Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1640 (5532bea546*) started at 2026-01-30T08:38:23.051 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 10.21s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.14.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.18.0+0 [e37daf67] + LibGit2_jll v1.9.2+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.12.2 [4536629a] + OpenBLAS_jll v0.3.30+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.17s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling packages... 1482.7 ms ✓ Measurements 4829.2 ms ✓ StatsBase 1387.6 ms ✓ EarCut_jll 22285.4 ms ✓ GeometryBasics 6311.1 ms ✓ RayTraceHeatTransfer 5 dependencies successfully precompiled in 37 seconds. 56 already precompiled. Precompilation completed after 56.98s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_NBRpaC/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.16 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_NBRpaC/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.16 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.18.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.30+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:04:25 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:06 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011294760473095633 Iteration 10: d = 1.1732207664543558e-5 Iteration 20: d = 1.461446393923454e-7 Iteration 30: d = 2.256941814779423e-9 Iteration 40: d = 3.842947035074224e-11 Iteration 50: d = 6.78228966188467e-13 Iteration 60: d = 1.2123470310963325e-14 Converged after 65 iterations. d = 1.6168377980552552e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 74%|████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010687046468021088 Iteration 10: d = 8.440269051860339e-6 Iteration 20: d = 1.1240365702467568e-7 Iteration 30: d = 1.9032904885474004e-9 Iteration 40: d = 3.3222620953928195e-11 Iteration 50: d = 5.795591151954475e-13 Iteration 60: d = 1.0092244821013501e-14 Converged after 64 iterations. d = 1.9520473973454865e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011627831934119858 Iteration 10: d = 1.6730470521004433e-5 Iteration 20: d = 2.5686256244198747e-7 Iteration 30: d = 4.25481786915407e-9 Iteration 40: d = 7.274205990960966e-11 Iteration 50: d = 1.262789537588011e-12 Iteration 60: d = 2.208663476225617e-14 Converged after 66 iterations. d = 1.9547507993344257e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 35%|███████████▍ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001135717012741937 Iteration 10: d = 1.1968035760993928e-5 Iteration 20: d = 1.6431323610957388e-7 Iteration 30: d = 2.699770535476013e-9 Iteration 40: d = 4.7190240143008584e-11 Iteration 50: d = 8.428732266446275e-13 Iteration 60: d = 1.5197725300393525e-14 Converged after 65 iterations. d = 2.0150931346092744e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 77%|█████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001422999907781069 Iteration 10: d = 1.0372690252815132e-5 Iteration 20: d = 1.2615382715712264e-7 Iteration 30: d = 1.8396751396560673e-9 Iteration 40: d = 2.8068869767254892e-11 Iteration 50: d = 4.364300675086965e-13 Iteration 60: d = 6.818459121299287e-15 Converged after 63 iterations. d = 1.949617189817574e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 79%|██████████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013390619634190942 Iteration 10: d = 1.495881506101744e-5 Iteration 20: d = 2.2014446158412773e-7 Iteration 30: d = 3.427254289690331e-9 Iteration 40: d = 5.397601729540403e-11 Iteration 50: d = 8.536903073102212e-13 Iteration 60: d = 1.3536107427581897e-14 Converged after 65 iterations. d = 1.6710065534803243e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 77%|█████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012615861189239517 Iteration 10: d = 9.384696783392764e-6 Iteration 20: d = 1.2111831535538563e-7 Iteration 30: d = 1.875615731359281e-9 Iteration 40: d = 2.9563369788979265e-11 Iteration 50: d = 4.670515749542657e-13 Iteration 60: d = 7.368620584586554e-15 Converged after 63 iterations. d = 2.1198925649258243e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 34%|███████████▏ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001316123051451891 Iteration 10: d = 1.267009780274272e-5 Iteration 20: d = 1.737702468314962e-7 Iteration 30: d = 2.661984241311795e-9 Iteration 40: d = 4.167599488635089e-11 Iteration 50: d = 6.574935254907912e-13 Iteration 60: d = 1.0440326214155892e-14 Converged after 64 iterations. d = 1.9764479561142727e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 77%|█████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014248142059197456 Iteration 10: d = 1.0768287148601891e-5 Iteration 20: d = 1.10861571942007e-7 Iteration 30: d = 1.4407266064945223e-9 Iteration 40: d = 2.0495228677381608e-11 Iteration 50: d = 3.0561665808536565e-13 Iteration 60: d = 4.681686063167351e-15 Converged after 62 iterations. d = 2.038567727535428e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 75%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014168582310124772 Iteration 10: d = 1.0404279827963866e-5 Iteration 20: d = 1.3156412022125116e-7 Iteration 30: d = 1.981124013694174e-9 Iteration 40: d = 3.0493707604741125e-11 Iteration 50: d = 4.72575757893332e-13 Iteration 60: d = 7.325439064190263e-15 Converged after 63 iterations. d = 2.1117689627712658e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.004085139733863392 Iteration 10: d = 3.779605808049432e-5 Iteration 20: d = 4.655148855120635e-7 Iteration 30: d = 6.515030768254778e-9 Iteration 40: d = 9.444524918005733e-11 Iteration 50: d = 1.3890348852268931e-12 Iteration 60: d = 2.0538341709844794e-14 Converged after 66 iterations. d = 1.6954855509466791e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.003003480848835981 Iteration 10: d = 3.255178028730339e-5 Iteration 20: d = 4.660673046233101e-7 Iteration 30: d = 7.166516624952039e-9 Iteration 40: d = 1.1079327864134362e-10 Iteration 50: d = 1.714716758311789e-12 Iteration 60: d = 2.6537912353909357e-14 Converged after 66 iterations. d = 2.161702646254723e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0024019190611983946 Iteration 10: d = 2.7885501900982622e-5 Iteration 20: d = 4.1654579707169484e-7 Iteration 30: d = 6.746204745432726e-9 Iteration 40: d = 1.119470391005766e-10 Iteration 50: d = 1.8801625254183524e-12 Iteration 60: d = 3.178398105912909e-14 Converged after 67 iterations. d = 1.813008291060364e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002235493914064955 Iteration 10: d = 3.352941448153326e-5 Iteration 20: d = 5.329703321999983e-7 Iteration 30: d = 8.917355674994236e-9 Iteration 40: d = 1.5145721765276764e-10 Iteration 50: d = 2.592161450514934e-12 Iteration 60: d = 4.453511108577582e-14 Converged after 68 iterations. d = 1.7423297351346813e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 75%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001422999907781069 Iteration 10: d = 1.0372690252815132e-5 Iteration 20: d = 1.2615382715712264e-7 Iteration 30: d = 1.8396751396560673e-9 Iteration 40: d = 2.8068869767254892e-11 Iteration 50: d = 4.364300675086965e-13 Iteration 60: d = 6.818459121299287e-15 Converged after 63 iterations. d = 1.949617189817574e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012511952105151256 Iteration 10: d = 9.719737434124373e-6 Iteration 20: d = 1.051049504721967e-7 Iteration 30: d = 1.3764700797398675e-9 Iteration 40: d = 1.880996240540097e-11 Iteration 50: d = 2.6098138383589075e-13 Iteration 60: d = 3.696951143434349e-15 Converged after 62 iterations. d = 1.5536938705363961e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012661164329419603 Iteration 10: d = 1.1847995251881836e-5 Iteration 20: d = 1.4523789246917758e-7 Iteration 30: d = 1.9312791942942187e-9 Iteration 40: d = 2.5999781245335695e-11 Iteration 50: d = 3.519323994310116e-13 Iteration 60: d = 4.805803268715032e-15 Converged after 62 iterations. d = 2.0524913820684494e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.889228559447 Iteration 2: convergence error = 4823.111824552872 Iteration 3: convergence error = 1097.5718090450896 Iteration 4: convergence error = 320.9791319165056 Iteration 5: convergence error = 95.30270272952066 Iteration 6: convergence error = 28.442506445163872 Iteration 7: convergence error = 8.549882673863067 Iteration 8: convergence error = 2.565116919618049 Iteration 9: convergence error = 0.7677533659000346 Iteration 10: convergence error = 0.2294778327241147 Iteration 11: convergence error = 0.06853626241331767 Iteration 12: convergence error = 0.020460074454149435 Iteration 13: convergence error = 0.006106384062604775 Iteration 14: convergence error = 0.001822208868816233 Iteration 15: convergence error = 0.0005437209633782913 Iteration 16: convergence error = 0.00016223074067056587 Iteration 17: convergence error = 4.840364840674738e-5 Iteration 18: convergence error = 1.4441626490224735e-5 Iteration 19: convergence error = 4.308734332880704e-6 Iteration 20: convergence error = 1.2855259683419717e-6 Iteration 21: convergence error = 3.8353618947439827e-7 Iteration 22: convergence error = 1.1429710866650566e-7 Iteration 23: convergence error = 3.3193373383255675e-8 Iteration 24: convergence error = 9.581754056853242e-9 Iteration 25: convergence error = 2.7584974304772913e-9 Iteration 26: convergence error = 7.860307960072532e-10 Iteration 27: convergence error = 2.262368070660159e-10 Iteration 28: convergence error = 6.480149750132114e-11 Iteration 29: convergence error = 1.8417267710901797e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012511952105151256 Iteration 10: d = 9.719737434124373e-6 Iteration 20: d = 1.051049504721967e-7 Iteration 30: d = 1.3764700797398675e-9 Iteration 40: d = 1.880996240540097e-11 Iteration 50: d = 2.6098138383589075e-13 Iteration 60: d = 3.696951143434349e-15 Converged after 62 iterations. d = 1.5536938705363961e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.852409721498 Iteration 2: convergence error = 4821.2105525199 Iteration 3: convergence error = 1090.2461983237768 Iteration 4: convergence error = 320.75065002786505 Iteration 5: convergence error = 95.20285176157086 Iteration 6: convergence error = 28.394636831352727 Iteration 7: convergence error = 8.526900000734258 Iteration 8: convergence error = 2.555862732196829 Iteration 9: convergence error = 0.7642731897044541 Iteration 10: convergence error = 0.2282236431178717 Iteration 11: convergence error = 0.06809735390743299 Iteration 12: convergence error = 0.0203097533037635 Iteration 13: convergence error = 0.006055744816421793 Iteration 14: convergence error = 0.0018053713822610007 Iteration 15: convergence error = 0.0005381814480642788 Iteration 16: convergence error = 0.00016042410175032273 Iteration 17: convergence error = 4.781874326909019e-5 Iteration 18: convergence error = 1.4253432254918152e-5 Iteration 19: convergence error = 4.248504865245195e-6 Iteration 20: convergence error = 1.2663456345762825e-6 Iteration 21: convergence error = 3.774528067879146e-7 Iteration 22: convergence error = 1.1237375474593136e-7 Iteration 23: convergence error = 3.257309799664654e-8 Iteration 24: convergence error = 9.392579158884473e-9 Iteration 25: convergence error = 2.7077931008534506e-9 Iteration 26: convergence error = 7.746621122350916e-10 Iteration 27: convergence error = 2.2282620193436742e-10 Iteration 28: convergence error = 6.480149750132114e-11 Iteration 29: convergence error = 1.9554136088117957e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 13:48:35 Bin 1 ray tracing: 7%|██▎ | ETA: 0:01:14 Bin 1 ray tracing: 15%|████▋ | ETA: 0:00:38 Bin 1 ray tracing: 23%|███████ | ETA: 0:00:26 Bin 1 ray tracing: 32%|█████████▌ | ETA: 0:00:20 Bin 1 ray tracing: 39%|███████████▊ | ETA: 0:00:16 Bin 1 ray tracing: 48%|██████████████▎ | ETA: 0:00:12 Bin 1 ray tracing: 57%|█████████████████ | ETA: 0:00:09 Bin 1 ray tracing: 66%|███████████████████▋ | ETA: 0:00:07 Bin 1 ray tracing: 74%|██████████████████████▍ | ETA: 0:00:05 Bin 1 ray tracing: 83%|█████████████████████████ | ETA: 0:00:03 Bin 1 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:02 Bin 1 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 2 ray tracing: 16%|████▊ | ETA: 0:00:11 Bin 2 ray tracing: 24%|███████▎ | ETA: 0:00:10 Bin 2 ray tracing: 33%|█████████▉ | ETA: 0:00:08 Bin 2 ray tracing: 41%|████████████▍ | ETA: 0:00:07 Bin 2 ray tracing: 50%|███████████████ | ETA: 0:00:06 Bin 2 ray tracing: 58%|█████████████████▍ | ETA: 0:00:05 Bin 2 ray tracing: 66%|███████████████████▋ | ETA: 0:00:04 Bin 2 ray tracing: 73%|██████████████████████ | ETA: 0:00:03 Bin 2 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:02 Bin 2 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:01 Bin 2 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 3 ray tracing: 15%|████▋ | ETA: 0:00:11 Bin 3 ray tracing: 23%|███████ | ETA: 0:00:10 Bin 3 ray tracing: 31%|█████████▎ | ETA: 0:00:09 Bin 3 ray tracing: 39%|███████████▋ | ETA: 0:00:08 Bin 3 ray tracing: 47%|██████████████▎ | ETA: 0:00:07 Bin 3 ray tracing: 56%|████████████████▊ | ETA: 0:00:06 Bin 3 ray tracing: 63%|███████████████████ | ETA: 0:00:05 Bin 3 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:04 Bin 3 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:03 Bin 3 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 3 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 13%|███▉ | ETA: 0:00:07 Bin 4 ray tracing: 26%|███████▋ | ETA: 0:00:06 Bin 4 ray tracing: 38%|███████████▎ | ETA: 0:00:05 Bin 4 ray tracing: 50%|██████████████▉ | ETA: 0:00:04 Bin 4 ray tracing: 61%|██████████████████▏ | ETA: 0:00:04 Bin 4 ray tracing: 70%|████████████████████▉ | ETA: 0:00:03 Bin 4 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:02 Bin 4 ray tracing: 