Package evaluation to test ClusteredLowRankSolver on Julia 1.14.0-DEV.1687 (b1350e5378*) started at 2026-02-05T17:14:01.677 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 7.51s ################################################################################ # Installation # Installing ClusteredLowRankSolver... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [cadeb640] + ClusteredLowRankSolver v1.2.0 Updating `~/.julia/environments/v1.14/Manifest.toml` ⌅ [c3fe647b] + AbstractAlgebra v0.47.6 [fb37089c] + Arblib v1.6.1 [0a1fb500] + BlockDiagonals v0.2.0 [cadeb640] + ClusteredLowRankSolver v1.2.0 [861a8166] + Combinatorics v1.1.0 [ffbed154] + DocStringExtensions v0.9.5 [1a297f60] + FillArrays v1.16.0 [14197337] + GenericLinearAlgebra v0.3.19 [076d061b] + HashArrayMappedTries v0.2.0 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [0b1a1467] + KrylovKit v0.10.2 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.16 ⌅ [2edaba10] + Nemo v0.52.4 [65ce6f38] + PackageExtensionCompat v1.0.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [fb686558] + RandomExtensions v0.4.4 [af85af4c] + RowEchelon v0.2.1 [7e506255] + ScopedValues v1.5.0 [276daf66] + SpecialFunctions v2.6.1 [409d34a3] + VectorInterface v0.5.0 ⌅ [e134572f] + FLINT_jll v301.300.102+0 [656ef2d0] + OpenBLAS32_jll v0.3.30+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [56f22d72] + Artifacts v1.11.0 [ade2ca70] + Dates v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [2f01184e] + SparseArrays v1.13.0 [fa267f1f] + TOML v1.0.3 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [781609d7] + GMP_jll v6.3.0+2 [3a97d323] + MPFR_jll v4.2.2+0 [4536629a] + OpenBLAS_jll v0.3.30+0 [05823500] + OpenLibm_jll v0.8.7+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.15.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 3.8s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling packages... 19173.9 ms ✓ Arblib 41338.7 ms ✓ ClusteredLowRankSolver 2 dependencies successfully precompiled in 61 seconds. 47 already precompiled. Precompilation completed after 75.39s ################################################################################ # Testing # Testing ClusteredLowRankSolver Status `/tmp/jl_H4pyWn/Project.toml` ⌅ [c3fe647b] AbstractAlgebra v0.47.6 [cadeb640] ClusteredLowRankSolver v1.2.0 ⌅ [2edaba10] Nemo v0.52.4 [1fd47b50] QuadGK v2.11.2 [276daf66] SpecialFunctions v2.6.1 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_H4pyWn/Manifest.toml` ⌅ [c3fe647b] AbstractAlgebra v0.47.6 [fb37089c] Arblib v1.6.1 [0a1fb500] BlockDiagonals v0.2.0 [cadeb640] ClusteredLowRankSolver v1.2.0 [861a8166] Combinatorics v1.1.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [1a297f60] FillArrays v1.16.0 [14197337] GenericLinearAlgebra v0.3.19 [076d061b] HashArrayMappedTries v0.2.0 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [0b1a1467] KrylovKit v0.10.2 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 ⌅ [2edaba10] Nemo v0.52.4 [bac558e1] OrderedCollections v1.8.1 [65ce6f38] PackageExtensionCompat v1.0.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [1fd47b50] QuadGK v2.11.2 [fb686558] RandomExtensions v0.4.4 [af85af4c] RowEchelon v0.2.1 [7e506255] ScopedValues v1.5.0 [276daf66] SpecialFunctions v2.6.1 [409d34a3] VectorInterface v0.5.0 ⌅ [e134572f] FLINT_jll v301.300.102+0 [656ef2d0] OpenBLAS32_jll v0.3.30+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [8dfed614] Test v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [781609d7] GMP_jll v6.3.0+2 [3a97d323] MPFR_jll v4.2.2+0 [4536629a] OpenBLAS_jll v0.3.30+0 [05823500] OpenLibm_jll v0.8.7+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [8e850b90] libblastrampoline_jll v5.15.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 16.9 1.000e+20 0.000e+00 0.000e+00 0.00e+00 1.00e+10 1.00e+00 1.95e+10 7.42e-01 7.10e-01 3.00e-01 2 19.0 3.995e+19 1.999e+11 -2.907e+09 1.03e+00 2.58e+09 2.58e-01 5.65e+09 7.46e-01 7.17e-01 3.00e-01 3 19.0 1.576e+19 3.079e+11 -4.779e+09 1.03e+00 6.53e+08 6.53e-02 1.60e+09 7.32e-01 7.31e-01 3.00e-01 4 19.0 6.100e+18 4.277e+11 -6.725e+09 1.03e+00 1.75e+08 1.75e-02 4.31e+08 7.20e-01 7.22e-01 3.00e-01 5 19.0 2.433e+18 5.963e+11 -9.362e+09 1.03e+00 4.92e+07 4.92e-03 1.20e+08 7.11e-01 7.14e-01 3.00e-01 6 19.0 9.953e+17 8.401e+11 -1.309e+10 1.03e+00 1.42e+07 1.42e-03 3.42e+07 7.07e-01 7.10e-01 3.00e-01 7 19.0 4.128e+17 1.191e+12 -1.842e+10 1.03e+00 4.16e+06 4.16e-04 9.93e+06 7.05e-01 7.07e-01 3.00e-01 8 19.0 1.725e+17 1.693e+12 -2.598e+10 1.03e+00 1.23e+06 1.23e-04 2.91e+06 7.04e-01 7.06e-01 3.00e-01 9 19.0 7.238e+16 2.410e+12 -3.671e+10 1.03e+00 3.64e+05 3.64e-05 8.56e+05 7.03e-01 7.05e-01 3.00e-01 10 19.0 3.044e+16 3.431e+12 -5.194e+10 1.03e+00 1.08e+05 1.08e-05 2.53e+05 7.03e-01 7.04e-01 3.00e-01 11 19.0 1.281e+16 4.886e+12 -7.353e+10 1.03e+00 3.20e+04 3.20e-06 7.48e+04 7.03e-01 7.04e-01 3.00e-01 12 19.0 5.398e+15 6.956e+12 -1.042e+11 1.03e+00 9.51e+03 9.51e-07 2.21e+04 7.03e-01 7.04e-01 3.00e-01 13 19.0 2.275e+15 9.899e+12 -1.476e+11 1.03e+00 2.82e+03 2.82e-07 6.55e+03 7.03e-01 7.04e-01 3.00e-01 14 19.0 9.587e+14 1.407e+13 -2.094e+11 1.03e+00 8.38e+02 8.38e-08 1.94e+03 7.04e-01 7.05e-01 3.00e-01 15 19.1 4.036e+14 1.993e+13 -2.971e+11 1.03e+00 2.48e+02 2.48e-08 5.71e+02 7.06e-01 7.09e-01 3.00e-01 16 19.1 1.692e+14 2.789e+13 -4.222e+11 1.03e+00 7.31e+01 7.31e-09 1.66e+02 7.12e-01 7.22e-01 3.00e-01 17 19.1 7.003e+13 3.756e+13 -6.021e+11 1.03e+00 2.10e+01 2.10e-09 4.62e+01 7.31e-01 7.65e-01 3.00e-01 18 19.1 2.773e+13 4.485e+13 -8.676e+11 1.04e+00 5.66e+00 5.66e-10 1.08e+01 7.79e-01 9.17e-01 3.00e-01 19 19.1 9.540e+12 3.941e+13 -1.292e+12 1.07e+00 1.25e+00 1.25e-10 8.99e-01 9.22e-01 1.00e+00 3.00e-01 20 19.1 2.995e+12 1.720e+13 -1.811e+12 1.24e+00 9.79e-02 9.79e-12 2.91e-52 1.00e+00 1.00e+00 3.00e-01 21 19.1 8.988e+11 4.388e+12 -1.903e+12 2.53e+00 6.71e-65 0.00e+00 1.33e-51 1.00e+00 1.00e+00 3.00e-01 22 19.1 2.696e+11 1.339e+12 -5.487e+11 2.39e+00 1.76e-65 2.37e-66 3.73e-52 8.90e-01 8.90e-01 1.00e-01 23 19.1 5.361e+10 2.688e+11 -1.065e+11 2.31e+00 2.69e-66 1.78e-66 4.29e-53 8.70e-01 8.70e-01 1.00e-01 24 19.1 1.161e+10 5.819e+10 -2.310e+10 2.32e+00 1.14e-66 3.71e-67 5.41e-54 8.52e-01 8.52e-01 1.00e-01 25 19.1 2.713e+09 1.355e+10 -5.443e+09 2.34e+00 3.99e-67 3.71e-68 8.32e-55 8.36e-01 8.36e-01 1.00e-01 26 19.1 6.711e+08 3.370e+09 -1.328e+09 2.30e+00 1.27e-67 2.78e-68 1.41e-55 8.30e-01 8.30e-01 1.00e-01 27 19.1 1.696e+08 8.422e+08 -3.452e+08 2.39e+00 2.45e-68 4.64e-69 2.42e-56 8.10e-01 8.10e-01 1.00e-01 28 19.1 4.599e+07 2.340e+08 -8.791e+07 2.20e+00 3.27e-69 1.16e-69 4.59e-57 8.18e-01 8.18e-01 1.00e-01 29 19.1 1.213e+07 5.873e+07 -2.619e+07 2.61e+00 1.16e-69 7.97e-70 8.34e-58 7.63e-01 7.63e-01 1.00e-01 30 19.1 3.798e+06 2.001e+07 -6.576e+06 1.98e+00 2.90e-70 1.81e-71 1.97e-58 8.24e-01 8.24e-01 1.00e-01 31 19.1 9.800e+05 4.616e+06 -2.245e+06 2.89e+00 1.49e-70 5.89e-71 3.47e-59 7.75e-01 7.75e-01 1.00e-01 32 19.1 2.963e+05 1.559e+06 -5.151e+05 1.99e+00 2.26e-71 0.00e+00 7.79e-60 8.39e-01 8.39e-01 1.00e-01 33 19.1 7.263e+04 3.436e+05 -1.649e+05 2.85e+00 4.85e-72 1.13e-72 1.26e-60 7.97e-01 7.97e-01 1.00e-01 34 19.1 2.051e+04 1.063e+05 -3.733e+04 2.08e+00 9.20e-73 2.83e-73 2.55e-61 8.41e-01 8.41e-01 1.00e-01 35 19.1 4.988e+03 2.366e+04 -1.125e+04 2.81e+00 1.41e-73 2.30e-73 4.05e-62 8.01e-01 8.01e-01 1.00e-01 36 19.1 1.393e+03 7.141e+03 -2.612e+03 2.15e+00 3.54e-74 2.65e-74 8.07e-63 8.38e-01 8.38e-01 1.00e-01 37 19.1 3.422e+02 1.603e+03 -7.929e+02 2.96e+00 4.39e-74 1.55e-74 1.31e-63 7.97e-01 7.97e-01 1.00e-01 38 19.2 9.665e+01 4.860e+02 -1.905e+02 2.29e+00 1.49e-74 1.66e-75 2.65e-64 8.39e-01 8.39e-01 1.00e-01 39 19.2 2.366e+01 1.051e+02 -6.048e+01 3.71e+00 5.39e-75 4.15e-76 4.26e-65 8.03e-01 8.03e-01 1.00e-01 40 19.2 6.562e+00 2.998e+01 -1.595e+01 3.28e+00 1.33e-75 0.00e+00 8.39e-66 8.57e-01 8.57e-01 1.00e-01 41 19.2 1.499e+00 4.629e+00 -5.866e+00 8.49e+00 2.42e-76 3.45e-77 1.20e-66 8.75e-01 8.75e-01 1.00e-01 42 19.2 3.183e-01 -4.666e-01 -2.695e+00 7.05e-01 3.45e-77 1.73e-77 1.50e-67 9.64e-01 9.64e-01 1.00e-01 43 19.2 4.224e-02 -1.900e+00 -2.195e+00 7.22e-02 1.73e-77 1.73e-77 5.43e-69 9.83e-01 9.83e-01 1.00e-01 44 19.2 4.861e-03 -2.089e+00 -2.123e+00 8.08e-03 8.64e-78 2.59e-77 9.09e-71 9.97e-01 9.97e-01 1.00e-01 45 19.2 5.004e-04 -2.110e+00 -2.114e+00 8.29e-04 8.64e-78 1.73e-77 2.98e-73 9.99e-01 9.99e-01 1.00e-01 46 19.2 5.050e-05 -2.113e+00 -2.113e+00 8.37e-05 8.64e-78 1.73e-77 2.21e-75 1.00e+00 1.00e+00 1.00e-01 47 19.2 5.060e-06 -2.113e+00 -2.113e+00 8.38e-06 1.73e-77 1.73e-77 2.21e-75 1.00e+00 1.00e+00 1.00e-01 48 19.2 5.060e-07 -2.113e+00 -2.113e+00 8.38e-07 1.73e-77 1.73e-77 2.10e-74 1.00e+00 1.00e+00 1.00e-01 49 19.2 5.062e-08 -2.113e+00 -2.113e+00 8.38e-08 8.64e-78 0.00e+00 2.94e-74 1.00e+00 1.00e+00 1.00e-01 50 19.2 5.062e-09 -2.113e+00 -2.113e+00 8.39e-09 8.64e-78 3.45e-77 2.91e-74 1.00e+00 1.00e+00 1.00e-01 51 19.2 5.063e-10 -2.113e+00 -2.113e+00 8.39e-10 8.64e-78 1.73e-77 5.73e-74 1.00e+00 1.00e+00 1.00e-01 52 19.2 5.063e-11 -2.113e+00 -2.113e+00 8.39e-11 8.64e-78 2.59e-77 1.26e-73 1.00e+00 1.00e+00 1.00e-01 53 19.2 5.064e-12 -2.113e+00 -2.113e+00 8.39e-12 1.73e-77 3.45e-77 2.20e-73 1.00e+00 1.00e+00 1.00e-01 54 19.2 5.064e-13 -2.113e+00 -2.113e+00 8.39e-13 1.73e-77 1.73e-77 1.78e-73 1.00e+00 1.00e+00 1.00e-01 55 19.2 5.065e-14 -2.113e+00 -2.113e+00 8.39e-14 8.64e-78 1.73e-77 5.81e-73 1.00e+00 1.00e+00 1.00e-01 56 19.2 5.065e-15 -2.113e+00 -2.113e+00 8.39e-15 8.64e-78 8.64e-78 2.42e-72 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 19.258459 seconds (3.90 M allocations: 234.272 MiB, 1.10% gc time, 98.25% compilation time: <1% of which was recompilation) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:-2.11291388142360186796468424247721942868258679589191465277976177786195417257858 Dual objective:-2.112913881423605414094233468559204520477307064816511045913998491309211042467988 Duality gap:8.391561957169854821204391165800026292581623569394190964753620779894810456062401e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.2 1.000e+20 0.000e+00 0.000e+00 0.00e+00 1.00e+10 1.00e+00 2.10e+11 7.15e-01 8.46e-01 3.00e-01 2 0.3 4.213e+19 -7.841e+09 2.996e+11 1.05e+00 2.85e+09 2.85e-01 3.23e+10 7.79e-01 1.00e+00 3.00e-01 3 0.3 1.478e+19 1.359e+09 5.379e+11 9.95e-01 6.29e+08 6.29e-02 1.13e-65 8.20e-01 1.00e+00 3.00e-01 4 0.4 4.264e+18 4.397e+08 8.578e+11 9.99e-01 1.13e+08 1.13e-02 1.52e-64 8.92e-01 1.00e+00 3.00e-01 5 0.4 7.344e+17 4.931e+07 1.370e+12 1.00e+00 1.22e+07 1.22e-03 1.42e-64 8.98e-01 1.00e+00 3.00e-01 6 0.4 1.198e+17 4.867e+06 2.189e+12 1.00e+00 1.24e+06 1.24e-04 2.56e-64 8.95e-01 1.00e+00 3.00e-01 7 0.5 2.010e+16 5.242e+05 3.499e+12 1.00e+00 1.30e+05 1.30e-05 2.73e-64 8.99e-01 1.00e+00 3.00e-01 8 0.5 3.262e+15 5.203e+04 5.596e+12 1.00e+00 1.32e+04 1.32e-06 8.37e-64 8.97e-01 1.00e+00 3.00e-01 9 0.6 5.394e+14 5.483e+03 8.950e+12 1.00e+00 