Package evaluation to test StructuralIdentifiability on Julia 1.14.0-DEV.1640 (5532bea546*) started at 2026-01-30T08:25:42.819 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 10.66s ################################################################################ # Installation # Installing StructuralIdentifiability... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [220ca800] + StructuralIdentifiability v0.5.18 Updating `~/.julia/environments/v1.14/Manifest.toml` ⌅ [c3fe647b] + AbstractAlgebra v0.47.6 [a9b6321e] + Atomix v1.1.2 [861a8166] + Combinatorics v1.1.0 [864edb3b] + DataStructures v0.19.3 [e2ba6199] + ExprTools v0.1.10 [0b43b601] + Groebner v0.10.2 [18e54dd8] + IntegerMathUtils v0.1.3 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [1914dd2f] + MacroTools v0.5.16 ⌅ [2edaba10] + Nemo v0.52.4 [bac558e1] + OrderedCollections v1.8.1 [3e851597] + ParamPunPam v0.5.7 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [27ebfcd6] + Primes v0.5.7 [92933f4c] + ProgressMeter v1.11.0 [fb686558] + RandomExtensions v0.4.4 ⌅ [73480bc8] + RationalFunctionFields v0.2.3 [220ca800] + StructuralIdentifiability v0.5.18 [a759f4b9] + TimerOutputs v0.5.29 [013be700] + UnsafeAtomics v0.3.0 ⌅ [e134572f] + FLINT_jll v301.300.102+0 [656ef2d0] + OpenBLAS32_jll v0.3.30+0 [56f22d72] + Artifacts v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [fa267f1f] + TOML v1.0.3 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [781609d7] + GMP_jll v6.3.0+2 [3a97d323] + MPFR_jll v4.2.2+0 [4536629a] + OpenBLAS_jll v0.3.30+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.15.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.14s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling packages... 23301.9 ms ✓ AbstractAlgebra 1387.2 ms ✓ FLINT_jll 5226.6 ms ✓ SpecialFunctions 6265.0 ms ✓ AbstractAlgebra → TestExt 33283.7 ms ✓ Nemo 131174.1 ms ✓ Groebner 11419.9 ms ✓ ParamPunPam 12105.8 ms ✓ RationalFunctionFields 13467.0 ms ✓ StructuralIdentifiability 9 dependencies successfully precompiled in 239 seconds. 68 already precompiled. Precompilation completed after 256.44s ################################################################################ # Testing # Testing StructuralIdentifiability Status `/tmp/jl_FuoC1A/Project.toml` ⌅ [c3fe647b] AbstractAlgebra v0.47.6 [4c88cf16] Aqua v0.8.14 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.1.0 [864edb3b] DataStructures v0.19.3 [0b43b601] Groebner v0.10.2 [c8e1da08] IterTools v1.10.0 [1914dd2f] MacroTools v0.5.16 ⌅ [2edaba10] Nemo v0.52.4 [3e851597] ParamPunPam v0.5.7 [aea7be01] PrecompileTools v1.3.3 [27ebfcd6] Primes v0.5.7 ⌅ [73480bc8] RationalFunctionFields v0.2.3 [276daf66] SpecialFunctions v2.6.1 [220ca800] StructuralIdentifiability v0.5.18 [98d24dd4] TestSetExtensions v3.0.0 [a759f4b9] TimerOutputs v0.5.29 [ade2ca70] Dates v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [44cfe95a] Pkg v1.14.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_FuoC1A/Manifest.toml` ⌅ [c3fe647b] AbstractAlgebra v0.47.6 [4c88cf16] Aqua v0.8.14 [a9b6321e] Atomix v1.1.2 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.1.0 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.18.1 [adafc99b] CpuId v0.3.1 [864edb3b] DataStructures v0.19.3 [ab62b9b5] DeepDiffs v1.2.0 [ffbed154] DocStringExtensions v0.9.5 [e2ba6199] ExprTools v0.1.10 [0b43b601] Groebner v0.10.2 [615f187c] IfElse v0.1.1 [18e54dd8] IntegerMathUtils v0.1.3 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 ⌅ [2edaba10] Nemo v0.52.4 [bac558e1] OrderedCollections v1.8.1 [3e851597] ParamPunPam v0.5.7 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [27ebfcd6] Primes v0.5.7 [92933f4c] ProgressMeter v1.11.0 [fb686558] RandomExtensions v0.4.4 ⌅ [73480bc8] RationalFunctionFields v0.2.3 [431bcebd] SciMLPublic v1.0.1 [276daf66] SpecialFunctions v2.6.1 [aedffcd0] Static v1.3.1 [220ca800] StructuralIdentifiability v0.5.18 [98d24dd4] TestSetExtensions v3.0.0 [a759f4b9] TimerOutputs v0.5.29 [013be700] UnsafeAtomics v0.3.0 ⌅ [e134572f] FLINT_jll v301.300.102+0 [656ef2d0] OpenBLAS32_jll v0.3.30+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [781609d7] GMP_jll v6.3.0+2 [deac9b47] LibCURL_jll v8.18.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [3a97d323] MPFR_jll v4.2.2+0 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.30+0 [05823500] OpenLibm_jll v0.8.7+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Resolving package versions... Installed ModelingToolkitBase ─ v1.8.0 Updating `/tmp/jl_FuoC1A/Project.toml` ⌅ [861a8166] ↓ Combinatorics v1.1.0 ⇒ v1.0.2 [loaded: v1.1.0] [961ee093] + ModelingToolkit v11.8.0 Updating `/tmp/jl_FuoC1A/Manifest.toml` [47edcb42] + ADTypes v1.21.0 [6e696c72] + AbstractPlutoDingetjes v1.3.2 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.43 [79e6a3ab] + Adapt v4.4.0 [ec485272] + ArnoldiMethod v0.4.0 [4fba245c] + ArrayInterface v7.22.0 [4c555306] + ArrayLayouts v1.12.2 [e2ed5e7c] + Bijections v0.2.2 [caf10ac8] + BipartiteGraphs v0.1.6 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [8e7c35d0] + BlockArrays v1.9.3 [70df07ce] + BracketingNonlinearSolve v1.6.2 [d360d2e6] + ChainRulesCore v1.26.0 [fb6a15b2] + CloseOpenIntervals v0.1.13 ⌅ [861a8166] ↓ Combinatorics v1.1.0 ⇒ v1.0.2 [loaded: v1.1.0] [38540f10] + CommonSolve v0.2.6 [bbf7d656] + CommonSubexpressions v0.3.1 [b152e2b5] + CompositeTypes v0.1.4 [a33af91c] + CompositionsBase v0.1.2 [2569d6c7] + ConcreteStructs v0.2.3 [187b0558] + ConstructionBase v1.6.0 [2b5f629d] + DiffEqBase v6.199.0 [459566f4] + DiffEqCallbacks v4.12.0 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [a0c0ee7d] + DifferentiationInterface v0.7.15 [5b8099bc] + DomainSets v0.7.16 [7c1d4256] + DynamicPolynomials v0.6.4 [4e289a0a] + EnumX v1.0.6 [f151be2c] + EnzymeCore v0.8.18 [55351af7] + ExproniconLite v0.10.14 [7034ab61] + FastBroadcast v0.3.5 [9aa1b823] + FastClosures v0.3.2 [a4df4552] + FastPower v1.3.1 [1a297f60] + FillArrays v1.16.0 [64ca27bc] + FindFirstFunctions v1.8.0 [6a86dc24] + FiniteDiff v2.29.0 [f6369f11] + ForwardDiff v1.3.2 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [46192b85] + GPUArraysCore v0.2.0 [86223c79] + Graphs v1.13.4 [3263718b] + ImplicitDiscreteSolve v1.6.0 [d25df0c9] + Inflate v0.1.5 [8197267c] + IntervalSets v0.7.13 [3587e190] + InverseFunctions v0.1.17 [82899510] + IteratorInterfaceExtensions v1.0.0 [ae98c720] + Jieko v0.2.1 [ccbc3e58] + JumpProcesses v9.21.1 [ba0b0d4f] + Krylov v0.10.5 [10f19ff3] + LayoutPointers v0.1.17 [87fe0de2] + LineSearch v0.1.6 [7ed4a6bd] + LinearSolve v3.57.0 [e6f89c97] + LoggingExtras v1.2.0 [d125e4d3] + ManualMemory v0.1.8 [bb5d69b7] + MaybeInplace v0.1.4 [961ee093] + ModelingToolkit v11.8.0 [7771a370] + ModelingToolkitBase v1.8.0 [6bb917b9] + ModelingToolkitTearing v1.2.4 [2e0e35c7] + Moshi v0.3.7 [46d2c3a1] + MuladdMacro v0.2.4 [102ac46a] + MultivariatePolynomials v0.5.13 [d8a4904e] + MutableArithmetics v1.6.7 [77ba4419] + NaNMath v1.1.3 [be0214bd] + NonlinearSolveBase v2.11.1 [5959db7a] + NonlinearSolveFirstOrder v1.11.1 [6fe1bfb0] + OffsetArrays v1.17.0 [bbf590c4] + OrdinaryDiffEqCore v3.2.0 [e409e4f3] + PoissonRandom v0.4.7 [f517fe37] + Polyester v0.7.18 [1d0040c9] + PolyesterWeave v0.2.2 [d236fae5] + PreallocationTools v1.1.2 [988b38a3] + ReadOnlyArrays v0.2.0 [795d4caa] + ReadOnlyDicts v1.0.1 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.47.0 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [7e49a35a] + RuntimeGeneratedFunctions v0.5.16 [9dfe8606] + SCCNonlinearSolve v1.9.0 [94e857df] + SIMDTypes v0.1.0 [0bca4576] + SciMLBase v2.136.0 [19f34311] + SciMLJacobianOperators v0.1.12 [a6db7da4] + SciMLLogging v1.8.0 [c0aeaf25] + SciMLOperators v1.14.1 [53ae85a6] + SciMLStructures v1.10.0 [efcf1570] + Setfield v1.1.2 [727e6d20] + SimpleNonlinearSolve v2.10.0 [699a6c99] + SimpleTraits v0.9.5 [64909d44] + StateSelection v1.3.0 [0d7ed370] + StaticArrayInterface v1.8.0 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [7792a7ef] + StrideArraysCore v0.5.8 [2efcf032] + SymbolicIndexingInterface v0.3.46 [19f23fe9] + SymbolicLimits v1.1.0 [d1185830] + SymbolicUtils v4.15.0 [0c5d862f] + Symbolics v7.10.0 [ed4db957] + TaskLocalValues v0.1.3 [8ea1fca8] + TermInterface v2.0.0 [8290d209] + ThreadingUtilities v0.5.5 [781d530d] + TruncatedStacktraces v1.4.0 [3a884ed6] + UnPack v1.0.2 [d30d5f5c] + WeakCacheSets v0.1.0 [1d5cc7b8] + IntelOpenMP_jll v2025.2.0+0 [856f044c] + MKL_jll v2025.2.0+0 [1317d2d5] + oneTBB_jll v2022.0.0+1 [9fa8497b] + Future v1.11.0 [4af54fe1] + LazyArtifacts v1.11.0 [3fa0cd96] + REPL v1.11.0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Updating `/tmp/jl_FuoC1A/Project.toml` [0c5d862f] + Symbolics v7.10.0 Manifest No packages added to or removed from `/tmp/jl_FuoC1A/Manifest.toml` [ Info: Testing started [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y ┌ Warning: New variable c, treating as a scalar parameter └ @ StructuralIdentifiability ~/.julia/packages/StructuralIdentifiability/MQy2n/src/pb_representation.jl:94 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: a [ Info: Parameters: b [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: a, b [ Info: Parameters: k1, k2 [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y 2.021164 seconds (857.50 k allocations: 47.418 MiB, 99.58% compilation time) 0.001930 seconds (7.26 k allocations: 322.062 KiB) 0.002151 seconds (11.08 k allocations: 497.016 KiB) 0.002040 seconds (11.04 k allocations: 491.656 KiB) 0.002939 seconds (14.88 k allocations: 650.438 KiB) 0.001566 seconds (8.18 k allocations: 370.633 KiB) 0.001138 seconds (7.55 k allocations: 304.383 KiB) 14.797868 seconds (5.74 M allocations: 327.699 MiB, 0.86% gc time, 99.83% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.328384 seconds (93.11 k allocations: 5.624 MiB, 98.47% compilation time) [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.011387 seconds (9.97 k allocations: 542.289 KiB, 90.40% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 IOEQS: Dict{QQMPolyRingElem, QQMPolyRingElem}(y2(t)_1 => -a*y2(t)_0 + a*u(t)_0 + y2(t)_1 - u(t)_1, y1(t)_2 => -y1(t)_0 + y1(t)_2) [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a, b, c, d [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, I, W, R [ Info: Parameters: a, bi, bw, gam, k, mu, xi [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a01, a12, a13, a21, a31 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, In [ Info: Parameters: N, a, b, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002975453 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 6.845315472 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 0.062101363 seconds [ Info: Global identifiability assessed in 55.06368178 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002607706 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Global identifiability assessed in 1.018471854 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Global identifiability assessed in 7.22e-5 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.033811841 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.531483424 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 7.2239e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:13 ✓ # Computing specializations.. Time: 0:00:15 [ Info: Search for polynomial generators concluded in 12.21090576 [ Info: Selecting generators in 0.011923671 [ Info: Inclusion checked with probability 0.9955 in 0.058497595 