88%|██████████████████████████▎ | ETA: 0:00:01 Bin 4 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 8%|██▌ | ETA: 0:00:12 Bin 5 ray tracing: 16%|████▉ | ETA: 0:00:11 Bin 5 ray tracing: 24%|███████▎ | ETA: 0:00:10 Bin 5 ray tracing: 32%|█████████▋ | ETA: 0:00:09 Bin 5 ray tracing: 42%|████████████▌ | ETA: 0:00:07 Bin 5 ray tracing: 51%|███████████████▎ | ETA: 0:00:06 Bin 5 ray tracing: 61%|██████████████████▍ | ETA: 0:00:05 Bin 5 ray tracing: 73%|██████████████████████ | ETA: 0:00:03 Bin 5 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 5 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 9%|██▊ | ETA: 0:00:11 Bin 6 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 6 ray tracing: 29%|████████▋ | ETA: 0:00:08 Bin 6 ray tracing: 40%|████████████▏ | ETA: 0:00:06 Bin 6 ray tracing: 50%|██████████████▉ | ETA: 0:00:06 Bin 6 ray tracing: 58%|█████████████████▌ | ETA: 0:00:05 Bin 6 ray tracing: 68%|████████████████████▍ | ETA: 0:00:04 Bin 6 ray tracing: 77%|███████████████████████▎ | ETA: 0:00:03 Bin 6 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 6 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 9%|██▌ | ETA: 0:00:11 Bin 7 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 7 ray tracing: 26%|███████▋ | ETA: 0:00:09 Bin 7 ray tracing: 34%|██████████▎ | ETA: 0:00:08 Bin 7 ray tracing: 43%|████████████▊ | ETA: 0:00:07 Bin 7 ray tracing: 51%|███████████████▎ | ETA: 0:00:06 Bin 7 ray tracing: 59%|█████████████████▊ | ETA: 0:00:05 Bin 7 ray tracing: 68%|████████████████████▎ | ETA: 0:00:04 Bin 7 ray tracing: 78%|███████████████████████▎ | ETA: 0:00:03 Bin 7 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 12%|███▊ | ETA: 0:00:07 Bin 8 ray tracing: 25%|███████▌ | ETA: 0:00:06 Bin 8 ray tracing: 38%|███████████▍ | ETA: 0:00:05 Bin 8 ray tracing: 50%|███████████████ | ETA: 0:00:04 Bin 8 ray tracing: 62%|██████████████████▌ | ETA: 0:00:03 Bin 8 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:02 Bin 8 ray tracing: 87%|██████████████████████████▎ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:08 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 12%|███▋ | ETA: 0:00:07 Bin 9 ray tracing: 25%|███████▌ | ETA: 0:00:06 Bin 9 ray tracing: 38%|███████████▍ | ETA: 0:00:05 Bin 9 ray tracing: 50%|██████████████▉ | ETA: 0:00:04 Bin 9 ray tracing: 59%|█████████████████▊ | ETA: 0:00:04 Bin 9 ray tracing: 68%|████████████████████▌ | ETA: 0:00:03 Bin 9 ray tracing: 78%|███████████████████████▎ | ETA: 0:00:02 Bin 9 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:01 Bin 9 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 10 ray tracing: 19%|█████▍ | ETA: 0:00:09 Bin 10 ray tracing: 29%|████████▎ | ETA: 0:00:08 Bin 10 ray tracing: 39%|███████████▏ | ETA: 0:00:07 Bin 10 ray tracing: 47%|█████████████▋ | ETA: 0:00:06 Bin 10 ray tracing: 56%|████████████████▎ | ETA: 0:00:05 Bin 10 ray tracing: 65%|██████████████████▉ | ETA: 0:00:04 Bin 10 ray tracing: 74%|█████████████████████▍ | ETA: 0:00:03 Bin 10 ray tracing: 83%|████████████████████████ | ETA: 0:00:02 Bin 10 ray tracing: 92%|██████████████████████████▌ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 20%|██████▋ | ETA: 0:00:04 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:03 Bin 1 progress: 62%|████████████████████▌ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:05 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 22%|███████▍ | ETA: 0:00:04 Bin 2 progress: 42%|█████████████▉ | ETA: 0:00:03 Bin 2 progress: 64%|█████████████████████▎ | ETA: 0:00:02 Bin 2 progress: 87%|████████████████████████████▋ | ETA: 0:00:01 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 22%|███████▍ | ETA: 0:00:04 Bin 3 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 3 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 3 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 20%|██████▋ | ETA: 0:00:04 Bin 4 progress: 42%|█████████████▉ | ETA: 0:00:03 Bin 4 progress: 64%|█████████████████████▎ | ETA: 0:00:02 Bin 4 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 20%|██████▋ | ETA: 0:00:04 Bin 5 progress: 40%|█████████████▎ | ETA: 0:00:03 Bin 5 progress: 64%|█████████████████████▎ | ETA: 0:00:02 Bin 5 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 24%|████████▏ | ETA: 0:00:03 Bin 6 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 6 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 6 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 22%|███████▍ | ETA: 0:00:04 Bin 7 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 7 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 7 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 22%|███████▍ | ETA: 0:00:04 Bin 8 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 8 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 8 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 20%|██████▋ | ETA: 0:00:04 Bin 9 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 9 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 9 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 22%|███████▏ | ETA: 0:00:04 Bin 10 progress: 42%|█████████████▌ | ETA: 0:00:03 Bin 10 progress: 64%|████████████████████▋ | ETA: 0:00:02 Bin 10 progress: 89%|████████████████████████████▌ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:04 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012511952105151256 Iteration 10: d = 9.719737434124373e-6 Iteration 20: d = 1.051049504721967e-7 Iteration 30: d = 1.3764700797398675e-9 Iteration 40: d = 1.880996240540097e-11 Iteration 50: d = 2.6098138383589075e-13 Iteration 60: d = 3.696951143434349e-15 Converged after 62 iterations. d = 1.5536938705363961e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012743057582425908 Iteration 10: d = 1.2066431116224132e-5 Iteration 20: d = 1.485817488527237e-7 Iteration 30: d = 1.976331258449842e-9 Iteration 40: d = 2.6586221030976487e-11 Iteration 50: d = 3.5951400159822345e-13 Iteration 60: d = 4.9061831179510054e-15 Converged after 62 iterations. d = 2.05234327240523e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001203820909057149 Iteration 10: d = 9.111442741126065e-6 Iteration 20: d = 9.158418006731205e-8 Iteration 30: d = 1.1775739160274583e-9 Iteration 40: d = 1.6091209394738986e-11 Iteration 50: d = 2.2451171409020644e-13 Iteration 60: d = 3.1705544342153865e-15 Converged after 61 iterations. d = 2.0841463839181917e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001277268606929357 Iteration 10: d = 1.1275583146002008e-5 Iteration 20: d = 1.370070384686479e-7 Iteration 30: d = 1.8798329058231842e-9 Iteration 40: d = 2.637388957298315e-11 Iteration 50: d = 3.721869116797978e-13 Iteration 60: d = 5.252933058896709e-15 Converged after 63 iterations. d = 1.4329796385314713e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017828004218053907 Iteration 10: d = 2.2079927233083334e-5 Iteration 20: d = 2.6552203017317786e-7 Iteration 30: d = 3.54400598270557e-9 Iteration 40: d = 4.862721406996595e-11 Iteration 50: d = 6.738155730919831e-13 Iteration 60: d = 9.390519304649631e-15 Converged after 64 iterations. d = 1.6815516113249763e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001351980203806361 Iteration 10: d = 1.3610982964936222e-5 Iteration 20: d = 1.5917479451997684e-7 Iteration 30: d = 2.1393506581146446e-9 Iteration 40: d = 2.9525942384252547e-11 Iteration 50: d = 4.1164929676982267e-13 Iteration 60: d = 5.778864637269862e-15 Converged after 63 iterations. d = 1.5989503296981605e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015438254183951796 Iteration 10: d = 1.5519034876449935e-5 Iteration 20: d = 1.8849274319677747e-7 Iteration 30: d = 2.544417679071991e-9 Iteration 40: d = 3.5111564700406486e-11 Iteration 50: d = 4.881213124867639e-13 Iteration 60: d = 6.809189710797211e-15 Converged after 63 iterations. d = 1.8554487820639796e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012542410311033956 Iteration 10: d = 1.3699481734242736e-5 Iteration 20: d = 1.6458683385214171e-7 Iteration 30: d = 2.1710024266760644e-9 Iteration 40: d = 2.9753413543829196e-11 Iteration 50: d = 4.1505301862180105e-13 Iteration 60: d = 5.830582976722921e-15 Converged after 63 iterations. d = 1.5887836838030196e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015503950734704632 Iteration 10: d = 1.4011325693229866e-5 Iteration 20: d = 1.2984133818588828e-7 Iteration 30: d = 1.54518881655658e-9 Iteration 40: d = 2.0425034035943676e-11 Iteration 50: d = 2.808176004387909e-13 Iteration 60: d = 3.926163598413308e-15 Converged after 62 iterations. d = 1.6857851356251573e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001235319913847753 Iteration 10: d = 1.3576242854495245e-5 Iteration 20: d = 1.6020981942326454e-7 Iteration 30: d = 2.1210501607678884e-9 Iteration 40: d = 2.8889251636267783e-11 Iteration 50: d = 3.9724519710017226e-13 Iteration 60: d = 5.507075048130533e-15 Converged after 63 iterations. d = 1.540989037043829e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8650.81794239871 Iteration 2: convergence error = 4819.744265529296 Iteration 3: convergence error = 1096.919575362455 Iteration 4: convergence error = 322.9607298893525 Iteration 5: convergence error = 96.04981211251379 Iteration 6: convergence error = 29.049223951515614 Iteration 7: convergence error = 8.808008368805986 Iteration 8: convergence error = 2.660192068681681 Iteration 9: convergence error = 0.8015609463236615 Iteration 10: convergence error = 0.241200086449453 Iteration 11: convergence error = 0.07252477126849044 Iteration 12: convergence error = 0.021797486067725913 Iteration 13: convergence error = 0.0065496598017489305 Iteration 14: convergence error = 0.0019677476691413176 Iteration 15: convergence error = 0.0005911321829898952 Iteration 16: convergence error = 0.0001775739799541043 Iteration 17: convergence error = 5.334112825039483e-5 Iteration 18: convergence error = 1.6022791214709287e-5 Iteration 19: convergence error = 4.812934093934018e-6 Iteration 20: convergence error = 1.4457075394602725e-6 Iteration 21: convergence error = 4.342618922237307e-7 Iteration 22: convergence error = 1.3031490198045503e-7 Iteration 23: convergence error = 3.826312422461342e-8 Iteration 24: convergence error = 1.1120391718577594e-8 Iteration 25: convergence error = 3.22552295983769e-9 Iteration 26: convergence error = 9.304130799137056e-10 Iteration 27: convergence error = 2.687556843739003e-10 Iteration 28: convergence error = 7.366907084360719e-11 Iteration 29: convergence error = 2.319211489520967e-11 Iteration 30: convergence error = 6.59383658785373e-12 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.3598955904394 K, F = -7437.078838473277, relative_change = 0.032640104409560694 Iter 2: T = 936.7962907061842 K, F = -6304.140236756443, relative_change = 0.031594864562377 Iter 3: T = 908.2777322110165 K, F = -5342.2750779254, relative_change = 0.030442646686473927 Iter 5: T = 857.2366576731058 K, F = -3832.7133869643435, relative_change = 0.027823318045899027 Iter 10: T = 762.3856057488621 K, F = -1659.423002402758, relative_change = 0.01989081573141562 Iter 15: T = 706.923008702979 K, F = -710.4011517759623, relative_change = 0.011898593529307153 Iter 20: T = 678.4316041440266 K, F = -301.06327428551555, relative_change = 0.006085419074375486 Iter 25: T = 665.1552753742352 K, F = -126.73489807444207, relative_change = 0.0028091244254213675 Iter 30: T = 659.3128932440252 K, F = -53.15937844200075, relative_change = 0.0012283691613972057 Iter 35: T = 656.8139156634513 K, F = -22.26046401539254, relative_change = 0.0005237256755978011 Iter 40: T = 655.7586829415176 K, F = -9.314672115127596, relative_change = 0.00022082904048343125 Iter 45: T = 655.3155692592019 K, F = -3.89640180484025, relative_change = 9.26721024068715e-5 Iter 50: T = 655.1299362092275 K, F = -1.6296787034983131, relative_change = 3.881261444095132e-5 Iter 55: T = 655.0522465286928 K, F = -0.6815785778241679, relative_change = 1.624172018882576e-5 Iter 60: T = 655.0197460180907 K, F = -0.28504910996759125, relative_change = 6.794200634052364e-6 Iter 65: T = 655.0061522087484 K, F = -0.11921178324574533, relative_change = 2.8417166612203192e-6 Iter 70: T = 655.000466816597 K, F = -0.04985593858281323, relative_change = 1.1884924660656573e-6 Iter 75: T = 654.9980890654471 K, F = -0.020850374653849868, relative_change = 4.970509469226224e-7 Iter 80: T = 654.9970946523802 K, F = -0.008719880185310724, relative_change = 2.0787425184030802e-7 Iter 85: T = 654.9966787753613 K, F = -0.003646758816722606, relative_change = 8.693577619644302e-8 Iter 90: T = 654.9965048503459 K, F = -0.001525118226443689, relative_change = 3.635762908684537e-8 Iter 95: T = 654.9964321127784 K, F = -0.0006378226802940534, relative_change = 1.520520330291421e-8 Iter 100: T = 654.9964016930504 K, F = -0.0002667450655901016, relative_change = 6.358999098777e-9 Iter 105: T = 654.9963889711554 K, F = -0.00011155597220213753, relative_change = 2.659409615417204e-9 Iter 110: T = 654.9963836507068 K, F = -4.665403959036585e-5, relative_change = 1.1121968984155781e-9 Iter 115: T = 654.9963814256316 K, F = -1.9511276651562603e-5, relative_change = 4.651340359271098e-10 Iter 120: T = 654.9963804950786 K, F = -8.159849563760257e-6, relative_change = 1.9452462561019376e-10 Iter 125: T = 654.9963801059102 K, F = -3.412547292913626e-6, relative_change = 8.135253980136056e-11 Iter 130: T = 654.9963799431554 K, F = -1.4271684618538671e-6, relative_change = 3.4022613979494076e-11 Iter 135: T = 654.9963798750892 K, F = -5.968582580950788e-7, relative_change = 1.4228648311994645e-11 Iter 140: T = 654.9963798466232 K, F = -2.4961353928265595e-7, relative_change = 5.950597511100003e-12 Iter 145: T = 654.9963798347184 K, F = -1.0439135955664369e-7, relative_change = 2.48861085899849e-12 Iter 150: T = 654.9963798297397 K, F = -4.365742989342891e-8, relative_change = 1.0407600262522861e-12 Iter 155: T = 654.9963798276575 K, F = -1.8258882517052655e-8, relative_change = 4.352779147664159e-13 Converged in 159 iterations to T = 654.9963798269059 K Iter 1: T = 970.3523799116732 K, F = -6755.23843929267, relative_change = 0.029647620088326814 Iter 2: T = 942.8692425076276 K, F = -5721.517170323018, relative_change = 0.028322842271533553 Iter 3: T = 917.5057784998394 K, F = -4844.231780698385, relative_change = 0.02690029843409925 Iter 5: T = 872.9216002621629 K, F = -3468.4483526926006, relative_change = 0.023806997109031426 Iter 10: T = 793.7913288542758 K, F = -1492.8866230645804, relative_change = 0.015501264173345292 Iter 15: T = 750.6807783934656 K, F = -635.4789222894535, relative_change = 0.00848717005391223 Iter 20: T = 729.7555821983121 K, F = -268.2370427982851, relative_change = 0.00408302964378282 Iter 25: T = 720.3377337180509 K, F = -112.66783131337525, relative_change = 0.0018228984051764552 Iter 30: T = 716.2658481390711 K, F = -47.209245403787435, relative_change = 0.0007845876951350925 Iter 35: T = 714.5381958908677 K, F = -19.75963662694255, relative_change = 0.0003321804864449614 Iter 40: T = 713.8112303208782 K, F = -8.266572979368771, relative_change = 0.0001396442849923751 Iter 45: T = 713.5064193633921 K, F = -3.4576814163749545, relative_change = 5.852822978130097e-5 Iter 50: T = 713.3788057991175 K, F = -1.4461316006908667, relative_change = 2.4499544789740908e-5 Iter 55: T = 713.3254121025523 K, F = -0.6048048982026623, relative_change = 1.024991476725276e-5 Iter 60: T = 713.3030779884606 K, F = -0.2529393242838915, relative_change = 4.287321458189507e-6 Iter 65: T = 713.2937368546969 K, F = -0.10578271719647903, relative_change = 1.7931288166188566e-6 Iter 70: T = 713.2898301514638 K, F = -0.04423967802604423, relative_change = 7.499288373954221e-7 Iter 75: T = 713.2881962988588 K, F = -0.018501576091211835, relative_change = 3.1363286045887357e-7 Iter 80: T = 713.2875129982243 K, F = -0.007737582596179515, relative_change = 1.3116564875934825e-7 Iter 85: T = 713.2872272330455 K, F = -0.0032359498892996497, relative_change = 5.4855152874865304e-8 Iter 90: T = 713.2871077225138 K, F = -0.0013533129650715736, relative_change = 2.2941099629492475e-8 Iter 95: T = 713.2870577417609 K, F = -0.0005659716566882578, relative_change = 9.594245256167526e-9 Iter 100: T = 713.2870368392096 K, F = -0.00023669610885179715, relative_change = 4.01242855452885e-9 Iter 105: T = 713.2870280975122 K, F = -9.898913924977215e-5, relative_change = 1.6780456341959218e-9 Iter 110: T = 713.2870244416299 K, F = -4.1398439575623946e-5, relative_change = 7.017787306174502e-10 Iter 115: T = 713.2870229126963 K, F = -1.7313322060674707e-5, relative_change = 2.9349225301872826e-10 Iter 120: T = 713.2870222732779 K, F = -7.2406376477873735e-6, relative_change = 1.2274195894721728e-10 Iter 125: T = 713.2870220058655 K, F = -3.02812038399658e-6, relative_change = 5.133214042781808e-11 Iter 130: T = 713.2870218940305 K, F = -1.2663962546399787e-6, relative_change = 2.146771666427995e-11 Iter 135: T = 713.2870218472598 K, F = -5.296226428530559e-7, relative_change = 8.978065749679887e-12 Iter 140: T = 713.2870218276996 K, F = -2.2149393053005895e-7, relative_change = 3.754724422281295e-12 Iter 145: T = 713.2870218195194 K, F = -9.263095668288202e-8, relative_change = 1.5702629616222752e-12 Iter 150: T = 713.2870218160983 K, F = -3.873925469299877e-8, relative_change = 6.5670072927033e-13 Iter 155: T = 713.2870218146677 K, F = -1.6202188146685614e-8, relative_change = 2.746565171716656e-13 Converged in 157 iterations to T = 713.2870218143648 K Iter 1: T = 974.4810076605044 K, F = -5814.526679382609, relative_change = 0.02551899233949563 Iter 2: T = 951.1507634156718 K, F = -4919.206960507814, relative_change = 0.02394119953229552 Iter 3: T = 929.9339860656975 K, F = -4159.946685527184, relative_change = 0.022306429396936864 Iter 5: T = 893.4851417645348 K, F = -2970.859783045138, relative_change = 0.018950787536736798 Iter 10: T = 832.1351573139495 K, F = -1270.2421540891496, relative_change = 0.01111743644478472 Iter 15: T = 801.0223698178977 K, F = -537.8195113330617, relative_change = 0.005605289152918349 Iter 20: T = 786.643769567575 K, F = -226.27861530417943, relative_change = 0.002566648561360676 Iter 25: T = 780.3435872608643 K, F = -94.88870471372927, relative_change = 0.001117957629011471 Iter 30: T = 777.6541940722145 K, F = -39.72998533594986, relative_change = 0.0004758192507043934 Iter 35: T = 776.5195529473203 K, F = -16.623790056570325, relative_change = 0.00020047867738734137 Iter 40: T = 776.0432726638356 K, F = -6.953717018265333, relative_change = 8.410522845042741e-5 Iter 45: T = 775.8437767191074 K, F = -2.9083816867721684, relative_change = 3.521996053889603e-5 Iter 50: T = 775.7602907896795 K, F = -1.2163644609274735, relative_change = 1.4737495281792703e-5 Iter 55: T = 775.7253664612431 K, F = -0.5087059317030467, relative_change = 6.1648121248174175e-6 Iter 60: T = 775.7107590248858 K, F = -0.21274825817276788, relative_change = 2.578445726377178e-6 Iter 65: T = 775.7046497292615 K, F = -0.08897410059158961, relative_change = 1.078380120049062e-6 Iter 70: T = 775.7020946979201 K, F = -0.03721007311236402, relative_change = 4.509990226031216e-7 Iter 75: T = 775.701026144388 K, F = -0.015561704243049701, relative_change = 1.8861450268646818e-7 Iter 80: T = 775.7005792609812 K, F = -0.0065080918323332515, relative_change = 7.888106933900853e-8 Iter 85: T = 775.7003923687308 K, F = -0.0027217619487645006, relative_change = 3.298904576356528e-8 Iter 90: T = 775.7003142081121 K, F = -0.0011382733886828866, relative_change = 1.379641997807237e-8 Iter 95: T = 775.7002815203997 K, F = -0.000476039531717376, relative_change = 5.769828837906679e-9 Iter 100: T = 775.7002678500064 K, F = -0.00019908541728141937, relative_change = 2.4130115288486044e-9 Iter 105: T = 775.7002621328846 K, F = -8.325989973223535e-5, relative_change = 1.0091502820159024e-9 Iter 110: T = 775.7002597419158 K, F = -3.482028423473782e-5, relative_change = 4.22038703914541e-10 Iter 115: T = 775.7002587419842 K, F = -1.4562258044970022e-5, relative_change = 1.765016192187583e-10 Iter 120: T = 775.7002583238008 K, F = -6.090108808032291e-6, relative_change = 7.381506805302735e-11 Iter 125: T = 775.7002581489115 K, F = -2.5469581608206227e-6, relative_change = 3.08703663755635e-11 Iter 130: T = 775.7002580757708 K, F = -1.0651674549055912e-6, relative_change = 1.2910345409219272e-11 Iter 135: T = 775.7002580451823 K, F = -4.454638123929655e-7, relative_change = 5.39923714331879e-12 Iter 140: T = 775.70025803239 K, F = -1.8629944420478495e-7, relative_change = 2.2580394883384373e-12 Iter 145: T = 775.70025802704 K, F = -7.791168066262344e-8, relative_change = 9.443273021867476e-13 Iter 150: T = 775.7002580248027 K, F = -3.258505010261814e-8, relative_change = 3.949465881591448e-13 Converged in 154 iterations to T = 775.700258023995 K Iter 1: T = 970.4238099725181 K, F = -6738.96303198162, relative_change = 0.029576190027481873 Iter 2: T = 943.0134737311123 K, F = -5707.621307595282, relative_change = 0.02824573754242707 Iter 3: T = 917.7237481375414 K, F = -4832.364918134211, relative_change = 0.02681798966616032 Iter 5: T = 873.2876393477973 K, F = -3459.791498466658, relative_change = 0.023716576016250417 Iter 10: T = 794.4998978005041 K, F = -1488.9694324099319, relative_change = 0.015411157817359368 Iter 15: T = 751.6385707523043 K, F = -633.7397364906195, relative_change = 0.00842306713329212 Iter 20: T = 730.8567679525602 K, F = -267.48326764991924, relative_change = 0.0040476515483466955 Iter 25: T = 721.5092562559302 K, F = -112.34689946496592, relative_change = 0.0018060526866488379 Iter 30: T = 717.4690080154965 K, F = -47.07393041001083, relative_change = 0.0007771282975821248 Iter 35: T = 715.7550128313133 K, F = -19.70284596656142, relative_change = 0.00032898368382935624 Iter 40: T = 715.0338363334262 K, F = -8.242786767216888, relative_change = 0.00013829347369537627 Iter 45: T = 714.7314602254221 K, F = -3.4477274497485917, relative_change = 5.796085069054392e-5 Iter 50: T = 714.6048673734646 K, F = -1.4419676295242145, relative_change = 2.4261828874081706e-5 Iter 55: T = 714.5519009771178 K, F = -0.6030632824768112, relative_change = 1.0150423563376499e-5 Iter 60: T = 714.5297456397058 K, F = -0.25221092596889094, relative_change = 4.245699820391293e-6 Iter 65: T = 714.5204792855433 K, F = -0.10547808640555278, relative_change = 1.7757198361903935e-6 Iter 70: T = 714.516603858317 K, F = -0.044112276757699465, relative_change = 7.426477890414644e-7 Iter 75: T = 714.5149830861111 K, F = -0.01844829517687563, relative_change = 3.10587768245686e-7 Iter 80: T = 714.5143052559256 K, F = -0.007715299849244017, relative_change = 1.2989214243408307e-7 Iter 85: T = 714.5140217785662 K, F = -0.00322663097121767, relative_change = 5.4322555126376723e-8 Iter 90: T = 714.5139032248301 K, F = -0.00134941568274205, relative_change = 2.2718360536539975e-8 Iter 95: T = 714.513853644221 K, F = -0.0005643417668598216, relative_change = 9.501093047216546e-9 Iter 100: T = 714.5138329090144 K, F = -0.00023601446845700202, relative_change = 3.9734711602237e-9 Iter 105: T = 714.5138242373027 K, F = -9.870406977185997e-5, relative_change = 1.6617531961573428e-9 Iter 110: T = 714.5138206106893 K, F = -4.127922178098764e-5, relative_change = 6.949650662395946e-10 Iter 115: T = 714.5138190939962 K, F = -1.7263462116945405e-5, relative_change = 2.9064266953805276e-10 Iter 120: T = 714.513818459697 K, F = -7.21978560414005e-6, relative_change = 1.2155022880891387e-10 Iter 125: T = 714.5138181944255 K, F = -3.0194011396700304e-6, relative_change = 5.0833767117830686e-11 Iter 130: T = 714.5138180834858 K, F = -1.2627488025218625e-6, relative_change = 2.1259274814403445e-11 Iter 135: T = 714.5138180370895 K, F = -5.280976913546453e-7, relative_change = 8.890900494547856e-12 Iter 140: T = 714.5138180176862 K, F = -2.2085781570257979e-7, relative_change = 3.7182985179725655e-12 Iter 145: T = 714.5138180095714 K, F = -9.236610098994902e-8, relative_change = 1.5550490497601659e-12 Iter 150: T = 714.5138180061776 K, F = -3.862842423707491e-8, relative_change = 6.503370149995921e-13 Iter 155: T = 714.5138180047584 K, F = -1.615537403854006e-8, relative_change = 2.719872201890522e-13 Converged in 157 iterations to T = 714.513818004458 K Iter 1: T = 969.2546414520291 K, F = -7005.359191541429, relative_change = 0.030745358547970912 Iter 2: T = 940.648435908082 K, F = -5935.135067457813, relative_change = 0.029513612130959172 Iter 3: T = 914.1426390740679 K, F = -5026.726702808987, relative_change = 0.028178218154826306 Iter 5: T = 867.2482968845626 K, F = -3601.707390034776, relative_change = 0.025227500882874166 Iter 10: T = 782.6737933497074 K, F = -1553.4104447689226, relative_change = 0.016964531171047906 Iter 15: T = 735.4944702913292 K, F = -662.4721609623108, relative_change = 0.00955977333169841 Iter 20: T = 712.179146864013 K, F = -279.9775151409265, relative_change = 0.00468683373703802 Iter 25: T = 701.5742925385252 K, F = -117.67673611790131, relative_change = 0.002113440659574393 Iter 30: T = 696.9651755153275 K, F = -49.32325256310649, relative_change = 0.0009138738989089575 Iter 35: T = 695.0049599788296 K, F = -20.64726214643923, relative_change = 0.00038770678740779384 Iter 40: T = 694.17929313518 K, F = -8.638417066076052, relative_change = 0.0001631285304573522 Iter 45: T = 693.8329474850472 K, F = -3.6133019083641265, relative_change = 6.839610367599525e-5 Iter 50: T = 693.6879183792439 K, F = -1.5112334061742787, relative_change = 2.8634579728044904e-5 Iter 55: T = 693.627233357381 K, F = -0.6320346588709763, relative_change = 1.1980668217019448e-5 Iter 60: T = 693.6018485337383 K, F = -0.2643277318446562, relative_change = 5.011393987618352e-6 Iter 65: T = 693.5912313135148 K, F = -0.11054558959207678, relative_change = 2.095988471878379e-6 Iter 70: T = 693.5867908931223 K, F = -0.04623158639704805, relative_change = 8.765960373800115e-7 Iter 75: T = 693.5849338261821 K, F = -0.019334619151230248, relative_change = 3.666079386765273e-7 Iter 80: T = 693.5841571733448 K, F = -0.008085971708939654, relative_change = 1.5332069389742953e-7 Iter 85: T = 693.5838323669324 K, F = -0.0033816504730813657, relative_change = 6.412069838078946e-8 Iter 90: T = 693.5836965288506 K, F = -0.0014142467074071963, relative_change = 2.6816068615406165e-8 Iter 95: T = 693.5836397197144 K, F = -0.0005914548784751172, relative_change = 1.1214804818770456e-8 Iter 100: T = 693.5836159614503 K, F = -0.00024735349744975377, relative_change = 4.6901661453907595e-9 Iter 105: T = 693.5836060254596 K, F = -0.0001034461865530023, relative_change = 1.9614836262066167e-9 Iter 110: T = 693.5836018701095 K, F = -4.3262430221902015e-5, relative_change = 8.203158933000035e-10 Iter 115: T = 693.5836001322925 K, F = -1.8092865664454116e-5, relative_change = 3.430659202642745e-10 Iter 120: T = 693.5835994055167 K, F = -7.566651789248091e-6, relative_change = 1.4347425225448128e-10 Iter 125: T = 693.5835991015701 K, F = -3.16446303372242e-6, relative_change = 6.000262482577794e-11 Iter 130: T = 693.5835989744562 K, F = -1.3234155953334437e-6, relative_change = 2.509380222756345e-11 Iter 135: T = 693.5835989212957 K, F = -5.53467977004729e-7, relative_change = 1.0494523419769141e-11 Iter 140: T = 693.5835988990634 K, F = -2.314681272208574e-7, relative_change = 4.388957958446357e-12 Iter 145: T = 693.5835988897655 K, F = -9.680317869520394e-8, relative_change = 1.8355230444274013e-12 Iter 150: T = 693.5835988858771 K, F = -4.0485348073993066e-8, relative_change = 7.67658566124586e-13 Iter 155: T = 693.5835988842508 K, F = -1.6930141399917886e-8, relative_change = 3.210190523183687e-13 Converged in 158 iterations to T = 693.5835988837747 