1.37e+03 1.37e-07 1.01e-63 8.99e-01 1.00e+00 3.00e-01 10 0.9 8.742e+13 5.525e+02 1.430e+13 1.00e+00 1.38e+02 1.38e-08 2.04e-63 8.99e-01 1.00e+00 3.00e-01 11 1.0 1.453e+13 6.378e+01 2.266e+13 1.00e+00 1.40e+01 1.40e-09 2.93e-63 8.96e-01 1.00e+00 3.00e-01 12 1.0 2.995e+12 1.385e+01 3.308e+13 1.00e+00 1.45e+00 1.45e-10 3.59e-63 8.80e-01 1.00e+00 3.00e-01 13 1.1 1.001e+12 9.125e+00 2.897e+13 1.00e+00 1.74e-01 1.74e-11 7.90e-63 8.85e-01 1.00e+00 3.00e-01 14 1.1 3.229e+11 8.728e+00 1.226e+13 1.00e+00 2.01e-02 2.01e-12 4.24e-63 8.77e-01 1.00e+00 3.00e-01 15 1.2 9.802e+10 8.791e+00 3.989e+12 1.00e+00 2.47e-03 2.47e-13 8.76e-64 1.00e+00 1.00e+00 3.00e-01 16 1.2 2.964e+10 8.979e+00 1.245e+12 1.00e+00 5.18e-77 2.59e-77 1.98e-64 1.00e+00 1.00e+00 3.00e-01 17 1.2 8.892e+09 9.036e+00 3.735e+11 1.00e+00 6.91e-77 2.59e-77 3.32e-65 9.97e-01 9.97e-01 1.00e-01 18 1.3 9.112e+08 9.041e+00 3.827e+10 1.00e+00 6.91e-77 2.59e-77 2.75e-66 1.00e+00 1.00e+00 1.00e-01 19 1.3 9.117e+07 9.046e+00 3.829e+09 1.00e+00 5.18e-77 1.73e-77 7.79e-67 1.00e+00 1.00e+00 1.00e-01 20 1.4 9.118e+06 9.050e+00 3.830e+08 1.00e+00 5.18e-77 1.73e-77 4.17e-68 1.00e+00 1.00e+00 1.00e-01 21 1.4 9.119e+05 9.054e+00 3.830e+07 1.00e+00 5.18e-77 3.45e-77 1.04e-68 1.00e+00 1.00e+00 1.00e-01 22 1.4 9.120e+04 9.058e+00 3.830e+06 1.00e+00 5.18e-77 2.59e-77 1.16e-69 1.00e+00 1.00e+00 1.00e-01 23 1.5 9.121e+03 9.061e+00 3.831e+05 1.00e+00 3.67e-77 1.73e-77 4.08e-71 1.00e+00 1.00e+00 1.00e-01 24 1.6 9.123e+02 9.064e+00 3.832e+04 1.00e+00 5.18e-77 3.45e-77 3.40e-72 1.00e+00 1.00e+00 1.00e-01 25 1.9 9.154e+01 9.069e+00 3.854e+03 9.95e-01 6.91e-77 2.59e-77 2.48e-73 9.96e-01 9.96e-01 1.00e-01 26 1.9 9.453e+00 9.090e+00 4.061e+02 9.56e-01 6.05e-77 1.73e-77 3.54e-74 9.67e-01 9.67e-01 1.00e-01 27 1.9 1.226e+00 9.266e+00 6.078e+01 7.35e-01 3.45e-77 1.73e-77 6.08e-75 8.41e-01 8.41e-01 1.00e-01 28 2.0 2.985e-01 1.028e+01 2.281e+01 3.79e-01 5.18e-77 1.73e-77 4.97e-75 7.57e-01 7.57e-01 1.00e-01 29 2.0 9.522e-02 1.184e+01 1.584e+01 1.45e-01 6.91e-77 2.59e-77 4.20e-75 5.18e-01 5.18e-01 1.00e-01 30 2.1 5.085e-02 1.263e+01 1.477e+01 7.79e-02 3.45e-77 2.59e-77 1.11e-74 6.13e-01 6.13e-01 1.00e-01 31 2.1 2.282e-02 1.280e+01 1.376e+01 3.61e-02 6.91e-77 2.59e-77 3.97e-75 8.46e-01 8.46e-01 1.00e-01 32 2.2 5.436e-03 1.307e+01 1.330e+01 8.66e-03 3.81e-77 4.32e-77 1.11e-74 8.46e-01 8.46e-01 1.00e-01 33 2.2 1.296e-03 1.314e+01 1.319e+01 2.07e-03 5.09e-77 2.59e-77 5.82e-74 8.17e-01 8.17e-01 1.00e-01 34 2.2 3.428e-04 1.315e+01 1.317e+01 5.47e-04 5.18e-77 2.59e-77 3.65e-73 8.07e-01 8.07e-01 1.00e-01 35 2.3 9.373e-05 1.316e+01 1.316e+01 1.50e-04 5.18e-77 2.59e-77 1.22e-72 7.58e-01 7.58e-01 1.00e-01 36 2.3 2.978e-05 1.316e+01 1.316e+01 4.75e-05 5.05e-77 4.32e-77 1.47e-72 8.83e-01 8.83e-01 1.00e-01 37 2.4 6.117e-06 1.316e+01 1.316e+01 9.76e-06 5.18e-77 2.59e-77 2.07e-72 8.72e-01 8.72e-01 1.00e-01 38 2.4 1.315e-06 1.316e+01 1.316e+01 2.10e-06 3.67e-77 2.59e-77 1.07e-72 9.01e-01 9.01e-01 1.00e-01 39 2.5 2.487e-07 1.316e+01 1.316e+01 3.97e-07 5.18e-77 2.59e-77 8.77e-72 9.70e-01 9.70e-01 1.00e-01 40 2.8 3.167e-08 1.316e+01 1.316e+01 5.05e-08 6.91e-77 2.59e-77 1.94e-71 9.98e-01 9.98e-01 1.00e-01 41 2.8 3.234e-09 1.316e+01 1.316e+01 5.16e-09 7.56e-77 1.73e-77 8.54e-72 9.98e-01 9.98e-01 1.00e-01 42 2.9 3.294e-10 1.316e+01 1.316e+01 5.26e-10 4.22e-77 1.73e-77 1.30e-71 1.00e+00 1.00e+00 1.00e-01 43 2.9 3.303e-11 1.316e+01 1.316e+01 5.27e-11 6.91e-77 1.73e-77 7.53e-72 1.00e+00 1.00e+00 1.00e-01 44 3.0 3.303e-12 1.316e+01 1.316e+01 5.27e-12 3.45e-77 1.73e-77 1.22e-71 1.00e+00 1.00e+00 1.00e-01 45 3.0 3.304e-13 1.316e+01 1.316e+01 5.27e-13 6.91e-77 2.59e-77 1.11e-71 1.00e+00 1.00e+00 1.00e-01 46 3.0 3.304e-14 1.316e+01 1.316e+01 5.27e-14 6.69e-77 2.59e-77 1.32e-71 1.00e+00 1.00e+00 1.00e-01 47 3.1 3.304e-15 1.316e+01 1.316e+01 5.27e-15 6.91e-77 4.32e-77 4.06e-72 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 3.077870 seconds (5.54 M allocations: 370.605 MiB, 41.99% gc time, 5.43% compilation time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:13.158314347390298779384827254197636070840842846340613013266491562931268752409 Dual objective:13.1583143473903126589546378019636760268879670528205868402551290999705357370026 Duality gap:5.274068335850521474474224567520035243078860580114954385674419124928500825158201e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.1 1.000e+20 1.585e-02 1.585e-02 0.00e+00 1.00e+10 3.02e+20 8.43e+10 7.03e-01 7.57e-01 3.00e-01 2 0.2 4.190e+19 -2.320e+10 -2.620e+08 9.78e-01 2.97e+09 8.99e+19 2.04e+10 7.89e-01 7.78e-01 3.00e-01 3 0.6 1.306e+19 -4.643e+10 -1.742e+09 9.28e-01 6.28e+08 1.90e+19 4.53e+09 8.17e-01 7.43e-01 3.00e-01 4 0.7 3.686e+18 -7.438e+10 -1.494e+09 9.61e-01 1.15e+08 3.48e+18 1.17e+09 8.25e-01 8.15e-01 3.00e-01 5 0.7 9.725e+17 -1.038e+11 1.515e+08 1.00e+00 2.01e+07 6.09e+17 2.16e+08 7.94e-01 7.63e-01 3.00e-01 6 0.8 3.020e+17 -1.438e+11 3.329e+09 1.05e+00 4.16e+06 1.26e+17 5.11e+07 7.09e-01 7.99e-01 3.00e-01 7 0.9 1.203e+17 -1.906e+11 1.626e+10 1.19e+00 1.21e+06 3.65e+16 1.03e+07 7.49e-01 8.14e-01 3.00e-01 8 0.9 4.286e+16 -2.882e+11 3.009e+10 1.23e+00 3.03e+05 9.15e+15 1.92e+06 7.63e-01 8.17e-01 3.00e-01 9 1.0 1.468e+16 -4.788e+11 5.004e+10 1.23e+00 7.18e+04 2.17e+15 3.51e+05 7.82e-01 6.89e-01 3.00e-01 10 1.1 4.729e+15 -8.435e+11 8.455e+10 1.22e+00 1.57e+04 4.74e+14 1.09e+05 6.46e-01 6.36e-01 3.00e-01 11 1.2 2.321e+15 -1.155e+12 1.377e+11 1.27e+00 5.54e+03 1.67e+14 3.98e+04 6.72e-01 6.11e-01 3.00e-01 12 1.3 1.063e+15 -1.592e+12 1.951e+11 1.28e+00 1.81e+03 5.49e+13 1.55e+04 5.62e-01 9.01e-01 3.00e-01 13 1.3 6.779e+14 -2.021e+12 2.787e+11 1.32e+00 7.94e+02 2.40e+13 1.53e+03 8.24e-01 9.11e-01 3.00e-01 14 1.4 1.835e+14 -5.984e+12 4.300e+11 1.15e+00 1.40e+02 4.23e+12 1.36e+02 8.55e-01 1.00e+00 3.00e-01 15 1.5 4.247e+13 -1.546e+13 6.864e+11 1.09e+00 2.03e+01 6.13e+11 4.30e-48 8.97e-01 1.00e+00 3.00e-01 16 1.6 7.181e+12 -1.302e+13 1.093e+12 1.18e+00 2.08e+00 6.30e+10 1.38e-48 8.89e-01 1.00e+00 3.00e-01 17 1.9 1.329e+12 -3.359e+12 1.724e+12 3.11e+00 2.31e-01 6.99e+09 6.99e-48 8.33e-01 1.00e+00 3.00e-01 18 2.0 3.857e+11 -8.933e+11 2.306e+12 2.26e+00 3.86e-02 1.17e+09 1.65e-47 7.07e-01 1.00e+00 3.00e-01 19 2.1 1.766e+11 -3.434e+11 1.375e+12 1.67e+00 1.13e-02 3.42e+08 7.65e-48 8.44e-01 8.41e-01 3.00e-01 20 2.1 4.903e+10 -9.837e+10 7.115e+11 1.32e+00 1.77e-03 5.34e+07 8.03e-48 8.56e-01 1.00e+00 3.00e-01 21 2.2 1.622e+10 -2.672e+10 4.770e+11 1.12e+00 2.54e-04 7.67e+06 2.35e-47 7.71e-01 1.00e+00 3.00e-01 22 2.3 5.589e+09 -9.867e+09 1.839e+11 1.11e+00 5.81e-05 1.76e+06 2.43e-48 8.65e-01 8.10e-01 3.00e-01 23 2.3 2.102e+09 -2.786e+09 8.647e+10 1.07e+00 7.86e-06 2.38e+05 6.33e-48 7.54e-01 1.00e+00 3.00e-01 24 2.4 6.491e+08 -1.160e+09 2.539e+10 1.10e+00 1.93e-06 5.84e+04 2.84e-49 9.04e-01 9.19e-01 3.00e-01 25 2.5 2.210e+08 -2.876e+08 9.863e+09 1.06e+00 1.86e-07 5.62e+03 2.25e-48 9.41e-01 1.00e+00 3.00e-01 26 2.5 6.517e+07 -7.947e+07 3.067e+09 1.05e+00 1.11e-08 3.34e+02 8.84e-48 1.00e+00 1.00e+00 3.00e-01 27 2.6 1.954e+07 -1.955e+07 9.380e+08 1.04e+00 1.41e-63 5.03e-43 6.02e-47 1.00e+00 1.00e+00 3.00e-01 28 2.7 5.862e+06 -5.862e+06 2.814e+08 1.04e+00 1.78e-63 2.19e-43 7.19e-48 1.00e+00 1.00e+00 1.00e-01 29 2.7 5.873e+05 -5.873e+05 2.819e+07 1.04e+00 1.74e-63 2.24e-43 1.91e-49 1.00e+00 1.00e+00 1.00e-01 30 2.8 5.874e+04 -5.874e+04 2.819e+06 1.04e+00 1.30e-63 7.11e-44 1.50e-50 1.00e+00 1.00e+00 1.00e-01 31 3.2 5.874e+03 -5.874e+03 2.820e+05 1.04e+00 1.66e-63 4.31e-43 1.44e-51 1.00e+00 1.00e+00 1.00e-01 32 3.2 5.875e+02 -5.874e+02 2.820e+04 1.04e+00 1.34e-63 4.38e-43 8.98e-53 1.00e+00 1.00e+00 1.00e-01 33 3.3 5.876e+01 -5.866e+01 2.820e+03 1.04e+00 1.17e-63 4.72e-44 1.17e-53 1.00e+00 1.00e+00 1.00e-01 34 3.4 5.883e+00 -5.788e+00 2.825e+02 1.04e+00 8.53e-64 6.77e-44 2.27e-54 9.99e-01 9.99e-01 1.00e-01 35 3.5 5.954e-01 -4.995e-01 2.867e+01 1.04e+00 1.77e-63 3.95e-43 4.27e-55 9.88e-01 9.88e-01 1.00e-01 36 3.5 6.616e-02 3.259e-02 3.274e+00 9.80e-01 1.16e-63 1.30e-43 2.63e-55 9.22e-01 9.22e-01 1.00e-01 37 3.6 1.126e-02 1.068e-01 6.584e-01 5.52e-01 1.27e-63 7.11e-43 3.81e-55 8.48e-01 8.48e-01 1.00e-01 38 3.7 2.667e-03 1.882e-01 3.188e-01 1.31e-01 8.33e-64 1.60e-43 1.03e-55 8.38e-01 8.38e-01 1.00e-01 39 3.7 6.553e-04 2.394e-01 2.715e-01 3.21e-02 1.77e-63 4.41e-43 5.12e-56 8.06e-01 8.06e-01 1.00e-01 40 3.8 1.798e-04 2.495e-01 2.583e-01 8.81e-03 1.22e-63 7.23e-43 3.55e-56 8.23e-01 8.23e-01 1.00e-01 41 3.9 4.661e-05 2.526e-01 2.549e-01 2.28e-03 1.20e-63 1.65e-42 2.87e-56 7.89e-01 7.89e-01 1.00e-01 42 3.9 1.350e-05 2.534e-01 2.540e-01 6.61e-04 1.83e-63 1.00e-42 1.18e-55 7.75e-01 7.75e-01 1.00e-01 43 4.0 4.080e-06 2.536e-01 2.538e-01 2.00e-04 1.21e-63 5.99e-43 5.21e-55 7.61e-01 7.61e-01 1.00e-01 44 4.1 1.286e-06 2.537e-01 2.538e-01 6.30e-05 1.14e-63 1.32e-43 1.00e-54 9.61e-01 9.61e-01 1.00e-01 45 4.5 1.738e-07 2.537e-01 2.537e-01 8.52e-06 1.66e-63 1.41e-44 1.74e-54 9.60e-01 9.60e-01 1.00e-01 46 4.5 2.368e-08 2.537e-01 2.537e-01 1.16e-06 1.53e-63 3.34e-43 7.98e-55 9.77e-01 9.77e-01 1.00e-01 47 4.6 2.854e-09 2.537e-01 2.537e-01 1.40e-07 1.26e-63 2.18e-43 1.09e-54 9.93e-01 9.93e-01 1.00e-01 48 4.7 3.031e-10 2.537e-01 2.537e-01 1.49e-08 1.76e-63 5.84e-43 5.16e-55 9.99e-01 9.99e-01 1.00e-01 49 4.7 3.050e-11 2.537e-01 2.537e-01 1.49e-09 1.36e-63 2.94e-43 1.27e-54 1.00e+00 1.00e+00 1.00e-01 50 4.8 3.050e-12 2.537e-01 2.537e-01 1.49e-10 1.16e-63 1.65e-42 4.41e-55 1.00e+00 1.00e+00 1.00e-01 51 4.9 3.050e-13 2.537e-01 2.537e-01 1.49e-11 1.40e-63 1.48e-42 7.84e-55 1.00e+00 1.00e+00 1.00e-01 52 4.9 3.051e-14 2.537e-01 2.537e-01 1.49e-12 1.34e-63 1.92e-44 1.04e-54 1.00e+00 1.00e+00 1.00e-01 53 5.0 3.051e-15 2.537e-01 2.537e-01 1.50e-13 1.41e-63 6.00e-43 1.99e-55 1.00e+00 1.00e+00 1.00e-01 54 5.1 3.051e-16 2.537e-01 2.537e-01 1.50e-14 1.33e-63 1.94e-44 6.05e-55 1.00e+00 1.00e+00 1.00e-01 55 5.1 3.052e-17 2.537e-01 2.537e-01 1.50e-15 1.26e-63 6.76e-43 1.84e-54 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 5.138300 seconds (8.01 M allocations: 469.575 MiB, 32.28% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:0.253740427221064735024618903838398796645558789921447216899244315915289317636726 Dual objective:0.2537404272210648845735089996018289556776009080081694309579635817006619210961996 Duality gap:1.495488900957634301590320421180867222140587192657853726034594735556446818494647e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.7 1.000e+20 0.000e+00 0.000e+00 0.00e+00 1.00e+10 1.00e+00 8.43e+10 6.32e-01 5.24e-01 3.00e-01 2 1.1 5.118e+19 7.190e+07 1.164e+10 9.88e-01 3.68e+09 3.68e-01 4.01e+10 6.36e-01 6.99e-01 3.00e-01 3 1.6 2.570e+19 6.028e+07 2.506e+10 9.95e-01 1.34e+09 1.34e-01 1.21e+10 7.82e-01 7.56e-01 3.00e-01 4 2.3 8.263e+18 1.502e+07 4.098e+10 9.99e-01 2.93e+08 2.93e-02 2.94e+09 8.07e-01 8.00e-01 3.00e-01 5 2.8 2.367e+18 3.547e+06 6.396e+10 1.00e+00 5.64e+07 5.64e-03 5.87e+08 8.04e-01 7.46e-01 3.00e-01 