235e-5, relative_change = 4.2494654060192745e-10 Iter 115: T = 774.8860614581685 K, F = -1.460113791329487e-5, relative_change = 1.7771773236023966e-10 Iter 120: T = 774.8860610375458 K, F = -6.106370607161793e-6, relative_change = 7.432368261329798e-11 Iter 125: T = 774.8860608616363 K, F = -2.5537567281963547e-6, relative_change = 3.1083047026425524e-11 Iter 130: T = 774.8860607880689 K, F = -1.0680119518768905e-6, relative_change = 1.299930622735004e-11 Iter 135: T = 774.8860607573022 K, F = -4.466566091432256e-7, relative_change = 5.43648039857282e-12 Iter 140: T = 774.8860607444351 K, F = -1.8679749191896633e-7, relative_change = 2.273605455762269e-12 Iter 145: T = 774.886060739054 K, F = -7.812067936985301e-8, relative_change = 9.508457581757895e-13 Iter 150: T = 774.8860607368035 K, F = -3.267136206019927e-8, relative_change = 3.976594453578664e-13 Converged in 154 iterations to T = 774.8860607359912 K Iter 1: T = 970.3177284587924 K, F = -6763.133805793584, relative_change = 0.029682271541207537 Iter 2: T = 942.7992622963105 K, F = -5728.258384666007, relative_change = 0.028360263195634894 Iter 3: T = 917.4000010778418 K, F = -4849.988873784488, relative_change = 0.026940264204922588 Iter 5: T = 872.7438950159107 K, F = -3472.648507574315, relative_change = 0.023850948249390755 Iter 10: T = 793.4469596237748 K, F = -1494.787798085824, relative_change = 0.015545189993689354 Iter 15: T = 750.2148634598035 K, F = -636.3233473326716, relative_change = 0.008518499346365005 Iter 20: T = 729.2196117710655 K, F = -268.60313087979387, relative_change = 0.004100348683453926 Iter 25: T = 719.7673645746382 K, F = -112.82372547750327, relative_change = 0.0018311521909228905 Iter 30: T = 715.6799986434648 K, F = -47.27498065152358, relative_change = 0.0007882439873311677 Iter 35: T = 713.9456623686524 K, F = -19.787226203507924, relative_change = 0.00033374770247062693 Iter 40: T = 713.2158632347803 K, F = -8.278128783249215, relative_change = 0.0001403065626207977 Iter 45: T = 712.9098604467615 K, F = -3.462517278531763, relative_change = 5.8806413924420936e-5 Iter 50: T = 712.7817472467899 K, F = -1.4481545576715489, relative_change = 2.461609767500132e-5 Iter 55: T = 712.7281443864581 K, F = -0.6056510178391222, relative_change = 1.0298695896847626e-5 Iter 60: T = 712.7057227607794 K, F = -0.253293198223142, relative_change = 4.307728842161128e-6 Iter 65: T = 712.6963450221848 K, F = -0.10593071440821411, relative_change = 1.8016645713389396e-6 Iter 70: T = 712.6924230092476 K, F = -0.044301572736882955, relative_change = 7.534987919280434e-7 Iter 75: T = 712.6907827537444 K, F = -0.01852746128659888, relative_change = 3.15125893039307e-7 Iter 80: T = 712.6900967753069 K, F = -0.007748408108062765, relative_change = 1.3179005890641683e-7 Iter 85: T = 712.689809890233 K, F = -0.0032404772494974976, relative_change = 5.511628971044704e-8 Iter 90: T = 712.6896899113467 K, F = -0.0013552063625399402, relative_change = 2.3050310374964235e-8 Iter 95: T = 712.6896397347222 K, F = -0.0005667634977620795, relative_change = 9.639918519333576e-9 Iter 100: T = 712.6896187502548 K, F = -0.00023702726515928418, relative_change = 4.031529645672012e-9 Iter 105: T = 712.6896099742994 K, F = -9.912763313713047e-5, relative_change = 1.6860339457525982e-9 Iter 110: T = 712.6896063040898 K, F = -4.1456359345826144e-5, relative_change = 7.051195375711205e-10 Iter 115: T = 712.6896047691644 K, F = -1.733754323629544e-5, relative_change = 2.94889391824597e-10 Iter 120: T = 712.6896041272402 K, F = -7.250766920319229e-6, relative_change = 1.2332625375018378e-10 Iter 125: T = 712.68960385878 K, F = -3.032358535826063e-6, relative_change = 5.1576532942125294e-11 Iter 130: T = 712.6896037465067 K, F = -1.2681692174165704e-6, relative_change = 2.1569933335576208e-11 Iter 135: T = 712.6896036995527 K, F = -5.303646700705045e-7, relative_change = 9.020823422806898e-12 Iter 140: T = 712.6896036799159 K, F = -2.2180529579696184e-7, relative_change = 3.772623858267822e-12 Iter 145: T = 712.6896036717034 K, F = -9.276025036975e-8, relative_change = 1.5777329950830156e-12 Iter 150: T = 712.689603668269 K, F = -3.8793919410196054e-8, relative_change = 6.59834858352453e-13 Iter 155: T = 712.6896036668326 K, F = -1.6223369092571716e-8, relative_change = 2.7593871952226236e-13 Converged in 157 iterations to T = 712.6896036665286 K Iter 1: T = 969.354184171671 K, F = -6982.678288181436, relative_change = 0.03064581582832895 Iter 2: T = 940.8501486634229 K, F = -5915.759128070674, relative_change = 0.029405181278095268 Iter 3: T = 914.4486489575825 K, F = -5010.168421135884, relative_change = 0.028061322776370447 Iter 5: T = 867.7665105510572 K, F = -3589.6062971661872, relative_change = 0.02509625292770784 Iter 10: T = 783.7001176227428 K, F = -1547.8963943025653, relative_change = 0.016825464599422735 Iter 15: T = 736.9093439522226 K, F = -660.0029632365361, relative_change = 0.009455208581937513 Iter 20: T = 713.8263649759338 K, F = -278.9000865211185, relative_change = 0.004626971486488009 Iter 25: T = 703.3381331226809 K, F = -117.21619946768632, relative_change = 0.002084377595825204 Iter 30: T = 698.7820807122235 K, F = -49.12870411820501, relative_change = 0.0009008873378058958 Iter 35: T = 696.8448921456629 K, F = -20.565541805072826, relative_change = 0.00038211905857873224 Iter 40: T = 696.0290083626602 K, F = -8.60417670071941, relative_change = 0.00016076341429022744 Iter 45: T = 695.6867813810516 K, F = -3.5989708934680746, relative_change = 6.740197500259854e-5 Iter 50: T = 695.5434795619459 K, F = -1.5052380232931584, relative_change = 2.821794230335523e-5 Iter 55: T = 695.4835177562774 K, F = -0.6295269710677815, relative_change = 1.1806271033143665e-5 Iter 60: T = 695.4584355381634 K, F = -0.2632789261104922, relative_change = 4.938431964952893e-6 Iter 65: T = 695.4479448970659 K, F = -0.11010695588092861, relative_change = 2.0654701518068224e-6 Iter 70: T = 695.4435574181031 K, F = -0.04604814268082591, relative_change = 8.638320838753558e-7 Iter 75: T = 695.4417224926933 K, F = -0.019257900473873324, relative_change = 3.6126975614779716e-7 Iter 80: T = 695.4409550998469 K, F = -0.008053886986064573, relative_change = 1.510881769151407e-7 Iter 85: T = 695.4406341660972 K, F = -0.003368232248261438, relative_change = 6.318702867770721e-8 Iter 90: T = 695.4404999476136 K, F = -0.0014086350424070693, relative_change = 2.6425595994568118e-8 Iter 95: T = 695.4404438158134 K, F = -0.0005891080127377046, relative_change = 1.1051504368074277e-8 Iter 100: T = 695.4404203408195 K, F = -0.0002463720107813705, relative_change = 4.621871935261788e-9 Iter 105: T = 695.4404105232959 K, F = -0.0001030357178817276, relative_change = 1.932922182615448e-9 Iter 110: T = 695.4404064174901 K, F = -4.309076718611582e-5, relative_change = 8.083711533587133e-10 Iter 115: T = 695.440404700393 K, F = -1.8021073447727076e-5, relative_change = 3.3807047426267343e-10 Iter 120: T = 695.4404039822825 K, F = -7.536628474302809e-6, relative_change = 1.4138511685033918e-10 Iter 125: T = 695.4404036819601 K, F = -3.1519076513220057e-6, relative_change = 5.912893729859909e-11 Iter 130: T = 695.4404035563616 K, F = -1.3181649120008743e-6, relative_change = 2.4728418189930652e-11 Iter 135: T = 695.4404035038349 K, F = -5.512717833333625e-7, relative_change = 1.0341709960088351e-11 Iter 140: T = 695.4404034818676 K, F = -2.305488050469151e-7, relative_change = 4.325033397105542e-12 Iter 145: T = 695.4404034726806 K, F = -9.64181473550596e-8, relative_change = 1.8087784377760946e-12 Iter 150: T = 695.4404034688386 K, F = -4.032336575754414e-8, relative_change = 7.56455465319578e-13 Iter 155: T = 695.4404034672317 K, F = -1.6863206053763236e-8, relative_change = 3.1634919711366443e-13 Converged in 158 iterations to T = 695.4404034667613 K Iter 1: T = 963.5120243595362 K, F = -8313.81995870502, relative_change = 0.03648797564046376 Iter 2: T = 928.8984699879651 K, F = -7054.649177879459, relative_change = 0.035924361602627 Iter 3: T = 896.1255826975203 K, F = -5985.277386636805, relative_change = 0.03528145254762823 Iter 5: T = 835.982336359324 K, F = -4305.91886595158, relative_change = 0.03372835171689233 Iter 10: T = 715.8952014133705 K, F = -1881.962735317697, relative_change = 0.0280580146088455 Iter 15: T = 635.8071563522193 K, F = -815.1090381797483, relative_change = 0.020172409515982318 Iter 20: T = 588.7656162502734 K, F = -349.080529926349, relative_change = 0.012138272702320289 Iter 25: T = 564.5050180312918 K, F = -147.98043528354359, relative_change = 0.006235425728669592 Iter 30: T = 553.1710784514178 K, F = -62.3038977198486, relative_change = 0.002885674415259859 Iter 35: T = 548.1766831475333 K, F = -26.135720412350242, relative_change = 0.00126340383794503 Iter 40: T = 546.0390601696816 K, F = -10.94472335245249, relative_change = 0.0005389615102326702 Iter 45: T = 545.1361632546827 K, F = -4.579784555219841, relative_change = 0.00022730748353398873 Iter 50: T = 544.7569732874802 K, F = -1.9157733887711905, relative_change = 9.540045988059201e-5 Iter 55: T = 544.5981117290448 K, F = -0.8012787411631795, relative_change = 3.995699409111152e-5 Iter 60: T = 544.5316248384861 K, F = -0.3351182487311093, relative_change = 1.6720900883004645e-5 Iter 65: T = 544.5038106296387 K, F = -0.1401528878838439, relative_change = 6.9947026089861465e-6 Iter 70: T = 544.4921768908362 K, F = -0.058614037303583305, relative_change = 2.9255869866547933e-6 Iter 75: T = 544.4873112591355 K, F = -0.02451316487718483, relative_change = 1.2235711876253227e-6 Iter 80: T = 544.4852763478127 K, F = -0.010251711325782786, relative_change = 5.117218381681887e-7 Iter 85: T = 544.4844253155433 K, F = -0.004287390385251805, relative_change = 2.1400989014524187e-7 Iter 90: T = 544.4840694022764 K, F = -0.0017930382596626215, relative_change = 8.950179028960396e-8 Iter 95: T = 544.4839205548514 K, F = -0.0007498700827635874, relative_change = 3.7430769744871445e-8 Iter 100: T = 544.4838583050375 K, F = -0.00031360463570362374, relative_change = 1.5654004032173276e-8 Iter 105: T = 544.4838322714145 K, F = -0.00013115320556553178, relative_change = 6.546693008843114e-9 Iter 110: T = 544.4838213838411 K, F = -5.484983735415394e-5, relative_change = 2.7379054852581057e-9 Iter 115: T = 544.4838168305276 K, F = -2.2938856635401628e-5, relative_change = 1.1450247974765682e-9 Iter 120: T = 544.4838149262775 K, F = -9.593303355232008e-6, relative_change = 4.788630309237152e-10 Iter 125: T = 544.4838141298974 K, F = -4.0120337174986975e-6, relative_change = 2.0026622409057123e-10 Iter 130: T = 544.4838137968417 K, F = -1.6778798697936192e-6, relative_change = 8.3753699654647e-11 Iter 135: T = 544.4838136575539 K, F = -7.017098522799081e-7, relative_change = 3.502682006153645e-11 Iter 140: T = 544.4838135993022 K, F = -2.9346374991190416e-7, relative_change = 1.46486499150411e-11 Iter 145: T = 544.4838135749404 K, F = -1.2273001548379625e-7, relative_change = 6.126238868726929e-12 Iter 150: T = 544.483813564752 K, F = -5.1327054634286995e-8, relative_change = 2.5620610891829203e-12 Iter 155: T = 544.4838135604912 K, F = -2.146538535807707e-8, relative_change = 1.0714744686627181e-12 Iter 160: T = 544.4838135587092 K, F = -8.976801330051742e-9, relative_change = 4.4808948337554955e-13 Converged in 165 iterations to T = 544.483813557964 K Iter 1: T = 966.8937136050473 K, F = -7543.298847298397, relative_change = 0.0331062863949527 Iter 2: T = 935.8448098969584 K, F = -6394.986387976539, relative_change = 0.03211201321427941 Iter 3: T = 906.822896861311 K, F = -5420.020522828341, relative_change = 0.03101145908886628 Iter 5: T = 854.7291976784564 K, F = -3889.7479233803765, relative_change = 0.02849165572367123 Iter 10: T = 757.1583292636774 K, F = -1685.8337786647319, relative_change = 0.020702439641808915 Iter 15: T = 699.3571450543018 K, F = -722.4966721297151, relative_change = 0.01259760604880816 Iter 20: T = 669.3216492048381 K, F = -306.4469455258731, relative_change = 0.006526754921727112 Iter 25: T = 655.2195775915353 K, F = -129.0647972042327, relative_change = 0.003035486091480019 Iter 30: T = 648.9888109829374 K, F = -54.14981690097472, relative_change = 0.001332225763667328 Iter 35: T = 