K Iter 1: T = 963.5490079903755 K, F = -8305.3932032378, relative_change = 0.036450992009624594 Iter 2: T = 928.9748625512666 K, F = -7047.42852362138, relative_change = 0.03588208295831099 Iter 3: T = 896.2439671634154 K, F = -5979.083145265351, relative_change = 0.035233348831379054 Iter 5: T = 836.1929003634814 K, F = -4301.343554953094, relative_change = 0.03366712418934574 Iter 10: T = 716.3826273065256 K, F = -1879.7694457866555, relative_change = 0.0279603632402173 Iter 15: T = 636.6058330642426 K, F = -814.0381996337067, relative_change = 0.020054653841516633 Iter 20: T = 589.8356118637556 K, F = -348.5668204615178, relative_change = 0.012037621937100538 Iter 25: T = 565.7547991819774 K, F = -147.74480856310873, relative_change = 0.0061722499858769125 Iter 30: T = 554.5170324993933 K, F = -62.200308997011426, relative_change = 0.002853383310671373 Iter 35: T = 549.5678585038933 K, F = -26.091362497261656, relative_change = 0.0012486136937816333 Iter 40: T = 547.4501591763035 K, F = -10.925977623304533, relative_change = 0.0005325273677087699 Iter 45: T = 546.5557832450744 K, F = -4.5719097324396305, relative_change = 0.0002245712091656989 Iter 50: T = 546.1801907770249 K, F = -1.9124738168772972, relative_change = 9.42480218122471e-5 Iter 55: T = 546.0228397382352 K, F = -0.799897725611626, relative_change = 3.947360378529769e-5 Iter 60: T = 545.9569856200346 K, F = -0.33454049953903336, relative_change = 1.651849089637318e-5 Iter 65: T = 545.9294362290444 K, F = -0.139911232659594, relative_change = 6.910008482470189e-6 Iter 70: T = 545.9179132725994 K, F = -0.05851296832184552, relative_change = 2.8901592172151206e-6 Iter 75: T = 545.9130939770666 K, F = -0.02447089559380841, relative_change = 1.2087535288199581e-6 Iter 80: T = 545.9110784450733 K, F = -0.010234033626595973, relative_change = 5.055246814515826e-7 Iter 85: T = 545.9102355176442 K, F = -0.004279997328903773, relative_change = 2.114181241239889e-7 Iter 90: T = 545.9098829939486 K, F = -0.0017899463900714896, relative_change = 8.84178756214543e-8 Iter 95: T = 545.9097355640881 K, F = -0.0007485770251366985, relative_change = 3.697746243581688e-8 Iter 100: T = 545.9096739071176 K, F = -0.0003130638639641248, relative_change = 1.5464425310548158e-8 Iter 105: T = 545.9096481214289 K, F = -0.00013092704863834626, relative_change = 6.467408900119042e-9 Iter 110: T = 545.9096373375445 K, F = -5.475525528503278e-5, relative_change = 2.7047478908719647e-9 Iter 115: T = 545.9096328275951 K, F = -2.289930172172383e-5, relative_change = 1.1311579162200926e-9 Iter 120: T = 545.9096309414804 K, F = -9.576761806601164e-6, relative_change = 4.730637745691919e-10 Iter 125: T = 545.9096301526847 K, F = -4.0051164707233244e-6, relative_change = 1.9784093689760727e-10 Iter 130: T = 545.9096298228009 K, F = -1.6749871614707423e-6, relative_change = 8.273942410726938e-11 Iter 135: T = 545.9096296848395 K, F = -7.004993545500771e-7, relative_change = 3.4602601492079127e-11 Iter 140: T = 545.9096296271424 K, F = -2.9295699902065486e-7, relative_change = 1.4471211473190833e-11 Iter 145: T = 545.9096296030128 K, F = -1.2251781844607734e-7, relative_change = 6.052018781825642e-12 Iter 150: T = 545.9096295929214 K, F = -5.123788424099551e-8, relative_change = 2.53100032083318e-12 Iter 155: T = 545.9096295887013 K, F = -2.1428616686636204e-8, relative_change = 1.0585104462117775e-12 Iter 160: T = 545.9096295869361 K, F = -8.961193398437928e-9, relative_change = 4.4265651682649914e-13 Converged in 164 iterations to T = 545.9096295862992 K Iter 1: T = 966.8735064980368 K, F = -7547.903055852655, relative_change = 0.03312649350196318 Iter 2: T = 935.8035338264943 K, F = -6398.924704426402, relative_change = 0.032134475153917756 Iter 3: T = 906.7597286906644 K, F = -5423.3914434152075, relative_change = 0.031036220836942175 Iter 5: T = 854.6201041469271 K, F = -3892.2219389521288, relative_change = 0.0285209015555179 Iter 10: T = 756.9294902739128 K, F = -1686.9816916243637, relative_change = 0.02073853885753842 Iter 15: T = 699.02382815118 K, F = -723.0239925130808, relative_change = 0.012629240740125959 Iter 20: T = 668.9184381653349 K, F = -306.68233935832126, relative_change = 0.006546995272779729 Iter 25: T = 654.7786581391159 K, F = -129.16686486755657, relative_change = 0.003045948266320073 Iter 30: T = 648.5300709977321 K, F = -54.19324929560645, relative_change = 0.0013370442623980878 Iter 35: T = 645.8520693408017 K, F = -22.695995281842823, relative_change = 0.0005710425300201334 Iter 40: T = 644.7202591135125 K, F = -9.497385441246063, relative_change = 0.00024095903374782063 Iter 45: T = 644.2448126594475 K, F = -3.9729155219112107, relative_change = 0.00010115157652225703 Iter 50: T = 644.0456032969767 K, F = -1.661695385126956, relative_change = 4.236956299927732e-5 Iter 55: T = 643.9622262850567 K, F = -0.6949714448573221, relative_change = 1.7731161717401938e-5 Iter 60: T = 643.9273455898086 K, F = -0.2906507110974652, relative_change = 7.4174326957826085e-6 Iter 65: T = 643.9127560656518 K, F = -0.1215545349522254, relative_change = 3.1024174730883425e-6 Iter 70: T = 643.9066542023793 K, F = -0.05083572198116726, relative_change = 1.297530756881447e-6 Iter 75: T = 643.9041022690599 K, F = -0.021260134685208654, relative_change = 5.426538286297882e-7 Iter 80: T = 643.9030350093601 K, F = -0.008891247233751787, relative_change = 2.2694623052734608e-7 Iter 85: T = 643.902588666735 K, F = -0.0037184266531489762, relative_change = 9.491195951168672e-8 Iter 90: T = 643.902402000591 K, F = -0.0015550905859272879, relative_change = 3.969337362567032e-8 Iter 95: T = 643.9023239345231 K, F = -0.0006503574810920454, relative_change = 1.6600253143926784e-8 Iter 100: T = 643.9022912863512 K, F = -0.00027198727013766355, relative_change = 6.942425907929809e-9 Iter 105: T = 643.902277632494 K, F = -0.000113748324651608, relative_change = 2.9034057195753403e-9 Iter 110: T = 643.9022719222877 K, F = -4.757090807400166e-5, relative_change = 1.2142390038885213e-9 Iter 115: T = 643.9022695342112 K, F = -1.9894722362356898e-5, relative_change = 5.078092739553849e-10 Iter 120: T = 643.902268535489 K, F = -8.320211177859083e-6, relative_change = 2.123719221424668e-10 Iter 125: T = 643.9022681178116 K, F = -3.479613012447036e-6, relative_change = 8.881650840954256e-11 Iter 130: T = 643.9022679431337 K, F = -1.455215262069487e-6, relative_change = 3.714411294183773e-11 Iter 135: T = 643.9022678700813 K, F = -6.085874155736803e-7, relative_change = 1.5534086468494465e-11 Iter 140: T = 643.90226783953 K, F = -2.545189833336181e-7, relative_change = 6.496552170971053e-12 Iter 145: T = 643.9022678267531 K, F = -1.0644290626693476e-7, relative_change = 2.716936413940618e-12 Iter 150: T = 643.9022678214096 K, F = -4.4516249630977e-8, relative_change = 1.1362694225572985e-12 Iter 155: T = 643.902267819175 K, F = -1.8617327346426293e-8, relative_change = 4.75203997847859e-13 Converged in 160 iterations to T = 643.9022678182404 K Iter 1: T = 965.1662584381966 K, F = -7936.901150299419, relative_change = 0.03483374156180344 Iter 2: T = 932.3062083679546 K, F = -6731.813807771349, relative_change = 0.034045999622298366 Iter 3: T = 901.3903761719358 K, F = -5708.48405135301, relative_change = 0.03316059886605104 Iter 5: T = 845.2783933164839 K, F = -4101.793872256142, relative_change = 0.031077965271718026 Iter 10: T = 736.8688214449797 K, F = -1784.959076702305, relative_change = 0.024098013049673104 Iter 15: T = 669.0478941196742 K, F = -768.597785097622, relative_change = 0.015793374900068016 Iter 20: T = 631.9240482923066 K, F = -327.29006914446774, relative_change = 0.008696396548521895 Iter 25: T = 613.8413728308377 K, F = -138.18298481940124, relative_change = 0.004199022674278592 Iter 30: T = 605.686342703463 K, F = -58.0484311464783, relative_change = 0.0018782617072049166 Iter 35: T = 602.1569357964092 K, F = -24.32445171486123, relative_change = 0.0008091301676765077 Iter 40: T = 600.6587801142919 K, F = -10.181367281821702, relative_change = 0.00034270353910299583 Iter 45: T = 600.0282607986687 K, F = -4.259488117989306, relative_change = 0.00014409173214016523 Iter 50: T = 599.763867339404 K, F = -1.781635626943935, relative_change = 6.039644746479176e-5 Iter 55: T = 599.6531713376339 K, F = -0.7451480529894828, relative_change = 2.5282304343190924e-5 Iter 60: T = 599.606855304252 K, F = -0.3116379989182632, relative_change = 1.0577528041316314e-5 Iter 65: T = 599.5874815973282 K, F = -0.13033216477193557, relative_change = 4.424377683889641e-6 Iter 70: T = 599.5793786188543 K, F = -0.05450671826519282, relative_change = 1.850455142709454e-6 Iter 75: T = 599.5759897405337 K, F = -0.022795404330861635, relative_change = 7.73904751790093e-7 Iter 80: T = 599.5745724508671 K, F = -0.00953331798559115, relative_change = 3.2366011207237733e-7 Iter 85: T = 599.5739797198553 K, F = -0.003986948772787824, relative_change = 1.3535920673812785e-7 Iter 90: T = 599.5737318320471 K, F = -0.0016673898251396424, relative_change = 5.6608956164110887e-8 Iter 95: T = 599.5736281622967 K, F = -0.0006973223781319704, relative_change = 2.3674562382537067e-8 Iter 100: T = 599.5735848063501 K, F = -0.00029162855319403436, relative_change = 9.900988364259144e-9 Iter 105: T = 599.5735666743722 K, F = -0.00012196254415802743, relative_change = 4.1407121875374385e-9 Iter 110: T = 599.5735590913619 K, F = -5.100619276499074e-5, relative_change = 1.7316954003958937e-9 Iter 115: T = 599.5735559200564 K, F = -2.1331399288226915e-5, relative_change = 7.242157267419394e-10 Iter 120: T = 599.5735545937785 K, F = -8.92104658328785e-6, relative_change = 3.0287569115172743e-10 Iter 125: T = 599.5735540391132 K, F = -3.7308879703989994e-6, relative_change = 1.2666622319157227e-10 Iter 130: T = 599.5735538071457 K, F = -1.5603022548438261e-6, relative_change = 5.297333921320175e-11 Iter 135: T = 599.573553710134 K, F = -6.525374058319322e-7, relative_change = 2.215409563612111e-11 Iter 140: T = 599.5735536695626 K, F = -2.7289866522117734e-7, relative_change = 9.265098178578053e-12 Iter 145: T = 599.5735536525951 K, F = -1.1412966999246876e-7, relative_change = 3.874781127472317e-12 Iter 150: T = 599.5735536454991 K, F = -4.773062978191689e-8, relative_change = 1.6204878495133204e-12 Iter 155: T = 599.5735536425316 K, F = -1.996239762380725e-8, relative_change = 6.77737187736649e-13 Iter 160: T = 599.5735536412903 K, F = -8.348371549615763e-9, relative_change = 2.834329804915438e-13 Converged in 162 iterations to T = 599.5735536410276 K Iter 1: T = 979.9429030329796 K, F = -4570.028623160311, relative_change = 0.020057096967020335 Iter 2: T = 961.938046481219 K, F = -3860.5270878339416, relative_change = 0.018373373077180916 Iter 3: T = 945.865955678114 K, F = -3259.656227827693, relative_change = 0.01670803110646972 Iter 5: T = 919.001329207883 K, F = -2320.727691228129, relative_change = 0.013522119307841042 Iter 10: T = 876.269747398825 K, F = -985.445344587305, relative_change = 0.0071281839593719505 Iter 15: T = 855.9996747478488 K, F = -415.31621982939663, relative_change = 0.003349463831544483 Iter 20: T = 846.9936991509869 K, F = -174.30707806292165, relative_change = 0.0014775498139162782 Iter 25: T = 843.124096566815 K, F = -73.01019323727193, relative_change = 0.0006324610041911624 Iter 30: T = 841.4868338277116 K, F = -30.553871070869324, relative_change = 0.0002671330487140034 Iter 35: T = 840.7987268835869 K, F = -12.781545129444556, relative_change = 0.00011218501883650882 Iter 40: T = 840.5103552028858 K, F = -5.346018137048304, relative_change = 4.6999258017798027e-5 Iter 45: T = 840.3896498932654 K, F = -2.2358778095172163, relative_change = 1.9670054918225756e-5 Iter 50: T = 840.3391511280134 K, F = -0.9350899092327087, relative_change = 8.228773850679384e-6 Iter 55: T = 840.3180287274597 K, F = -0.3910691100540782, relative_change = 3.44181279094113e-6 Iter 60: T = 840.3091945250366 K, F = -0.16355035685187747, relative_change = 1.4394844103056594e-6 Iter 65: T = 840.3054998577306 K, F = -0.0683988146919079, relative_change = 6.020230743045502e-7 Iter 70: T = 840.3039546865374 K, F = -0.028605219038676966, relative_change = 2.5177560105135293e-7 Iter 75: T = 840.3033084744826 K, F = -0.011963047345994182, relative_change = 1.0529597625064177e-7 Iter 80: T = 840.3030382203577 K, F = -0.005003089813370165, relative_change = 4.4036106991170035e-8 Iter 85: T = 840.3029251967631 K, F = -0.0020923520023892195, relative_change = 1.8416438457896973e-8 Iter 90: T = 840.30287792893 K, F = -0.0008750466096505427, relative_change = 7.701976690407012e-9 Iter 95: T = 840.302858160955 K, F = -0.0003659549472871948, relative_change = 3.2210590365876946e-9 Iter 100: T = 840.3028498937512 K, F = -0.0001530467282591097, relative_change = 1.3470854099010688e-9 Iter 105: T = 840.3028464363078 K, F = -6.400597088274118e-5, relative_change = 5.63367229032424e-10 Iter 110: T = 840.3028449903636 K, F = -2.6768062296733675e-5, relative_change = 2.356069128903168e-10 Iter 115: T = 840.3028443856524 K, F = -1.1194721170504351e-5, relative_change = 9.853360603578515e-11 Iter 120: T = 840.302844132755 K, F = -4.6817663936771226e-6, relative_change = 4.120793354484394e-11 Iter 125: T = 840.3028440269904 K, F = -1.9579707148942305e-6, relative_change = 1.723365079885888e-11 Iter 130: T = 840.3028439827583 K, F = -8.188466873448874e-7, relative_change = 7.207318150212093e-12 Iter 135: T = 840.3028439642599 K, F = -3.424495564896546e-7, relative_change = 3.0141697370500797e-12 Iter 140: T = 840.3028439565237 K, F = -1.4321714103537886e-7, relative_change = 1.2605674738773852e-12 Iter 145: T = 840.3028439532883 K, F = -5.989595908140188e-8, relative_change = 5.271917683193985e-13 Converged in 150 iterations to T = 840.3028439519352 K Iter 1: T = 976.4888081837753 K, F = -5357.047420243955, relative_change = 