6 3.2 7.008e+17 8.038e+05 9.568e+10 1.00e+00 1.11e+07 1.11e-03 1.49e+08 8.14e-01 7.81e-01 3.00e-01 7 3.7 1.972e+17 1.837e+05 1.446e+11 1.00e+00 2.06e+06 2.06e-04 3.27e+07 7.79e-01 7.96e-01 3.00e-01 8 4.4 6.361e+16 4.687e+04 2.206e+11 1.00e+00 4.56e+05 4.56e-05 6.67e+06 7.28e-01 7.70e-01 3.00e-01 9 5.0 2.470e+16 1.204e+04 3.288e+11 1.00e+00 1.24e+05 1.24e-05 1.54e+06 7.29e-01 7.91e-01 3.00e-01 10 5.6 9.586e+15 3.109e+03 5.041e+11 1.00e+00 3.37e+04 3.37e-06 3.21e+05 7.58e-01 7.85e-01 3.00e-01 11 6.4 3.375e+15 7.627e+02 8.164e+11 1.00e+00 8.17e+03 8.17e-07 6.90e+04 6.24e-01 7.24e-01 3.00e-01 12 6.8 1.763e+15 3.251e+02 1.508e+12 1.00e+00 3.07e+03 3.07e-07 1.91e+04 5.66e-01 4.74e-01 3.00e-01 13 7.3 1.006e+15 3.029e+02 2.709e+12 1.00e+00 1.33e+03 1.33e-07 1.00e+04 6.70e-01 6.86e-01 3.00e-01 14 8.1 4.647e+14 3.925e+02 4.272e+12 1.00e+00 4.40e+02 4.40e-08 3.14e+03 5.67e-01 6.23e-01 3.00e-01 15 8.5 2.709e+14 6.587e+02 6.050e+12 1.00e+00 1.91e+02 1.91e-08 1.18e+03 4.25e-01 9.14e-01 3.00e-01 16 9.0 2.367e+14 6.300e+01 9.859e+12 1.00e+00 1.10e+02 1.10e-08 1.01e+02 7.83e-01 1.00e+00 3.00e-01 17 9.7 8.205e+13 7.894e+01 1.584e+13 1.00e+00 2.37e+01 2.37e-09 5.72e-58 8.13e-01 1.00e+00 3.00e-01 18 10.1 2.463e+13 1.886e+01 2.504e+13 1.00e+00 4.43e+00 4.43e-10 1.71e-57 8.84e-01 1.00e+00 3.00e-01 19 10.6 4.808e+12 2.447e+00 3.732e+13 1.00e+00 5.16e-01 5.16e-11 3.17e-57 8.88e-01 1.00e+00 3.00e-01 20 11.4 1.084e+12 3.495e-01 3.941e+13 1.00e+00 5.77e-02 5.77e-12 4.24e-57 8.56e-01 1.00e+00 3.00e-01 21 11.9 3.431e+11 1.295e-01 2.400e+13 1.00e+00 8.33e-03 8.33e-13 8.67e-58 8.25e-01 1.00e+00 3.00e-01 22 12.4 1.158e+11 9.545e-02 1.061e+13 1.00e+00 1.46e-03 1.46e-13 5.01e-58 8.40e-01 8.07e-01 3.00e-01 23 13.1 4.557e+10 8.306e-02 4.818e+12 1.00e+00 2.34e-04 2.34e-14 6.46e-59 7.20e-01 1.00e+00 3.00e-01 24 13.6 1.417e+10 8.217e-02 1.436e+12 1.00e+00 6.54e-05 6.54e-15 3.01e-60 8.96e-01 8.18e-01 3.00e-01 25 14.0 5.688e+09 7.650e-02 6.445e+11 1.00e+00 6.79e-06 6.79e-16 7.97e-59 9.34e-01 1.00e+00 3.00e-01 26 14.8 1.690e+09 7.658e-02 1.988e+11 1.00e+00 4.49e-07 4.49e-17 5.22e-59 1.00e+00 1.00e+00 3.00e-01 27 15.2 5.061e+08 7.648e-02 6.022e+10 1.00e+00 2.49e-74 6.18e-51 1.08e-58 1.00e+00 1.00e+00 3.00e-01 28 15.7 1.518e+08 7.648e-02 1.807e+10 1.00e+00 2.44e-74 3.30e-51 1.93e-58 1.00e+00 1.00e+00 1.00e-01 29 16.4 1.524e+07 7.648e-02 1.814e+09 1.00e+00 2.85e-74 8.93e-51 4.53e-60 1.00e+00 1.00e+00 1.00e-01 30 16.9 1.524e+06 7.649e-02 1.814e+08 1.00e+00 4.10e-74 5.59e-51 2.46e-61 1.00e+00 1.00e+00 1.00e-01 31 17.4 1.525e+05 7.649e-02 1.814e+07 1.00e+00 3.44e-74 5.75e-51 5.01e-62 1.00e+00 1.00e+00 1.00e-01 32 18.1 1.525e+04 7.649e-02 1.815e+06 1.00e+00 2.68e-74 3.20e-51 6.79e-63 1.00e+00 1.00e+00 1.00e-01 33 18.6 1.525e+03 7.649e-02 1.815e+05 1.00e+00 3.10e-74 4.94e-51 1.33e-64 1.00e+00 1.00e+00 1.00e-01 34 19.1 1.525e+02 7.649e-02 1.815e+04 1.00e+00 2.47e-74 5.93e-51 3.71e-65 1.00e+00 1.00e+00 1.00e-01 35 19.8 1.529e+01 7.653e-02 1.820e+03 1.00e+00 2.46e-74 2.82e-51 1.86e-66 9.97e-01 9.97e-01 1.00e-01 36 20.3 1.564e+00 7.692e-02 1.862e+02 9.99e-01 3.16e-74 7.12e-51 1.79e-67 9.76e-01 9.76e-01 1.00e-01 37 20.7 1.897e-01 8.062e-02 2.266e+01 9.93e-01 2.94e-74 4.72e-51 9.33e-68 8.77e-01 8.77e-01 1.00e-01 38 21.4 3.990e-02 1.073e-01 4.856e+00 9.57e-01 2.79e-74 4.98e-51 1.33e-68 9.21e-01 9.21e-01 1.00e-01 39 21.9 6.811e-03 1.612e-01 9.717e-01 7.15e-01 3.26e-74 7.04e-51 8.45e-69 8.71e-01 8.71e-01 1.00e-01 40 22.4 1.473e-03 2.059e-01 3.812e-01 1.75e-01 4.20e-74 1.08e-50 1.73e-68 8.63e-01 8.63e-01 1.00e-01 41 23.1 3.291e-04 2.437e-01 2.829e-01 3.92e-02 4.99e-74 2.51e-51 3.51e-69 8.93e-01 8.93e-01 1.00e-01 42 23.6 6.458e-05 2.517e-01 2.594e-01 7.69e-03 4.04e-74 6.55e-51 5.59e-69 8.48e-01 8.48e-01 1.00e-01 43 24.0 1.529e-05 2.532e-01 2.550e-01 1.82e-03 4.07e-74 5.48e-51 3.75e-68 8.38e-01 8.38e-01 1.00e-01 44 24.8 3.758e-06 2.536e-01 2.540e-01 4.47e-04 6.75e-74 1.12e-50 4.05e-67 8.60e-01 8.60e-01 1.00e-01 45 25.2 8.506e-07 2.537e-01 2.538e-01 1.01e-04 5.38e-74 6.98e-51 6.82e-67 9.32e-01 9.32e-01 1.00e-01 46 25.7 1.372e-07 2.537e-01 2.538e-01 1.63e-05 6.50e-74 8.10e-51 2.34e-66 9.60e-01 9.60e-01 1.00e-01 47 26.4 1.861e-08 2.537e-01 2.537e-01 2.21e-06 8.09e-74 6.86e-51 1.70e-66 9.53e-01 9.53e-01 1.00e-01 48 26.9 2.646e-09 2.537e-01 2.537e-01 3.15e-07 6.76e-74 4.04e-51 1.08e-66 9.65e-01 9.65e-01 1.00e-01 49 27.4 3.469e-10 2.537e-01 2.537e-01 4.13e-08 3.89e-74 5.50e-51 2.62e-66 9.73e-01 9.73e-01 1.00e-01 50 28.2 4.314e-11 2.537e-01 2.537e-01 5.13e-09 7.31e-74 7.04e-51 9.40e-66 9.75e-01 9.75e-01 1.00e-01 51 28.6 5.269e-12 2.537e-01 2.537e-01 6.27e-10 3.53e-74 9.73e-51 5.00e-65 9.79e-01 9.79e-01 1.00e-01 52 29.2 6.243e-13 2.537e-01 2.537e-01 7.43e-11 5.26e-74 1.03e-50 3.20e-64 9.96e-01 9.96e-01 1.00e-01 53 29.9 6.487e-14 2.537e-01 2.537e-01 7.72e-12 5.44e-74 1.07e-50 2.79e-64 1.00e+00 1.00e+00 1.00e-01 54 30.4 6.499e-15 2.537e-01 2.537e-01 7.73e-13 4.30e-74 8.00e-51 1.41e-62 1.00e+00 1.00e+00 1.00e-01 55 30.8 6.501e-16 2.537e-01 2.537e-01 7.74e-14 4.89e-74 1.39e-50 3.45e-61 1.00e+00 1.00e+00 1.00e-01 56 31.6 6.502e-17 2.537e-01 2.537e-01 7.74e-15 3.84e-74 3.42e-51 2.51e-60 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 31.587241 seconds (51.24 M allocations: 3.295 GiB, 24.36% gc time, 0.56% compilation time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:0.25374042722106456994144400031107094746684954292751909205389135624655571676314056927838891093 Dual objective:0.25374042722106534372100408469365839648152138312925261502440651390405048555364485665275774821 Duality gap:7.7377956008438258744901467184020173352297051515765749476879050428737436883727904162647545057e-16 [ Info: Creating the univariate constraint [ Info: Constructing trivariate constraint iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.6 1.000e+06 1.000e+00 5.001e+03 1.00e+00 1.00e+03 0.00e+00 2.36e+06 6.53e-01 5.28e-01 3.00e-01 2 0.7 5.015e+05 5.164e+02 3.088e+03 7.13e-01 3.47e+02 0.00e+00 1.12e+06 4.22e-01 6.07e-01 3.00e-01 3 0.9 3.499e+05 6.688e+02 8.065e+03 8.47e-01 2.00e+02 0.00e+00 4.38e+05 5.84e-01 4.21e-01 3.00e-01 4 1.1 2.030e+05 5.414e+02 1.758e+04 9.40e-01 8.32e+01 0.00e+00 2.54e+05 4.22e-01 9.53e-01 3.00e-01 5 1.6 1.588e+05 3.876e+02 6.630e+04 9.88e-01 4.81e+01 0.00e+00 1.18e+04 7.78e-01 1.00e+00 3.00e-01 6 1.8 5.705e+04 1.104e+02 1.123e+05 9.98e-01 1.07e+01 0.00e+00 1.48e-66 8.24e-01 1.00e+00 3.00e-01 7 1.9 1.728e+04 2.822e+01 1.690e+05 1.00e+00 1.88e+00 0.00e+00 2.28e-66 8.75e-01 1.00e+00 3.00e-01 8 2.1 4.993e+03 1.126e+01 1.883e+05 1.00e+00 2.35e-01 0.00e+00 5.52e-66 8.48e-01 9.86e-01 3.00e-01 9 2.2 1.681e+03 9.036e+00 9.790e+04 1.00e+00 3.57e-02 0.00e+00 7.51e-66 8.19e-01 1.00e+00 3.00e-01 10 2.4 5.450e+02 8.700e+00 3.672e+04 1.00e+00 6.44e-03 0.00e+00 8.72e-66 8.33e-01 1.00e+00 3.00e-01 11 2.9 1.723e+02 8.588e+00 1.271e+04 9.99e-01 1.08e-03 0.00e+00 2.04e-66 1.00e+00 1.00e+00 3.00e-01 12 3.1 5.146e+01 8.519e+00 4.074e+03 9.96e-01 5.20e-74 0.00e+00 7.08e-67 1.00e+00 1.00e+00 3.00e-01 13 3.2 1.544e+01 8.502e+00 1.228e+03 9.86e-01 2.29e-73 0.00e+00 6.45e-68 9.92e-01 9.92e-01 1.00e-01 14 3.4 1.654e+00 8.507e+00 1.392e+02 8.85e-01 1.00e-73 0.00e+00 3.59e-69 9.78e-01 9.78e-01 1.00e-01 15 3.5 1.981e-01 8.562e+00 2.421e+01 4.77e-01 1.01e-73 0.00e+00 7.83e-70 8.60e-01 8.60e-01 1.00e-01 16 3.7 4.484e-02 8.877e+00 1.242e+01 1.66e-01 2.90e-74 0.00e+00 1.47e-69 8.02e-01 8.02e-01 1.00e-01 17 4.2 1.245e-02 9.486e+00 1.047e+01 4.93e-02 3.84e-74 0.00e+00 2.62e-69 7.62e-01 7.62e-01 1.00e-01 18 4.4 3.917e-03 9.841e+00 1.015e+01 1.55e-02 6.66e-74 0.00e+00 6.69e-69 7.52e-01 7.52e-01 1.00e-01 19 4.5 1.267e-03 9.941e+00 1.004e+01 5.01e-03 1.18e-73 0.00e+00 3.31e-69 8.14e-01 8.14e-01 1.00e-01 20 4.7 3.392e-04 9.983e+00 1.001e+01 1.34e-03 8.40e-74 0.00e+00 1.46e-69 7.89e-01 7.89e-01 1.00e-01 21 4.8 9.835e-05 9.995e+00 1.000e+01 3.89e-04 7.24e-74 0.00e+00 1.46e-68 9.42e-01 9.42e-01 1.00e-01 22 5.0 1.496e-05 9.999e+00 1.000e+01 5.91e-05 3.65e-74 0.00e+00 2.52e-69 9.79e-01 9.79e-01 1.00e-01 23 5.5 1.780e-06 1.000e+01 1.000e+01 7.03e-06 7.52e-74 0.00e+00 3.80e-69 9.89e-01 9.89e-01 1.00e-01 24 5.7 1.951e-07 1.000e+01 1.000e+01 7.71e-07 8.62e-74 0.00e+00 2.24e-69 9.97e-01 9.97e-01 1.00e-01 25 5.9 2.009e-08 1.000e+01 1.000e+01 7.94e-08 1.56e-73 0.00e+00 3.53e-69 1.00e+00 1.00e+00 1.00e-01 26 6.0 2.016e-09 1.000e+01 1.000e+01 7.96e-09 5.40e-74 0.00e+00 6.76e-69 1.00e+00 1.00e+00 1.00e-01 27 6.2 2.017e-10 1.000e+01 1.000e+01 7.97e-10 1.09e-73 0.00e+00 9.03e-69 1.00e+00 1.00e+00 1.00e-01 28 6.4 2.017e-11 1.000e+01 1.000e+01 7.97e-11 1.24e-73 0.00e+00 1.27e-68 1.00e+00 1.00e+00 1.00e-01 29 6.8 2.017e-12 1.000e+01 1.000e+01 7.97e-12 9.29e-74 0.00e+00 7.65e-69 1.00e+00 1.00e+00 1.00e-01 30 7.0 2.018e-13 1.000e+01 1.000e+01 7.97e-13 1.40e-73 0.00e+00 7.01e-69 1.00e+00 1.00e+00 1.00e-01 31 7.1 2.018e-14 1.000e+01 1.000e+01 7.97e-14 2.87e-74 0.00e+00 1.05e-68 1.00e+00 1.00e+00 1.00e-01 32 7.3 2.018e-15 1.000e+01 1.000e+01 7.97e-15 1.25e-73 0.00e+00 1.16e-68 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 7.310241 seconds (12.11 M allocations: 802.514 MiB, 35.53% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:9.999999999999988697806312364629586633761075931040260493586399230528324306359606 Dual objective:10.0000000000000046419724074448082497942161656245626939603359779955727984532867 Duality gap:7.972083047540091986372085578494245942129327859993373175844167487250928694314984e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.0 1.000e+20 0.000e+00 1.000e+10 1.00e+00 1.00e+10 0.00e+00 2.00e+10 1.00e+00 9.00e-01 3.00e-01 2 0.0 1.600e+19 1.600e+10 1.000e+09 8.82e-01 0.00e+00 0.00e+00 2.00e+09 1.00e+00 9.00e-01 3.00e-01 3 0.0 2.560e+18 2.560e+10 1.000e+08 9.92e-01 0.00e+00 0.00e+00 2.00e+08 1.00e+00 9.00e-01 3.00e-01 4 0.0 4.096e+17 4.096e+10 1.000e+07 1.00e+00 0.00e+00 0.00e+00 2.00e+07 1.00e+00 9.00e-01 3.00e-01 5 0.0 6.554e+16 6.554e+10 1.000e+06 1.00e+00 0.00e+00 0.00e+00 2.00e+06 1.00e+00 9.00e-01 3.00e-01 6 0.0 1.049e+16 1.049e+11 1.000e+05 1.00e+00 0.00e+00 0.00e+00 2.00e+05 1.00e+00 9.00e-01 3.00e-01 7 0.0 1.678e+15 1.678e+11 1.000e+04 1.00e+00 0.00e+00 0.00e+00 2.00e+04 1.00e+00 9.00e-01 3.00e-01 8 0.1 2.684e+14 2.684e+11 1.000e+03 1.00e+00 0.00e+00 0.00e+00 2.00e+03 1.00e+00 9.00e-01 3.00e-01 9 0.1 4.292e+13 4.292e+11 1.000e+02 1.00e+00 0.00e+00 0.00e+00 1.99e+02 1.00e+00 9.05e-01 3.00e-01 10 0.1 6.817e+12 6.817e+11 1.000e+01 1.00e+00 0.00e+00 0.00e+00 1.90e+01 1.00e+00 9.47e-01 3.00e-01 11 0.1 1.014e+12 1.014e+12 1.000e+00 1.