Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1674 (5735163b34*) started at 2026-02-03T16:25:58.830 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 10.61s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.14.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.18.0+0 [e37daf67] + LibGit2_jll v1.9.2+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.12.2 [4536629a] + OpenBLAS_jll v0.3.30+0 [458c3c95] + OpenSSL_jll v3.5.5+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.17s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling packages... 1427.1 ms ✓ Measurements 4921.3 ms ✓ StatsBase 6469.1 ms ✓ RayTraceHeatTransfer 3 dependencies successfully precompiled in 14 seconds. 58 already precompiled. Precompilation completed after 32.66s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_e331AD/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.16 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_e331AD/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.16 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.18.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.30+0 [458c3c95] OpenSSL_jll v3.5.5+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:04:12 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:06 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012684220337297017 Iteration 10: d = 1.7797580081144265e-5 Iteration 20: d = 3.2253742315778974e-7 Iteration 30: d = 5.859949872089838e-9 Iteration 40: d = 1.057926327396537e-10 Iteration 50: d = 1.9068481777604684e-12 Iteration 60: d = 3.434312198913426e-14 Converged after 67 iterations. d = 2.0732629728315475e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 33%|███████████ | ETA: 0:00:02 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013150167893765114 Iteration 10: d = 1.4248157139734086e-5 Iteration 20: d = 2.0764221519366533e-7 Iteration 30: d = 3.4158804552990097e-9 Iteration 40: d = 5.829491917128459e-11 Iteration 50: d = 1.008378294977039e-12 Iteration 60: d = 1.754048187830231e-14 Converged after 66 iterations. d = 1.5679750790762086e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 35%|███████████▍ | ETA: 0:00:02 Bin 1 progress: 74%|████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011508089855243888 Iteration 10: d = 1.2958842442418822e-5 Iteration 20: d = 2.162418039498364e-7 Iteration 30: d = 3.817784159199392e-9 Iteration 40: d = 6.749001190645449e-11 Iteration 50: d = 1.191298185212392e-12 Iteration 60: d = 2.1024922831294057e-14 Converged after 66 iterations. d = 1.845827175587773e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 30%|██████████ | ETA: 0:00:02 Bin 1 progress: 64%|█████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001453101401586145 Iteration 10: d = 2.0801436212114728e-5 Iteration 20: d = 3.4197823210747513e-7 Iteration 30: d = 6.001785161649967e-9 Iteration 40: d = 1.0666284830456186e-10 Iteration 50: d = 1.902991692464013e-12 Iteration 60: d = 3.399362180807901e-14 Converged after 67 iterations. d = 2.031069335273906e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 35%|███████████▋ | ETA: 0:00:02 Bin 1 progress: 74%|████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010891163248913883 Iteration 10: d = 8.412367622804621e-6 Iteration 20: d = 9.923026069820163e-8 Iteration 30: d = 1.3841376440333934e-9 Iteration 40: d = 2.0282963295639887e-11 Iteration 50: d = 3.0406159294729713e-13 Iteration 60: d = 4.5919018485823625e-15 Converged after 62 iterations. d = 2.017702831268936e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 32%|██████████▊ | ETA: 0:00:02 Bin 1 progress: 70%|███████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013207326714204674 Iteration 10: d = 1.1411243631016794e-5 Iteration 20: d = 1.2872984401038394e-7 Iteration 30: d = 1.7175805684100452e-9 Iteration 40: d = 2.4368090613272473e-11 Iteration 50: d = 3.5859105220006727e-13 Iteration 60: d = 5.35584236440774e-15 Converged after 63 iterations. d = 1.5726717928648719e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 35%|███████████▋ | ETA: 0:00:02 Bin 1 progress: 71%|███████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001226325169767017 Iteration 10: d = 1.2004753089971283e-5 Iteration 20: d = 1.30605216942417e-7 Iteration 30: d = 1.6047776127379145e-9 Iteration 40: d = 2.115476666542828e-11 Iteration 50: d = 2.9526885665170873e-13 Iteration 60: d = 4.3070992482814115e-15 Converged after 62 iterations. d = 1.849094788590703e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 30%|█████████▉ | ETA: 0:00:02 Bin 1 progress: 68%|██████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013193370487070226 Iteration 10: d = 1.534032946156856e-5 Iteration 20: d = 1.7095599230002755e-7 Iteration 30: d = 2.120006130745766e-9 Iteration 40: d = 2.8227338174462618e-11 Iteration 50: d = 3.9758307319964727e-13 Iteration 60: d = 5.816251030473364e-15 Converged after 63 iterations. d = 1.6532756907722606e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 66%|█████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011839829055236442 Iteration 10: d = 1.307908608096556e-5 Iteration 20: d = 1.7801299307840624e-7 Iteration 30: d = 2.6305626716013424e-9 Iteration 40: d = 3.974941705809694e-11 Iteration 50: d = 6.064308252608548e-13 Iteration 60: d = 9.312575438684038e-15 Converged after 64 iterations. d = 1.7631237593661838e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 64%|█████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012177565320803227 Iteration 10: d = 1.2249026626759016e-5 Iteration 20: d = 1.570431262970806e-7 Iteration 30: d = 2.2712202450687392e-9 Iteration 40: d = 3.395989407429594e-11 Iteration 50: d = 5.143030785267117e-13 Iteration 60: d = 7.790707639295905e-15 Converged after 64 iterations. d = 1.480577437744501e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.004098584730108635 Iteration 10: d = 3.8655002509367444e-5 Iteration 20: d = 3.333582147496455e-7 Iteration 30: d = 3.7216805062286523e-9 Iteration 40: d = 4.768634926310237e-11 Iteration 50: d = 6.415692968311624e-13 Iteration 60: d = 8.773349172767933e-15 Converged after 64 iterations. d = 1.5560520252679764e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0034878182402969253 Iteration 10: d = 2.4839476990582436e-5 Iteration 20: d = 2.2947334401732578e-7 Iteration 30: d = 3.3011522607824815e-9 Iteration 40: d = 5.321449026288903e-11 Iteration 50: d = 8.61895054512097e-13 Iteration 60: d = 1.384016177442555e-14 Converged after 65 iterations. d = 1.731318843986916e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0024234669719073124 Iteration 10: d = 1.3787590641832603e-5 Iteration 20: d = 1.859728654199408e-7 Iteration 30: d = 3.065937819863236e-9 Iteration 40: d = 5.121989850183154e-11 Iteration 50: d = 8.603747789612705e-13 Iteration 60: d = 1.4481891697364538e-14 Converged after 65 iterations. d = 1.9210214707175226e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002003214536871284 Iteration 10: d = 1.39935981106689e-5 Iteration 20: d = 2.231140259025826e-7 Iteration 30: d = 4.113850493618529e-9 Iteration 40: d = 7.580993405301849e-11 Iteration 50: d = 1.396316590802891e-12 Iteration 60: d = 2.5746625799261322e-14 Converged after 67 iterations. d = 1.5656008744485167e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 61%|████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010891163248913883 Iteration 10: d = 8.412367622804621e-6 Iteration 20: d = 9.923026069820163e-8 Iteration 30: d = 1.3841376440333934e-9 Iteration 40: d = 2.0282963295639887e-11 Iteration 50: d = 3.0406159294729713e-13 Iteration 60: d = 4.5919018485823625e-15 Converged after 62 iterations. d = 2.017702831268936e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 64%|█████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015298935839495743 Iteration 10: d = 1.3446909669416458e-5 Iteration 20: d = 1.5058412494532614e-7 Iteration 30: d = 1.9489514058304897e-9 Iteration 40: d = 2.5851818377476592e-11 Iteration 50: d = 3.454339063304596e-13 Iteration 60: d = 4.653633587972819e-15 Converged after 62 iterations. d = 2.0162228134336466e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001618098178577469 Iteration 10: d = 2.224957262768451e-5 Iteration 20: d = 2.7844083756918154e-7 Iteration 30: d = 3.7811946668911796e-9 Iteration 40: d = 5.237502968782073e-11 Iteration 50: d = 7.29858263568817e-13 Iteration 60: d = 1.0172641526606734e-14 Converged after 64 iterations. d = 1.8507079312864054e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.749476728975 Iteration 2: convergence error = 4815.922698353601 Iteration 3: convergence error = 1096.904839383482 Iteration 4: convergence error = 320.89700920315136 Iteration 5: convergence error = 95.20761280093097 Iteration 6: convergence error = 28.41415777257407 Iteration 7: convergence error = 8.55106331687648 Iteration 8: convergence error = 2.563177190675333 Iteration 9: convergence error = 0.7665023963622843 Iteration 10: convergence error = 0.22890727949766188 Iteration 11: convergence error = 0.06830789354694389 Iteration 12: convergence error = 0.020374745855860965 Iteration 13: convergence error = 0.006075827573567949 Iteration 14: convergence error = 0.0018115776210834156 Iteration 15: convergence error = 0.0005400985805863456 Iteration 16: convergence error = 0.00016101587812045182 Iteration 17: convergence error = 4.800124725079513e-5 Iteration 18: convergence error = 1.4309676316770492e-5 Iteration 19: convergence error = 4.2658184611354955e-6 Iteration 20: convergence error = 1.2716670880763559e-6 Iteration 21: convergence error = 3.7908398553554434e-7 Iteration 22: convergence error = 1.1287625056866091e-7 Iteration 23: convergence error = 3.273862603236921e-8 Iteration 24: convergence error = 9.43600753089413e-9 Iteration 25: convergence error = 2.7148416847921908e-9 Iteration 26: convergence error = 7.764811016386375e-10 Iteration 27: convergence error = 2.2737367544323206e-10 Iteration 28: convergence error = 6.366462912410498e-11 Iteration 29: convergence error = 1.864464138634503e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015298935839495743 Iteration 10: d = 1.3446909669416458e-5 Iteration 20: d = 1.5058412494532614e-7 Iteration 30: d = 1.9489514058304897e-9 Iteration 40: d = 2.5851818377476592e-11 Iteration 50: d = 3.454339063304596e-13 Iteration 60: d = 4.653633587972819e-15 Converged after 62 iterations. d = 2.0162228134336466e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.564217777084 Iteration 2: convergence error = 4817.037423920037 Iteration 3: convergence error = 1096.528013955548 Iteration 4: convergence error = 317.96394790487557 Iteration 5: convergence error = 94.28123159885718 Iteration 6: convergence error = 28.352610291468864 Iteration 7: convergence error = 8.535319181770546 Iteration 8: convergence error = 2.5591918037384858 Iteration 9: convergence error = 0.7655041337156945 Iteration 10: convergence error = 0.22866131557407243 Iteration 11: convergence error = 0.06824892340955557 Iteration 12: convergence error = 0.02036124019264207 Iteration 13: convergence error = 0.006072976520044904 Iteration 14: convergence error = 0.001811070619169186 Iteration 15: convergence error = 0.0005400482812092378 Iteration 16: convergence error = 0.00016103069719974883 Iteration 17: convergence error = 4.8014512003646814e-5 Iteration 18: convergence error = 1.4316249917101231e-5 Iteration 19: convergence error = 4.268564680387499e-6 Iteration 20: convergence error = 1.2727123248623684e-6 Iteration 21: convergence error = 3.7947256714687683e-7 Iteration 22: convergence error = 1.1300949154247064e-7 Iteration 23: convergence error = 3.278773874626495e-8 Iteration 24: convergence error = 9.452378435526043e-9 Iteration 25: convergence error = 2.719161784625612e-9 Iteration 26: convergence error = 7.839844329282641e-10 Iteration 27: convergence error = 2.2873791749589145e-10 Iteration 28: convergence error = 6.502887117676437e-11 Iteration 29: convergence error = 1.8417267710901797e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 12:54:47 Bin 1 ray tracing: 8%|██▍ | ETA: 0:01:05 Bin 1 ray tracing: 16%|████▊ | ETA: 0:00:36 Bin 1 ray tracing: 24%|███████▏ | ETA: 0:00:25 Bin 1 ray tracing: 32%|█████████▌ | ETA: 0:00:19 Bin 1 ray tracing: 40%|███████████▉ | ETA: 0:00:15 Bin 1 ray tracing: 48%|██████████████▍ | ETA: 0:00:12 Bin 1 ray tracing: 56%|████████████████▉ | ETA: 0:00:09 Bin 1 ray tracing: 64%|███████████████████▏ | ETA: 0:00:07 Bin 1 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:06 Bin 1 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:04 Bin 1 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 1 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 2 ray tracing: 15%|████▋ | ETA: 0:00:11 Bin 2 ray tracing: 23%|██████▉ | ETA: 0:00:10 Bin 2 ray tracing: 31%|█████████▏ | ETA: 0:00:09 Bin 2 ray tracing: 38%|███████████▌ | ETA: 0:00:08 Bin 2 ray tracing: 46%|█████████████▉ | ETA: 0:00:07 Bin 2 ray tracing: 54%|████████████████▎ | ETA: 0:00:06 Bin 2 ray tracing: 62%|██████████████████▌ | ETA: 0:00:05 Bin 2 ray tracing: 70%|████████████████████▉ | ETA: 0:00:04 Bin 2 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 2 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 2 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 8%|██▍ | ETA: 0:00:13 Bin 3 ray tracing: 15%|████▋ | ETA: 0:00:11 Bin 3 ray tracing: 23%|██████▉ | ETA: 0:00:10 Bin 3 ray tracing: 31%|█████████▎ | ETA: 0:00:09 Bin 3 ray tracing: 39%|███████████▋ | ETA: 0:00:08 Bin 3 ray tracing: 47%|██████████████ | ETA: 0:00:07 Bin 3 ray tracing: 54%|████████████████▎ | ETA: 0:00:06 Bin 3 ray tracing: 63%|██████████████████▊ | ETA: 0:00:05 Bin 3 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:04 Bin 3 ray tracing: 79%|███████████████████████▉ | ETA: 0:00:03 Bin 3 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:02 Bin 3 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 4 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 4 ray tracing: 25%|███████▌ | ETA: 0:00:09 Bin 4 ray tracing: 33%|██████████ | ETA: 0:00:08 Bin 4 ray tracing: 42%|████████████▌ | ETA: 0:00:07 Bin 4 ray tracing: 50%|███████████████ | ETA: 0:00:06 Bin 4 ray tracing: 58%|█████████████████▌ | ETA: 0:00:05 Bin 4 ray tracing: 66%|████████████████████ | ETA: 0:00:04 Bin 4 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:03 Bin 4 ray tracing: 83%|████████████████████████▊ | ETA: 0:00:02 Bin 4 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 4 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 5 ray tracing: 16%|████▉ | ETA: 0:00:10 Bin 5 ray tracing: 25%|███████▍ | ETA: 0:00:09 Bin 5 ray tracing: 33%|█████████▉ | ETA: 0:00:08 Bin 5 ray tracing: 42%|████████████▌ | ETA: 0:00:07 Bin 5 ray tracing: 50%|███████████████ | ETA: 0:00:06 Bin 5 ray tracing: 58%|█████████████████▌ | ETA: 0:00:05 Bin 5 ray tracing: 66%|███████████████████▉ | ETA: 0:00:04 Bin 5 ray tracing: 74%|██████████████████████▎ | ETA: 0:00:03 Bin 5 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:02 Bin 5 ray tracing: 90%|███████████████████████████ | ETA: 0:00:01 Bin 5 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 6 ray tracing: 16%|████▊ | ETA: 0:00:11 Bin 6 ray tracing: 24%|███████▎ | ETA: 0:00:09 Bin 6 ray tracing: 32%|█████████▊ | ETA: 0:00:08 Bin 6 ray tracing: 41%|████████████▎ | ETA: 0:00:07 Bin 6 ray tracing: 49%|██████████████▋ | ETA: 0:00:06 Bin 6 ray tracing: 57%|█████████████████▏ | ETA: 0:00:05 Bin 6 ray tracing: 66%|███████████████████▊ | ETA: 0:00:04 Bin 6 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:03 Bin 6 ray tracing: 83%|█████████████████████████ | ETA: 0:00:02 Bin 6 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 7 ray tracing: 16%|████▊ | ETA: 0:00:11 Bin 7 ray tracing: 24%|███████▏ | ETA: 0:00:10 Bin 7 ray tracing: 31%|█████████▍ | ETA: 0:00:09 Bin 7 ray tracing: 39%|███████████▊ | ETA: 0:00:08 Bin 7 ray tracing: 47%|██████████████▏ | ETA: 0:00:07 Bin 7 ray tracing: 55%|████████████████▌ | ETA: 0:00:06 Bin 7 ray tracing: 63%|██████████████████▊ | ETA: 0:00:05 Bin 7 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:04 Bin 7 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 7 ray tracing: 86%|█████████████████████████▋ | ETA: 0:00:02 Bin 7 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 8 ray tracing: 15%|████▋ | ETA: 0:00:11 Bin 8 ray tracing: 23%|███████ | ETA: 0:00:10 Bin 8 ray tracing: 32%|█████████▌ | ETA: 0:00:09 Bin 8 ray tracing: 40%|███████████▉ | ETA: 0:00:08 Bin 8 ray tracing: 48%|██████████████▍ | ETA: 0:00:07 Bin 8 ray tracing: 56%|████████████████▊ | ETA: 0:00:06 Bin 8 ray tracing: 64%|███████████████████▎ | ETA: 0:00:05 Bin 8 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:04 Bin 8 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:03 Bin 8 ray tracing: 88%|██████████████████████████▎ | ETA: 0:00:02 Bin 8 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 9 ray tracing: 16%|████▉ | ETA: 0:00:11 Bin 9 ray tracing: 24%|███████▎ | ETA: 0:00:10 Bin 9 ray tracing: 32%|█████████▋ | ETA: 0:00:09 Bin 9 ray tracing: 40%|████████████▏ | ETA: 0:00:08 Bin 9 ray tracing: 49%|██████████████▋ | ETA: 0:00:06 Bin 9 ray tracing: 57%|█████████████████▏ | ETA: 0:00:05 Bin 9 ray tracing: 65%|███████████████████▋ | ETA: 0:00:04 Bin 9 ray tracing: 73%|██████████████████████ | ETA: 0:00:03 Bin 9 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:02 Bin 9 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:01 Bin 9 ray tracing: 98%|█████████████████████████████▎| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 9%|██▌ | ETA: 0:00:11 Bin 10 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 10 ray tracing: 25%|███████▍ | ETA: 0:00:09 Bin 10 ray tracing: 34%|█████████▉ | ETA: 0:00:08 Bin 10 ray tracing: 42%|████████████▎ | ETA: 0:00:07 Bin 10 ray tracing: 50%|██████████████▋ | ETA: 0:00:06 Bin 10 ray tracing: 59%|█████████████████ | ETA: 0:00:05 Bin 10 ray tracing: 67%|███████████████████▎ | ETA: 0:00:04 Bin 10 ray tracing: 74%|█████████████████████▋ | ETA: 0:00:03 Bin 10 ray tracing: 82%|███████████████████████▉ | ETA: 0:00:02 Bin 10 ray tracing: 90%|██████████████████████████▏ | ETA: 0:00:01 Bin 10 ray tracing: 98%|████████████████████████████▍| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 20%|██████▋ | ETA: 0:00:04 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:03 Bin 1 progress: 62%|████████████████████▌ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 22%|███████▍ | ETA: 0:00:04 Bin 2 progress: 42%|█████████████▉ | ETA: 0:00:03 Bin 2 progress: 62%|████████████████████▌ | ETA: 0:00:02 Bin 2 progress: 82%|███████████████████████████▏ | ETA: 0:00:01 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:05 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 20%|██████▋ | ETA: 0:00:04 Bin 3 progress: 40%|█████████████▎ | ETA: 0:00:03 Bin 3 progress: 62%|████████████████████▌ | ETA: 0:00:02 Bin 3 progress: 82%|███████████████████████████▏ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:05 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 20%|██████▋ | ETA: 0:00:04 Bin 4 progress: 40%|█████████████▎ | ETA: 0:00:03 Bin 4 progress: 62%|████████████████████▌ | ETA: 0:00:02 Bin 4 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:05 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 20%|██████▋ | ETA: 0:00:04 Bin 5 progress: 40%|█████████████▎ | ETA: 0:00:03 Bin 5 progress: 62%|████████████████████▌ | ETA: 0:00:02 Bin 5 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:05 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 22%|███████▍ | ETA: 0:00:04 Bin 6 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 6 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 6 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 20%|██████▋ | ETA: 0:00:04 Bin 7 progress: 40%|█████████████▎ | ETA: 0:00:03 Bin 7 progress: 62%|████████████████████▌ | ETA: 0:00:02 Bin 7 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:05 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 18%|█████▉ | ETA: 0:00:05 Bin 8 progress: 38%|████████████▌ | ETA: 0:00:03 Bin 8 progress: 58%|███████████████████▏ | ETA: 0:00:02 Bin 8 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:05 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 22%|███████▍ | ETA: 0:00:04 Bin 9 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 9 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 9 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 24%|███████▉ | ETA: 0:00:03 Bin 10 progress: 49%|███████████████▋ | ETA: 0:00:02 Bin 10 progress: 82%|██████████████████████████▎ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:03 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015298935839495743 Iteration 10: d = 1.3446909669416458e-5 Iteration 20: d = 1.5058412494532614e-7 Iteration 30: d = 1.9489514058304897e-9 Iteration 40: d = 2.5851818377476592e-11 Iteration 50: d = 3.454339063304596e-13 Iteration 60: d = 4.653633587972819e-15 Converged after 62 iterations. d = 2.0162228134336466e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016038602979199696 Iteration 10: d = 2.2122735473903733e-5 Iteration 20: d = 2.7650959742611173e-7 Iteration 30: d = 3.752000107920183e-9 Iteration 40: d = 5.193588524564442e-11 Iteration 50: d = 7.232051959677256e-13 Iteration 60: d = 1.0085597765605553e-14 Converged after 64 iterations. d = 1.8397569800833872e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017959668199720945 Iteration 10: d = 1.5948437080811733e-5 Iteration 20: d = 1.7898900902912422e-7 Iteration 30: d = 2.3137385539793842e-9 Iteration 40: d = 3.0443845182033156e-11 Iteration 50: d = 4.0259523153711174e-13 Iteration 60: d = 5.350543162134055e-15 Converged after 63 iterations. d = 1.434266302912869e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015196607640753394 Iteration 10: d = 1.5522863105428296e-5 Iteration 20: d = 1.565061727910879e-7 Iteration 30: d = 1.8073355468359253e-9 Iteration 40: d = 2.2720991685197478e-11 Iteration 50: d = 3.022983989369797e-13 Iteration 60: d = 4.117693298775146e-15 Converged after 62 iterations. d = 1.712564934436405e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014736267711850572 Iteration 10: d = 1.443652495551875e-5 Iteration 20: d = 1.6574122412994152e-7 Iteration 30: d = 2.192815864072276e-9 Iteration 40: d = 3.001014690968531e-11 Iteration 50: d = 4.155825290144578e-13 Iteration 60: d = 5.759618576633415e-15 Converged after 63 iterations. d = 1.589383816385302e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001369038491327399 Iteration 10: d = 1.5882326320410778e-5 Iteration 20: d = 1.9719974577163176e-7 Iteration 30: d = 2.747290286132791e-9 Iteration 40: d = 3.89933378304068e-11 Iteration 50: d = 5.541186602712961e-13 Iteration 60: d = 7.840240363691328e-15 Converged after 63 iterations. d = 2.2093654283209962e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00149119783169456 Iteration 10: d = 1.77674795457939e-5 Iteration 20: d = 2.3431445900484377e-7 Iteration 30: d = 3.282216610823519e-9 Iteration 40: d = 4.6213350359921015e-11 Iteration 50: d = 6.505828565770064e-13 Iteration 60: d = 9.142015597741631e-15 Converged after 64 iterations. d = 1.6411401489585303e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001465485715468751 Iteration 10: d = 1.06680412090951e-5 Iteration 20: d = 1.1533849051652366e-7 Iteration 30: d = 1.5229328436934302e-9 Iteration 40: d = 2.0664331304424288e-11 Iteration 50: d = 2.819181566874664e-13 Iteration 60: d = 3.854619861347593e-15 Converged after 62 iterations. d = 1.6301000052941942e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013446755809881255 Iteration 10: d = 1.8716623832601623e-5 Iteration 20: d = 2.5552755983307707e-7 Iteration 30: d = 3.589982715210182e-9 Iteration 40: d = 5.073052032059265e-11 Iteration 50: d = 7.187539229194764e-13 Iteration 60: d = 1.0167853967293892e-14 Converged after 64 iterations. d = 1.894149030028999e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017595074842314767 Iteration 10: d = 1.7629874097476136e-5 Iteration 20: d = 2.2444998238864197e-7 Iteration 30: d = 3.1662402251311744e-9 Iteration 40: d = 4.4958775044304417e-11 Iteration 50: d = 6.376776578664204e-13 Iteration 60: d = 9.005782407916293e-15 Converged after 64 iterations. d = 1.6629857381430356e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8652.852807615363 Iteration 2: convergence error = 4812.216072803852 Iteration 3: convergence error = 1090.8631628741755 Iteration 4: convergence error = 323.8971459471891 Iteration 5: convergence error = 96.8590183943952 Iteration 6: convergence error = 29.10582000247109 Iteration 7: convergence error = 8.771533265903145 Iteration 8: convergence error = 2.6482026420687816 Iteration 9: convergence error = 0.7976689342815462 Iteration 10: convergence error = 0.2399437123772259 Iteration 11: convergence error = 0.0721208126642523 Iteration 12: convergence error = 0.02166806797481513 Iteration 13: convergence error = 0.00650833841837084 Iteration 14: convergence error = 0.00195459652786667 Iteration 15: convergence error = 0.000586959092061079 Iteration 16: convergence error = 0.00017625340410631907 Iteration 17: convergence error = 5.292428545544681e-5 Iteration 18: convergence error = 1.5891523617028724e-5 Iteration 19: convergence error = 4.771679641635274e-6 Iteration 20: convergence error = 1.4327670214697719e-6 Iteration 21: convergence error = 4.3020622797484975e-7 Iteration 22: convergence error = 1.2905275070806965e-7 Iteration 23: convergence error = 3.786090019275434e-8 Iteration 24: convergence error = 1.0998974175890908e-8 Iteration 25: convergence error = 3.1859599403105676e-9 Iteration 26: convergence error = 9.247287380276248e-10 Iteration 27: convergence error = 2.6557245291769505e-10 Iteration 28: convergence error = 7.548806024715304e-11 Iteration 29: convergence error = 2.2282620193436742e-11 Iteration 30: convergence error = 5.9117155615240335e-12 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.4187038867695 K, F = -7423.679312213307, relative_change = 0.03258129611323048 Iter 2: T = 936.9162146348442 K, F = -6292.681683373166, relative_change = 0.03152977002550848 Iter 3: T = 908.4609229277222 K, F = -5332.470626107916, relative_change = 0.030371223448419266 Iter 5: T = 857.5517054491688 K, F = -3825.5241764624748, relative_change = 0.027739867031721245 Iter 10: T = 763.0380463217433 K, F = -1656.1009488413267, relative_change = 0.019791237340849213 Iter 15: T = 707.8610343491696 K, F = -708.8845737255004, relative_change = 0.011814416392489582 Iter 20: T = 679.5555651527445 K, F = -300.39028360662087, relative_change = 0.0060330237665897676 Iter 25: T = 666.3777406736104 K, F = -126.44421991056012, relative_change = 0.0027824729868039916 Iter 30: T = 660.5814558639125 K, F = -53.035937576588125, relative_change = 0.0012161910524506104 Iter 35: T = 658.1027439996737 K, F = -22.20848847092199, relative_change = 0.0005184334832806725 Iter 40: T = 657.0561704213249 K, F = -9.292872086750107, relative_change = 0.00021857944127108065 Iter 45: T = 656.6167111092966 K, F = -3.8872735743340447, relative_change = 9.172482187617395e-5 Iter 50: T = 656.4326122001571 K, F = -1.6258591996152063, relative_change = 3.841530999705098e-5 Iter 55: T = 656.3555651418355 K, F = -0.6799808705722312, relative_change = 1.6075362633569014e-5 Iter 60: T = 656.3233335633571 K, F = -0.28438086929920103, relative_change = 6.724592875010452e-6 Iter 65: T = 656.3098522561207 K, F = -0.11893230644680591, relative_change = 2.8125997326838824e-6 Iter 70: T = 656.3042139192016 K, F = -0.049739056199859966, relative_change = 1.1763143460366482e-6 Iter 75: T = 656.301855848075 K, F = -0.0208014927220998, relative_change = 4.919577240376992e-7 Iter 80: T = 656.3008696655975 K, F = -0.008699437120844422, relative_change = 2.0574417237577553e-7 Iter 85: T = 656.3004572307389 K, F = -0.003638209274177573, relative_change = 8.60449458102174e-8 Iter 90: T = 656.3002847452811 K, F = -0.001521542704255141, relative_change = 3.5985072184453704e-8 Iter 95: T = 656.3002126097548 K, F = -0.0006363273527716373, relative_change = 1.50493953544666e-8 Iter 100: T = 656.3001824418077 