0.02351119181622465 Iter 2: T = 955.1382252381331 K, F = -4529.67280217915, relative_change = 0.02186464685176804 Iter 3: T = 935.8561786736265 K, F = -3828.3467829503775, relative_change = 0.020187702737684166 Iter 5: T = 903.0750625650758 K, F = -2730.835160267127, relative_change = 0.016835927574752108 Iter 10: T = 849.1177521479437 K, F = -1164.4091693385376, relative_change = 0.009463140053609053 Iter 15: T = 822.4956680175909 K, F = -492.0537720169942, relative_change = 0.004631528026397974 Iter 20: T = 810.3983698329257 K, F = -206.8015595239256, relative_change = 0.0020865928588256 Iter 25: T = 805.1431271645619 K, F = -86.67673538319353, relative_change = 0.0009018777567462532 Iter 30: T = 802.9086078524226 K, F = -36.28339034423526, relative_change = 0.0003825453027012613 Iter 35: T = 801.9674899181566 K, F = -15.180190673990435, relative_change = 0.00016094384738627812 Iter 40: T = 801.5727314128551 K, F = -6.3495993794123455, relative_change = 6.747781935299102e-5 Iter 45: T = 801.4074326573002 K, F = -2.655664489520947, relative_change = 2.824972904201452e-5 Iter 50: T = 801.3382666274227 K, F = -1.11066319990137, relative_change = 1.1819576499764977e-5 Iter 55: T = 801.3093342450331 K, F = -0.46449831726506363, relative_change = 4.943998548584491e-6 Iter 60: T = 801.2972332709171 K, F = -0.19425974113501232, relative_change = 2.0677985272494213e-6 Iter 65: T = 801.292172305506 K, F = -0.08124191816988113, relative_change = 8.648059019369878e-7 Iter 70: T = 801.2900557154816 K, F = -0.03397637092305439, relative_change = 3.616770296140069e-7 Iter 75: T = 801.2891705263356 K, F = -0.014209329416779437, relative_change = 1.5125850547669444e-7 Iter 80: T = 801.2888003286281 K, F = -0.005942512190965532, relative_change = 6.325826248683202e-8 Iter 85: T = 801.2886455073445 K, F = -0.0024852297265547385, relative_change = 2.645538687286962e-8 Iter 90: T = 801.2885807592032 K, F = -0.0010393527794538837, relative_change = 1.1063963287925008e-8 Iter 95: T = 801.2885536807518 K, F = -0.0004346697497650265, relative_change = 4.62708237533654e-9 Iter 100: T = 801.2885423562191 K, F = -0.00018178408331936957, relative_change = 1.9351012696384163e-9 Iter 105: T = 801.288537620164 K, F = -7.602427488428987e-5, relative_change = 8.092824867043912e-10 Iter 110: T = 801.2885356394892 K, F = -3.1794258611883564e-5, relative_change = 3.3845159344613303e-10 Iter 115: T = 801.2885348111473 K, F = -1.3296739054036166e-5, relative_change = 1.4154450328791242e-10 Iter 120: T = 801.2885344647249 K, F = -5.560855523389918e-6, relative_change = 5.919560663224147e-11 Iter 125: T = 801.2885343198468 K, F = -2.3256161856277657e-6, relative_change = 2.4756309607660028e-11 Iter 130: T = 801.2885342592572 K, F = -9.726017762279326e-7, relative_change = 1.0353398318574196e-11 Iter 135: T = 801.2885342339179 K, F = -4.0675494150654856e-7, relative_change = 4.329928271807713e-12 Iter 140: T = 801.2885342233207 K, F = -1.701107670282198e-7, relative_change = 1.8108382821672656e-12 Iter 145: T = 801.2885342188887 K, F = -7.114242484007605e-8, relative_change = 7.573149462587422e-13 Iter 150: T = 801.2885342170352 K, F = -2.9752662333848434e-8, relative_change = 3.1671869390609045e-13 Converged in 153 iterations to T = 801.2885342164926 K Iter 1: T = 980.7039146900145 K, F = -4396.631393195962, relative_change = 0.019296085309985538 Iter 2: T = 963.4261288571369 K, F = -3713.267958554064, relative_change = 0.017617739232068674 Iter 3: T = 948.0418427074262 K, F = -3134.6599447955036, relative_change = 0.01596830902641211 Iter 5: T = 922.4186166721108 K, F = -2230.832392335025, relative_change = 0.01284214149225514 Iter 10: T = 881.9422555262133 K, F = -946.4887843447505, relative_change = 0.006683914357908308 Iter 15: T = 862.8867876246874 K, F = -398.6986255789438, relative_change = 0.003116930926603234 Iter 20: T = 854.4552384370562 K, F = -167.29080725889528, relative_change = 0.0013697836799444626 Iter 25: T = 850.8395160112169 K, F = -70.06339233061297, relative_change = 0.0005853299083166951 Iter 30: T = 849.3109929743462 K, F = -29.31922592678063, relative_change = 0.00024704332606890653 Iter 35: T = 848.6688247236572 K, F = -12.264801615544819, relative_change = 0.00010371557350804023 Iter 40: T = 848.3997470964815 K, F = -5.129839445728257, relative_change = 4.344529176573682e-5 Iter 45: T = 848.2871252011082 K, F = -2.145456960195096, relative_change = 1.8181647169134184e-5 Iter 50: T = 848.2400095424579 K, F = -0.8972726699882563, relative_change = 7.605936683569262e-6 Iter 55: T = 848.2203024397521 K, F = -0.37525311099366565, relative_change = 3.181270571533917e-6 Iter 60: T = 848.212060209175 K, F = -0.15693585104172292, relative_change = 1.3305112972873509e-6 Iter 65: T = 848.2086131251014 K, F = -0.06563253780411182, relative_change = 5.56447249995062e-7 Iter 70: T = 848.2071714985404 K, F = -0.027448326986764693, relative_change = 2.3271490299657952e-7 Iter 75: T = 848.2065685905015 K, F = -0.01147922091893383, relative_change = 9.73245045074455e-8 Iter 80: T = 848.2063164467057 K, F = -0.004800747762580659, relative_change = 4.070233179295983e-8 Iter 85: T = 848.2062109970798 K, F = -0.002007730132424168, relative_change = 1.702221204156318e-8 Iter 90: T = 848.2061668967729 K, F = -0.0008396567322044302, relative_change = 7.1188942403667325e-9 Iter 95: T = 848.2061484534955 K, F = -0.0003511544771352959, relative_change = 2.977206931932809e-9 Iter 100: T = 848.2061407402963 K, F = -0.00014685699574146227, relative_change = 1.2451035459428156e-9 Iter 105: T = 848.2061375145441 K, F = -6.141735029330242e-5, relative_change = 5.207171890668216e-10 Iter 110: T = 848.2061361654961 K, F = -2.568547007508748e-5, relative_change = 2.1777015476524473e-10 Iter 115: T = 848.206135601308 K, F = -1.0741968486716047e-5, relative_change = 9.107406406834393e-11 Iter 120: T = 848.2061353653579 K, F = -4.4924229503084945e-6, relative_change = 3.8088290488503953e-11 Iter 125: T = 848.2061352666807 K, F = -1.8787858990787498e-6, relative_change = 1.5928986188742618e-11 Iter 130: T = 848.2061352254127 K, F = -7.857295465374392e-7, relative_change = 6.661682474793051e-12 Iter 135: T = 848.2061352081539 K, F = -3.2860138143853135e-7, relative_change = 2.785994333267217e-12 Iter 140: T = 848.206135200936 K, F = -1.374231730633113e-7, relative_change = 1.1651204257067794e-12 Iter 145: T = 848.2061351979175 K, F = -5.747228315478026e-8, relative_change = 4.872695741490638e-13 Converged in 150 iterations to T = 848.2061351966552 K Iter 1: T = 967.2982316021257 K, F = -7451.12903686811, relative_change = 0.032701768397874226 Iter 2: T = 936.6705182921748 K, F = -6316.1555900164785, relative_change = 0.031663154453639875 Iter 3: T = 908.0855654223174 K, F = -5352.556359031861, relative_change = 0.0305176177872837 Iter 5: T = 856.9060083107385 K, F = -3840.253050886523, relative_change = 0.027911026602432616 Iter 10: T = 761.6998257193665 K, F = -1662.9086656675272, relative_change = 0.019995891264992318 Iter 15: T = 705.9355675007054 K, F = -711.9935568036483, relative_change = 0.011987788234342938 Iter 20: T = 677.2471482310197 K, F = -301.77038500378796, relative_change = 0.006141112039176475 Iter 25: T = 663.866229948984 K, F = -127.04044526593744, relative_change = 0.0028375046461792124 Iter 30: T = 657.9748487150603 K, F = -53.289162603849796, relative_change = 0.0012413487187649737 Iter 35: T = 655.4543185202548 K, F = -22.31511604704506, relative_change = 0.0005293683933316716 Iter 40: T = 654.3898746804708 K, F = -9.33759576251829, relative_change = 0.00022322805180963182 Iter 45: T = 653.9428733006283 K, F = -3.906000705842428, relative_change = 9.368237202422866e-5 Iter 50: T = 653.7556080892648 K, F = -1.6336951810781264, relative_change = 3.923635044121058e-5 Iter 55: T = 653.6772347157171 K, F = -0.6832586852699057, relative_change = 1.6419147318764623e-5 Iter 60: T = 653.6444480831183 K, F = -0.2857518154869287, relative_change = 6.868440550943119e-6 Iter 65: T = 653.6307345802832 K, F = -0.11950567437418125, relative_change = 2.8727712911594717e-6 Iter 70: T = 653.62499912496 K, F = -0.04997884933742025, relative_change = 1.2014810395639334e-6 Iter 75: T = 653.6226004357575 K, F = -0.02090177774367402, relative_change = 5.02483125723381e-7 Iter 80: T = 653.6215972659658 K, F = -0.008741377631651948, relative_change = 2.1014608926455275e-7 Iter 85: T = 653.6211777267483 K, F = -0.003655749317554191, relative_change = 8.788589196178628e-8 Iter 90: T = 653.6210022701522 K, F = -0.001528878162628533, relative_change = 3.67549799174542e-8 Iter 95: T = 653.6209288920584 K, F = -0.000639395130859477, relative_change = 1.5371380355610006e-8 Iter 100: T = 653.6208982044545 K, F = -0.0002674026835084997, relative_change = 6.428496365911415e-9 Iter 105: T = 653.6208853705306 K, F = -0.0001118309964358577, relative_change = 2.688474221565061e-9 Iter 110: T = 653.62088000323 K, F = -4.67690581889002e-5, relative_change = 1.1243520690229345e-9 Iter 115: T = 653.6208777585608 K, F = -1.9559378568512198e-5, relative_change = 4.702174679904129e-10 Iter 120: T = 653.6208768198134 K, F = -8.179965844012926e-6, relative_change = 1.9665056536678755e-10 Iter 125: T = 653.6208764272179 K, F = -3.420959665767498e-6, relative_change = 8.224162143493045e-11 Iter 130: T = 653.6208762630298 K, F = -1.4306850517620262e-6, relative_change = 3.439440100324827e-11 Iter 135: T = 653.6208761943644 K, F = -5.983299761758154e-7, relative_change = 1.4384158915900258e-11 Iter 140: T = 653.6208761656477 K, F = -2.5022892069515024e-7, relative_change = 6.015631348425864e-12 Iter 145: T = 653.620876153638 K, F = -1.0464811356358794e-7, relative_change = 2.5157942207997575e-12 Iter 150: T = 653.6208761486155 K, F = -4.376501949732159e-8, relative_change = 1.0521334726370918e-12 Iter 155: T = 653.620876146515 K, F = -1.8303489057736044e-8, relative_change = 4.4002524676503433e-13 Converged in 159 iterations to T = 653.6208761457568 K Iter 1: T = 973.634953860943 K, F = -6007.300842417605, relative_change = 0.026365046139057022 Iter 2: T = 949.4627391792249 K, F = -5083.475652322254, relative_change = 0.024826773716230526 Iter 3: T = 927.4149704833653 K, F = -4299.9066273591, relative_change = 0.023221310101035727 Iter 5: T = 889.3663505199908 K, F = -3072.377557790659, relative_change = 0.019887748644220504 Iter 10: T = 824.6775892049658 K, F = -1315.2847923936438, relative_change = 0.01189614700604186 Iter 15: T = 791.4477120226093 K, F = -557.4076501887733, relative_change = 0.006083940217466058 Iter 20: T = 775.9636832742265 K, F = -234.6447200980749, relative_change = 0.0028083819796742653 Iter 25: T = 769.1498543197799 K, F = -98.42245129810085, relative_change = 0.0012280318065960004 Iter 30: T = 766.2353719581963 K, F = -41.2143417970022, relative_change = 0.0005235794193712702 Iter 35: T = 765.004688519499 K, F = -17.24573357676029, relative_change = 0.00022076693179585652 Iter 40: T = 764.4879000031782 K, F = -7.214027826287623, relative_change = 9.264596002946817e-5 Iter 45: T = 764.2714025356262 K, F = -3.0172830828788073, relative_change = 3.880165182339104e-5 Iter 50: T = 764.1807957376152 K, F = -1.2619146882563226, relative_change = 1.6237130304569256e-5 Iter 55: T = 764.1428915144063 K, F = -0.5277566945675747, relative_change = 6.792280181334572e-6 Iter 60: T = 764.1270375244583 K, F = -0.22071570958978393, relative_change = 2.840913345972738e-6 Iter 65: T = 764.1204068481971 K, F = -0.0923062180132651, relative_change = 1.188156482236679e-6 Iter 70: T = 764.1176337592694 K, F = -0.03860361037341442, relative_change = 4.969104295966043e-7 Iter 75: T = 764.1164740097055 K, F = -0.01614449920969696, relative_change = 2.078154849565191e-7 Iter 80: T = 764.1159889867238 K, F = -0.006751823831968706, relative_change = 8.69111990579678e-8 Iter 85: T = 764.1157861439945 K, F = -0.0028236936162143733, relative_change = 3.63473506185811e-8 Iter 90: T = 764.1157013126855 K, F = -0.0011809024358190312, relative_change = 1.5200904702561278e-8 Iter 95: T = 764.115665835209 K, F = -0.0004938675083362432, relative_change = 6.357201375620353e-9 Iter 100: T = 764.115650998103 K, F = -0.00020654129076880245, relative_change = 2.658657791864936e-9 Iter 105: T = 764.1156447930477 K, F = -8.637803408007017e-5, relative_change = 1.1118824782068897e-9 Iter 110: T = 764.1156421980195 K, F = -3.612432521238329e-5, relative_change = 4.650025358638418e-10 Iter 115: T = 764.1156411127477 K, F = -1.51076252086213e-5, relative_change = 1.9446962785029966e-10 Iter 120: T = 764.1156406588741 K, F = -6.318190687415459e-6, relative_change = 8.132953910205615e-11 Iter 125: T = 764.1156404690587 K, F = -2.6423423657995215e-6, relative_change = 3.401297897553505e-11 Iter 130: T = 764.1156403896756 K, F = -1.1050585858596307e-6, relative_change = 1.4224626964567017e-11 Iter 135: T = 764.1156403564767 K, F = -4.6214828375301664e-7, relative_change = 5.948903546093497e-12 Iter 140: T = 764.1156403425923 K, F = -1.9327353550924187e-7, relative_change = 2.4878716664690437e-12 Iter 145: T = 764.1156403367859 K, F = -8.082889280114358e-8, relative_change = 1.0404523915261472e-12 Iter 150: T = 764.1156403343575 K, F = -3.3803753685113236e-8, relative_change = 4.351314875894407e-13 Converged in 154 iterations to T = 764.115640333481 K Iter 1: T = 969.9106483011788 K, F = -6855.887406939074, relative_change = 0.030089351698821282 Iter 2: T = 941.9765491164089 K, F = -5807.462431141729, relative_change = 0.028800693376959067 Iter 3: T = 916.1554740703872 K, F = -4917.639819113917, relative_change = 0.027411590097696604 Iter 5: T = 870.6495533445285 K, F = -3522.022060080973, relative_change = 0.024371570045970212 Iter 10: T = 789.3698601012833 K, F = -1517.167369891759, relative_change = 0.01607194974767145 Iter 15: T = 744.67743395773 K, F = -646.2798819590759, relative_change = 