seconds [ Info: Global identifiability assessed in 101.419560778 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.760214811 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 1.71766079 seconds [ Info: Dimensions of the Wronskians [676] [ Info: Ranks of the Wronskians computed in 0.120624117 seconds [ Info: Global identifiability assessed in 38.748282771 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015155561 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.034613194 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000323427 seconds [ Info: Global identifiability assessed in 0.202182681 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Note: the input model has nontrivial submodels. If the computation for the full model will be too heavy, you may want to try to first analyze one of the submodels. They can be produced using function `find_submodels` [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 6.855842963 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003508757 seconds [ Info: Dimensions of the Wronskians [2, 3, 2] [ Info: Ranks of the Wronskians computed in 3.51e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.870674084 [ Info: Selecting generators in 0.000518665 [ Info: Inclusion checked with probability 0.9955 in 0.003078442 seconds [ Info: Global identifiability assessed in 9.094932785 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002384178 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001859523 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.284e-5 seconds [ Info: Global identifiability assessed in 0.006920636 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002868274 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001976282 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.5379e-5 seconds [ Info: Global identifiability assessed in 0.008029447 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005290401 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004271381 seconds [ Info: Dimensions of the Wronskians [6] [ Info: Ranks of the Wronskians computed in 2.7079e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.283572895 [ Info: Selecting generators in 0.017284822 [ Info: Inclusion checked with probability 0.9955 in 0.005744027 seconds [ Info: Global identifiability assessed in 2.398772551 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.009236855 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003875775 seconds [ Info: Dimensions of the Wronskians [2, 5] [ Info: Ranks of the Wronskians computed in 2.767e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007900868 [ Info: Selecting generators in 0.00440289 [ Info: Inclusion checked with probability 0.9955 in 0.004722527 seconds [ Info: Global identifiability assessed in 0.055230195 seconds [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: V_m, c, k01, k_m [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k1, k2, k3, k4 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: s, i, r, x1, x2 [ Info: Parameters: M, b0, b1, g, mu, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, E, I, R, Q [ Info: Parameters: beta, gamma, psi, v [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: k01, k12, k13, k14, k21, k31, k41 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x5, x7, x4, x6 [ Info: Parameters: k10, k5, k6, k7, k8, k9 [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, In, L, Q [ Info: Parameters: Ninv, a, b, e, g, s [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, R, W [ Info: Parameters: Dd, T, a, d, dr, e, g, r, rR [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: P3, P0, P5, P4, P1, P2 [ Info: Parameters: Ks, M, Mar, alpa, beta, beta_SA, beta_SI, phi, siga1, siga2 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: C, α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: EGFR, pEGFR, pEGFR_Akt, Akt, pAkt, S6, pAkt_S6, pS6, EGF_EGFR [ Info: Parameters: EGFR_turnover, a1, a2, a3, reaction_1_k1, reaction_1_k2, reaction_2_k1, reaction_2_k2, reaction_3_k1, reaction_4_k1, reaction_5_k1, reaction_5_k2, reaction_6_k1, reaction_7_k1, reaction_8_k1, reaction_9_k1 [ Info: Inputs: pro_EGFR [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: beta, cry, zea, beta10, OHbeta10, betaio, OHbetaio [ Info: Parameters: kOHbeta10, kbeta, kbeta10, kcryOH, kcrybeta, kzea [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: EpoR_A, k1, k2, k3, k5, k6, k7 [ Info: Inputs: [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, U, I [ Info: Parameters: N, a, b, d, g [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: alpha [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k01, k02, k12, k21, v [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: K_M, V_M, b1, c, k02, k12, k21 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: k02, k03, k12, k13, k21, k31, v [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: a03, a04, a13, a24, a31, a42, a43 [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, I [ Info: Parameters: N, beta, k, mu, nu [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4, p5 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: beta, c, d, k1, k2, mu1, mu2, q1, q2, s [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: A, I, H, R, D, E [ Info: Parameters: N, a, c1, c2, d, h, r1, r2, r3, s [ Info: Inputs: [ Info: Outputs: y [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001757213 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001498606 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.699e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000208638 [ Info: Selecting generators in 1.218862746 [ Info: Inclusion checked with probability 0.995 in 0.002824854 seconds [ Info: The search for identifiable functions concluded in 2.64236795 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001534036 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001316248 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.688e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.664e-5 [ Info: Selecting generators in 0.000694543 [ Info: Inclusion checked with probability 0.995 in 0.001850643 seconds [ Info: The search for identifiable functions concluded in 0.010204347 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001203449 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00107921 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.936e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.1069e-5 [ Info: Selecting generators in 0.000658843 [ Info: Inclusion checked with probability 0.995 in 0.001805844 seconds [ Info: The search for identifiable functions concluded in 0.008884448 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001162739 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00108007 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.014e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000634964 [ Info: Selecting generators in 0.000674354 [ Info: Inclusion checked with probability 0.995 in 0.001767744 seconds [ Info: The search for identifiable functions concluded in 0.009276085 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001468437 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00109765 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.189e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000446326 [ Info: Selecting generators in 0.000660984 [ Info: Inclusion checked with probability 0.995 in 0.001832333 seconds [ Info: The search for identifiable functions concluded in 0.009716961 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001143389 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00105874 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.078e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000409197 [ Info: Selecting generators in 0.000685654 [ Info: Inclusion checked with probability 0.995 in 0.001836984 seconds [ Info: The search for identifiable functions concluded in 0.009144886 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001862093 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001209469 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.903e-5 seconds [ Info: The search for identifiable functions concluded in 0.039065452 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001783724 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001147259 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.874e-5 seconds [ Info: The search for identifiable functions concluded in 0.003542127 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001352988 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00107041 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.728e-5 seconds [ Info: The search for identifiable functions concluded in 0.002973583 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001297778 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000969781 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.6e-5 seconds [ Info: The search for identifiable functions concluded in 0.002790095 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001276839 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000902281 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.744e-5 seconds [ Info: The search for identifiable functions concluded in 0.002696015 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001312128 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000934281 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.533e-5 seconds [ Info: The search for identifiable functions concluded in 0.002754495 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001853523 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001231598 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.788e-5 seconds [ Info: The search for identifiable functions concluded in 0.003835105 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001453147 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.0010894 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.7529e-5 seconds [ Info: The search for identifiable functions concluded in 0.003108692 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001415317 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001035 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.661e-5 seconds [ Info: The search for identifiable functions concluded in 0.003004593 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001390367 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00103004 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.674e-5 seconds [ Info: The search for identifiable functions concluded in 0.002979223 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001384837 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001004111 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.614e-5 seconds [ Info: The search for identifiable functions concluded in 0.002929843 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001348517 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000988481 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.628e-5 seconds [ Info: The search for identifiable functions concluded in 0.002870004 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.287222961 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001883603 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.939e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.631e-5 [ Info: Selecting generators in 0.000603605 [ Info: Inclusion checked with probability 0.995 in 0.001810624 seconds [ Info: The search for identifiable functions concluded in 0.295810773 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002469147 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001618155 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.002e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 7.479e-5 [ Info: Selecting generators in 0.000591415 [ Info: Inclusion checked with probability 0.995 in 0.001736684 seconds [ Info: The search for identifiable functions concluded in 0.010573374 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002460997 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001599305 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.829e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 6.3779e-5 [ Info: Selecting generators in 0.000554865 [ Info: Inclusion checked with probability 0.995 in 0.001679944 seconds [ Info: The search for identifiable functions concluded in 0.010093727 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00323414 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002007481 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.948e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000401456 [ Info: Selecting generators in 0.000620954 [ Info: Inclusion checked with probability 0.995 in 0.001735644 seconds [ Info: The search for identifiable functions concluded in 0.012181178 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002423748 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001974762 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.03e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000496225 [ Info: Selecting generators in 0.000846702 [ Info: Inclusion checked with probability 0.995 in 0.00216674 seconds [ Info: The search for identifiable functions concluded in 0.012908722 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002466678 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001602096 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.769e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000385756 [ Info: Selecting generators in 0.000610974 [ Info: Inclusion checked with probability 0.995 in 0.001641665 seconds [ Info: The search for identifiable functions concluded in 0.010606613 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001236039 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001293488 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.096e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000111429 [ Info: Selecting generators in 0.002054281 [ Info: Inclusion checked with probability 0.995 in 0.003380159 seconds [ Info: The search for identifiable functions concluded in 0.0164804 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001310688 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001235258 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.133e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000103529 [ Info: Selecting generators in 0.002040872 [ Info: Inclusion checked with probability 0.995 in 0.003344039 seconds [ Info: The search for identifiable functions concluded in 0.016082713 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001278088 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001208229 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.0849e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000100589 [ Info: Selecting generators in 0.002031351 [ Info: Inclusion checked with probability 0.995 in 0.003327699 seconds [ Info: The search for identifiable functions concluded in 0.016143312 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001266608 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001265689 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.114e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.246458594 [ Info: Selecting generators in 0.003591827 [ Info: Inclusion checked with probability 0.995 in 0.003241371 seconds [ Info: The search for identifiable functions concluded in 0.264242392 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001392357 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001267338 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 7.1709e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.01532493 [ Info: Selecting generators in 0.003189321 [ Info: Inclusion checked with probability 0.995 in 0.003295049 seconds [ Info: The search for identifiable functions concluded in 0.033590513 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001380057 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001391147 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.09e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.014121541 [ Info: Selecting generators in 0.003238791 [ Info: Inclusion checked with probability 0.995 in 0.00320313 seconds [ Info: The search for identifiable functions concluded in 0.03285066 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001183659 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00107828 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.062e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000153658 [ Info: Selecting generators in 0.00221311 [ Info: Inclusion checked with probability 0.995 in 0.003200181 seconds [ Info: The search for identifiable functions concluded in 1.033365823 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001798884 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001567105 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 4.1429e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.5609e-5 [ Info: Selecting generators in 0.001991381 [ Info: Inclusion checked with probability 0.995 in 0.002766164 seconds [ Info: The search for identifiable functions concluded in 0.015027603 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001493667 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001322578 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.256e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000101719 [ Info: Selecting generators in 0.002360929 [ Info: Inclusion checked with probability 0.995 in 0.003016582 seconds [ Info: The search for identifiable functions concluded in 0.015196881 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001376798 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001220619 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.2939e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.231833289 [ Info: Selecting generators in 0.003191311 [ Info: Inclusion checked with probability 0.995 in 0.00326675 seconds [ Info: The search for identifiable functions concluded in 0.247570604 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001419087 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00115516 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.305e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007486831 [ Info: Selecting generators in 0.00329325 [ Info: Inclusion checked with probability 0.995 in 0.00324464 seconds [ Info: The search for identifiable functions concluded in 0.023459355 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001432377 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001229508 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.365e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00647616 [ Info: Selecting generators in 0.002483497 [ Info: Inclusion checked with probability 0.995 in 0.002938503 seconds [ Info: The search for identifiable functions concluded in 0.021424753 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002532007 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001809794 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.071e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000124959 [ Info: Selecting generators in 0.000848062 [ Info: Inclusion checked with probability 0.995 in 0.003900495 seconds [ Info: The search for identifiable functions concluded in 0.021875189 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00327186 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002067151 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.388e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000106349 [ Info: Selecting generators in 0.000739373 [ Info: Inclusion checked with probability 0.995 in 0.003338729 seconds [ Info: The search for identifiable functions concluded in 0.021589223 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002481927 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001899463 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.244e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000106219 [ Info: Selecting generators in 0.000603954 [ Info: Inclusion checked with probability 0.995 in 0.002855694 seconds [ Info: The search for identifiable functions concluded in 0.018438211 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002517567 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001766494 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.945e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007795188 [ Info: Selecting generators in 0.000747033 [ Info: Inclusion checked with probability 0.995 in 0.003091381 seconds [ Info: The search for identifiable functions concluded in 0.026378059 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002483137 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001719094 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.139e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007385262 [ Info: Selecting generators in 0.000774183 [ Info: Inclusion checked with probability 0.995 in 0.002873584 seconds [ Info: The search for identifiable functions concluded in 0.024838893 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002092071 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001643765 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.038e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007329303 [ Info: Selecting generators in 0.000802573 [ Info: Inclusion checked with probability 0.995 in 0.002988103 seconds [ Info: The search for identifiable functions concluded in 0.024551745 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002698935 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00219423 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.325e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000116449 [ Info: Selecting generators in 0.003365399 [ Info: Inclusion checked with probability 0.995 in 0.003388989 seconds [ Info: The search for identifiable functions concluded in 0.02293677 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002893793 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002391108 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.215e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000123019 [ Info: Selecting generators in 0.003924864 [ Info: Inclusion checked with probability 0.995 in 0.003760356 seconds [ Info: The search for identifiable functions concluded in 0.026488737 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.370327921 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003590237 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.378e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000115909 [ Info: Selecting generators in 0.003550697 [ Info: Inclusion checked with probability 0.995 in 0.003733106 seconds [ Info: The search for identifiable functions concluded in 0.392733686 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002868214 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002043901 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.167e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.015755235 [ Info: Selecting generators in 0.003713956 [ Info: Inclusion checked with probability 0.995 in 0.003606157 seconds [ Info: The search for identifiable functions concluded in 0.038660396 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003036942 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00219528 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.433e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.015121202 [ Info: Selecting generators in 0.003948394 [ Info: Inclusion checked with probability 0.995 in 0.003966744 seconds [ Info: The search for identifiable functions concluded in 0.039619518 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003024532 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00222091 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.568e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.015055912 [ Info: Selecting generators in 0.003687016 [ Info: Inclusion checked with probability 0.995 in 0.003874434 seconds [ Info: The search for identifiable functions concluded in 0.039024683 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01640812 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006146044 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.591e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000135119 [ Info: Selecting generators in 0.009576672 [ Info: Inclusion checked with probability 0.995 in 0.006214183 seconds [ Info: The search for identifiable functions concluded in 0.307938622 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006696519 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005390641 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.216e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000121609 [ Info: Selecting generators in 0.009027688 [ Info: Inclusion checked with probability 0.995 in 0.00545771 seconds [ Info: The search for identifiable functions concluded in 0.044997498 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00768215 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005277372 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.103e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000132759 [ Info: Selecting generators in 0.010676022 [ Info: Inclusion checked with probability 0.995 in 0.006100854 seconds [ Info: The search for identifiable functions concluded in 0.048287428 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008112755 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005902616 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.1259e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002462438 [ Info: Selecting generators in 0.011394066 [ Info: Inclusion checked with probability 0.995 in 0.006733748 seconds [ Info: The search for identifiable functions concluded in 0.056090427 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008299714 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006250462 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.5229e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002875194 [ Info: Selecting generators in 0.011440145 [ Info: Inclusion checked with probability 0.995 in 0.006808388 seconds [ Info: The search for identifiable functions concluded in 0.058441045 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008197385 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005930346 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.356e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002344309 [ Info: Selecting generators in 0.01085879 [ Info: Inclusion checked with probability 0.995 in 0.006686989 seconds [ Info: The search for identifiable functions concluded in 0.055103575 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006259362 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003694696 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.4759e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000123829 [ Info: Selecting generators in 0.002486938 [ Info: Inclusion checked with probability 0.995 in 0.004021463 seconds [ Info: The search for identifiable functions concluded in 0.027606438 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005896056 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003791446 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.139e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000140239 [ Info: Selecting generators in 0.002078411 [ Info: Inclusion checked with probability 0.995 in 0.004165512 seconds [ Info: The search for identifiable functions concluded in 0.02725715 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005763377 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003515288 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.541e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000113429 [ Info: Selecting generators in 0.00224438 [ Info: Inclusion checked with probability 0.995 in 0.004136122 seconds [ Info: The search for identifiable functions concluded in 0.026832415 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00555141 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00320199 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.959e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001306158 [ Info: Selecting generators in 0.002229429 [ Info: Inclusion checked with probability 0.995 in 0.004206742 seconds [ Info: The search for identifiable functions concluded in 0.027478328 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005671308 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003709026 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.276e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001375317 [ Info: Selecting generators in 0.002381469 [ Info: Inclusion checked with probability 0.995 in 0.003877324 seconds [ Info: The search for identifiable functions concluded in 0.028940355 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00552672 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003425799 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.4269e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001277499 [ Info: Selecting generators in 0.00222992 [ Info: Inclusion checked with probability 0.995 in 0.003968404 seconds [ Info: The search for identifiable functions concluded in 0.027586237 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00547762 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003586877 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.36e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000150188 [ Info: Selecting generators in 0.002921023 [ Info: Inclusion checked with probability 0.995 in 0.004293391 seconds [ Info: The search for identifiable functions concluded in 0.032484593 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00541357 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003609367 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.157e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000115699 [ Info: Selecting generators in 0.003012172 [ Info: Inclusion checked with probability 0.995 in 0.008367164 seconds [ Info: The search for identifiable functions concluded in 0.036125329 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005817717 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003745195 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.456e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000111959 [ Info: Selecting generators in 0.002651076 [ Info: Inclusion checked with probability 0.995 in 0.004049733 seconds [ Info: The search for identifiable functions concluded in 0.034728482 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.553260867 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00326203 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.3659e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.017987325 [ Info: Selecting generators in 0.003812665 [ Info: Inclusion checked with probability 0.995 in 0.003661147 seconds [ Info: The search for identifiable functions concluded in 0.596253734 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004704716 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002874893 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.998e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.018852907 [ Info: Selecting generators in 0.003740815 [ Info: Inclusion checked with probability 0.995 in 0.003518808 seconds [ Info: The search for identifiable functions concluded in 0.048623715 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004436729 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002703165 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.358e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.017834757 [ Info: Selecting generators in 0.00328044 [ Info: Inclusion checked with probability 0.995 in 0.003329799 seconds [ Info: The search for identifiable functions concluded in 0.044970828 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002639986 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001987411 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.0399e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000127669 [ Info: Selecting generators in 0.001789233 [ Info: Inclusion checked with probability 0.995 in 0.003134501 seconds [ Info: The search for identifiable functions concluded in 0.018640029 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002442767 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001950872 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.11e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000106789 [ Info: Selecting generators in 0.001826953 [ Info: Inclusion checked with probability 0.995 in 0.003199581 seconds [ Info: The search for identifiable functions concluded in 26.185207884 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002447128 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001781073 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.965e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.976e-5 [ Info: Selecting generators in 0.001735394 [ Info: Inclusion checked with probability 0.995 in 0.003369329 seconds [ Info: The search for identifiable functions concluded in 0.017974565 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002679075 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001936232 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.249e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.0119601 [ Info: Selecting generators in 0.002934853 [ Info: Inclusion checked with probability 0.995 in 0.003148992 seconds [ Info: The search for identifiable functions concluded in 0.031811809 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002431748 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002109011 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.269e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.011903841 [ Info: Selecting generators in 0.002851304 [ Info: Inclusion checked with probability 0.995 in 0.003095701 seconds [ Info: The search for identifiable functions concluded in 0.031792139 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002442437 