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e+00 3.00e-01 12 0.1 3.549e+11 7.098e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 3.00e-01 13 0.1 1.065e+11 2.130e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 14 0.1 1.065e+10 2.130e+10 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 15 0.1 1.065e+09 2.130e+09 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 16 0.1 1.065e+08 2.130e+08 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 17 0.1 1.065e+07 2.130e+07 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 18 0.1 1.065e+06 2.130e+06 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 19 0.1 1.065e+05 2.130e+05 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 20 0.1 1.065e+04 2.130e+04 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 21 0.1 1.065e+03 2.131e+03 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 22 0.1 1.067e+02 2.140e+02 5.003e-01 9.95e-01 0.00e+00 0.00e+00 4.91e-91 9.98e-01 9.98e-01 1.00e-01 23 0.1 1.090e+01 2.230e+01 5.026e-01 9.56e-01 0.00e+00 0.00e+00 0.00e+00 9.78e-01 9.78e-01 1.00e-01 24 0.1 1.302e+00 3.130e+00 5.247e-01 7.13e-01 0.00e+00 0.00e+00 1.47e-90 8.86e-01 8.86e-01 1.00e-01 25 0.1 2.642e-01 1.213e+00 6.845e-01 2.78e-01 0.00e+00 0.00e+00 4.91e-91 9.25e-01 9.25e-01 1.00e-01 26 0.1 4.423e-02 1.057e+00 9.685e-01 4.37e-02 9.82e-91 0.00e+00 9.82e-91 9.82e-01 9.82e-01 1.00e-01 27 0.1 5.135e-03 1.006e+00 9.954e-01 5.13e-03 4.91e-91 0.00e+00 9.82e-91 9.90e-01 9.90e-01 1.00e-01 28 0.1 5.586e-04 1.001e+00 9.995e-01 5.59e-04 4.91e-91 0.00e+00 1.47e-90 9.98e-01 9.98e-01 1.00e-01 29 0.1 5.683e-05 1.000e+00 9.999e-01 5.68e-05 9.82e-91 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 30 0.1 5.691e-06 1.000e+00 1.000e+00 5.69e-06 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 31 0.1 5.692e-07 1.000e+00 1.000e+00 5.69e-07 4.91e-91 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 32 0.1 5.692e-08 1.000e+00 1.000e+00 5.69e-08 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 33 0.1 5.692e-09 1.000e+00 1.000e+00 5.69e-09 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 34 0.1 5.692e-10 1.000e+00 1.000e+00 5.69e-10 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 35 0.1 5.692e-11 1.000e+00 1.000e+00 5.69e-11 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 36 0.1 5.692e-12 1.000e+00 1.000e+00 5.69e-12 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 37 0.1 5.692e-13 1.000e+00 1.000e+00 5.69e-13 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 38 0.1 5.692e-14 1.000e+00 1.000e+00 5.69e-14 4.91e-91 0.00e+00 2.45e-90 1.00e+00 1.00e+00 1.00e-01 39 0.1 5.692e-15 1.000e+00 1.000e+00 5.69e-15 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.134681 seconds (32.68 k allocations: 3.070 MiB, 78.33% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:1.0000000000000005691723278366416861879595763094229654106229723826343406620015981991860279668 Dual objective:0.9999999999999994308276721633712720975914346046825898890655777243547660499609509826264801335 Duality gap:5.691723278366352070451840708486824389848583387797514538933756972301949865323277923806982379e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.1 1.000e+20 0.000e+00 1.000e+10 1.00e+00 1.00e+10 0.00e+00 1.00e+10 1.00e+00 9.00e-01 3.00e-01 2 0.4 1.600e+19 1.600e+10 1.000e+09 8.82e-01 0.00e+00 8.43e-81 1.00e+09 1.00e+00 9.00e-01 3.00e-01 3 0.4 2.560e+18 2.560e+10 1.000e+08 9.92e-01 0.00e+00 0.00e+00 1.00e+08 1.00e+00 9.00e-01 3.00e-01 4 0.4 4.096e+17 4.096e+10 1.000e+07 1.00e+00 0.00e+00 0.00e+00 1.00e+07 1.00e+00 9.00e-01 3.00e-01 5 0.4 6.554e+16 6.554e+10 1.000e+06 1.00e+00 0.00e+00 3.37e-80 1.00e+06 1.00e+00 9.00e-01 3.00e-01 6 0.4 1.049e+16 1.049e+11 1.000e+05 1.00e+00 0.00e+00 0.00e+00 1.00e+05 1.00e+00 9.00e-01 3.00e-01 7 0.4 1.678e+15 1.678e+11 1.000e+04 1.00e+00 0.00e+00 0.00e+00 1.00e+04 1.00e+00 9.00e-01 3.00e-01 8 0.4 2.684e+14 2.684e+11 1.000e+03 1.00e+00 0.00e+00 0.00e+00 1.00e+03 1.00e+00 9.00e-01 3.00e-01 9 0.4 4.292e+13 4.292e+11 1.000e+02 1.00e+00 0.00e+00 2.70e-79 9.95e+01 1.00e+00 9.05e-01 3.00e-01 10 0.4 6.817e+12 6.817e+11 1.000e+01 1.00e+00 0.00e+00 0.00e+00 9.50e+00 1.00e+00 9.47e-01 3.00e-01 11 0.4 1.014e+12 1.014e+12 1.000e+00 1.00e+00 0.00e+00 0.00e+00 5.00e-01 1.00e+00 1.00e+00 3.00e-01 12 0.4 3.549e+11 7.098e+11 5.000e-01 1.00e+00 0.00e+00 5.40e-79 0.00e+00 1.00e+00 1.00e+00 3.00e-01 13 0.4 1.065e+11 2.130e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 14 0.5 1.065e+10 2.130e+10 5.000e-01 1.00e+00 0.00e+00 1.35e-79 2.45e-91 1.00e+00 1.00e+00 1.00e-01 15 0.5 1.065e+09 2.130e+09 5.000e-01 1.00e+00 0.00e+00 1.69e-80 1.23e-90 1.00e+00 1.00e+00 1.00e-01 16 0.5 1.065e+08 2.130e+08 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 17 0.5 1.065e+07 2.130e+07 5.000e-01 1.00e+00 0.00e+00 2.64e-82 1.23e-90 1.00e+00 1.00e+00 1.00e-01 18 0.5 1.065e+06 2.130e+06 5.000e-01 1.00e+00 0.00e+00 1.65e-83 9.82e-91 1.00e+00 1.00e+00 1.00e-01 19 0.5 1.065e+05 2.130e+05 5.000e-01 1.00e+00 0.00e+00 1.03e-84 7.36e-91 1.00e+00 1.00e+00 1.00e-01 20 0.5 1.065e+04 2.130e+04 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 21 0.5 1.065e+03 2.131e+03 5.000e-01 1.00e+00 0.00e+00 1.61e-86 4.91e-91 1.00e+00 1.00e+00 1.00e-01 22 0.5 1.067e+02 2.140e+02 5.003e-01 9.95e-01 0.00e+00 0.00e+00 7.36e-91 9.98e-01 9.98e-01 1.00e-01 23 0.5 1.090e+01 2.230e+01 5.026e-01 9.56e-01 0.00e+00 1.10e-88 9.82e-91 9.78e-01 9.78e-01 1.00e-01 24 0.5 1.302e+00 3.130e+00 5.247e-01 7.13e-01 0.00e+00 1.77e-89 4.91e-91 8.86e-01 8.86e-01 1.00e-01 25 0.5 2.642e-01 1.213e+00 6.845e-01 2.78e-01 9.82e-91 9.82e-91 1.47e-90 9.25e-01 9.25e-01 1.00e-01 26 0.5 4.423e-02 1.057e+00 9.685e-01 4.37e-02 4.91e-91 9.82e-91 1.47e-90 9.82e-01 9.82e-01 1.00e-01 27 0.5 5.135e-03 1.006e+00 9.954e-01 5.13e-03 4.91e-91 9.82e-91 4.91e-91 9.90e-01 9.90e-01 1.00e-01 28 0.5 5.586e-04 1.001e+00 9.995e-01 5.59e-04 4.91e-91 9.82e-91 2.45e-90 9.98e-01 9.98e-01 1.00e-01 29 0.5 5.683e-05 1.000e+00 9.999e-01 5.68e-05 9.82e-91 1.96e-90 4.91e-91 1.00e+00 1.00e+00 1.00e-01 30 0.5 5.691e-06 1.000e+00 1.000e+00 5.69e-06 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 31 0.5 5.692e-07 1.000e+00 1.000e+00 5.69e-07 4.91e-91 9.82e-91 1.47e-90 1.00e+00 1.00e+00 1.00e-01 32 0.5 5.692e-08 1.000e+00 1.000e+00 5.69e-08 0.00e+00 1.96e-90 1.47e-90 1.00e+00 1.00e+00 1.00e-01 33 0.5 5.692e-09 1.000e+00 1.000e+00 5.69e-09 4.91e-91 1.96e-90 1.47e-90 1.00e+00 1.00e+00 1.00e-01 34 0.5 5.692e-10 1.000e+00 1.000e+00 5.69e-10 0.00e+00 9.82e-91 1.96e-90 1.00e+00 1.00e+00 1.00e-01 35 0.5 5.692e-11 1.000e+00 1.000e+00 5.69e-11 0.00e+00 1.96e-90 1.47e-90 1.00e+00 1.00e+00 1.00e-01 36 0.5 5.692e-12 1.000e+00 1.000e+00 5.69e-12 0.00e+00 9.82e-91 4.91e-91 1.00e+00 1.00e+00 1.00e-01 37 0.5 5.692e-13 1.000e+00 1.000e+00 5.69e-13 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 38 0.5 5.692e-14 1.000e+00 1.000e+00 5.69e-14 4.91e-91 1.96e-90 1.96e-90 1.00e+00 1.00e+00 1.00e-01 39 0.5 5.692e-15 1.000e+00 1.000e+00 5.69e-15 4.91e-91 9.82e-91 1.58e-91 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.516156 seconds (38.42 k allocations: 3.344 MiB, 91.00% gc time, 1.89% compilation time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:1.0000000000000005691723278366416861879595763094229654106229723826343406620015981991860279658 Dual objective:0.99999999999999943082767216337127209759143460468258988906557772435476604996095098262648013301 Duality gap:5.6917232783663520704518407084868243898485833877975145389337569723019498653208233770743335244e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.3 1.000e+20 0.000e+00 1.000e+10 1.00e+00 1.00e+10 0.00e+00 2.00e+10 1.00e+00 9.00e-01 3.00e-01 2 0.3 1.600e+19 1.600e+10 1.000e+09 8.82e-01 0.00e+00 0.00e+00 2.00e+09 1.00e+00 9.00e-01 3.00e-01 3 0.3 2.560e+18 2.560e+10 1.000e+08 9.92e-01 0.00e+00 0.00e+00 2.00e+08 1.00e+00 9.00e-01 3.00e-01 4 0.3 4.096e+17 4.096e+10 1.000e+07 1.00e+00 0.00e+00 0.00e+00 2.00e+07 1.00e+00 9.00e-01 3.00e-01 5 0.3 6.554e+16 6.554e+10 1.000e+06 1.00e+00 0.00e+00 0.00e+00 2.00e+06 1.00e+00 9.00e-01 3.00e-01 6 0.3 1.049e+16 1.049e+11 1.000e+05 1.00e+00 0.00e+00 0.00e+00 2.00e+05 1.00e+00 9.00e-01 3.00e-01 7 0.3 1.678e+15 1.678e+11 1.000e+04 1.00e+00 0.00e+00 0.00e+00 2.00e+04 1.00e+00 9.00e-01 3.00e-01 8 0.3 2.684e+14 2.684e+11 1.000e+03 1.00e+00 0.00e+00 0.00e+00 2.00e+03 1.00e+00 9.00e-01 3.00e-01 9 0.3 4.292e+13 4.292e+11 1.000e+02 1.00e+00 0.00e+00 0.00e+00 1.99e+02 1.00e+00 9.05e-01 3.00e-01 10 0.3 6.817e+12 6.817e+11 1.000e+01 1.00e+00 0.00e+00 0.00e+00 1.90e+01 1.00e+00 9.47e-01 3.00e-01 11 0.3 1.014e+12 1.014e+12 1.000e+00 1.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e+00 3.00e-01 12 0.3 3.549e+11 7.098e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 3.00e-01 13 0.3 1.065e+11 2.130e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 14 0.3 1.065e+10 2.130e+10 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 15 0.4 1.065e+09 2.130e+09 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 16 0.4 1.065e+08 2.130e+08 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 17 0.4 1.065e+07 2.130e+07 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 18 0.4 1.065e+06 2.130e+06 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 19 0.4 1.065e+05 2.130e+05 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 20 0.4 1.065e+04 2.130e+04 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 21 0.4 1.065e+03 2.131e+03 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 22 0.4 1.067e+02 2.140e+02 5.003e-01 9.95e-01 0.00e+00 0.00e+00 4.91e-91 9.98e-01 9.98e-01 1.00e-01 23 0.4 1.090e+01 2.230e+01 5.026e-01 9.56e-01 0.00e+00 0.00e+00 0.00e+00 9.78e-01 9.78e-01 1.00e-01 24 0.4 1.302e+00 3.130e+00 5.247e-01 7.13e-01 0.00e+00 0.00e+00 1.47e-90 8.86e-01 8.86e-01 1.00e-01 25 0.4 2.642e-01 1.213e+00 6.845e-01 2.78e-01 0.00e+00 0.00e+00 4.91e-91 9.25e-01 9.25e-01 1.00e-01 26 0.4 4.423e-02 1.057e+00 9.685e-01 4.37e-02 9.82e-91 0.00e+00 9.82e-91 9.82e-01 9.82e-01 1.00e-01 27 0.4 5.135e-03 1.006e+00 9.954e-01 5.13e-03 4.91e-91 0.00e+00 9.82e-91 9.90e-01 9.90e-01 1.00e-01 28 0.4 5.586e-04 1.001e+00 9.995e-01 5.59e-04 4.91e-91 0.00e+00 1.47e-90 9.98e-01 9.98e-01 1.00e-01 29 0.4 5.683e-05 1.000e+00 9.999e-01 5.68e-05 9.82e-91 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 30 0.4 5.691e-06 1.000e+00 1.000e+00 5.69e-06 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 31 0.4 5.692e-07 1.000e+00 1.000e+00 5.69e-07 4.91e-91 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 32 0.4 5.692e-08 1.000e+00 1.000e+00 5.69e-08 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 33 0.4 5.692e-09 1.000e+00 1.000e+00 5.69e-09 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 34 0.4 5.692e-10 1.000e+00 1.000e+00 5.69e-10 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 35 0.4 5.692e-11 1.000e+00 1.000e+00 5.69e-11 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 36 0.4 5.692e-12 1.000e+00 1.000e+00 5.69e-12 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 37 0.4 5.692e-13 1.000e+00 1.000e+00 5.69e-13 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 38 0.4 5.692e-14 1.000e+00 1.000e+00 5.69e-14 4.91e-91 0.00e+00 2.45e-90 1.00e+00 1.00e+00 1.00e-01 39 0.4 5.692e-15 1.000e+00 1.000e+00 5.69e-15 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.421279 seconds (420.99 k allocations: 23.932 MiB, 26.20% gc time, 63.83% compilation time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:1.0000000000000005691723278366416861879595763094229654106229723826343406620015981991860279668 Dual objective:0.9999999999999994308276721633712720975914346046825898890655777243547660499609509826264801335 Duality gap:5.691723278366352070451840708486824389848583387797514538933756972301949865323277923806982379e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.0 1.000e+20 0.000e+00 1.000e+10 1.00e+00 1.00e+10 0.00e+00 2.00e+10 1.00e+00 9.00e-01 3.00e-01 2 0.0 1.600e+19 1.600e+10 1.000e+09 8.82e-01 0.00e+00 0.00e+00 2.00e+09 1.00e+00 9.00e-01 3.00e-01 3 0.0 2.560e+18 2.560e+10 1.000e+08 9.92e-01 0.00e+00 0.00e+00 2.00e+08 1.00e+00 9.00e-01 3.00e-01 4 0.0 4.096e+17 4.096e+10 1.000e+07 1.00e+00 0.00e+00 0.00e+00 2.00e+07 1.00e+00 9.00e-01 3.00e-01 5 0.0 6.554e+16 6.554e+10 1.000e+06 1.00e+00 0.00e+00 0.00e+00 2.00e+06 1.00e+00 9.00e-01 3.00e-01 6 0.0 1.049e+16 1.049e+11 1.000e+05 1.00e+00 0.00e+00 0.00e+00 2.00e+05 1.00e+00 9.00e-01 3.00e-01 7 0.0 1.678e+15 1.678e+11 1.000e+04 1.00e+00 0.00e+00 0.00e+00 2.00e+04 1.00e+00 9.00e-01 3.00e-01 8 0.0 2.684e+14 2.684e+11 1.000e+03 1.00e+00 0.00e+00 0.00e+00 2.00e+03 1.00e+00 9.00e-01 3.00e-01 9 0.0 4.292e+13 4.292e+11 1.000e+02 1.00e+00 0.00e+00 0.00e+00 1.99e+02 1.00e+00 9.05e-01 3.00e-01 10 0.0 6.817e+12 6.817e+11 1.000e+01 1.00e+00 0.00e+00 0.00e+00 1.90e+01 1.00e+00 9.47e-01 3.00e-01 11 0.0 1.014e+12 1.014e+12 1.000e+00 1.