0.008898326005535298 Iter 20: T = 722.834118543795 K, F = -272.9251680077316, relative_change = 0.004311822104951586 Iter 25: T = 712.9635960154619 K, F = -114.66556271380564, relative_change = 0.0019323131467396735 Iter 30: T = 708.687577568548 K, F = -48.0518962081763, relative_change = 0.0008331348029300768 Iter 35: T = 706.8717041584222 K, F = -20.113355087996894, relative_change = 0.00035300418967576687 Iter 40: T = 706.1073239200703 K, F = -8.414736089196355, relative_change = 0.0001484466627748248 Iter 45: T = 705.7867732290163 K, F = -3.5196862227740615, relative_change = 6.22260642009087e-5 Iter 50: T = 705.6525608268247 K, F = -1.4720699856548305, relative_change = 2.6048936660865743e-5 Iter 55: T = 705.5964045588704 K, F = -0.6156539076522942, relative_change = 1.089839955815307e-5 Iter 60: T = 705.5729146038169 K, F = -0.25747673134614446, relative_change = 4.558614925519034e-6 Iter 65: T = 705.5630899959538 K, F = -0.10768035381175223, relative_change = 1.9066026234928387e-6 Iter 70: T = 705.5589810827526 K, F = -0.04503329910965692, relative_change = 7.973876743149914e-7 Iter 75: T = 705.5572626608431 K, F = -0.018833479091033833, relative_change = 3.334811913017261e-7 Iter 80: T = 705.5565439918465 K, F = -0.007876388600443818, relative_change = 1.3946654142073393e-7 Iter 85: T = 705.5562434351147 K, F = -0.0032940002537112933, relative_change = 5.8326699947860815e-8 Iter 90: T = 705.5561177385642 K, F = -0.0013775903278481216, relative_change = 2.4392944647320274e-8 Iter 95: T = 705.556065170742 K, F = -0.0005761247398357039, relative_change = 1.0201424610659909e-8 Iter 100: T = 705.5560431862469 K, F = -0.0002409422492601898, relative_change = 4.2663582832681496e-9 Iter 105: T = 705.5560339920678 K, F = -0.00010076492676069915, relative_change = 1.784242107561167e-9 Iter 110: T = 705.5560301469521 K, F = -4.214109672739941e-5, relative_change = 7.461913942472372e-10 Iter 115: T = 705.5560285388789 K, F = -1.7623910069985982e-5, relative_change = 3.120661584814501e-10 Iter 120: T = 705.5560278663634 K, F = -7.370529716888008e-6, relative_change = 1.305097958413853e-10 Iter 125: T = 705.5560275851093 K, F = -3.082443328805695e-6, relative_change = 5.458075141828967e-11 Iter 130: T = 705.5560274674855 K, F = -1.2891124271385834e-6, relative_change = 2.2826283401287413e-11 Iter 135: T = 705.556027418294 K, F = -5.391239052965346e-7, relative_change = 9.54625430313192e-12 Iter 140: T = 705.5560273977213 K, F = -2.2546715894300462e-7, relative_change = 3.992341677725309e-12 Iter 145: T = 705.5560273891176 K, F = -9.429254044235336e-8, relative_change = 1.669635794823778e-12 Iter 150: T = 705.5560273855195 K, F = -3.943399573547168e-8, relative_change = 6.982568345872757e-13 Iter 155: T = 705.5560273840148 K, F = -1.6492660015465788e-8, relative_change = 2.9203514281666437e-13 Converged in 157 iterations to T = 705.5560273836963 K Iter 1: T = 973.4315335573183 K, F = -6053.650352101146, relative_change = 0.02656846644268168 Iter 2: T = 949.0561886502717 K, F = -5122.982540809624, relative_change = 0.0250406362098925 Iter 3: T = 926.8072052443621 K, F = -4333.578159323768, relative_change = 0.023443273087499356 Iter 5: T = 888.3689653202833 K, F = -3096.8197747875824, relative_change = 0.020117276486085914 Iter 10: T = 822.8560146829508 K, F = -1326.156492104735, relative_change = 0.012091461945812416 Iter 15: T = 789.0945155443262 K, F = -562.1466755540553, relative_change = 0.006206120838127756 Iter 20: T = 773.3297495493905 K, F = -236.6718798926232, relative_change = 0.0028707102159879682 Iter 25: T = 766.3846859014577 K, F = -99.27938519127694, relative_change = 0.001256552353127968 Iter 30: T = 763.4125313980398 K, F = -41.57443102681741, relative_change = 0.0005359813438053565 Iter 35: T = 762.1572094531255 K, F = -17.39663476113183, relative_change = 0.0002260401699518586 Iter 40: T = 761.6300235057325 K, F = -7.2771909507342984, relative_change = 9.486671766399252e-5 Iter 45: T = 761.4091612006276 K, F = -3.04370822716982, relative_change = 3.9733118094119804e-5 Iter 50: T = 761.3167260743515 K, F = -1.272967676783425, relative_change = 1.6627157696454523e-5 Iter 55: T = 761.2780567140074 K, F = -0.5323794800458966, relative_change = 6.955477847763305e-6 Iter 60: T = 761.2618826455738 K, F = -0.22264906506710747, relative_change = 2.9091791808519524e-6 Iter 65: T = 761.2551180930961 K, F = -0.09311477934908474, relative_change = 1.2167086275891866e-6 Iter 70: T = 761.2522890128121 K, F = -0.03894176195294008, relative_change = 5.088517252083638e-7 Iter 75: T = 761.2511058465179 K, F = -0.01628591851528427, relative_change = 2.1280955567167628e-7 Iter 80: T = 761.2506110302966 K, F = -0.0068109671231511015, relative_change = 8.89997927684211e-8 Iter 85: T = 761.2504040919029 K, F = -0.0028484280532389272, relative_change = 3.7220827818461574e-8 Iter 90: T = 761.2503175477357 K, F = -0.0011912466743602135, relative_change = 1.5566203719087585e-8 Iter 95: T = 761.250281353921 K, F = -0.0004981935944379234, relative_change = 6.509973882819453e-9 Iter 100: T = 761.2502662172337 K, F = -0.00020835051220746692, relative_change = 2.722549098371154e-9 Iter 105: T = 761.2502598868899 K, F = -8.71346731050604e-5, relative_change = 1.1386026008679701e-9 Iter 110: T = 761.2502572394645 K, F = -3.6440761202793936e-5, relative_change = 4.761772173071422e-10 Iter 115: T = 761.2502561322796 K, F = -1.5239960737489788e-5, relative_change = 1.99142990063133e-10 Iter 120: T = 761.2502556692417 K, F = -6.373535633374949e-6, relative_change = 8.32840037348461e-11 Iter 125: T = 761.2502554755937 K, F = -2.6654894261790574e-6, relative_change = 3.483037427946532e-11 Iter 130: T = 761.2502553946077 K, F = -1.1147404901379332e-6, relative_change = 1.456649129210887e-11 Iter 135: T = 761.2502553607385 K, F = -4.661975829822751e-7, relative_change = 6.0918779701917664e-12 Iter 140: T = 761.2502553465739 K, F = -1.949711141424615e-7, relative_change = 2.547718560820138e-12 Iter 145: T = 761.2502553406501 K, F = -8.154015807004811e-8, relative_change = 1.0654982154083289e-12 Iter 150: T = 761.2502553381727 K, F = -3.410031479411657e-8, relative_change = 4.455942374718408e-13 Converged in 154 iterations to T = 761.2502553372784 K Iter 1: T = 964.4258406773034 K, F = -8105.60604143803, relative_change = 0.03557415932269654 Iter 2: T = 930.7832657409149 K, F = -6876.277115771297, relative_change = 0.034883527086708714 Iter 3: T = 899.041566108553 K, F = -5832.306214464357, relative_change = 0.034102138275009825 Iter 5: T = 841.1481685068338 K, F = -4193.026615751963, relative_change = 0.03224228962860651 Iter 10: T = 727.6841888817634 K, F = -1828.1063708646839, relative_change = 0.025772540882834292 Iter 15: T = 654.760919819816 K, F = -789.0852068692031, relative_change = 0.01755041768841748 Iter 20: T = 613.695734494948 K, F = -336.76939799423934, relative_change = 0.010006441636637893 Iter 25: T = 593.2505097934651 K, F = -142.40132404893913, relative_change = 0.004945001069616455 Iter 30: T = 583.9093065703888 K, F = -59.86932833798415, relative_change = 0.0022394326750902332 Iter 35: T = 579.8402262631005 K, F = -25.097106737067943, relative_change = 0.0009703105529576017 Iter 40: T = 578.1079029931207 K, F = -10.506549786170515, relative_change = 0.000412016108122846 Iter 45: T = 577.377901352821 K, F = -4.395849580503192, relative_change = 0.00017342270028966573 Iter 50: T = 577.0716266594275 K, F = -1.838728270004928, relative_change = 7.272389677099828e-5 Iter 55: T = 576.9433666603807 K, F = -0.7690362294760991, relative_change = 3.044849867823529e-5 Iter 60: T = 576.8896965951336 K, F = -0.3216303081873148, relative_change = 1.2739969315174522e-5 Iter 65: T = 576.8672458452181 K, F = -0.134511415881908, relative_change = 5.329065072529553e-6 Iter 70: T = 576.8578557482757 K, F = -0.05625459187968515, relative_change = 2.228863712428688e-6 Iter 75: T = 576.8539285357449 K, F = -0.023526396601276506, relative_change = 9.321697932000623e-7 Iter 80: T = 576.8522861002544 K, F = -0.00983902954642163, relative_change = 3.8985020183380997e-7 Iter 85: T = 576.8515992091662 K, F = -0.004114801324461348, relative_change = 1.630410004757331e-7 Iter 90: T = 576.8513119422439 K, F = -0.0017208593464601574, relative_change = 6.818586672921101e-8 Iter 95: T = 576.8511918036348 K, F = -0.0007196839805263533, relative_change = 2.8516174050581348e-8 Iter 100: T = 576.8511415602073 K, F = -0.0003009804449365383, relative_change = 1.1925809862278714e-8 Iter 105: T = 576.8511205478012 K, F = -0.00012587361779831108, relative_change = 4.987517023527031e-9 Iter 110: T = 576.8511117601613 K, F = -5.2641850709134186e-5, relative_change = 2.0858393537596373e-9 Iter 115: T = 576.8511080850652 K, F = -2.201545097818558e-5, relative_change = 8.723229676638785e-10 Iter 120: T = 576.8511065480961 K, F = -9.207125174881536e-6, relative_change = 3.648159134257336e-10 Iter 125: T = 576.8511059053172 K, F = -3.850530112314843e-6, relative_change = 1.5257038878779615e-10 Iter 130: T = 576.8511056364994 K, F = -1.6103374403386717e-6, relative_change = 6.380674939051614e-11 Iter 135: T = 576.8511055240766 K, F = -6.734622404747093e-7, relative_change = 2.6684740331678056e-11 Iter 140: T = 576.8511054770601 K, F = -2.8165053395090567e-7, relative_change = 1.1159900160663947e-11 Iter 145: T = 576.8511054573971 K, F = -1.1778961550579226e-7, relative_change = 4.667203469424609e-12 Iter 150: T = 576.8511054491739 K, F = -4.926148849948575e-8, relative_change = 1.9518986377718357e-12 Iter 155: T = 576.8511054457349 K, F = -2.0602180184070562e-8, relative_change = 8.163246516186455e-13 Iter 160: T = 576.8511054442966 K, F = -8.61619880998532e-9, relative_change = 3.414015132903305e-13 Converged in 163 iterations to T = 576.8511054438756 K Iter 1: T = 963.5990693412234 K, F = -8293.986676826442, relative_change = 0.03640093065877658 Iter 2: T = 929.078253110111 K, F = -7037.654807065326, relative_change = 0.035824875022672044 Iter 3: T = 896.404163456437 K, F = -5970.699005787551, relative_change = 0.03516828592671998 Iter 5: T = 836.4777187712466 K, F = -4295.151238368117, relative_change = 0.03358439401884819 Iter 10: T = 717.0409836311454 K, F = -1876.802471683758, relative_change = 0.027828908772899445 Iter 15: T = 637.6824316540823 K, F = -812.5912071009485, relative_change = 0.019896978522928585 Iter 20: T = 591.2750402647581 K, F = -347.87372829931707, relative_change = 0.011903604911287592 Iter 25: T = 567.4336316664389 K, F = -147.4273414027191, relative_change = 0.0060884883009760865 Iter 30: T = 556.3235688344798 K, F = -62.06086235021586, relative_change = 0.0028106755421688223 Iter 35: T = 551.4343515158662 K, F = -26.03167636241218, relative_change = 0.0012290760772372808 Iter 40: T = 549.3430491515566 K, F = -10.90075929499353, relative_change = 0.0005240325476831298 Iter 45: T = 548.4599591766798 K, F = -4.561316796760076, relative_change = 0.00022095942731496844 Iter 50: T = 548.0891309192613 K, F = -1.9080355152468225, relative_change = 9.2726996639247e-5 Iter 55: T = 547.9337801659465 K, F = -0.79804013113072, relative_change = 3.8835636169450896e-5 Iter 60: T = 547.868763968122 K, F = -0.3337633782512339, relative_change = 1.625135943327574e-5 Iter 65: T = 547.8415652467844 K, F = -0.1395861869471448, relative_change = 6.798233857172469e-6 Iter 70: T = 547.8301889868231 K, F = -0.05837702257031141, relative_change = 2.8434037490695098e-6 Iter 75: T = 547.8254310489034 K, F = -0.024414040100173867, relative_change = 1.189198086840594e-6 Iter 80: T = 547.8234411786896 K, F = -0.010210255743018315, relative_change = 4.973460565331433e-7 Iter 85: T = 547.8226089835492 K, F = -0.00427005309238479, relative_change = 2.07997672060458e-7 Iter 90: T = 547.8222609482647 K, F = -0.0017857875835942671, relative_change = 8.698739233573345e-8 Iter 95: T = 547.8221153955182 K, F = -0.0007468377617242117, relative_change = 3.6379215626655684e-8 Iter 100: T = 547.8220545235805 K, F = -0.00031233648354872523, relative_change = 1.5214231090500647e-8 Iter 105: T = 547.8220290662019 K, F = -0.00013062284945841718, relative_change = 6.362774641156926e-9 Iter 110: T = 547.822018419621 K, F = -5.462803648648151e-5, relative_change = 2.660988631420031e-9 Iter 115: T = 547.8220139670934 K, F = -2.2846097620071726e-5, relative_change = 1.1128572854114508e-9 Iter 120: T = 547.8220121049932 K, F = -9.554510701087482e-6, relative_change = 4.6541020664168053e-10 Iter 125: T = 547.8220113262406 K, F = -3.995810516660425e-6, relative_change = 1.946401096849696e-10 Iter 130: T = 547.8220110005569 K, F = -1.6710957793097947e-6, relative_change = 8.140082352338417e-11 Iter 135: T = 547.8220108643521 K, F = -6.988721084344451e-7, relative_change = 3.404279152384844e-11 Iter 140: T = 547.8220108073897 K, F = -2.922762935841927e-7, relative_change = 1.4237084031103008e-11 Iter 145: T = 547.8220107835673 K, F = -1.2223320511317581e-7, relative_change = 5.954107298977101e-12 Iter 150: T = 547.8220107736046 K, F = -5.1119827232382065e-8, relative_change = 2.4901002652373246e-12 Iter 155: T = 547.822010769438 K, F = -2.1378628312085368e-8, relative_change = 1.0413753510993815e-12 Iter 160: T = 547.8220107676955 K, F = -8.941198698098063e-9, relative_change = 4.3553514274620674e-13 Converged in 164 iterations to T = 547.8220107670664 K Iter 1: T = 969.3259035289899 K, F = -6989.122059518162, relative_change = 0.030674096471010052 Iter 2: T = 940.792847659005 K, F = -5921.2638371484845, relative_change = 0.029435977895675397 Iter 3: T = 914.3617310587422 K, F = -5014.872524868621, relative_change = 0.028094512693237327 Iter 5: T = 867.6193602518707 K, F = -3593.0439340898997, relative_change = 0.02513349090900166 Iter 10: T = 783.4089125113462 K, F = -1549.462431284783, relative_change = 0.016864838713012375 Iter 15: T = 736.5081702584531 K, F = -660.7040222720395, relative_change = 0.00948475679932542 Iter 20: T = 713.3595222780435 K, F = -279.20591585802396, relative_change = 0.0046438653050455934 Iter 25: T = 702.8383561066572 K, F = -117.34690407110764, relative_change = 0.0020925737239706173 Iter 30: T = 698.2673245104581 K, F = -49.18391478436091, relative_change = 0.000904548481561965 Iter 35: T = 696.3236370978244 K, F = -20.58873236637715, relative_change = 0.000383694107942846 Iter 40: T = 695.504992496781 K, F = -8.613893279645822, relative_change = 0.00016143004305907893 Iter 45: T = 695.1616032522251 K, F = -3.6030376610925514, relative_change = 6.7682171473776e-5 Iter 50: T = 695.0178140107482 K, F = -1.5069393520689882, relative_change = 2.8335370801061892e-5 Iter 55: T = 694.9576481222646 K, F = -0.6302385848266933, relative_change = 1.1855424331899378e-5 Iter 60: T = 694.9324805127756 K, F = -0.2635765485905845, relative_change = 4.95899604184439e-6 Iter 65: T = 694.9219541527216 K, F = -0.11023142814972658, relative_change = 2.074071620702673e-6 Iter 70: T = 694.917551734394 K, F = -0.04610019899454609, relative_change = 8.674295529257572e-7 Iter 75: T = 694.9157105609411 K, F = -0.019279671137078846, relative_change = 3.6277430124219266e-7 Iter 80: T = 694.9149405550494 K, F = -0.008062991753451265, relative_change = 1.5171740274024992e-7 Iter 85: T = 694.9146185284864 K, F = -0.003372039973464802, relative_change = 6.345017967273914e-8 Iter 90: T = 694.914483852974 K, F = -0.001410227480745485, relative_change = 2.6535649132324246e-8 Iter 95: T = 694.9144275300387 K, F = -0.0005897739892702925, relative_change = 1.1097529937184833e-8 Iter 100: T = 694.9144039751096 K, F = -0.0002466505284599574, relative_change = 4.641120353125956e-9 Iter 105: T = 694.9143941241562 K, F = -0.00010315219562095912, relative_change = 1.9409720703485024e-9 Iter 110: T = 694.9143900043697 K, F = -4.3139479693810046e-5, relative_change = 8.117377150766344e-10 Iter 115: T = 694.9143882814258 K, F = -1.8041446679051276e-5, relative_change = 3.39478430911797e-10 Iter 120: T = 694.9143875608701 K, F = -7.545148404841662e-6, relative_change = 1.4197393366972153e-10 Iter 125: T = 694.914387259525 K, F = -3.155471601123949e-6, relative_change = 5.937520280345e-11 Iter 130: T = 694.9143871334988 K, F = -1.319654944986759e-6, relative_change = 2.4831400805163527e-11 Iter 135: T = 694.9143870807934 K, F = -5.518961906370023e-7, relative_change = 1.0384802155715445e-11 Iter 140: T = 694.9143870587512 K, F = -2.3080978162060006e-7, relative_change = 4.343052115161842e-12 Iter 145: T = 694.9143870495329 K, F = -9.652768784285115e-8, relative_change = 1.8163215438293966e-12 Iter 150: T = 694.9143870456777 K, F = -4.036841516619205e-8, relative_change = 7.595957574153257e-13 Iter 155: T = 694.9143870440654 K, F = -1.6882936937356874e-8, relative_change = 3.1767923555266344e-13 Converged in 158 iterations to T = 694.9143870435934 K Iter 1: T = 966.4802575243212 K, F = -7637.505208590098, relative_change = 0.033519742475678765 Iter 2: T = 934.999712823424 K, F = -6475.5762901721555, relative_change = 0.032572361883041426 Iter 3: T = 905.5286412001554 K, F = -5489.008732812249, relative_change = 0.03151987237971942 Iter 5: T = 852.4902723967984 K, F = -3940.3985155913124, relative_change = 0.029094691370643015 Iter 10: T = 752.437689037715 K, F = -1709.3738779064995, relative_change = 0.021456958451895984 Iter 15: T = 692.4442395821154 K, F = -733.3385299762665, relative_change = 0.013268740751991893 Iter 20: T = 660.9253241776156 K, F = -311.29911056068875, relative_change = 0.006961232991118168 Iter 25: T = 646.0166382212967 K, F = -131.172332892538, relative_change = 0.0032616457303252856 Iter 30: T = 639.4030340452184 K, F = -55.047439916284524, relative_change = 0.001436750737126737 Iter 35: T = 636.5634678636326 K, F = -23.056152723370673, relative_change = 0.0006145978522995451 Iter 40: T = 635.3624168387811 K, F = -9.64853655470335, relative_change = 0.00025951518602946075 Iter 45: T = 634.8577114902788 K, F = -4.036222567400907, relative_change = 0.00010897281813011387 Iter 50: T = 634.6462122816207 K, F = -1.6881876598886096, relative_change = 4.5651232107966955e-5 Iter 55: T = 634.5576861141298 K, F = -0.7060537258397985, relative_change = 1.9105478837992448e-5 Iter 60: T = 634.5206503335824 K, F = -0.29528596027779186, relative_change = 7.99251852443044e-6 Iter 65: T = 634.5051592386902 K, F = -0.12349314021610647, relative_change = 3.3429829877705834e-6 Iter 70: T = 634.4986802773207 K, F = -0.05164648537127725, relative_change = 1.3981482318463614e-6 Iter 75: T = 634.4959706282485 K, F = -0.0215992083316916, relative_change = 5.847350256389341e-7 Iter 80: T = 634.4948374083939 K, F = -0.009033052356756777, relative_change = 2.4454539879414615e-7 Iter 85: T = 634.4943634801742 K, F = -0.003777731330917078, relative_change = 1.022721958936913e-7 Iter 90: T = 634.4941652773581 K, F = -0.001579892525880977, relative_change = 4.277152186079056e-8 Iter 95: T = 634.4940823865079 K, F = -0.0006607299517493725, relative_change = 1.7887573167059647e-8 Iter 100: T = 634.4940477205529 K, F = -0.00027632516186437694, relative_change = 7.480798809529147e-9 Iter 105: T = 634.4940332228344 K, F = -0.00011556248294986027, relative_change = 3.128559748557259e-9 Iter 110: T = 634.4940271597151 K, F = -4.8329609799113715e-5, relative_change = 1.3084010909109515e-9 Iter 115: T = 634.4940246240462 K, F = -2.0212020534982056e-5, relative_change = 5.471889868463028e-10 Iter 120: T = 634.4940235635993 K, F = -8.452909956324639e-6, relative_change = 2.288410138760586e-10 Iter 125: T = 634.4940231201076 K, F = -3.535108551944166e-6, relative_change = 9.570406310499556e-11 Iter 130: T = 634.494022934634 K, F = -1.4784244337651131e-6, relative_change = 4.0024577300214987e-11 Iter 135: T = 634.4940228570669 K, F = -6.182951156064043e-7, relative_change = 1.6738766012080954e-11 Iter 140: T = 634.4940228246273 K, F = -2.5857870139534e-7, relative_change = 7.000359974011543e-12 Iter 145: T = 634.4940228110606 K, F = -1.0813986572877354e-7, relative_change = 2.927611530395735e-12 Iter 150: T = 634.494022805387 K, F = -4.5225880429544674e-8, relative_change = 1.2243755633611909e-12 Iter 155: T = 634.4940228030141 K, F = -1.8914077082321512e-8, relative_change = 5.120504800257762e-13 Converged in 160 iterations to T = 634.4940228020218 K Iter 1: T = 966.4342780912325 K, F = -7647.981666157094, relative_change = 0.033565721908767485 Iter 2: T = 934.9056600650222 K, F = -6484.539574007147, relative_change = 0.032623654542222255 Iter 3: T = 905.3844789061038 K, F = -5496.682829939325, relative_change = 0.03157664181524494 Iter 5: T = 852.2404029574176 K, F = -3946.035146806256, relative_change = 0.029162360904077856 Iter 10: T = 751.907661933478 K, F = -1711.9986501819794, relative_change = 0.02154297936377498 Iter 15: T = 691.6631136247378 K, F = -734.5511912970727, relative_change = 0.013346600320135881 Iter 20: T = 659.9719986458903 K, F = -311.8435084954704, relative_change = 0.007012335706164511 Iter 25: T = 644.9688113071196 K, F = -131.4092880087129, relative_change = 0.0032884656384345907 Iter 30: T = 638.3101269747734 K, F = -55.14847381268937, relative_change = 0.001449197000260704 Iter 35: T = 635.4505610598978 K, F = -23.098773334387083, relative_change = 0.0006200444851692556 Iter 40: T = 634.2409300463908 K, F = -9.666427479675662, relative_change = 0.0002618374342929444 Iter 45: T = 633.7325974759077 K, F = -4.043716566767467, relative_change = 0.00010995194303493725 Iter 50: T = 633.5195744121781 K, F = -1.6913238168674711, relative_change = 4.60621138099636e-5 Iter 55: T = 633.4304097353404 K, F = -0.7073656683575864, relative_change = 1.9277560251911722e-5 Iter 60: T = 633.3931067095591 K, F = -0.29583469407880053, relative_change = 8.064528081605231e-6 Iter 65: T = 633.3775038122278 K, F = -0.12372263840410996, relative_change = 3.3731057798537256e-6 Iter 70: T = 633.3709780872182 K, F = -0.051742466206183724, relative_change = 1.4107472615254701e-6 Iter 75: T = 633.3682488798919 K, F = -0.02163934900474518, relative_change = 5.900043209171629e-7 Iter 80: T = 633.367107480342 K, F = -0.009049839725051245, relative_change = 2.4674912133388715e-7 Iter 85: T = 633.3666301312412 K, F = -0.0037847520193791673, relative_change = 1.0319382603514077e-7 Iter 90: T = 633.3664304977657 K, F = -0.001582828663050817, relative_change = 4.3156959815003704e-8 Iter 95: T = 633.3663470085955 K, F = -0.0006619578796561165, relative_change = 1.8048768137303413e-8 Iter 100: T = 633.3663120924159 K, F = -0.0002768386967679781, relative_change = 7.548212528902495e-9 Iter 105: T = 633.3662974900504 K, F = -0.00011577724962885672, relative_change = 3.1567529840970147e-9 Iter 110: T = 633.3662913831665 K, F = -4.841942843009095e-5, relative_change = 1.3201918571350072e-9 Iter 115: T = 633.3662888291946 K, F = -2.024958279206457e-5, relative_change = 5.521200000180403e-10 Iter 120: T = 633.3662877610931 K, F = -8.468617159362868e-6, relative_change = 2.3090317423987445e-10 Iter 125: T = 633.3662873144002 K, F = -3.541676086016299e-6, relative_change = 9.656644499892391e-11 Iter 130: T = 633.3662871275881 K, F = -1.4811716811946596e-6, relative_change = 4.038525274844779e-11 Iter 135: T = 633.3662870494609 K, F = -6.194433206929695e-7, relative_change = 1.6889585050692897e-11 Iter 140: T = 633.3662870167873 K, F = -2.590588751294476e-7, relative_change = 7.06343382767534e-12 Iter 145: T = 633.3662870031228 K, F = -1.0834239988488648e-7, relative_change = 2.9540364985165944e-12 Iter 150: T = 633.366286997408 K, F = -4.5310066254522496e-8, relative_change = 1.2354128172721575e-12 Iter 155: T = 633.3662869950181 K, F = -1.8948658586648293e-8, relative_change = 5.166493369703128e-13 Converged in 160 iterations to T = 633.3662869940185 K Iter 1: T = 976.3596964309197 K, F = -5386.465655949086, relative_change = 0.02364030356908025 Iter 2: T = 954.8825878262035 K, F = -4554.709195696381, relative_change = 0.021997127373472918 Iter 3: T = 935.4776830508054 K, F = -3849.6474082345635, relative_change = 0.02032177046978461 Iter 5: T = 902.4659861682936 K, F = -2746.2329190802993, relative_change = 0.01696751837240792 Iter 10: T = 848.0542038159786 K, F = -1171.1722269087213, relative_change = 0.009562111917809334 Iter 15: T = 821.1634926152178 K, F = -494.9686092339959, relative_change = 0.004688199339953409 Iter 20: T = 808.9320597306692 K, F = -208.03952742902683, relative_change = 0.0021141095779222316 Iter 25: T = 803.615921383713 K, F = -87.19815630676413, relative_change = 0.0009141739474169503 Iter 30: T = 801.3550021261212 K, F = -36.502131121719934, relative_change = 0.0003878360993636441 Iter 35: T = 800.4026726297274 K, F = -15.271791397144392, relative_change = 0.00016318330172813343 Iter 40: T = 800.0031948537963 K, F = -6.387929191635249, relative_change = 6.841913227107763e-5 Iter 45: T = 799.8359170710512 K, F = -2.6716982128863096, relative_change = 2.8644232126521857e-5 Iter 50: T = 799.7659224455689 K, F = -1.1173693492866916, relative_change = 1.1984708746115964e-5 Iter 55: T = 799.736643369466 K, F = -0.46730302362326104, relative_change = 5.013084447033148e-6 Iter 60: T = 799.7243973749988 K, F = -0.19543272287736657, relative_change = 2.0966955579962696e-6 Iter 65: T = 799.719275755289 K, F = -0.08173247664795336, relative_change = 8.768917694872142e-7 Iter 70: T = 799.7171337980282 K, F = -0.03418152894887061, relative_change = 3.667316209102789e-7 Iter 75: T = 799.7162379998464 K, F = -0.014295129062085632, relative_change = 1.5337241992902504e-7 Iter 80: T = 799.7158633652863 K, F = -0.0059783946440946645, relative_change = 6.4142330931408e-8 Iter 85: T = 799.7157066884532 K, F = -0.002500236200691841, relative_change = 2.682511559263743e-8 Iter 90: T = 799.7156411642981 K, F = -0.0010456286649378477, relative_change = 1.1218588363137587e-8 Iter 95: T = 799.7156137613083 K, F = -0.0004372944022845715, relative_change = 4.691748474020649e-9 Iter 100: T = 799.7156023010497 K, F = -0.00018288174094616139, relative_change = 1.9621453717955946e-9 Iter 105: T = 799.7155975082325 K, F = -7.648332783727341e-5, relative_change = 8.205926476929545e-10 Iter 110: T = 799.715595503819 K, F = -3.198624103162295e-5, relative_change = 3.431816485150823e-10 Iter 115: T = 799.7155946655495 K, F = -1.3377028830752202e-5, relative_change = 1.4352267353779403e-10 Iter 120: T = 799.7155943149752 K, F = -5.594433753475236e-6, relative_change = 6.002290202581342e-11 Iter 125: T = 799.7155941683607 K, F = -2.339658298988745e-6, relative_change = 2.5102286873882426e-11 Iter 130: T = 799.7155941070448 K, F = -9.784721286543174e-7, relative_change = 1.0498066359160973e-11 Iter 135: T = 799.7155940814017 K, F = -4.0920826727131043e-7, relative_change = 4.390411764814859e-12 Iter 140: T = 799.7155940706775 K, F = -1.711361332645822e-7, relative_change = 1.8361263762531904e-12 Iter 145: T = 799.7155940661925 K, F = -7.15703599718509e-8, relative_change = 7.678812369950669e-13 Iter 150: T = 799.7155940643169 K, F = -2.993188086275467e-8, relative_change = 3.2114033954527407e-13 Converged in 153 iterations to T = 799.7155940637676 K Iter 1: T = 965.1941504963114 K, F = -7930.545918325754, relative_change = 0.03480584950368859 Iter 2: T = 932.3635053006238 K, F = -6726.372864265194, relative_change = 0.034014550522095253 Iter 3: T = 901.4786170162677 K, F = -5703.821719110456, relative_change = 0.033125372356136835 Iter 5: T = 845.4330317878407 K, F = -4098.361181383014, relative_change = 0.031034778763717498 Iter 10: T = 737.2087580446051 K, F = -1783.3418224158029, relative_change = 0.024037745194242288 Iter 15: T = 669.5693361893292 K, F = -767.8354021763142, relative_change = 0.015732516161883262 Iter 20: T = 632.5812900399505 K, F = -326.9403215758007, relative_change = 0.008652592323756262 Iter 25: T = 614.5780106448839 