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001897303 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.1059e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.012060009 [ Info: Selecting generators in 0.002779745 [ Info: Inclusion checked with probability 0.995 in 0.003171001 seconds [ Info: The search for identifiable functions concluded in 0.030753979 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.0141468 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.030161464 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000297698 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:07 ✓ # Computing specializations.. Time: 0:00:07 [ Info: Search for polynomial generators concluded in 0.000188889 [ Info: Selecting generators in 0.018048615 [ Info: Inclusion checked with probability 0.995 in 0.030029825 seconds [ Info: The search for identifiable functions concluded in 13.671333641 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015565948 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.032625072 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000276297 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000165738 [ Info: Selecting generators in 0.017995535 [ Info: Inclusion checked with probability 0.995 in 0.033408514 seconds [ Info: The search for identifiable functions concluded in 0.183121673 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.017539819 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.037516767 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000263498 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000157958 [ Info: Selecting generators in 0.019409192 [ Info: Inclusion checked with probability 0.995 in 2.123860675 seconds [ Info: The search for identifiable functions concluded in 2.278734797 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01536854 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.031989468 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000396536 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.165255211 [ Info: Selecting generators in 0.018216293 [ Info: Inclusion checked with probability 0.995 in 0.029119953 seconds [ Info: The search for identifiable functions concluded in 1.332109564 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015213531 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.031520071 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000372916 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.046737362 [ Info: Selecting generators in 0.019748879 [ Info: Inclusion checked with probability 0.995 in 0.025879533 seconds [ Info: The search for identifiable functions concluded in 0.212490514 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.0142037 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.032110316 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000372817 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.046702202 [ Info: Selecting generators in 0.01738477 [ Info: Inclusion checked with probability 0.995 in 0.027639287 seconds [ Info: The search for identifiable functions concluded in 0.210772751 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.819275803 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 10.076463816 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.205417059 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 3   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000176608 [ Info: Selecting generators in 1.2459583 [ Info: Inclusion checked with probability 0.995 in 3.783497432 seconds [ Info: The search for identifiable functions concluded in 21.927996051 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.466903657 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 11.207296991 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.222380363 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 6   ⌝ # Computing specializations.. Time: 0:00:00 Points: 8   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000166269 [ Info: Selecting generators in 1.078304094 [ Info: Inclusion checked with probability 0.995 in 4.666729155 seconds [ Info: The search for identifiable functions concluded in 23.453931411 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.466830354 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 11.601701222 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.190373556 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:00 Points: 6   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000169878 [ Info: Selecting generators in 0.602001935 [ Info: Inclusion checked with probability 0.995 in 3.303192388 seconds [ Info: The search for identifiable functions concluded in 22.000185042 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.961730017 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 10.930362862 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.180308428 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.026022001 [ Info: Selecting generators in 0.513441765 [ Info: Inclusion checked with probability 0.995 in 2.667523806 seconds [ Info: The search for identifiable functions concluded in 22.276272861 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.813464662 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 10.100788876 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.17241222 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 6   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.022761271 [ Info: Selecting generators in 0.545775578 [ Info: Inclusion checked with probability 0.995 in 4.055759309 seconds [ Info: The search for identifiable functions concluded in 21.480930552 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.25146333 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 10.613107912 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.168849292 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.024395087 [ Info: Selecting generators in 1.542792967 [ Info: Inclusion checked with probability 0.995 in 2.737625515 seconds [ Info: The search for identifiable functions concluded in 20.175518069 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013159859 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.011379945 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 4.8819e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000152539 [ Info: Selecting generators in 0.007422362 [ Info: Inclusion checked with probability 0.995 in 0.007758509 seconds [ Info: The search for identifiable functions concluded in 0.079473141 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011702943 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010366725 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.8259e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000160198 [ Info: Selecting generators in 0.007969747 [ Info: Inclusion checked with probability 0.995 in 0.008895499 seconds [ Info: The search for identifiable functions concluded in 0.076891285 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012367797 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010609143 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.8179e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000106909 [ Info: Selecting generators in 0.00763444 [ Info: Inclusion checked with probability 0.995 in 0.007813728 seconds [ Info: The search for identifiable functions concluded in 0.076217091 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011919691 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.009768651 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 4.1259e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.02842644 [ Info: Selecting generators in 0.01202491 [ Info: Inclusion checked with probability 0.995 in 0.008677871 seconds [ Info: The search for identifiable functions concluded in 0.104437512 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011269237 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.009575213 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.665e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.032095446 [ Info: Selecting generators in 0.011667493 [ Info: Inclusion checked with probability 0.995 in 0.007699569 seconds [ Info: The search for identifiable functions concluded in 0.104484292 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012202898 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01087651 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.748e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.030524701 [ Info: Selecting generators in 0.011083569 [ Info: Inclusion checked with probability 0.995 in 0.008330423 seconds [ Info: The search for identifiable functions concluded in 0.111375979 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011783012 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.008085195 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 3.8039e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000326577 [ Info: Selecting generators in 0.037762434 [ Info: Inclusion checked with probability 0.995 in 0.013518906 seconds [ Info: The search for identifiable functions concluded in 0.704040845 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k12*k13 + k12*k14 + k13*k14, k01*k12 + k01*k13 + k01*k14 + k12*k13 + k12*k14 + k12*k31 + k12*k41 + k13*k14 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k12*k13*k14, k01*k12*k13 + k01*k12*k14 + k01*k13*k14 + k12*k13*k14 + k12*k13*k41 + k12*k14*k31 + k13*k14*k21] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012144719 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.007749429 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 3.652e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000253598 [ Info: Selecting generators in 0.047922911 [ Info: Inclusion checked with probability 0.995 in 0.014142561 seconds [ Info: The search for identifiable functions concluded in 1.495640699 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k12*k13 + k12*k14 + k13*k14, k01*k12 + k01*k13 + k01*k14 + k12*k13 + k12*k14 + k12*k31 + k12*k41 + k13*k14 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k12*k13*k14, k01*k12*k13 + k01*k12*k14 + k01*k13*k14 + k12*k13*k14 + k12*k13*k41 + k12*k14*k31 + k13*k14*k21] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012928662 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.008277864 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.7199e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000255767 [ Info: Selecting generators in 0.039693776 [ Info: Inclusion checked with probability 0.995 in 0.014874324 seconds [ Info: The search for identifiable functions concluded in 0.461131433 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k12*k13 + k12*k14 + k13*k14, k01*k12 + k01*k13 + k01*k14 + k12*k13 + k12*k14 + k12*k31 + k12*k41 + k13*k14 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k12*k13*k14, k01*k12*k13 + k01*k12*k14 + k01*k13*k14 + k12*k13*k14 + k12*k13*k41 + k12*k14*k31 + k13*k14*k21] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011424855 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006434541 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.754e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 2.566188265 [ Info: Selecting generators in 0.058318806 [ Info: Inclusion checked with probability 0.995 in 0.011901851 seconds [ Info: The search for identifiable functions concluded in 3.004626355 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31 + k21*k41 + k31*k41, k12*k13 + k12*k14 + k13*k14, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31*k41, k12*k13*k14] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y1(t), u(t), k01, k12, k13, k14, k21, k31, k41] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013636085 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.009227205 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.459e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.296948937 [ Info: Selecting generators in 0.063095431 [ Info: Inclusion checked with probability 0.995 in 0.012594085 seconds [ Info: The search for identifiable functions concluded in 0.877945391 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31 + k21*k41 + k31*k41, k12*k13 + k12*k14 + k13*k14, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31*k41, k12*k13*k14] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y1(t), u(t), k01, k12, k13, k14, k21, k31, k41] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011118158 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006784768 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.5469e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.264417096 [ Info: Selecting generators in 0.06221632 [ Info: Inclusion checked with probability 0.995 in 0.013372607 seconds [ Info: The search for identifiable functions concluded in 0.743471704 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31 + k21*k41 + k31*k41, k12*k13 + k12*k14 + k13*k14, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31*k41, k12*k13*k14] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y1(t), u(t), k01, k12, k13, k14, k21, k31, k41] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.020435853 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.013952862 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 7.177e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000157369 [ Info: Selecting generators in 0.009892399 [ Info: Inclusion checked with probability 0.995 in 0.013401877 seconds [ Info: The search for identifiable functions concluded in 0.100106332 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.019693859 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015319829 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 7.0299e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000136619 [ Info: Selecting generators in 0.008461033 [ Info: Inclusion checked with probability 0.995 in 0.012422516 seconds [ Info: The search for identifiable functions concluded in 0.096177849 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.018449011 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015719746 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 9.164e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000120289 [ Info: Selecting generators in 0.008913998 [ Info: Inclusion checked with probability 0.995 in 0.013042661 seconds [ Info: The search for identifiable functions concluded in 0.098443568 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01847773 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01415693 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 7.7049e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.04694471 [ Info: Selecting generators in 0.013601745 [ Info: Inclusion checked with probability 0.995 in 0.015412679 seconds [ Info: The search for identifiable functions concluded in 0.154020058 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.020099895 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015052152 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.6099e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.041278831 [ Info: Selecting generators in 0.013620265 [ Info: Inclusion checked with probability 0.995 in 0.012810153 seconds [ Info: The search for identifiable functions concluded in 0.145709484 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.019608581 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015621737 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.5309e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.046769102 [ Info: Selecting generators in 0.015614197 [ Info: Inclusion checked with probability 0.995 in 0.012264218 seconds [ Info: The search for identifiable functions concluded in 0.153060226 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.010529443 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.014817335 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.426e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000208448 [ Info: Selecting generators in 0.098781905 [ Info: Inclusion checked with probability 0.995 in 0.018371971 seconds [ Info: The search for identifiable functions concluded in 1.679640391 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a*e)//(a + e*s - s)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012492005 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.017171673 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.074e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000163359 [ Info: Selecting generators in 0.080847139 [ Info: Inclusion checked with probability 0.995 in 0.014280889 seconds [ Info: The search for identifiable functions concluded in 0.49192177 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a*e)//(a + e*s - s)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.009591172 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.014225669 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 7.6689e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000176148 [ Info: Selecting generators in 0.078951526 [ Info: Inclusion checked with probability 0.995 in 0.016785886 seconds [ Info: The search for identifiable functions concluded in 0.475343602 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a*e)//(a + e*s - s)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011148968 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.014265909 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.4149e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.080369303 [ Info: Selecting generators in 0.095229807 [ Info: Inclusion checked with probability 0.995 in 0.016383689 seconds [ Info: The search for identifiable functions concluded in 0.610065097 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011227667 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016970164 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.7399e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.086824954 [ Info: Selecting generators in 1.158847015 [ Info: Inclusion checked with probability 0.995 in 0.018728508 seconds [ Info: The search for identifiable functions concluded in 1.682793221 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013300588 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.017297591 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.3869e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.074495077 [ Info: Selecting generators in 0.071837171 [ Info: Inclusion checked with probability 0.995 in 0.014000792 seconds [ Info: The search for identifiable functions concluded in 1.571048135 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 4.253604547 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.065764637 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 8.052e-5 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 5   ⌝ # Computing specializations.. Time: 0:00:00 Points: 13   ⌟ # Computing specializations.. Time: 0:00:01 Points: 21   ⌞ # Computing specializations.. Time: 0:00:01 Points: 28   ⌜ # Computing specializations.. Time: 0:00:01 Points: 36   ⌝ # Computing specializations.. Time: 0:00:02 Points: 44   ⌟ # Computing specializations.. Time: 0:00:02 Points: 50   ⌞ # Computing specializations.. Time: 0:00:03 Points: 57   ⌜ # Computing specializations.. Time: 0:00:03 Points: 65   ⌝ # Computing specializations.. Time: 0:00:03 Points: 73   ⌟ # Computing specializations.. Time: 0:00:04 Points: 79   ⌞ # Computing specializations.. Time: 0:00:04 Points: 87   ⌜ # Computing specializations.. Time: 0:00:04 Points: 95   ✓ # Computing specializations.. Time: 0:00:05 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ⌝ # Computing specializations.. Time: 0:00:00 Points: 14   ⌟ # Computing specializations.. Time: 0:00:01 Points: 21   ⌞ # Computing specializations.. Time: 0:00:01 Points: 29   ⌜ # Computing specializations.. Time: 0:00:01 Points: 37   ⌝ # Computing specializations.. Time: 0:00:02 Points: 42   ⌟ # Computing specializations.. Time: 0:00:02 Points: 50   ⌞ # Computing specializations.. Time: 0:00:02 Points: 57   ⌜ # Computing specializations.. Time: 0:00:03 Points: 63   ⌝ # Computing specializations.. Time: 0:00:03 Points: 71   ⌟ # Computing specializations.. Time: 0:00:03 Points: 78   ⌞ # Computing specializations.. Time: 0:00:04 Points: 84   ⌜ # Computing specializations.. Time: 0:00:04 Points: 91   ⌝ # Computing specializations.. Time: 0:00:05 Points: 99   ⌟ # Computing specializations.. Time: 0:00:05 Points: 107   ⌞ # Computing specializations.. Time: 0:00:07 Points: 114   ⌜ # Computing specializations.. Time: 0:00:07 Points: 122   ⌝ # Computing specializations.. Time: 0:00:08 Points: 130   ⌟ # Computing specializations.. Time: 0:00:08 Points: 138   ⌞ # Computing specializations.. Time: 0:00:08 Points: 146   ⌜ # Computing specializations.. Time: 0:00:09 Points: 154   ⌝ # Computing specializations.. Time: 0:00:09 Points: 161   ⌟ # Computing specializations.. Time: 0:00:09 Points: 169   ⌞ # Computing specializations.. Time: 0:00:10 Points: 177   ⌜ # Computing specializations.. Time: 0:00:11 Points: 185   ⌝ # Computing specializations.. Time: 0:00:11 Points: 193   ⌟ # Computing specializations.. Time: 0:00:11 Points: 201   ⌞ # Computing specializations.. Time: 0:00:12 Points: 207   ⌜ # Computing specializations.. Time: 0:00:12 Points: 215   ⌝ # Computing specializations.. Time: 0:00:12 Points: 222   ⌟ # Computing specializations.. Time: 0:00:13 Points: 229   ⌞ # Computing specializations.. Time: 0:00:13 Points: 236   ⌜ # Computing specializations.. Time: 0:00:14 Points: 243   ⌝ # Computing specializations.. Time: 0:00:14 Points: 251   ⌟ # Computing specializations.. Time: 0:00:15 Points: 259   ⌞ # Computing specializations.. Time: 0:00:15 Points: 267   ⌜ # Computing specializations.. Time: 0:00:15 Points: 275   ⌝ # Computing specializations.. Time: 0:00:16 Points: 283   ⌟ # Computing specializations.. Time: 0:00:16 Points: 290   ⌞ # Computing specializations.. Time: 0:00:16 Points: 297   ⌜ # Computing specializations.. Time: 0:00:17 Points: 304   ⌝ # Computing specializations.. Time: 0:00:17 Points: 311   ⌟ # Computing specializations.. Time: 0:00:18 Points: 319   ⌞ # Computing specializations.. Time: 0:00:18 Points: 326   ⌜ # Computing specializations.. Time: 0:00:18 Points: 333   ⌝ # Computing specializations.. Time: 0:00:19 Points: 340   ⌟ # Computing specializations.. Time: 0:00:19 Points: 347   ⌞ # Computing specializations.. Time: 0:00:19 Points: 355   ⌜ # Computing specializations.. Time: 0:00:20 Points: 363   ⌝ # Computing specializations.. Time: 0:00:20 Points: 370   ⌟ # Computing specializations.. Time: 0:00:21 Points: 378   ⌞ # Computing specializations.. Time: 0:00:21 Points: 385   ⌜ # Computing specializations.. Time: 0:00:21 