646.3186801554028 K, F = -22.677690717427623, relative_change = 0.0005689411199724559 Iter 40: T = 645.1902398724865 K, F = -9.48970485528506, relative_change = 0.00024006439760241804 Iter 45: T = 644.7162168646714 K, F = -3.9696989057752394, relative_change = 0.00010077461048417526 Iter 50: T = 644.5176053003537 K, F = -1.660349365656341, relative_change = 4.2211414245348465e-5 Iter 55: T = 644.4344787335747 K, F = -0.6944083845504128, relative_change = 1.7664934782410815e-5 Iter 60: T = 644.3997028543919 K, F = -0.2904152082361423, relative_change = 7.389720520562912e-6 Iter 65: T = 644.3851571790303 K, F = -0.12145604058881859, relative_change = 3.0908252363426034e-6 Iter 70: T = 644.3790736562037 K, F = -0.050794529719341286, relative_change = 1.2926822772461413e-6 Iter 75: T = 644.3765293934897 K, F = -0.02124290745895574, relative_change = 5.406260547055414e-7 Iter 80: T = 644.3754653418008 K, F = -0.008884042578178375, relative_change = 2.2609817691583007e-7 Iter 85: T = 644.3750203408166 K, F = -0.0037154135742209493, relative_change = 9.455729081059589e-8 Iter 90: T = 644.3748342357654 K, F = -0.0015538304809567527, relative_change = 3.9545046534990313e-8 Iter 95: T = 644.3747564043535 K, F = -0.0006498304903518881, relative_change = 1.6538220915034658e-8 Iter 100: T = 644.3747238543177 K, F = -0.00027176687686952805, relative_change = 6.91648329021159e-9 Iter 105: T = 644.3747102415022 K, F = -0.00011365615459452139, relative_change = 2.8925562312942425e-9 Iter 110: T = 644.3747045484598 K, F = -4.7532360539892515e-5, relative_change = 1.2097015946176974e-9 Iter 115: T = 644.3747021675615 K, F = -1.987860092778071e-5, relative_change = 5.059116650423527e-10 Iter 120: T = 644.3747011718414 K, F = -8.31346765189922e-6, relative_change = 2.115782850247169e-10 Iter 125: T = 644.3747007554193 K, F = -3.4767919290801252e-6, relative_change = 8.848457789305436e-11 Iter 130: T = 644.3747005812667 K, F = -1.4540353446279575e-6, relative_change = 3.700529295423749e-11 Iter 135: T = 644.374700508434 K, F = -6.080959244481043e-7, relative_change = 1.54760803605824e-11 Iter 140: T = 644.3747004779744 K, F = -2.543133966748101e-7, relative_change = 6.472292291992941e-12 Iter 145: T = 644.374700465236 K, F = -1.0635740360642743e-7, relative_change = 2.706802758422031e-12 Iter 150: T = 644.3747004599086 K, F = -4.448042462135149e-8, relative_change = 1.1320296658531872e-12 Iter 155: T = 644.3747004576805 K, F = -1.8602099471909384e-8, relative_change = 4.734246273267739e-13 Converged in 160 iterations to T = 644.3747004567488 K Iter 1: T = 965.2166761114837 K, F = -7925.413435481343, relative_change = 0.034783323888516245 Iter 2: T = 932.4097743980553 K, F = -6721.978818276447, relative_change = 0.03398915759060008 Iter 3: T = 901.5498675922754 K, F = -5700.056534464327, relative_change = 0.033096936189565905 Iter 5: T = 845.5578678714627 K, F = -4095.589158143925, relative_change = 0.030999936586468997 Iter 10: T = 737.4829784791461 K, F = -1782.036149438049, relative_change = 0.023989215429971962 Iter 15: T = 669.9896074983362 K, F = -767.2201761852851, relative_change = 0.015683626446296964 Iter 20: T = 633.1106229416902 K, F = -326.65822756802845, relative_change = 0.008617476761309239 Iter 25: T = 615.1710134762673 K, F = -137.90370918911773, relative_change = 0.004155162413390335 Iter 30: T = 607.0867146670829 K, F = -57.92834506023349, relative_change = 0.001857300695672025 Iter 35: T = 603.5892397874775 K, F = -24.27359160873672, relative_change = 0.0007998327467212113 Iter 40: T = 602.1048907332311 K, F = -10.159980030481966, relative_change = 0.0003387160752133439 Iter 45: T = 601.4802279479841 K, F = -4.250522854839234, relative_change = 0.00014240629319358636 Iter 50: T = 601.2182984323206 K, F = -1.7778825682096138, relative_change = 5.9688420814522173e-5 Iter 55: T = 601.1086354664618 K, F = -0.7435778333716385, relative_change = 2.4985644439511312e-5 Iter 60: T = 601.0627519146037 K, F = -0.31098120123333667, relative_change = 1.0453364108315724e-5 Iter 65: T = 601.0435591560508 K, F = -0.13005746434686163, relative_change = 4.372433826059041e-6 Iter 70: T = 601.035531866247 K, F = -0.05439183180538498, relative_change = 1.8287286234674666e-6 Iter 75: T = 601.032174644264 K, F = -0.02274735683669732, relative_change = 7.648179411461423e-7 Iter 80: T = 601.030770594081 K, F = -0.009513223844750729, relative_change = 3.198598082694958e-7 Iter 85: T = 601.0301834000537 K, F = -0.00397854514416901, relative_change = 1.3376985835397105e-7 Iter 90: T = 601.0299378278916 K, F = -0.001663875323737185, relative_change = 5.594426889153823e-8 Iter 95: T = 601.0298351265744 K, F = -0.0006958525711438512, relative_change = 2.3396581741083035e-8 Iter 100: T = 601.0297921756385 K, F = -0.0002910138618216762, relative_change = 9.784733440340238e-9 Iter 105: T = 601.0297742130408 K, F = -0.0001217054733723133, relative_change = 4.092092992298451e-9 Iter 110: T = 601.0297667008675 K, F = -5.0898682413202945e-5, relative_change = 1.7113622604073241e-9 Iter 115: T = 601.0297635591869 K, F = -2.1286437535517067e-5, relative_change = 7.157121763515047e-10 Iter 120: T = 601.0297622452985 K, F = -8.902242866482002e-6, relative_change = 2.993193986575135e-10 Iter 125: T = 601.0297616958146 K, F = -3.7230243135621954e-6, relative_change = 1.2517894875334672e-10 Iter 130: T = 601.0297614660138 K, F = -1.5570124479724612e-6, relative_change = 5.235130511446288e-11 Iter 135: T = 601.0297613699084 K, F = -6.511610771697818e-7, relative_change = 2.1893936878873222e-11 Iter 140: T = 601.029761329716 K, F = -2.7232357957540643e-7, relative_change = 9.156313964073773e-12 Iter 145: T = 601.0297613129071 K, F = -1.1388874460172005e-7, relative_change = 3.829272163329717e-12 Iter 150: T = 601.0297613058775 K, F = -4.763009364694426e-8, relative_change = 1.6014628345146651e-12 Iter 155: T = 601.0297613029376 K, F = -1.9920235350134874e-8, relative_change = 6.697764821803117e-13 Iter 160: T = 601.0297613017079 K, F = -8.330278022938842e-9, relative_change = 2.800882726420452e-13 Converged in 162 iterations to T = 601.0297613014477 K Iter 1: T = 980.2357041738773 K, F = -4503.313604681009, relative_change = 0.019764295826122755 Iter 2: T = 962.5110167535457 K, F = -3803.861565775027, relative_change = 0.01808206673645862 Iter 3: T = 946.7043724529051 K, F = -3211.550912505139, relative_change = 0.01642229961580581 Iter 5: T = 920.3199194797952 K, F = -2286.1210364969356, relative_change = 0.013258473118207643 Iter 10: T = 878.4645660699595 K, F = -970.4377371184218, relative_change = 0.0069546050041089545 Iter 15: T = 858.6687151200323 K, F = -408.91126168159576, relative_change = 0.00325819469083926 Iter 20: T = 849.8876225541327 K, F = -171.60204782708885, relative_change = 0.0014351548477069698 Iter 25: T = 846.1175410096375 K, F = -71.87394847863504, relative_change = 0.0006139005266059131 Iter 30: T = 844.5229288594522 K, F = -30.077782677955728, relative_change = 0.0002592180613846969 Iter 35: T = 843.8528447548795 K, F = -12.582280196171782, relative_change = 0.0001088475756938095 Iter 40: T = 843.5720433830736 K, F = -5.262655178761855, relative_change = 4.559868106466879e-5 Iter 45: T = 843.4545098610357 K, F = -2.201009518679428, relative_change = 1.908347096592828e-5 Iter 50: T = 843.4053385909889 K, F = -0.9205067146404888, relative_change = 7.983309244590384e-6 Iter 55: T = 843.3847715426157 K, F = -0.3849700936245276, relative_change = 3.3391306250524656e-6 Iter 60: T = 843.3761696262225 K, F = -0.1609996490514769, relative_change = 1.3965369647123013e-6 Iter 65: T = 843.3725721091514 K, F = -0.06733207362859006, relative_change = 5.840611459413064e-7 Iter 70: T = 843.3710675682988 K, F = -0.028159094382218308, relative_change = 2.442635692732887e-7 Iter 75: T = 843.3704383485043 K, F = -0.011776472546478844, relative_change = 1.0215433057020165e-7 Iter 80: T = 843.3701752007746 K, F = -0.004925061981695844, relative_change = 4.27222290214952e-8 Iter 85: T = 843.3700651491645 K, F = -0.0020597198270910777, relative_change = 1.7866958258046473e-8 Iter 90: T = 843.3700191242516 K, F = -0.00086139944443131, relative_change = 7.472177387317749e-9 Iter 95: T = 843.3699998760808 K, F = -0.0003602475362316504, relative_change = 3.124954170776522e-9 Iter 100: T = 843.3699918262655 K, F = -0.000150659826111621, relative_change = 1.306893249838463e-9 Iter 105: T = 843.3699884597364 K, F = -6.300773626577438e-5, relative_change = 5.465583553599112e-10 Iter 110: T = 843.3699870518138 K, F = -2.6350588750556625e-5, relative_change = 2.285772417532244e-10 Iter 115: T = 843.3699864630037 K, F = -1.1020130441075082e-5, relative_change = 9.559372855765483e-11 Iter 120: T = 843.3699862167564 K, F = -4.608750216794633e-6, relative_change = 3.997843947333521e-11 Iter 125: T = 843.3699861137727 K, F = -1.9274352540676887e-6, relative_change = 1.6719468416300927e-11 Iter 130: T = 843.3699860707037 K, F = -8.060750740224165e-7, relative_change = 6.992269502241283e-12 Iter 135: T = 843.3699860526918 K, F = -3.3711245195355843e-7, relative_change = 2.924269950561441e-12 Iter 140: T = 843.369986045159 K, F = -1.4098651357485892e-7, relative_change = 1.2229824876231893e-12 Iter 145: T = 843.3699860420087 K, F = -5.896144328332298e-8, relative_change = 5.114589385422823e-13 Converged in 150 iterations to T = 843.3699860406912 K Iter 1: T = 976.4653568475934 K, F = -5362.390829500991, relative_change = 0.0235346431524066 Iter 2: T = 955.0918001943134 K, F = -4534.220182184171, relative_change = 0.021888699382313113 Iter 3: T = 935.787453859768 K, F = -3832.2155088159975, relative_change = 0.020212032320472098 Iter 5: T = 902.9645085787636 K, F = -2733.6315733239876, relative_change = 0.016859785581501134 Iter 10: T = 848.9248526936518 K, F = -1165.6371651900756, relative_change = 0.009481046540261592 Iter 15: T = 822.2541660085241 K, F = -492.5829395377757, relative_change = 0.004641766721998033 Iter 20: T = 810.132620236089 K, F = -207.02628037214131, relative_change = 0.002091560449029435 Iter 25: T = 804.8663743455846 K, F = -86.77138093528295, relative_change = 0.0009040967873875979 Iter 30: T = 802.6270858100198 K, F = -36.32309409098701, relative_change = 0.0003834999542168203 Iter 35: T = 801.6839426560256 K, F = -15.196817001050045, relative_change = 0.0001613478987112697 Iter 40: T = 801.2883317094297 K, F = -6.356556543971565, relative_change = 6.764764993532946e-5 Iter 45: T = 801.1226754881222 K, F = -2.6585747321635966, relative_change = 2.83209039736844e-5 Iter 50: T = 801.053359792503 K, F = -1.1118804160714792, relative_change = 1.1849368959122589e-5 Iter 55: T = 801.0243647884603 K, F = -0.4650073922460246, relative_change = 4.95646270702162e-6 Iter 60: T = 801.0122376200318 K, F = -0.19447264598502467, relative_change = 2.0730119913793736e-6 Iter 65: T = 801.0071656989384 K, F = -0.08133095815227609, relative_change = 8.669863755746438e-7 Iter 70: T = 801.005044526958 K, F = -0.03401360861797631, relative_change = 3.625889543407803e-7 Iter 75: T = 801.0041574215555 K, F = -0.014224902683656171, relative_change = 1.5163988757935986e-7 Iter 80: T = 801.0037864224419 K, F = -0.005949025118796247, relative_change = 6.341776177102969e-8 Iter 85: T = 801.0036312659998 K, F = -0.0024879535128466967, relative_change = 2.6522091525952982e-8 Iter 90: T = 801.0035663776911 K, F = -0.001040491900464513, relative_change = 1.1091860003622142e-8 Iter 95: T = 801.0035392406198 K, F = -0.00043514614471917845, relative_change = 4.63874912888981e-9 Iter 100: T = 801.0035278915717 K, F = -0.00018198331687679925, relative_change = 1.9399804406576905e-9 Iter 105: T = 801.003523145264 K, F = -7.610759799414613e-5, relative_change = 8.11323027811114e-10 Iter 110: T = 801.0035211603014 K, F = -3.182910448551457e-5, relative_change = 3.393049630915945e-10 Iter 115: T = 801.0035203301662 K, F = -1.3311310828156842e-5, relative_change = 1.4190138002753934e-10 Iter 120: T = 801.0035199829939 K, F = -5.566949591973014e-6, relative_change = 5.934485652637129e-11 Iter 125: T = 801.0035198378023 K, F = -2.3281648824369228e-6, relative_change = 2.4818728597150554e-11 Iter 130: T = 801.0035197770814 K, F = -9.736668413751204e-7, relative_change = 1.0379493854216161e-11 