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e+00 3.00e-01 12 0.1 3.549e+11 7.098e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 3.00e-01 13 0.1 1.065e+11 2.130e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 14 0.1 1.065e+10 2.130e+10 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 15 0.1 1.065e+09 2.130e+09 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 16 0.1 1.065e+08 2.130e+08 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 17 0.1 1.065e+07 2.130e+07 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 18 0.1 1.065e+06 2.130e+06 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 19 0.1 1.065e+05 2.130e+05 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 20 0.1 1.065e+04 2.130e+04 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 21 0.1 1.065e+03 2.131e+03 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 22 0.1 1.067e+02 2.140e+02 5.003e-01 9.95e-01 0.00e+00 0.00e+00 4.91e-91 9.98e-01 9.98e-01 1.00e-01 23 0.1 1.090e+01 2.230e+01 5.026e-01 9.56e-01 0.00e+00 0.00e+00 0.00e+00 9.78e-01 9.78e-01 1.00e-01 24 0.1 1.302e+00 3.130e+00 5.247e-01 7.13e-01 0.00e+00 0.00e+00 1.47e-90 8.86e-01 8.86e-01 1.00e-01 25 0.1 2.642e-01 1.213e+00 6.845e-01 2.78e-01 0.00e+00 0.00e+00 4.91e-91 9.25e-01 9.25e-01 1.00e-01 26 0.1 4.423e-02 1.057e+00 9.685e-01 4.37e-02 9.82e-91 0.00e+00 9.82e-91 9.82e-01 9.82e-01 1.00e-01 27 0.1 5.135e-03 1.006e+00 9.954e-01 5.13e-03 4.91e-91 0.00e+00 9.82e-91 9.90e-01 9.90e-01 1.00e-01 28 0.1 5.586e-04 1.001e+00 9.995e-01 5.59e-04 4.91e-91 0.00e+00 1.47e-90 9.98e-01 9.98e-01 1.00e-01 29 0.1 5.683e-05 1.000e+00 9.999e-01 5.68e-05 9.82e-91 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 30 0.1 5.691e-06 1.000e+00 1.000e+00 5.69e-06 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 31 0.1 5.692e-07 1.000e+00 1.000e+00 5.69e-07 4.91e-91 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 32 0.1 5.692e-08 1.000e+00 1.000e+00 5.69e-08 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 33 0.1 5.692e-09 1.000e+00 1.000e+00 5.69e-09 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 34 0.1 5.692e-10 1.000e+00 1.000e+00 5.69e-10 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 35 0.1 5.692e-11 1.000e+00 1.000e+00 5.69e-11 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 36 0.1 5.692e-12 1.000e+00 1.000e+00 5.69e-12 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 37 0.1 5.692e-13 1.000e+00 1.000e+00 5.69e-13 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 38 0.1 5.692e-14 1.000e+00 1.000e+00 5.69e-14 4.91e-91 0.00e+00 2.45e-90 1.00e+00 1.00e+00 1.00e-01 39 0.1 5.692e-15 1.000e+00 1.000e+00 5.69e-15 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.122992 seconds (32.73 k allocations: 3.069 MiB, 76.39% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:1.0000000000000005691723278366416861879595763094229654106229723826343406620015981991860279668 Dual objective:0.9999999999999994308276721633712720975914346046825898890655777243547660499609509826264801335 Duality gap:5.691723278366352070451840708486824389848583387797514538933756972301949865323277923806982379e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.0 1.000e+20 0.000e+00 1.000e+10 1.00e+00 1.00e+10 0.00e+00 2.00e+10 1.00e+00 9.00e-01 3.00e-01 2 0.0 1.600e+19 1.600e+10 1.000e+09 8.82e-01 0.00e+00 0.00e+00 2.00e+09 1.00e+00 9.00e-01 3.00e-01 3 0.0 2.560e+18 2.560e+10 1.000e+08 9.92e-01 0.00e+00 0.00e+00 2.00e+08 1.00e+00 9.00e-01 3.00e-01 4 0.0 4.096e+17 4.096e+10 1.000e+07 1.00e+00 0.00e+00 0.00e+00 2.00e+07 1.00e+00 9.00e-01 3.00e-01 5 0.0 6.554e+16 6.554e+10 1.000e+06 1.00e+00 0.00e+00 0.00e+00 2.00e+06 1.00e+00 9.00e-01 3.00e-01 6 0.0 1.049e+16 1.049e+11 1.000e+05 1.00e+00 0.00e+00 0.00e+00 2.00e+05 1.00e+00 9.00e-01 3.00e-01 7 0.0 1.678e+15 1.678e+11 1.000e+04 1.00e+00 0.00e+00 0.00e+00 2.00e+04 1.00e+00 9.00e-01 3.00e-01 8 0.0 2.684e+14 2.684e+11 1.000e+03 1.00e+00 0.00e+00 0.00e+00 2.00e+03 1.00e+00 9.00e-01 3.00e-01 9 0.0 4.292e+13 4.292e+11 1.000e+02 1.00e+00 0.00e+00 0.00e+00 1.99e+02 1.00e+00 9.05e-01 3.00e-01 10 0.0 6.817e+12 6.817e+11 1.000e+01 1.00e+00 0.00e+00 0.00e+00 1.90e+01 1.00e+00 9.47e-01 3.00e-01 11 0.0 1.014e+12 1.014e+12 1.000e+00 1.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e+00 3.00e-01 12 0.1 3.549e+11 7.098e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 3.00e-01 13 0.1 1.065e+11 2.130e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 14 0.1 1.065e+10 2.130e+10 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 15 0.1 1.065e+09 2.130e+09 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 16 0.1 1.065e+08 2.130e+08 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 17 0.1 1.065e+07 2.130e+07 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 18 0.1 1.065e+06 2.130e+06 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 19 0.1 1.065e+05 2.130e+05 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 20 0.1 1.065e+04 2.130e+04 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 21 0.1 1.065e+03 2.131e+03 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 22 0.1 1.067e+02 2.140e+02 5.003e-01 9.95e-01 0.00e+00 0.00e+00 4.91e-91 9.98e-01 9.98e-01 1.00e-01 23 0.1 1.090e+01 2.230e+01 5.026e-01 9.56e-01 0.00e+00 0.00e+00 0.00e+00 9.78e-01 9.78e-01 1.00e-01 24 0.1 1.302e+00 3.130e+00 5.247e-01 7.13e-01 0.00e+00 0.00e+00 1.47e-90 8.86e-01 8.86e-01 1.00e-01 25 0.1 2.642e-01 1.213e+00 6.845e-01 2.78e-01 0.00e+00 0.00e+00 4.91e-91 9.25e-01 9.25e-01 1.00e-01 26 0.1 4.423e-02 1.057e+00 9.685e-01 4.37e-02 9.82e-91 0.00e+00 9.82e-91 9.82e-01 9.82e-01 1.00e-01 27 0.1 5.135e-03 1.006e+00 9.954e-01 5.13e-03 4.91e-91 0.00e+00 9.82e-91 9.90e-01 9.90e-01 1.00e-01 28 0.1 5.586e-04 1.001e+00 9.995e-01 5.59e-04 4.91e-91 0.00e+00 1.47e-90 9.98e-01 9.98e-01 1.00e-01 29 0.1 5.683e-05 1.000e+00 9.999e-01 5.68e-05 9.82e-91 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 30 0.1 5.691e-06 1.000e+00 1.000e+00 5.69e-06 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 31 0.1 5.692e-07 1.000e+00 1.000e+00 5.69e-07 4.91e-91 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 32 0.1 5.692e-08 1.000e+00 1.000e+00 5.69e-08 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 33 0.1 5.692e-09 1.000e+00 1.000e+00 5.69e-09 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 34 0.1 5.692e-10 1.000e+00 1.000e+00 5.69e-10 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 35 0.1 5.692e-11 1.000e+00 1.000e+00 5.69e-11 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 36 0.1 5.692e-12 1.000e+00 1.000e+00 5.69e-12 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 37 0.1 5.692e-13 1.000e+00 1.000e+00 5.69e-13 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 38 0.1 5.692e-14 1.000e+00 1.000e+00 5.69e-14 4.91e-91 0.00e+00 2.45e-90 1.00e+00 1.00e+00 1.00e-01 39 0.2 5.692e-15 1.000e+00 1.000e+00 5.69e-15 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.151427 seconds (38.11 k allocations: 3.309 MiB, 69.80% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:1.0000000000000005691723278366416861879595763094229654106229723826343406620015981991860279668 Dual objective:0.9999999999999994308276721633712720975914346046825898890655777243547660499609509826264801335 Duality gap:5.691723278366352070451840708486824389848583387797514538933756972301949865323277923806982379e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.5 1.000e+20 1.000e+00 7.000e+10 1.00e+00 1.00e+10 0.00e+00 7.05e+10 6.66e-01 6.95e-01 3.00e-01 2 0.5 4.559e+19 1.338e+10 7.193e+10 6.86e-01 3.34e+09 0.00e+00 2.15e+10 7.05e-01 7.53e-01 3.00e-01 3 0.5 1.822e+19 2.640e+10 9.901e+10 5.79e-01 9.85e+08 0.00e+00 5.31e+09 6.16e-01 7.88e-01 3.00e-01 4 0.6 8.970e+18 3.260e+10 1.789e+11 6.92e-01 3.78e+08 0.00e+00 1.12e+09 7.73e-01 1.00e+00 3.00e-01 5 0.6 3.189e+18 1.238e+10 3.561e+11 9.33e-01 8.58e+07 0.00e+00 1.04e-142 8.40e-01 1.00e+00 3.00e-01 6 0.6 8.172e+17 2.052e+09 5.731e+11 9.93e-01 1.37e+07 0.00e+00 4.09e-142 8.95e-01 1.00e+00 3.00e-01 7 0.6 1.367e+17 2.121e+08 9.202e+11 1.00e+00 1.44e+06 0.00e+00 4.13e-142 8.90e-01 1.00e+00 3.00e-01 8 0.6 2.412e+16 2.361e+07 1.476e+12 1.00e+00 1.58e+05 0.00e+00 4.79e-141 8.97e-01 1.00e+00 3.00e-01 9 0.6 3.957e+15 2.403e+06 2.364e+12 1.00e+00 1.62e+04 0.00e+00 1.54e-141 8.94e-01 1.00e+00 3.00e-01 10 0.6 6.738e+14 2.573e+05 3.785e+12 1.00e+00 1.73e+03 0.00e+00 3.77e-141 8.99e-01 1.00e+00 3.00e-01 11 0.6 1.095e+14 2.604e+04 6.056e+12 1.00e+00 1.75e+02 0.00e+00 8.04e-141 8.99e-01 1.00e+00 3.00e-01 12 0.6 1.816e+13 2.738e+03 9.636e+12 1.00e+00 1.76e+01 0.00e+00 5.55e-141 9.13e-01 1.00e+00 3.00e-01 13 0.6 3.342e+12 3.449e+02 1.456e+13 1.00e+00 1.53e+00 0.00e+00 1.86e-140 1.00e+00 1.00e+00 3.00e-01 14 0.7 1.007e+12 1.188e+02 1.410e+13 1.00e+00 2.86e-152 0.00e+00 5.01e-140 1.00e+00 1.00e+00 3.00e-01 15 0.7 3.022e+11 1.198e+02 4.231e+12 1.00e+00 9.55e-153 0.00e+00 7.12e-142 9.99e-01 9.99e-01 1.00e-01 16 0.7 3.062e+10 1.199e+02 4.287e+11 1.00e+00 9.55e-153 0.00e+00 6.87e-142 1.00e+00 1.00e+00 1.00e-01 17 0.7 3.063e+09 1.200e+02 4.288e+10 1.00e+00 9.55e-153 0.00e+00 9.09e-143 1.00e+00 1.00e+00 1.00e-01 18 0.7 3.063e+08 1.201e+02 4.288e+09 1.00e+00 9.55e-153 0.00e+00 4.96e-144 1.00e+00 1.00e+00 1.00e-01 19 0.7 3.063e+07 1.202e+02 4.289e+08 1.00e+00 1.91e-152 0.00e+00 3.04e-145 1.00e+00 1.00e+00 