K, F = -0.0002661197018742345, relative_change = 6.293838327320118e-9 Iter 105: T = 656.3001698252106 K, F = -0.00011129443811946915, relative_change = 2.6321586091946255e-9 Iter 110: T = 656.3001645487986 K, F = -4.654466318143591e-5, relative_change = 1.1008002076707294e-9 Iter 115: T = 656.3001623421402 K, F = -1.9465533601603635e-5, relative_change = 4.6036779105160786e-10 Iter 120: T = 656.3001614192892 K, F = -8.140718372739997e-6, relative_change = 1.925313036172137e-10 Iter 125: T = 656.3001610333419 K, F = -3.40454460584505e-6, relative_change = 8.051886615024829e-11 Iter 130: T = 656.3001608719342 K, F = -1.4238216567985518e-6, relative_change = 3.367396195749638e-11 Iter 135: T = 656.3001608044316 K, F = -5.954584958445253e-7, relative_change = 1.4082835901822845e-11 Iter 140: T = 656.3001607762012 K, F = -2.490286302170297e-7, relative_change = 5.889628512137402e-12 Iter 145: T = 656.3001607643948 K, F = -1.0414566592453767e-7, relative_change = 2.463087408715476e-12 Iter 150: T = 656.3001607594573 K, F = -4.355534866107291e-8, relative_change = 1.0301017322302945e-12 Iter 155: T = 656.3001607573923 K, F = -1.821452094707965e-8, relative_change = 4.3078083763296427e-13 Converged in 159 iterations to T = 656.300160756647 K Iter 1: T = 970.39321691468 K, F = -6745.933689311539, relative_change = 0.029606783085319957 Iter 2: T = 942.9517045165472 K, F = -5713.5727562211505, relative_change = 0.028278755374426236 Iter 3: T = 917.6304060278641 K, F = -4837.447301509733, relative_change = 0.026853229457457165 Iter 5: T = 873.1309132141714 K, F = -3463.498963366147, relative_change = 0.023755273304689118 Iter 10: T = 794.1966375105152 K, F = -1490.646833882793, relative_change = 0.0154496772238158 Iter 15: T = 751.2287878980705 K, F = -634.4843723467421, relative_change = 0.008450443471884391 Iter 20: T = 730.3857375551918 K, F = -267.80596134978646, relative_change = 0.00406275082712182 Iter 25: T = 721.0081948285621 K, F = -112.48428260499045, relative_change = 0.0018132400111690353 Iter 30: T = 716.954441338569 K, F = -47.13185367269821, relative_change = 0.0007803104040582355 Iter 35: T = 715.234616784785 K, F = -19.72715557663563, relative_change = 0.00033034731703808127 Iter 40: T = 714.5109693788435 K, F = -8.252968548794374, relative_change = 0.0001388696613909157 Iter 45: T = 714.207554038401 K, F = -3.4519882735458003, relative_change = 5.8202862953643666e-5 Iter 50: T = 714.0805255331877 K, F = -1.4437500273683557, relative_change = 2.436322470594082e-5 Iter 55: T = 714.0273767600879 K, F = -0.6038087849341512, relative_change = 1.0192860654383448e-5 Iter 60: T = 714.0051451187803 K, F = -0.25252271841811263, relative_change = 4.263453145226382e-6 Iter 65: T = 713.9958468478599 K, F = -0.10560848425305658, relative_change = 1.7831454730800872e-6 Iter 70: T = 713.991958071692 K, F = -0.0441668111351301, relative_change = 7.457534512585074e-7 Iter 75: T = 713.9903317166293 K, F = -0.01847110218380521, relative_change = 3.1188662342568366e-7 Iter 80: T = 713.9896515515966 K, F = -0.007724838025276348, relative_change = 1.3043534444783746e-7 Iter 85: T = 713.989367097771 K, F = -0.0032306199532947666, relative_change = 5.4549729627065616e-8 Iter 90: T = 713.9892481356642 K, F = -0.0013510839228281224, relative_change = 2.2813367782383262e-8 Iter 95: T = 713.9891983842692 K, F = -0.0005650394449177032, relative_change = 9.540826241212286e-9 Iter 100: T = 713.9891775776382 K, F = -0.00023630624694992441, relative_change = 3.990088081375344e-9 Iter 105: T = 713.9891688760559 K, F = -9.882609501243866e-5, relative_change = 1.6687025916938996e-9 Iter 110: T = 713.9891652369502 K, F = -4.133025225561138e-5, relative_change = 6.978713539096617e-10 Iter 115: T = 713.9891637150326 K, F = -1.7284804990191915e-5, relative_change = 2.918581359820095e-10 Iter 120: T = 713.9891630785487 K, F = -7.228713650442309e-6, relative_change = 1.22058588553207e-10 Iter 125: T = 713.9891628123635 K, F = -3.0231350860443484e-6, relative_change = 5.1046371471728443e-11 Iter 130: T = 713.9891627010416 K, F = -1.2643122851985211e-6, relative_change = 2.1348220564919858e-11 Iter 135: T = 713.9891626544854 K, F = -5.287507017781579e-7, relative_change = 8.92808425661088e-12 Iter 140: T = 713.989162635015 K, F = -2.2112894049186593e-7, relative_change = 3.7338159663968035e-12 Iter 145: T = 713.9891626268721 K, F = -9.247646770571549e-8, relative_change = 1.5614876591290378e-12 Iter 150: T = 713.989162623467 K, F = -3.8676076896670963e-8, relative_change = 6.530549693056257e-13 Iter 155: T = 713.9891626220428 K, F = -1.6175450423538962e-8, relative_change = 2.7312641631598563e-13 Converged in 157 iterations to T = 713.9891626217415 K Iter 1: T = 974.3356730725268 K, F = -5847.64130350218, relative_change = 0.02566432692747319 Iter 2: T = 950.8611250256421 K, F = -4947.419648681818, relative_change = 0.024092875479821713 Iter 3: T = 929.5022723384246 K, F = -4183.97921330793, relative_change = 0.022462641625654277 Iter 5: T = 892.780968425258 K, F = -2988.2823836062994, relative_change = 0.01910973992374299 Iter 10: T = 830.8674267867398 K, F = -1277.959921376196, relative_change = 0.011247478007679222 Iter 15: T = 799.4013271703209 K, F = -541.1707303570712, relative_change = 0.005684292354214034 Iter 20: T = 784.8396218378115 K, F = -227.70851898464844, relative_change = 0.0026062816572379522 Iter 25: T = 778.4546961149464 K, F = -95.49237376650125, relative_change = 0.0011359461137251427 Iter 30: T = 775.7282360461412 K, F = -39.983498568712726, relative_change = 0.0004836129415656962 Iter 35: T = 774.5777919899291 K, F = -16.73000101951046, relative_change = 0.00020378732089584633 Iter 40: T = 774.094848764794 K, F = -6.998169075691822, relative_change = 8.549769634360922e-5 Iter 45: T = 773.8925567616435 K, F = -2.926977930216053, relative_change = 3.5803848940801835e-5 Iter 50: T = 773.8078998119879 K, F = -1.2241426592838285, relative_change = 1.4981954815887096e-5 Iter 55: T = 773.7724854553807 K, F = -0.5119590469584241, relative_change = 6.267095377855329e-6 Iter 60: T = 773.7576730320131 K, F = -0.2141087812833119, relative_change = 2.6212300912398285e-6 Iter 65: T = 773.7514779993843 K, F = -0.08954309310541864, relative_change = 1.0962745020598817e-6 Iter 70: T = 773.7488871102314 K, F = -0.03744803353983972, relative_change = 4.5848292044536396e-7 Iter 75: T = 773.7478035602594 K, F = -0.015661222304003686, relative_change = 1.9174440249251512e-7 Iter 80: T = 773.747350405114 K, F = -0.006549711503793243, relative_change = 8.019003857907893e-8 Iter 85: T = 773.7471608899394 K, F = -0.0027391677980462825, relative_change = 3.3536473694678274e-8 Iter 90: T = 773.7470816323811 K, F = -0.001145552724740706, relative_change = 1.4025361127278657e-8 Iter 95: T = 773.747048485915 K, F = -0.0004790838370865025, relative_change = 5.865574801379402e-9 Iter 100: T = 773.7470346236655 K, F = -0.00020035858296341136, relative_change = 2.4530536510359025e-9 Iter 105: T = 773.7470288263071 K, F = -8.379235320321587e-5, relative_change = 1.0258963816100942e-9 Iter 110: T = 773.7470264017824 K, F = -3.504296242196059e-5, relative_change = 4.2904212033229617e-10 Iter 115: T = 773.7470253878173 K, F = -1.4655385485284889e-5, relative_change = 1.7943054090042662e-10 Iter 120: T = 773.7470249637649 K, F = -6.1290587981543965e-6, relative_change = 7.50400144259074e-11 Iter 125: T = 773.7470247864211 K, F = -2.5632451806645307e-6, relative_change = 3.13826252738882e-11 Iter 130: T = 773.7470247122538 K, F = -1.0719784936386034e-6, relative_change = 1.3124573348133343e-11 Iter 135: T = 773.7470246812362 K, F = -4.4831456114113877e-7, relative_change = 5.488857637324749e-12 Iter 140: T = 773.7470246682642 K, F = -1.8748888497288618e-7, relative_change = 2.2954859990708428e-12 Iter 145: T = 773.7470246628392 K, F = -7.840946347759115e-8, relative_change = 9.599919784018374e-13 Iter 150: T = 773.7470246605704 K, F = -3.279163685032671e-8, relative_change = 4.014784305266402e-13 Converged in 154 iterations to T = 773.7470246597516 K Iter 1: T = 970.4345574355319 K, F = -6736.514212310439, relative_change = 0.029565442564468025 Iter 2: T = 943.0351720315784 K, F = -5705.530562876693, relative_change = 0.02823414025605092 Iter 3: T = 917.7565349879015 K, F = -4830.579499726469, relative_change = 0.02680561424789613 Iter 5: T = 873.3426814584557 K, F = -3458.489126915098, relative_change = 0.02370299198579219 Iter 10: T = 794.606357891278 K, F = -1488.3802636746484, relative_change = 0.015397651520296958 Iter 15: T = 751.7823753472524 K, F = -633.4782304315388, relative_change = 0.00841347749581375 Iter 20: T = 731.0220300141269 K, F = -267.3699549236777, relative_change = 0.004042365810895544 Iter 25: T = 721.6850352045376 K, F = -112.29866100470781, relative_change = 0.0018035374903553533 Iter 30: T = 717.6495155808511 K, F = -47.05359282308124, relative_change = 0.0007760148948568217 Iter 35: T = 715.9375612626616 K, F = -19.694310675231836, relative_change = 0.00032850658778864843 Iter 40: T = 715.2172497979969 K, F = -8.239211886671255, relative_change = 0.00013809188799569725 Iter 45: T = 714.9152375060089 K, F = -3.4462314544321604, relative_change = 5.787618102538026e-5 Iter 50: T = 714.7887971671355 K, F = -1.4413418219052936, relative_change = 2.4226355021227722e-5 Iter 55: T = 714.735894616888 K, F = -0.6028015334428447, relative_change = 1.0135576760633006e-5 Iter 60: T = 714.7137659917632 K, F = -0.252101454353998, relative_change = 4.239488747222538e-6 Iter 65: T = 714.7045108109386 K, F = -0.10543230318827146, relative_change = 1.7731219478011294e-6 Iter 70: T = 714.7006400568748 K, F = -0.044093129516220464, relative_change = 7.415612610327204e-7 Iter 75: T = 714.6990212391006 K, F = -0.018440287544715717, relative_change = 3.1013335874646773e-7 Iter 80: T = 714.6983442262922 K, F = -0.007711950956530211, relative_change = 1.2970210110683643e-7 Iter 85: T = 714.6980610907715 K, F = -0.003225230423769987, relative_change = 5.4243077257439444e-8 Iter 90: T = 714.6979426799966 K, F = -0.0013488299558191974, relative_change = 2.2685121867689874e-8 Iter 95: T = 714.6978931591757 K, F = -0.0005640968096746191, relative_change = 9.48719224315391e-9 Iter 100: T = 714.6978724489734 K, F = -0.00023591202423633995, relative_change = 3.9676576729455125e-9 Iter 105: T = 714.6978637877188 K, F = -9.86612264172182e-5, relative_change = 1.659321926765631e-9 Iter 110: T = 714.6978601654785 K, F = -4.126130213921719e-5, relative_change = 6.939482459815236e-10 Iter 115: T = 714.6978586506144 K, F = -1.7255969435581164e-5, relative_change = 2.9021744885738065e-10 Iter 120: T = 714.6978580170801 K, F = -7.216652146646574e-6, relative_change = 1.2137239764760068e-10 Iter 125: T = 714.6978577521286 K, F = -3.0180900053577986e-6, relative_change = 5.075938447210742e-11 Iter 130: T = 714.6978576413226 K, F = -1.2622006212437142e-6, relative_change = 2.1228169653058457e-11 Iter 135: T = 714.6978575949822 K, F = -5.278670054398305e-7, relative_change = 8.877867876618845e-12 Iter 140: T = 714.6978575756021 K, F = -2.207598688297452e-7, relative_change = 3.712823358887911e-12 Iter 145: T = 714.6978575674972 K, F = -9.232569542216851e-8, relative_change = 1.552768627851797e-12 Iter 150: T = 714.6978575641075 K, F = -3.860943931233152e-8, relative_change = 6.493482213197061e-13 Iter 155: T = 714.69785756269 K, F = -1.6147581383130216e-8, relative_change = 2.715761595248255e-13 Converged in 157 iterations to T = 714.69785756239 K Iter 1: T = 969.3267732902445 K, F = -6988.923883588933, relative_change = 0.0306732267097554 Iter 2: T = 940.7946100107526 K, F = -5921.0945405251005, relative_change = 0.029435030647759264 Iter 3: T = 914.364404439182 K, F = -5014.72784948163, relative_change = 0.028093491704069853 Iter 5: T = 867.6238867190935 K, F = -3592.93820661909, relative_change = 0.02513234507368359 Iter 10: T = 783.4178729011101 K, F = -1549.414262041897, relative_change = 0.01686362617861957 Iter 15: T = 736.5205176471636 K, F = -660.6824560946832, relative_change = 0.009483846180747052 Iter 20: T = 713.3738933098293 K, F = -279.196506953591, relative_change = 0.004643344409164053 Iter 25: T = 702.853742358324 K, F = -117.34288269006953, relative_change = 0.0020923209403468485 Iter 30: T = 698.2831725786361 K, F = -49.18221607398111, relative_change = 0.0009044355508519452 Iter 35: T = 696.3396855437059 K, F = -20.588018835109438, relative_change = 0.0003836455216561641 Iter 40: T = 695.5211260691656 K, F = -8.613594316633854, relative_change = 0.0001614094787574254 Iter 45: T = 695.1777726620761 K, F = -3.6029125331162364, relative_change = 6.767352782811773e-5 Iter 50: T = 695.0339984499717 K, F = -1.506887004836631, relative_change = 2.8331748290694196e-5 Iter 55: T = 694.9738388542726 K, F = -0.6302166895718042, relative_change = 1.1853908016391614e-5 Iter 60: T = 694.9486738777837 K, F = -0.2635673912038197, relative_change = 4.958361666242534e-6 Iter 65: T = 694.9381486191063 K, F = -0.1102275983280615, relative_change = 2.0738062762363483e-6 Iter 70: T = 694.9337466614269 K, F = -0.04609859730215149, relative_change = 8.673185755464442e-7 Iter 75: T = 694.9319056806293 K, F = -0.019279001288055375, relative_change = 3.627278879353374e-7 Iter 80: T = 694.9311357553097 K, F = -0.008062711613580298, relative_change = 1.516979919119228e-7 Iter 85: T = 694.9308137624431 K, F = -0.0033719228168364035, relative_change = 6.344206181856028e-8 Iter 90: T = 694.930679101023 K, F = -0.00141017848568048, relative_change = 2.6532254165588612e-8 Iter 95: T = 694.9306227839812 K, F = -0.000589753500477519, relative_change = 1.1096110149188414e-8 Iter 100: T = 694.930599231517 K, F = -0.0002466419609802317, relative_change = 4.640526602799283e-9 Iter 105: T = 694.9305893815942 K, F = -0.0001031486141073179, relative_change = 1.9407237852251537e-9 Iter 110: T = 694.9305852622389 K, F = -4.3137982768670646e-5, relative_change = 8.116338963259956e-10 Iter 115: T = 694.9305835394752 K, F = -1.8040819558473586e-5, relative_change = 3.394349921855445e-10 Iter 120: T = 694.9305828189948 K, F = -7.544886448718202e-6, relative_change = 1.41955772968201e-10 Iter 125: T = 694.9305825176812 K, F = -3.1553607079404244e-6, relative_change = 5.936758256844816e-11 Iter 130: T = 694.9305823916683 K, F = -1.3196086123823392e-6, relative_change = 2.4828214766106736e-11 Iter 135: T = 694.9305823389682 K, F = -5.518758491307452e-7, relative_change = 1.0383451564972752e-11 Iter 140: T = 694.9305823169285 K, F = -2.3080172406597654e-7, relative_change = 4.342495739010648e-12 Iter 145: T = 694.9305823077111 K, F = -9.652379528990451e-8, relative_change = 1.816079024029289e-12 Iter 150: T = 694.9305823038562 K, F = -4.03665868509151e-8, relative_change = 7.594905632684644e-13 Iter 155: T = 694.9305823022441 K, F = -1.6881725239947798e-8, relative_change = 3.176268298067008e-13 Converged in 158 iterations to T = 694.9305823017721 K Iter 1: T = 963.6016344698411 K, F = -8293.402209830836, relative_change = 0.0363983655301589 Iter 2: T = 929.0835503451792 K, F = -7037.154011610742, relative_change = 0.03582194434908071 Iter 3: T = 896.4123703211296 K, F = -5970.26941853647, relative_change = 0.03516495369217481 Iter 5: T = 836.4923065058208 K, F = -4294.833972622832, relative_change = 0.0335801595245321 Iter 10: T = 717.0746735394778 K, F = -1876.6505029189998, relative_change = 0.027822195492713895 Iter 15: T = 637.7374578407419 K, F = -812.5171407013462, relative_change = 0.019888951989074796 Iter 20: T = 591.3485222954669 K, F = -347.83828405057676, relative_change = 0.011896805705179755 Iter 25: T = 567.5192602956344 K, F = -147.4111196992083, relative_change = 0.006084249573498749 Iter 30: T = 556.4156658090898 K, F = -62.05374070095763, relative_change = 0.0028085175208111897 Iter 35: T = 551.5294826188356 K, F = -26.028628950143435, relative_change = 0.0012280895557558657 Iter 40: T = 549.4395155134813 K, F = -10.899471870952596, relative_change = 0.0005236037541229828 Iter 45: T = 548.556996318154 K, F = -4.5607760438419955, relative_change = 0.00022077714067765636 Iter 50: T = 548.1864089880995 K, F = -1.9078089518930863, relative_change = 9.265023504495514e-5 Iter 55: T = 548.0311593863098 K, F = -0.7979453068226983, relative_change = 3.880344065304472e-5 Iter 60: T = 547.9661855602961 K, F = -0.3337237088287771, relative_change = 1.623787858348422e-5 Iter 65: T = 547.9390045714543 K, F = -0.13956959448638612, relative_change = 6.792593150051151e-6 Iter 70: T = 547.9276357295524 K, F = -0.05837008301409574, relative_change = 2.841044238411387e-6 Iter 75: T = 547.9228808943243 K, F = -0.024411137826884893, relative_change = 1.1882112239271606e-6 Iter 80: T = 547.920892321758 K, F = -0.010209041965491356, relative_change = 4.969333233794728e-7 Iter 85: T = 547.9200606693206 K, F = -0.004269545474127473, relative_change = 2.0782505945717904e-7 Iter 90: T = 547.919712861003 K, F = -0.0017855752916147438, relative_change = 8.691520323562128e-8 Iter 95: T = 547.9195674031769 K, F = -0.0007467489780558223, relative_change = 3.634902517365568e-8 Iter 100: T = 547.9195065709362 K, F = -0.0003122993524567741, relative_change = 1.5201605034573293e-8 Iter 105: T = 547.9194811301595 K, F = -0.00013060732105443784, relative_change = 6.357494284136827e-9 Iter 110: T = 547.9194704905216 K, F = -5.462154186677837e-5, relative_change = 2.6587803004322543e-9 Iter 115: T = 547.9194660408976 K, F = -2.2843381189102674e-5, relative_change = 1.1119337201645266e-9 Iter 120: T = 547.9194641800118 K, F = -9.553375257459473e-6, relative_change = 4.650239898366272e-10 Iter 125: T = 547.9194634017671 K, F = -3.995335005280154e-6, relative_change = 1.9447855730383786e-10 Iter 130: T = 547.9194630762959 K, F = -1.670897320199538e-6, relative_change = 8.133328011913281e-11 Iter 135: T = 547.9194629401799 K, F = -6.987891349452546e-7, relative_change = 3.401454526071102e-11 Iter 140: T = 547.9194628832546 K, F = -2.922423144868791e-7, relative_change = 1.4225306234769167e-11 Iter 145: T = 547.9194628594478 K, F = -1.2221902165321374e-7, relative_change = 5.94918300637997e-12 Iter 150: T = 547.9194628494915 K, F = -5.111389278500411e-8, relative_change = 2.4880407178810417e-12 Iter 155: T = 547.9194628453276 K, F = -2.1376623360325198e-8, relative_change = 1.0405372480028402e-12 Iter 160: T = 547.9194628435863 K, F = -8.94010415697366e-9, relative_change = 4.351721607146922e-13 Converged in 164 iterations to T = 547.9194628429577 K Iter 1: T = 966.9389298135459 K, F = -7532.996291180273, relative_change = 0.03306107018645411 Iter 2: T = 935.9371608305419 K, F = -6386.174009143432, relative_change = 0.03206176525438076 Iter 3: T = 906.9642121663933 K, F = -5412.4779118068345, relative_change = 0.03095608324648445 Iter 5: T = 854.9731870538718 K, F = -3884.2125129590327, relative_change = 0.028426297829677948 Iter 10: T = 757.6696999110223 K, F = -1683.2661114981752, relative_change = 0.02062194506260725 Iter 15: T = 700.1013373936298 K, F = -721.3176504802364, relative_change = 0.012527235740004259 Iter 20: T = 670.2213115963518 K, F = -305.9208491792371, relative_change = 0.00648181477881447 Iter 25: T = 656.2030133816962 K, F = -128.83674160761046, relative_change = 0.0030122821836046 Iter 30: T = 650.0118103943818 K, F = -54.05278720251837, relative_change = 0.0013215446923916482 Iter 35: T = 647.3591481235999 K, F = -22.63680027960389, relative_change = 0.0005642841079919029 Iter 40: T = 646.23818605344 K, F = -9.472547741105084, relative_change = 0.00023808197171421513 Iter 45: T = 645.7673216106808 K, F = -3.9625136239274243, relative_change = 9.993932828872012e-5 Iter 50: T = 645.5700365003702 K, F = -1.6573426408964074, relative_change = 4.186099450638725e-5 Iter 55: T = 645.4874656402026 K, F = -0.6931506288206177, relative_change = 1.751819292874819e-5 Iter 60: T = 645.4529223337804 K, F = -0.2898891459289009, relative_change = 7.328317671942379e-6 Iter 65: T = 645.4384739528183 K, F = -0.12123602562809283, relative_change = 3.0651399422353895e-6 Iter 70: T = 645.4324311248668 K, F = -0.05070251518667945, relative_change = 1.2819393501503841e-6 Iter 75: T = 645.4299038821443 K, F = -0.021204425593920218, relative_change = 5.361330540621159e-7 Iter 80: T = 645.4288469485783 K, F = -0.008867948952615223, relative_change = 2.2421911887597785e-7 Iter 85: T = 645.428404924506 K, F = -0.003708683021201975, relative_change = 9.377144084029801e-8 Iter 90: T = 645.4282200644396 K, F = -0.0015510156814914078, relative_change = 3.9216393721165984e-8 Iter 95: T = 645.4281427536961 K, F = -0.0006486533074691603, relative_change = 1.6400774218227715e-8 Iter 100: T = 645.42811042141 K, F = -0.0002712745648065784, relative_change = 6.8590014086472295e-9 Iter 105: T = 645.4280968996602 K, F = -0.00011345026323478224, relative_change = 2.868516602393763e-9 Iter 110: T = 645.4280912447026 K, F = -4.744625526442725e-5, relative_change = 1.1996479580047617e-9 Iter 115: T = 645.4280888797318 K, F = -1.984259091913909e-5, relative_change = 5.017071201989207e-10 Iter 120: T = 645.4280878906728 K, F = -8.298409772677928e-6, relative_change = 2.0981994320309689e-10 Iter 125: T = 645.4280874770365 K, F = -3.4704947467489866e-6, relative_change = 8.774922338359691e-11 Iter 130: T = 645.4280873040489 K, F = -1.4514029920698057e-6, relative_change = 3.669778945857108e-11 Iter 135: T = 645.4280872317033 K, F = -6.069943552233781e-7, relative_change = 1.534746116972641e-11 Iter 140: T = 645.4280872014476 K, F = -2.5385287460988337e-7, relative_change = 6.418506371998099e-12 Iter 145: T = 645.4280871887943 K, F = -1.0616463336221571e-7, relative_change = 2.684304350805629e-12 Iter 150: T = 645.4280871835025 K, F = -4.4399627363578276e-8, relative_change = 1.1226159704637696e-12 Iter 155: T = 645.4280871812894 K, F = -1.8568179771527582e-8, relative_change = 4.694844617412015e-13 Converged in 160 iterations to T = 645.4280871803637 K Iter 1: T = 965.2725843831802 K, F = -7912.674682592807, relative_change = 0.03472741561681977 Iter 2: T = 932.5245986818769 K, F = -6711.073079040266, relative_change = 0.033926153328212014 Iter 3: T = 901.7266615637621 K, F = -5690.71183357544, relative_change = 0.03302640719788806 Iter 5: T = 845.8675169612576 K, F = -4088.709869533288, relative_change = 0.03091359454102838 Iter 10: T = 738.1623886529 K, F = -1778.7971070383087, relative_change = 0.023869312317609092 Iter 15: T = 671.029473098006 K, F = -765.6950128710839, relative_change = 0.015563275087779407 Iter 20: T = 634.4188506840401 K, F = -325.95945882310775, relative_change = 0.008531311875812478 Iter 25: T = 616.6355570650442 K, F = -137.59509946168225, relative_change = 0.004107412373731593 Iter 30: T = 608.6284008651253 K, F = -57.79570549673319, relative_change = 0.0018345149384247138 Iter 35: T = 605.1657212448409 K, F = -24.217426893370302, relative_change = 0.0007897329829695764 Iter 40: T = 603.6964107157561 K, F = -10.136364403053152, relative_change = 0.000334385824782808 Iter 45: T = 603.0781258917656 K, F = -4.240623893489017, relative_change = 0.00014057620181156483 Iter 50: T = 602.8188794950364 K, F = -1.7737387149394792, relative_change = 5.8919670104161026e-5 Iter 55: T = 602.7103414215774 K, F = -0.741844124295716, relative_change = 2.466354885027934e-5 Iter 60: T = 602.6649288008718 K, F = -0.3102560207600799, relative_change = 1.0318555632317207e-5 Iter 65: T = 602.6459330767624 K, F = -0.1297541637491877, relative_change = 4.31603706170991e-6 Iter 70: T = 602.6379882040625 K, F = -0.05426498411787012, relative_change = 1.8051396300453244e-6 Iter 75: T = 602.6346654525115 K, F = -0.022694306961829558, relative_change = 7.5495218382834e-7 Iter 80: T = 602.6332758187323 K, F = -0.00949103763897513, relative_change = 3.157337330515523e-7 Iter 85: T = 602.6326946538973 K, F = -0.003969266588407183, relative_change = 1.3204426735291853e-7 Iter 90: T = 602.6324516032292 K, F = -0.001659994917926788, relative_change = 5.5222603156218564e-8 Iter 95: T = 602.6323499564334 K, F = -0.0006942297380526652, relative_change = 2.3094771975394553e-8 Iter 100: T = 602.6323074465113 K, F = -0.0002903351736587845, relative_change = 9.658512904922855e-9 Iter 105: T = 602.6322896683511 K, F = -0.00012142163824147012, relative_change = 4.039306053856767e-9 Iter 110: T = 602.6322822333117 K, F = -5.077997940822199e-5, relative_change = 1.6892861376048837e-9 Iter 115: T = 602.6322791238892 K, F = -2.123679370408249e-5, relative_change = 7.064796502644976e-10 Iter 120: T = 602.6322778234917 K, F = -8.881481064371144e-6, relative_change = 2.954582404519586e-10 Iter 125: T = 602.6322772796499 K, F = -3.7143414044482626e-6, relative_change = 1.2356416374220467e-10 Iter 130: T = 602.6322770522087 K, F = -1.5533821891011712e-6, relative_change = 5.167601752583733e-11 Iter 135: T = 602.6322769570901 K, F = -6.496432074509784e-7, relative_change = 2.161153516149833e-11 Iter 140: T = 602.6322769173104 K, F = -2.716885783571321e-7, relative_change = 9.038203122336182e-12 Iter 145: T = 602.632276900674 K, F = -1.1362390039959536e-7, relative_change = 3.779900861893018e-12 Iter 150: T = 602.6322768937165 K, F = -4.751832510807574e-8, relative_change = 1.5807814853206763e-12 Iter 155: T = 602.6322768908068 K, F = -1.9872612611049334e-8, relative_change = 6.610977556504878e-13 Iter 160: T = 602.6322768895898 K, F = -8.310659327381842e-9, relative_change = 2.7646884367413043e-13 Converged in 162 iterations to T = 602.6322768893323 K Iter 1: T = 980.0927395574591 K, F = -4535.888228526338, relative_change = 0.019907260442540885 Iter 2: T = 962.2313220729353 K, F = -3831.5282448625553, relative_change = 0.018224211611432617 Iter 3: T = 946.2951967923183 K, F = -3235.037081758202, relative_change = 0.016561636391430126 Iter 5: T = 919.6766917067331 K, F = -2303.0152492692528, relative_change = 0.013386883395134145 Iter 10: T = 877.394857226949 K, F = -977.7624360248841, relative_change = 0.007038936249921139 Iter 15: T = 857.3685607189966 K, F = -412.0367903888066, relative_change = 0.003302469529255188 Iter 20: T = 848.4782853610889 K, F = -172.9219466010955, relative_change = 0.0014557050689643727 Iter 25: T = 844.659906298873 K, F = -72.42834711596039, relative_change = 0.0006228942799678702 Iter 30: T = 843.0445998208091 K, F = -30.310072306245154, relative_change = 0.00026305280947357487 Iter 35: T = 842.3657716474166 K, F = -12.679503341673039, relative_change = 0.00011046443710599284 Iter 40: T = 842.0812975478038 K, F = -5.303328576854044, relative_change = 4.627718791777614e-5 Iter 45: T = 841.962225258831 K, F = -2.218021989381082, relative_change = 1.9367637252204743e-5 Iter 50: T = 841.9124099692602 K, F = -0.9276219479672311, relative_change = 8.102222209231448e-6 Iter 55: T = 841.8915734986531 K, F = -0.3879458417695665, relative_change = 3.38887391339215e-6 Iter 60: T = 841.8828588916904 K, F = -0.16224415516290458, relative_change = 1.4173423829482311e-6 Iter 65: T = 841.879214243458 K, F = -0.06785254316963552, relative_change = 5.92762601830645e-7 Iter 70: T = 841.8776899913329 K, F = -0.028376761348578583, relative_change = 2.479026887721056e-7 Iter 75: T = 841.8770525279684 K, F = -0.01186750353774313, relative_change = 1.0367626546262028e-7 Iter 80: T = 841.8767859326654 K, F = -0.004963132240156876, relative_change = 4.3358722400819454e-8 Iter 85: T = 841.8766744392365 K, F = -0.0020756412675611013, relative_change = 1.8133147761874893e-8 Iter 90: T = 841.8766278113374 K, F = -0.0008680579811248812, relative_change = 7.5835010772523e-9 Iter 95: T = 841.8766083109904 K, F = -0.0003630322178556078, relative_change = 3.171511095653576e-9 Iter 100: T = 841.8766001557119 K, F = -0.00015182440887961945, relative_change = 1.3263638759274371e-9 Iter 105: T = 841.8765967450771 K, F = -6.349478313749657e-5, relative_change = 5.54701242767051e-10 Iter 110: T = 841.8765953187088 K, F = -2.6554278473867043e-5, relative_change = 2.3198270253420873e-10 Iter 115: T = 841.8765947221844 K, F = -1.1105315373294289e-5, relative_change = 9.70179281662017e-11 Iter 120: T = 841.876594472711 K, F = -4.644376544238327e-6, relative_change = 4.057406525032219e-11 Iter 125: T = 