Iter 135: T = 801.0035197516871 K, F = -4.071980110875728e-7, relative_change = 4.3408166680518115e-12 Iter 140: T = 801.003519741067 K, F = -1.7029454946193567e-7, relative_change = 1.815375809069046e-12 Iter 145: T = 801.0035197366255 K, F = -7.12196759344863e-8, relative_change = 7.592167643246607e-13 Iter 150: T = 801.0035197347681 K, F = -2.97863032017176e-8, relative_change = 3.1752827349359806e-13 Converged in 153 iterations to T = 801.0035197342243 K Iter 1: T = 980.7916562219074 K, F = -4376.639401690417, relative_change = 0.019208343778092617 Iter 2: T = 963.597467061556 K, F = -3696.293497581701, relative_change = 0.017530929276646647 Iter 3: T = 948.2920423298027 K, F = -3120.2552677510416, relative_change = 0.015883629061859642 Iter 5: T = 922.8105727832751 K, F = -2220.4782334961074, relative_change = 0.012764832737472502 Iter 10: T = 882.58965503553 K, F = -942.0074674279382, relative_change = 0.006634103959484802 Iter 15: T = 863.6705471438269 K, F = -396.78874596240405, relative_change = 0.003091077279301067 Iter 20: T = 855.303169984985 K, F = -166.48480674868827, relative_change = 0.001357851960319866 Iter 25: T = 851.7157427959455 K, F = -69.72495230191915, relative_change = 0.0005801215037024782 Iter 30: T = 850.1993261877382 K, F = -29.177441030515567, relative_change = 0.0002448250559229514 Iter 35: T = 849.5622701675228 K, F = -12.20546204027633, relative_change = 0.00010278071892952162 Iter 40: T = 849.2953392450879 K, F = -5.105015288634885, relative_change = 4.305306369300012e-5 Iter 45: T = 849.18361665846 K, F = -2.1350738623399472, relative_change = 1.8017391419680495e-5 Iter 50: T = 849.1368773698609 K, F = -0.8929301000741083, relative_change = 7.537204206997466e-6 Iter 55: T = 849.117327716591 K, F = -0.3734369553830853, relative_change = 3.152519045520401e-6 Iter 60: T = 849.1091513414691 K, F = -0.15617630590217169, relative_change = 1.3184858790009348e-6 Iter 65: T = 849.1057318003714 K, F = -0.06531488570074995, relative_change = 5.514178688662557e-7 Iter 70: T = 849.1043016928636 K, F = -0.02731548086282576, relative_change = 2.3061151942585707e-7 Iter 75: T = 849.1037036022743 K, F = -0.011423663046874255, relative_change = 9.644483804390204e-8 Iter 80: T = 849.1034534732011 K, F = -0.004777512791588778, relative_change = 4.03344436729415e-8 Iter 85: T = 849.1033488661574 K, F = -0.001998012987122877, relative_change = 1.6868356627006842e-8 Iter 90: T = 849.1033051182288 K, F = -0.0008355929056524936, relative_change = 7.0545500335151596e-9 Iter 95: T = 849.1032868223203 K, F = -0.0003494549349813969, relative_change = 2.9502973990406753e-9 Iter 100: T = 849.1032791707524 K, F = -0.0001461462280387682, relative_change = 1.233849666439107e-9 Iter 105: T = 849.1032759707754 K, F = -6.112009971026566e-5, relative_change = 5.160106901522097e-10 Iter 110: T = 849.1032746325067 K, F = -2.5561155850839512e-5, relative_change = 2.1580183660015763e-10 Iter 115: T = 849.1032740728267 K, F = -1.068998033182389e-5, relative_change = 9.025090295325501e-11 Iter 120: T = 849.1032738387619 K, F = -4.47067699882453e-6, relative_change = 3.774400176253601e-11 Iter 125: T = 849.1032737408731 K, F = -1.8696889945157835e-6, relative_change = 1.5784979492298107e-11 Iter 130: T = 849.1032736999349 K, F = -7.819257661356716e-7, relative_change = 6.601462714915841e-12 Iter 135: T = 849.103273682814 K, F = -3.2700874696978133e-7, relative_change = 2.760794111502711e-12 Iter 140: T = 849.1032736756539 K, F = -1.3676073473689598e-7, relative_change = 1.1546120238687584e-12 Iter 145: T = 849.1032736726595 K, F = -5.719305717910572e-8, relative_change = 4.828563668435916e-13 Converged in 150 iterations to T = 849.1032736714071 K Iter 1: T = 967.3055244779721 K, F = -7449.4673481692125, relative_change = 0.032694475522027915 Iter 2: T = 936.6853944804116 K, F = -6314.734538071297, relative_change = 0.03165507610853903 Iter 3: T = 908.1082968984076 K, F = -5351.340373541723, relative_change = 0.030508746853959424 Iter 5: T = 856.9451297430863 K, F = -3839.3612778788242, relative_change = 0.027900642512413594 Iter 10: T = 761.7810203131554 K, F = -1662.4963005239774, relative_change = 0.01998342867396585 Iter 15: T = 706.0525576886578 K, F = -711.8051090977274, relative_change = 0.011977189239994029 Iter 20: T = 677.3875495322222 K, F = -301.6866789921377, relative_change = 0.006134484625264757 Iter 25: T = 664.019071194985 K, F = -127.00426821943552, relative_change = 0.0028341246443064115 Iter 30: T = 658.1335208708366 K, F = -53.27379448327601, relative_change = 0.001239802268574204 Iter 35: T = 655.6155560499906 K, F = -22.308644237514734, relative_change = 0.0005286959698662108 Iter 40: T = 654.5522087092797 K, F = -9.334881124017635, relative_change = 0.00022294214752186363 Iter 45: T = 654.1056701447678 K, F = -3.904863985657842, relative_change = 9.356196827875733e-5 Iter 50: T = 653.9185992395485 K, F = -1.6332195403929606, relative_change = 3.9185848962467686e-5 Iter 55: T = 653.8403072591784 K, F = -0.6830597227038065, relative_change = 1.63980011698485e-5 Iter 60: T = 653.8075546893169 K, F = -0.28566859927177873, relative_change = 6.8595924556137954e-6 Iter 65: T = 653.7938554359758 K, F = -0.1194708710140352, relative_change = 2.869070120470819e-6 Iter 70: T = 653.7881259406699 K, F = -0.04996429392126167, relative_change = 1.1999330273046422e-6 Iter 75: T = 653.7857297441417 K, F = -0.020895690454348637, relative_change = 5.01835704304245e-7 Iter 80: T = 653.7847276168378 K, F = -0.008738831847680928, relative_change = 2.0987532566636593e-7 Iter 85: T = 653.784308513605 K, F = -0.0036546846380003384, relative_change = 8.777265462556128e-8 Iter 90: T = 653.7841332393434 K, F = -0.0015284329000499475, relative_change = 3.670762256580466e-8 Iter 95: T = 653.7840599375044 K, F = -0.0006392089164586889, relative_change = 1.5351574917283475e-8 Iter 100: T = 653.7840292817912 K, F = -0.00026732480756186394, relative_change = 6.420213518655206e-9 Iter 105: T = 653.7840164612041 K, F = -0.00011179842613151525, relative_change = 2.6850101955501907e-9 Iter 110: T = 653.7840110994813 K, F = -4.675543633908541e-5, relative_change = 1.122903358423798e-9 Iter 115: T = 653.7840088571447 K, F = -1.9553681651129917e-5, relative_change = 4.696115975670959e-10 Iter 120: T = 653.7840079193728 K, F = -8.177582469959255e-6, relative_change = 1.9639716257516597e-10 Iter 125: T = 653.7840075271854 K, F = -3.419962284811895e-6, relative_change = 8.21356303329079e-11 Iter 130: T = 653.784007363168 K, F = -1.4302700310220295e-6, relative_change = 3.435012462163434e-11 Iter 135: T = 653.7840072945739 K, F = -5.981552868572493e-7, relative_change = 1.4365615031601676e-11 Iter 140: T = 653.784007265887 K, F = -2.501551534250801e-7, relative_change = 6.007859015855042e-12 Iter 145: T = 653.7840072538899 K, F = -1.0461759880620036e-7, relative_change = 2.5125518129615075e-12 Iter 150: T = 653.7840072488725 K, F = -4.375209539109193e-8, relative_change = 1.050773558695501e-12 Iter 155: T = 653.7840072467742 K, F = -1.829712692469343e-8, relative_change = 4.3943351743495437e-13 Converged in 159 iterations to T = 653.7840072460168 K Iter 1: T = 973.4871916754199 K, F = -6040.968596947164, relative_change = 0.026512808324580105 Iter 2: T = 949.1674522192011 K, F = -5112.172578785432, relative_change = 0.024982084678857756 Iter 3: T = 926.9735783249279 K, F = -4324.364457691362, relative_change = 0.02338246411882629 Iter 5: T = 888.6421370481805 K, F = -3090.1307916881756, relative_change = 0.020054308673131557 Iter 10: T = 823.3555422903297 K, F = -1323.1802236551896, relative_change = 0.01203769788752855 Iter 15: T = 789.7404105131344 K, F = -560.8488571130677, relative_change = 0.006172401998291169 Iter 20: T = 774.0530660314695 K, F = -236.11659935081244, relative_change = 0.0028534836120553877 Iter 25: T = 767.1442264604102 K, F = -99.04462532922457, relative_change = 0.0012486639660759969 Iter 30: T = 764.1879976080226 K, F = -41.47577792950893, relative_change = 0.0005325500248788047 Iter 35: T = 762.9394806293047 K, F = -17.355291593095036, relative_change = 0.00022458098459462655 Iter 40: T = 762.4151666002664 K, F = -7.259885648583852, relative_change = 9.425216357166942e-5 Iter 45: T = 762.1955099657554 K, F = -3.0364682893522525, relative_change = 3.9475345368000174e-5 Iter 50: T = 762.1035798737673 K, F = -1.2699393831775496, relative_change = 1.651922090584783e-5 Iter 55: T = 762.0651218664784 K, F = -0.5311129300662598, relative_change = 6.910314071707094e-6 Iter 60: T = 762.0490362132184 K, F = -0.22211936449251546, relative_change = 2.8902870691127194e-6 Iter 65: T = 762.0423086413617 K, F = -0.09289324975212587, relative_change = 1.2088070068808818e-6 Iter 70: T = 762.0394950275739 K, F = -0.03884911519360834, relative_change = 5.055470481704916e-7 Iter 75: T = 762.038318329686 K, F = -0.01624717245698859, relative_change = 2.1142747841319876e-7 Iter 80: T = 762.0378262186526 K, F = -0.006794763044344676, relative_change = 8.842178771766622e-8 Iter 85: T = 762.0376204116048 K, F = -0.0028416513111774178, relative_change = 3.697909852930456e-8 Iter 90: T = 762.0375343405808 K, F = -0.001188412558295826, relative_change = 1.5465109511131677e-8 Iter 95: T = 762.0374983446404 K, F = -0.0004970083318036611, relative_change = 6.467695039318269e-9 Iter 100: T = 762.0374832907065 K, F = -0.00020785482177121395, relative_change = 2.7048675848833273e-9 Iter 105: T = 762.0374769949713 K, F = -8.692736937143675e-5, relative_change = 1.1312079791907553e-9 Iter 110: T = 762.0374743620196 K, F = -3.635406502444649e-5, relative_change = 4.730847074466245e-10 Iter 115: T = 762.0374732608876 K, F = -1.5203704647914762e-5, relative_change = 1.9784968228756012e-10 Iter 120: T = 762.0374728003811 K, F = -6.358371051118361e-6, relative_change = 8.27431027557025e-11 Iter 125: T = 762.0374726077919 K, F = -2.659148558459279e-6, relative_change = 3.4604177848559363e-11 Iter 130: T = 762.0374725272487 K, F = -1.1120881847626052e-6, relative_change = 1.447188696011393e-11 Iter 135: T = 762.0374724935646 K, F = -4.650880157663906e-7, relative_change = 6.052308876501743e-12 Iter 140: T = 762.0374724794775 K, F = -1.9450680610599846e-7, relative_change = 2.5311666379945075e-12 Iter 145: T = 762.037472473586 K, F = -8.13459771764613e-8, relative_change = 1.058575932090999e-12 Iter 150: T = 762.0374724711222 K, F = -3.40190731140666e-8, relative_change = 4.4269886823081686e-13 Converged in 154 iterations to T = 762.0374724702328 K Iter 1: T = 970.0172612586213 K, F = -6831.595543170698, relative_change = 0.02998273874137879 Iter 2: T = 942.1921212415476 K, F = -5786.717503006795, relative_change = 0.028685200901445655 Iter 3: T = 916.4817451721337 K, F = -4899.919145587634, relative_change = 0.027287827492693057 Iter 5: T = 871.1992499965065 K, F = -3509.085797464533, relative_change = 0.024234452279733944 Iter 10: T = 790.4433010897868 K, F = -1511.298180775393, relative_change = 0.015932053726340267 Iter 15: T = 746.139212528537 K, F = -643.6657355332532, relative_change = 0.008796703983509253 Iter 20: T = 724.5225748732544 K, F = -271.78938342073144, relative_change = 0.004254969335817992 Iter 25: T = 714.7641907367695 K, F = -114.1813006138214, relative_change = 0.0019050479779739045 Iter 30: T = 710.5388255050523 K, F = -47.84757637198561, relative_change = 0.000821021466042179 Iter 35: T = 708.7448597191736 K, F = -20.027577479263233, relative_change = 0.0003478053404103786 Iter 40: T = 707.9897735651858 K, F = -8.378804269258623, relative_change = 0.00014624852250854598 Iter 45: T = 707.6731332854583 K, F = -3.5046487732044125, relative_change = 6.130254140802093e-5 Iter 50: T = 707.5405604078229 K, F = -1.4657793311230733, relative_change = 2.5661964060638486e-5 Iter 55: T = 707.4850905356792 K, F = -0.6130227631539393, relative_change = 1.0736432533207459e-5 Iter 60: T = 707.4618877668836 K, F = -0.2563762997047464, relative_change = 4.490855543174958e-6 Iter 65: T = 707.4521832860262 K, F = -0.10722013043125067, relative_change = 1.8782608446495247e-6 Iter 70: T = 707.4481246152716 K, F = -0.044840826492623886, relative_change = 7.85534104898934e-7 Iter 75: T = 707.4464272060353 K, F = -0.018752984448150323, relative_change = 3.285237647777596e-7 Iter 80: T = 707.4457173249089 K, F = -0.007842724726806916, relative_change = 1.3739326504902905e-7 Iter 85: T = 707.4454204433899 K, F = -0.003279921610512826, relative_change = 5.7459627266915186e-8 Iter 90: T = 707.4452962838612 K, F = -0.0013717024699777536, relative_change = 2.4030323850747704e-8 Iter 95: T = 707.4452443588406 K, F = -0.0005736623684867714, relative_change = 1.004977217348788e-8 Iter 100: T = 707.4452226431728 K, F = -0.00023991245632037916, relative_change = 4.202935406642859e-9 Iter 105: T = 707.4452135614205 K, F = -0.00010033425601985169, relative_change = 1.7577179166397777e-9 Iter 110: T = 707.4452097633231 K, F = -4.196098496367373e-5, relative_change = 7.350986580415412e-10 Iter 115: T = 707.4452081749133 K, F = -1.7548585699467267e-5, relative_change = 3.0742705270798365e-10 Iter 120: T = 707.4452075106215 K, F = -7.339028273434245e-6, relative_change = 1.2856966826664631e-10 Iter 125: T = 707.4452072328065 K, F = -3.069269336797298e-6, relative_change = 5.376937197792983e-11 Iter 130: T = 707.4452071166211 K, F = -1.283604641910685e-6, relative_change = 2.248698564508515e-11 Iter 135: T = 707.4452070680309 K, F = -5.368185711507323e-7, relative_change = 9.404322104554293e-12 Iter 140: T = 707.4452070477099 K, F = -2.2450340753099596e-7, relative_change = 3.932990533010865e-12 Iter 145: T = 707.4452070392115 K, F = -9.388959798517504e-8, relative_change = 1.6448164600531818e-12 Iter 150: T = 707.4452070356573 K, F = -3.9264777762504366e-8, relative_change = 6.878648343540646e-13 Iter 155: T = 707.445207034171 K, F = -1.6421953574763393e-8, relative_change = 2.876900117431677e-13 Converged in 157 iterations to T = 707.4452070338564 K Iter 1: T = 973.6510074434182 K, F = -6003.643018379727, relative_change = 0.026348992556581807 Iter 2: T = 949.4948120162967 K, F = -5080.358018844923, relative_change = 0.024809911603285877 Iter 3: T = 927.4628993574383 K, F = -4297.24966426909, relative_change = 0.023203826266383204 Iter 5: T = 889.4449445158054 K, F = -3070.4491818869105, relative_change = 0.019869705787803314 Iter 10: T = 824.8208650364401 K, F = -1314.4275197836291, relative_change = 0.011880870860306515 Iter 15: T = 791.6325557452535 K, F = -557.0341517609448, relative_change = 0.006074420528160949 Iter 20: T = 776.1704239739113 K, F = -234.48500680679945, relative_change = 0.002803536403907735 Iter 25: T = 769.3668175231572 K, F = -98.3549481867046, relative_change = 0.0012258169359976585 Iter 30: T = 766.456824717721 K, F = -41.18597885992123, relative_change = 0.0005226167689948197 Iter 35: T = 765.2280587642588 K, F = -17.23384805476295, relative_change = 0.00022035770326866443 Iter 40: T = 764.7120793298536 K, F = -7.209052946023762, relative_change = 9.247363390197373e-5 Iter 45: T = 764.4959214976649 K, F = -3.0152017879756325, relative_change = 3.8729374695239674e-5 Iter 50: T = 764.4054569619817 K, F = -1.261044136075022, relative_change = 1.620686660140178e-5 Iter 55: T = 764.3676122736158 K, F = -0.5273925965237163, relative_change = 6.779617138926629e-6 Iter 60: T = 764.3517831886837 K, F = -0.22056343546322155, relative_change = 2.8356163903593486e-6 Iter 65: T = 764.3451629291934 K, F = -0.09224253445948682, relative_change = 1.1859410361975526e-6 Iter 70: T = 764.3423941968928 K, F = -0.03857697703077978, relative_change = 4.959838693537114e-7 Iter 75: T = 764.3412362693589 K, F = -0.016133360807550123, relative_change = 2.0742798041677007e-7 Iter 80: T = 764.3407520083782 K, F = -0.006747165615224371, relative_change = 8.674913898027674e-8 Iter 85: T = 764.340549484328 K, F = -0.00282174549121883, relative_change = 3.6279574943507917e-8 Iter 90: T = 764.3404647862947 K, F = -0.0011800877066325821, relative_change = 1.517256007462403e-8 Iter 95: T = 764.3404293645557 K, F = -0.0004935267789893949, relative_change = 6.345347310029559e-9 Iter 100: T = 764.3404145507598 K, F = -0.00020639879377182258, relative_change = 2.653700280233536e-9 Iter 105: T = 764.3404083554531 K, F = -8.631843876849565e-5, relative_change = 1.1098091699239243e-9 Iter 110: T = 764.3404057645017 K, F = -3.6099401541145326e-5, relative_change = 4.6413545098031393e-10 Iter 115: T = 764.340404680935 K, F = -1.509720081616095e-5, relative_change = 1.9410698952055877e-10 Iter 120: T = 764.3404042277745 K, F = -6.313830096638107e-6, relative_change = 8.117786673078727e-11 Iter 125: T = 764.3404040382574 K, F = -2.6405204199830834e-6, relative_change = 3.394956971054605e-11 Iter 130: T = 764.340403958999 K, F = -1.1042972004604579e-6, relative_change = 1.4198115842233433e-11 Iter 135: T = 764.3404039258522 K, F = -4.618304554337982e-7, relative_change = 5.937823897715464e-12 Iter 140: T = 764.3404039119898 K, F = -1.931424745693633e-7, relative_change = 2.48326195851173e-12 Iter 145: T = 764.3404039061925 K, F = -8.077588697918969e-8, relative_change = 1.0385477754437254e-12 Iter 150: T = 764.3404039037679 K, F = -3.378157620304023e-8, relative_change = 4.343348260133452e-13 Converged in 154 iterations to T = 764.3404039028927 K Iter 1: T = 964.3129912591464 K, F = -8131.318888712616, relative_change = 0.03568700874085356 Iter 2: T = 930.5508188682131 K, F = -6898.300125609564, relative_change = 0.03501163283805656 Iter 3: T = 898.682491255869 K, F = -5851.187953526157, relative_change = 0.03424673533800571 Iter 5: T = 840.5143550854642 K, F = -4206.950281647047, relative_change = 0.0324228273996279 Iter 10: T = 726.2562747881809 K, F = -1834.720128963068, relative_change = 0.026041048665408417 Iter 15: T = 652.5037518332819 K, F = -792.2523447075705, relative_change = 0.017844522879396734 Iter 20: T = 610.774408348614 K, F = -338.2500180553878, relative_change = 0.01023462596258358 Iter 25: T = 589.9195583545386 K, F = -143.06561123698756, relative_change = 0.005078482042252237 Iter 30: T = 580.3691063906206 K, F = -60.15744233432733, relative_change = 0.00230500088281278 Iter 35: T = 576.2039874441144 K, F = -25.219645147325686, relative_change = 0.0009997718091084803 Iter 40: T = 574.4298254559668 K, F = -10.558175362453149, relative_change = 0.0004247234440411376 Iter 45: T = 573.6820183793642 K, F = -4.417507844500848, relative_change = 0.00017880696398397998 Iter 50: T = 573.368242200726 K, F = -1.8477980005903838, relative_change = 7.498806384141453e-5 Iter 55: T = 573.2368352767593 K, F = -0.7728314045169293, relative_change = 3.1397582975343866e-5 Iter 60: T = 573.1818474244168 K, F = -0.3232178646139752, relative_change = 1.3137270409145164e-5 Iter 65: T = 573.1588452614278 K, F = -0.13517541550821757, relative_change = 5.495288141657369e-6 Iter 70: T = 573.1492245046624 K, F = -0.05653229575073879, relative_change = 2.2983919098633875e-6 Iter 75: T = 573.1452008182905 K, F = -0.023642537652672296, relative_change = 9.61249366761209e-7 Iter 80: T = 573.1435180346874 K, F = -0.009887601465638829, relative_change = 4.0201198549279825e-7 Iter 85: T = 573.1428142692567 K, F = -0.0041351147411023415, relative_change = 1.681272663728916e-7 Iter 90: T = 573.142519945234 K, F = -0.0017293546696000028, relative_change = 7.031301481024149e-8 Iter 95: T = 573.1423968552526 K, F = -0.0007232368279081469, relative_change = 2.9405774698163157e-8 Iter 100: T = 573.1423453775246 K, F = -0.00030246628845903567, relative_change = 1.229785181321032e-8 Iter 105: T = 573.142323848919 K, F = -0.0001264950154838962, relative_change = 5.143109473945943e-9 Iter 110: T = 573.1423148453982 K, F = -5.2901726839915675e-5, relative_change = 2.1509099928265776e-9 Iter 115: T = 573.1423110800181 K, F = -2.212413389796053e-5, relative_change = 8.99536272533641e-10 Iter 120: T = 573.1423095052911 K, F = -9.25257636452681e-6, relative_change = 3.761967904161784e-10 Iter 125: T = 573.1423088467214 K, F = -3.869538093836944e-6, relative_change = 1.5732999781974905e-10 Iter 130: T = 573.1423085712998 K, F = -1.6182869258529742e-6, relative_change = 6.579727939729638e-11 Iter 135: T = 573.1423084561152 K, F = -6.767872542390307e-7, relative_change = 2.7517221693446036e-11 Iter 140: T = 573.1423084079436 K, F = -2.830405045894935e-7, relative_change = 1.150803042957377e-11 Iter 145: T = 573.1423083877976 K, F = -1.1836993146774333e-7, relative_change = 4.812755600054417e-12 Iter 150: T = 573.1423083793724 K, F = -4.9503476484691333e-8, relative_change = 2.0127420091939353e-12 Iter 155: T = 573.1423083758488 K, F = -2.0702647429704513e-8, relative_change = 8.417406441626916e-13 Iter 160: T = 573.1423083743751 K, F = -8.657698891134658e-9, relative_change = 3.5200990918790565e-13 Converged in 163 iterations to T = 573.1423083739437 K Iter 1: T = 963.4939692298906 K, F = -8317.933837169634, relative_change = 0.03650603077010937 Iter 2: T = 928.8611722815625 K, F = -7058.1742972725, relative_change = 0.03594500646019572 Iter 3: T = 896.0677769072316 K, F = -5988.301468288493, relative_change = 0.035304947986770106 Iter 5: T = 835.8794942988045 K, F = -4308.152695123403, relative_change = 0.03375827633268959 Iter 10: T = 715.6569169682024 K, F = -1883.0339131133344, relative_change = 0.02810585417281966 Iter 15: T = 635.4162150211669 K, F = -815.6323886504824, relative_change = 0.02023029414598225 Iter 20: T = 588.24119326937 K, F = -349.33184274977276, relative_change = 0.012187926950428469 Iter 25: T = 563.8919043634439 K, F = -148.09580908638893, relative_change = 0.006266677505562193 Iter 30: T = 552.5104353088796 K, F = -62.35464813919184, relative_change = 0.0029016735340717946 Iter 35: T = 547.4936694780889 K, F = -26.157458597770532, relative_change = 0.0012707375456793197 Iter 40: T = 545.3461859452989 K, F = -10.953911156252342, relative_change = 0.0005421530023621855 Iter 45: T = 544.439070995575 K, F = -4.583644446207735, relative_change = 0.00022866494740275093 Iter 50: T = 544.0581000495296 K, F = -1.917390732848488, relative_change = 9.597222018979207e-5 Iter 55: T = 543.8984906654788 K, F = -0.8019556775366845, relative_change = 4.019682548064409e-5 Iter 60: T = 543.8316904981914 K, F = -0.33540144693633706, relative_change = 1.6821326594890272e-5 Iter 65: T = 543.8037451808889 K, F = -0.14027134144475883, relative_change = 7.036723796909546e-6 Iter 70: T = 543.7920565947924 K, F = -0.05866357891773136, relative_change = 2.9431645916079397e-6 Iter 75: T = 543.7871680224687 K, F = -0.024533884283180374, relative_change = 1.230923024148076e-6 Iter 80: T = 543.7851235166083 K, F = -0.01026037651791803, relative_change = 5.147965815668441e-7 Iter 85: T = 543.7842684717021 K, F = -0.004291014287145289, relative_change = 2.1529580509134422e-7 Iter 90: T = 543.7839108802875 K, F = -0.0017945538206622647, relative_change = 9.003957883471485e-8 Iter 95: T = 543.7837613310385 K, F = -0.0007505039094214405, relative_change = 3.765567998956081e-8 Iter 100: T = 543.7836987877131 K, F = -0.00031386970979294104, relative_change = 1.574806429883647e-8 Iter 105: T = 543.7836726313399 K, F = -0.00013126406364041832, relative_change = 6.586030200489368e-9 Iter 110: T = 543.783661692431 K, F = -5.489620011867036e-5, relative_change = 2.754356801643731e-9 Iter 115: T = 543.7836571176483 K, F = -2.2958246765458767e-5, relative_change = 1.1519049684365175e-9 Iter 120: T = 543.7836552044196 K, F = -9.601413415522009e-6, relative_change = 4.817404445382534e-10 Iter 125: T = 543.7836544042843 K, F = -4.015425841052966e-6, relative_change = 2.0146961280751541e-10 Iter 130: T = 543.7836540696583 K, F = -1.6792991434921856e-6, relative_change = 8.42570035186682e-11 Iter 135: T = 543.7836539297136 K, F = -7.023028714969737e-7, relative_change = 3.523728087202939e-11 Iter 140: T = 543.7836538711871 K, F = -2.93711014315301e-7, relative_change = 1.4736629924180307e-11 Iter 145: T = 543.7836538467106 K, F = -1.2283370415255845e-7, relative_change = 6.163047187454783e-12 Iter 150: T = 543.7836538364743 K, F = -5.137083525230679e-8, relative_change = 2.577475652399851e-12 Iter 155: T = 543.7836538321933 K, F = -2.1483597456573023e-8, relative_change = 1.0779160802113928e-12 Iter 160: T = 543.783653830403 K, F = -8.984501309594606e-9, relative_change = 4.5078755799723425e-13 Converged in 165 iterations to T = 543.7836538296542 K Iter 1: T = 969.3343557953026 K, F = -6987.196202598641, relative_change = 0.030665644204697393 