1.00e-01 20 0.7 3.064e+06 1.202e+02 4.289e+07 1.00e+00 1.91e-152 0.00e+00 1.68e-146 1.00e+00 1.00e+00 1.00e-01 21 0.7 3.064e+05 1.203e+02 4.290e+06 1.00e+00 9.55e-153 0.00e+00 2.31e-147 1.00e+00 1.00e+00 1.00e-01 22 0.7 3.065e+04 1.203e+02 4.292e+05 9.99e-01 9.55e-153 0.00e+00 1.84e-148 1.00e+00 1.00e+00 1.00e-01 23 0.7 3.075e+03 1.204e+02 4.317e+04 9.94e-01 9.55e-153 0.00e+00 3.64e-149 9.97e-01 9.97e-01 1.00e-01 24 0.8 3.167e+02 1.211e+02 4.554e+03 9.48e-01 1.91e-152 0.00e+00 5.29e-150 9.70e-01 9.70e-01 1.00e-01 25 0.8 4.021e+01 1.274e+02 6.904e+02 6.88e-01 9.55e-153 0.00e+00 1.59e-150 8.70e-01 8.70e-01 1.00e-01 26 0.8 8.743e+00 1.689e+02 2.913e+02 2.66e-01 9.55e-153 0.00e+00 1.07e-150 9.15e-01 9.15e-01 1.00e-01 27 0.8 1.547e+00 2.316e+02 2.532e+02 4.47e-02 1.91e-152 0.00e+00 1.50e-150 9.82e-01 9.82e-01 1.00e-01 28 0.8 1.800e-01 2.389e+02 2.414e+02 5.25e-03 1.91e-152 0.00e+00 1.28e-150 9.89e-01 9.89e-01 1.00e-01 29 0.8 1.986e-02 2.399e+02 2.401e+02 5.79e-04 1.91e-152 0.00e+00 1.39e-150 9.97e-01 9.97e-01 1.00e-01 30 0.8 2.030e-03 2.400e+02 2.400e+02 5.92e-05 1.91e-152 0.00e+00 1.18e-151 1.00e+00 1.00e+00 1.00e-01 31 0.8 2.034e-04 2.400e+02 2.400e+02 5.93e-06 1.91e-152 0.00e+00 5.69e-151 1.00e+00 1.00e+00 1.00e-01 32 0.8 2.035e-05 2.400e+02 2.400e+02 5.93e-07 1.91e-152 0.00e+00 3.01e-151 1.00e+00 1.00e+00 1.00e-01 33 0.9 2.035e-06 2.400e+02 2.400e+02 5.94e-08 1.91e-152 0.00e+00 4.77e-151 1.00e+00 1.00e+00 1.00e-01 34 0.9 2.035e-07 2.400e+02 2.400e+02 5.94e-09 1.91e-152 0.00e+00 2.07e-151 1.00e+00 1.00e+00 1.00e-01 35 0.9 2.035e-08 2.400e+02 2.400e+02 5.94e-10 1.91e-152 0.00e+00 2.85e-151 1.00e+00 1.00e+00 1.00e-01 36 0.9 2.036e-09 2.400e+02 2.400e+02 5.94e-11 1.91e-152 0.00e+00 1.13e-150 1.00e+00 1.00e+00 1.00e-01 37 0.9 2.036e-10 2.400e+02 2.400e+02 5.94e-12 1.91e-152 0.00e+00 1.89e-151 1.00e+00 1.00e+00 1.00e-01 38 0.9 2.036e-11 2.400e+02 2.400e+02 5.94e-13 1.91e-152 0.00e+00 4.76e-151 1.00e+00 1.00e+00 1.00e-01 39 0.9 2.036e-12 2.400e+02 2.400e+02 5.94e-14 1.91e-152 0.00e+00 1.95e-151 1.00e+00 1.00e+00 1.00e-01 40 0.9 2.036e-13 2.400e+02 2.400e+02 5.94e-15 1.91e-152 0.00e+00 1.61e-150 1.00e+00 1.00e+00 1.00e-01 41 0.9 2.037e-14 2.400e+02 2.400e+02 5.94e-16 1.91e-152 0.00e+00 1.21e-150 1.00e+00 1.00e+00 1.00e-01 42 1.0 2.037e-15 2.400e+02 2.400e+02 5.94e-17 1.91e-152 0.00e+00 2.52e-150 1.00e+00 1.00e+00 1.00e-01 43 1.0 2.037e-16 2.400e+02 2.400e+02 5.94e-18 1.91e-152 0.00e+00 9.30e-150 1.00e+00 1.00e+00 1.00e-01 44 1.0 2.037e-17 2.400e+02 2.400e+02 5.94e-19 1.91e-152 0.00e+00 3.23e-149 1.00e+00 1.00e+00 1.00e-01 45 1.0 2.037e-18 2.400e+02 2.400e+02 5.94e-20 1.91e-152 0.00e+00 4.52e-149 1.00e+00 1.00e+00 1.00e-01 46 1.0 2.038e-19 2.400e+02 2.400e+02 5.94e-21 1.91e-152 0.00e+00 4.46e-149 1.00e+00 1.00e+00 1.00e-01 47 1.0 2.038e-20 2.400e+02 2.400e+02 5.94e-22 1.91e-152 0.00e+00 1.95e-148 1.00e+00 1.00e+00 1.00e-01 48 1.0 2.038e-21 2.400e+02 2.400e+02 5.94e-23 1.91e-152 0.00e+00 1.54e-148 1.00e+00 1.00e+00 1.00e-01 49 1.0 2.038e-22 2.400e+02 2.400e+02 5.94e-24 1.91e-152 0.00e+00 6.51e-148 1.00e+00 1.00e+00 1.00e-01 50 1.0 2.038e-23 2.400e+02 2.400e+02 5.95e-25 1.91e-152 0.00e+00 1.38e-147 1.00e+00 1.00e+00 1.00e-01 51 1.0 2.039e-24 2.400e+02 2.400e+02 5.95e-26 1.91e-152 0.00e+00 3.39e-147 1.00e+00 1.00e+00 1.00e-01 52 1.1 2.039e-25 2.400e+02 2.400e+02 5.95e-27 3.82e-152 0.00e+00 4.50e-148 1.00e+00 1.00e+00 1.00e-01 53 1.1 2.039e-26 2.400e+02 2.400e+02 5.95e-28 1.91e-152 0.00e+00 1.85e-146 1.00e+00 1.00e+00 1.00e-01 54 1.1 2.039e-27 2.400e+02 2.400e+02 5.95e-29 1.91e-152 0.00e+00 9.83e-147 1.00e+00 1.00e+00 1.00e-01 55 1.1 2.039e-28 2.400e+02 2.400e+02 5.95e-30 1.91e-152 0.00e+00 3.47e-146 1.00e+00 1.00e+00 1.00e-01 56 1.1 2.040e-29 2.400e+02 2.400e+02 5.95e-31 1.91e-152 0.00e+00 2.37e-146 1.00e+00 1.00e+00 1.00e-01 57 1.1 2.040e-30 2.400e+02 2.400e+02 5.95e-32 1.91e-152 0.00e+00 2.37e-145 1.00e+00 1.00e+00 1.00e-01 58 1.1 2.040e-31 2.400e+02 2.400e+02 5.95e-33 1.91e-152 0.00e+00 1.44e-145 1.00e+00 1.00e+00 1.00e-01 59 1.1 2.040e-32 2.400e+02 2.400e+02 5.95e-34 1.91e-152 0.00e+00 8.89e-146 1.00e+00 1.00e+00 1.00e-01 60 1.2 2.040e-33 2.400e+02 2.400e+02 5.95e-35 1.91e-152 0.00e+00 1.53e-144 1.00e+00 1.00e+00 1.00e-01 61 1.2 2.041e-34 2.400e+02 2.400e+02 5.95e-36 1.91e-152 0.00e+00 1.93e-144 1.00e+00 1.00e+00 1.00e-01 62 1.2 2.041e-35 2.400e+02 2.400e+02 5.95e-37 1.91e-152 0.00e+00 4.59e-144 1.00e+00 1.00e+00 1.00e-01 63 1.2 2.041e-36 2.400e+02 2.400e+02 5.95e-38 3.82e-152 0.00e+00 1.17e-143 1.00e+00 1.00e+00 1.00e-01 64 1.2 2.041e-37 2.400e+02 2.400e+02 5.95e-39 1.91e-152 0.00e+00 3.38e-143 1.00e+00 1.00e+00 1.00e-01 65 1.2 2.041e-38 2.400e+02 2.400e+02 5.95e-40 1.91e-152 0.00e+00 5.64e-144 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 1.208250 seconds (873.48 k allocations: 54.852 MiB, 69.82% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:239.999999999999999999999999999999999999985708536879596658508156865970969173608528489215573479076731931936378149579331690163458569996477437604921448766243334 Dual objective:240.000000000000000000000000000000000000014291463120403341491843134029030826391506748412710216750579461467386339371397056770697361547327826954950921002614362 Duality gap:5.95477630016805895493463917876284432978713733273682034871823531896003954001361760602434453583635639269079699538805392567489763918430914633699241819835200002e-41 ** Starting computation of basis transformations ** Block 0 of size 1 x 1 Block 0 has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block 5 of size 1 x 1 Block 2 of size 1 x 1 Block 4 of size 1 x 1 Block 1 of size 1 x 1 Block 6 of size 1 x 1 Block 3 of size 1 x 1 Block B of size 3 x 3 Block B has 2 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block A of size 4 x 4 Block A has 4 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 ** Finished computation of basis transformations (7.868370454s) ** ** Transforming the problem and the solution ** (5.007420214s) ** Projection the solution into the affine space ** Reducing the system from 7 columns to 7 columns Constructing the linear system... (6.188992593s) Preprocessing to get an integer system... (4.495e-5s) Finding the pivots of A using RREF mod p... (0.000282047 4.7349e-5 s) Solving the system of size 7 x 7 using the pseudoinverse... 0.572620876s ** Finished projection into affine space (8.478330088s) ** ** Checking feasibility ** The slacks are satisfied (checked or ensured by solving the system) Checking sdp constraints done (0.120978595) [ Info: Creating the univariate constraint [ Info: Constructing trivariate constraint iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.2 1.000e+06 1.000e+00 5.001e+03 1.00e+00 1.00e+03 0.00e+00 2.36e+06 6.53e-01 5.28e-01 3.00e-01 2 0.3 5.015e+05 5.164e+02 3.088e+03 7.13e-01 3.47e+02 0.00e+00 1.12e+06 4.22e-01 6.07e-01 3.00e-01 3 0.9 3.499e+05 6.688e+02 8.065e+03 8.47e-01 2.00e+02 0.00e+00 4.38e+05 5.84e-01 4.21e-01 3.00e-01 4 1.1 2.030e+05 5.414e+02 1.758e+04 9.40e-01 8.32e+01 0.00e+00 2.54e+05 4.22e-01 9.53e-01 3.00e-01 5 1.3 1.588e+05 3.876e+02 6.630e+04 9.88e-01 4.81e+01 0.00e+00 1.18e+04 7.78e-01 1.00e+00 3.00e-01 6 1.4 5.705e+04 1.104e+02 1.123e+05 9.98e-01 1.07e+01 0.00e+00 1.48e-66 8.24e-01 1.00e+00 3.00e-01 7 1.6 1.728e+04 2.822e+01 1.690e+05 1.00e+00 1.88e+00 0.00e+00 2.28e-66 8.75e-01 1.00e+00 3.00e-01 8 1.7 4.993e+03 1.126e+01 1.883e+05 1.00e+00 2.35e-01 0.00e+00 5.52e-66 8.48e-01 9.86e-01 3.00e-01 9 1.9 1.681e+03 9.036e+00 9.790e+04 1.00e+00 3.57e-02 0.00e+00 7.51e-66 8.19e-01 1.00e+00 3.00e-01 10 2.1 5.450e+02 8.700e+00 3.672e+04 1.00e+00 6.44e-03 0.00e+00 8.72e-66 8.33e-01 1.00e+00 3.00e-01 11 2.7 1.723e+02 8.588e+00 1.271e+04 9.99e-01 1.08e-03 0.00e+00 2.04e-66 1.00e+00 1.00e+00 3.00e-01 12 2.8 5.146e+01 8.519e+00 4.074e+03 9.96e-01 5.20e-74 0.00e+00 7.08e-67 1.00e+00 1.00e+00 3.00e-01 13 3.0 1.544e+01 8.502e+00 1.228e+03 9.86e-01 2.29e-73 0.00e+00 6.45e-68 9.92e-01 9.92e-01 1.00e-01 14 3.1 1.654e+00 8.507e+00 1.392e+02 8.85e-01 1.00e-73 0.00e+00 3.59e-69 9.78e-01 9.78e-01 1.00e-01 15 3.3 1.981e-01 8.562e+00 2.421e+01 4.77e-01 1.01e-73 0.00e+00 7.83e-70 8.60e-01 8.60e-01 1.00e-01 16 3.4 4.484e-02 8.877e+00 1.242e+01 1.66e-01 2.90e-74 0.00e+00 1.47e-69 8.02e-01 8.02e-01 1.00e-01 17 3.6 1.245e-02 9.486e+00 1.047e+01 4.93e-02 3.84e-74 0.00e+00 2.62e-69 7.62e-01 7.62e-01 1.00e-01 18 3.8 3.917e-03 9.841e+00 1.015e+01 1.55e-02 6.66e-74 0.00e+00 6.69e-69 7.52e-01 7.52e-01 1.00e-01 19 4.4 1.267e-03 9.941e+00 1.004e+01 5.01e-03 1.18e-73 0.00e+00 3.31e-69 8.14e-01 8.14e-01 1.00e-01 20 4.5 3.392e-04 9.983e+00 1.001e+01 1.34e-03 8.40e-74 0.00e+00 1.46e-69 7.89e-01 7.89e-01 1.00e-01 21 4.7 9.835e-05 9.995e+00 1.000e+01 3.89e-04 7.24e-74 0.00e+00 1.46e-68 9.42e-01 9.42e-01 1.00e-01 22 4.8 1.496e-05 9.999e+00 1.000e+01 5.91e-05 3.65e-74 0.00e+00 2.52e-69 9.79e-01 9.79e-01 1.00e-01 23 5.0 1.780e-06 1.000e+01 1.000e+01 7.03e-06 7.52e-74 0.00e+00 3.80e-69 9.89e-01 9.89e-01 1.00e-01 24 5.1 1.951e-07 1.000e+01 1.000e+01 7.71e-07 8.62e-74 0.00e+00 2.24e-69 9.97e-01 9.97e-01 1.00e-01 25 5.3 2.009e-08 1.000e+01 1.000e+01 7.94e-08 1.56e-73 0.00e+00 3.53e-69 1.00e+00 1.00e+00 1.00e-01 26 5.5 2.016e-09 1.000e+01 1.000e+01 7.96e-09 5.40e-74 0.00e+00 6.76e-69 1.00e+00 1.00e+00 1.00e-01 27 6.0 2.017e-10 1.000e+01 1.000e+01 7.97e-10 1.09e-73 0.00e+00 9.03e-69 1.00e+00 1.00e+00 1.00e-01 28 6.2 2.017e-11 1.000e+01 1.000e+01 7.97e-11 1.24e-73 0.00e+00 1.27e-68 1.00e+00 1.00e+00 1.00e-01 29 6.3 2.017e-12 1.000e+01 1.000e+01 7.97e-12 9.29e-74 0.00e+00 7.65e-69 1.00e+00 1.00e+00 1.00e-01 30 6.5 2.018e-13 1.000e+01 1.000e+01 7.97e-13 1.40e-73 0.00e+00 7.01e-69 1.00e+00 1.00e+00 1.00e-01 31 6.7 2.018e-14 1.000e+01 1.000e+01 7.97e-14 2.87e-74 0.00e+00 1.05e-68 1.00e+00 1.00e+00 1.00e-01 32 6.8 2.018e-15 1.000e+01 1.000e+01 7.97e-15 1.25e-73 0.00e+00 1.16e-68 1.00e+00 1.00e+00 1.00e-01 33 7.0 2.018e-16 1.000e+01 1.000e+01 7.97e-16 1.06e-73 0.00e+00 2.48e-69 1.00e+00 1.00e+00 1.00e-01 34 7.1 2.018e-17 1.000e+01 1.000e+01 7.97e-17 8.57e-74 0.00e+00 1.04e-68 1.00e+00 1.00e+00 1.00e-01 35 7.7 2.019e-18 1.000e+01 1.000e+01 7.97e-18 1.53e-73 0.00e+00 1.01e-68 1.00e+00 1.00e+00 1.00e-01 36 7.9 2.019e-19 1.000e+01 1.000e+01 7.97e-19 2.09e-73 0.00e+00 7.46e-69 1.00e+00 1.00e+00 1.00e-01 37 8.0 2.019e-20 1.000e+01 1.000e+01 7.98e-20 7.79e-74 0.00e+00 1.06e-68 1.00e+00 1.00e+00 1.00e-01 38 8.2 2.019e-21 1.000e+01 1.000e+01 7.98e-21 1.18e-73 0.00e+00 5.27e-69 1.00e+00 1.00e+00 1.00e-01 39 8.4 2.019e-22 1.000e+01 1.000e+01 7.98e-22 3.59e-74 0.00e+00 1.50e-68 1.00e+00 1.00e+00 1.00e-01 40 8.5 2.020e-23 1.000e+01 1.000e+01 7.98e-23 2.51e-73 0.00e+00 9.26e-69 1.00e+00 1.00e+00 1.00e-01 41 8.7 2.020e-24 1.000e+01 1.000e+01 7.98e-24 2.20e-73 0.00e+00 6.34e-69 1.00e+00 1.00e+00 1.00e-01 42 8.9 2.020e-25 1.000e+01 1.000e+01 7.98e-25 1.82e-73 0.00e+00 7.06e-68 1.00e+00 1.00e+00 1.00e-01 43 9.4 2.020e-26 1.000e+01 