841.8765943683782 K, F = -1.9423347774605304e-6, relative_change = 1.6968567749512645e-11 Iter 130: T = 841.8765943247448 K, F = -8.123061756570849e-7, relative_change = 7.096445236082006e-12 Iter 135: T = 841.8765943064969 K, F = -3.397163164109429e-7, relative_change = 2.9678196568091496e-12 Iter 140: T = 841.8765942988655 K, F = -1.420743851454631e-7, relative_change = 1.2411860502806146e-12 Iter 145: T = 841.8765942956738 K, F = -5.941735881087595e-8, relative_change = 5.190801763907081e-13 Converged in 150 iterations to T = 841.876594294339 K Iter 1: T = 976.4171490173856 K, F = -5373.375029471327, relative_change = 0.023582850982614416 Iter 2: T = 954.9963553590811 K, F = -4543.568201628368, relative_change = 0.021938157968508874 Iter 3: T = 935.646146537627 K, F = -3840.168595644598, relative_change = 0.020262076093660434 Iter 5: T = 902.7371416935897 K, F = -2739.3805512347753, relative_change = 0.016908890134307873 Iter 10: T = 848.5279294595324 K, F = -1168.162082531103, relative_change = 0.009517953974381734 Iter 15: T = 821.7570687608637 K, F = -493.67110302213524, relative_change = 0.00466289019318578 Iter 20: T = 809.5855169326794 K, F = -207.4884215722669, relative_change = 0.0021018143888915115 Iter 25: T = 804.2965721347757 K, F = -86.96602741495585, relative_change = 0.0009086783525455789 Iter 30: T = 802.047443654195 K, F = -36.404749433332846, relative_change = 0.0003854712052746436 Iter 35: T = 801.1001217806852 K, F = -15.231011193595737, relative_change = 0.00016218225874904495 Iter 40: T = 800.7027519118557 K, F = -6.370864893740759, relative_change = 6.79983543672276e-5 Iter 45: T = 800.5363580899361 K, F = -2.6645600468995996, relative_change = 2.8467883193965137e-5 Iter 50: T = 800.4667335702133 K, F = -1.1143837900004692, relative_change = 1.1910891846979833e-5 Iter 55: T = 800.4376093508123 K, F = -0.46605437579298803, relative_change = 4.982201841332335e-6 Iter 60: T = 800.4254281322272 K, F = -0.1949105144746206, relative_change = 2.08377807186424e-6 Iter 65: T = 800.4203336048321 K, F = -0.08151408128887727, relative_change = 8.71489170627835e-7 Iter 70: T = 800.4182029782972 K, F = -0.034090193127104484, relative_change = 3.6447212799564723e-7 Iter 75: T = 800.4173119188299 K, F = -0.01425693128172889, relative_change = 1.5242746223265e-7 Iter 80: T = 800.4169392660688 K, F = -0.005962419866485047, relative_change = 6.374713644090149e-8 Iter 85: T = 800.41678341805 K, F = -0.0024935553601086458, relative_change = 2.6659840247008853e-8 Iter 90: T = 800.4167182405153 K, F = -0.001042834659071179, relative_change = 1.114946820054435e-8 Iter 95: T = 800.4166909824862 K, F = -0.00043612591236930065, relative_change = 4.662841551661544e-9 Iter 100: T = 800.416679582852 K, F = -0.00018239306724199267, relative_change = 1.9500561792382412e-9 Iter 105: T = 800.4166748153887 K, F = -7.627895923101313e-5, relative_change = 8.155368088377768e-10 Iter 110: T = 800.4166728215786 K, F = -3.1900772416659784e-5, relative_change = 3.4106724458454985e-10 Iter 115: T = 800.4166719877433 K, F = -1.3341281803969096e-5, relative_change = 1.4263837211349076e-10 Iter 120: T = 800.4166716390233 K, F = -5.579482368567312e-6, relative_change = 5.965306000076128e-11 Iter 125: T = 800.4166714931845 K, F = -2.3334046101997075e-6, relative_change = 2.4947605556246646e-11 Iter 130: T = 800.4166714321931 K, F = -9.758585930441654e-7, relative_change = 1.0433396402987588e-11 Iter 135: T = 800.4166714066857 K, F = -4.081151314672127e-7, relative_change = 4.363364708423677e-12 Iter 140: T = 800.4166713960183 K, F = -1.7068038438150523e-7, relative_change = 1.8248300742986208e-12 Iter 145: T = 800.416671391557 K, F = -7.138034696652085e-8, relative_change = 7.63163291047456e-13 Iter 150: T = 800.4166713896913 K, F = -2.985322988813266e-8, relative_change = 3.191759376115415e-13 Converged in 153 iterations to T = 800.4166713891449 K Iter 1: T = 980.8348642479436 K, F = -4366.794411856602, relative_change = 0.01916513575205632 Iter 2: T = 963.6818244267533 K, F = -3687.9347782250356, relative_change = 0.017488203617580887 Iter 3: T = 948.4152015071475 K, F = -3113.1622545984865, relative_change = 0.015841974532089253 Iter 5: T = 923.0034362951135 K, F = -2215.380148322701, relative_change = 0.012726844013971894 Iter 10: T = 882.9079701651827 K, F = -939.8014228941843, relative_change = 0.006609679311054967 Iter 15: T = 864.0557410276451 K, F = -395.848683506334, relative_change = 0.0030784157668309214 Iter 20: T = 855.7198143390146 K, F = -166.0881133161077, relative_change = 0.00135201218079698 Iter 25: T = 852.1462496645983 K, F = -69.55838609170576, relative_change = 0.0005775730547316969 Iter 30: T = 850.6357633605961 K, F = -29.107661381672603, relative_change = 0.00024373979837151411 Iter 35: T = 850.0012113862317 K, F = -12.176258162444524, relative_change = 0.00010232337804906014 Iter 40: T = 849.735331921668 K, F = -5.09279815138863, relative_change = 4.286118568277554e-5 Iter 45: T = 849.6240498120178 K, F = -2.1299638563766883, relative_change = 1.7937038223217283e-5 Iter 50: T = 849.5774948666907 K, F = -0.8907929201901352, relative_change = 7.503580707295902e-6 Iter 55: T = 849.558022330831 K, F = -0.3725431412233662, relative_change = 3.138454000403679e-6 Iter 60: T = 849.5498782111295 K, F = -0.15580249864694817, relative_change = 1.312603132547388e-6 Iter 65: T = 849.5464721603331 K, F = -0.0651585544308233, relative_change = 5.489575331874086e-7 Iter 70: T = 849.5450476947528 K, F = -0.027250101150225525, relative_change = 2.2958256000847381e-7 Iter 75: T = 849.5444519637064 K, F = -0.011396320452476072, relative_change = 9.601451184949403e-8 Iter 80: T = 849.5442028214259 K, F = -0.004766077786399592, relative_change = 4.0154475559392946e-8 Iter 85: T = 849.5440986270713 K, F = -0.0019932307297676477, relative_change = 1.6793091709442268e-8 Iter 90: T = 849.5440550517345 K, F = -0.0008335929084903881, relative_change = 7.0230733302965715e-9 Iter 95: T = 849.5440368280059 K, F = -0.0003486185142136389, relative_change = 2.937133479364392e-9 Iter 100: T = 849.5440292066245 K, F = -0.00014579642441647778, relative_change = 1.2283443367386483e-9 Iter 105: T = 849.5440260192718 K, F = -6.097380815606179e-5, relative_change = 5.137082996073438e-10 Iter 110: T = 849.5440246862828 K, F = -2.5499974426246297e-5, relative_change = 2.148389447297385e-10 Iter 115: T = 849.5440241288109 K, F = -1.0664394653137066e-5, relative_change = 8.984821954415754e-11 Iter 120: T = 849.5440238956694 K, F = -4.4599765771646815e-6, relative_change = 3.757559319812104e-11 Iter 125: T = 849.5440237981669 K, F = -1.8652165367782914e-6, relative_change = 1.5714570836433498e-11 Iter 130: T = 849.5440237573902 K, F = -7.800562715765125e-7, relative_change = 6.572024908200683e-12 Iter 135: T = 849.5440237403368 K, F = -3.262285286353972e-7, relative_change = 2.748496607596481e-12 Iter 140: T = 849.544023733205 K, F = -1.3643232632531976e-7, relative_change = 1.1494512379256668e-12 Iter 145: T = 849.5440237302223 K, F = -5.705716787929305e-8, relative_change = 4.807103566943346e-13 Converged in 150 iterations to T = 849.544023728975 K Iter 1: T = 967.346244045685 K, F = -7440.189355931517, relative_change = 0.032653755954315 Iter 2: T = 936.7684486636817 K, F = -6306.800234420722, relative_change = 0.03160997995311297 Iter 3: T = 908.2351962718745 K, F = -5344.551145241342, relative_change = 0.030459237213326815 Iter 5: T = 857.1634832897387 K, F = -3834.3824439448244, relative_change = 0.027842717364557186 Iter 10: T = 762.233930192164 K, F = -1660.194476807264, relative_change = 0.01991401939275579 Iter 15: T = 706.7047453297673 K, F = -710.7534946950284, relative_change = 0.011918257434223718 Iter 20: T = 678.1699065761114 K, F = -301.2196910377576, relative_change = 0.006097681713855191 Iter 25: T = 664.8705389273545 K, F = -126.80247506007454, relative_change = 0.002815368713918755 Iter 30: T = 659.0173681100003 K, F = -53.188079855177236, relative_change = 0.0012312239385398687 Iter 35: T = 656.5136460376577 K, F = -22.27254966471539, relative_change = 0.0005249665595036402 Iter 40: T = 655.4563858100121 K, F = -9.319741317095453, relative_change = 0.00022135656804807223 Iter 45: T = 655.0124164206545 K, F = -3.898524433713804, relative_change = 9.289424787406295e-5 Iter 50: T = 654.8264241275161 K, F = -1.630566874323459, relative_change = 3.890578746435144e-5 Iter 55: T = 654.7485839653397 K, F = -0.6819501024686032, relative_change = 1.6280733482373563e-5 Iter 60: T = 654.7160204791315 K, F = -0.28520450019112975, relative_change = 6.810524729625163e-6 Iter 65: T = 654.7024003252191 K, F = -0.11927677177379037, relative_change = 2.8485450402235945e-6 Iter 70: T = 654.6967039141557 K, F = -0.04988311799551404, relative_change = 1.1913484289075662e-6 Iter 75: T = 654.694321554538 K, F = -0.020861741484643426, relative_change = 4.982453889757363e-7 Iter 80: T = 654.6933252141151 K, F = -0.008724633942951532, relative_change = 2.0837378951721678e-7 Iter 85: T = 654.692908531046 K, F = -0.003648746897180921, relative_change = 8.714469017152422e-8 Iter 90: T = 654.6927342689295 K, F = -0.0015259496648954984, relative_change = 3.6444999620593475e-8 Iter 95: T = 654.6926613903821 K, F = -0.0006381703973152852, relative_change = 1.524174273211223e-8 Iter 100: T = 654.6926309116947 K, F = -0.0002668904846607201, relative_change = 6.374280323233322e-9 Iter 105: T = 654.6926181651421 K, F = -0.0001116167881998753, relative_change = 2.6658004073087427e-9 Iter 110: T = 654.6926128343814 K, F = -4.667947418507401e-5, relative_change = 1.114869618866727e-9 Iter 115: T = 654.6926106049935 K, F = -1.952191385956592e-5, relative_change = 4.66251803324244e-10 Iter 120: T = 654.692609672637 K, F = -8.164297977564239e-6, relative_change = 1.9499208469564972e-10 Iter 125: T = 654.6926092827142 K, F = -3.4144067860841787e-6, relative_change = 8.154801563282003e-11 Iter 130: T = 654.692609119644 K, F = -1.4279463654842672e-6, relative_change = 3.410437009088093e-11 Iter 135: T = 654.692609051446 K, F = -5.971843430874202e-7, relative_change = 1.426285773158344e-11 Iter 140: T = 654.6926090229249 K, F = -2.497505249832166e-7, relative_change = 5.96491895374636e-12 Iter 145: T = 654.6926090109969 K, F = -1.0444859921410199e-7, relative_change = 2.4945990773807774e-12 Iter 150: T = 654.6926090060085 K, F = -4.368253037068115e-8, relative_change = 1.0432921148223452e-12 Iter 155: T = 654.6926090039223 K, F = -1.8268285884026625e-8, relative_change = 4.3631077349874906e-13 Converged in 159 iterations to T = 654.6926090031692 K Iter 1: T = 973.4554790139879 K, F = -6048.194357020979, relative_change = 0.026544520986012125 Iter 2: T = 949.1040593712664 K, F = -5118.331796659919, relative_change = 0.025015442583349545 Iter 3: T = 926.8787904700913 K, F = -4329.614131413858, relative_change = 0.023417104459439602 Iter 5: T = 888.486515853447 K, F = -3093.9418924882107, relative_change = 0.020090170816704372 Iter 10: T = 823.0710276541529 K, F = -1324.875877408928, relative_change = 0.012068301263503766 Iter 15: T = 789.3725839219808 K, F = -561.5882145772234, relative_change = 0.00619158724387774 Iter 20: T = 773.6411832867462 K, F = -236.43292664290766, relative_change = 0.002863282762068817 Iter 25: T = 766.711733686576 K, F = -99.17835861439869, relative_change = 0.0012531506446660714 Iter 30: T = 763.7464444119944 K, F = -41.531976134069765, relative_change = 0.0005345015514820055 Iter 35: T = 762.4940560697526 K, F = -17.378842831139895, relative_change = 0.00022541086168893022 Iter 40: T = 761.9681082200083 K, F = -7.269743640110463, relative_change = 9.460167321301075e-5 Iter 45: T = 761.7477656890104 K, F = -3.04059252792843, relative_change = 3.9621945450441256e-5 Iter 50: T = 761.6555482876672 K, F = -1.2716644534604327, relative_change = 1.6580606434191855e-5 Iter 55: T = 761.6169700436884 K, F = -0.5318344213552892, relative_change = 6.9359994772885755e-6 Iter 60: T = 761.6008340919196 K, F = -0.22242110886451394, relative_change = 2.9010313302537683e-6 Iter 65: T = 761.5940854821608 K, F = -0.09301944426884756, relative_change = 1.2133007906830721e-6 Iter 70: T = 761.59126306964 K, F = -0.03890189149550727, relative_change = 5.07426473150879e-7 Iter 75: T = 761.5900826919413 K, F = -0.01626924417989617, relative_change = 2.1221348878823938e-7 Iter 80: T = 761.589589041954 K, F = -0.006803993709368461, relative_change = 8.87505088044648e-8 Iter 85: T = 761.589382591295 K, F = -0.0028455116869596786, relative_change = 3.7116573994398046e-8 Iter 90: T = 761.5892962511048 K, F = -0.0011900270156258719, relative_change = 1.552260348279129e-8 Iter 95: T = 761.5892601425958 K, F = -0.0004976835181474959, relative_change = 6.491739729092467e-9 Iter 100: T = 761.5892450415843 K, F = -0.00020813719293411026, relative_change = 2.7149233654775073e-9 Iter 105: T = 761.5892387261605 K, F = -8.70454608016269e-5, relative_change = 1.1354134327849294e-9 Iter 110: T = 761.5892360849749 K, F = -3.640345267297285e-5, relative_change = 4.748434836978194e-10 Iter 115: T = 761.5892349803995 K, F = -1.5224358337673216e-5, relative_change = 1.9858521291890045e-10 Iter 120: T = 761.5892345184528 K, F = -6.367007151952819e-6, relative_change = 8.305069064549119e-11 Iter 125: T = 761.5892343252613 K, F = -2.662759078342347e-6, relative_change = 3.473279917365065e-11 Iter 130: T = 761.5892342444662 K, F = -1.1135984484544892e-6, relative_change = 1.452568187801424e-11 Iter 135: T = 761.5892342106768 K, F = -4.657194839774448e-7, relative_change = 6.074804683382066e-12 Iter 140: T = 761.5892341965456 K, F = -1.9476897428205575e-7, relative_change = 2.5405496612376706e-12 Iter 145: T = 761.5892341906358 K, F = -8.145606233966873e-8, relative_change = 1.062505834685763e-12 Iter 150: T = 761.5892341881641 K, F = -3.406460702404246e-8, relative_change = 4.4433578889383386e-13 Converged in 154 iterations to T = 761.5892341872722 K Iter 1: T = 969.9683227360906 K, F = -6842.7462320818495, relative_change = 0.030031677263909397 Iter 2: T = 942.0931765839925 K, F = -5796.239897635111, relative_change = 0.028738202577036454 Iter 3: T = 916.3320064589761 K, F = -4908.053188041153, relative_change = 0.02734460960478001 Iter 5: T = 870.9470285866727 K, F = -3515.0234422391313, relative_change = 0.02429732529261579 Iter 10: T = 789.9510632738048 K, F = -1513.9915979629936, relative_change = 0.015996096610219897 Iter 15: T = 745.4692443069405 K, F = -644.8651202615979, relative_change = 0.008843157746326375 Iter 20: T = 723.7489679122643 K, F = -272.3103964081698, relative_change = 0.004280933133173668 Iter 25: T = 713.9393440830146 K, F = -114.40342137807289, relative_change = 0.0019174932607283954 Iter 30: T = 709.6908406888258 K, F = -47.9412889492907, relative_change = 0.0008265493358305283 Iter 35: T = 707.886868960818 K, F = -20.066919055778243, relative_change = 0.0003501775673973205 Iter 40: T = 707.1275381392886 K, F = -8.395284107375323, relative_change = 0.0001472514862071043 Iter 45: T = 706.8091119945532 K, F = -3.5115455500863515, relative_change = 6.172391695587392e-5 Iter 50: T = 706.675790362272 K, F = -1.4686644724992313, relative_change = 2.5838526584150625e-5 Iter 55: T = 706.6200070213384 K, F = -0.6142295085714875, relative_change = 1.0810332372289782e-5 Iter 60: T = 706.5966730982428 K, F = -0.2568810003978872, relative_change = 4.521771716293876e-6 Iter 65: T = 706.586913756957 K, F = -0.10743120672231998, relative_change = 1.891192173223338e-6 Iter 70: T = 706.5828321411433 K, F = -0.044929101895622714, relative_change = 7.909424585984297e-7 Iter 75: T = 706.581125135699 K, F = -0.01878990241120171, relative_change = 3.3078565843454996e-7 Iter 80: T = 706.5804112412698 K, F = -0.007858164285610592, relative_change = 1.3833922574182037e-7 Iter 85: T = 706.5801126813299 K, F = -0.0032863786212031787, relative_change = 5.7855241001798084e-8 Iter 90: T = 706.579987819864 K, F = -0.001374402868953628, relative_change = 2.419577452365172e-8 Iter 95: T = 706.5799356012844 K, F = -0.0005747917076375231, relative_change = 1.011896567139075e-8 Iter 100: T = 706.5799137628468 K, F = -0.00024038475840515439, relative_change = 4.2318729443176384e-9 Iter 105: T = 706.5799046297507 K, F = -0.00010053177710500627, relative_change = 1.7698199194466179e-9 Iter 110: T = 706.5799008101807 K, F = -4.2043589952411864e-5, relative_change = 7.401598483651863e-10 Iter 115: T = 706.5798992127909 K, F = -1.7583131958986975e-5, relative_change = 3.0954370070112856e-10 Iter 120: T = 706.5798985447434 K, F = -7.353475119376007e-6, relative_change = 1.2945486145591288e-10 Iter 125: T = 706.5798982653579 K, F = -3.0753107914671673e-6, relative_change = 5.413956350293836e-11 Iter 130: T = 706.5798981485157 K, F = -1.2861327259861e-6, relative_change = 2.2641830100473686e-11 Iter 135: T = 706.5798980996507 K, F = -5.378758652918592e-7, relative_change = 9.469080224015012e-12 Iter 140: T = 706.5798980792149 K, F = -2.2494598828082246e-7, relative_change = 3.960080284024221e-12 Iter 145: T = 706.5798980706683 K, F = -9.40732586274251e-8, relative_change = 1.6561204741324661e-12 Iter 150: T = 706.579898067094 K, F = -3.934237902125659e-8, relative_change = 6.926061704506222e-13 Iter 155: T = 706.5798980655993 K, F = -1.6453935214322257e-8, relative_change = 2.896646654639739e-13 Converged in 157 iterations to T = 706.579898065283 K Iter 1: T = 973.5030750172696 K, F = -6037.349562397747, relative_change = 0.026496924982730385 Iter 2: T = 949.1992001827709 K, F = -5109.087762930482, relative_change = 0.02496538065282177 Iter 3: T = 927.0210454855949 K, F = -4321.735221701375, relative_change = 0.023365121560264233 Iter 5: T = 888.7200548203252 K, F = -3088.2221160165245, relative_change = 0.020036362376107415 Iter 10: T = 823.4979383612656 K, F = -1322.331104266961, relative_change = 0.012022400010456541 Iter 15: T = 789.9244495122574 K, F = -560.4786562770737, relative_change = 0.006162819746400457 Iter 20: T = 774.2591143464157 K, F = -235.95822410195686, relative_change = 0.0028485916973954497 Iter 25: T = 767.3605680282942 K, F = -98.97767183234164, relative_change = 0.001246424664387214 Iter 30: T = 764.4088635974834 K, F = -41.447642835084494, relative_change = 0.0005315761213398944 Iter 35: T = 763.1622797100619 K, F = -17.343500983359394, relative_change = 0.00022416685589574616 Iter 40: T = 762.6387814770509 K, F = -7.25495039458903, relative_change = 9.407775321461245e-5 Iter 45: T = 762.4194673192394 K, F = -3.0344035547528563, relative_change = 3.940219040813216e-5 Iter 50: T = 762.3276806837506 K, F = -1.2690757546237728, relative_change = 1.648858899617565e-5 Iter 55: T = 762.2892827117553 K, F = -0.5307517272015131, relative_change = 6.897496850473166e-6 Iter 60: T = 762.2732221729868 K, F = -0.2219683011029232, relative_change = 2.884925600760166e-6 Iter 65: T = 762.2665051055377 K, F = -0.09283007253270514, relative_change = 1.2065645750211523e-6 Iter 70: T = 762.2636958850334 K, F = -0.038822693603651204, relative_change = 5.046092011091013e-7 Iter 75: T = 762.2625210245064 K, F = -0.016236122610939208, relative_change = 2.1103525339903182e-7 Iter 80: T = 762.2620296818859 K, F = -0.006790141862708654, relative_change = 8.825775344931282e-8 Iter 85: T = 762.2618241961989 K, F = -0.0028397186790970474, relative_change = 3.6910497275553933e-8 Iter 90: T = 762.2617382595718 K, F = -0.001187604308078516, relative_change = 1.5436419610838354e-8 Iter 95: T = 762.2617023198378 K, F = -0.000496670311460834, relative_change = 6.455696569041254e-9 Iter 100: T = 762.26168728941 K, F = -0.00020771345588521672, relative_change = 2.699849657709722e-9 Iter 105: T = 762.2616810035054 K, F = -8.68682480292815e-5, relative_change = 1.129109416222132e-9 Iter 110: T = 762.2616783746649 K, F = -3.632933649244663e-5, relative_change = 4.722070206647672e-10 Iter 115: T = 762.2616772752524 K, F = -1.5193361389664872e-5, relative_change = 1.974826038030131e-10 Iter 120: T = 762.2616768154651 K, F = -6.354046131917812e-6, relative_change = 8.258959595819731e-11 Iter 125: T = 762.2616766231764 K, F = -2.6573375582206182e-6, relative_change = 3.453994997284324e-11 Iter 130: T = 762.261676542759 K, F = -1.1113288780340014e-6, relative_change = 1.444500106928624e-11 Iter 135: T = 762.2616765091276 K, F = -4.6477138271328045e-7, relative_change = 6.041076817471026e-12 Iter 140: T = 762.2616764950625 K, F = -1.943734831977295e-7, relative_change = 2.5264574951346382e-12 Iter 145: T = 762.2616764891803 K, F = -8.128926698436345e-8, relative_change = 1.0565941118895914e-12 Iter 150: T = 762.2616764867203 K, F = -3.399582515495325e-8, relative_change = 4.41876154388414e-13 Converged in 154 iterations to T = 762.2616764858324 K Iter 1: T = 964.347342620728 K, F = -8123.491898299684, relative_change = 0.03565265737927203 Iter 2: T = 930.621584960653 K, F = -6891.596184553326, relative_change = 0.03497262466490678 Iter 3: T = 898.7918241512343 K, F = -5845.440082876173, relative_change = 0.03420268917442357 Iter 5: T = 840.7074098181499 K, F = -4202.711393967753, relative_change = 0.03236778417316424 Iter 10: T = 726.6917403132105 K, F = -1832.7058231756637, relative_change = 0.025958925094132362 Iter 15: T = 653.1931845085181 K, F = -791.2869535786449, relative_change = 0.017754193468418483 Iter 20: T = 611.6679755857107 K, F = -337.7982325241032, relative_change = 0.010164261772492088 Iter 25: T = 590.939393281015 K, F = -142.8627437942541, relative_change = 0.005037206237575425 Iter 30: T = 581.4535587211695 K, F = -60.06941072961038, relative_change = 0.0022846945378999146 Iter 35: T = 577.3181245085767 K, F = -25.18219497829326, relative_change = 0.0009906411066648343 Iter 40: T = 575.5569000026254 K, F = -10.54239580980628, relative_change = 0.00042078389441079926 Iter 45: T = 574.8145997901936 K, F = -4.410887597015322, relative_change = 0.00017713749637610828 Iter 50: T = 574.5031438531919 K, F = -1.8450256140257828, relative_change = 7.428598589532291e-5 Iter 55: T = 574.3727103189442 K, F = -0.7716713058761488, relative_change = 3.110328164359616e-5 Iter 60: T = 574.3181300830234 K, F = -0.32273258300715285, relative_change = 1.30140701469444e-5 Iter 65: T = 574.2952984835008 K, F = -0.1349724449036953, relative_change = 5.443743322203224e-6 Iter 70: T = 574.2857490747625 K, F = -0.056447407512867614, relative_change = 2.276831576457137e-6 Iter 75: T = 574.281755229848 K, F = -0.023607035765224577, relative_change = 9.522319351166453e-7 Iter 80: T = 574.2800849267991 K, F = -0.00987275404560084, relative_change = 3.982406754830738e-7 Iter 85: T = 574.2793863809726 K, F = -0.004128905354459977, relative_change = 1.665500398437752e-7 Iter 90: T = 574.279094239866 K, F = -0.0017267578270152573, relative_change = 6.965339641454309e-8 Iter 95: T = 574.278972062809 K, F = -0.0007221507972354213, relative_change = 2.9129913825691273e-8 Iter 100: T = 574.2789209668771 K, F = -0.00030201209670077667, relative_change = 1.2182483369841484e-8 Iter 105: T = 574.2788995979433 K, F = -0.00012630506687477672, relative_change = 5.0948609877720155e-9 Iter 110: T = 574.2788906611992 K, F = -5.282228772091058e-5, relative_change = 2.1307318826692252e-9 Iter 115: T = 574.278886923746 K, F = -2.2090911103944677e-5, relative_change = 8.91097529011021e-10 Iter 120: T = 574.2788853606984 K, F = -9.238683026435712e-6, relative_change = 3.726676407375786e-10 Iter 125: T = 574.2788847070132 K, F = -3.863727630393221e-6, relative_change = 1.5585406103382377e-10 Iter 130: T = 574.2788844336342 K, F = -1.615856566605789e-6, relative_change = 6.518001076044062e-11 Iter 135: T = 574.2788843193039 K, F = -6.757706835225363e-7, relative_change = 2.7259065795586538e-11 Iter 140: T = 574.2788842714896 K, F = -2.826160201974126e-7, relative_change = 1.1400093079422412e-11 Iter 145: T = 574.278884251493 K, F = -1.1819233269871887e-7, relative_change = 4.767612229914066e-12 Iter 150: T = 574.2788842431303 K, F = -4.942968057086716e-8, relative_change = 1.9938818724178073e-12 Iter 155: T = 574.2788842396328 K, F = -2.0671528044857723e-8, relative_change = 8.338428363080583e-13 Iter 160: T = 574.2788842381701 K, F = -8.644964466508753e-9, relative_change = 3.487183760668652e-13 Converged in 163 iterations to T = 574.2788842377419 K Iter 1: T = 963.557780051571 K, F = -8303.394480750017, relative_change = 0.036442219948429076 Iter 2: T = 928.9929805388192 K, F = -7045.715893842881, relative_change = 0.035872056900315655 Iter 3: T = 896.2720419011943 K, F = -5977.613987869766, relative_change = 0.03522194389310317 Iter 5: T = 836.2428248616101 K, F = -4300.258427070921, relative_change = 0.033652615410029244 Iter 10: T = 716.498107037005 K, F = -1879.2493980316085, relative_change = 0.027937268691982434 Iter 15: T = 636.7948538866204 K, F = -813.7844411975716, relative_change = 0.020026882840851006 Iter 20: T = 590.0885757126041 K, F = -348.44518491091736, relative_change = 0.012013955293643528 Iter 25: T = 566.0500386985084 K, F = -147.68905788398655, relative_change = 0.006157428552421905 Iter 30: T = 554.8348527667657 K, F = -62.17581062345665, relative_change = 0.0028458175267374194 Iter 35: T = 549.8962879059611 K, F = -26.080874482092664, relative_change = 0.0012451505982158273 Iter 40: T = 547.7832609926835 K, F = -10.921545849470576, relative_change = 0.0005310212551865463 Iter 45: T = 546.8908830346211 K, F = -4.570048092707593, relative_change = 0.00022393077819601818 Iter 50: T = 546.5161340364518 K, F = -1.911693800407075, relative_change = 9.397830540140494e-5 Iter 55: T = 546.359137143507 K, F = -0.7995712572536149, relative_change = 3.936047370909662e-5 Iter 60: T = 546.2934313787968 K, F = -0.3344039216674607, relative_change = 1.647112038846552e-5 Iter 65: T = 546.2659440740282 K, F = -0.13985410630070835, relative_change = 6.890187384482137e-6 Iter 70: T = 546.2544470903132 K, F = -0.05848907602074033, relative_change = 2.881868014797653e-6 Iter 75: T = 546.2496386582038 K, F = -0.02446090330699857, relative_change = 1.2052857370862944e-6 Iter 80: T = 546.2476276696543 K, F = -0.01022985469028026, relative_change = 5.040743549611079e-7 Iter 85: T = 546.2467866423881 K, F = -0.00427824964020368, relative_change = 2.1081157071157607e-7 Iter 90: T = 546.2464349133704 K, F = -0.0017892154837519936, relative_change = 8.816420603514333e-8 Iter 95: T = 546.246287815855 K, F = -0.0007482713516242245, relative_change = 3.687137451644027e-8 Iter 100: T = 546.2462262978753 K, F = -0.00031293602754162153, relative_change = 1.5420058021210963e-8 Iter 105: T = 546.2462005703142 K, F = -0.00013087358594454646, relative_change = 6.448853962511058e-9 Iter 110: T = 546.2461898107397 K, F = -5.473289723151309e-5, relative_change = 2.6969880266008534e-9 Iter 115: T = 546.2461853109568 K, F = -2.288995099974933e-5, relative_change = 1.1279126324297175e-9 Iter 120: T = 546.2461834290938 K, F = -9.57285054753454e-6, relative_change = 4.717065247600234e-10 Iter 125: T = 546.2461826420763 K, F = -4.003480429309869e-6, relative_change = 1.9727330368638236e-10 Iter 130: T = 546.2461823129362 K, F = -1.6743031728549962e-6, relative_change = 8.25020441741328e-11 Iter 135: T = 546.2461821752859 K, F = -7.002141794165695e-7, relative_change = 3.4503369621153345e-11 Iter 140: T = 546.2461821177188 K, F = -2.9283781907696316e-7, relative_change = 1.442971566807325e-11 Iter 145: T = 546.2461820936435 K, F = -1.2246785491276668e-7, relative_change = 6.034658811526087e-12 Iter 150: T = 546.246182083575 K, F = -5.1217348168153265e-8, relative_change = 2.5237579418143965e-12 Iter 155: T = 546.2461820793643 K, F = -2.1420576284958415e-8, relative_change = 1.055508562097e-12 Iter 160: T = 546.2461820776033 K, F = -8.958267128100772e-9, relative_change = 4.414226550033244e-13 Converged in 164 iterations to T = 546.2461820769677 K Iter 1: T = 969.4082014090033 K, F = -6970.370409271627, relative_change = 0.030591798590996706 Iter 2: T = 940.9595812231929 K, F = -5905.24512664871, relative_change = 0.0293463786921353 Iter 3: T = 914.6146190927117 K, F = -5001.183815291321, relative_change = 0.027997974255423747 Iter 5: T = 868.0474041334278 K, F = -3583.04103733094, relative_change = 0.02502523744394554 Iter 10: T = 784.2554986147821 K, F = -1544.9063735983789, relative_change = 0.016750555092011874 Iter 15: T = 737.6738501780799 K, F = -658.66490512223, relative_change = 0.009399117499502627 Iter 20: T = 714.7155576153959 K, F = -278.3165390872566, relative_change = 0.004594950180096757 Iter 25: T = 704.2897991666174 K, F = -116.96684619544595, relative_change = 0.0020688547911552955 Iter 30: T = 699.762147272051 K, F = -49.02338398909264, relative_change = 0.0008939560524960082 Iter 35: T = 697.8372778077855 K, F = -20.52130501727437, relative_change = 0.00037913766893880966 Iter 40: T = 697.0266268858959 K, F = -8.585642290260967, relative_change = 0.00015950165168065688 Iter 45: T = 696.6866027710001 K, F = -3.5912135715255635, relative_change = 6.68716486714121e-5 Iter 50: T = 696.5442247602274 K, F = -1.5019927634844024, relative_change = 2.7995688835711397e-5 Iter 55: T = 696.4846497485735 K, F = -0.6281695798235063, relative_change = 1.1713240521131145e-5 Iter 60: T = 696.4597293705134 K, F = -0.2627112165316099, relative_change = 4.89951123302571e-6 Iter 65: T = 696.4493064265409 K, F = -0.109869527295759, relative_change = 2.049190541673357e-6 Iter 70: T = 696.4449472617179 K, F = -0.0459488462232327, relative_change = 8.570233200468771e-7 Iter 75: T = 696.4431241780379 K, F = -0.01921637333497761, relative_change = 3.5842217342814905e-7 Iter 80: T = 696.4423617376177 K, F = -0.008036519810585396, relative_change = 1.498972704651532e-7 Iter 85: T = 696.4420428750446 K, F = -0.003360969083820331, relative_change = 6.268897506200402e-8 Iter 90: T = 696.441909522754 K, F = -0.0014055975002368326, relative_change = 2.6217303632266248e-8 Iter 95: T = 696.4418537532066 K, F = -0.0005878376773517102, relative_change = 1.0964393965413626e-8 Iter 100: T = 696.4418304297111 K, F = -0.00024584074081912544, relative_change = 4.585441302474008e-9 Iter 105: T = 696.4418206755458 K, F = -0.00010281353350349853, relative_change = 1.917686437352346e-9 Iter 110: T = 696.4418165962373 K, F = -4.2997847922054966e-5, relative_change = 8.019993991565366e-10 Iter 115: T = 696.4418148902218 K, F = -1.7982213922462797e-5, relative_change = 3.3540573834443097e-10 Iter 120: T = 696.4418141767457 K, F = -7.520376802516715e-6, relative_change = 1.4027068954110382e-10 Iter 125: T = 696.4418138783614 K, F = -3.145109973123894e-6, relative_change = 5.866285122375369e-11 Iter 130: T = 696.4418137535736 K, F = -1.3153230913331981e-6, relative_change = 2.4533515057736478e-11 Iter 135: T = 696.4418137013857 K, F = -5.500828794691159e-7, relative_change = 1.0260191355414084e-11 Iter 140: T = 696.4418136795603 K, F = -2.300506034558225e-7, relative_change = 4.290922879685674e-12 Iter 145: T = 696.4418136704326 K, F = -9.620985563785212e-8, relative_change = 1.7945141835402872e-12 Iter 150: T = 696.4418136666153 K, F = -4.0236116882752526e-8, relative_change = 7.504873794879801e-13 Iter 155: T = 696.4418136650188 K, F = -1.68271364620054e-8, relative_change = 3.138611408400647e-13 Converged in 157 iterations to T = 696.4418136646809 K Iter 1: T = 966.3878685563105 K, F = -7658.556122835919, relative_change = 0.033612131443689415 Iter 2: T = 934.8107129695154 K, F = -6493.586921356992, relative_change = 0.03267544700656102 Iter 3: T = 905.2389210209501 K, F = -5504.429136455428, relative_change = 0.03163398914698754 Iter 5: T = 851.988015712574 K, F = -3951.7252995890544, relative_change = 0.029230787835568928 Iter 10: T = 751.3716340208265 K, F = -1714.6494028025857, relative_change = 0.02163024514623381 Iter 15: T = 690.8721038320442 K, F = -735.776647761669, relative_change = 0.013425873003793814 Iter 20: T = 659.0056358436701 K, F = -312.3940099386986, relative_change = 0.007064517131307355 Iter 25: T = 643.9060284255747 K, F = -131.6490068640481, relative_change = 0.003315899713128099 Iter 30: T = 637.2012988824408 K, F = -55.25071047311024, relative_change = 0.001461939472129015 Iter 35: T = 634.3212944922773 K, F = -23.141906120475465, relative_change = 0.0006256229686466425 Iter 40: T = 633.1028932446392 K, F = -9.684534284262705, relative_change = 0.0002642163104430239 Iter 45: T = 632.5908526578271 K, F = -4.05130114981751, relative_change = 0.00011095501752989932 Iter 50: T = 632.376271730719 K, F = -1.6944979099957687, relative_change = 4.648305877612227e-5 Iter 55: T = 632.2864542832448 K, F = -0.7086934855248422, relative_change = 1.9453858548629568e-5 Iter 60: T = 632.2488780412143 K, F = -0.2963900684760781, relative_change = 8.138302645085095e-6 Iter 65: T = 632.2331608431078 K, F = -0.12395491405398523, relative_change = 3.403966973452027e-6 Iter 70: T = 632.2265873094165 K, F = -0.05183960865938464, relative_change = 1.4236551441354356e-6 Iter 75: T = 632.2238381067507 K, F = -0.021679975489277803, relative_change = 5.954027899808979e-7 Iter 80: T = 632.2226883447053 K, F = -0.009066830267432435, relative_change = 2.4900686726821054e-7 Iter 85: T = 632.222207498273 K, F = -0.0037918576787500657, relative_change = 1.0413804966630154e-7 Iter 90: T = 632.2220064021652 K, F = -0.0015858003374812912, relative_change = 4.3551846715489845e-8 Iter 95: T = 632.2219223013036 K, F = -0.0006632006696442039, relative_change = 1.8213914776081685e-8 Iter 100: T = 632.2218871293071 K, F = -0.0002773584462982259, relative_change = 7.617278860794702e-9 Iter 105: T = 632.221872419956 K, F = -0.00011599461453948301, relative_change = 3.1856373402808356e-9 Iter 110: T = 632.2218662683294 K, F = -4.851033381592096e-5, relative_change = 1.3322716624902352e-9 Iter 115: T = 632.2218636956457 K, F = -2.028760162986476e-5, relative_change = 5.571719497451802e-10 Iter 120: T = 632.2218626197185 K, F = -8.484517353968268e-6, relative_change = 2.3301596715606354e-10 Iter 125: T = 632.221862169753 K, F = -3.5483271346170575e-6, relative_change = 9.745007846249027e-11 Iter 130: T = 632.221861981572 K, F = -1.483953549485939e-6, relative_change = 4.075480770254092e-11 Iter 135: T = 632.2218619028724 K, F = -6.206069610437126e-7, relative_change = 1.7044143585185914e-11 Iter 140: T = 632.2218618699593 K, F = -2.595449025144525e-7, relative_change = 7.128055055837932e-12 Iter 145: T = 632.2218618561947 K, F = -1.0854480914090914e-7, relative_change = 2.9810386109160323e-12 Iter 150: T = 632.2218618504381 K, F = -4.5394655479036317e-8, relative_change = 1.2467037510972323e-12 Iter 155: T = 632.2218618480307 K, F = -1.8984319949399975e-8, relative_change = 5.21379061997862e-13 Converged in 160 iterations to T = 632.2218618470239 K Iter 1: T = 966.4697876062369 K, F = -7639.890789385086, relative_change = 0.033530212393763144 Iter 2: T = 934.9782974508324 K, F = -6477.61728911867, relative_change = 0.03258403993507431 Iter 3: T = 905.4958182672813 K, F = -5490.756154909556, relative_change = 0.03153279521453448 Iter 5: T = 852.4333905791742 K, F = -3941.6819567839034, relative_change = 0.02911008954283557 Iter 10: T = 752.3170874269553 K, F = -1709.9714379491304, relative_change = 0.021476508157336375 Iter 15: T = 692.2665928468166 K, F = -733.6145382167825, relative_change = 0.013286411119452649 Iter 20: T = 660.7085987623229 K, F = -311.42298758455865, relative_change = 0.0069728179620826645 Iter 25: T = 645.7784828408293 K, F = -131.2262425333865, relative_change = 0.003267721721430267 Iter 30: T = 639.1546601176966 K, F = -55.070424046892846, relative_change = 0.001439569463413487 Iter 35: T = 636.3105613936787 K, F = -23.06584804637053, relative_change = 0.0006158311723113878 Iter 40: T = 635.1075660561067 K, F = -9.65260630112413, relative_change = 0.00026004099453753166 Iter 45: T = 634.6020387733074 K, F = -4.037927254874922, relative_change = 0.00010919450749942546 Iter 50: T = 634.3901942621823 K, F = -1.6889010506179354, relative_change = 4.574426112672896e-5 Iter 55: T = 634.301523410742 K, F = -0.7063521567933753, relative_change = 1.9144440139233597e-5 Iter 60: T = 634.2644270735448 K, F = -0.2954107820995481, relative_change = 8.0088223202006e-6 Iter 65: T = 634.2489106447184 K, F = -0.123545344718139, relative_change = 3.349803130026299e-6 Iter 70: T = 634.2424210869218 K, F = -0.051668318359254006, relative_change = 1.4010007942274628e-6 Iter 75: T = 634.2397070060397 K, F = -0.0216083392254659, relative_change = 5.859280533270713e-7 Iter 80: T = 634.2385719327041 K, F = -0.009036871019586445, relative_change = 2.450443463346277e-7 Iter 85: T = 634.2380972293287 K, F = -0.0037793283446036496, relative_change = 1.0248086333045418e-7 Iter 90: T = 634.2378987023318 K, F = -0.0015805604170362475, relative_change = 4.285878936804145e-8 Iter 95: T = 634.2378156759049 K, F = -0.0006610092706857973, relative_change = 1.7924069497126186e-8 Iter 100: T = 634.2377809532501 K, F = -0.00027644197590931396, relative_change = 7.496062006054e-9 Iter 105: T = 634.2377664318193 K, F = -0.00011561133678772428, relative_change = 3.1349430229685702e-9 Iter 110: T = 634.237760358783 K, F = -4.835004118852737e-5, relative_change = 1.3110706562673334e-9 Iter 115: T = 634.2377578189668 K, F = -2.0220564730000223e-5, relative_change = 5.483054186598291e-10 Iter 120: T = 634.2377567567852 K, F = -8.45648104574881e-6, relative_change = 2.2930785955100358e-10 Iter 125: T = 634.2377563125683 K, F = -3.5366020156857303e-6, relative_change = 9.58993033411449e-11 Iter 130: T = 634.2377561267915 K, F = -1.4790498895633775e-6, relative_change = 4.0106252720728464e-11 Iter 135: T = 634.2377560490974 K, F = -6.18556558640293e-7, relative_change = 1.6772920137726858e-11 Iter 140: T = 634.2377560166049 K, F = -2.5868855663135903e-7, relative_change = 7.0146576596290784e-12 Iter 145: T = 634.237756003016 K, F = -1.0818730111772368e-7, relative_change = 2.933631430859569e-12 Iter 150: T = 634.2377559973329 K, F = -4.524533880889692e-8, relative_change = 1.2268828842573635e-12 Iter 155: T = 634.2377559949563 K, F = -1.892221523913662e-8, relative_change = 5.130990864627974e-13 Converged in 160 iterations to T = 634.2377559939622 K Iter 1: T = 976.3296547040355 K, F = -5393.310691996713, relative_change = 0.02367034529596446 Iter 2: T = 954.8230908551265 K, F = -4560.534913786585, relative_change = 0.022027973589953637 Iter 3: T = 935.3895691124391 K, F = -3854.6040890617687, relative_change = 0.020353007723433906 Iter 5: T = 902.3241190545243 K, F = -2749.8163914879638, relative_change = 0.016998221256604565 Iter 10: T = 847.8061971627886 K, F = -1172.7466650130684, relative_change = 0.009585277119157638 Iter 15: T = 820.852613655472 K, F = -495.6473598814375, relative_change = 0.004701492172605631 Iter 20: T = 808.5897448190351 K, F = -208.32784650817453, relative_change = 0.0021205713479390685 Iter 25: T = 803.2593252781741 K, F = -87.31960313039926, relative_change = 0.000917063037639753 Iter 30: T = 800.9922128225949 K, F = -36.55308094124184, relative_change = 0.00038907951244790363 Iter 35: T = 800.037252838261 K, F = -15.293127660402597, relative_change = 0.00016370965943616412 Iter 40: T = 799.6366677507374 K, F = -6.396857289286792, relative_change = 6.864038648138557e-5 Iter 45: T = 799.468925605471 K, F = -2.6754329307248534, relative_change = 2.8736961174479598e-5 Iter 50: T = 799.3987365548567 K, F = -1.1189314071731928, relative_change = 1.202352383496829e-5 Iter 55: T = 799.3693761287503 K, F = -0.467956321888368, relative_change = 5.029323454669351e-6 Iter 60: T = 799.3570961058988 K, F = -0.19570594473740865, relative_change = 2.1034879676945013e-6 Iter 65: T = 799.3519602539155 K, F = -0.08184674212162779, relative_change = 8.797326222810099e-7 Iter 70: T = 799.3498123443385 K, F = -0.03422931628075587, relative_change = 3.6791973201177636e-7 Iter 75: T = 799.3489140567904 K, F = -0.01431511431916177, relative_change = 1.5386930785657222e-7 Iter 80: T = 799.3485383811411 K, F = -0.005986752722636934, relative_change = 6.435013640164294e-8 Iter 85: T = 799.3483812689111 K, F = -0.0025037316512124264, relative_change = 2.6912022511897268e-8 Iter 90: T = 799.3483155626676 K, F = -0.0010470905075269377, relative_change = 1.1254933940531676e-8 Iter 95: T = 799.3482880835261 K, F = -0.00043790576003377435, relative_change = 4.706948609150471e-9 Iter 100: T = 799.3482765914199 K, F = -0.00018313741938480455, relative_change = 1.9685022649552632e-9 Iter 105: T = 799.3482717852836 K, F = -7.659025461148605e-5, relative_change = 8.232511657025895e-10 Iter 110: T = 799.3482697753002 K, F = -3.2030960537388076e-5, relative_change = 3.4429348812646284e-10 Iter 115: T = 799.348268934701 K, F = -1.3395730221299473e-5, relative_change = 1.4398764912470455e-10 Iter 120: T = 799.3482685831523 K, F = -5.602252411862629e-6, relative_change = 6.021733365410882e-11 Iter 125: T = 799.3482684361305 K, F = -2.342927333587319e-6, relative_change = 2.5183591656592776e-11 Iter 130: T = 799.3482683746442 K, F = -9.798415435691155e-7, relative_change = 1.0532093324749189e-11 Iter 135: T = 799.3482683489299 K, F = -4.097789679802233e-7, relative_change = 4.404620688185518e-12 Iter 140: T = 799.3482683381759 K, F = -1.7137523866672666e-7, relative_change = 1.842073363216086e-12 Iter 145: T = 799.3482683336784 K, F = -7.167033300170544e-8, relative_change = 7.703680670901833e-13 Iter 150: T = 799.3482683317976 K, F = -2.997263293114116e-8, relative_change = 3.2216899698897786e-13 Converged in 153 iterations to T = 799.3482683312469 K Iter 1: T = 965.2016969224144 K, F = -7928.826457959679, relative_change = 0.03479830307758558 Iter 2: T = 932.3790065434063 K, F = -6724.900785798226, relative_change = 0.03400604296870245 Iter 3: T = 901.5024883139412 K, F = -5702.560313332725, relative_change = 0.03311584453615396 Iter 5: T = 845.4748587511529 K, F = -4097.432489590008, relative_change = 0.031023102596382416 Iter 10: T = 737.3006571302911 K, F = -1782.9043601150363, relative_change = 0.024021472821065485 Iter 15: T = 669.7102174498469 K, F = -767.6292449511394, relative_change = 0.015716111595123317 Iter 20: T = 632.7587690883781 K, F = -326.84577984418615, relative_change = 0.00864080225466781 Iter 25: T = 614.7768646839062 K, F = -137.98658538180842, relative_change = 0.0041681132430691535 Iter 30: T = 606.6716681292435 K, F = -57.96397567444265, relative_change = 0.0018634868219193365 Iter 35: T = 603.1647617032993 K, F = -24.28868115351838, relative_change = 0.0008025760059494269 Iter 40: T = 601.6763352368798 K, F = -10.166325149151321, relative_change = 0.0003398924788349902 Iter 45: T = 601.0499429870346 K, F = -4.253182610649142, relative_change = 0.0001429035188383118 Iter 50: T = 600.7872858739959 K, F = -1.778995994642231, relative_change = 5.989729369034585e-5 Iter 55: T = 600.6773178580266 K, F = -0.7440436719921741, relative_change = 2.5073160530912035e-5 Iter 60: T = 600.6313065971991 K, F = -0.31117605385648583, relative_change = 1.0489992943441374e-5 Iter 65: T = 600.6120604058731 K, F = -0.13013895987516888, relative_change = 4.387757441845254e-6 Iter 70: T = 600.6040107657583 K, F = -0.05442591522981083, relative_change = 1.8351380173415971e-6 Iter 75: T = 600.6006441958932 K, F = -0.022761611109451574, relative_change = 7.674985791918743e-7 Iter 80: T = 600.5992362361893 K, F = -0.009519185183285428, relative_change = 3.209809098848106e-7 Iter 85: T = 600.5986474071318 K, F = -0.003981038252644842, relative_change = 1.34238721120885e-7 Iter 90: T = 600.5984011511766 K, F = -0.0016649179719586127, relative_change = 5.614035370283513e-8 Iter 95: T = 600.5982981638884 K, F = -0.0006962886193675466, relative_change = 2.347858689806234e-8 Iter 100: T = 600.5982550933559 K, F = -0.0002911962229497078, relative_change = 9.819029018986344e-9 Iter 105: T = 600.5982370807416 K, F = -0.00012178173962501537, relative_change = 4.106435838996616e-9 Iter 110: T = 600.5982295476505 K, F = -5.093057702088011e-5, relative_change = 1.7173605822371324e-9 Iter 115: T = 600.5982263972218 K, F = -2.129977520648474e-5, relative_change = 7.182207114725214e-10 Iter 120: T = 600.5982250796749 K, F = -8.90782053203365e-6, relative_change = 3.0036848769458473e-10 Iter 125: T = 600.598224528661 K, F = -3.725357096973081e-6, relative_change = 1.2561769494610698e-10 Iter 130: T = 600.5982242982204 K, F = -1.557988246025932e-6, relative_change = 5.2534800686739565e-11 Iter 135: T = 600.5982242018475 K, F = -6.515699774722883e-7, relative_change = 2.1970704216436268e-11 Iter 140: T = 600.598224161543 K, F = -2.7249402206885875e-7, relative_change = 9.188399970115788e-12 Iter 145: T = 600.5982241446873 K, F = -1.1395974114369878e-7, relative_change = 3.842681297406491e-12 Iter 150: T = 600.5982241376381 K, F = -4.765990463395653e-8, relative_change = 1.6070747646959008e-12 Iter 155: T = 600.59822413469 K, F = -1.993184639559331e-8, relative_change = 6.720946590832986e-13 Iter 160: T = 600.598224133457 K, F = -8.335600432118895e-9, relative_change = 2.81073434921358e-13 Converged in 162 iterations to T = 600.5982241331961 K Iter 1: T = 964.5532816890127 K, F = -8076.568485692394, relative_change = 0.03544671831098735 Iter 2: T = 931.0456631354471 K, F = -6851.408056173946, relative_change = 0.03473900217818038 Iter 3: T = 899.4467236773943 K, F = -5810.98609864415, relative_change = 0.03393919407952373 Iter 5: T = 841.8625535194935 K, F = -4177.308540494097, relative_change = 0.0320393983646829 Iter 10: T = 729.2876195892246 K, F = -1820.6496078027174, relative_change = 0.025473689185303648 Iter 15: T = 657.2836063132239 K, F = -785.5232839878813, relative_change = 0.01722720850894646 Iter 20: T = 616.9467218034173 K, F = -335.1094041009462, relative_change = 0.009758696453812853 Iter 25: T = 596.9467685084244 K, F = -141.6584340599293, relative_change = 0.0048012892432378 Iter 30: T = 587.8317968280254 K, F = -59.54760115075683, relative_change = 0.0021691616045248796 Iter 35: T = 583.8662629923803 K, F = -24.960372107583925, relative_change = 0.0009388047231648819 Iter 40: T = 582.1789919086583 K, F = -10.448962216446818, relative_change = 0.00039843994713886733 Iter 45: T = 581.4681526546616 K, F = -4.371693522579049, relative_change = 0.0001676726704002047 Iter 50: T = 581.1699492306072 K, F = -1.8286131559209733, relative_change = 7.030633953977031e-5 Iter 55: T = 581.0450748485065 K, F = -0.7648037265358997, relative_change = 2.9435190894742456e-5 Iter 60: T = 580.9928224644888 K, F = -0.31985983219887576, relative_change = 1.2315796267919007e-5 Iter 65: T = 580.9709649168619 K, F = -0.13377091294350307, relative_change = 5.151601571048618e-6 Iter 70: T = 580.9618229586423 K, F = -0.055944892681936476, relative_change = 2.154634236602466e-6 Iter 75: T = 580.9579995302132 K, F = -0.023396874595217165, relative_change = 9.011240197391928e-7 Iter 80: T = 580.9564005001395 K, F = -0.009784861529196665, relative_change = 3.7686611777248675e-7 Iter 85: T = 580.9557317620063 K, F = -0.004092147548005576, relative_change = 1.5761083657901071e-7 Iter 90: T = 580.9554520869175 K, F = -0.0017113852548702457, relative_change = 6.591489597415209e-8 Iter 95: T = 580.9553351233129 K, F = -0.0007157218011946131, relative_change = 2.7566425010055022e-8 Iter 100: T = 580.9552862077117 K, F = -0.00029932341351368574, relative_change = 1.152861310949131e-8 Iter 105: T = 580.9552657506185 K, F = -0.00012518062730754176, relative_change = 4.8214045337447765e-9 Iter 110: T = 580.9552571952173 K, F = -5.235203346115602e-5, relative_change = 2.0163691028409996e-9 Iter 115: T = 580.9552536172462 K, F = -2.1894246075904178e-5, relative_change = 8.432696820583632e-10 Iter 120: T = 580.9552521208958 K, F = -9.156435304302768e-6, relative_change = 3.526654608595303e-10 Iter 125: T = 580.9552514951043 K, F = -3.829330656401897e-6, relative_change = 1.4748891056048619e-10 Iter 130: T = 580.9552512333908 K, F = -1.6014721942458898e-6, relative_change = 6.168163862630747e-11 Iter 135: T = 580.9552511239391 K, F = -6.697549101430944e-7, relative_change = 2.5796002279108542e-11 Iter 140: T = 580.955251078165 K, F = -2.80099445082449e-7, relative_change = 1.078819403487546e-11 Iter 145: T = 580.9552510590219 K, F = -1.1714151099129211e-7, relative_change = 4.511773844960021e-12 Iter 150: T = 580.9552510510159 K, F = -4.8989872325488903e-8, relative_change = 1.8868736007426427e-12 Iter 155: T = 580.9552510476677 K, F = -2.0487908036770364e-8, relative_change = 7.891037672693087e-13 Iter 160: T = 580.9552510462674 K, F = -8.568910081496739e-9, relative_change = 3.3003658619723676e-13 Converged in 163 iterations to T = 580.9552510458574 K Iter 1: T = 964.2914222144834 K, F = -8136.233416056555, relative_change = 0.03570857778551662 Iter 2: T = 930.5063810535299 K, F = -6902.509557318991, relative_change = 0.0350361315911808 Iter 3: T = 898.6138280306197 K, F = -5854.797132752373, relative_change = 0.034274405498220334 Iter 5: T = 840.3930823764192 K, F = -4209.612092190423, relative_change = 0.03245742800984213 Iter 10: T = 725.9824848321048 K, F = -1835.985385445446, relative_change = 0.02609278936040716 Iter 15: T = 652.0697996404431 K, F = -792.8591019574053, relative_change = 0.017901605188000096 Iter 20: T = 610.211386822541 K, F = -338.534183657945, relative_change = 0.010279220944743565 Iter 25: T = 589.2765321754966 K, F = -143.19329017197578, relative_change = 0.0051046948317279555 Iter 30: T = 579.6850840535114 K, F = -60.21286719235639, relative_change = 0.0023179111347653796 Iter 35: T = 575.5011190627572 K, F = -25.243228104210232, relative_change = 0.001005579962293184 Iter 40: T = 573.7187408563517 K, F = -10.568112801749768, relative_change = 0.0004272300306097803 Iter 45: T = 572.9674360556241 K, F = -4.421677203324357, relative_change = 0.00017986929034732356 Iter 50: T = 572.6521860736792 K, F = -1.849544045036682, relative_change = 7.543483364799624e-5 Iter 55: T = 572.5201608434384 K, F = -0.7735620372821077, relative_change = 3.158486603303901e-5 Iter 60: T = 572.4649140666751 K, F = -0.32352349687657395, relative_change = 1.3215671328559601e-5 Iter 65: T = 572.4418035586012 K, F = -0.13530324733412497, relative_change = 5.528089808354551e-6 Iter 70: T = 572.432137480161 K, F = -0.056585758779771206, relative_change = 2.3121123148630743e-6 Iter 75: T = 572.4280948378927 K, F = -0.02366489692121085, relative_change = 9.66987816207063e-7 Iter 80: T = 572.4264041263868 K, F = -0.009896952447977891, relative_change = 4.04411945716638e-7 Iter 85: T = 572.4256970453565 K, F = -0.004139025445373479, relative_change = 1.6913097100351504e-7 Iter 90: T = 572.4254013347006 K, F = -0.0017309901758138513, relative_change = 7.073277831552407e-8 Iter 95: T = 572.4252776648111 K, F = -0.0007239208174454337, relative_change = 2.9581325233208787e-8 Iter 100: T = 572.425225944558 K, F = -0.00030275234029669695, relative_change = 1.237126917758009e-8 Iter 105: T = 572.4252043145256 K, F = -0.00012661464572355507, relative_change = 5.1738135015732295e-9 Iter 110: T = 572.4251952685869 K, F = -5.2951757698926905e-5, relative_change = 2.163750788551342e-9 Iter 115: T = 572.425191485467 K, F = -2.21450572635562e-5, relative_change = 9.049064413808527e-10 Iter 120: T = 572.4251899033211 K, F = -9.261327194920455e-6, relative_change = 3.7844267661886976e-10 Iter 125: T = 572.4251892416488 K, F = -3.873197185921828e-6, relative_change = 1.582692293803552e-10 Iter 130: T = 572.4251889649296 K, F = -1.619817384057587e-6, relative_change = 6.619008467566782e-11 Iter 135: T = 572.4251888492023 K, F = -6.774268087039736e-7, relative_change = 2.7681477130787082e-11 Iter 140: T = 572.4251888008037 K, F = -2.8330755713623645e-7, relative_change = 1.1576706983307055e-11 Iter 145: T = 572.4251887805628 K, F = -1.1848198577801838e-7, relative_change = 4.841491862230105e-12 Iter 150: T = 572.4251887720978 K, F = -4.9550186287383724e-8, relative_change = 2.024753570122481e-12 Iter 155: T = 572.4251887685577 K, F = -2.0721857008076938e-8, relative_change = 8.467506805032842e-13 Iter 160: T = 572.4251887670773 K, F = -8.66670607502229e-9, relative_change = 3.5414486568346767e-13 Converged in 163 iterations to T = 572.4251887666438 K Iter 1: T = 979.9776434946796 K, F = -4562.112975915278, relative_change = 0.02002235650532043 Iter 2: T = 962.0060565892404 K, F = -3853.8033290031776, relative_change = 0.018338772343163924 Iter 3: T = 945.9655139765952 K, F = -3253.947766523813, relative_change = 0.01667405574297162 Iter 5: T = 919.1580270356757 K, F = -2316.6203960984985, relative_change = 0.01349070430988387 Iter 10: T = 876.5309753554669 K, F = -983.6634567549958, relative_change = 0.007107412074021953 Iter 15: T = 856.3176308148661 K, F = -414.55552919322133, relative_change = 0.0033385134556887922 Iter 20: T = 847.3385978818769 K, F = -173.98576321461607, relative_change = 0.001472456687244208 Iter 25: T = 843.4809274795082 K, F = -72.87521551050084, relative_change = 0.0006302299194604302 Iter 30: T = 841.8487800634152 K, F = -30.49731337484152, relative_change = 0.0002661813742017544 Iter 35: T = 841.162835005057 K, F = -12.757872803212836, relative_change = 0.00011178369093682243 Iter 40: T = 840.875371456702 K, F = -5.336114705914121, relative_change = 4.683083077259292e-5 Iter 45: T = 840.7550466435001 K, F = -2.231735483456193, relative_change = 1.9599513548339626e-5 Iter 50: T = 840.7047071299281 K, F = -0.9333574352025339, relative_change = 8.19925454870387e-6 Iter 55: T = 840.6836513519563 K, F = -0.3903445505609918, relative_change = 3.42946430570592e-6 Iter 60: T = 840.674845015677 K, F = -0.1632473342400369, relative_change = 1.4343195733455053e-6 Iter 65: T = 840.671162002987 K, F = -0.06827208646015781, relative_change = 5.998629810761776e-7 Iter 70: T = 840.6696217060095 K, F = -0.0285522196826149, relative_change = 2.508722073583817e-7 Iter 75: T = 840.66897753243 K, F = -0.011940882365728545, relative_change = 1.0491816326388027e-7 Iter 80: T = 840.6687081308232 K, F = -0.004993820149986394, relative_change = 4.387810056216037e-8 Iter 85: T = 840.6685954637627 K, F = -0.0020884753194043704, relative_change = 1.8350358204690396e-8 Iter 90: T = 840.6685483450364 K, F = -0.0008734253349984566, relative_change = 7.674341128481729e-9 Iter 95: T = 840.6685286394196 K, F = -0.00036527690837262483, relative_change = 3.2095014899889695e-9 Iter 100: T = 840.6685203982948 K, F = -0.00015276316649392996, relative_change = 1.342251924838775e-9 Iter 105: T = 840.668516951758 K, F = -6.388738036022801e-5, relative_change = 5.613457936455076e-10 Iter 110: T = 840.6685155103751 K, F = -2.6718464290587107e-5, relative_change = 2.3476150657705443e-10 Iter 115: T = 840.6685149075715 K, F = -1.11739810995104e-5, relative_change = 9.818006820342203e-11 Iter 120: T = 840.6685146554719 K, F = -4.673093199292211e-6, relative_change = 4.106008463739477e-11 Iter 125: T = 840.6685145500408 K, F = -1.9543426623691573e-6, relative_change = 1.717181142191218e-11 Iter 130: T = 840.6685145059482 K, F = -8.173278092105107e-7, relative_change = 7.1814422738633055e-12 Iter 135: T = 840.6685144875082 K, F = -3.4181662145194025e-7, relative_change = 3.003368180793446e-12 Iter 140: T = 840.6685144797965 K, F = -1.4295339334502444e-7, relative_change = 1.256058500326656e-12 Iter 145: T = 840.6685144765713 K, F = -5.978481776303113e-8, relative_change = 5.252986780234458e-13 Converged in 150 iterations to T = 840.6685144752224 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 10%|███ | ETA: 0:00:09 Bin 1 ray tracing: 20%|█████▉ | ETA: 0:00:09 Bin 1 ray tracing: 29%|████████▊ | ETA: 0:00:08 Bin 1 ray tracing: 38%|███████████▌ | ETA: 0:00:07 Bin 1 ray tracing: 48%|██████████████▎ | ETA: 0:00:06 Bin 1 ray tracing: 56%|████████████████▊ | ETA: 0:00:05 Bin 1 ray tracing: 64%|███████████████████▏ | ETA: 0:00:04 Bin 1 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:04 Bin 1 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:03 Bin 1 ray tracing: 83%|█████████████████████████ | ETA: 0:00:02 Bin 1 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:01 Bin 1 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 6%|█▉ | ETA: 0:00:16 Bin 2 ray tracing: 12%|███▋ | ETA: 0:00:15 Bin 2 ray tracing: 18%|█████▍ | ETA: 0:00:14 Bin 2 ray tracing: 24%|███████▎ | ETA: 0:00:13 Bin 2 ray tracing: 31%|█████████▎ | ETA: 0:00:11 Bin 2 ray tracing: 38%|███████████▎ | ETA: 0:00:10 