Iter 2: T = 940.809973830683 K, F = -5919.618630173259, relative_change = 0.02942677291285766 Iter 3: T = 914.3877100691612 K, F = -5013.466587944748, relative_change = 0.02808459146530793 Iter 5: T = 867.663345627118 K, F = -3592.016494633334, relative_change = 0.02512235737630827 Iter 10: T = 783.4959767751855 K, F = -1548.994343665649, relative_change = 0.016853059704200722 Iter 15: T = 736.628135759996 K, F = -660.4944583848223, relative_change = 0.009475912528670754 Iter 20: T = 713.499142560022 K, F = -279.1144896137617, relative_change = 0.004638806871223026 Iter 25: T = 702.9878359176433 K, F = -117.30782895486844, relative_change = 0.002090119118884405 Iter 30: T = 698.4212891532717 K, F = -49.167408813869116, relative_change = 0.0009034519289227744 Iter 35: T = 696.4795476260429 K, F = -20.581799174218663, relative_change = 0.00038322234436527215 Iter 40: T = 695.661729688602 K, F = -8.61098834048672, relative_change = 0.00016123036893458007 Iter 45: T = 695.318688460427 K, F = -3.601821828649339, relative_change = 6.759824411350353e-5 Iter 50: T = 695.1750451684281 K, F = -1.5064307092496816, relative_change = 2.8300197288871153e-5 Iter 55: T = 695.1149403888178 K, F = -0.630025835040376, relative_change = 1.1840701360870465e-5 Iter 60: T = 695.0897983482357 K, F = -0.2634875689627605, relative_change = 4.952836445655824e-6 Iter 65: T = 695.0792826835822 K, F = -0.11019421490844716, relative_change = 2.071495206123963e-6 Iter 70: T = 695.0748847385798 K, F = -0.04608463581519773, relative_change = 8.663519959710519e-7 Iter 75: T = 695.0730454359916 K, F = -0.01927316240132848, relative_change = 3.623236418654174e-7 Iter 80: T = 695.0722762125298 K, F = -0.008060269717907964, relative_change = 1.5152892948284998e-7 Iter 85: T = 695.0719545131902 K, F = -0.003370901586599584, relative_change = 6.337135756609002e-8 Iter 90: T = 695.0718199745269 K, F = -0.0014097513916435656, relative_change = 2.650268468375922e-8 Iter 95: T = 695.0717637088236 K, F = -0.0005895748844001458, relative_change = 1.1083743824250801e-8 Iter 100: T = 695.0717401778296 K, F = -0.0002465672601268398, relative_change = 4.6353548285356016e-9 Iter 105: T = 695.071730336886 K, F = -0.0001031173725356549, relative_change = 1.938560872451068e-9 Iter 110: T = 695.0717262212858 K, F = -4.312491540714447e-5, relative_change = 8.107293071681551e-10 Iter 115: T = 695.0717245000926 K, F = -1.803535398081646e-5, relative_change = 3.390566699492204e-10 Iter 120: T = 695.0717237802692 K, F = -7.542600699128599e-6, relative_change = 1.4179755446623737e-10 Iter 125: T = 695.0717234792303 K, F = -3.154404815797207e-6, relative_change = 5.93014143849047e-11 Iter 130: T = 695.0717233533322 K, F = -1.3192098947678588e-6, relative_change = 2.480056215549135e-11 Iter 135: T = 695.0717233006802 K, F = -5.517091099527249e-7, relative_change = 1.0371887091156072e-11 Iter 140: T = 695.0717232786606 K, F = -2.3073145638541348e-7, relative_change = 4.337649263347362e-12 Iter 145: T = 695.0717232694516 K, F = -9.649357690655336e-8, relative_change = 1.814036540010008e-12 Iter 150: T = 695.0717232656003 K, F = -4.035404976843182e-8, relative_change = 7.586382758941672e-13 Iter 155: T = 695.0717232639897 K, F = -1.6877612418753074e-8, relative_change = 3.172916438421601e-13 Converged in 158 iterations to T = 695.0717232635182 K Iter 1: T = 966.4125475348943 K, F = -7652.932994089838, relative_change = 0.033587452465105645 Iter 2: T = 934.8612043564965 K, F = -6488.775828920244, relative_change = 0.032647903070876214 Iter 3: T = 905.3163295367525 K, F = -5500.309866666738, relative_change = 0.03160348796384268 Iter 5: T = 852.1222490721973 K, F = -3948.699374475289, relative_change = 0.029194385191918568 Iter 10: T = 751.6568057570739 K, F = -1713.2396457355974, relative_change = 0.021583784979611286 Iter 15: T = 691.2930588645521 K, F = -735.1248103634215, relative_change = 0.013383632362816648 Iter 20: T = 659.5200317740296 K, F = -312.101145291501, relative_change = 0.007036693105721712 Iter 25: T = 644.4718276945364 K, F = -131.52146385265547, relative_change = 0.0033012653494500555 Iter 30: T = 637.7916519769478 K, F = -55.19631213262701, relative_change = 0.001455140750500456 Iter 35: T = 634.9225478345159 K, F = -23.118955313537022, relative_change = 0.0006226462990507202 Iter 40: T = 633.708824182953 K, F = -9.67489960444376, relative_change = 0.00026294689421968025 Iter 45: T = 633.1987613094109 K, F = -4.047265352685067, relative_change = 0.00011041974749769531 Iter 50: T = 632.9850112949238 K, F = -1.6928089545803786, relative_change = 4.625842853084685e-5 Iter 55: T = 632.8955420150894 K, F = -0.7079869448330254, relative_change = 1.935977962145079e-5 Iter 60: T = 632.8581114983982 K, F = -0.2960945498133747, relative_change = 8.098933911503633e-6 Iter 65: T = 632.8424552649357 K, F = -0.12383131851140089, relative_change = 3.3874983330037853e-6 Iter 70: T = 632.8359072309852 K, F = -0.051787918458660875, relative_change = 1.4167670331948903e-6 Iter 75: T = 632.8331686932452 K, F = -0.021658357842623377, relative_change = 5.925219722242289e-7 Iter 80: T = 632.8320233915092 K, F = -0.009057789477106726, relative_change = 2.4780205258972653e-7 Iter 85: T = 632.8315444104506 K, F = -0.0037880767053765085, relative_change = 1.0363417784708947e-7 Iter 90: T = 632.8313440944679 K, F = -0.001584219086875116, relative_change = 4.334112078306596e-8 Iter 95: T = 632.8312603198646 K, F = -0.0006625393711351957, relative_change = 1.812578654301372e-8 Iter 100: T = 632.8312252843134 K, F = -0.0002770818834301192, relative_change = 7.580422562949988e-9 Iter 105: T = 632.8312106320252 K, F = -0.00011587895335118947, relative_change = 3.17022361228011e-9 Iter 110: T = 632.831204504263 K, F = -4.8461961497825445e-5, relative_change = 1.3258254176232274e-9 Iter 115: T = 632.8312019415596 K, F = -2.0267370532789375e-5, relative_change = 5.544760197137397e-10 Iter 120: T = 632.8312008698066 K, F = -8.476057678730164e-6, relative_change = 2.3188853013062901e-10 Iter 125: T = 632.8312004215866 K, F = -3.544789139386939e-6, relative_change = 9.697856917491622e-11 Iter 130: T = 632.8312002341356 K, F = -1.4824728449824853e-6, relative_change = 4.0557587460528886e-11 Iter 135: T = 632.8312001557414 K, F = -6.199883311186483e-7, relative_change = 1.6961680656605413e-11 Iter 140: T = 632.8312001229559 K, F = -2.592863524997213e-7, relative_change = 7.093572717515277e-12 Iter 145: T = 632.8312001092447 K, F = -1.0843611930599906e-7, relative_change = 2.9666023304579417e-12 Iter 150: T = 632.8312001035105 K, F = -4.534920727827796e-8, relative_change = 1.24066653125349e-12 Iter 155: T = 632.8312001011125 K, F = -1.896642276566496e-8, relative_change = 5.188846146525815e-13 Converged in 160 iterations to T = 632.8312001001095 K Iter 1: T = 966.4848307369521 K, F = -7636.46319774192, relative_change = 0.03351516926304796 Iter 2: T = 935.0090667274999 K, F = -6474.684794622756, relative_change = 0.03256726128381312 Iter 3: T = 905.5429773533887 K, F = -5488.245473586988, relative_change = 0.03151422849538935 Iter 5: T = 852.5151152249265 K, F = -3939.837927059331, relative_change = 0.029087967510316816 Iter 10: T = 752.4903506118033 K, F = -1709.1128892175357, relative_change = 0.021448426243724332 Iter 15: T = 692.5217938160738 K, F = -733.2179939593223, relative_change = 0.013261033271312946 Iter 20: T = 661.0199233763395 K, F = -311.2450177030584, relative_change = 0.006956182211012831 Iter 25: T = 646.1205815960028 K, F = -131.14879408461036, relative_change = 0.003258997485500117 Iter 30: T = 639.5114322704354 K, F = -55.03740463518284, relative_change = 0.0014355223576472478 Iter 35: T = 636.6738419192861 K, F = -23.05191964784265, relative_change = 0.000614060415279898 Iter 40: T = 635.4736384297813 K, F = -9.646759676345843, relative_change = 0.0002592860637392098 Iter 45: T = 634.9692913607262 K, F = -4.035478291988352, relative_change = 0.0001088762176072462 Iter 50: T = 634.7579426676813 K, F = -1.68787619022509, relative_change = 4.561069517440714e-5 Iter 55: T = 634.6694795670196 K, F = -0.7059234295937686, relative_change = 1.9088501679544628e-5 Iter 60: T = 634.6324701827061 K, F = -0.29523146254376637, relative_change = 7.985414247267804e-6 Iter 65: T = 634.616990130699 K, F = -0.12347034751370034, relative_change = 3.3400111544990627e-6 Iter 70: T = 634.6105157882371 K, F = -0.05163695299911075, relative_change = 1.3969052462806507e-6 Iter 75: T = 634.6078080709595 K, F = -0.02159522174665185, relative_change = 5.842151716067802e-7 Iter 80: T = 634.606675659024 K, F = -0.009031385113506318, relative_change = 2.4432798567299056e-7 Iter 85: T = 634.6062020686891 K, F = -0.003777034068739915, relative_change = 1.0218127043449624e-7 Iter 90: T = 634.606004007181 K, F = -0.0015796009219828933, relative_change = 4.273349561732442e-8 Iter 95: T = 634.6059211754276 K, F = -0.00066060799869605, relative_change = 1.787167009537457e-8 Iter 100: T = 634.6058865341877 K, F = -0.000276274159400014, relative_change = 7.474147944948035e-9 Iter 105: T = 634.6058720468054 K, F = -0.00011554115356848804, relative_change = 3.125778289351069e-9 Iter 110: T = 634.6058659880089 K, F = -4.8320691106273905e-5, relative_change = 1.3072378921887489e-9 Iter 115: T = 634.6058634541477 K, F = -2.020828986282197e-5, relative_change = 5.467025024351703e-10 Iter 120: T = 634.6058623944566 K, F = -8.451348284532756e-6, relative_change = 2.2863752075023644e-10 Iter 125: T = 634.6058619512811 K, F = -3.534453997422471e-6, relative_change = 9.561892075164213e-11 Iter 130: T = 634.6058617659398 K, F = -1.478149585121269e-6, relative_change = 3.998893983013668e-11 Iter 135: T = 634.6058616884279 K, F = -6.181803671179154e-7, relative_change = 1.6723867305484742e-11 Iter 140: T = 634.6058616560116 K, F = -2.585299208046621e-7, relative_change = 6.994107741149649e-12 Iter 145: T = 634.6058616424546 K, F = -1.0811994877180098e-7, relative_change = 2.9250098727482845e-12 Iter 150: T = 634.605861636785 K, F = -4.5216858035601604e-8, relative_change = 1.2232687647084143e-12 Iter 155: T = 634.6058616344138 K, F = -1.8910432442176273e-8, relative_change = 5.115910821543798e-13 Converged in 160 iterations to T = 634.6058616334223 K Iter 1: T = 976.3695027343913 K, F = -5384.231280374893, relative_change = 0.02363049726560871 Iter 2: T = 954.9020077452122 K, F = -4552.807569072564, relative_change = 0.021987060154027554 Iter 3: T = 935.5064417200217 K, F = -3848.029471624311, relative_change = 0.02031157738477147 Iter 5: T = 902.5122827793477 K, F = -2745.063251121317, relative_change = 0.01695750315735985 Iter 10: T = 848.1351145734483 K, F = -1170.6583607903688, relative_change = 0.009554561465809477 Iter 15: T = 821.264896095112 K, F = -494.7470927201457, relative_change = 0.004683869015987666 Iter 20: T = 809.0437060862303 K, F = -207.94543556060694, relative_change = 0.0021120051783229243 Iter 25: T = 803.7322202359965 K, F = -87.15852335909027, relative_change = 0.0009132331883891838 Iter 30: T = 801.4733184283474 K, F = -36.48550430794622, relative_change = 0.0003874312378166042 Iter 35: T = 800.521845791085 K, F = -15.264828610466976, relative_change = 0.00016301192143516294 Iter 40: T = 800.1227287073223 K, F = -6.385015638392231, relative_change = 6.834709343168836e-5 Iter 45: T = 799.9556021836364 K, F = -2.6704794435252417, relative_change = 2.8614040328449677e-5 Iter 50: T = 799.8856708890354 K, F = -1.11685959518242, relative_change = 1.197207090388118e-5 Iter 55: T = 799.8564183113687 K, F = -0.4670898295813465, relative_change = 5.007797177090347e-6 Iter 60: T = 799.8441834010875 K, F = -0.19534356104716688, relative_change = 2.094484013289595e-6 Iter 65: T = 799.8390664173057 K, F = -0.08169518783760021, relative_change = 8.759668146857711e-7 Iter 70: T = 799.8369263989133 K, F = -0.03416593427692893, relative_change = 3.663447832106539e-7 Iter 75: T = 799.8360314116013 K, F = -0.014288607175235168, relative_change = 1.5321063792913433e-7 Iter 80: T = 799.8356571161587 K, F = -0.0059756671099656655, relative_change = 6.407467142531611e-8 Iter 85: T = 799.8355005811492 K, F = -0.0024990955160448802, relative_change = 2.6796819554298738e-8 Iter 90: T = 799.8354351163063 K, F = -0.0010451516187324206, relative_change = 1.1206754631199608e-8 Iter 95: T = 799.8354077381215 K, F = -0.00043709489246657185, relative_change = 4.686799427906765e-9 Iter 100: T = 799.8353962882367 K, F = -0.00018279830316336731, relative_change = 1.9600756171000624e-9 Iter 105: T = 799.835391499758 K, F = -7.644843500576037e-5, relative_change = 8.197270713045439e-10 Iter 110: T = 799.835389497159 K, F = -3.1971647728057384e-5, relative_change = 3.4281964656769894e-10 Iter 115: T = 799.8353886596483 K, F = -1.3370928613642974e-5, relative_change = 1.4337131083929538e-10 Iter 120: T = 799.8353883093912 K, F = -5.591882081046329e-6, relative_change = 5.995959509288945e-11 Iter 125: T = 799.8353881629095 K, F = -2.3385915154383596e-6, relative_change = 2.507581498381356e-11 Iter 130: T = 799.8353881016491 K, F = -9.780280114668471e-7, relative_change = 1.0487017211672445e-11 Iter 135: T = 799.8353880760292 K, F = -4.0902180675761457e-7, relative_change = 4.385783104143787e-12 Iter 140: T = 799.8353880653148 K, F = -1.7105922445193045e-7, relative_change = 1.8342020989155977e-12 Iter 145: T = 799.8353880608337 K, F = -7.153742920262829e-8, relative_change = 7.670682666684221e-13 Iter 150: T = 799.8353880589597 K, F = -2.99166165174114e-8, relative_change = 3.2078434230353273e-13 Converged in 153 iterations to T = 799.835388058411 K Iter 1: T = 965.140508259499 K, F = -7942.7683530104, relative_change = 0.03485949174050099 Iter 2: T = 932.2533066425667 K, F = -6736.8370021641, relative_change = 0.03407504019931762 Iter 3: T = 901.3088960482874 K, F = -5712.788492537745, relative_change = 0.033193135785941144 Iter 5: T = 845.1355690740596 K, F = -4104.963224401776, relative_change = 0.031117878320714713 Iter 10: T = 736.5546084257675 K, F = -1786.4526523770999, relative_change = 0.024153826924501312 Iter 15: T = 668.5654618407318 K, F = -769.3022026431386, relative_change = 0.015849878616606417 Iter 20: T = 631.3154959084918 K, F = -327.61340223102746, relative_change = 0.00873715755889101 Iter 25: T = 613.1589675247732 K, F = -138.3259825416736, relative_change = 0.004221722958612508 Iter 30: T = 604.9673768701973 K, F = -58.10993921219786, relative_change = 0.0018891221049158467 Iter 35: T = 601.4214537637998 K, F = -24.3505063773824, relative_change = 0.0008139498240464891 Iter 40: T = 599.916154774752 K, F = -10.192324334198943, relative_change = 0.0003447710450241156 Iter 45: T = 599.2826050062472 K, F = -4.26408131345344, relative_change = 0.00014496571749470665 Iter 50: T = 599.0169365139687 K, F = -1.7835584653802656, relative_change = 6.076360976419675e-5 Iter 55: T = 598.9057059281586 K, F = -0.7459525420882331, relative_change = 2.5436146233415004e-5 Iter 60: T = 598.8591660884906 K, F = -0.31197450456264253, relative_change = 1.0641917424611457e-5 Iter 65: T = 598.8396987416244 K, F = -0.13047290572314094, relative_change = 4.451314997483821e-6 Iter 70: T = 598.8315565945495 K, F = -0.054565579609909654, relative_change = 1.8617222069690057e-6 Iter 75: T = 598.8281513341824 K, F = -0.022820021163512227, relative_change = 7.7861704518776e-7 Iter 80: T = 598.8267271931261 K, F = -0.009543613095134351, relative_change = 3.2563089715665235e-7 Iter 85: T = 598.8261315967422 K, F = -0.003991254319293369, relative_change = 1.3618342090432658e-7 Iter 90: T = 598.8258825105945 K, F = -0.0016691904573973293, relative_change = 5.695365381647996e-8 Iter 95: T = 598.8257783396832 K, F = -0.0006980754250394128, relative_change = 2.381871933612705e-8 Iter 100: T = 598.8257347741448 K, F = -0.00029194348717198615, relative_change = 9.961276592855578e-9 Iter 105: T = 598.825716554513 K, F = -0.00012209425375570016, relative_change = 4.165925467337036e-9 Iter 110: T = 598.8257089348448 K, F = -5.106127518966774e-5, relative_change = 1.7422398929549004e-9 Iter 115: T = 598.8257057482084 K, F = -2.1354434917686405e-5, relative_change = 7.286255427325569e-10 Iter 120: T = 598.8257044155191 K, F = -8.93067999990782e-6, relative_change = 3.0471991677290426e-10 Iter 125: T = 598.8257038581725 K, F = -3.7349171056466623e-6, relative_change = 1.2743751143711534e-10 Iter 130: T = 598.8257036250834 K, F = -1.5619864924265592e-6, relative_change = 5.329587410686266e-11 Iter 135: T = 598.8257035276027 K, F = -6.532407594850298e-7, relative_change = 2.2288949024061197e-11 Iter 140: T = 598.8257034868352 K, F = -2.731921903698087e-7, relative_change = 9.32147407901827e-12 Iter 145: T = 598.8257034697858 K, F = -1.1425293744427023e-7, relative_change = 3.898375694931724e-12 Iter 150: T = 598.8257034626555 K, F = -4.7782102663429527e-8, relative_change = 1.6303527231172048e-12 Iter 155: T = 598.8257034596736 K, F = -1.998318505114227e-8, relative_change = 6.818377247846056e-13 Iter 160: T = 598.8257034584265 K, F = -8.35754526695709e-9, relative_change = 2.851642335833314e-13 Converged in 162 iterations to T = 598.8257034581625 K Iter 1: T = 964.6291401692986 K, F = -8059.284058799202, relative_change = 0.03537085983070143 Iter 2: T = 931.2018006314394 K, F = -6836.605685518897, relative_change = 0.03465304762822377 Iter 3: T = 899.6877171641488 K, F = -5798.29697051399, relative_change = 0.03384237814609153 Iter 5: T = 842.2870936985615 K, F = -4167.955437355092, relative_change = 0.03191912443447876 Iter 10: T = 730.237512686506 K, F = -1816.2170816851724, relative_change = 0.02529796282316312 Iter 15: T = 658.7722288315557 K, F = -783.4103408552996, relative_change = 0.017039161545962293 Iter 20: T = 618.8583473939918 K, F = -334.12719772080106, relative_change = 0.00961598941876809 Iter 25: T = 599.1151587294909 K, F = -141.21976597531227, relative_change = 0.004719074746249705 Iter 30: T = 590.1300688170744 K, F = -59.35785142151424, relative_change = 0.002129110666564909 Iter 35: T = 586.2238486393003 K, F = -24.879775237404353, relative_change = 0.0009208796405010878 Iter 40: T = 584.5623578579704 K, F = -10.415026686634206, relative_change = 0.00039072187094332485 Iter 45: T = 583.86247901817 K, F = -4.357460310473862, relative_change = 0.0001644048556167161 Iter 50: T = 583.5688912810633 K, F = -1.8226534218453465, relative_change = 6.893260455028833e-5 Iter 55: T = 583.445952863576 K, F = -0.7623100240627309, relative_change = 2.8859430348811927e-5 Iter 60: T = 583.3945111111772 K, F = -0.3188167134517188, relative_change = 1.2074787503200745e-5 Iter 65: T = 583.3729927524538 K, F = -0.13333462926739276, relative_change = 5.050770515776721e-6 Iter 70: T = 583.3639926773751 K, F = -0.05576242682235025, relative_change = 2.112458781564686e-6 Iter 75: T = 583.3602285914693 K, F = -0.023320564001516608, relative_change = 8.834845681050557e-7 Iter 80: T = 583.3586543800744 K, F = -0.009752947318146243, relative_change = 3.694888832917065e-7 Iter 85: T = 583.3579960215712 K, F = -0.004078800607712207, relative_change = 1.5452555315536968e-7 Iter 90: T = 583.3577206873961 K, F = -0.0017058033985603016, relative_change = 6.462458732180633e-8 Iter 95: T = 583.3576055392183 K, F = -0.0007133873999664031, relative_change = 2.7026801381125843e-8 Iter 100: T = 583.357557382851 K, F = -0.0002983471377354663, relative_change = 1.1302935829270247e-8 Iter 105: T = 583.357537243279 K, F = -0.0001247723372961862, relative_change = 4.727023574727141e-9 Iter 110: T = 583.3575288206687 K, F = -5.218128134770739e-5, relative_change = 1.9768978396215094e-9 Iter 115: T = 583.3575252982324 K, F = -2.1822834773366218e-5, relative_change = 8.267622995039228e-10 Iter 120: T = 583.3575238251075 K, F = -9.126569917750071e-6, relative_change = 3.4576186370192525e-10 Iter 125: T = 583.3575232090291 K, F = -3.816840565828983e-6, relative_change = 1.4460174260681808e-10 Iter 130: T = 583.3575229513776 K, F = -1.5962478575048955e-6, relative_change = 6.047415875303492e-11 Iter 135: T = 583.3575228436248 K, F = -6.675702362568536e-7, relative_change = 2.5291027512985123e-11 Iter 140: T = 583.3575227985613 K, F = -2.7918630252088406e-7, relative_change = 1.0577027071327264e-11 Iter 145: T = 583.3575227797152 K, F = -1.167590688022635e-7, relative_change = 4.4234399058387605e-12 Iter 150: T = 583.3575227718335 K, F = -4.882983278831077e-8, relative_change = 1.849927660273994e-12 Iter 155: T = 583.3575227685373 K, F = -2.0421340618526074e-8, relative_change = 7.736664394261052e-13 Iter 160: T = 583.3575227671588 K, F = -8.540574580884197e-9, relative_change = 3.235613200009893e-13 Converged in 163 iterations to T = 583.3575227667552 K Iter 1: T = 964.2742970784383 K, F = -8140.1353945946385, relative_change = 0.035725702921561714 Iter 2: T = 930.4710965625302 K, F = -6905.851746019865, relative_change = 0.035055585965865894 Iter 3: T = 898.5593041054472 K, F = -5857.662772615284, relative_change = 0.034296382311042 Iter 5: T = 840.2967656618364 K, F = -4211.725614131894, relative_change = 0.032484921386716256 Iter 10: T = 725.7649041521651 K, F = -1836.9902254787414, relative_change = 0.026133966779006552 Iter 15: T = 651.724669675319 K, F = -793.3411753216889, relative_change = 0.01794712885388134 Iter 20: T = 609.7632839043735 K, F = -338.76007427681884, relative_change = 0.010314857932455016 Iter 25: T = 588.7645066209384 K, F = -143.2948292535925, relative_change = 0.005125671920219302 Iter 30: T = 579.1402730289229 K, F = -60.25695617236656, relative_change = 0.00232825079184096 Iter 35: T = 574.9412293430961 K, F = -25.261990089347606, relative_change = 0.0010102333703388949 Iter 40: T = 573.1522759187691 K, F = -10.576019220478793, relative_change = 0.00042923860259256593 Iter 45: T = 572.3981717174663 K, F = -4.424994507508633, relative_change = 0.00018072061136065025 Iter 50: T = 572.081742130483 K, F = -1.8509332804761731, relative_change = 7.579287417189772e-5 Iter 55: T = 571.9492220108299 K, F = -0.7741433657753592, relative_change = 3.1734956223995925e-5 Iter 60: T = 571.8937679907024 K, F = -0.32376667385754393, relative_change = 1.3278502804001914e-5 Iter 65: T = 571.8705707628542 K, F = -0.13540495708471567, relative_change = 5.554377531301861e-6 Iter 70: T = 571.8608684087459 K, F = -0.056628296801864375, relative_change = 2.3231080529768884e-6 Iter 75: T = 571.8568105940863 K, F = -0.023682687142019293, relative_change = 9.715866972588218e-7 Iter 80: T = 571.8551135370477 K, F = -0.009904392585466354, relative_change = 4.063353107809917e-7 Iter 85: T = 571.8544038021946 K, F = -0.004142137009843783, relative_change = 1.6993535542551522e-7 Iter 90: T = 571.8541069816705 K, F = -0.0017322914703801762, relative_change = 7.106918324251768e-8 Iter 95: T = 571.8539828476194 K, F = -0.000724465034545041, relative_change = 2.9722014097076895e-8 Iter 100: T = 571.8539309332483 K, F = -0.0003029799390937282, relative_change = 1.243010702183112e-8 Iter 105: T = 571.8539092220333 K, F = -0.0001267098308274095, relative_change = 5.198420223149001e-9 Iter 110: T = 571.8539001421431 K, F = -5.2991564955917614e-5, relative_change = 2.1740416031514454e-9 Iter 115: T = 571.8538963448243 K, F = -2.2161705452661273e-5, relative_change = 9.092101962668145e-10 Iter 120: T = 571.8538947567401 K, F = -9.268289633657112e-6, relative_change = 3.802425569769252e-10 Iter 125: T = 571.8538940925845 K, F = -3.8761091329386765e-6, relative_change = 1.5902196783185128e-10 Iter 130: T = 571.8538938148266 K, F = -1.6210353886991768e-6, relative_change = 6.650489684140478e-11 Iter 135: T = 571.853893698665 K, F = -6.779365976372631e-7, relative_change = 2.7813151920552077e-11 Iter 140: T = 571.8538936500848 K, F = -2.835214211183157e-7, relative_change = 1.1631802131595706e-11 Iter 145: T = 571.853893629768 K, F = -1.1857201737131007e-7, relative_change = 4.864557461656277e-12 Iter 150: T = 571.8538936212713 K, F = -4.9588043726789266e-8, relative_change = 2.0344082312587973e-12 Iter 155: T = 571.8538936177177 K, F = -2.073819765913143e-8, relative_change = 8.508091235239534e-13 Iter 160: T = 571.8538936162316 K, F = -8.672580487090187e-9, relative_change = 3.5580288722701253e-13 Converged in 163 iterations to T = 571.8538936157966 K Iter 1: T = 980.2399796840655 K, F = -4502.3394256175725, relative_change = 0.01976002031593458 Iter 2: T = 962.5193793615921 K, F = -3803.034197133761, relative_change = 0.01807781838094866 Iter 3: T = 946.7166035933609 K, F = -3210.8485916902246, relative_change = 0.016418137761249715 Iter 5: T = 920.3391384870964 K, F = -2285.6158853416778, relative_change = 0.013254642204126036 Iter 10: T = 878.4965000209701 K, F = -970.2187717060626, relative_change = 0.006952095253434937 Iter 15: T = 858.7075087780962 K, F = -408.81784163401215, relative_change = 0.003256878983855072 Iter 20: T = 849.9296634438963 K, F = -171.56260030911935, relative_change = 0.0014345446115103043 Iter 25: T = 846.161017726081 K, F = -71.85737996543162, relative_change = 0.000613633547787933 Iter 30: T = 844.5670206784642 K, F = -30.070840696943847, relative_change = 0.00025910424375038475 Iter 35: T = 843.8971964551596 K, F = -12.579374702437134, relative_change = 0.00010879958923401367 Iter 40: T = 843.6165042362915 K, F = -5.261439666542046, relative_change = 4.557854433807134e-5 Iter 45: T = 843.4990164455321 K, F = -2.2005011068188147, relative_change = 1.9075037570638257e-5 Iter 50: T = 843.4498643152652 K, F = -0.9202940784522451, relative_change = 7.979780200131715e-6 Iter 55: T = 843.4293052738998 K, F = -0.3848811644806206, relative_change = 3.337654369338657e-6 Iter 60: T = 843.4207067065745 K, F = -0.16096245744692883, relative_change = 1.3959195127201083e-6 Iter 65: T = 843.4171105902008 K, F = -0.06731651959051166, relative_change = 5.838029089157229e-7 Iter 70: T = 843.4156066351501 K, F = -0.028152589482773882, relative_change = 2.441555694698689e-7 Iter 75: T = 843.4149776603473 K, F = -0.01177375211970677, relative_change = 1.0210916343512403e-7 Iter 80: T = 843.4147146150764 K, F = -0.004923924264744306, relative_change = 4.270333951189809e-8 Iter 85: T = 843.4146046063158 K, F = -0.002059244023029816, relative_change = 1.785905845346178e-8 Iter 90: T = 843.4145585993233 K, F = -0.0008612004583687938, relative_change = 7.468873600570138e-9 Iter 95: T = 843.4145393586468 K, F = -0.0003601643181843084, relative_change = 3.1235724900057844e-9 Iter 100: T = 843.4145313119658 K, F = -0.0001506250210057125, relative_change = 1.306315394218129e-9 Iter 105: T = 843.4145279467476 K, F = -6.29931852793586e-5, relative_change = 5.463167319421008e-10 Iter 110: T = 843.4145265393731 K, F = -2.6344502302766415e-5, relative_change = 2.2847618283167962e-10 Iter 115: T = 843.4145259507923 K, F = -1.1017584673922443e-5, relative_change = 9.555146154430712e-11 Iter 120: T = 843.4145257046407 K, F = -4.607684559232439e-6, relative_change = 3.996075434061987e-11 Iter 125: T = 843.4145256016973 K, F = -1.9269910980224125e-6, relative_change = 1.6712085417195516e-11 Iter 130: T = 843.4145255586451 K, F = -8.058904121810428e-7, relative_change = 6.9891912953638126e-12 Iter 135: T = 843.4145255406402 K, F = -3.3703449719979517e-7, relative_change = 2.9229762988871153e-12 Iter 140: T = 843.4145255331102 K, F = -1.409524155171482e-7, relative_change = 1.2224284851197026e-12 Iter 145: T = 843.4145255299611 K, F = -5.89476527590449e-8, relative_change = 5.112313230000362e-13 Converged in 150 iterations to T = 843.4145255286442 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015943081878172646 Iteration 10: d = 1.410931739647539e-5 Iteration 20: d = 1.3981902938244712e-7 Iteration 30: d = 1.707601863350812e-9 Iteration 40: d = 2.250295710453112e-11 Iteration 50: d = 3.062021631070681e-13 Iteration 60: d = 4.227377129064659e-15 Converged after 62 iterations. d = 1.7419249497047242e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.716139526596 Iteration 2: convergence error = 4820.6495545173675 Iteration 3: convergence error = 1093.2850935852084 Iteration 4: convergence error = 321.9261215790368 Iteration 5: convergence error = 95.5407458521513 Iteration 6: convergence error = 28.502428733143915 Iteration 7: convergence error = 8.518643757400469 Iteration 8: convergence error = 2.5547428383019906 Iteration 9: convergence error = 0.7643662200971448 Iteration 10: convergence error = 0.22838387403453453 Iteration 11: convergence error = 0.06818562677608497 Iteration 12: convergence error = 0.0203483357740879 Iteration 13: convergence error = 0.0060709401268468355 Iteration 14: convergence error = 0.0018110092357801477 Iteration 15: convergence error = 0.0005401937776241539 Iteration 16: convergence error = 0.00016112309731397545 Iteration 17: convergence error = 4.8056723244371824e-5 Iteration 18: convergence error = 1.4333212448036647e-5 Iteration 19: convergence error = 4.274930461178883e-6 Iteration 20: convergence error = 1.2750065252475906e-6 Iteration 21: convergence error = 3.802722403634107e-7 Iteration 22: convergence error = 1.1327756510581821e-7 Iteration 23: convergence error = 3.287800609541591e-8 Iteration 24: convergence error = 9.474433682044037e-9 Iteration 25: convergence error = 2.731894710450433e-9 Iteration 26: convergence error = 7.805738277966157e-10 Iteration 27: convergence error = 2.2214408090803772e-10 Iteration 28: convergence error = 6.45741238258779e-11 Iteration 29: convergence error = 1.9326762412674725e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016338182972844154 Iteration 10: d = 2.0574726481241673e-5 Iteration 20: d = 2.504478432340263e-7 Iteration 30: d = 3.2463159456027066e-9 Iteration 40: d = 4.261108969348028e-11 Iteration 50: d = 5.61361955908068e-13 Iteration 60: d = 7.420700987252367e-15 Converged after 63 iterations. d = 2.020254616699377e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12275.061932435885 Iteration 2: convergence error = 8321.903849279286 Iteration 3: convergence error = 1953.1615027169835 Iteration 4: convergence error = 480.6106531058572 Iteration 5: convergence error = 122.5402643214968 Iteration 6: convergence error = 32.72988450005505 Iteration 7: convergence error = 8.921264738722584 Iteration 8: convergence error = 2.445903774433873 Iteration 9: convergence error = 0.6714494385039416 Iteration 10: convergence error = 0.18435906436820915 Iteration 11: convergence error = 0.050617610300378146 Iteration 12: convergence error = 0.013896950928938168 Iteration 13: convergence error = 0.0038152725035160984 Iteration 14: convergence error = 0.0010474315033661696 Iteration 15: convergence error = 0.00028755636549249175 Iteration 16: convergence error = 7.894400982877414e-5 Iteration 17: convergence error = 2.167279922105081e-5 Iteration 18: convergence error = 5.949910928393365e-6 Iteration 19: convergence error = 1.6334536212525563e-6 Iteration 20: convergence error = 4.4843409341410734e-7 Iteration 21: convergence error = 1.2396117199386936e-7 Iteration 22: convergence error = 3.337595444463659e-8 Iteration 23: convergence error = 8.932829587138258e-9 Iteration 24: convergence error = 2.3874235921539366e-9 Iteration 25: convergence error = 6.386926543200389e-10 Iteration 26: convergence error = 1.6962076188065112e-10 Iteration 27: convergence error = 4.547473508864641e-11 Iteration 28: convergence error = 1.318767317570746e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 91%|█████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016338182972844154 Iteration 10: d = 2.0574726481241673e-5 Iteration 20: d = 2.504478432340263e-7 Iteration 30: d = 3.2463159456027066e-9 Iteration 40: d = 4.261108969348028e-11 Iteration 50: d = 5.61361955908068e-13 Iteration 60: d = 7.420700987252367e-15 Converged after 63 iterations. d = 2.020254616699377e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10994.973255066925 Iteration 2: convergence error = 5724.544472088321 Iteration 3: convergence error = 2018.6621308096296 Iteration 4: convergence error = 898.4888850863986 Iteration 5: convergence error = 410.81740554593307 Iteration 6: convergence error = 193.88691061765667 Iteration 7: convergence error = 91.58880772476778 Iteration 8: convergence error = 43.287198595933205 Iteration 9: convergence error = 20.459340527666882 Iteration 10: convergence error = 9.668073755529349 Iteration 11: convergence error = 4.567540254923642 Iteration 12: convergence error = 2.1574000525847623 Iteration 13: convergence error = 1.0188401737555068 Iteration 14: convergence error = 0.4810927422677196 Iteration 15: convergence error = 0.22715123473062704 Iteration 16: convergence error = 0.10715904121298081 Iteration 17: convergence error = 0.050122023292260565 Iteration 18: convergence error = 0.02290495360512068 Iteration 19: convergence error = 0.010427566752696293 Iteration 20: convergence error = 0.0047368976192956325 Iteration 21: convergence error = 0.0021491281863745826 Iteration 22: convergence error = 0.0009743511627675616 Iteration 23: convergence error = 0.00044155414070701227 Iteration 24: convergence error = 0.00020005209307782934 Iteration 25: convergence error = 9.062268827619846e-5 Iteration 26: convergence error = 4.104794652448618e-5 Iteration 27: convergence error = 1.8591822481539566e-5 Iteration 28: convergence error = 8.420501671935199e-6 Iteration 29: convergence error = 3.8136849980219267e-6 Iteration 30: convergence error = 1.7272163859161083e-6 Iteration 31: convergence error = 7.822472980478778e-7 Iteration 32: convergence error = 3.542731974448543e-7 Iteration 33: convergence error = 1.604494173079729e-7 Iteration 34: convergence error = 7.266635293490253e-8 Iteration 35: convergence error = 3.2907792046898976e-8 Iteration 36: convergence error = 1.4909346646163613e-8 Iteration 37: convergence error = 6.747995939804241e-9 Iteration 38: convergence error = 3.0572664400096983e-9 Iteration 39: convergence error = 1.3819771993439645e-9 Iteration 40: convergence error = 6.275513442233205e-10 Iteration 41: convergence error = 2.8330759960226715e-10 Iteration 42: convergence error = 1.305124897044152e-10 Iteration 43: convergence error = 5.95719029661268e-11 Iteration 44: convergence error = 2.773958840407431e-11 Iteration 45: convergence error = 1.2732925824820995e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 88%|████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016338182972844154 Iteration 10: d = 2.0574726481241673e-5 Iteration 20: d = 2.504478432340263e-7 Iteration 30: d = 3.2463159456027066e-9 Iteration 40: d = 4.261108969348028e-11 Iteration 50: d = 5.61361955908068e-13 Iteration 60: d = 7.420700987252367e-15 Converged after 63 iterations. d = 2.020254616699377e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.772682584015 Iteration 2: convergence error = 7342.957220870756 Iteration 3: convergence error = 1736.8429641249045 Iteration 4: convergence error = 505.79339867922226 Iteration 5: convergence error = 157.26191301062772 Iteration 6: convergence error = 48.88918149857227 Iteration 7: convergence error = 15.172963659475954 Iteration 8: convergence error = 4.701238544248099 Iteration 9: convergence error = 1.4549746639181649 Iteration 10: convergence error = 0.4499782135003443 Iteration 11: convergence error = 0.1391066996166046 Iteration 12: convergence error = 0.042993418877358636 Iteration 13: convergence error = 0.013286106549458054 Iteration 14: convergence error = 0.004105447959318553 Iteration 15: convergence error = 0.0012685416086242185 Iteration 16: convergence error = 0.0003919568889614311 Iteration 17: convergence error = 0.00012110604939152836 Iteration 18: convergence error = 3.74188080058957e-5 Iteration 19: convergence error = 1.1561444352992112e-5 Iteration 20: convergence error = 3.5721859603654593e-6 Iteration 21: convergence error = 1.1037027434213087e-6 Iteration 22: convergence error = 3.4085633160430007e-7 Iteration 23: convergence error = 1.0411804396426305e-7 Iteration 24: convergence error = 3.100376488873735e-8 Iteration 25: convergence error = 9.20454112929292e-9 Iteration 26: convergence error = 2.7280293579678982e-9 Iteration 27: convergence error = 8.008100849110633e-10 Iteration 28: convergence error = 2.423803380224854e-10 Iteration 29: convergence error = 7.09405867382884e-11 Iteration 30: convergence error = 2.546585164964199e-11 Iteration 31: convergence error = 8.185452315956354e-12 Converged after 31 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 91%|█████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016338182972844154 Iteration 10: d = 2.0574726481241673e-5 Iteration 20: d = 2.504478432340263e-7 Iteration 30: d = 3.2463159456027066e-9 Iteration 40: d = 4.261108969348028e-11 Iteration 50: d = 5.61361955908068e-13 Iteration 60: d = 