1.000e+01 7.98e-26 9.12e-74 0.00e+00 1.15e-67 1.00e+00 1.00e+00 1.00e-01 44 9.6 2.020e-27 1.000e+01 1.000e+01 7.98e-27 7.13e-74 0.00e+00 3.77e-68 1.00e+00 1.00e+00 1.00e-01 45 9.8 2.021e-28 1.000e+01 1.000e+01 7.98e-28 2.41e-73 0.00e+00 3.80e-67 1.00e+00 1.00e+00 1.00e-01 46 9.9 2.021e-29 1.000e+01 1.000e+01 7.98e-29 1.08e-73 0.00e+00 2.58e-67 1.00e+00 1.00e+00 1.00e-01 47 10.1 2.021e-30 1.000e+01 1.000e+01 7.98e-30 1.40e-73 0.00e+00 6.93e-67 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 10.088489 seconds (17.74 M allocations: 1.147 GiB, 32.93% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:9.999999999999999999999999999988680840486164945127713739788275650369666256828954 Dual objective:10.0000000000000000000000000000046489405146108261082604283244516865152603560218 Duality gap:7.984050014222940490273344268090680840901830913002519384164968896587007525658183e-31 ** Starting computation of basis transformations ** Block (:trivariatesos, 2, 2) of size 1 x 1 Block (:F, 4) of size 1 x 1 Block (:F, 4) has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block (:trivariatesos, 4, 3) of size 1 x 1 Block (:trivariatesos, 4, 1) of size 2 x 2 Block (:trivariatesos, 1, 2) of size 2 x 2 Block (:F, 3) of size 2 x 2 Block (:F, 3) has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block (:trivariatesos, 3, 3) of size 3 x 3 Block (:trivariatesos, 3, 3) has 1 kernel vectors. The maximum numerator and denominator are 7 and 6 After reduction, the maximum number of the basis transformation matrix is 7 Block (:F, 2) of size 3 x 3 Block (:F, 2) has 1 kernel vectors. The maximum numerator and denominator are 1 and 2 After reduction, the maximum number of the basis transformation matrix is 2 Block (:trivariatesos, 5, 3) of size 3 x 3 Block (:trivariatesos, 5, 3) has 2 kernel vectors. The maximum numerator and denominator are 1 and 2 After reduction, the maximum number of the basis transformation matrix is 2 Block (:trivariatesos, 3, 1) of size 4 x 4 Block (:trivariatesos, 3, 1) has 1 kernel vectors. The maximum numerator and denominator are 49 and 36 After reduction, the maximum number of the basis transformation matrix is 49 Block (:univariatesos, 2) of size 4 x 4 Block (:univariatesos, 2) has 1 kernel vectors. The maximum numerator and denominator are 22 and 27 After reduction, the maximum number of the basis transformation matrix is 27 Block (:trivariatesos, 5, 1) of size 4 x 4 Block (:trivariatesos, 5, 1) has 3 kernel vectors. The maximum numerator and denominator are 1 and 6 After reduction, the maximum number of the basis transformation matrix is 3 Block (:F, 1) of size 4 x 4 Block (:F, 0) of size 5 x 5 Block (:F, 0) has 1 kernel vectors. The maximum numerator and denominator are 23 and 144 After reduction, the maximum number of the basis transformation matrix is 144 Block (:univariatesos, 1) of size 5 x 5 Block (:univariatesos, 1) has 2 kernel vectors. The maximum numerator and denominator are 35 and 81 After reduction, the maximum number of the basis transformation matrix is 81 Block (:trivariatesos, 2, 3) of size 6 x 6 Block (:trivariatesos, 2, 3) has 2 kernel vectors. The maximum numerator and denominator are 13 and 36 After reduction, the maximum number of the basis transformation matrix is 36 Block (:trivariatesos, 2, 1) of size 7 x 7 Block (:trivariatesos, 2, 1) has 2 kernel vectors. The maximum numerator and denominator are 67 and 36 After reduction, the maximum number of the basis transformation matrix is 66 Block (:trivariatesos, 1, 3) of size 11 x 11 Block (:trivariatesos, 1, 3) has 2 kernel vectors. The maximum numerator and denominator are 67 and 72 After reduction, the maximum number of the basis transformation matrix is 72 Block (:trivariatesos, 1, 1) of size 11 x 11 Block (:trivariatesos, 1, 1) has 3 kernel vectors. The maximum numerator and denominator are 49 and 432 After reduction, the maximum number of the basis transformation matrix is 432 ** Finished computation of basis transformations (4.999025289s) ** ** Transforming the problem and the solution ** (1.2938729s) ** Projection the solution into the affine space ** Reducing the system from 161 columns to 161 columns Constructing the linear system... (2.280608816s) Preprocessing to get an integer system... (0.159744814s) Finding the pivots of A using RREF mod p... (0.008434449 0.006463018 s) Solving the system of size 50 x 52 using the pseudoinverse... 0.21615061s ** Finished projection into affine space (3.495916534s) ** ** Checking feasibility ** The slacks are satisfied (checked or ensured by solving the system) Checking sdp constraints done (0.214568135) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.6 1.000e+20 1.000e+00 1.900e+11 1.00e+00 1.00e+10 0.00e+00 2.18e+11 3.69e-01 5.95e-01 3.00e-01 2 0.7 6.494e+19 1.223e+10 1.739e+11 8.69e-01 6.31e+09 0.00e+00 8.84e+10 7.31e-01 6.03e-01 3.00e-01 3 0.7 2.817e+19 3.102e+10 2.208e+11 7.54e-01 1.70e+09 0.00e+00 3.51e+10 6.85e-01 7.10e-01 3.00e-01 4 0.8 1.230e+19 3.546e+10 3.600e+11 8.21e-01 5.34e+08 0.00e+00 1.02e+10 5.57e-01 1.00e+00 3.00e-01 5 0.8 8.216e+18 2.178e+10 8.065e+11 9.47e-01 2.37e+08 0.00e+00 3.31e-78 7.69e-01 1.00e+00 3.00e-01 6 0.8 3.035e+18 5.560e+09 1.290e+12 9.91e-01 5.47e+07 0.00e+00 2.96e-77 8.01e-01 1.00e+00 3.00e-01 7 0.9 9.665e+17 1.150e+09 2.064e+12 9.99e-01 1.09e+07 0.00e+00 4.49e-77 8.65e-01 1.00e+00 3.00e-01 8 0.9 2.092e+17 1.573e+08 3.302e+12 1.00e+00 1.47e+06 0.00e+00 1.93e-76 8.98e-01 1.00e+00 3.00e-01 9 1.0 3.428e+16 1.603e+07 5.284e+12 1.00e+00 1.51e+05 0.00e+00 3.88e-77 8.88e-01 1.00e+00 3.00e-01 10 1.0 6.127e+15 1.797e+06 8.453e+12 1.00e+00 1.68e+04 0.00e+00 9.12e-77 8.99e-01 1.00e+00 3.00e-01 11 1.0 9.935e+14 1.816e+05 1.352e+13 1.00e+00 1.71e+03 0.00e+00 4.02e-77 8.93e-01 1.00e+00 3.00e-01 12 1.1 1.699e+14 1.946e+04 2.163e+13 1.00e+00 1.82e+02 0.00e+00 7.58e-76 9.00e-01 1.00e+00 3.00e-01 13 1.1 2.794e+13 2.009e+03 3.442e+13 1.00e+00 1.82e+01 0.00e+00 2.12e-75 8.98e-01 1.00e+00 3.00e-01 14 1.1 5.597e+12 2.662e+02 5.231e+13 1.00e+00 1.86e+00 0.00e+00 2.60e-75 8.79e-01 1.00e+00 3.00e-01 15 1.2 2.030e+12 9.171e+01 5.562e+13 1.00e+00 2.25e-01 0.00e+00 1.13e-75 7.97e-01 1.00e+00 3.00e-01 16 1.2 7.056e+11 7.350e+01 2.417e+13 1.00e+00 4.58e-02 0.00e+00 3.91e-76 8.24e-01 1.00e+00 3.00e-01 17 1.3 2.136e+11 7.073e+01 7.703e+12 1.00e+00 8.06e-03 0.00e+00 1.58e-76 1.00e+00 1.00e+00 3.00e-01 18 1.3 6.305e+10 6.979e+01 2.396e+12 1.00e+00 6.28e-89 0.00e+00 2.17e-75 1.00e+00 1.00e+00 3.00e-01 19 1.3 1.891e+10 6.985e+01 7.188e+11 1.00e+00 6.28e-89 0.00e+00 9.84e-75 9.94e-01 9.94e-01 1.00e-01 20 1.4 1.996e+09 6.986e+01 7.583e+10 1.00e+00 3.14e-89 0.00e+00 6.49e-77 1.00e+00 1.00e+00 1.00e-01 21 1.4 2.003e+08 6.986e+01 7.613e+09 1.00e+00 6.28e-89 0.00e+00 4.03e-77 1.00e+00 1.00e+00 1.00e-01 22 1.4 2.005e+07 6.987e+01 7.619e+08 1.00e+00 3.14e-89 0.00e+00 1.24e-78 1.00e+00 1.00e+00 1.00e-01 23 1.5 2.005e+06 6.987e+01 7.619e+07 1.00e+00 6.28e-89 0.00e+00 5.88e-80 1.00e+00 1.00e+00 1.00e-01 24 1.5 2.005e+05 6.988e+01 7.620e+06 1.00e+00 6.28e-89 0.00e+00 3.06e-80 1.00e+00 1.00e+00 1.00e-01 25 1.6 2.006e+04 6.988e+01 7.622e+05 1.00e+00 3.14e-89 0.00e+00 1.14e-81 1.00e+00 1.00e+00 1.00e-01 26 1.6 2.008e+03 6.989e+01 7.636e+04 9.98e-01 6.28e-89 0.00e+00 1.58e-82 9.99e-01 9.99e-01 1.00e-01 27 1.6 2.026e+02 6.998e+01 7.769e+03 9.82e-01 6.28e-89 0.00e+00 1.22e-83 9.90e-01 9.90e-01 1.00e-01 28 1.7 2.205e+01 7.086e+01 9.088e+02 8.55e-01 6.28e-89 0.00e+00 3.01e-84 9.26e-01 9.26e-01 1.00e-01 29 1.7 3.667e+00 7.788e+01 2.172e+02 4.72e-01 6.28e-89 0.00e+00 2.44e-84 8.10e-01 8.10e-01 1.00e-01 30 1.8 9.926e-01 1.015e+02 1.392e+02 1.57e-01 3.14e-89 0.00e+00 4.21e-84 6.72e-01 6.72e-01 1.00e-01 31 1.8 3.920e-01 1.120e+02 1.269e+02 6.23e-02 1.26e-88 0.00e+00 1.67e-84 8.04e-01 8.04e-01 1.00e-01 32 1.9 1.082e-01 1.179e+02 1.220e+02 1.71e-02 1.89e-88 0.00e+00 6.25e-85 8.72e-01 8.72e-01 1.00e-01 33 2.3 2.331e-02 1.195e+02 1.204e+02 3.69e-03 6.28e-89 0.00e+00 1.90e-84 9.67e-01 9.67e-01 1.00e-01 34 2.3 3.027e-03 1.199e+02 1.201e+02 4.79e-04 1.26e-88 0.00e+00 4.98e-84 9.83e-01 9.83e-01 1.00e-01 35 2.4 3.478e-04 1.200e+02 1.200e+02 5.51e-05 6.28e-89 0.00e+00 3.35e-84 9.94e-01 9.94e-01 1.00e-01 36 2.4 3.681e-05 1.200e+02 1.200e+02 5.83e-06 1.26e-88 0.00e+00 2.41e-84 9.99e-01 9.99e-01 1.00e-01 37 2.5 3.725e-06 1.200e+02 1.200e+02 5.90e-07 6.28e-89 0.00e+00 4.22e-85 1.00e+00 1.00e+00 1.00e-01 38 2.5 3.731e-07 1.200e+02 1.200e+02 5.91e-08 6.28e-89 0.00e+00 4.96e-84 1.00e+00 1.00e+00 1.00e-01 39 2.5 3.732e-08 1.200e+02 1.200e+02 5.91e-09 6.28e-89 0.00e+00 6.14e-85 1.00e+00 1.00e+00 1.00e-01 40 2.6 3.733e-09 1.200e+02 1.200e+02 5.91e-10 6.28e-89 0.00e+00 1.18e-84 1.00e+00 1.00e+00 1.00e-01 41 2.6 3.733e-10 1.200e+02 1.200e+02 5.91e-11 3.14e-89 0.00e+00 3.06e-84 1.00e+00 1.00e+00 1.00e-01 42 2.6 3.733e-11 1.200e+02 1.200e+02 5.91e-12 6.28e-89 0.00e+00 5.73e-84 1.00e+00 1.00e+00 1.00e-01 43 2.7 3.734e-12 1.200e+02 1.200e+02 5.91e-13 6.28e-89 0.00e+00 2.71e-84 1.00e+00 1.00e+00 1.00e-01 44 2.7 3.734e-13 1.200e+02 1.200e+02 5.91e-14 1.26e-88 0.00e+00 3.64e-85 1.00e+00 1.00e+00 1.00e-01 45 2.8 3.734e-14 1.200e+02 1.200e+02 5.91e-15 6.28e-89 0.00e+00 3.72e-84 1.00e+00 1.00e+00 1.00e-01 46 2.8 3.735e-15 1.200e+02 1.200e+02 5.91e-16 6.28e-89 0.00e+00 1.43e-83 1.00e+00 1.00e+00 1.00e-01 47 2.8 3.735e-16 1.200e+02 1.200e+02 5.91e-17 6.28e-89 0.00e+00 2.22e-83 1.00e+00 1.00e+00 1.00e-01 48 2.9 3.736e-17 1.200e+02 1.200e+02 5.91e-18 6.28e-89 0.00e+00 5.73e-83 1.00e+00 1.00e+00 1.00e-01 49 2.9 3.736e-18 1.200e+02 1.200e+02 5.92e-19 1.26e-88 0.00e+00 1.45e-82 1.00e+00 1.00e+00 1.00e-01 50 2.9 3.736e-19 1.200e+02 1.200e+02 5.92e-20 1.26e-88 0.00e+00 9.72e-83 1.00e+00 1.00e+00 1.00e-01 51 3.0 3.737e-20 1.200e+02 1.200e+02 5.92e-21 6.28e-89 0.00e+00 8.73e-83 1.00e+00 1.00e+00 1.00e-01 52 3.0 3.737e-21 1.200e+02 1.200e+02 5.92e-22 6.28e-89 0.00e+00 8.97e-82 1.00e+00 1.00e+00 1.00e-01 53 3.1 3.737e-22 1.200e+02 1.200e+02 5.92e-23 3.14e-89 0.00e+00 1.36e-81 1.00e+00 1.00e+00 1.00e-01 54 3.1 3.738e-23 1.200e+02 1.200e+02 5.92e-24 6.28e-89 0.00e+00 7.95e-81 1.00e+00 1.00e+00 1.00e-01 55 3.1 3.738e-24 1.200e+02 1.200e+02 5.92e-25 6.28e-89 0.00e+00 1.15e-80 1.00e+00 1.00e+00 1.00e-01 56 3.2 3.739e-25 1.200e+02 1.200e+02 5.92e-26 6.28e-89 0.00e+00 3.26e-81 1.00e+00 1.00e+00 1.00e-01 57 3.2 3.739e-26 1.200e+02 1.200e+02 5.92e-27 6.28e-89 0.00e+00 2.92e-80 1.00e+00 1.00e+00 1.00e-01 58 3.2 3.739e-27 1.200e+02 1.200e+02 5.92e-28 6.28e-89 0.00e+00 2.57e-80 1.00e+00 1.00e+00 1.00e-01 59 3.3 3.740e-28 1.200e+02 1.200e+02 5.92e-29 6.28e-89 0.00e+00 1.74e-79 1.00e+00 1.00e+00 1.00e-01 60 3.3 3.740e-29 1.200e+02 1.200e+02 5.92e-30 3.14e-89 0.00e+00 2.28e-79 1.00e+00 1.00e+00 1.00e-01 61 3.4 3.740e-30 1.200e+02 1.200e+02 5.92e-31 6.28e-89 0.00e+00 6.23e-79 1.00e+00 1.00e+00 1.00e-01 62 3.4 3.741e-31 1.200e+02 1.200e+02 5.92e-32 3.14e-89 0.00e+00 