Bin 2 ray tracing: 45%|█████████████▍ | ETA: 0:00:09 Bin 2 ray tracing: 51%|███████████████▎ | ETA: 0:00:08 Bin 2 ray tracing: 57%|█████████████████ | ETA: 0:00:07 Bin 2 ray tracing: 63%|██████████████████▉ | ETA: 0:00:06 Bin 2 ray tracing: 69%|████████████████████▊ | ETA: 0:00:05 Bin 2 ray tracing: 75%|██████████████████████▋ | ETA: 0:00:04 Bin 2 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:03 Bin 2 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:02 Bin 2 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 10%|██▉ | ETA: 0:00:09 Bin 3 ray tracing: 19%|█████▊ | ETA: 0:00:09 Bin 3 ray tracing: 28%|████████▎ | ETA: 0:00:08 Bin 3 ray tracing: 35%|██████████▋ | ETA: 0:00:08 Bin 3 ray tracing: 42%|████████████▌ | ETA: 0:00:08 Bin 3 ray tracing: 48%|██████████████▎ | ETA: 0:00:07 Bin 3 ray tracing: 53%|████████████████ | ETA: 0:00:07 Bin 3 ray tracing: 59%|█████████████████▊ | ETA: 0:00:06 Bin 3 ray tracing: 66%|███████████████████▊ | ETA: 0:00:05 Bin 3 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:04 Bin 3 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:03 Bin 3 ray tracing: 90%|███████████████████████████ | ETA: 0:00:01 Bin 3 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 10%|██▉ | ETA: 0:00:09 Bin 4 ray tracing: 20%|█████▉ | ETA: 0:00:08 Bin 4 ray tracing: 30%|█████████ | ETA: 0:00:07 Bin 4 ray tracing: 40%|███████████▉ | ETA: 0:00:06 Bin 4 ray tracing: 49%|██████████████▊ | ETA: 0:00:05 Bin 4 ray tracing: 58%|█████████████████▍ | ETA: 0:00:05 Bin 4 ray tracing: 65%|███████████████████▌ | ETA: 0:00:04 Bin 4 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:03 Bin 4 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:02 Bin 4 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 10%|███ | ETA: 0:00:09 Bin 5 ray tracing: 20%|██████▏ | ETA: 0:00:08 Bin 5 ray tracing: 31%|█████████▎ | ETA: 0:00:07 Bin 5 ray tracing: 41%|████████████▍ | ETA: 0:00:06 Bin 5 ray tracing: 52%|███████████████▌ | ETA: 0:00:05 Bin 5 ray tracing: 62%|██████████████████▋ | ETA: 0:00:04 Bin 5 ray tracing: 72%|█████████████████████▊ | ETA: 0:00:03 Bin 5 ray tracing: 82%|████████████████████████▊ | ETA: 0:00:02 Bin 5 ray tracing: 89%|██████████████████████████▉ | ETA: 0:00:01 Bin 5 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 7%|██ | ETA: 0:00:15 Bin 6 ray tracing: 13%|███▉ | ETA: 0:00:14 Bin 6 ray tracing: 19%|█████▊ | ETA: 0:00:13 Bin 6 ray tracing: 25%|███████▋ | ETA: 0:00:12 Bin 6 ray tracing: 32%|█████████▌ | ETA: 0:00:11 Bin 6 ray tracing: 38%|███████████▌ | ETA: 0:00:10 Bin 6 ray tracing: 44%|█████████████▎ | ETA: 0:00:09 Bin 6 ray tracing: 51%|███████████████▎ | ETA: 0:00:08 Bin 6 ray tracing: 57%|█████████████████▏ | ETA: 0:00:07 Bin 6 ray tracing: 64%|███████████████████▏ | ETA: 0:00:06 Bin 6 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:05 Bin 6 ray tracing: 77%|███████████████████████ | ETA: 0:00:04 Bin 6 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:03 Bin 6 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:02 Bin 6 ray tracing: 96%|████████████████████████████▋ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 7%|██ | ETA: 0:00:15 Bin 7 ray tracing: 13%|████ | ETA: 0:00:14 Bin 7 ray tracing: 20%|██████▏ | ETA: 0:00:12 Bin 7 ray tracing: 30%|█████████ | ETA: 0:00:10 Bin 7 ray tracing: 40%|████████████ | ETA: 0:00:08 Bin 7 ray tracing: 50%|███████████████▏ | ETA: 0:00:06 Bin 7 ray tracing: 61%|██████████████████▎ | ETA: 0:00:05 Bin 7 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:03 Bin 7 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:02 Bin 7 ray tracing: 88%|██████████████████████████▎ | ETA: 0:00:02 Bin 7 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 6%|██ | ETA: 0:00:15 Bin 8 ray tracing: 14%|████▏ | ETA: 0:00:12 Bin 8 ray tracing: 21%|██████▍ | ETA: 0:00:11 Bin 8 ray tracing: 28%|████████▍ | ETA: 0:00:11 Bin 8 ray tracing: 36%|██████████▊ | ETA: 0:00:09 Bin 8 ray tracing: 43%|█████████████ | ETA: 0:00:08 Bin 8 ray tracing: 53%|████████████████ | ETA: 0:00:06 Bin 8 ray tracing: 63%|███████████████████ | ETA: 0:00:05 Bin 8 ray tracing: 74%|██████████████████████ | ETA: 0:00:03 Bin 8 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:02 Bin 8 ray tracing: 92%|███████████████████████████▊ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 10%|███ | ETA: 0:00:09 Bin 9 ray tracing: 19%|█████▉ | ETA: 0:00:09 Bin 9 ray tracing: 30%|████████▉ | ETA: 0:00:07 Bin 9 ray tracing: 40%|███████████▉ | ETA: 0:00:06 Bin 9 ray tracing: 50%|███████████████ | ETA: 0:00:05 Bin 9 ray tracing: 60%|██████████████████▏ | ETA: 0:00:04 Bin 9 ray tracing: 69%|████████████████████▊ | ETA: 0:00:03 Bin 9 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:02 Bin 9 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:02 Bin 9 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 10 ray tracing: 14%|████▏ | ETA: 0:00:13 Bin 10 ray tracing: 21%|██████ | ETA: 0:00:12 Bin 10 ray tracing: 28%|████████ | ETA: 0:00:11 Bin 10 ray tracing: 34%|██████████ | ETA: 0:00:10 Bin 10 ray tracing: 42%|████████████ | ETA: 0:00:09 Bin 10 ray tracing: 50%|██████████████▍ | ETA: 0:00:07 Bin 10 ray tracing: 60%|█████████████████▎ | ETA: 0:00:06 Bin 10 ray tracing: 69%|████████████████████▏ | ETA: 0:00:04 Bin 10 ray tracing: 79%|███████████████████████ | ETA: 0:00:03 Bin 10 ray tracing: 89%|█████████████████████████▉ | ETA: 0:00:01 Bin 10 ray tracing: 98%|████████████████████████████▌| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.3038371176715 K, F = -7449.851814818796, relative_change = 0.0326961628823285 Iter 2: T = 936.6819525931204 K, F = -6315.063327859976, relative_change = 0.031656945159854635 Iter 3: T = 908.1030375955631 K, F = -5351.621716442707, relative_change = 0.030510799229598737 Iter 5: T = 856.9360785630404 K, F = -3839.5676066097863, relative_change = 0.02790304482810116 Iter 10: T = 761.7622363562939 K, F = -1662.591706945162, relative_change = 0.019986311307017193 Iter 15: T = 706.0254945103372 K, F = -711.848707637658, relative_change = 0.011979640339240722 Iter 20: T = 677.3550723514667 K, F = -301.7060442850366, relative_change = 0.006136017039580878 Iter 25: T = 663.9837174597216 K, F = -127.01263756788643, relative_change = 0.002834906113598525 Iter 30: T = 658.096818893596 K, F = -53.277349770622, relative_change = 0.001240159798774042 Iter 35: T = 655.5782609131712 K, F = -22.31014142973464, relative_change = 0.0005288514272998536 Iter 40: T = 654.5146600453328 K, F = -9.335509128751125, relative_change = 0.00022300824513585009 Iter 45: T = 654.0680144714298 K, F = -3.9051269543784457, relative_change = 9.358980407314767e-5 Iter 50: T = 653.8808986399944 K, F = -1.6333295750133074, relative_change = 3.91975242366986e-5 Iter 55: T = 653.802587840433 K, F = -0.6831057506567154, relative_change = 1.6402889876963292e-5 Iter 60: T = 653.7698273948139 K, F = -0.28568785049009193, relative_change = 6.861638016526703e-6 Iter 65: T = 653.7561248468007 K, F = -0.11947892241299157, relative_change = 2.869925781345616e-6 Iter 70: T = 653.75039397346 K, F = -0.04996766116724222, relative_change = 1.200290906908442e-6 Iter 75: T = 653.7479972005925 K, F = -0.020897098687265747, relative_change = 5.019853794476471e-7 Iter 80: T = 653.7469948322516 K, F = -0.008739420789657448, relative_change = 2.0993792258952722e-7 Iter 85: T = 653.7465756282133 K, F = -0.0036549309409175113, relative_change = 8.779883357900752e-8 Iter 90: T = 653.7464003117936 K, F = -0.0015285359078664462, relative_change = 3.6718570969401026e-8 Iter 95: T = 653.7463269923232 K, F = -0.0006392519936815333, relative_change = 1.5356153630372862e-8 Iter 100: T = 653.7462963292365 K, F = -0.00026734282106566365, relative_change = 6.4221283462650735e-9 Iter 105: T = 653.746283505566 K, F = -0.00011180596112486674, relative_change = 2.68581103624519e-9 Iter 110: T = 653.7462781425536 K, F = -4.675858865665905e-5, relative_change = 1.1232383058541491e-9 Iter 115: T = 653.7462758996777 K, F = -1.955499979555686e-5, relative_change = 4.697516719634884e-10 Iter 120: T = 653.7462749616802 K, F = -8.17813521980515e-6, relative_change = 1.9645577905672064e-10 Iter 125: T = 653.7462745693983 K, F = -3.4201924515864235e-6, relative_change = 8.216012042607349e-11 Iter 130: T = 653.7462744053414 K, F = -1.4303639017665404e-6, relative_change = 3.436030931772454e-11 Iter 135: T = 653.746274336731 K, F = -5.981962543644137e-7, relative_change = 1.4369915458262584e-11 Iter 140: T = 653.7462743080372 K, F = -2.501725001602395e-7, relative_change = 6.009662634641058e-12 Iter 145: T = 653.7462742960371 K, F = -1.046252289249594e-7, relative_change = 2.513315126815746e-12 Iter 150: T = 653.7462742910185 K, F = -4.375460943562004e-8, relative_change = 1.0510765223304937e-12 Iter 155: T = 653.7462742889197 K, F = -1.8299000537069787e-8, relative_change = 4.3957996871669635e-13 Converged in 159 iterations to T = 653.7462742881621 K Iter 1: T = 970.2416566076508 K, F = -6780.466849439208, relative_change = 0.029758343392349132 Iter 2: T = 942.6456037784609 K, F = -5743.05810115838, relative_change = 0.028442453115934664 Iter 3: T = 917.1676958448521 K, F = -4862.628489843464, relative_change = 0.02702808757764763 Iter 5: T = 872.3534588065776 K, F = -3481.8707285451223, relative_change = 0.023947635948082954 Iter 10: T = 792.6894882629202 K, F = -1498.9636151979867, relative_change = 0.015642117298195396 Iter 15: T = 749.1890654192282 K, F = -638.1788311983988, relative_change = 0.008587816900261674 Iter 20: T = 728.0388715049932 K, F = -269.4078006083667, relative_change = 0.004138734686133509 Iter 25: T = 718.5104617231442 K, F = -113.16644555028411, relative_change = 0.0018494626030985865 Iter 30: T = 714.3888021007857 K, F = -47.419506479272854, relative_change = 0.0007963586314902607 Iter 35: T = 712.6396550659641 K, F = -19.84788710915281, relative_change = 0.0003372265695105311 Iter 40: T = 711.9035765349362 K, F = -8.303536824688482, relative_change = 0.00014177678601093942 Iter 45: T = 711.5949324399841 K, F = -3.4731500865675113, relative_change = 5.9423989435569504e-5 Iter 50: T = 711.4657119382393 K, F = -1.452602529034523, relative_change = 2.487485150667928e-5 Iter 55: T = 711.411645521684 K, F = -0.6075114234619671, relative_change = 1.0406993327624402e-5 Iter 60: T = 711.3890299490541 K, F = -0.2540712789767021, relative_change = 4.353034735643019e-6 Iter 65: T = 711.3795710851434 K, F = -0.10625612352851777, relative_change = 1.8206145940881357e-6 Iter 70: T = 711.3756151421137 K, F = -0.04443766384721437, relative_change = 7.614243650555937e-7 Iter 75: T = 711.3739606962004 K, F = -0.018584376412198123, relative_change = 3.184405406167092e-7 Iter 80: T = 711.373268783087 K, F = -0.007772210728783979, relative_change = 1.331762978083236e-7 Iter 85: T = 711.3729794160473 K, F = -0.0032504317970492025, relative_change = 5.569603378934258e-8 Iter 90: T = 711.3728583991709 K, F = -0.0013593694756234287, relative_change = 2.3292766714212232e-8 Iter 95: T = 711.3728077884462 K, F = -0.000568504562712624, relative_change = 9.741316748820575e-9 Iter 100: T = 711.3727866224328 K, F = -0.00023775540112214166, relative_change = 4.0739356393515674e-9 Iter 105: T = 711.3727777705525 K, F = -9.9432148788825e-5, relative_change = 1.7037686493556945e-9 Iter 110: T = 711.3727740685904 K, F = -4.1583712241055615e-5, relative_change = 7.125364166273784e-10 Iter 115: T = 711.3727725203856 K, F = -1.7390805611361415e-5, relative_change = 2.979912512175725e-10 Iter 120: T = 711.3727718729078 K, F = -7.273042822664166e-6, relative_change = 1.2462350443735426e-10 Iter 125: T = 711.3727716021249 K, F = -3.041672567372089e-6, relative_change = 5.211902426899291e-11 Iter 130: T = 711.3727714888803 K, F = -1.2720644075869814e-6, relative_change = 2.1796808930777844e-11 Iter 135: T = 711.3727714415201 K, F = -5.319943909842806e-7, relative_change = 9.115717747501373e-12 Iter 140: T = 711.3727714217133 K, F = -2.224855130128489e-7, relative_change = 3.812286697327146e-12 Iter 145: T = 711.37277141343 K, F = -9.304578951763176e-8, relative_change = 1.594338529446406e-12 Iter 150: T = 711.3727714099658 K, F = -3.891346045392652e-8, relative_change = 6.667816957527774e-13 Iter 155: T = 711.372771408517 K, F = -1.6274252834236336e-8, relative_change = 2.788591344857335e-13 Converged in 157 iterations to T = 711.3727714082104 K Iter 1: T = 974.4453279456113 K, F = -5822.656336361167, relative_change = 0.025554672054388702 Iter 2: T = 951.0796696761635 K, F = -4926.1329866140495, relative_change = 0.02397841890084164 Iter 3: T = 929.828038445778 K, F = -4165.846310984103, relative_change = 0.022344743461524624 Iter 5: T = 893.3123945140758 K, F = -2975.1364266735936, relative_change = 0.018989734655443215 Iter 10: T = 831.8244314288187 K, F = -1272.136127931729, relative_change = 0.011149223005557943 Iter 15: T = 800.6252897911011 K, F = -538.6417269834149, relative_change = 0.005624566214308263 Iter 20: T = 786.2019864587079 K, F = -226.62938822244115, relative_change = 0.002576309547943341 Iter 25: T = 779.8811272342264 K, F = -95.03678100215217, relative_change = 0.0011223404018068373 Iter 30: T = 777.1826924348799 K, F = -39.792168422293905, relative_change = 0.00047771772300757504 Iter 35: T = 776.0441970171635 K, F = -16.64984166102749, relative_change = 0.00020128455845483073 Iter 40: T = 775.5662917442063 K, F = -6.964620224509254, relative_change = 8.444437639712867e-5 Iter 45: T = 775.3661138985447 K, F = -2.912942963461915, relative_change = 3.536216941899868e-5 Iter 50: T = 775.282342384077 K, F = -1.2182722911306019, relative_change = 1.4797034188773825e-5 Iter 55: T = 775.2472985494413 K, F = -0.5095038528041624, relative_change = 6.189723468761199e-6 Iter 60: T = 775.2326411217152 K, F = -0.21308196595753426, relative_change = 2.5888659536616894e-6 Iter 65: T = 775.2265109169253 K, F = -0.08911366250987662, relative_change = 1.0827383344120825e-6 Iter 70: T = 775.2239471407403 K, F = -0.037268439805858034, relative_change = 4.528217412537121e-7 Iter 75: T = 775.2228749299436 K, F = -0.0155861139336676, relative_change = 1.8937679614594755e-7 Iter 80: T = 775.2224265170132 K, F = -0.006518300265856425, relative_change = 7.919987147208533e-8 Iter 85: T = 775.2222389850959 K, F = -0.002726031237876736, relative_change = 3.312237293967463e-8 Iter 90: T = 775.2221605569605 K, F = -0.00114005885879509, relative_change = 1.3852179079495824e-8 Iter 95: T = 775.2221277573693 K, F = -0.0004767862362949904, relative_change = 5.793147965395306e-9 Iter 100: T = 775.2221140401872 K, F = -0.00019939770071542018, relative_change = 2.422763900439254e-9 Iter 105: T = 775.2221083034975 K, F = -8.339050155514727e-5, relative_change = 1.0132288547001048e-9 Iter 110: T = 775.2221059043453 K, F = -3.487490588982567e-5, relative_change = 4.237444410840192e-10 Iter 115: T = 775.2221049009912 K, F = -1.4585103543574007e-5, relative_change = 1.7721500401562117e-10 Iter 120: T = 775.2221044813765 K, F = -6.099665161851675e-6, relative_change = 7.411343949035862e-11 Iter 125: T = 775.2221043058886 K, F = -2.5509538585932745e-6, relative_change = 3.099513819672128e-11 Iter 130: T = 775.2221042324974 K, F = -1.0668391423607204e-6, relative_change = 1.296253421231294e-11 Iter 135: T = 775.2221042018044 K, F = -4.4616529082386336e-7, relative_change = 5.421091726109177e-12 Iter 140: T = 775.2221041889682 K, F = -1.8659212097649203e-7, relative_change = 2.2671709881213093e-12 Iter 145: T = 775.2221041836 K, F = -7.803513291104736e-8, relative_change = 9.481589494244474e-13 Iter 150: T = 775.2221041813549 K, F = -3.263569714473391e-8, relative_change = 3.965371386524713e-13 Converged in 154 iterations to T = 775.2221041805445 K Iter 1: T = 970.3118661662992 K, F = -6764.469534714645, relative_change = 0.029688133833700763 Iter 2: T = 942.7874223390522 K, F = -5729.398867694212, relative_change = 0.028366595098950963 Iter 3: T = 917.382103312196 K, F = -4850.962875148653, relative_change = 0.026947027956552128 Iter 5: T = 872.7138222551312 K, F = -3473.359125394817, relative_change = 0.02385838948036029 Iter 10: T = 793.3886584757319 K, F = -1495.1094953416168, relative_change = 0.015552635228002503 Iter 15: T = 750.135957436067 K, F = -636.4662534373939, relative_change = 0.00852381472453296 Iter 20: T = 729.1288216772082 K, F = -268.6650927871002, relative_change = 0.004103288922729034 Iter 25: T = 719.670736845902 K, F = -112.85011291857215, relative_change = 0.0018325538938780248 Iter 30: T = 715.5807433065706 K, F = -47.286107683844435, relative_change = 0.0007888650142714191 Iter 35: T = 713.8452723962089 K, F = -19.79189636769545, relative_change = 0.0003340139144635107 Iter 40: T = 713.1149922371026 K, F = -8.280084877980505, relative_change = 0.00014041906230182518 Iter 45: T = 712.8087871208844 K, F = -3.463335865330857, relative_change = 5.885366903982251e-5 Iter 50: T = 712.680589100899 K, F = -1.4484969925044917, relative_change = 2.4635896603617733e-5 Iter 55: T = 712.6269507320467 K, F = -0.6057942442980149, relative_change = 1.0306982402598179e-5 Iter 60: T = 712.6045142500151 K, F = -0.25335310006016204, relative_change = 4.311195470676674e-6 Iter 65: T = 712.5951302972198 K, F = -0.10595576656517347, relative_change = 1.803114551487447e-6 Iter 70: T = 712.591205685238 K, F = -0.044312049935929076, relative_change = 7.541052250272874e-7 Iter 75: T = 712.5895643427497 K, F = -0.018531842991775904, relative_change = 3.153795165664275e-7 Iter 80: T = 712.5888779097162 K, F = -0.0077502405926697104, relative_change = 1.3189612834538099e-7 Iter 85: T = 712.5885908345236 K, F = -0.0032412436155581092, relative_change = 5.5160649375853245e-8 Iter 90: T = 712.5884707761273 K, F = -0.001355526865077783, relative_change = 2.3068862131966925e-8 Iter 95: T = 712.5884205662509 K, F = -0.0005668975369356177, relative_change = 9.647677111149825e-9 Iter 100: T = 712.5883995678772 K, F = -0.00023708332398275633, relative_change = 4.034774417077454e-9 Iter 105: T = 712.5883907861058 K, F = -9.915107749169927e-5, relative_change = 1.6873909461104195e-9 Iter 110: T = 712.5883871134641 K, F = -4.146616593392327e-5, relative_change = 7.056870833262516e-10 Iter 115: T = 712.5883855775213 K, F = -1.734164464295418e-5, relative_change = 2.951267491973074e-10 Iter 120: T = 712.5883849351718 K, F = -7.2524829788367384e-6, relative_change = 1.2342553306838605e-10 Iter 125: T = 712.5883846665336 K, F = -3.0330745504070222e-6, relative_change = 5.161802447306434e-11 Iter 130: T = 712.5883845541858 K, F = -1.2684684382868738e-6, relative_change = 2.1587281766999185e-11 Iter 135: T = 712.5883845072007 K, F = -5.304886618873184e-7, relative_change = 9.02805925342626e-12 Iter 140: T = 712.5883844875509 K, F = -2.2185712122979595e-7, relative_change = 3.77564947268483e-12 Iter 145: T = 712.5883844793332 K, F = -9.278333346074419e-8, relative_change = 1.5790223100902017e-12 Iter 150: T = 712.5883844758963 K, F = -3.880217736007552e-8, relative_change = 6.603503177536264e-13 Iter 155: T = 712.5883844744591 K, F = -1.622815726243232e-8, relative_change = 2.761769966015395e-13 Converged in 157 iterations to T = 712.588384474155 K Iter 1: T = 969.2746257449667 K, F = -7000.805751385625, relative_change = 0.030725374255033307 Iter 2: T = 940.6889372554442 K, F = -5931.245053399098, relative_change = 0.029491836194052854 Iter 3: T = 914.2040906585719 K, F = -5023.402291022193, relative_change = 0.028154733778569325 Iter 5: T = 867.3523948200102 K, F = -3599.27768576358, relative_change = 0.025201111702355408 Iter 10: T = 782.8801389028163 K, F = -1552.3030156138589, relative_change = 0.01693650489993359 Iter 15: T = 735.7791540741173 K, F = -661.9760836259271, relative_change = 0.009538654734613657 Iter 20: T = 712.5107466989547 K, F = -279.760992636221, relative_change = 0.004674725864095356 Iter 25: T = 701.9294631471466 K, F = -117.5841703596033, relative_change = 0.0021075576738264945 Iter 30: T = 697.3310761405487 K, F = -49.28414604241439, relative_change = 0.0009112441679837124 Iter 35: T = 695.3755178087736 K, F = -20.630834799657684, relative_change = 0.00038657510831671037 Iter 40: T = 694.5518297736825 K, F = -8.63153399152291, relative_change = 0.00016264949161149346 Iter 45: T = 694.2063172349859 K, F = -3.61042103661454, relative_change = 6.81947434725542e-5 Iter 50: T = 694.061637525189 K, F = -1.5100281895371066, relative_change = 2.8550189008941757e-5 Iter 55: T = 694.0010987967124 K, F = -0.6315305525171062, relative_change = 1.1945343546012957e-5 Iter 60: T = 693.9757751848038 K, F = -0.26411689623005113, relative_change = 4.9966152797244035e-6 Iter 65: T = 693.965183569325 K, F = -0.11045741346454108, relative_change = 2.089806875870489e-6 Iter 70: T = 693.9607538580639 K, F = -0.04619470971059181, relative_change = 8.740106514982063e-7 Iter 75: T = 693.9589012699715 K, F = -0.019319196814738815, relative_change = 3.655266699350855e-7 Iter 80: T = 693.9581264902702 K, F = -0.008079521893704533, relative_change = 1.5286848926870955e-7 Iter 85: T = 693.9578024672303 K, F = -0.0033789530805621304, relative_change = 6.393158008834693e-8 Iter 90: T = 693.9576669567653 K, F = -0.0014131186254336958, relative_change = 2.673697693189414e-8 Iter 95: T = 693.9576102846424 K, F = -0.0005909831022599121, relative_change = 1.1181727727304982e-8 Iter 100: T = 693.9575865836789 K, F = -0.0002471561937328337, relative_change = 4.676332882035069e-9 Iter 105: T = 693.9575766716521 K, F = -0.00010336367299512705, relative_change = 1.9556984124312124e-9 Iter 110: T = 693.957572526324 K, F = -4.3227923382627154e-5, relative_change = 8.178964725880933e-10 Iter 115: T = 693.9575707926982 K, F = -1.8078434919188702e-5, relative_change = 3.420540976559895e-10 Iter 120: T = 693.9575700676752 K, F = -7.5606164846586665e-6, relative_change = 1.4305109229903672e-10 Iter 125: T = 693.9575697644619 K, F = -3.1619408114025305e-6, relative_change = 5.982568864784936e-11 Iter 130: T = 693.9575696376545 K, F = -1.3223615781265963e-6, relative_change = 2.501982068621207e-11 Iter 135: T = 693.9575695846221 K, F = -5.530272955134308e-7, relative_change = 1.046358575614679e-11 Iter 140: T = 693.9575695624433 K, F = -2.3128239168279663e-7, relative_change = 4.375992214599731e-12 Iter 145: T = 693.9575695531678 K, F = -9.672389900128309e-8, relative_change = 1.830070270125818e-12 Iter 150: T = 693.9575695492887 K, F = -4.045021406717808e-8, relative_change = 7.653406753749234e-13 Iter 155: T = 693.9575695476665 K, F = -1.6917615974776368e-8, relative_change = 3.2009075686249663e-13 Converged in 158 iterations to T = 693.9575695471915 K Iter 1: T = 963.5834834351057 K, F = -8297.53794036139, relative_change = 0.0364165165648943 Iter 2: T = 929.0460657516437 K, F = -7040.697690656835, relative_change = 0.03584268335561182 Iter 3: T = 896.3542947178439 K, F = -5973.309237227806, relative_change = 0.03518853611133974 Iter 5: T = 836.389069500483 K, F = -4297.079023814725, relative_change = 0.033610132692256836 Iter 10: T = 716.8361890811119 K, F = -1877.7259664577084, relative_change = 0.027869746006804096 Iter 15: T = 637.3477992649848 K, F = -813.0414009835222, relative_change = 0.019945858307481912 Iter 20: T = 590.8279864098976 K, F = -348.0892353645983, relative_change = 0.011945058532234338 Iter 25: T = 566.9125235917526 K, F = -147.52599992303888, relative_change = 0.006114353701911469 Iter 30: T = 555.7630023518424 K, F = -62.10418308257115, relative_change = 0.002823850788042058 Iter 35: T = 550.8552704205888 K, F = -26.05021533552269, relative_change = 0.0012351005187327738 Iter 40: T = 548.7558189616462 K, F = -10.908591679667763, relative_change = 0.0005266513735575484 Iter 45: T = 547.8692452918849 K, F = -4.564606669179473, relative_change = 0.0002220727830462916 Iter 50: T = 547.4969465184934 K, F = -1.9094139085745616, relative_change = 9.31958444485096e-5 Iter 55: T = 547.3409783730586 K, F = -0.7986170364946078, relative_change = 3.903228302051974e-5 Iter 60: T = 547.2757035518547 K, F = -0.33400472494028505, relative_change = 1.633369934896585e-5 Iter 65: T = 547.2483965970652 K, F = -0.13968713466604377, relative_change = 6.83268688121613e-6 Iter 70: T = 547.2369750596167 K, F = -0.05841924250100655, relative_change = 2.8578154755784798e-6 Iter 75: T = 547.2321981838427 K, F = -0.02443169739758219, relative_change = 1.195225778383116e-6 Iter 80: T = 547.2302003931951 K, F = -0.010217640308409437, relative_change = 4.99867002754012e-7 Iter 85: T = 547.2293648855655 K, F = -0.004273141418557808, relative_change = 2.0905197825397747e-7 Iter 90: T = 547.2290154649461 K, F = -0.0017870791603093739, relative_change = 8.742831862175471e-8 Iter 95: T = 547.2288693328339 K, F = -0.0007473779150381776, relative_change = 3.656361677199743e-8 Iter 100: T = 547.2288082185981 K, F = -0.00031256238116927904, relative_change = 1.5291349889845705e-8 Iter 105: T = 547.2287826598877 K, F = -0.00013071732260871993, relative_change = 6.395026662062909e-9 Iter 110: T = 547.2287719709284 K, F = -5.46675455723733e-5, relative_change = 2.6744767794995427e-9 Iter 115: T = 547.2287675006778 K, F = -2.2862620243702114e-5, relative_change = 1.118498163729608e-9 Iter 120: T = 547.2287656311656 K, F = -9.561421292325623e-6, relative_change = 4.677693203165772e-10 Iter 125: T = 547.2287648493133 K, F = -3.9987004031849516e-6, relative_change = 1.9562670917678587e-10 Iter 130: T = 547.2287645223333 K, F = -1.6723045155597749e-6, relative_change = 8.181343863383824e-11 Iter 135: T = 547.2287643855864 K, F = -6.993779382291621e-7, relative_change = 3.421536781540728e-11 Iter 140: T = 547.2287643283971 K, F = -2.924876633392248e-7, relative_change = 1.4309248891864034e-11 Iter 145: T = 547.2287643044799 K, F = -1.223217076795624e-7, relative_change = 5.984292603817894e-12 Iter 150: T = 547.2287642944775 K, F = -5.115701146030105e-8, relative_change = 2.5027325987298723e-12 Iter 155: T = 547.2287642902944 K, F = -2.1394752053316424e-8, relative_change = 1.0466863070974915e-12 Iter 160: T = 547.228764288545 K, F = -8.947991209096173e-9, relative_change = 4.3775874809824874e-13 Converged in 164 iterations to T = 547.2287642879135 K Iter 1: T = 966.9111275013031 K, F = -7539.33107447163, relative_change = 0.03308887249869694 Iter 2: T = 935.8803781959698 K, F = -6391.592495058052, relative_change = 0.0320926592142167 Iter 3: T = 906.8773262077394 K, F = -5417.115626315409, relative_change = 0.030990127225594275 Iter 5: T = 854.8231841569726 K, F = -3887.6160091069964, relative_change = 0.028466471066821434 Iter 10: T = 757.3553834588014 K, F = -1684.844750708823, relative_change = 0.020671393025651692 Iter 15: T = 699.6440217968652 K, F = -722.0424492443417, relative_change = 0.012570436702913022 Iter 20: T = 669.6685526643708 K, F = -306.2442297823424, relative_change = 0.006509390239658747 Iter 25: T = 655.5988427805661 K, F = -128.97691261934708, relative_change = 0.00302651603096913 Iter 30: T = 649.3833639844388 K, F = -54.112422831655266, relative_change = 0.0013280957749995414 Iter 35: T = 646.7199841090588 K, F = -22.66193160050996, relative_change = 0.0005671402331566921 Iter 40: T = 645.5944340520799 K, F = -9.483092447438457, relative_change = 0.00023929775053950665 Iter 45: T = 645.1216318173157 K, F = -3.9669296603509796, relative_change = 0.00010045158261775275 Iter 50: T = 644.9235329278398 K, F = -1.659190555588455, relative_change = 4.207589567966797e-5 Iter 55: T = 644.8406211427972 K, F = -0.6939236373752496, relative_change = 1.7608184805374764e-5 Iter 60: T = 644.8059351536311 K, F = -0.2902124603494968, relative_change = 7.365973954387632e-6 Iter 65: T = 644.7914270828547 K, F = -0.1213712453575353, relative_change = 3.0808918552951044e-6 Iter 70: T = 644.7853592887278 K, F = -0.0507590667027531, relative_change = 1.2885276191586062e-6 Iter 75: T = 644.7828216042961 K, F = -0.021228076290367714, relative_change = 5.388884571978285e-7 Iter 80: T = 644.7817603037852 K, F = -0.008877839987532665, relative_change = 2.2537148068205505e-7 Iter 85: T = 644.7813164533873 K, F = -0.0037128195741794046, relative_change = 9.425337565109463e-8 Iter 90: T = 644.7811308295267 K, F = -0.0015527456372669834, relative_change = 3.9417945178942316e-8 Iter 95: T = 644.7810531993549 K, F = -0.0006493767963910435, relative_change = 1.648506556317821e-8 Iter 100: T = 644.7810207334801 K, F = -0.0002715771371599729, relative_change = 6.894253089528421e-9 Iter 105: T = 644.7810071558617 K, F = -0.00011357680318041519, relative_change = 2.8832592939053084e-9 Iter 110: T = 644.7810014775392 K, F = -4.749917484975219e-5, relative_change = 1.2058135045676894e-9 Iter 115: T = 644.7809991027968 K, F = -1.9864721420626008e-5, relative_change = 5.042855975761828e-10 Iter 120: T = 644.7809981096513 K, F = -8.307663432682855e-6, relative_change = 2.1089825327148834e-10 Iter 125: T = 644.7809976943059 K, F = -3.474363833910754e-6, relative_change = 8.82001626553617e-11 Iter 130: T = 644.7809975206036 K, F = -1.453020435193686e-6, relative_change = 3.6886361076861824e-11 Iter 135: T = 644.7809974479592 K, F = -6.076703670809813e-7, relative_change = 1.5426313384844923e-11 Iter 140: T = 644.7809974175784 K, F = -2.5413503040860874e-7, relative_change = 6.451469142492013e-12 Iter 145: T = 644.7809974048729 K, F = -1.0628250757260815e-7, relative_change = 2.6980865918138954e-12 Iter 150: T = 644.7809973995592 K, F = -4.444848344942187e-8, relative_change = 1.1283687218625658e-12 Iter 155: T = 644.780997397337 K, F = -1.8589056793860692e-8, relative_change = 4.719015954578362e-13 Converged in 160 iterations to T = 644.7809973964077 K Iter 1: T = 965.2364657829344 K, F = -7920.904340016476, relative_change = 0.0347635342170656 Iter 2: T = 932.4504208242142 K, F = -6718.118512357351, relative_change = 0.03396685280857712 Iter 3: T = 901.6124547710277 K, F = -5696.748749562148, relative_change = 0.033071963253475826 Iter 5: T = 845.6675047082215 K, F = -4093.1539822924706, relative_change = 0.030969352256736096 Iter 10: T = 737.7236626374852 K, F = -1780.8893722283278, relative_change = 0.023946684740862225 Iter 15: T = 670.3582124952782 K, F = -766.6800232274959, relative_change = 0.015640865019591943 Iter 20: T = 633.5745967198462 K, F = -326.41066175590646, relative_change = 0.008586816619680498 Iter 25: T = 615.6905952288125 K, F = -137.79434274518223, relative_change = 0.004138155136102348 Iter 30: T = 607.6337558625667 K, F = -57.88133254843869, relative_change = 0.0018491809393714911 Iter 35: T = 604.1486703176279 K, F = -24.2536832473875, relative_change = 0.0007962328326063188 Iter 40: T = 602.6696766663669 K, F = -10.151608873982067, relative_change = 0.0003371724625808354 Iter 45: T = 602.0472852847489 K, F = -4.247013868997731, relative_change = 0.00014175388859353656 Iter 50: T = 601.7863113405998 K, F = -1.7764136456565873, relative_change = 5.9414365801853175e-5 Iter 55: T = 601.6770490004462 K, F = -0.7429632627153683, relative_change = 2.4870818410248758e-5 Iter 60: T = 601.6313331694789 K, F = -0.3107241367095001, relative_change = 1.0405305170150226e-5 Iter 65: T = 601.6122105843538 K, F = -0.1299499492373773, relative_change = 4.352328470976887e-6 Iter 70: T = 601.6042126472613 K, F = -0.05434686636319003, relative_change = 1.8203191807884848e-6 Iter 75: T = 601.6008677018681 K, F = -0.022728551517771256, relative_change = 7.613008118428038e-7 Iter 80: T = 601.599468786065 K, F = -0.00950535919410933, relative_change = 3.183888677934731e-7 Iter 85: T = 601.5988837393253 K, F = -0.003975256045257003, relative_change = 1.3315468733215643e-7 Iter 90: T = 601.5986390651896 K, F = -0.0016624997810941178, relative_change = 5.568699592203622e-8 Iter 95: T = 601.5985367394387 K, F = -0.0006952773037091631, relative_change = 2.3288986964049824e-8 Iter 100: T = 601.5984939455692 K, F = -0.0002907732782133077, relative_change = 9.73973599172902e-9 Iter 105: T = 601.5984760486587 K, F = -0.00012160485882628524, relative_change = 4.073274529582745e-9 Iter 110: T = 601.5984685639563 K, F = -5.085660357329047e-5, relative_change = 1.7034921323522418e-9 Iter 115: T = 601.5984654337644 K, F = -2.1268839465515832e-5, relative_change = 7.124207879723955e-10 Iter 120: T = 601.5984641246807 K, F = -8.89488206579081e-6, relative_change = 2.979428645439689e-10 Iter 125: T = 601.5984635772064 K, F = -3.7199466744741727e-6, relative_change = 1.246032903806785e-10 Iter 130: T = 601.5984633482461 K, F = -1.5557265951038346e-6, relative_change = 5.211059996211181e-11 Iter 135: T = 601.5984632524921 K, F = -6.506239385029033e-7, relative_change = 2.1793291904563485e-11 Iter 140: T = 601.5984632124466 K, F = -2.7209880482104154e-7, relative_change = 9.114218416051434e-12 Iter 145: T = 601.5984631956992 K, F = -1.1379510467257603e-7, relative_change = 3.811679509150677e-12 Iter 150: T = 601.5984631886952 K, F = -4.7591169394234356e-8, relative_change = 1.5941132593403524e-12 Iter 155: T = 601.5984631857659 K, F = -1.990270837026742e-8, relative_change = 6.666608892868838e-13 Iter 160: T = 601.5984631845411 K, F = -8.324075206900261e-9, relative_change = 2.7882312681961186e-13 Converged in 162 iterations to T = 601.5984631842819 K Iter 1: T = 980.0967857331874 K, F = -4534.966303537751, relative_change = 0.01990321426681264 Iter 2: T = 962.2392397262436 K, F = -3830.745194698115, relative_change = 0.018220186278424616 Iter 3: T = 946.3067823461103 K, F = -3234.3723256128637, relative_change = 0.016557688277882007 Iter 5: T = 919.6949118639653 K, F = -2302.537031307382, relative_change = 0.013383240784435622 Iter 10: T = 877.4251829455586 K, F = -977.5550544841021, relative_change = 0.007036538510781062 Iter 15: T = 857.4054372172533 K, F = -411.9482850728965, relative_change = 0.003301208938728303 Iter 20: T = 848.5182681056509 K, F = -172.88456808094236, relative_change = 0.00145511955649763 Iter 25: T = 844.7012636495087 K, F = -72.41264636558921, relative_change = 0.0006226379508074859 Iter 30: T = 843.086546260926 K, F = -30.303493676227404, relative_change = 0.0002629435011003213 Iter 35: T = 842.407967017042 K, F = -12.676749883587059, relative_change = 0.00011041834626068772 Iter 40: T = 842.1235974774027 K, F = -5.302176661429491, relative_change = 4.6257845678198524e-5 Iter 45: T = 842.0045689966303 K, F = -2.2175401768543064, relative_change = 1.9359536421903677e-5 Iter 50: T = 841.9547720421917 K, F = -0.9274204363541247, relative_change = 8.098832300082112e-6 Iter 55: T = 841.9339432420104 K, F = -0.38786156513197056, relative_change = 3.38745585496811e-6 Iter 60: T = 841.925231843341 K, F = -0.16220890930368248, relative_change = 1.4167492713595433e-6 Iter 65: T = 841.9215885369301 K, F = -0.06783780286631269, relative_change = 5.925145445221471e-7 Iter 70: T = 841.9200648459838 K, F = -0.028370596765082468, relative_change = 2.4779894631419895e-7 Iter 75: T = 841.9194276173134 K, F = -0.011864925432848672, relative_change = 1.03632878788195e-7 Iter 80: T = 841.9191611201628 K, F = -0.00496205404889194, relative_change = 4.334057754591245e-8 Iter 85: T = 841.9190496677824 K, F = -0.0020751903544296013, relative_change = 1.8125559351291e-8 Iter 90: T = 841.9190030570503 K, F = -0.0008678694051946767, relative_change = 7.58032752320777e-9 Iter 95: T = 841.9189835638828 K, F = -0.0003629533511835259, relative_change = 3.170183859981508e-9 Iter 100: T = 841.9189754116068 K, F = -0.000151791426389547, relative_change = 1.3258088143832225e-9 Iter 105: T = 841.9189720022275 K, F = -6.34809861861374e-5, relative_change = 5.544690807377522e-10 Iter 110: T = 841.9189705763845 K, F = -2.6548506220747115e-5, relative_change = 2.3188559035163524e-10 Iter 115: T = 841.9189699800799 K, F = -1.1102903585191726e-5, relative_change = 9.697733423282977e-11 Iter 120: T = 841.9189697306982 K, F = -4.643367941481458e-6, relative_change = 4.055708869369154e-11 Iter 125: T = 841.9189696264037 K, F = -1.941911404346186e-6, relative_change = 1.6961454293601498e-11 Iter 130: T = 841.9189695827865 K, F = -8.121321524168224e-7, relative_change = 7.093496827996539e-12 Iter 135: T = 841.9189695645454 K, F = -3.3964337120551136e-7, relative_change = 2.966585141808725e-12 Iter 140: T = 841.9189695569166 K, F = -1.420440924881916e-7, relative_change = 1.240671627948191e-12 Iter 145: T = 841.9189695537262 K, F = -5.940359826261954e-8, relative_change = 5.188555023498856e-13 Converged in 150 iterations to T = 841.918969552392 K Iter 1: T = 976.4345430312492 K, F = -5369.411786866532, relative_change = 0.02356545696875084 Iter 2: T = 955.030794809417 K, F = -4540.195286355564, relative_change = 0.02192031035217807 Iter 3: T = 935.6971371668793 K, F = -3837.2989676878433, relative_change = 0.02024401490257272 Iter 5: T = 902.8191951097147 K, F = -2737.306164232478, relative_change = 0.016891163138008352 Iter 10: T = 848.6712049184023 K, F = -1167.2509688957123, relative_change = 0.009504622072959466 Iter 15: T = 821.936529354912 K, F = -493.2784206777977, relative_change = 0.00465525670644252 Iter 20: T = 809.7830454718415 K, F = -207.32164501672696, relative_change = 0.002098108051641851 Iter 25: T = 804.5023031975152 K, F = -86.89578275032545, relative_change = 0.0009070221500132571 Iter 30: T = 802.2567307107337 K, F = -36.3752811856028, relative_change = 0.00038475857950842347 Iter 35: T = 801.3109189965284 K, F = -15.218670961695882, relative_change = 0.0001618806238197922 Iter 40: T = 800.9141847965798 K, F = -6.365701193175049, relative_change = 6.78715678705211e-5 Iter 45: T = 800.7480575424005 K, F = -2.6624000221880175, relative_change = 2.8414747151760446e-5 Iter 50: T = 800.6785446314559 K, F = -1.1134803536818743, relative_change = 1.1888650012126674e-5 Iter 55: T = 800.6494671104176 K, F = -0.46567653249992036, relative_change = 4.972896590140868e-6 Iter 60: T = 800.6373054255373 K, F = -0.19475249319455756, relative_change = 2.0798859009691064e-6 Iter 65: T = 800.6322190680518 K, F = -0.08144799442947215, relative_change = 8.698613126661333e-7 Iter 70: T = 800.6300918583898 K, F = -0.03406255473099784, relative_change = 3.6379131988747684e-7 Iter 75: T = 800.6292022279204 K, F = -0.01424537256181524, relative_change = 1.521427369403288e-7 Iter 80: T = 800.6288301727869 K, F = -0.005957585869914572, relative_change = 6.362806036537004e-8 Iter 85: T = 800.6286745747036 K, F = -0.002491533721651007, relative_change = 2.661004108012972e-8 Iter 90: T = 800.628609501695 K, F = -0.001041989184712433, relative_change = 1.112864156696412e-8 Iter 95: T = 800.6285822873801 K, F = -0.000435772325603101, relative_change = 4.654131609468767e-9 Iter 100: T = 800.6285709060277 K, F = -0.00018224518984089055, relative_change = 1.9464135427763124e-9 Iter 105: T = 800.62856614621 K, F = -7.621711618011062e-5, relative_change = 8.14013425830651e-10 Iter 110: T = 800.6285641555975 K, F = -3.18749090846282e-5, relative_change = 3.4043014941497876e-10 Iter 115: T = 800.6285633230995 K, F = -1.3330468713657062e-5, relative_change = 1.4237196618758634e-10 Iter 120: T = 800.6285629749389 K, F = -5.574963086507623e-6, relative_change = 5.954167664633693e-11 Iter 125: T = 800.6285628293339 K, F = -2.331514636355614e-6, relative_change = 2.490102419337409e-11 Iter 130: T = 800.6285627684402 K, F = -9.7506873664166e-7, relative_change = 1.0413921418937167e-11 Iter 135: T = 800.6285627429738 K, F = -4.077866713192435e-7, relative_change = 4.355239986545028e-12 Iter 140: T = 800.6285627323234 K, F = -1.705428960274702e-7, relative_change = 1.821430891412322e-12 Iter 145: T = 800.6285627278692 K, F = -7.132325885450541e-8, relative_change = 7.617461060137587e-13 Iter 150: T = 800.6285627260064 K, F = -2.982643587667866e-8, relative_change = 3.185520649291745e-13 Converged in 153 iterations to T = 800.6285627254609 K Iter 1: T = 980.78012042601 K, F = -4379.267843759032, relative_change = 0.019219879573990097 Iter 2: T = 963.5749431434296 K, F = -3698.5251643462207, relative_change = 0.01754233892414863 Iter 3: T = 948.259155291298 K, F = -3122.149037906911, relative_change = 0.015894755214542443 Iter 5: T = 922.7590643866378 K, F = -2221.8394217760965, relative_change = 0.01277498418011164 Iter 10: T = 882.5046152712566 K, F = -942.5965284685028, relative_change = 0.0066406365338450525 Iter 15: T = 863.5676217064872 K, F = -397.0397766843934, relative_change = 0.0030944654761947674 Iter 20: T = 855.1918310312836 K, F = -166.59074141523124, relative_change = 0.0013594150796984827 Iter 25: T = 851.6006948490649 K, F = -69.7694334556801, relative_change = 0.0005808037206939991 Iter 30: T = 850.0826914517326 K, F = -29.19607565186893, relative_change = 0.00024511559290117733 Iter 35: T = 849.4449653978429 K, F = -12.213260942023005, relative_change = 0.0001029031574177007 Iter 40: T = 849.1777531225385 K, F = -5.108277881309478, relative_change = 4.3104433397684155e-5 Iter 45: T = 849.0659126709171 K, F = -2.136438492646708, relative_change = 1.8038903710865444e-5 Iter 50: T = 849.0191240547373 K, F = -0.8935008354176623, relative_change = 7.546205960466882e-6 Iter 55: T = 848.999553765951 K, F = -0.3736756490812726, relative_change = 3.1562845712255206e-6 Iter 60: T = 848.9913687597367 K, F = -0.15627613139585894, relative_change = 1.3200608216360177e-6 Iter 65: T = 848.9879456088254 K, F = -0.06535663407924686, relative_change = 5.52076555771322e-7 Iter 70: T = 848.9865139916175 K, F = -0.02733294055865465, relative_change = 2.3088699486419704e-7 Iter 75: T = 848.9859152696479 K, F = -0.011430964902458873, relative_change = 9.656004596733734e-8 Iter 80: T = 848.9856648765228 K, F = -0.004780566513049367, relative_change = 4.038262512511052e-8 Iter 85: T = 848.9855601590496 K, F = -0.0019992900928527124, relative_change = 1.6888506734634502e-8 Iter 90: T = 848.9855163649379 K, F = -0.0008361270075845084, relative_change = 7.062977062353935e-9 Iter 95: T = 848.985498049715 K, F = -0.0003496783021821326, relative_change = 2.9538216787604972e-9 Iter 100: T = 848.9854903900697 K, F = -0.000146239642178303, relative_change = 1.23532355659702e-9 Iter 105: T = 848.9854871867144 K, F = -6.115916477411609e-5, relative_change = 5.166270730643657e-10 Iter 110: T = 848.9854858470331 K, F = -2.5577495053052957e-5, relative_change = 2.160596298798661e-10 Iter 115: T = 848.9854852867622 K, F = -1.0696813137700545e-5, relative_change = 9.035871143338329e-11 Iter 120: T = 848.9854850524503 K, F = -4.473533828042164e-6, relative_change = 3.7789082372772393e-11 Iter 125: T = 848.9854849544582 K, F = -1.8708839635284136e-6, relative_change = 1.580383449955244e-11 Iter 130: T = 848.9854849134769 K, F = -7.824276755385995e-7, relative_change = 6.609366340178006e-12 Iter 135: T = 848.9854848963379 K, F = -3.272203255022532e-7, relative_change = 2.764113633781948e-12 Iter 140: T = 848.9854848891702 K, F = -1.368480018193452e-7, relative_change = 1.155990010764994e-12 Iter 145: T = 848.9854848861726 K, F = -5.723012463931809e-8, relative_change = 4.834374745663788e-13 Converged in 150 iterations to T = 848.985484884919 K Iter 1: T = 967.3520942939496 K, F = -7438.85637129941, relative_change = 0.032647905706050424 Iter 2: T = 936.7803802776862 K, F = -6305.660313710074, relative_change = 0.031603502175262345 Iter 3: T = 908.2534251651388 K, F = -5343.575752312195, relative_change = 0.030452127001305482 Iter 5: T = 857.1948433842184 K, F = -3833.6671761031375, relative_change = 0.027834402697656538 Iter 10: T = 762.2989395928968 K, F = -1659.8638542086217, relative_change = 0.01990407160089935 Iter 15: T = 706.7983039307474 K, F = -710.6024878429718, relative_change = 0.011909824920130532 Iter 20: T = 678.2820911336067 K, F = -301.15265116974876, relative_change = 0.006092422030842552 Iter 25: T = 664.992604606158 K, F = -126.77351090488158, relative_change = 0.002812690103390116 Iter 30: T = 659.1440612688726 K, F = -53.17577797154697, relative_change = 0.0012299992553342404 Iter 35: T = 656.6423742708358 K, F = -22.267369528125872, relative_change = 0.0005244342136298611 Iter 40: T = 655.5859837224273 K, F = -9.317568555500982, relative_change = 0.000221130253370323 Iter 45: T = 655.1423813827727 K, F = -3.89761463130087, relative_change = 9.279894476627806e-5 Iter 50: T = 654.9565431849535 K, F = -1.63018618583245, relative_change = 3.8865815024766726e-5 Iter 55: T = 654.8787675710971 K, F = -0.6817908592425737, relative_change = 1.6263996257836864e-5 Iter 60: T = 654.8462310979614 K, F = -0.2851378966885701, relative_change = 6.80352147195066e-6 Iter 65: T = 654.8326222444232 K, F = -0.11924891632796075, relative_change = 2.845615572867844e-6 Iter 70: T = 654.8269305598686 K, F = -0.04987146832831191, relative_change = 1.190123181956165e-6 Iter 75: T = 654.8245501770308 K, F = -0.02085686942215048, relative_change = 4.977329570557615e-7 Iter 80: T = 654.823554663338 K, F = -0.008722596382376213, relative_change = 2.0815948103924915e-7 Iter 85: T = 654.8231383260204 K, F = -0.003647894765390236, relative_change = 8.705506325777057e-8 Iter 90: T = 654.8229642085016 K, F = -0.0015255932932179972, relative_change = 3.640751647766622e-8 Iter 95: T = 654.8228913904269 K, F = -0.0006380213581422822, relative_change = 1.5226066810320595e-8 Iter 100: T = 654.8228609370299 K, F = -0.00026682815502931945, relative_change = 6.367724470456662e-9 Iter 105: T = 654.8228482010541 K, F = -0.00011159072149408145, relative_change = 2.6630586778038868e-9 Iter 110: T = 654.8228428747166 K, F = -4.666857200719132e-5, relative_change = 1.113722976367809e-9 Iter 115: T = 654.8228406471786 K, F = -1.9517354297671208e-5, relative_change = 4.657722603538234e-10 Iter 120: T = 654.8228397155957 K, F = -8.162390214228044e-6, relative_change = 1.947915126065691e-10 Iter 125: T = 654.8228393259965 K, F = -3.413608625879583e-6, relative_change = 8.146412657488495e-11 Iter 130: T = 654.8228391630615 K, F = -1.4276119206790838e-6, relative_change = 3.406927128730911e-11 Iter 135: T = 654.8228390949203 K, F = -5.97045286210296e-7, relative_change = 1.4248198366899028e-11 Iter 140: T = 654.8228390664227 K, F = -2.496920580852269e-7, relative_change = 5.958780777848095e-12 Iter 145: T = 654.8228390545046 K, F = -1.0442355435902329e-7, relative_change = 2.4920178610993527e-12 Iter 150: T = 654.8228390495204 K, F = -4.367193590093521e-8, relative_change = 1.0422097290778182e-12 Iter 155: T = 654.8228390474359 K, F = -1.8263062007140007e-8, relative_change = 4.3583918400268736e-13 Converged in 159 iterations to T = 654.8228390466835 K Iter 1: T = 973.5039365484864 K, F = -6037.153261690475, relative_change = 0.026496063451513598 Iter 2: T = 949.2009221829592 K, F = -5108.920439623527, relative_change = 0.02496447467042868 Iter 3: T = 927.0236200173133 K, F = -4321.592610215523, relative_change = 0.02336418101516673 Iter 5: T = 888.7242806883046 K, F = -3088.11858949915, relative_change = 0.020035389239887992 Iter 10: T = 823.5056601179077 K, F = -1322.2850499217257, relative_change = 0.012021570804597025 Iter 15: T = 789.9344284308463 K, F = -560.4585781975014, relative_change = 0.006162300502076921 Iter 20: T = 774.2702860051555 K, F = -235.94963474288622, relative_change = 0.002848326658628779 Iter 25: T = 767.3722974475106 K, F = -98.97404071079156, relative_change = 0.001246303351469561 Iter 30: T = 764.4208381697524 K, F = -41.4461169804571, relative_change = 0.000531523362628838 Iter 35: T = 763.174359023497 K, F = -17.3428615432871, relative_change = 0.00022414442190323486 Iter 40: T = 762.6509049925642 K, F = -7.2546827413023935, relative_change = 9.406830520011012e-5 Iter 45: T = 762.4316093910135 K, F = -3.0342915781996296, relative_change = 3.939822752913238e-5 Iter 50: T = 762.3398305283512 K, F = -1.2690289175513705, relative_change = 1.6486929636322388e-5 Iter 55: T = 762.3014358092138 K, F = -0.5307321381294692, relative_change = 6.896802529705278e-6 Iter 60: T = 762.2853766312089 K, F = -0.22196010849969994, relative_change = 2.8846351650968932e-6 Iter 65: T = 762.2786601329136 K, F = -0.09282664624921733, relative_change = 1.2064431004293367e-6 Iter 70: T = 762.2758511504479 K, F = -0.03882126068219516, relative_change = 5.045583970468898e-7 Iter 75: T = 762.2746763894737 K, F = -0.016235523345129232, relative_change = 2.1101400620234813e-7 Iter 80: T = 762.2741850884878 K, F = -0.0067898912433143055, relative_change = 8.824886757155617e-8 Iter 85: T = 762.2739796202127 K, F = -0.0028396138641019197, relative_change = 3.690678104698207e-8 Iter 90: T = 762.2738936908677 K, F = -0.0011875604756061975, relative_change = 1.5434865469292634e-8 Iter 95: T = 762.2738577541792 K, F = -0.000496651981169105, relative_change = 6.455046620817848e-9 Iter 100: T = 762.273842725025 K, F = -0.0002077057901721524, relative_change = 2.69957784458886e-9 Iter 105: T = 762.273836439653 K, F = -8.686504193056166e-5, relative_change = 1.128995738042802e-9 Iter 110: T = 762.2738338110354 K, F = -3.6327998409024786e-5, relative_change = 4.721595147745561e-10 Iter 115: T = 762.2738327117161 K, F = -1.519280493189612e-5, relative_change = 1.9746277714497475e-10 Iter 120: T = 762.2738322519675 K, F = -6.353812306514328e-6, relative_change = 8.258128980982718e-11 Iter 125: T = 762.2738320596953 K, F = -2.6572420070980485e-6, relative_change = 3.453650532319971e-11 Iter 130: T = 762.2738319792846 K, F = -1.1112908182564496e-6, relative_change = 1.4443585182340165e-11 Iter 135: T = 762.273831945656 K, F = -4.647552669378996e-7, relative_change = 6.04048209351776e-12 Iter 140: T = 762.273831931592 K, F = -1.9436423759344734e-7, relative_change = 2.526176205902925e-12 Iter 145: T = 762.2738319257104 K, F = -8.12865368349236e-8, relative_change = 1.0564912442879469e-12 Iter 150: T = 762.2738319232506 K, F = -3.3995419035370844e-8, relative_change = 4.418426956761452e-13 Converged in 154 iterations to T = 762.2738319223627 K Iter 1: T = 970.0386209836698 K, F = -6826.7287095000165, relative_change = 0.029961379016330128 Iter 2: T = 942.2353016798451 K, F = -5782.561432490742, relative_change = 0.028662074583825085 Iter 3: T = 916.5470845324946 K, F = -4896.369104477815, relative_change = 0.02726305955800286 Iter 5: T = 871.3092784756842 K, F = -3506.4945086995217, relative_change = 0.02420704686569501 Iter 10: T = 790.6578764100893 K, F = -1510.122990383388, relative_change = 0.015904193348958304 Iter 15: T = 746.4310811232375 K, F = -643.1425619731829, relative_change = 0.00877653092372435 Iter 20: T = 724.8594599306417 K, F = -271.56216474717166, relative_change = 0.004243707309138288 Iter 25: T = 715.1233161086413 K, F = -114.08444345940974, relative_change = 0.0018996530197350713 Iter 30: T = 710.9079902419413 K, F = -47.80671483124952, relative_change = 0.000818625847438292 Iter 35: T = 709.1183651998724 K, F = -20.01042380555357, relative_change = 0.00034677741409063097 Iter 40: T = 708.3651203223175 K, F = -8.371618828819976, relative_change = 0.00014581394438664634 Iter 45: T = 708.0492547020742 K, F = -3.501641696255302, relative_change = 6.111996602043871e-5 Iter 50: T = 707.9170066096393 K, F = -1.4645213776251518, relative_change = 2.5585463020671693e-5 Iter 55: T = 707.8616727092488 K, F = -0.6124966092724727, relative_change = 1.0704413324747298e-5 Iter 60: T = 707.8385268304559 K, F = -0.2561562448938197, relative_change = 4.477460253407732e-6 Iter 65: T = 707.8288461460505 K, F = -0.1071280989611445, relative_change = 1.8726579916248571e-6 Iter 70: T = 707.8247974280215 K, F = -0.04480233749729923, relative_change = 7.831907879136869e-7 Iter 75: T = 707.8231041812677 K, F = -0.01873688783030536, relative_change = 3.2754373764805393e-7 Iter 80: T = 707.8223960409647 K, F = -0.007835992919678625, relative_change = 1.3698340182674246e-7 Iter 85: T = 707.822099887483 K, F = -0.003277106286465936, relative_change = 5.7288216837791486e-8 Iter 90: T = 707.8219760324288 K, F = -0.0013705250669386881, relative_change = 2.3958637823799872e-8 Iter 95: T = 707.8219242347432 K, F = -0.0005731699650459721, relative_change = 1.0019792209451829e-8 Iter 100: T = 707.8219025723284 K, F = -0.00023970652705052053, relative_change = 4.190397419154858e-9 Iter 105: T = 707.8218935128473 K, F = -0.00010024813435915991, relative_change = 1.7524743871660403e-9 Iter 110: T = 707.8218897240639 K, F = -4.192496774946264e-5, relative_change = 7.329057493769727e-10 Iter 115: T = 707.8218881395493 K, F = -1.7533522417401137e-5, relative_change = 3.0650994415302146e-10 Iter 120: T = 707.8218874768864 K, F = -7.33272810171659e-6, relative_change = 1.281861132897078e-10 Iter 125: T = 707.821887199753 K, F = -3.0666354079444957e-6, relative_change = 5.360898005501727e-11 Iter 130: T = 707.8218870838524 K, F = -1.2825044075626124e-6, relative_change = 2.241993067743922e-11 Iter 135: T = 707.8218870353815 K, F = -5.363595447782643e-7, relative_change = 9.376298237357223e-12 Iter 140: T = 707.8218870151103 K, F = -2.2431247304055546e-7, relative_change = 3.9212887443695426e-12 Iter 145: T = 707.8218870066327 K, F = -9.381140797515286e-8, relative_change = 1.6399516853478502e-12 Iter 150: T = 707.8218870030871 K, F = -3.923275782025115e-8, relative_change = 6.858422520077789e-13 Iter 155: T = 707.8218870016043 K, F = -1.6407375902360855e-8, relative_change = 2.8682336556817486e-13 Converged in 157 iterations to T = 707.8218870012905 K Iter 1: T = 973.6052467450176 K, F = -6014.069637039983, relative_change = 0.02639475325498248 Iter 2: T = 949.4033840604703 K, F = -5089.244896066486, relative_change = 0.02485798301258085 Iter 3: T = 927.326264754657 K, F = -4304.823461039767, relative_change = 0.02325367665258625 Iter 5: T = 889.2208670943533 K, F = -3075.9462293908673, relative_change = 0.019921164257934675 Iter 10: T = 824.4122732785784 K, F = -1316.8714437102046, relative_change = 0.011924468274762633 Iter 15: T = 791.1053267303037 K, F = -558.0989989688893, relative_change = 0.006101603217595162 Iter 20: T = 775.5806789848841 K, F = -234.94037136962282, relative_change = 0.0028173766461084084 Iter 25: T = 768.7478820548215 K, F = -98.54741338540504, relative_change = 0.0012321441070867341 Iter 30: T = 765.8250681970351 K, F = -41.26684828525019, relative_change = 0.0005253669294532016 Iter 35: T = 764.5908261821887 K, F = -17.267736643408973, relative_change = 0.0002215268459577615 Iter 40: T = 764.0725360900276 K, F = -7.22323759963309, relative_change = 9.296596571721995e-5 Iter 45: T = 763.8554082864441 K, F = -3.0211360961191756, relative_change = 3.8935869832244575e-5 Iter 50: T = 763.7645374598111 K, F = -1.2635263055861796, relative_change = 1.6293329923437164e-5 Iter 55: T = 763.726522744027 K, F = -0.5284307343996678, relative_change = 6.815795450069119e-6 Iter 60: T = 763.7106225320471 K, F = -0.22099760848621464, relative_change = 2.850749797670961e-6 Iter 65: T = 763.7039725229549 K, F = -0.09242411278938989, relative_change = 1.192270568627936e-6 Iter 70: T = 763.7011913484173 K, F = -0.038652915602831794, relative_change = 4.986310534746789e-7 Iter 75: T = 763.7000282172867 K, F = -0.016165119287870122, relative_change = 2.085350816097666e-7 Iter 80: T = 763.6995417800814 K, F = -0.006760447400619096, relative_change = 8.721214490877475e-8 Iter 85: T = 763.699338345905 K, F = -0.002827300097170249, relative_change = 3.647321011343928e-8 Iter 90: T = 763.6992532672455 K, F = -0.0011824107122285765, relative_change = 1.5253540742097186e-8 Iter 95: T = 763.6992176863239 K, F = -0.0004944982895310757, relative_change = 6.379214431541869e-9 Iter 100: T = 763.6992028059557 K, F = -0.0002068050904024954, relative_change = 2.6678639087921047e-9 Iter 105: T = 763.6991965828078 K, F = -8.648835832014701e-5, relative_change = 1.1157325876072516e-9 Iter 110: T = 763.699193980213 K, F = -3.617046413562086e-5, relative_change = 4.666126977508041e-10 Iter 115: T = 763.6991928917768 K, F = -1.5126921784958114e-5, relative_change = 1.951430262043604e-10 Iter 120: T = 763.6991924365797 K, F = -6.3262575943356936e-6, relative_change = 8.16111217179695e-11 Iter 125: T = 763.6991922462108 K, F = -2.6457172226379555e-6, relative_change = 3.4130755399151454e-11 Iter 130: T = 763.6991921665962 K, F = -1.1064681219030703e-6, relative_change = 1.4273858340281294e-11 Iter 135: T = 763.6991921333005 K, F = -4.627365997045274e-7, relative_change = 5.9694776050634055e-12 Iter 140: T = 763.6991921193759 K, F = -1.9352119062787665e-7, relative_change = 2.4964967421990146e-12 Iter 145: T = 763.6991921135524 K, F = -8.093351178128927e-8, relative_change = 1.0440729919472939e-12 Iter 150: T = 763.699192111117 K, F = -3.384775804082807e-8, relative_change = 4.366489137952127e-13 Converged in 154 iterations to T = 763.699192110238 K Iter 1: T = 964.3386071509358 K, F = -8125.482283401419, relative_change = 0.03566139284906425 Iter 2: T = 930.6035900803104 K, F = -6893.300969489032, relative_change = 0.03498254328974028 Iter 3: T = 898.7640235884905 K, F = -5846.901730385291, relative_change = 0.03421388745026449 Iter 5: T = 840.658326586373 K, F = -4203.789289545434, relative_change = 0.03238177425985863 Iter 10: T = 726.5810697631796 K, F = -1833.2179666708896, relative_change = 0.025979776412296443 Iter 15: T = 653.0180596214798 K, F = -791.5323405609607, relative_change = 0.017777096675320347 Iter 20: T = 611.4411046568832 K, F = -337.9130297091794, relative_change = 0.010182079063672035 Iter 25: T = 590.6805456272722 K, F = -142.914277268486, relative_change = 0.005047648191734283 Iter 30: T = 581.1783568178853 K, F = -60.09176926484944, relative_change = 0.0022898290158935406 Iter 35: T = 577.0354119068892 K, F = -25.19170590490806, relative_change = 0.0009929492525786292 Iter 40: T = 575.2709144821068 K, F = -10.54640307128934, relative_change = 0.0004217796641967597 Iter 45: T = 574.5272212318381 K, F = -4.412568800544871, relative_change = 0.00017755945546849342 Iter 50: T = 574.2151783729586 K, F = -1.845729653350756, relative_change = 7.446343312576355e-5 Iter 55: T = 574.0844986154917 K, F = -0.7719659086389064, relative_change = 3.117766445152576e-5 Iter 60: T = 574.0298152716821 K, F = -0.32285581833099986, relative_change = 1.3045208130508358e-5 Iter 65: T = 574.0069405276647 K, F = -0.13502398845201125, relative_change = 5.456770887343576e-6 Iter 70: T = 573.9973730712628 K, F = -0.05646896452642697, relative_change = 2.282280785170641e-6 Iter 75: T = 573.9933716778789 K, F = -0.023616051320037246, relative_change = 9.545110211313369e-7 Iter 80: T = 573.9916982178438 K, F = -0.009876524486036431, relative_change = 3.991938448134256e-7 Iter 85: T = 573.9909983517059 K, F = -0.004130482201506358, relative_change = 1.6694867155655914e-7 Iter 90: T = 573.9907056584254 K, F = -0.0017274172831606704, relative_change = 6.982010978527864e-8 Iter 95: T = 573.9905832504422 K, F = -0.0007224265903036375, relative_change = 2.9199635519514588e-8 Iter 100: T = 573.990532057934 K, F = -0.0003021274368345539, relative_change = 1.221164184754711e-8 Iter 105: T = 573.990510648611 K, F = -0.0001263533041990228, relative_change = 5.107055444209492e-9 Iter 110: T = 573.9905016949755 K, F = -5.284246085784927e-5, relative_change = 2.1358317391229854e-9 Iter 115: T = 573.9904979504581 K, F = -2.20993491422683e-5, relative_change = 8.932304062251322e-10 Iter 120: T = 573.9904963844563 K, F = -9.242211848170534e-6, relative_change = 3.735596328038593e-10 Iter 125: T = 573.9904957295354 K, F = -3.865203025199548e-6, relative_change = 1.562270865858955e-10 Iter 130: T = 573.9904954556398 K, F = -1.6164740266888522e-6, relative_change = 6.533603193898089e-11 Iter 135: T = 573.9904953410934 K, F = -6.760290956475679e-7, relative_change = 2.7324323124046354e-11 Iter 140: T = 573.9904952931886 K, F = -2.8272287111441585e-7, relative_change = 1.1427335210414248e-11 Iter 145: T = 573.9904952731542 K, F = -1.1823786122411306e-7, relative_change = 4.779039168883176e-12 Iter 150: T = 573.9904952647757 K, F = -4.944884657298587e-8, relative_change = 1.998665843565031e-12 Iter 155: T = 573.9904952612718 K, F = -2.068069682170659e-8, relative_change = 8.358901212966004e-13 Iter 160: T = 573.9904952598064 K, F = -8.64945431944264e-9, relative_change = 3.496010546766271e-13 Converged in 163 iterations to T = 573.9904952593773 K Iter 1: T = 963.5744422071623 K, F = -8299.597992748715, relative_change = 0.036425557792837675 Iter 2: T = 929.0273934186428 K, F = -7042.462848237632, relative_change = 0.035853014853098504 Iter 3: T = 896.32536381351 K, F = -5974.823428666342, relative_change = 0.03520028562860301 Iter 5: T = 836.3376345972939 K, F = -4298.197356871411, relative_change = 0.03362507098349824 Iter 10: T = 716.7173171413705 K, F = -1878.2617723279523, relative_change = 0.0278934722193998 Iter 15: T = 637.1534542092116 K, F = -813.3026809875937, relative_change = 0.019974299830955507 Iter 20: T = 590.5682036212414 K, F = -348.2143635331736, relative_change = 0.011969217016813803 Iter 25: T = 566.6095843988069 K, F = -147.5833052447579, relative_change = 0.006129445552137105 Iter 30: T = 555.4370499700271 K, F = -62.12935180910166, relative_change = 0.0028315435156012147 Iter 35: T = 550.5185152792886 K, F = -26.060987542153775, relative_change = 0.0012386192361519993 Iter 40: T = 548.4143081093467 K, F = -10.913143000764462, relative_change = 0.0005281811914277351 Iter 45: T = 547.5257012207805 K, F = -4.566518428225701, relative_change = 0.00022272320515918025 Iter 50: T = 547.1525441654546 K, F = -1.9102149072128731, relative_change = 9.346975275602733e-5 Iter 55: T = 546.9962156670092 K, F = -0.7989522836453415, relative_change = 3.914716855281381e-5 Iter 60: T = 546.9307898942016 K, F = -0.3341449748731442, relative_change = 1.63818044212112e-5 Iter 65: T = 546.9034197662431 K, F = -0.13974579684059313, relative_change = 6.8528152547292135e-6 Iter 70: T = 546.8919718014229 K, F = -0.05844377711765408, relative_change = 2.8662351968153776e-6 Iter 75: T = 546.8871838720771 K, F = -0.024441958312160422, relative_change = 1.1987473204318568e-6 Iter 80: T = 546.8851814584613 K, F = -0.010221931588194594, relative_change = 5.013398086287913e-7 Iter 85: T = 546.8843440174104 K, F = -0.004274936090476439, relative_change = 2.0966793286733105e-7 Iter 90: T = 546.8839937882041 K, F = -0.0017878297151689981, relative_change = 8.768591989333926e-8 Iter 95: T = 546.88384731793 K, F = -0.0007476918058832438, relative_change = 3.667134897502273e-8 Iter 100: T = 546.8837860622706 K, F = -0.00031269365415972916, relative_change = 1.5336404837582517e-8 Iter 105: T = 546.883760444415 K, F = -0.0001307722226546737, relative_change = 6.413869193490076e-9 Iter 110: T = 546.8837497307205 K, F = -5.4690505032539694e-5, relative_change = 2.682356933299267e-9 Iter 115: T = 546.8837452501255 K, F = -2.2872223017222915e-5, relative_change = 1.1217937802321844e-9 Iter 120: T = 546.883743376287 K, F = -9.565436922071013e-6, relative_change = 4.691475687056584e-10 Iter 125: T = 546.8837425926255 K, F = -4.000380204455256e-6, relative_change = 1.9620312954984313e-10 Iter 130: T = 546.8837422648887 K, F = -1.6730067539105775e-6, relative_change = 8.20544910821801e-11 Iter 135: T = 546.8837421278254 K, F = -6.996717551721598e-7, relative_change = 3.431618535282895e-11 Iter 140: T = 546.8837420705037 K, F = -2.9261043024697564e-7, relative_change = 1.4351406486411904e-11 Iter 145: T = 546.8837420465312 K, F = -1.2237331190045886e-7, relative_change = 6.001936229874409e-12 Iter 150: T = 546.8837420365055 K, F = -5.117761595063719e-8, relative_change = 2.51006353092242e-12 Iter 155: T = 546.8837420323126 K, F = -2.14025608347157e-8, relative_change = 1.049712582808586e-12 Iter 160: T = 546.8837420305591 K, F = -8.9500911404361e-9, relative_change = 4.3896725069944853e-13 Converged in 164 iterations to T = 546.8837420299263 K Iter 1: T = 969.3536863347381 K, F = -6982.791720800185, relative_change = 0.03064631366526195 Iter 2: T = 940.8491400140315 K, F = -5915.856029241527, relative_change = 0.02940572334179308 Iter 3: T = 914.4471190480847 K, F = -5010.251228250722, relative_change = 0.02806190689142052 Iter 5: T = 867.7639207264044 K, F = -3589.66680903412, relative_change = 0.02509690810012282 Iter 10: T = 783.6949940039062 K, F = -1547.9239582926095, relative_change = 0.016826156794194275 Iter 15: T = 736.9022873762736 K, F = -660.0153011938542, relative_change = 0.009455727647779896 Iter 20: T = 713.818154723857 K, F = -278.90546830180085, relative_change = 0.004627268104911868 Iter 25: T = 703.3293444651986 K, F = -117.21849938926039, relative_change = 0.002084521462541959 Iter 30: T = 698.7730290272619 K, F = -49.12967559623457, relative_change = 0.0009009515936358101 Iter 35: T = 696.8357263525035 K, F = -20.56594985734679, relative_change = 0.00038214670031573805 Iter 40: T = 696.0197940960062 K, F = -8.604347669009977, relative_change = 0.00016077511318124732 Iter 45: T = 695.6775467080649 K, F = -3.5990424502080876, relative_change = 6.740689221382902e-5 Iter 50: T = 695.5342363311322 K, F = -1.505267958966939, relative_change = 2.8220003065412745e-5 Iter 55: T = 695.4742709423264 K, F = -0.6295394922385666, relative_change = 1.1807133626740619e-5 Iter 60: T = 695.4491872249745 K, F = -0.26328416291326534, relative_change = 4.938792844643199e-6 Iter 65: T = 695.4386959567505 K, F = -0.11010914602811167, relative_change = 2.0656210992545175e-6 Iter 70: T = 695.4343082154936 K, F = -0.046049058635876494, relative_change = 8.63895215967032e-7 Iter 75: T = 695.4324731803853 K, F = -0.01925828353703607, relative_change = 3.612961594197504e-7 Iter 80: T = 695.4317057416611 K, F = -0.00805404718816416, relative_change = 1.5109921920740475e-7 Iter 85: T = 695.4313847887247 K, F = -0.0033682992469434847, relative_change = 6.319164672172902e-8 Iter 90: T = 695.431250562217 K, F = -0.0014086630624278174, relative_change = 2.6427527326344204e-8 Iter 95: T = 695.4311944270611 K, F = -0.0005891197322449582, relative_change = 1.1052312097235983e-8 Iter 100: T = 695.4311709506637 K, F = -0.00024637691144802076, relative_change = 4.6222097266395806e-9 Iter 105: T = 695.4311611325531 K, F = -0.00010303776772813134, relative_change = 1.9330634571972412e-9 Iter 110: T = 695.4311570265019 K, F = -4.3091625807623046e-5, relative_change = 8.08430261429415e-10 Iter 115: T = 695.4311553093022 K, F = -1.802143342788387e-5, relative_change = 3.380952107436963e-10 Iter 120: T = 695.4311545911487 K, F = -7.53677929643537e-6, relative_change = 1.4139546708547565e-10 Iter 125: T = 695.4311542908083 K, F = -3.1519711036764875e-6, relative_change = 5.913327295804552e-11 Iter 130: T = 695.4311541652023 K, F = -1.3181910711868028e-6, relative_change = 2.47302243346895e-11 Iter 135: T = 695.4311541126725 K, F = -5.512846854571762e-7, relative_change = 1.0342502120169284e-11 Iter 140: T = 695.4311540907039 K, F = -2.3055432041285684e-7, relative_change = 4.325366930999257e-12 Iter 145: T = 695.4311540815164 K, F = -9.642080522898056e-8, relative_change = 1.8089245158241179e-12 Iter 150: T = 695.431154077674 K, F = -4.032507994189416e-8, relative_change = 7.565278628211875e-13 Iter 155: T = 695.4311540760672 K, F = -1.6864886709377913e-8, relative_change = 3.163975550077527e-13 Converged in 158 iterations to T = 695.4311540755966 K Iter 1: T = 966.4720653274628 K, F = -7639.371808437089, relative_change = 0.033527934672537237 Iter 2: T = 934.982956409093 K, F = -6477.173270687698, relative_change = 0.03258149929837914 Iter 3: T = 905.5029590713922 K, F = -5490.376002964444, relative_change = 0.03152998365972582 Iter 5: T = 852.4457659515579 K, F = -3941.4027418534547, relative_change = 0.029106739144151045 Iter 10: T = 752.3433287194063 K, F = -1709.841433109241, relative_change = 0.021472253232794867 Iter 15: T = 692.3052508761224 K, F = -733.5544865959706, relative_change = 0.013282563999183723 Iter 20: T = 660.7557649564758 K, F = -311.3960338888384, relative_change = 0.006970295086124661 Iter 25: T = 645.8303155421189 K, F = -131.21451218326774, relative_change = 0.003266398340680992 Iter 30: T = 639.208718181577 K, F = -55.06542276134428, relative_change = 0.0014389554837122257 Iter 35: T = 636.3656065850162 K, F = -23.06373834946191, relative_change = 0.0006155625190875316 Iter 40: T = 635.1630347014429 K, F = -9.651720722793744, relative_change = 0.00025992645630927596 Iter 45: T = 634.6576864301667 K, F = -4.037556313575844, relative_change = 0.00010914621601998037 Iter 50: T = 634.4459171237719 K, F = -1.6887458161299949, relative_change = 4.572399618973554e-5 Iter 55: T = 634.3572777836447 K, F = -0.7062872179193185, relative_change = 1.9135953011030333e-5 Iter 60: T = 634.3201946353382 K, F = -0.295383620742534, relative_change = 8.00527078402814e-6 Iter 65: T = 634.3046837240988 K, F = -0.12353398496525958, relative_change = 3.3483174645682634e-6 Iter 70: T = 634.298196474144 K, F = -0.05166356747939116, relative_change = 1.4003794063647402e-6 Iter 75: T = 634.295483358485 K, F = -0.021606352333405354, relative_change = 5.856681701449183e-7 Iter 80: T = 634.294348688827 K, F = -0.009036040073476692, relative_change = 2.4493565806835497e-7 Iter 85: T = 634.2938741542762 K, F = -0.003778980832540191, relative_change = 1.0243540825352758e-7 Iter 90: T = 634.293675697884 K, F = -0.0015804150830068253, relative_change = 4.283977944470678e-8 Iter 95: T = 634.293592700985 K, F = -0.0006609484907737495, relative_change = 1.7916119323935e-8 Iter 100: T = 634.2935579906791 K, F = -0.0002764165569181798, relative_change = 7.492737144027147e-9 Iter 105: T = 634.2935434744128 K, F = -0.00011560070712129944, relative_change = 3.1335525489396336e-9 Iter 110: T = 634.2935374035364 K, F = -4.834559768879254e-5, relative_change = 1.3104891963334604e-9 Iter 115: T = 634.2935348646233 K, F = -2.021870540563908e-5, relative_change = 5.480622180626116e-10 Iter 120: T = 634.2935338028196 K, F = -8.455704991527924e-6, relative_change = 2.2920619183569753e-10 Iter 125: T = 634.2935333587606 K, F = -3.5362770138269717e-6, relative_change = 9.585677257296704e-11 Iter 130: T = 634.2935331730497 K, F = -1.4789130980408238e-6, relative_change = 4.0088442205571126e-11 Iter 135: T = 634.2935330953832 K, F = -6.18498760429631e-7, relative_change = 1.6765455562603043e-11 Iter 140: T = 634.2935330629023 K, F = -2.5866386110795503e-7, relative_change = 7.011521683732489e-12 Iter 145: T = 634.2935330493183 K, F = -1.081764617327785e-7, relative_change = 2.932306059057908e-12 Iter 150: T = 634.2935330436372 K, F = -4.5240256874024e-8, relative_change = 1.226313721356416e-12 Iter 155: T = 634.2935330412615 K, F = -1.8920547906198237e-8, relative_change = 5.12873469705882e-13 Converged in 160 iterations to T = 634.2935330402678 K Iter 1: T = 966.4772706278998 K, F = -7638.185775780995, relative_change = 0.033522729372100206 Iter 2: T = 934.993603443625 K, F = -6476.158552654892, relative_change = 0.03257569333608901 Iter 3: T = 905.5192775993297 K, F = -5489.507241551403, relative_change = 0.03152355880910849 Iter 5: T = 852.47404588381 K, F = -3940.7646562345044, relative_change = 0.029099083570330957 Iter 10: T = 752.4032887847014 K, F = -1709.5443445990431, relative_change = 0.021462533383390162 Iter 15: T = 692.3935732165185 K, F = -733.4172630968146, relative_change = 0.013273778289595696 Iter 20: T = 660.8635172451023 K, F = -311.33444542815283, relative_change = 0.006964534910253752 Iter 25: T = 645.9487229822469 K, F = -131.1877096102012, relative_change = 0.0032633772507207346 Iter 30: T = 639.3322064070966 K, F = -55.05399558553102, relative_change = 0.0014375539540181636 Iter 35: T = 636.4913484543343 K, F = -23.058918056062286, relative_change = 0.0006149492847309444 Iter 40: T = 635.2897433120472 K, F = -9.649697336979962, relative_change = 0.0002596650121926501 Iter 45: T = 634.784803719068 K, F = -4.036708781411803, relative_change = 0.00010903598689208435 Iter 50: T = 634.5732061023923 K, F = -1.6883911343256321, relative_change = 4.5677739979881566e-5 Iter 55: T = 634.4846387013686 K, F = -0.7061388447658098, relative_change = 1.911658053643728e-5 Iter 60: T = 634.4475856627691 K, F = -0.29532156214112115, relative_change = 7.997164153285494e-6 Iter 65: T = 634.4320873479556 K, F = -0.1235080300609544, relative_change = 3.344926329354003e-6 Iter 70: T = 634.4256053667092 K, F = -0.05165271260803478, relative_change = 1.3989610451948668e-6 Iter 75: T = 634.4228944546151 K, F = -0.02160181265770522, relative_change = 5.850749686813562e-7 Iter 80: T = 634.4217607065367 K, F = -0.009034141520372074, relative_change = 2.446875696124914e-7 Iter 85: T = 634.4212865574054 K, F = -0.0037781868338577773, relative_change = 1.0233165390904595e-7 Iter 90: T = 634.421088262201 K, F = -0.0015800830226092577, relative_change = 4.279638798784449e-8 Iter 95: T = 634.4210053327128 K, F = -0.0006608096195193647, relative_change = 1.7897972485252636e-8 Iter 100: T = 634.420970650599 K, F = -0.0002763584808265773, relative_change = 7.48514795663357e-9 Iter 105: T = 634.4209561461228 K, F = -0.00011557641833193077, relative_change = 3.1303786411418354e-9 Iter 110: T = 634.4209500801772 K, F = -4.8335438863844615e-5, relative_change = 1.3091618039491948e-9 Iter 115: T = 634.4209475433263 K, F = -2.0214458259393275e-5, relative_change = 5.475071245154959e-10 Iter 120: T = 634.4209464823849 K, F = -8.453927584195498e-6, relative_change = 2.289740125578804e-10 Iter 125: T = 634.4209460386866 K, F = -3.535533991516626e-6, relative_change = 9.57596808353717e-11 Iter 130: T = 634.4209458531267 K, F = -1.4786030760327584e-6, relative_change = 4.0047856753748096e-11 Iter 135: T = 634.4209457755233 K, F = -6.183699189921121e-7, relative_change = 1.6748504282495074e-11 Iter 140: T = 634.4209457430685 K, F = -2.586091161771442e-7, relative_change = 7.004409104989684e-12 Iter 145: T = 634.4209457294955 K, F = -1.081531976754313e-7, relative_change = 2.929321494180393e-12 Iter 150: T = 634.4209457238193 K, F = -4.5230601819490346e-8, relative_change = 1.225067561181228e-12 Iter 155: T = 634.4209457214453 K, F = -1.8915652932882665e-8, relative_change = 5.123290841791203e-13 Converged in 160 iterations to T = 634.4209457204524 K Iter 1: T = 976.490789271921 K, F = -5356.59602742546, relative_change = 0.02350921072807897 Iter 2: T = 955.1421469053994 K, F = -4529.288657798187, relative_change = 0.021862615194188743 Iter 3: T = 935.8619838297438 K, F = -3828.0199710546735, relative_change = 0.020185647903950315 Iter 5: T = 903.0844002380969 K, F = -2730.5989365078867, relative_change = 0.016833913017470566 Iter 10: T = 849.1340419690144 K, F = -1164.3054409666386, relative_change = 0.00946162879933042 Iter 15: T = 822.5160597761112 K, F = -492.00907527182324, relative_change = 0.00463066420483224 Iter 20: T = 810.420807598387 K, F = -206.78257868734977, relative_change = 0.0020861738282033256 Iter 25: T = 805.1664932807457 K, F = -86.6687413327723, relative_change = 0.0009016905911835592 Iter 30: T = 802.9323763321858 K, F = -36.28003686381625, relative_change = 0.00038246478505746815 Iter 35: T = 801.9914292553702 K, F = -15.178786375046007, relative_change = 0.0001609097692613563 Iter 40: T = 801.5967426655398 K, F = -6.34901176141614, relative_change = 6.746349575631239e-5 Iter 45: T = 801.4314740671585 K, F = -2.6554186838891956, relative_change = 2.824372612973257e-5 Iter 50: T = 801.3623206636335 K, F = -1.1105603911047144, relative_change = 1.1817063798975067e-5 Iter 55: T = 801.3333935642332 K, F = -0.4644553196574378, relative_change = 4.942947319987968e-6 Iter 60: T = 801.3212947999638 K, F = -0.19424175871849325, relative_change = 2.0673588231727135e-6 Iter 65: T = 801.3162347588134 K, F = -0.0812343976538108, relative_change = 8.646220005766292e-7 Iter 70: T = 801.3141185553392 K, F = -0.03397322574454276, relative_change = 3.6160011780103616e-7 Iter 75: T = 801.3132335278556 K, F = -0.014208014065819174, relative_change = 1.5122633969555428e-7 Iter 80: T = 801.3128633977574 K, F = -0.005941962091398745, relative_change = 6.324481026915382e-8 Iter 85: T = 801.3127086047492 K, F = -0.0024849996722215995, relative_change = 2.6449761025476642e-8 Iter 90: T = 801.3126438684328 K, F = -0.0010392565688935873, relative_change = 1.1061610499190476e-8 Iter 95: T = 801.3126167949266 K, F = -0.00043462951098360847, relative_change = 4.626098385375931e-9 Iter 100: T = 801.3126054724621 K, F = -0.00018176725338725497, relative_change = 1.934689736269092e-9 Iter 105: T = 801.3126007372721 K, F = -7.601723757888479e-5, relative_change = 8.091103910117958e-10 Iter 110: T = 801.312598756959 K, F = -3.179131674668767e-5, relative_change = 3.38379633956964e-10 Iter 115: T = 801.3125979287684 K, F = -1.3295507312216515e-5, relative_change = 1.4151439386944428e-10 Iter 120: T = 801.3125975824092 K, F = -5.560340827992505e-6, relative_change = 5.918301912987188e-11 Iter 125: T = 801.3125974375577 K, F = -2.325401386116255e-6, relative_change = 2.475105017749195e-11 Iter 130: T = 801.312597376979 K, F = -9.725103071733798e-7, relative_change = 1.0351181332974937e-11 Iter 135: T = 801.3125973516443 K, F = -4.067166163856939e-7, relative_change = 4.329000337500288e-12 Iter 140: T = 801.3125973410489 K, F = -1.7009186459304715e-7, relative_change = 1.8104196130935617e-12 Iter 145: T = 801.3125973366178 K, F = -7.113388567070444e-8, relative_change = 7.571331061912134e-13 Iter 150: T = 801.3125973347647 K, F = -2.9747960317294542e-8, relative_change = 3.1663060981090256e-13 Converged in 153 iterations to T = 801.3125973342221 K Iter 1: T = 965.173981571915 K, F = -7935.141426935074, relative_change = 0.03482601842808499 Iter 2: T = 932.3220740572633 K, F = -6730.307237141904, relative_change = 0.034037290832423774 Iter 3: T = 901.4148112428107 K, F = -5707.193065665342, relative_change = 0.03315084312007207 Iter 5: T = 845.3212185723728 K, F = -4100.843352245922, relative_change = 0.031066002366261444 Iter 10: T = 736.9629906167113 K, F = -1784.511211454256, relative_change = 0.024081305667687423 Iter 15: T = 669.1923943293533 K, F = -768.3866209099427, relative_change = 0.015776487716342432 Iter 20: T = 632.106234674318 K, F = -327.1931764282272, relative_change = 0.008684231458771122 Iter 25: T = 614.0456056268689 K, F = -138.14014400256386, relative_change = 0.0041922540094146594 Iter 30: T = 605.9014831382314 K, F = -58.03000657982456, relative_change = 0.0018750249673490137 Iter 35: T = 602.3770023301478 K, F = -24.31664766200511, relative_change = 0.0008076940810788471 Iter 40: T = 600.8809769226841 K, F = -10.178085460367733, relative_change = 0.00034208755630020624 Iter 45: T = 600.2513612966154 K, F = -4.258112397107286, relative_change = 0.0001438313520628406 Iter 50: T = 599.9873480466468 K, F = -1.7810597154591017, relative_change = 6.0287063417323165e-5 Iter 55: T = 599.8768114539006 K, F = -0.7449071001345346, relative_change = 2.5236472503616593e-5 Iter 60: T = 599.8305621576224 K, F = -0.31153721207683566, relative_change = 1.0558345524123595e-5 Iter 65: T = 599.8112163732719 K, F = -0.13029001145220057, relative_change = 4.416352683775497e-6 Iter 70: T = 599.8031250745076 K, F = -0.05448908870919589, relative_change = 1.8470985295382434e-6 Iter 75: T = 599.7997410811582 K, F = -0.02278803134653762, relative_change = 7.725008952088774e-7 Iter 80: T = 599.7983258345108 K, F = -0.009530234498726975, relative_change = 3.230729883258184e-7 Iter 85: T = 599.7977339579256 K, F = -0.003985659218827486, relative_change = 1.3511366209927993e-7 Iter 90: T = 599.7974864274508 K, F = -0.001666850517756835, relative_change = 5.650626603048869e-8 Iter 95: T = 599.797382907142 K, F = -0.000697096834132771, relative_change = 2.3631616096336868e-8 Iter 100: T = 599.7973396136937 K, F = -0.00029153422887118197, relative_change = 9.883027731313207e-9 Iter 105: T = 599.7973215078532 K, F = -0.00012192309705749693, relative_change = 4.133200849679384e-9 Iter 110: T = 599.797313935774 K, F = -5.09896965099621e-5, relative_change = 1.7285541024884327e-9 Iter 115: T = 599.7973107690399 K, F = -2.132450010361442e-5, relative_change = 7.22901989756913e-10 Iter 120: T = 599.7973094446738 K, F = -8.918160547821685e-6, relative_change = 3.023262464038393e-10 Iter 125: T = 599.797308890808 K, F = -3.729680865094398e-6, relative_change = 1.2643643441257373e-10 Iter 130: T = 599.7973086591749 K, F = -1.55979648464033e-6, relative_change = 5.287720677002215e-11 Iter 135: T = 599.797308562303 K, F = -6.523252108481259e-7, relative_change = 2.21138689704068e-11 Iter 140: T = 599.79730852179 K, F = -2.728093514425822e-7, relative_change = 9.248255553084109e-12 Iter 145: T = 599.797308504847 K, F = -1.1409176658983e-7, relative_change = 3.8677186411974986e-12 Iter 150: T = 599.7973084977614 K, F = -4.7714929618525304e-8, relative_change = 1.6175393569182133e-12 Iter 155: T = 599.797308494798 K, F = -1.9954734253868622e-8, relative_change = 6.764668474058476e-13 Iter 160: T = 599.7973084935587 K, F = -8.345510116303245e-9, relative_change = 2.829133601380993e-13 Converged in 162 iterations to T = 599.7973084932964 K Iter 1: T = 964.622208864737 K, F = -8060.863363136929, relative_change = 0.035377791135263 Iter 2: T = 931.1875357507281 K, F = -6837.958176302623, relative_change = 0.034660899165237076 Iter 3: T = 899.6657026105075 K, F = -5799.4563477321835, relative_change = 0.03385121893283019 Iter 5: T = 842.248324240217 K, F = -4168.8099522691045, relative_change = 0.03193009874037872 Iter 10: T = 730.1508591596003 K, F = -1816.6219015300474, relative_change = 0.025313952944281574 Iter 15: T = 658.6366084649607 K, F = -783.6031812733495, relative_change = 0.017056212041552405 Iter 20: T = 618.6843943073666 K, F = -334.21676423459587, relative_change = 0.009628885771647595 Iter 25: T = 598.9179931180769 K, F = -141.25974086844218, relative_change = 0.004726487495106696 Iter 30: T = 589.9211785316222 K, F = -59.37513614185301, relative_change = 0.0021327173475203247 Iter 35: T = 586.0096079703487 K, F = -24.887115578821014, relative_change = 0.0009224928965332806 Iter 40: T = 584.3457924691675 K, F = -10.418117092294661, relative_change = 0.0003914163187658297 Iter 45: T = 583.6449254282093 K, F = -4.35875643803326, relative_change = 0.0001646988508242292 Iter 50: T = 583.3509215626437 K, F = -1.8231961282118385, relative_change = 6.905618950928355e-5 Iter 55: T = 583.2278086123875 K, F = -0.7625371045494368, relative_change = 2.8911226333504718e-5 Iter 60: T = 583.1762937800327 K, F = -0.3189117012319651, relative_change = 1.2096468711576925e-5 Iter 65: T = 583.1547448429378 K, F = -0.1333743577930318, relative_change = 5.059841271560937e-6 Iter 70: T = 583.1457319769132 K, F = -0.055779042378516636, relative_change = 2.1162528775738424e-6 Iter 75: T = 583.1419625412076 K, F = -0.02332751293192986, relative_change = 8.850714088813192e-7 Iter 80: T = 583.1403860923799 K, F = -0.00975585346310609, relative_change = 3.701525373612893e-7 Iter 85: T = 583.139726798141 K, F = -0.004080015995736708, relative_change = 1.5480310441953578e-7 Iter 90: T = 583.1394510726275 K, F = -0.0017063116887296448, relative_change = 6.474066312728316e-8 Iter 95: T = 583.1393357607869 K, F = -0.0007135999737691301, relative_change = 2.7075345792938254e-8 Iter 100: T = 583.139287535974 K, F = -0.00029843603976420496, relative_change = 1.1323237741139975e-8 Iter 105: T = 583.139267367777 K, F = -0.00012480951772819715, relative_change = 4.735514100153009e-9 Iter 110: T = 583.1392589331954 K, F = -5.2196830524653404e-5, relative_change = 1.980448674534517e-9 Iter 115: T = 583.1392554057526 K, F = -2.182933834160572e-5, relative_change = 8.282473283357005e-10 Iter 120: T = 583.1392539305338 K, F = -9.129289228471116e-6, relative_change = 3.4638289928113796e-10 Iter 125: T = 583.1392533135797 K, F = -3.817978634579333e-6, relative_change = 1.4486149823975223e-10 Iter 130: T = 583.1392530555621 K, F = -1.596723803010125e-6, relative_change = 6.058279131566046e-11 Iter 135: T = 583.1392529476561 K, F = -6.677689796119601e-7, relative_change = 2.5336447479693832e-11 Iter 140: T = 583.1392529025285 K, F = -2.792691484732046e-7, relative_change = 1.0596011991615378e-11 Iter 145: T = 583.1392528836556 K, F = -1.1679336625602943e-7, relative_change = 4.431366358749221e-12 Iter 150: T = 583.1392528757627 K, F = -4.884468934873709e-8, relative_change = 1.8532620484883372e-12 Iter 155: T = 583.1392528724618 K, F = -2.0427868452355114e-8, relative_change = 7.75072865444706e-13 Iter 160: T = 583.1392528710815 K, F = -8.544119411979523e-9, relative_change = 3.2418042689401876e-13 Converged in 163 iterations to T = 583.1392528706772 K Iter 1: T = 964.3044854440355 K, F = -8133.256946776749, relative_change = 0.03569551455596444 Iter 2: T = 