Points: 393   ⌝ # Computing specializations.. Time: 0:00:22 Points: 399   ⌟ # Computing specializations.. Time: 0:00:22 Points: 406   ⌞ # Computing specializations.. Time: 0:00:22 Points: 414   ⌜ # Computing specializations.. Time: 0:00:23 Points: 422   ⌝ # Computing specializations.. Time: 0:00:23 Points: 429   ⌟ # Computing specializations.. Time: 0:00:24 Points: 437   ⌞ # Computing specializations.. Time: 0:00:24 Points: 445   ⌜ # Computing specializations.. Time: 0:00:25 Points: 453   ⌝ # Computing specializations.. Time: 0:00:27 Points: 460   ⌟ # Computing specializations.. Time: 0:00:27 Points: 467   ⌞ # Computing specializations.. Time: 0:00:27 Points: 475   ⌜ # Computing specializations.. Time: 0:00:28 Points: 483   ⌝ # Computing specializations.. Time: 0:00:28 Points: 491   ⌟ # Computing specializations.. Time: 0:00:28 Points: 499   ⌞ # Computing specializations.. Time: 0:00:29 Points: 507   ⌜ # Computing specializations.. Time: 0:00:30 Points: 515   ⌝ # Computing specializations.. Time: 0:00:30 Points: 524   ⌟ # Computing specializations.. Time: 0:00:30 Points: 532   ⌞ # Computing specializations.. Time: 0:00:31 Points: 540   ⌜ # Computing specializations.. Time: 0:00:31 Points: 548   ⌝ # Computing specializations.. Time: 0:00:32 Points: 554   ⌟ # Computing specializations.. Time: 0:00:32 Points: 561   ⌞ # Computing specializations.. Time: 0:00:32 Points: 569   ⌜ # Computing specializations.. Time: 0:00:33 Points: 575   ⌝ # Computing specializations.. Time: 0:00:33 Points: 583   ⌟ # Computing specializations.. Time: 0:00:33 Points: 590   ⌞ # Computing specializations.. Time: 0:00:34 Points: 596   ⌜ # Computing specializations.. Time: 0:00:34 Points: 603   ⌝ # Computing specializations.. Time: 0:00:35 Points: 610   ⌟ # Computing specializations.. Time: 0:00:35 Points: 617   ⌞ # Computing specializations.. Time: 0:00:36 Points: 624   ⌜ # Computing specializations.. Time: 0:00:36 Points: 630   ⌝ # Computing specializations.. Time: 0:00:36 Points: 637   ✓ # Computing specializations.. Time: 0:00:37 [ Info: Search for polynomial generators concluded in 0.000363176 [ Info: Selecting generators in 0.042650419 [ Info: Inclusion checked with probability 0.995 in 8.183451385 seconds [ Info: The search for identifiable functions concluded in 71.083857769 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (T*a + T*d + T*dr + e + g - r - rR)//T, (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 4.077705579 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.066666039 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 8.3869e-5 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 3   ⌝ # Computing specializations.. Time: 0:00:00 Points: 11   ⌟ # Computing specializations.. Time: 0:00:00 Points: 19   ⌞ # Computing specializations.. Time: 0:00:01 Points: 25   ⌜ # Computing specializations.. Time: 0:00:01 Points: 32   ⌝ # Computing specializations.. Time: 0:00:02 Points: 39   ⌟ # Computing specializations.. Time: 0:00:02 Points: 47   ⌞ # Computing specializations.. Time: 0:00:03 Points: 54   ⌜ # Computing specializations.. Time: 0:00:03 Points: 62   ⌝ # Computing specializations.. Time: 0:00:03 Points: 68   ⌟ # Computing specializations.. Time: 0:00:04 Points: 76   ⌞ # Computing specializations.. Time: 0:00:04 Points: 82   ⌜ # Computing specializations.. Time: 0:00:04 Points: 90   ⌝ # Computing specializations.. Time: 0:00:05 Points: 96   ✓ # Computing specializations.. Time: 0:00:05 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 5   ⌝ # Computing specializations.. Time: 0:00:00 Points: 13   ⌟ # Computing specializations.. Time: 0:00:01 Points: 21   ⌞ # Computing specializations.. Time: 0:00:01 Points: 29   ⌜ # Computing specializations.. Time: 0:00:01 Points: 36   ⌝ # Computing specializations.. Time: 0:00:02 Points: 43   ⌟ # Computing specializations.. Time: 0:00:02 Points: 50   ⌞ # Computing specializations.. Time: 0:00:03 Points: 57   ⌜ # Computing specializations.. Time: 0:00:03 Points: 65   ⌝ # Computing specializations.. Time: 0:00:03 Points: 72   ⌟ # Computing specializations.. Time: 0:00:04 Points: 79   ⌞ # Computing specializations.. Time: 0:00:04 Points: 86   ⌜ # Computing specializations.. Time: 0:00:04 Points: 93   ⌝ # Computing specializations.. Time: 0:00:05 Points: 101   ⌟ # Computing specializations.. Time: 0:00:05 Points: 109   ⌞ # Computing specializations.. Time: 0:00:06 Points: 117   ⌜ # Computing specializations.. Time: 0:00:06 Points: 123   ⌝ # Computing specializations.. Time: 0:00:06 Points: 131   ⌟ # Computing specializations.. Time: 0:00:07 Points: 137  ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 40 running 1 of 1 signal (10): User defined signal 1 gc_mark_objarray at /source/src/gc-stock.c:1829 gc_mark_outrefs at /source/src/gc-stock.c:2435 [inlined] gc_mark_and_steal at /source/src/gc-stock.c:2568 _jl_gc_collect at /source/src/gc-stock.c:3088 ijl_gc_collect at /source/src/gc-stock.c:3510 maybe_collect at /source/src/gc-stock.c:356 [inlined] jl_gc_small_alloc_inner at /source/src/gc-stock.c:733 ijl_gc_small_alloc at /source/src/gc-stock.c:782 Array at ./boot.jl:676 [inlined] Array at ./boot.jl:688 [inlined] Array at ./boot.jl:696 [inlined] similar at ./abstractarray.jl:877 [inlined] similar at ./array.jl:409 [inlined] similar at ./abstractarray.jl:876 [inlined] similar at ./broadcast.jl:228 [inlined] similar at ./broadcast.jl:227 [inlined] copy at ./broadcast.jl:918 [inlined] materialize at ./broadcast.jl:893 [inlined] exponent_vector at /home/pkgeval/.julia/packages/AbstractAlgebra/eRqDm/src/MPoly.jl:504 iterate at /home/pkgeval/.julia/packages/AbstractAlgebra/eRqDm/src/generic/MPoly.jl:853 [inlined] copyto! at ./abstractarray.jl:953 _collect at ./array.jl:765 [inlined] collect at ./array.jl:759 [inlined] io_extract_monoms_ir at /home/pkgeval/.julia/packages/Groebner/uED9g/src/input_output/AbstractAlgebra.jl:173 unknown function (ip: 0x7bc41e989ff6) at (unknown file) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 io_convert_polynomials_to_ir at /home/pkgeval/.julia/packages/Groebner/uED9g/src/input_output/AbstractAlgebra.jl:16 groebner_apply0! at /home/pkgeval/.julia/packages/Groebner/uED9g/src/groebner/learn_apply.jl:128 #groebner_apply!#200 at /home/pkgeval/.julia/packages/Groebner/uED9g/src/interface.jl:403 [inlined] groebner_apply! at /home/pkgeval/.julia/packages/Groebner/uED9g/src/interface.jl:401 unknown function (ip: 0x7bc41e9b4e4a) at (unknown file) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 interpolate_exponents! at /home/pkgeval/.julia/packages/ParamPunPam/nx0fr/src/groebner/paramgb.jl:459 _paramgb at /home/pkgeval/.julia/packages/ParamPunPam/nx0fr/src/groebner/paramgb.jl:166 #paramgb#63 at /home/pkgeval/.julia/packages/ParamPunPam/nx0fr/src/groebner/paramgb.jl:108 paramgb at /home/pkgeval/.julia/packages/ParamPunPam/nx0fr/src/groebner/paramgb.jl:65 [inlined] #groebner_basis_coeffs#135 at /home/pkgeval/.julia/packages/RationalFunctionFields/SAAsh/src/simplification.jl:147 groebner_basis_coeffs at /home/pkgeval/.julia/packages/RationalFunctionFields/SAAsh/src/simplification.jl:147 unknown function (ip: 0x7bc41e934dd1) at (unknown file) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 #simplified_generating_set#137 at /home/pkgeval/.julia/packages/RationalFunctionFields/SAAsh/src/simplification.jl:319 simplified_generating_set at /home/pkgeval/.julia/packages/RationalFunctionFields/SAAsh/src/simplification.jl:319 unknown function (ip: 0x7bc41c83c864) at (unknown file) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 #_find_identifiable_functions#243 at /home/pkgeval/.julia/packages/StructuralIdentifiability/MQy2n/src/identifiable_functions.jl:120 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/MQy2n/src/identifiable_functions.jl:86 [inlined] #241 at /home/pkgeval/.julia/packages/StructuralIdentifiability/MQy2n/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:542 with_logger at ./logging/logging.jl:653 [inlined] #find_identifiable_functions#239 at /home/pkgeval/.julia/packages/StructuralIdentifiability/MQy2n/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/MQy2n/src/identifiable_functions.jl:49 unknown function (ip: 0x7bc41c83be80) at (unknown file) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 jl_apply at /source/src/julia.h:2285 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 ijl_eval_thunk at /source/src/toplevel.c:765 jl_toplevel_eval_flex at /source/src/toplevel.c:712 jl_eval_toplevel_stmts at /source/src/toplevel.c:602 jl_toplevel_eval_flex at /source/src/toplevel.c:684 ijl_toplevel_eval at /source/src/toplevel.c:779 ijl_toplevel_eval_in at /source/src/toplevel.c:824 eval at ./boot.jl:489 include_string at ./loading.jl:3151 _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 _include at ./loading.jl:3211 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 unknown function (ip: 0x7bc43295f552) at (unknown file) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/MQy2n/test/runtests.jl:152 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.14/Test/src/Test.jl:2244 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/MQy2n/test/runtests.jl:150 [inlined] macro expansion at ./timing.jl:739 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/MQy2n/test/runtests.jl:149 _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_invoke at /source/src/gf.c:4127 ijl_eval_thunk at /source/src/toplevel.c:757 jl_toplevel_eval_flex at /source/src/toplevel.c:712 jl_eval_toplevel_stmts at /source/src/toplevel.c:602 jl_toplevel_eval_flex at /source/src/toplevel.c:684 ijl_toplevel_eval at /source/src/toplevel.c:779 ijl_toplevel_eval_in at /source/src/toplevel.c:824 eval at ./boot.jl:489 include_string at ./loading.jl:3151 _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 _include at ./loading.jl:3211 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_74896.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 jl_apply at /source/src/julia.h:2285 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:693 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 ijl_eval_thunk at /source/src/toplevel.c:765 jl_toplevel_eval_flex at /source/src/toplevel.c:712 jl_eval_toplevel_stmts at /source/src/toplevel.c:602 jl_toplevel_eval_flex at /source/src/toplevel.c:684 ijl_toplevel_eval at /source/src/toplevel.c:779 ijl_toplevel_eval_in at /source/src/toplevel.c:824 eval at ./boot.jl:489 exec_options at ./client.jl:310 _start at ./client.jl:585 jfptr__start_50962.