2.13e-78 1.00e+00 1.00e+00 1.00e-01 63 3.4 3.741e-32 1.200e+02 1.200e+02 5.92e-33 6.28e-89 0.00e+00 1.71e-78 1.00e+00 1.00e+00 1.00e-01 64 3.5 3.742e-33 1.200e+02 1.200e+02 5.92e-34 6.28e-89 0.00e+00 1.67e-78 1.00e+00 1.00e+00 1.00e-01 65 4.0 3.742e-34 1.200e+02 1.200e+02 5.92e-35 6.28e-89 0.00e+00 1.97e-78 1.00e+00 1.00e+00 1.00e-01 66 4.0 3.742e-35 1.200e+02 1.200e+02 5.93e-36 3.14e-89 0.00e+00 1.39e-77 1.00e+00 1.00e+00 1.00e-01 67 4.0 3.743e-36 1.200e+02 1.200e+02 5.93e-37 6.28e-89 0.00e+00 1.85e-77 1.00e+00 1.00e+00 1.00e-01 68 4.1 3.743e-37 1.200e+02 1.200e+02 5.93e-38 6.28e-89 0.00e+00 9.48e-77 1.00e+00 1.00e+00 1.00e-01 69 4.1 3.743e-38 1.200e+02 1.200e+02 5.93e-39 6.28e-89 0.00e+00 6.88e-77 1.00e+00 1.00e+00 1.00e-01 70 4.1 3.744e-39 1.200e+02 1.200e+02 5.93e-40 1.26e-88 0.00e+00 2.86e-76 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 4.142196 seconds (6.72 M allocations: 434.674 MiB, 48.31% gc time, 0.75% compilation time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:119.99999999999999999999999999999999999999176273620507005257838616803050672593897611158515414 Dual objective:120.00000000000000000000000000000000000000599073730540359812481005961417692658989302548191855 Duality gap:5.9283337918056439776766214931959169378821029493139321160776747113317617725618261892320355143e-41 ** Starting computation of basis transformations ** Block 14 of size 1 x 1 Block 11 of size 1 x 1 Block 0 of size 1 x 1 Block 0 has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block 8 of size 1 x 1 Block 5 of size 1 x 1 Block 16 of size 1 x 1 Block 2 of size 1 x 1 Block 13 of size 1 x 1 Block 10 of size 1 x 1 Block 7 of size 1 x 1 Block 18 of size 1 x 1 Block 15 of size 1 x 1 Block 4 of size 1 x 1 Block 1 of size 1 x 1 Block 12 of size 1 x 1 Block 12 has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block 9 of size 1 x 1 Block 6 of size 1 x 1 Block 17 of size 1 x 1 Block 3 of size 1 x 1 Block B of size 9 x 9 Block B has 6 kernel vectors. The maximum numerator and denominator are 18 and 2 After reduction, the maximum number of the basis transformation matrix is 10 Block A of size 10 x 10 Block A has 8 kernel vectors. The maximum numerator and denominator are 12 and 1 After reduction, the maximum number of the basis transformation matrix is 1 ** Finished computation of basis transformations (10.033078318s) ** ** Transforming the problem and the solution ** (1.854842282s) ** Projection the solution into the affine space ** Reducing the system from 26 columns to 26 columns Constructing the linear system... (1.434390004s) Computing an approximate solution in the extension field... (0.361741283s) Preprocessing to get an integer system... (0.003308178s) Finding the pivots of A using RREF mod p... (0.002314617 0.002317288 s) Solving the system of size 38 x 40 using the pseudoinverse... 0.01561967s ** Finished projection into affine space (3.162123129s) ** ** Checking feasibility ** The slacks are satisfied (checked or ensured by solving the system) Checking sdp constraints done (0.241379991) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.0 1.000e+20 1.000e+00 7.000e+10 1.00e+00 1.00e+10 0.00e+00 7.05e+10 6.66e-01 6.95e-01 3.00e-01 2 0.1 4.559e+19 1.338e+10 7.193e+10 6.86e-01 3.34e+09 0.00e+00 2.15e+10 7.05e-01 7.53e-01 3.00e-01 3 0.1 1.822e+19 2.640e+10 9.901e+10 5.79e-01 9.85e+08 0.00e+00 5.31e+09 6.16e-01 7.88e-01 3.00e-01 4 0.1 8.970e+18 3.260e+10 1.789e+11 6.92e-01 3.78e+08 0.00e+00 1.12e+09 7.73e-01 1.00e+00 3.00e-01 5 0.1 3.189e+18 1.238e+10 3.561e+11 9.33e-01 8.58e+07 0.00e+00 7.62e-143 8.40e-01 1.00e+00 3.00e-01 6 0.1 8.172e+17 2.052e+09 5.731e+11 9.93e-01 1.37e+07 0.00e+00 4.26e-142 8.95e-01 1.00e+00 3.00e-01 7 0.1 1.367e+17 2.121e+08 9.202e+11 1.00e+00 1.44e+06 0.00e+00 3.89e-141 8.90e-01 1.00e+00 3.00e-01 8 0.1 2.412e+16 2.361e+07 1.476e+12 1.00e+00 1.58e+05 0.00e+00 3.46e-141 8.97e-01 1.00e+00 3.00e-01 9 0.1 3.957e+15 2.403e+06 2.364e+12 1.00e+00 1.62e+04 0.00e+00 4.05e-141 8.94e-01 1.00e+00 3.00e-01 10 0.1 6.738e+14 2.573e+05 3.785e+12 1.00e+00 1.73e+03 0.00e+00 1.90e-141 8.99e-01 1.00e+00 3.00e-01 11 0.2 1.095e+14 2.604e+04 6.056e+12 1.00e+00 1.75e+02 0.00e+00 3.25e-140 8.99e-01 1.00e+00 3.00e-01 12 0.2 1.816e+13 2.738e+03 9.636e+12 1.00e+00 1.76e+01 0.00e+00 4.83e-140 9.13e-01 1.00e+00 3.00e-01 13 0.2 3.342e+12 3.449e+02 1.456e+13 1.00e+00 1.53e+00 0.00e+00 5.36e-140 1.00e+00 1.00e+00 3.00e-01 14 0.2 1.007e+12 1.188e+02 1.410e+13 1.00e+00 9.55e-153 0.00e+00 2.33e-140 1.00e+00 1.00e+00 3.00e-01 15 0.2 3.022e+11 1.198e+02 4.231e+12 1.00e+00 9.55e-153 0.00e+00 9.23e-142 9.99e-01 9.99e-01 1.00e-01 16 0.2 3.062e+10 1.199e+02 4.287e+11 1.00e+00 9.55e-153 0.00e+00 9.66e-142 1.00e+00 1.00e+00 1.00e-01 17 0.2 3.063e+09 1.200e+02 4.288e+10 1.00e+00 9.55e-153 0.00e+00 3.39e-144 1.00e+00 1.00e+00 1.00e-01 18 0.2 3.063e+08 1.201e+02 4.288e+09 1.00e+00 1.19e-153 0.00e+00 2.25e-144 1.00e+00 1.00e+00 1.00e-01 19 0.2 3.063e+07 1.202e+02 4.289e+08 1.00e+00 9.55e-153 0.00e+00 4.37e-145 1.00e+00 1.00e+00 1.00e-01 20 0.3 3.064e+06 1.202e+02 4.289e+07 1.00e+00 9.55e-153 0.00e+00 6.85e-146 1.00e+00 1.00e+00 1.00e-01 21 0.3 3.064e+05 1.203e+02 4.290e+06 1.00e+00 9.55e-153 0.00e+00 2.37e-147 1.00e+00 1.00e+00 1.00e-01 22 0.3 3.065e+04 1.203e+02 4.292e+05 9.99e-01 1.91e-152 0.00e+00 4.97e-148 1.00e+00 1.00e+00 1.00e-01 23 0.3 3.075e+03 1.204e+02 4.317e+04 9.94e-01 9.55e-153 0.00e+00 2.06e-149 9.97e-01 9.97e-01 1.00e-01 24 0.3 3.167e+02 1.211e+02 4.554e+03 9.48e-01 4.77e-153 0.00e+00 6.40e-150 9.70e-01 9.70e-01 1.00e-01 25 0.3 4.021e+01 1.274e+02 6.904e+02 6.88e-01 9.55e-153 0.00e+00 1.55e-151 8.70e-01 8.70e-01 1.00e-01 26 0.3 8.743e+00 1.689e+02 2.913e+02 2.66e-01 1.91e-152 0.00e+00 1.85e-150 9.15e-01 9.15e-01 1.00e-01 27 0.3 1.547e+00 2.316e+02 2.532e+02 4.47e-02 1.91e-152 0.00e+00 2.12e-151 9.82e-01 9.82e-01 1.00e-01 28 0.3 1.800e-01 2.389e+02 2.414e+02 5.25e-03 9.55e-153 0.00e+00 2.25e-150 9.89e-01 9.89e-01 1.00e-01 29 0.3 1.986e-02 2.399e+02 2.401e+02 5.79e-04 1.91e-152 0.00e+00 1.95e-150 9.97e-01 9.97e-01 1.00e-01 30 0.4 2.030e-03 2.400e+02 2.400e+02 5.92e-05 1.91e-152 0.00e+00 5.46e-151 1.00e+00 1.00e+00 1.00e-01 31 0.4 2.034e-04 2.400e+02 2.400e+02 5.93e-06 1.91e-152 0.00e+00 2.76e-151 1.00e+00 1.00e+00 1.00e-01 32 0.4 2.035e-05 2.400e+02 2.400e+02 5.93e-07 9.55e-153 0.00e+00 2.39e-151 1.00e+00 1.00e+00 1.00e-01 33 0.4 2.035e-06 2.400e+02 2.400e+02 5.94e-08 1.91e-152 0.00e+00 1.97e-151 1.00e+00 1.00e+00 1.00e-01 34 0.4 2.035e-07 2.400e+02 2.400e+02 5.94e-09 1.91e-152 0.00e+00 3.11e-151 1.00e+00 1.00e+00 1.00e-01 35 0.4 2.035e-08 2.400e+02 2.400e+02 5.94e-10 1.91e-152 0.00e+00 1.33e-150 1.00e+00 1.00e+00 1.00e-01 36 0.4 2.036e-09 2.400e+02 2.400e+02 5.94e-11 1.91e-152 0.00e+00 1.61e-150 1.00e+00 1.00e+00 1.00e-01 37 0.4 2.036e-10 2.400e+02 2.400e+02 5.94e-12 1.91e-152 0.00e+00 6.51e-151 1.00e+00 1.00e+00 1.00e-01 38 0.5 2.036e-11 2.400e+02 2.400e+02 5.94e-13 9.55e-153 0.00e+00 1.32e-150 1.00e+00 1.00e+00 1.00e-01 39 1.0 2.036e-12 2.400e+02 2.400e+02 5.94e-14 1.91e-152 0.00e+00 5.88e-151 1.00e+00 1.00e+00 1.00e-01 40 1.0 2.036e-13 2.400e+02 2.400e+02 5.94e-15 1.91e-152 0.00e+00 7.58e-151 1.00e+00 1.00e+00 1.00e-01 41 1.0 2.037e-14 2.400e+02 2.400e+02 5.94e-16 1.91e-152 0.00e+00 3.77e-150 1.00e+00 1.00e+00 1.00e-01 42 1.0 2.037e-15 2.400e+02 2.400e+02 5.94e-17 1.91e-152 0.00e+00 4.09e-150 1.00e+00 1.00e+00 1.00e-01 43 1.0 2.037e-16 2.400e+02 2.400e+02 5.94e-18 1.91e-152 0.00e+00 1.94e-149 1.00e+00 1.00e+00 1.00e-01 44 1.0 2.037e-17 2.400e+02 2.400e+02 5.94e-19 1.91e-152 0.00e+00 1.05e-149 1.00e+00 1.00e+00 1.00e-01 45 1.0 2.037e-18 2.400e+02 2.400e+02 5.94e-20 1.91e-152 0.00e+00 2.58e-149 1.00e+00 1.00e+00 1.00e-01 46 1.0 2.038e-19 2.400e+02 2.400e+02 5.94e-21 1.91e-152 0.00e+00 3.59e-149 1.00e+00 1.00e+00 1.00e-01 47 1.1 2.038e-20 2.400e+02 2.400e+02 5.94e-22 1.91e-152 0.00e+00 1.21e-148 1.00e+00 1.00e+00 1.00e-01 48 1.1 2.038e-21 2.400e+02 2.400e+02 5.94e-23 1.91e-152 0.00e+00 1.03e-148 1.00e+00 1.00e+00 1.00e-01 49 1.1 2.038e-22 2.400e+02 2.400e+02 5.94e-24 1.91e-152 0.00e+00 8.62e-148 1.00e+00 1.00e+00 1.00e-01 50 1.1 2.038e-23 2.400e+02 2.400e+02 5.95e-25 1.91e-152 0.00e+00 2.42e-147 1.00e+00 1.00e+00 1.00e-01 51 1.1 2.039e-24 2.400e+02 2.400e+02 5.95e-26 1.91e-152 0.00e+00 6.06e-147 1.00e+00 1.00e+00 1.00e-01 52 1.1 2.039e-25 2.400e+02 2.400e+02 5.95e-27 4.33e-153 0.00e+00 1.01e-146 1.00e+00 1.00e+00 1.00e-01 53 1.1 2.039e-26 2.400e+02 2.400e+02 5.95e-28 1.91e-152 0.00e+00 4.53e-147 1.00e+00 1.00e+00 1.00e-01 54 1.1 2.039e-27 2.400e+02 2.400e+02 5.95e-29 3.82e-152 0.00e+00 9.87e-147 1.00e+00 1.00e+00 1.00e-01 55 1.1 2.039e-28 2.400e+02 2.400e+02 5.95e-30 3.82e-152 0.00e+00 1.88e-146 1.00e+00 1.00e+00 1.00e-01 56 1.1 2.040e-29 2.400e+02 2.400e+02 5.95e-31 1.91e-152 0.00e+00 2.92e-146 1.00e+00 1.00e+00 1.00e-01 57 1.2 2.040e-30 2.400e+02 2.400e+02 5.95e-32 9.55e-153 0.00e+00 5.76e-145 1.00e+00 1.00e+00 1.00e-01 58 1.2 2.040e-31 2.400e+02 2.400e+02 5.95e-33 1.91e-152 0.00e+00 1.16e-145 1.00e+00 1.00e+00 1.00e-01 59 1.2 2.040e-32 2.400e+02 2.400e+02 5.95e-34 1.91e-152 0.00e+00 9.23e-145 1.00e+00 1.00e+00 1.00e-01 60 1.2 2.040e-33 2.400e+02 2.400e+02 5.95e-35 1.91e-152 0.00e+00 1.19e-144 1.00e+00 1.00e+00 1.00e-01 61 1.2 2.041e-34 2.400e+02 2.400e+02 5.95e-36 1.91e-152 0.00e+00 5.30e-144 1.00e+00 1.00e+00 1.00e-01 62 1.2 2.041e-35 2.400e+02 2.400e+02 5.95e-37 1.91e-152 0.00e+00 2.53e-144 1.00e+00 1.00e+00 1.00e-01 63 1.2 2.041e-36 2.400e+02 2.400e+02 5.95e-38 1.91e-152 0.00e+00 1.42e-143 1.00e+00 1.00e+00 1.00e-01 64 1.2 2.041e-37 2.400e+02 2.400e+02 5.95e-39 1.91e-152 0.00e+00 3.44e-143 1.00e+00 1.00e+00 1.00e-01 65 1.2 2.041e-38 2.400e+02 2.400e+02 5.95e-40 1.91e-152 0.00e+00 4.94e-143 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 1.244058 seconds (873.49 k allocations: 54.944 MiB, 74.34% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:239.999999999999999999999999999999999999985708623651088031028775333061265354847095945064156212651233664189398631033410796886099933647811631474127307080078537 Dual objective:240.000000000000000000000000000000000000014291376348911968971224666938734645152939292136233957082035314829883607078499073584613600840792492461220891164859663 Duality gap:5.95474014537998707134361122447276881371736397334953008975034388343437000939339054171457280240631554035282794795125091129371028485047337374437810068289260476e-41 [ Info: Empty constraint found and removed. [ Info: Empty constraint found and removed. [ Info: The coefficient for the PSD variable 1 has an empty decomposition in a constraint, so we remove it from that constraint. [ Info: The matrix variable 1 is not used in any constraint and will be removed. Test Summary: | Pass Total Time ClusteredLowRankSolver.jl | 39 39 6m04.0s Testing ClusteredLowRankSolver tests passed Testing completed after 377.9s PkgEval succeeded after 473.89s