930.5332950695424 K, F = -6899.9601215227, relative_change = 0.035021293465147006 Iter 3: T = 898.6554149729961 K, F = -5852.6112326785415, relative_change = 0.03425764587409411 Iter 5: T = 840.4665358770441 K, F = -4207.999952710359, relative_change = 0.032436468631712706 Iter 10: T = 726.1483384538158 K, F = -1835.2190418532607, relative_change = 0.02606143652962623 Iter 15: T = 652.33271954722 K, F = -792.4915663937581, relative_change = 0.017866999673766745 Iter 20: T = 610.5525600416076 K, F = -338.36203408408113, relative_change = 0.010252173747883255 Iter 25: T = 589.6662269590593 K, F = -143.11593405410474, relative_change = 0.005088791636680053 Iter 30: T = 580.0996473536097 K, F = -60.17928536136778, relative_change = 0.0023100771990398764 Iter 35: T = 575.9271156673346 K, F = -25.22893883328579, relative_change = 0.0010020552908529723 Iter 40: T = 574.1497222202419 K, F = -10.562091481618626, relative_change = 0.000425708856527853 Iter 45: T = 573.4005395241666 K, F = -4.419150880538274, relative_change = 0.00017922458559925728 Iter 50: T = 573.0861837215243 K, F = -1.8484860689503364, relative_change = 7.51636961675922e-5 Iter 55: T = 572.9545336286791 K, F = -0.7731193264805135, relative_change = 3.1471206616669965e-5 Iter 60: T = 572.8994439462053 K, F = -0.3233383056767372, relative_change = 1.3168090874255053e-5 Iter 65: T = 572.8763991731641 K, F = -0.13522579041576138, relative_change = 5.5081829123042414e-6 Iter 70: T = 572.8667605922574 K, F = -0.05655336401619246, relative_change = 2.3037855815415886e-6 Iter 75: T = 572.8627294508981 K, F = -0.023651348806744105, relative_change = 9.635052264288334e-7 Iter 80: T = 572.8610435494044 K, F = -0.009891286422764323, relative_change = 4.0295544125458203e-7 Iter 85: T = 572.8603384800126 K, F = -0.004136655839640013, relative_change = 1.685218358191117e-7 Iter 90: T = 572.8600436106539 K, F = -0.0017299991761418054, relative_change = 7.047802932645682e-8 Iter 95: T = 572.8599202926059 K, F = -0.0007235063686680809, relative_change = 2.9474785902410375e-8 Iter 100: T = 572.8598687194975 K, F = -0.00030257901346020244, relative_change = 1.2326713141821995e-8 Iter 105: T = 572.8598471510027 K, F = -0.00012654215880858466, relative_change = 5.1551796462880906e-9 Iter 110: T = 572.8598381307996 K, F = -5.292144135460308e-5, relative_change = 2.1559578273672145e-9 Iter 115: T = 572.8598343584429 K, F = -2.2132378182215806e-5, relative_change = 9.016473144871121e-10 Iter 120: T = 572.8598327807982 K, F = -9.256024732173795e-6, relative_change = 3.770796741002924e-10 Iter 125: T = 572.8598321210084 K, F = -3.870979682518705e-6, relative_change = 1.5769920752945876e-10 Iter 130: T = 572.8598318450764 K, F = -1.6188904111147373e-6, relative_change = 6.59517115649572e-11 Iter 135: T = 572.8598317296783 K, F = -6.770387487864404e-7, relative_change = 2.7581770831751106e-11 Iter 140: T = 572.8598316814176 K, F = -2.8314644351379314e-7, relative_change = 1.1535056647723057e-11 Iter 145: T = 572.8598316612344 K, F = -1.1841538744006286e-7, relative_change = 4.8241051003904896e-12 Iter 150: T = 572.8598316527934 K, F = -4.9522822009873124e-8, relative_change = 2.017502145835918e-12 Iter 155: T = 572.8598316492634 K, F = -2.0711672488182842e-8, relative_change = 8.437694378897647e-13 Iter 160: T = 572.859831647787 K, F = -8.661782457952683e-9, relative_change = 3.5287093883556557e-13 Converged in 163 iterations to T = 572.8598316473547 K Iter 1: T = 980.1991967761156 K, F = -4511.631849988489, relative_change = 0.019800803223884354 Iter 2: T = 962.4396061209969 K, F = -3810.926315753441, relative_change = 0.018118348508680795 Iter 3: T = 946.5999206646494 K, F = -3217.5479732771432, relative_change = 0.016457848737322422 Iter 5: T = 920.155772563764 K, F = -2290.4345912827725, relative_change = 0.013291206271071318 Iter 10: T = 878.1917567394587 K, F = -972.3076288906826, relative_change = 0.006976063981900096 Iter 15: T = 858.3372572057681 K, F = -409.709072858823, relative_change = 0.0032694488786992083 Iter 20: T = 849.5283950456217 K, F = -171.938939334735, relative_change = 0.0014403756993852969 Iter 25: T = 845.7460332172078 K, F = -72.01544924416275, relative_change = 0.0006161848643895469 Iter 30: T = 844.1461599707582 K, F = -30.13706986111438, relative_change = 0.00026019195262547867 Iter 35: T = 843.4738530002277 K, F = -12.607094280605025, relative_change = 0.00010925818330837669 Iter 40: T = 843.1921179920043 K, F = -5.273036150957096, relative_change = 4.5770987012155415e-5 Iter 45: T = 843.0741933072956 K, F = -2.205351565814808, relative_change = 1.915563406139879e-5 Iter 50: T = 843.024858324797 K, F = -0.9223227157553359, relative_change = 8.013506701795335e-6 Iter 55: T = 843.0042227882911 K, F = -0.3857295853737982, relative_change = 3.351762710605131e-6 Iter 60: T = 842.9955922255584 K, F = -0.16131728079046637, relative_change = 1.4018204045553275e-6 Iter 65: T = 842.991982727584 K, F = -0.06746491157974521, relative_change = 5.86270839941812e-7 Iter 70: T = 842.9904731760587 K, F = -0.0282146488988837, relative_change = 2.4518770655074657e-7 Iter 75: T = 842.9898418607206 K, F = -0.011799706125728893, relative_change = 1.0254081876098374e-7 Iter 80: T = 842.9895778366061 K, F = -0.004934778544861906, relative_change = 4.288386351268258e-8 Iter 85: T = 842.9894674184809 K, F = -0.002063783415019671, relative_change = 1.7934555863077517e-8 Iter 90: T = 842.9894212402868 K, F = -0.0008630988834281705, relative_change = 7.500447510555448e-9 Iter 95: T = 842.989401928012 K, F = -0.00036095826558257826, relative_change = 3.1367771083911008e-9 Iter 100: T = 842.9893938513874 K, F = -0.00015095705476464438, relative_change = 1.31183768453805e-9 Iter 105: T = 842.9893904736466 K, F = -6.313204252461624e-5, relative_change = 5.486261916992421e-10 Iter 110: T = 842.9893890610349 K, F = -2.6402572331107876e-5, relative_change = 2.2944201146355436e-10 Iter 115: T = 842.989388470264 K, F = -1.1041871279982018e-5, relative_change = 9.595539152332121e-11 Iter 120: T = 842.9893882231964 K, F = -4.6178405177510484e-6, relative_change = 4.012967406119954e-11 Iter 125: T = 842.9893881198699 K, F = -1.9312371581925447e-6, relative_change = 1.6782718554368047e-11 Iter 130: T = 842.9893880766575 K, F = -8.076668949197341e-7, relative_change = 7.018737252918545e-12 Iter 135: T = 842.9893880585856 K, F = -3.377769246526441e-7, relative_change = 2.9353282886670387e-12 Iter 140: T = 842.9893880510276 K, F = -1.412627614882922e-7, relative_change = 1.2275929753813736e-12 Iter 145: T = 842.9893880478668 K, F = -5.907667821603013e-8, relative_change = 5.133845213281474e-13 Converged in 150 iterations to T = 842.989388046545 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 53%|█████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015298935839495743 Iteration 10: d = 1.3446909669416458e-5 Iteration 20: d = 1.5058412494532614e-7 Iteration 30: d = 1.9489514058304897e-9 Iteration 40: d = 2.5851818377476592e-11 Iteration 50: d = 3.454339063304596e-13 Iteration 60: d = 4.653633587972819e-15 Converged after 62 iterations. d = 2.0162228134336466e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.564217777084 Iteration 2: convergence error = 4817.037423920037 Iteration 3: convergence error = 1096.528013955548 Iteration 4: convergence error = 317.96394790487557 Iteration 5: convergence error = 94.28123159885718 Iteration 6: convergence error = 28.352610291468864 Iteration 7: convergence error = 8.535319181770546 Iteration 8: convergence error = 2.5591918037384858 Iteration 9: convergence error = 0.7655041337156945 Iteration 10: convergence error = 0.22866131557407243 Iteration 11: convergence error = 0.06824892340955557 Iteration 12: convergence error = 0.02036124019264207 Iteration 13: convergence error = 0.006072976520044904 Iteration 14: convergence error = 0.001811070619169186 Iteration 15: convergence error = 0.0005400482812092378 Iteration 16: convergence error = 0.00016103069719974883 Iteration 17: convergence error = 4.8014512003646814e-5 Iteration 18: convergence error = 1.4316249917101231e-5 Iteration 19: convergence error = 4.268564680387499e-6 Iteration 20: convergence error = 1.2727123248623684e-6 Iteration 21: convergence error = 3.7947256714687683e-7 Iteration 22: convergence error = 1.1300949154247064e-7 Iteration 23: convergence error = 3.278773874626495e-8 Iteration 24: convergence error = 9.452378435526043e-9 Iteration 25: convergence error = 2.719161784625612e-9 Iteration 26: convergence error = 7.839844329282641e-10 Iteration 27: convergence error = 2.2873791749589145e-10 Iteration 28: convergence error = 6.502887117676437e-11 Iteration 29: convergence error = 1.8417267710901797e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001957601033043381 Iteration 10: d = 2.236069791989051e-5 Iteration 20: d = 2.386946242457916e-7 Iteration 30: d = 2.8937819755674477e-9 Iteration 40: d = 3.678806588065445e-11 Iteration 50: d = 4.767602846305993e-13 Iteration 60: d = 6.241683786639868e-15 Converged after 63 iterations. d = 1.7128185772868381e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12276.234005607568 Iteration 2: convergence error = 8313.4249177652 Iteration 3: convergence error = 1958.1297155179986 Iteration 4: convergence error = 483.6203749353249 Iteration 5: convergence error = 123.64021774539538 Iteration 6: convergence error = 33.08758139291422 Iteration 7: convergence error = 9.033014573851915 Iteration 8: convergence error = 2.480049971067274 Iteration 9: convergence error = 0.6817307714100025 Iteration 10: convergence error = 0.18742309945423585 Iteration 11: convergence error = 0.051523897566539745 Iteration 12: convergence error = 0.01416345772963723 Iteration 13: convergence error = 0.0038932734260015422 Iteration 14: convergence error = 0.001070170214461541 Iteration 15: convergence error = 0.00029416241068247473 Iteration 16: convergence error = 8.085741660579515e-5 Iteration 17: convergence error = 2.2225510747375665e-5 Iteration 18: convergence error = 6.109189598646481e-6 Iteration 19: convergence error = 1.6792464521131478e-6 Iteration 20: convergence error = 4.6158106670191046e-7 Iteration 21: convergence error = 1.2771420188073535e-7 Iteration 22: convergence error = 3.446302798693068e-8 Iteration 23: convergence error = 9.238647180609405e-9 Iteration 24: convergence error = 2.474052962497808e-9 Iteration 25: convergence error = 6.591562851099297e-10 Iteration 26: convergence error = 1.7621459846850485e-10 Iteration 27: convergence error = 4.888534022029489e-11 Iteration 28: convergence error = 1.3415046851150692e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 59%|███████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001957601033043381 Iteration 10: d = 2.236069791989051e-5 Iteration 20: d = 2.386946242457916e-7 Iteration 30: d = 2.8937819755674477e-9 Iteration 40: d = 3.678806588065445e-11 Iteration 50: d = 4.767602846305993e-13 Iteration 60: d = 6.241683786639868e-15 Converged after 63 iterations. d = 1.7128185772868381e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10994.194175471017 Iteration 2: convergence error = 5726.554994399114 Iteration 3: convergence error = 2013.062097603572 Iteration 4: convergence error = 894.3532006821988 Iteration 5: convergence error = 412.25210434670316 Iteration 6: convergence error = 194.82423417643304 Iteration 7: convergence error = 92.12588340891261 Iteration 8: convergence error = 43.57804570205144 Iteration 9: convergence error = 20.612333025409043 Iteration 10: convergence error = 9.747191980137814 Iteration 11: convergence error = 4.608004286702453 Iteration 12: convergence error = 2.1779330708477573 Iteration 13: convergence error = 1.0291976744797466 Iteration 14: convergence error = 0.486292696390592 Iteration 15: convergence error = 0.2297516333501335 Iteration 16: convergence error = 0.1084582216058152 Iteration 17: convergence error = 0.05077586524976141 Iteration 18: convergence error = 0.023227204698741843 Iteration 19: convergence error = 0.010584782892692601 Iteration 20: convergence error = 0.00481293751818157 Iteration 21: convergence error = 0.002185666805416986 Iteration 22: convergence error = 0.0009918234718497843 Iteration 23: convergence error = 0.00044987811179453274 Iteration 24: convergence error = 0.00020400594075908884 Iteration 25: convergence error = 9.249611775885569e-5 Iteration 26: convergence error = 4.1933755710488185e-5 Iteration 27: convergence error = 1.9009881725651212e-5 Iteration 28: convergence error = 8.617472303740215e-6 Iteration 29: convergence error = 3.906355686922325e-6 Iteration 30: convergence error = 1.770751623553224e-6 Iteration 31: convergence error = 8.026695468288381e-7 Iteration 32: convergence error = 3.638483576651197e-7 Iteration 33: convergence error = 1.6493004295625724e-7 Iteration 34: convergence error = 7.475864549633116e-8 Iteration 35: convergence error = 3.388868208276108e-8 Iteration 36: convergence error = 1.536227500764653e-8 Iteration 37: convergence error = 6.961727194720879e-9 Iteration 38: convergence error = 3.155946615152061e-9 Iteration 39: convergence error = 1.433363649994135e-9 Iteration 40: convergence error = 6.475602276623249e-10 Iteration 41: convergence error = 2.97859514830634e-10 Iteration 42: convergence error = 1.3233147910796106e-10 Iteration 43: convergence error = 6.093614501878619e-11 Iteration 44: convergence error = 2.7284841053187847e-11 Iteration 45: convergence error = 1.2732925824820995e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 97%|████████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001957601033043381 Iteration 10: d = 2.236069791989051e-5 Iteration 20: d = 2.386946242457916e-7 Iteration 30: d = 2.8937819755674477e-9 Iteration 40: d = 3.678806588065445e-11 Iteration 50: d = 4.767602846305993e-13 Iteration 60: d = 6.241683786639868e-15 Converged after 63 iterations. d = 1.7128185772868381e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.54538872327 Iteration 2: convergence error = 7345.561798860661 Iteration 3: convergence error = 1730.3736749077193 Iteration 4: convergence error = 507.3222111963605 Iteration 5: convergence error = 158.02001878388592 Iteration 6: convergence error = 49.18851368281321 Iteration 7: convergence error = 15.281998078018205 Iteration 8: convergence error = 4.739478327056986 Iteration 9: convergence error = 1.4681051581960674 Iteration 10: convergence error = 0.4544267354949625 Iteration 11: convergence error = 0.14059968689889502 Iteration 12: convergence error = 0.04349091955464246 Iteration 13: convergence error = 0.013450940656184684 Iteration 14: convergence error = 0.004159802283083991 Iteration 15: convergence error = 0.0012863923157055979 Iteration 16: convergence error = 0.0003977986016252544 Iteration 17: convergence error = 0.00012301181368457037 Iteration 18: convergence error = 3.803879280894762e-5 Iteration 19: convergence error = 1.1762636859202757e-5 Iteration 20: convergence error = 3.637329427874647e-6 Iteration 21: convergence error = 1.1247598195041064e-6 Iteration 22: convergence error = 3.4765025702654384e-7 Iteration 23: convergence error = 1.0631629265844822e-7 Iteration 24: convergence error = 3.170953277731314e-8 Iteration 25: convergence error = 9.42327460506931e-9 Iteration 26: convergence error = 2.785782271530479e-9 Iteration 27: convergence error = 8.371898729819804e-10 Iteration 28: convergence error = 2.4510882212780416e-10 Iteration 29: convergence error = 7.366907084360719e-11 Iteration 30: convergence error = 2.3646862246096134e-11 Iteration 31: convergence error = 6.821210263296962e-12 Converged after 31 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001957601033043381 Iteration 10: d = 2.236069791989051e-5 Iteration 20: d = 2.386946242457916e-7 Iteration 30: d = 2.8937819755674477e-9 Iteration 40: d = 3.678806588065445e-11 Iteration 50: d = 4.767602846305993e-13 Iteration 60: d = 6.241683786639868e-15 Converged after 63 iterations. d = 1.7128185772868381e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.676873812032 Iteration 2: convergence error = 5517.259301735227 Iteration 3: convergence error = 935.8986264342079 Iteration 4: convergence error = 170.56564878819586 Iteration 5: convergence error = 31.00151390337919 Iteration 6: convergence error = 5.649891298211514 Iteration 7: convergence error = 1.0375754509645958 Iteration 8: convergence error = 0.19022568784430405 Iteration 9: convergence error = 0.03483300438801962 Iteration 10: convergence error = 0.006374583739670925 Iteration 11: convergence error = 0.0011662223014354822 Iteration 12: convergence error = 0.0002133259804395493 Iteration 13: convergence error = 3.901857871824177e-5 Iteration 14: convergence error = 7.136440217436757e-6 Iteration 15: convergence error = 1.3052085705567151e-6 Iteration 16: convergence error = 2.3871189114288427e-7 Iteration 17: convergence error = 4.365028871688992e-8 Iteration 18: convergence error = 7.981725502759218e-9 Iteration 19: convergence error = 1.4688339433632791e-9 Iteration 20: convergence error = 2.6693669497035444e-10 Iteration 21: convergence error = 4.6838977141305804e-11 Iteration 22: convergence error = 1.1368683772161603e-11 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 53%|█████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001957601033043381 Iteration 10: d = 2.236069791989051e-5 Iteration 20: d = 2.386946242457916e-7 Iteration 30: d = 2.8937819755674477e-9 Iteration 40: d = 3.678806588065445e-11 Iteration 50: d = 4.767602846305993e-13 Iteration 60: d = 6.241683786639868e-15 Converged after 63 iterations. d = 1.7128185772868381e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.4782624856452 Iteration 2: convergence error = 2713.9367875476896 Iteration 3: convergence error = 204.61172950867285 Iteration 4: convergence error = 19.37216823105666 Iteration 5: convergence error = 1.6037678455702546 Iteration 6: convergence error = 0.1308545796931635 Iteration 7: convergence error = 0.010691403970215133 Iteration 8: convergence error = 0.0008756017685560499 Iteration 9: convergence error = 7.182063295425425e-5 Iteration 10: convergence error = 5.896126824947718e-6 Iteration 11: convergence error = 4.842657760305755e-7 Iteration 12: convergence error = 3.9783785879748213e-8 Iteration 13: convergence error = 3.269503104309202e-9 Iteration 14: convergence error = 2.6786080873508035e-10 Iteration 15: convergence error = 2.3419488570652902e-11 Iteration 16: convergence error = 3.183231456205249e-12 Converged after 16 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346352 Iteration 2: convergence error = 858.4060420534064 Iteration 3: convergence error = 199.12106737711963 Iteration 4: convergence error = 59.265629268140174 Iteration 5: convergence error = 17.985482911037252 Iteration 6: convergence error = 5.463033078096487 Iteration 7: convergence error = 1.660989611064224 Iteration 8: convergence error = 0.5052487627317532 Iteration 9: convergence error = 0.15371874094239502 Iteration 10: convergence error = 0.04677131697644654 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.004330236512828378 Iteration 13: convergence error = 0.0013175920926187246 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198903971238906 Iteration 16: convergence error = 3.711853855747904e-5 Iteration 17: convergence error = 1.1294342471046548e-5 Iteration 18: convergence error = 3.4366166801191866e-6 Iteration 19: convergence error = 1.045686303768889e-6 Iteration 20: convergence error = 3.1818046863918426e-7 Iteration 21: convergence error = 9.68161657510791e-8 Iteration 22: convergence error = 2.946035237982869e-8 Iteration 23: convergence error = 8.963752406998537e-9 Iteration 24: convergence error = 2.7299620342091657e-9 Iteration 25: convergence error = 8.292317943414673e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.696598913753405e-11 Iteration 28: convergence error = 2.3646862246096134e-11 Iteration 29: convergence error = 9.094947017729282e-12 Converged after 29 iterations Energy conservation errors by band: [1.5428857128674637e-25, 8.401053096241687e-26, 1.1490863489811346e-25, 9.400697635337753e-26, 1.2440020930973268e-25, -3.2610768469290563e-19, 2.7533531010703882e-14, 1.7053025658242404e-12, 5.6701310313655995e-12, 2.6432189770275727e-12, 7.176481631177012e-13, 8.526512829121202e-14, 4.9960036108132044e-15, 2.636779683484747e-16, 2.0166160408230382e-17, 1.0062751413381088e-18, 3.560185356428231e-20, 1.2755125045567687e-21, 4.105530024647957e-23, 5.6284752489113644e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015298935839495743 Iteration 10: d = 1.3446909669416458e-5 Iteration 20: d = 1.5058412494532614e-7 Iteration 30: d = 1.9489514058304897e-9 Iteration 40: d = 2.5851818377476592e-11 Iteration 50: d = 3.454339063304596e-13 Iteration 60: d = 4.653633587972819e-15 Converged after 62 iterations. d = 2.0162228134336466e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.297247662913 Iteration 2: convergence error = 3604.7707270317605 Iteration 3: convergence error = 592.9659045089021 Iteration 4: convergence error = 104.00511043508413 Iteration 5: convergence error = 18.495727649455375 Iteration 6: convergence error = 3.260524216833801 Iteration 7: convergence error = 0.5727047684554236 Iteration 8: convergence error = 0.10044236580802135 Iteration 9: convergence error = 0.01760483262546586 Iteration 10: convergence error = 0.0030848627416162344 Iteration 11: convergence error = 0.0005404985322456923 Iteration 12: convergence error = 9.469667929806747e-5 Iteration 13: convergence error = 1.659080407989677e-5 Iteration 14: convergence error = 2.9066829938528826e-6 Iteration 15: convergence error = 5.092260835226625e-7 Iteration 16: convergence error = 8.922825145418756e-8 Iteration 17: convergence error = 1.563944351801183e-8 Iteration 18: convergence error = 2.7216628950554878e-9 Iteration 19: convergence error = 4.838511813431978e-10 Iteration 20: convergence error = 8.230927051045e-11 Iteration 21: convergence error = 1.3415046851150692e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.492427513024 Iteration 2: convergence error = 871.304602661783 Iteration 3: convergence error = 207.75299581225158 Iteration 4: convergence error = 62.49550550490892 Iteration 5: convergence error = 18.97931530918413 Iteration 6: convergence error = 5.76621559404623 Iteration 7: convergence error = 1.7533061530655232 Iteration 8: convergence error = 0.5333443698997371 Iteration 9: convergence error = 0.16226812526508638 Iteration 10: convergence error = 0.04937275063014113 Iteration 11: convergence error = 0.015022831428041172 Iteration 12: convergence error = 0.0045710916562029524 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318846916256 Iteration 15: convergence error = 0.0001287742984459328 Iteration 16: convergence error = 3.9183143599075265e-5 Iteration 17: convergence error = 1.1922556950594299e-5 Iteration 18: convergence error = 3.6277691606301232e-6 Iteration 19: convergence error = 1.1038513321182108e-6 Iteration 20: convergence error = 3.3587832604098367e-7 Iteration 21: convergence error = 1.0220117019343888e-7 Iteration 22: convergence error = 3.1099034458748065e-8 Iteration 23: convergence error = 9.464656613999978e-9 Iteration 24: convergence error = 2.880597094190307e-9 Iteration 25: convergence error = 8.786855687503703e-10 Iteration 26: convergence error = 2.6830093702301383e-10 Iteration 27: convergence error = 8.185452315956354e-11 Iteration 28: convergence error = 2.6261659513693303e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [9.81469183839774e-26, 1.2278462217584005e-25, 1.7064639101740927e-25, 1.3045866106183005e-25, 1.2440020930973268e-25, -2.642742795433417e-19, -7.993605777301127e-15, 8.526512829121202e-14, 7.013056801952189e-12, 4.575895218295045e-12, 5.826450433232822e-13, 8.79296635503124e-14, 5.218048215738236e-15, 3.642919299551295e-16, 2.0166160408230382e-17, 8.775261333554552e-19, 3.7613556814011274e-20, 1.2358078351542233e-21, 3.6499344528902346e-23, 4.998575315730623e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729987 Iteration 2: convergence error = 2115.1156110176394 Iteration 3: convergence error = 714.8959934551629 Iteration 4: convergence error = 296.01907471323966 Iteration 5: convergence error = 115.88799395378669 Iteration 6: convergence error = 44.11524923618913 Iteration 7: convergence error = 16.599581025126554 Iteration 8: convergence error = 6.215983404932786 Iteration 9: convergence error = 2.323124567003788 Iteration 10: convergence error = 0.867563639824084 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.12090784413658184 Iteration 13: convergence error = 0.04513241840754745 Iteration 14: convergence error = 0.016846741615154315 Iteration 15: convergence error = 0.0062884074741305085 Iteration 16: convergence error = 0.0023472777563711134 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782211112615 Iteration 19: convergence error = 0.00012207719146317686 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985607473878e-6 Iteration 23: convergence error = 2.3698869426880265e-6 Iteration 24: convergence error = 8.846079708746402e-7 Iteration 25: convergence error = 3.302000095573021e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7174670574604534e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.949427865445614e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.248281478183344e-10 Iteration 34: convergence error = 4.774847184307873e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.9952501103574007e-25, 1.4136387421560532e-25, 1.0339757656912846e-25, 1.6478988765704848e-25, 2.1729646950855903e-25, 9.486769009248164e-20, 5.240252676230739e-14, 2.9274360713316128e-12, 1.2093437362636905e-11, 5.6203930398623925e-12, 2.0961010704922955e-13, 1.84297022087776e-14, 1.582067810090848e-15, 1.723881454251952e-16, 7.101524229780054e-18, 4.641740550953566e-19, 1.4770137017746862e-20, 4.963083675318166e-22, 1.7991178323028352e-23, 9.298117831235686e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238243 Iteration 2: convergence error = 864.8522700482431 Iteration 3: convergence error = 203.43244494690748 Iteration 4: convergence error = 60.87736397590345 Iteration 5: convergence error = 18.481426659698286 Iteration 6: convergence error = 5.6143306186266955 Iteration 7: convergence error = 1.7070587705935623 Iteration 8: convergence error = 0.5192694771476454 Iteration 9: convergence error = 0.1579851928424887 Iteration 10: convergence error = 0.04806952669207476 Iteration 11: convergence error = 0.014626287390910875 Iteration 12: convergence error = 0.004450431969985402 Iteration 13: convergence error = 0.0013541649049102489 Iteration 14: convergence error = 0.0004120419150694943 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.8148852013364376e-5 Iteration 17: convergence error = 1.1607843930505624e-5 Iteration 18: convergence error = 3.532008690854127e-6 Iteration 19: convergence error = 1.0747122587417834e-6 Iteration 20: convergence error = 3.270116621933994e-7 Iteration 21: convergence error = 9.950440471584443e-8 Iteration 22: convergence error = 3.027832917723572e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8029489840264432e-9 Iteration 25: convergence error = 8.546976459911093e-10 Iteration 26: convergence error = 2.609112925711088e-10 Iteration 27: convergence error = 8.003553375601768e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.753886504564434e-12 Converged after 29 iterations Energy conservation errors by band: [1.4621063561728321e-25, 7.674038885990003e-26, 1.32882041762669e-25, 1.3116548043290807e-25, 1.126872025890111e-25, -1.5246593050577406e-19, -3.6637359812630166e-14, 2.5721647034515627e-12, 7.627676268384675e-12, 2.8421709430404007e-12, 4.973799150320701e-13, 7.194245199571014e-14, 4.385380947269368e-15, 4.198030811863873e-16, 2.3310346708438345e-17, 9.84252284709497e-19, 4.1081097941833566e-20, 9.880672416945916e-22, 2.4156258825962636e-23, 4.8210806556121566e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 9m50.3s Testing RayTraceHeatTransfer tests passed Testing completed after 601.76s PkgEval succeeded after 667.57s