7.420700987252367e-15 Converged after 63 iterations. d = 2.020254616699377e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.737012676325 Iteration 2: convergence error = 5514.843016245601 Iteration 3: convergence error = 939.2715984827521 Iteration 4: convergence error = 171.3426154762708 Iteration 5: convergence error = 31.132220784549645 Iteration 6: convergence error = 5.670137881266555 Iteration 7: convergence error = 1.0339475683097135 Iteration 8: convergence error = 0.18871879333073593 Iteration 9: convergence error = 0.034522240827300266 Iteration 10: convergence error = 0.006311468935564335 Iteration 11: convergence error = 0.001153545552824653 Iteration 12: convergence error = 0.0002108016728925577 Iteration 13: convergence error = 3.8519427107530646e-5 Iteration 14: convergence error = 7.0382916419475805e-6 Iteration 15: convergence error = 1.286015958612552e-6 Iteration 16: convergence error = 2.3497386791859753e-7 Iteration 17: convergence error = 4.294133759685792e-8 Iteration 18: convergence error = 7.838480087229982e-9 Iteration 19: convergence error = 1.439275365555659e-9 Iteration 20: convergence error = 2.651177055668086e-10 Iteration 21: convergence error = 4.6838977141305804e-11 Iteration 22: convergence error = 9.322320693172514e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 88%|████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016338182972844154 Iteration 10: d = 2.0574726481241673e-5 Iteration 20: d = 2.504478432340263e-7 Iteration 30: d = 3.2463159456027066e-9 Iteration 40: d = 4.261108969348028e-11 Iteration 50: d = 5.61361955908068e-13 Iteration 60: d = 7.420700987252367e-15 Converged after 63 iterations. d = 2.020254616699377e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.488030073207 Iteration 2: convergence error = 2712.8434518468575 Iteration 3: convergence error = 205.41081694346622 Iteration 4: convergence error = 19.37613515211657 Iteration 5: convergence error = 1.6035203095421764 Iteration 6: convergence error = 0.1307428759641367 Iteration 7: convergence error = 0.010672799576192295 Iteration 8: convergence error = 0.0008732174075603862 Iteration 9: convergence error = 7.155095467896149e-5 Iteration 10: convergence error = 5.867760258796111e-6 Iteration 11: convergence error = 4.814185172727767e-7 Iteration 12: convergence error = 3.950728448814292e-8 Iteration 13: convergence error = 3.243332021361525e-9 Iteration 14: convergence error = 2.6529921717384453e-10 Iteration 15: convergence error = 2.153990958157715e-11 Converged after 15 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346352 Iteration 2: convergence error = 858.4060420534064 Iteration 3: convergence error = 199.12106737711963 Iteration 4: convergence error = 59.265629268140174 Iteration 5: convergence error = 17.985482911037252 Iteration 6: convergence error = 5.463033078096487 Iteration 7: convergence error = 1.660989611064224 Iteration 8: convergence error = 0.5052487627317532 Iteration 9: convergence error = 0.15371874094239502 Iteration 10: convergence error = 0.04677131697644654 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.004330236512828378 Iteration 13: convergence error = 0.0013175920926187246 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198903971238906 Iteration 16: convergence error = 3.711853855747904e-5 Iteration 17: convergence error = 1.1294342471046548e-5 Iteration 18: convergence error = 3.4366166801191866e-6 Iteration 19: convergence error = 1.045686303768889e-6 Iteration 20: convergence error = 3.1818046863918426e-7 Iteration 21: convergence error = 9.68161657510791e-8 Iteration 22: convergence error = 2.946035237982869e-8 Iteration 23: convergence error = 8.963752406998537e-9 Iteration 24: convergence error = 2.7299620342091657e-9 Iteration 25: convergence error = 8.292317943414673e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.696598913753405e-11 Iteration 28: convergence error = 2.3646862246096134e-11 Iteration 29: convergence error = 9.094947017729282e-12 Converged after 29 iterations Energy conservation errors by band: [1.5428857128674637e-25, 8.401053096241687e-26, 1.1490863489811346e-25, 9.400697635337753e-26, 1.2440020930973268e-25, -3.2610768469290563e-19, 2.7533531010703882e-14, 1.7053025658242404e-12, 5.6701310313655995e-12, 2.6432189770275727e-12, 7.176481631177012e-13, 8.526512829121202e-14, 4.9960036108132044e-15, 2.636779683484747e-16, 2.0166160408230382e-17, 1.0062751413381088e-18, 3.560185356428231e-20, 1.2755125045567687e-21, 4.105530024647957e-23, 5.6284752489113644e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 60%|███████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015943081878172646 Iteration 10: d = 1.410931739647539e-5 Iteration 20: d = 1.3981902938244712e-7 Iteration 30: d = 1.707601863350812e-9 Iteration 40: d = 2.250295710453112e-11 Iteration 50: d = 3.062021631070681e-13 Iteration 60: d = 4.227377129064659e-15 Converged after 62 iterations. d = 1.7419249497047242e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.346037072194 Iteration 2: convergence error = 3607.7007790381213 Iteration 3: convergence error = 591.7523182403975 Iteration 4: convergence error = 105.41111252465112 Iteration 5: convergence error = 18.766139760545457 Iteration 6: convergence error = 3.310134018094004 Iteration 7: convergence error = 0.5816666792266005 Iteration 8: convergence error = 0.10205234374006977 Iteration 9: convergence error = 0.01789344378653368 Iteration 10: convergence error = 0.003136551616989891 Iteration 11: convergence error = 0.0005497506685969711 Iteration 12: convergence error = 9.635210267333605e-5 Iteration 13: convergence error = 1.6886870071175508e-5 Iteration 14: convergence error = 2.9596087642858038e-6 Iteration 15: convergence error = 5.187055194255663e-7 Iteration 16: convergence error = 9.091058927879203e-8 Iteration 17: convergence error = 1.5943669495754875e-8 Iteration 18: convergence error = 2.7703208616003394e-9 Iteration 19: convergence error = 4.965841071680188e-10 Iteration 20: convergence error = 8.662937034387141e-11 Iteration 21: convergence error = 1.3869794202037156e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.492427513024 Iteration 2: convergence error = 871.304602661783 Iteration 3: convergence error = 207.75299581225158 Iteration 4: convergence error = 62.49550550490892 Iteration 5: convergence error = 18.97931530918413 Iteration 6: convergence error = 5.76621559404623 Iteration 7: convergence error = 1.7533061530655232 Iteration 8: convergence error = 0.5333443698997371 Iteration 9: convergence error = 0.16226812526508638 Iteration 10: convergence error = 0.04937275063014113 Iteration 11: convergence error = 0.015022831428041172 Iteration 12: convergence error = 0.0045710916562029524 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318846916256 Iteration 15: convergence error = 0.0001287742984459328 Iteration 16: convergence error = 3.9183143599075265e-5 Iteration 17: convergence error = 1.1922556950594299e-5 Iteration 18: convergence error = 3.6277691606301232e-6 Iteration 19: convergence error = 1.1038513321182108e-6 Iteration 20: convergence error = 3.3587832604098367e-7 Iteration 21: convergence error = 1.0220117019343888e-7 Iteration 22: convergence error = 3.1099034458748065e-8 Iteration 23: convergence error = 9.464656613999978e-9 Iteration 24: convergence error = 2.880597094190307e-9 Iteration 25: convergence error = 8.786855687503703e-10 Iteration 26: convergence error = 2.6830093702301383e-10 Iteration 27: convergence error = 8.185452315956354e-11 Iteration 28: convergence error = 2.6261659513693303e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [9.81469183839774e-26, 1.2278462217584005e-25, 1.7064639101740927e-25, 1.3045866106183005e-25, 1.2440020930973268e-25, -2.642742795433417e-19, -7.993605777301127e-15, 8.526512829121202e-14, 7.013056801952189e-12, 4.575895218295045e-12, 5.826450433232822e-13, 8.79296635503124e-14, 5.218048215738236e-15, 3.642919299551295e-16, 2.0166160408230382e-17, 8.775261333554552e-19, 3.7613556814011274e-20, 1.2358078351542233e-21, 3.6499344528902346e-23, 4.998575315730623e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729987 Iteration 2: convergence error = 2115.1156110176394 Iteration 3: convergence error = 714.8959934551629 Iteration 4: convergence error = 296.01907471323966 Iteration 5: convergence error = 115.88799395378669 Iteration 6: convergence error = 44.11524923618913 Iteration 7: convergence error = 16.599581025126554 Iteration 8: convergence error = 6.215983404932786 Iteration 9: convergence error = 2.323124567003788 Iteration 10: convergence error = 0.867563639824084 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.12090784413658184 Iteration 13: convergence error = 0.04513241840754745 Iteration 14: convergence error = 0.016846741615154315 Iteration 15: convergence error = 0.0062884074741305085 Iteration 16: convergence error = 0.0023472777563711134 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782211112615 Iteration 19: convergence error = 0.00012207719146317686 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985607473878e-6 Iteration 23: convergence error = 2.3698869426880265e-6 Iteration 24: convergence error = 8.846079708746402e-7 Iteration 25: convergence error = 3.302000095573021e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7174670574604534e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.949427865445614e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.248281478183344e-10 Iteration 34: convergence error = 4.774847184307873e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.9952501103574007e-25, 1.4136387421560532e-25, 1.0339757656912846e-25, 1.6478988765704848e-25, 2.1729646950855903e-25, 9.486769009248164e-20, 5.240252676230739e-14, 2.9274360713316128e-12, 1.2093437362636905e-11, 5.6203930398623925e-12, 2.0961010704922955e-13, 1.84297022087776e-14, 1.582067810090848e-15, 1.723881454251952e-16, 7.101524229780054e-18, 4.641740550953566e-19, 1.4770137017746862e-20, 4.963083675318166e-22, 1.7991178323028352e-23, 9.298117831235686e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238243 Iteration 2: convergence error = 864.8522700482431 Iteration 3: convergence error = 203.43244494690748 Iteration 4: convergence error = 60.87736397590345 Iteration 5: convergence error = 18.481426659698286 Iteration 6: convergence error = 5.6143306186266955 Iteration 7: convergence error = 1.7070587705935623 Iteration 8: convergence error = 0.5192694771476454 Iteration 9: convergence error = 0.1579851928424887 Iteration 10: convergence error = 0.04806952669207476 Iteration 11: convergence error = 0.014626287390910875 Iteration 12: convergence error = 0.004450431969985402 Iteration 13: convergence error = 0.0013541649049102489 Iteration 14: convergence error = 0.0004120419150694943 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.8148852013364376e-5 Iteration 17: convergence error = 1.1607843930505624e-5 Iteration 18: convergence error = 3.532008690854127e-6 Iteration 19: convergence error = 1.0747122587417834e-6 Iteration 20: convergence error = 3.270116621933994e-7 Iteration 21: convergence error = 9.950440471584443e-8 Iteration 22: convergence error = 3.027832917723572e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8029489840264432e-9 Iteration 25: convergence error = 8.546976459911093e-10 Iteration 26: convergence error = 2.609112925711088e-10 Iteration 27: convergence error = 8.003553375601768e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.753886504564434e-12 Converged after 29 iterations Energy conservation errors by band: [1.4621063561728321e-25, 7.674038885990003e-26, 1.32882041762669e-25, 1.3116548043290807e-25, 1.126872025890111e-25, -1.5246593050577406e-19, -3.6637359812630166e-14, 2.5721647034515627e-12, 7.627676268384675e-12, 2.8421709430404007e-12, 4.973799150320701e-13, 7.194245199571014e-14, 4.385380947269368e-15, 4.198030811863873e-16, 2.3310346708438345e-17, 9.84252284709497e-19, 4.1081097941833566e-20, 9.880672416945916e-22, 2.4156258825962636e-23, 4.8210806556121566e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 9m57.5s Testing RayTraceHeatTransfer tests passed Testing completed after 601.12s PkgEval succeeded after 670.58s