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 jl_apply at /source/src/julia.h:2285 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x7bc4743b0249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ==============================================================  ⌞ # Computing specializations.. Time: 0:00:09┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.14/Profile/src/Profile.jl:1361 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x00007bc459dfc010 Total snapshots: 514. Utilization: 100% ╎514 @Base/client.jl:585 _start() ╎ 514 @Base/client.jl:310 exec_options(opts::Base.JLOptions) ╎ 514 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ 514 @Base/Base.jl:311 (::Base.IncludeInto)(fname::String) ╎ 514 @Base/Base.jl:310 include(mapexpr::Function, mod::Module, _path::S… ╎ 514 @Base/loading.jl:3211 _include(mapexpr::Function, mod::Module, _p… ╎ ╎ 514 @Base/loading.jl:3151 include_string(mapexpr::typeof(identity), … ╎ ╎ 514 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ ╎ 514 @StructuralIdentifiability/…:149 top-level scope ╎ ╎ 514 @Base/timing.jl:739 macro expansion ╎ ╎ 514 @StructuralIdentifiability/…:150 macro expansion ╎ ╎ ╎ 514 @Test/src/Test.jl:2244 macro expansion ╎ ╎ ╎ 514 @StructuralIdentifiability/…:152 macro expansion ╎ ╎ ╎ 514 @Base/Base.jl:311 (::Base.IncludeInto)(fname::String) ╎ ╎ ╎ 514 @Base/Base.jl:310 include(mapexpr::Function, mod::Module… ╎ ╎ ╎ 514 @Base/loading.jl:3211 _include(mapexpr::Function, mod::… ╎ ╎ ╎ ╎ 514 @Base/loading.jl:3151 include_string(mapexpr::typeof(i… ╎ ╎ ╎ ╎ 514 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ ╎ ╎ ╎ 514 @StructuralIdentifiability/…:49 kwcall(::@NamedTuple… ╎ ╎ ╎ ╎ 514 @StructuralIdentifiability/…:61 #find_identifiable_… ╎ ╎ ╎ ╎ 514 @Base/…gging.jl:653 with_logger ╎ ╎ ╎ ╎ ╎ 514 @Base/…gging.jl:542 with_logstate(f::StructuralId… ╎ ╎ ╎ ╎ ╎ 514 @StructuralIdentifiability/…:63 (::StructuralIde… ╎ ╎ ╎ ╎ ╎ 514 @StructuralIdentifiability/…:86 _find_identifia… ╎ ╎ ╎ ╎ ╎ 514 @StructuralIdentifiability/…:120 _find_identif… ╎ ╎ ╎ ╎ ╎ 514 @RationalFunctionFields/…:319 kwcall(::@Named… ╎ ╎ ╎ ╎ ╎ ╎ 514 @RationalFunctionFields/…:319 simplified_gen… ╎ ╎ ╎ ╎ ╎ ╎ 514 @RationalFunctionFields/…:147 kwcall(::@Nam… ╎ ╎ ╎ ╎ ╎ ╎ 514 @RationalFunctionFields/…:147 groebner_bas… ╎ ╎ ╎ ╎ ╎ ╎ 514 @ParamPunPam/…:65 paramgb ╎ ╎ ╎ ╎ ╎ ╎ 514 @ParamPunPam/…:108 paramgb(blackbox::Ide… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 514 @ParamPunPam/…:166 _paramgb(blackbox::I… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 514 @ParamPunPam/…:459 interpolate_exponen… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 514 @Groebner/…l:401 groebner_apply!(trac… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 514 @Groebner/…l:403 #groebner_apply!#200 ╎ ╎ ╎ ╎ ╎ ╎ ╎ 514 @Groebner/…l:128 groebner_apply0!(w… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 514 @Groebner/…l:16 io_convert_polynom… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 514 @Groebner/…l:173 io_extract_monom… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 514 @Base/…ay.jl:759 collect ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 514 @Base/…ay.jl:765 _collect ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 514 @Base/…ay.jl:953 copyto!(dest:… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 514 @AbstractAlgebra/…:853 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 514 @AbstractAlgebra/…:504 exponen… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 514 @Base/…st.jl:893 materialize ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 514 @Base/…st.jl:918 copy ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 514 @Base/…st.jl:227 similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 514 @Base/…st.jl:228 similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 514 @Base/…ay.jl:876 similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 514 @Base/…ay.jl:409 similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 514 @Base/…ay.jl:877 similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 514 @Base/…ot.jl:696 Array ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 514 @Base/…ot.jl:688 Array 513╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +12 514 @Base/…ot.jl:676 Array Points: 145  ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1246 wait_forever at ./task.jl:1168 jfptr_wait_forever_46727.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 jl_apply at /source/src/julia.h:2285 [inlined] start_task at /source/src/task.c:1275 unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ==============================================================  ⌜ # Computing specializations.. Time: 0:00:21 Points: 236   ⌝ # Computing specializations.. Time: 0:00:21 Points: 241   ⌟ # Computing specializations.. Time: 0:00:21 Points: 245 ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.14/Profile/src/Profile.jl:1361 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x000076604e014100 Total snapshots: 442. Utilization: 0% ╎442 @Base/task.jl:1168 wait_forever() 441╎ 442 @Base/task.jl:1246 wait()  ⌞ # Computing specializations.. Time: 0:00:22 Points: 251   ⌜ # Computing specializations.. Time: 0:00:22 Points: 259   ⌝ # Computing specializations.. Time: 0:00:23 Points: 265   ⌟ # Computing specializations.. Time: 0:00:23 Points: 273   ⌞ # Computing specializations.. Time: 0:00:23 Points: 281   ⌜ # Computing specializations.. Time: 0:00:24 Points: 289   ⌝ # Computing specializations.. Time: 0:00:24 Points: 297   ⌟ # Computing specializations.. Time: 0:00:25 Points: 304   ⌞ # Computing specializations.. Time: 0:00:25 Points: 312   ⌜ # Computing specializations.. Time: 0:00:25 Points: 318   ⌝ # Computing specializations.. Time: 0:00:26 Points: 325   ⌟ # Computing specializations.. Time: 0:00:26 Points: 330   ⌞ # Computing specializations.. Time: 0:00:26 Points: 337   ⌜ # Computing specializations.. Time: 0:00:27 Points: 344   ⌝ # Computing specializations.. Time: 0:00:27 Points: 351   ⌟ # Computing specializations.. Time: 0:00:27 Points: 358  [1] signal 15: Terminated in expression starting at /PkgEval.jl/scripts/evaluate.jl:214 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1246 wait_forever at ./task.jl:1168 jfptr_wait_forever_46727.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 jl_apply at /source/src/julia.h:2285 [inlined] start_task at /source/src/task.c:1275 unknown function (ip: (nil)) at (unknown file) Allocations: 18274677 (Pool: 18273987; Big: 690); GC: 16 [40] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/StructuralIdentifiability/MQy2n/test/identifiable_functions.jl:1096 n_mod2_preinv at /workspace/srcdir/flint-3.3.1/src/ulong_extras/mod2_preinv.c:44 fpField at /home/pkgeval/.julia/packages/Nemo/i8LKC/src/flint/gfp_elem.jl:408 [inlined] coeff at /home/pkgeval/.julia/packages/Nemo/i8LKC/src/flint/nmod_mpoly.jl:118 iterate at /home/pkgeval/.julia/packages/AbstractAlgebra/eRqDm/src/generic/MPoly.jl:843 [inlined] iterate at ./generator.jl:45 [inlined] collect_to! at ./array.jl:886 collect_to_with_first! at ./array.jl:864 [inlined] collect at ./array.jl:838 map at ./abstractarray.jl:3420 [inlined] io_extract_coeffs_ir_ff at /home/pkgeval/.julia/packages/Groebner/uED9g/src/input_output/AbstractAlgebra.jl:120 [inlined] io_extract_coeffs_ir at /home/pkgeval/.julia/packages/Groebner/uED9g/src/input_output/AbstractAlgebra.jl:100 unknown function (ip: 0x7bc41e987874) at (unknown file) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 io_convert_polynomials_to_ir at /home/pkgeval/.julia/packages/Groebner/uED9g/src/input_output/AbstractAlgebra.jl:16 groebner_apply0! at /home/pkgeval/.julia/packages/Groebner/uED9g/src/groebner/learn_apply.jl:128 #groebner_apply!#200 at /home/pkgeval/.julia/packages/Groebner/uED9g/src/interface.jl:403 [inlined] groebner_apply! at /home/pkgeval/.julia/packages/Groebner/uED9g/src/interface.jl:401 unknown function (ip: 0x7bc41e9b4e4a) at (unknown file) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 interpolate_exponents! at /home/pkgeval/.julia/packages/ParamPunPam/nx0fr/src/groebner/paramgb.jl:459 _paramgb at /home/pkgeval/.julia/packages/ParamPunPam/nx0fr/src/groebner/paramgb.jl:166 #paramgb#63 at /home/pkgeval/.julia/packages/ParamPunPam/nx0fr/src/groebner/paramgb.jl:108 paramgb at /home/pkgeval/.julia/packages/ParamPunPam/nx0fr/src/groebner/paramgb.jl:65 [inlined] #groebner_basis_coeffs#135 at /home/pkgeval/.julia/packages/RationalFunctionFields/SAAsh/src/simplification.jl:147 groebner_basis_coeffs at /home/pkgeval/.julia/packages/RationalFunctionFields/SAAsh/src/simplification.jl:147 unknown function (ip: 0x7bc41e934dd1) at (unknown file) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 #simplified_generating_set#137 at /home/pkgeval/.julia/packages/RationalFunctionFields/SAAsh/src/simplification.jl:319 simplified_generating_set at /home/pkgeval/.julia/packages/RationalFunctionFields/SAAsh/src/simplification.jl:319 unknown function (ip: 0x7bc41c83c864) at (unknown file) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 #_find_identifiable_functions#243 at /home/pkgeval/.julia/packages/StructuralIdentifiability/MQy2n/src/identifiable_functions.jl:120 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/MQy2n/src/identifiable_functions.jl:86 [inlined] #241 at /home/pkgeval/.julia/packages/StructuralIdentifiability/MQy2n/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:542 with_logger at ./logging/logging.jl:653 [inlined] #find_identifiable_functions#239 at /home/pkgeval/.julia/packages/StructuralIdentifiability/MQy2n/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/MQy2n/src/identifiable_functions.jl:49 unknown function (ip: 0x7bc41c83be80) at (unknown file) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 jl_apply at /source/src/julia.h:2285 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 ijl_eval_thunk at /source/src/toplevel.c:765 jl_toplevel_eval_flex at /source/src/toplevel.c:712 jl_eval_toplevel_stmts at /source/src/toplevel.c:602 jl_toplevel_eval_flex at /source/src/toplevel.c:684 ijl_toplevel_eval at /source/src/toplevel.c:779 ijl_toplevel_eval_in at /source/src/toplevel.c:824 eval at ./boot.jl:489 include_string at ./loading.jl:3151 _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 _include at ./loading.jl:3211 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 unknown function (ip: 0x7bc43295f552) at (unknown file) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/MQy2n/test/runtests.jl:152 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.14/Test/src/Test.jl:2244 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/MQy2n/test/runtests.jl:150 [inlined] macro expansion at ./timing.jl:739 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/MQy2n/test/runtests.jl:149 _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_invoke at /source/src/gf.c:4127 ijl_eval_thunk at /source/src/toplevel.c:757 jl_toplevel_eval_flex at /source/src/toplevel.c:712 jl_eval_toplevel_stmts at /source/src/toplevel.c:602 jl_toplevel_eval_flex at /source/src/toplevel.c:684 ijl_toplevel_eval at /source/src/toplevel.c:779 ijl_toplevel_eval_in at /source/src/toplevel.c:824 eval at ./boot.jl:489 include_string at ./loading.jl:3151 _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 _include at ./loading.jl:3211 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_74896.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 jl_apply at /source/src/julia.h:2285 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:693 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 ijl_eval_thunk at /source/src/toplevel.c:765 jl_toplevel_eval_flex at /source/src/toplevel.c:712 jl_eval_toplevel_stmts at /source/src/toplevel.c:602 jl_toplevel_eval_flex at /source/src/toplevel.c:684 ijl_toplevel_eval at /source/src/toplevel.c:779 ijl_toplevel_eval_in at /source/src/toplevel.c:824 eval at ./boot.jl:489 exec_options at ./client.jl:310 _start at ./client.jl:585 jfptr__start_50962.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 jl_apply at /source/src/julia.h:2285 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x7bc4743b0249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) Allocations: 858355776 (Pool: 858352569; Big: 3207); GC: 294 PkgEval terminated after 2722.53s: test duration exceeded the time limit