K, F = -138.0283689276612, relative_change = 0.004174663334163424 Iter 30: T = 606.4622487415992 K, F = -57.981941229284786, relative_change = 0.0018666165541830516 Iter 35: T = 602.9505730652061 K, F = -24.296289907316975, relative_change = 0.000803964102516763 Iter 40: T = 601.460084595668 K, F = -10.169524678186509, relative_change = 0.00034048778091434225 Iter 45: T = 600.8328176992476 K, F = -4.254523805562274, relative_change = 0.0001431551396743595 Iter 50: T = 600.5697926106861 K, F = -1.7795574474733549, relative_change = 6.000299495976228e-5 Iter 55: T = 600.4596703174662 K, F = -0.7442785746435088, relative_change = 2.511744874825073e-5 Iter 60: T = 600.4135944684184 K, F = -0.31127430983010057, relative_change = 1.0508529296166053e-5 Iter 65: T = 600.3943212536831 K, F = -0.13018005465100985, relative_change = 4.395512102664806e-6 Iter 70: T = 600.3862603099831 K, F = -0.05444310207183878, relative_change = 1.8383815529165217e-6 Iter 75: T = 600.382889012461 K, F = -0.02276879894258249, relative_change = 7.688551421492432e-7 Iter 80: T = 600.381479075531 K, F = -0.009522191235295685, relative_change = 3.2154825424515154e-7 Iter 85: T = 600.380889419563 K, F = -0.003982295422626736, relative_change = 1.3447599369543178e-7 Iter 90: T = 600.380642817782 K, F = -0.0016654437360573149, relative_change = 5.6239584346404744e-8 Iter 95: T = 600.3805396858651 K, F = -0.0006965085012264893, relative_change = 2.3520086442964263e-8 Iter 100: T = 600.3804965548469 K, F = -0.0002912881797418887, relative_change = 9.83638462204695e-9 Iter 105: T = 600.3804785169368 K, F = -0.00012182019666290289, relative_change = 4.113694148420923e-9 Iter 110: T = 600.3804709732667 K, F = -5.0946660646422615e-5, relative_change = 1.7203961088636973e-9 Iter 115: T = 600.3804678184136 K, F = -2.130650148113311e-5, relative_change = 7.194902019794977e-10 Iter 120: T = 600.3804664990165 K, F = -8.910632661840445e-6, relative_change = 3.0089937413643473e-10 Iter 125: T = 600.3804659472288 K, F = -3.726532611381117e-6, relative_change = 1.2583969937084235e-10 Iter 130: T = 600.3804657164648 K, F = -1.5584811395297216e-6, relative_change = 5.262768876179158e-11 Iter 135: T = 600.3804656199565 K, F = -6.517755498092193e-7, relative_change = 2.200953218754168e-11 Iter 140: T = 600.3804655795955 K, F = -2.72580739313355e-7, relative_change = 9.204663414111514e-12 Iter 145: T = 600.380465562716 K, F = -1.1399667965150684e-7, relative_change = 3.8495055421087726e-12 Iter 150: T = 600.3804655556569 K, F = -4.767548117401432e-8, relative_change = 1.6099331100993e-12 Iter 155: T = 600.3804655527045 K, F = -1.99383110022211e-8, relative_change = 6.732883707145521e-13 Iter 160: T = 600.3804655514699 K, F = -8.338055301759795e-9, relative_change = 2.8156425428810237e-13 Converged in 162 iterations to T = 600.3804655512087 K Iter 1: T = 964.5740152659873 K, F = -8071.8443204559835, relative_change = 0.03542598473401264 Iter 2: T = 931.0883424289259 K, F = -6847.362226347303, relative_change = 0.034715503742683264 Iter 3: T = 899.5126047085752 K, F = -5807.5178025551395, relative_change = 0.03391271942894187 Iter 5: T = 841.9786397678268 K, F = -4174.751937142255, relative_change = 0.03200648854538982 Iter 10: T = 729.5475782310147 K, F = -1819.4376658976769, relative_change = 0.025425500841057075 Iter 15: T = 657.6914289008452 K, F = -784.9452424351016, relative_change = 0.017175495097592287 Iter 20: T = 617.4709239053514 K, F = -334.840517639647, relative_change = 0.009719347185871197 Iter 25: T = 597.5417482956843 K, F = -141.5382805096638, relative_change = 0.004778578675938433 Iter 30: T = 588.4626204850617 K, F = -59.495611308704945, relative_change = 0.0021580872507237737 Iter 35: T = 584.5134653014115 K, F = -24.93828583854168, relative_change = 0.0009338460221609159 Iter 40: T = 582.8333150208432 K, F = -10.439662091962362, relative_change = 0.00039630442292452975 Iter 45: T = 582.1255035103463 K, F = -4.367792756140341, relative_change = 0.0001667684156139319 Iter 50: T = 581.8285752038125 K, F = -1.8269798054963806, relative_change = 6.992619184110876e-5 Iter 55: T = 581.7042356574815 K, F = -0.764120288066984, relative_change = 2.927586071895316e-5 Iter 60: T = 581.652207223127 K, F = -0.3195739484310776, relative_change = 1.2249101496401996e-5 Iter 65: T = 581.630443382087 K, F = -0.1336513421493672, relative_change = 5.123698343264995e-6 Iter 70: T = 581.6213406215103 K, F = -0.055894884861567545, relative_change = 2.1429629052016642e-6 Iter 75: T = 581.617533587478 K, F = -0.023375960396899764, relative_change = 8.962426027106406e-7 Iter 80: T = 581.6159414139948 K, F = -0.009776114902621591, relative_change = 3.7482459365632057e-7 Iter 85: T = 581.6152755434147 K, F = -0.0040884895940706545, relative_change = 1.5675703680829393e-7 Iter 90: T = 581.6149970675789 K, F = -0.0017098554530932675, relative_change = 6.555782496511428e-8 Iter 95: T = 581.6148806055174 K, F = -0.0007150820186348494, relative_change = 2.7417093310141805e-8 Iter 100: T = 581.6148318996679 K, F = -0.00029905584880640657, relative_change = 1.1466160757728773e-8 Iter 105: T = 581.6148115302956 K, F = -0.00012506872847911632, relative_change = 4.7952862026964354e-9 Iter 110: T = 581.6148030115801 K, F = -5.2305236167338176e-5, relative_change = 2.0054461084078607e-9 Iter 115: T = 581.6147994489513 K, F = -2.1874673653998755e-5, relative_change = 8.387015076477818e-10 Iter 120: T = 581.6147979590174 K, F = -9.148249618451398e-6, relative_change = 3.507549855267174e-10 Iter 125: T = 581.6147973359093 K, F = -3.82590718461806e-6, relative_change = 1.466899223328328e-10 Iter 130: T = 581.614797075318 K, F = -1.6000399237769969e-6, relative_change = 6.134747167745882e-11 Iter 135: T = 581.6147969663357 K, F = -6.691557857818609e-7, relative_change = 2.565624459905866e-11 Iter 140: T = 581.614796920758 K, F = -2.7984910022649245e-7, relative_change = 1.0729753999701126e-11 Iter 145: T = 581.6147969016969 K, F = -1.1703660551809492e-7, relative_change = 4.487325438419537e-12 Iter 150: T = 581.6147968937252 K, F = -4.894543798039663e-8, relative_change = 1.8766274704062056e-12 Iter 155: T = 581.6147968903914 K, F = -2.046945413169965e-8, relative_change = 7.848237039823986e-13 Iter 160: T = 581.6147968889971 K, F = -8.560238684562904e-9, relative_change = 3.2820993604634573e-13 Converged in 163 iterations to T = 581.614796888589 K Iter 1: T = 964.3658876848109 K, F = -8119.26638780748, relative_change = 0.0356341123151891 Iter 2: T = 930.6597856559486 K, F = -6887.97701787867, relative_change = 0.034951570207218535 Iter 3: T = 898.8508379432839 K, F = -5842.337112383416, relative_change = 0.03417892145220943 Iter 5: T = 840.8115887319012 K, F = -4200.423161725835, relative_change = 0.03233810019375545 Iter 10: T = 726.9265377311992 K, F = -1831.6187648179236, relative_change = 0.025914731833288494 Iter 15: T = 653.5645258116087 K, F = -790.7662536729194, relative_change = 0.017705722224079946 Iter 20: T = 612.1488014700352 K, F = -337.55472676568854, relative_change = 0.010126607061001965 Iter 25: T = 591.4878068133695 K, F = -142.7534642823709, relative_change = 0.005015160047674795 Iter 30: T = 582.0365175670885 K, F = -60.022006576536114, relative_change = 0.002273859895778251 Iter 35: T = 577.9169431561602 K, F = -25.162031833193833, relative_change = 0.0009857717616564355 Iter 40: T = 576.1626288041156 K, F = -10.533900754373345, relative_change = 0.0004186834214047868 Iter 45: T = 575.4232695377879 K, F = -4.407323647588989, relative_change = 0.00017624746061286806 Iter 50: T = 575.1130526609259 K, F = -1.8435331458969975, relative_change = 7.39117051907874e-5 Iter 55: T = 574.9831389263588 K, F = -0.7710467897407933, relative_change = 3.094639099961622e-5 Iter 60: T = 574.9287763595298 K, F = -0.32247134190066823, relative_change = 1.294839313336762e-5 Iter 65: T = 574.9060358413373 K, F = -0.1348631800761289, relative_change = 5.416265297526841e-6 Iter 70: T = 574.8965245325653 K, F = -0.05640170979033385, relative_change = 2.2653379938458744e-6 Iter 75: T = 574.8925466230278 K, F = -0.023587924104869568, relative_change = 9.47424841421677e-7 Iter 80: T = 574.8908829846089 K, F = -0.009864761263519872, relative_change = 3.962302319769739e-7 Iter 85: T = 574.8901872260568 K, F = -0.004125562667266658, relative_change = 1.6570923794155574e-7 Iter 90: T = 574.8898962506297 K, F = -0.0017253598728606545, relative_change = 6.930176116936679e-8 Iter 95: T = 574.8897745610752 K, F = -0.0007215661557486985, relative_change = 2.8982855446053104e-8 Iter 100: T = 574.889723669023 K, F = -0.0003017675928681518, relative_change = 1.2120981754523626e-8 Iter 105: T = 574.8897023853543 K, F = -0.00012620281310971038, relative_change = 5.069140294877011e-9 Iter 110: T = 574.8896934842691 K, F = -5.2779524504831254e-5, relative_change = 2.1199752013542143e-9 Iter 115: T = 574.8896897617287 K, F = -2.2073028095259684e-5, relative_change = 8.86598999561496e-10 Iter 120: T = 574.8896882049178 K, F = -9.231203529191934e-6, relative_change = 3.707862774390092e-10 Iter 125: T = 574.8896875538409 K, F = -3.860599046001667e-6, relative_change = 1.550672295484574e-10 Iter 130: T = 574.8896872815527 K, F = -1.6145484576512992e-6, relative_change = 6.485096066206882e-11 Iter 135: T = 574.8896871676785 K, F = -6.752225496509112e-7, relative_change = 2.712141022422315e-11 Iter 140: T = 574.889687120055 K, F = -2.8238606919472886e-7, relative_change = 1.134249505028551e-11 Iter 145: T = 574.8896871001384 K, F = -1.1809765182446696e-7, relative_change = 4.7435839710867036e-12 Iter 150: T = 574.8896870918089 K, F = -4.938961034595124e-8, relative_change = 1.983813906305757e-12 Iter 155: T = 574.8896870883256 K, F = -2.0655524013424298e-8, relative_change = 8.296626657716651e-13 Iter 160: T = 574.8896870868687 K, F = -8.638530946125655e-9, relative_change = 3.469806240956236e-13 Converged in 163 iterations to T = 574.8896870864421 K Iter 1: T = 980.0177357385403 K, F = -4552.977920014051, relative_change = 0.019982264261459742 Iter 2: T = 962.0845343222841 K, F = -3846.04392994737, relative_change = 0.018298853951598908 Iter 3: T = 946.0803820454597 K, F = -3247.3601924139216, relative_change = 0.016634871163476336 Iter 5: T = 919.3387807770696 K, F = -2311.8807934187307, relative_change = 0.013454494718301077 Iter 10: T = 876.8321715104494 K, F = -981.6074899892163, relative_change = 0.007083499906948401 Iter 15: T = 856.6841381972679 K, F = -413.67790641721797, relative_change = 0.0033259171742276244 Iter 20: T = 847.7361104782873 K, F = -173.61507308348456, relative_change = 0.0014666002695475076 Iter 25: T = 843.8921684748294 K, F = -72.71949956237194, relative_change = 0.0006276649142546712 Iter 30: T = 842.2659058505628 K, F = -30.43206666454998, relative_change = 0.00026508734747302855 Iter 35: T = 841.5824477747193 K, F = -12.730563783876727, relative_change = 0.00011132234684713858 Iter 40: T = 841.2960289020717 K, F = -5.3246898661405115, relative_change = 4.6637218844751465e-5 Iter 45: T = 841.176141792062 K, F = -2.2269567984514795, relative_change = 1.951842468701491e-5 Iter 50: T = 841.1259854727311 K, F = -0.9313588129069261, relative_change = 8.165321539825534e-6 Iter 55: T = 841.1050063335588 K, F = -0.3895086820006256, relative_change = 3.4152694970120888e-6 Iter 60: T = 841.0962320528764 K, F = -0.16289776037792114, relative_change = 1.4283825016520721e-6 Iter 65: T = 841.0925624469786 K, F = -0.06812588986034473, relative_change = 5.973799160533742e-7 Iter 70: T = 841.0910277570141 K, F = -0.028491078406062575, relative_change = 2.4983374053115146e-7 Iter 75: T = 841.0903859283777 K, F = -0.011915312334088712, relative_change = 1.0448386064579526e-7 Iter 80: T = 841.0901175074583 K, F = -0.004983126456600484, relative_change = 4.369646945111571e-8 Iter 85: T = 841.0900052505335 K, F = -0.0020840030883040317, relative_change = 1.8274397799364113e-8 Iter 90: T = 841.0899583033311 K, F = -0.0008715549967914793, relative_change = 7.642573582356022e-9 Iter 95: T = 841.0899386694475 K, F = -0.0003644947075034377, relative_change = 3.1962158926783286e-9 Iter 100: T = 841.0899304583226 K, F = -0.00015243604119907772, relative_change = 1.3366957327900599e-9 Iter 105: T = 841.0899270243319 K, F = -6.375057204022205e-5, relative_change = 5.59022122296721e-10 Iter 110: T = 841.0899255881959 K, F = -2.666124899142197e-5, relative_change = 2.337897157382463e-10 Iter 115: T = 841.0899249875869 K, F = -1.1150053563113715e-5, relative_change = 9.777365879176235e-11 Iter 120: T = 841.0899247364049 K, F = -4.663087027401147e-6, relative_change = 4.0890124697695085e-11 Iter 125: T = 841.0899246313576 K, F = -1.95015917037189e-6, relative_change = 1.7100742755968246e-11 Iter 130: T = 841.0899245874255 K, F = -8.155766471062975e-7, relative_change = 7.151706719789835e-12 Iter 135: T = 841.0899245690525 K, F = -3.4108183588621444e-7, relative_change = 2.990911113767427e-12 Iter 140: T = 841.0899245613689 K, F = -1.4264545877828994e-7, relative_change = 1.2508431793164322e-12 Iter 145: T = 841.0899245581555 K, F = -5.965693428144903e-8, relative_change = 5.231254467218525e-13 Converged in 150 iterations to T = 841.0899245568115 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 6%|█▊ | ETA: 0:00:17 Bin 1 ray tracing: 11%|███▍ | ETA: 0:00:16 Bin 1 ray tracing: 17%|█████▏ | ETA: 0:00:15 Bin 1 ray tracing: 23%|██████▉ | ETA: 0:00:14 Bin 1 ray tracing: 29%|████████▋ | ETA: 0:00:13 Bin 1 ray tracing: 35%|██████████▍ | ETA: 0:00:11 Bin 1 ray tracing: 42%|████████████▋ | ETA: 0:00:10 Bin 1 ray tracing: 50%|███████████████ | ETA: 0:00:08 Bin 1 ray tracing: 57%|█████████████████ | ETA: 0:00:07 Bin 1 ray tracing: 63%|██████████████████▊ | ETA: 0:00:06 Bin 1 ray tracing: 70%|█████████████████████ | ETA: 0:00:05 Bin 1 ray tracing: 78%|███████████████████████▎ | ETA: 0:00:04 Bin 1 ray tracing: 86%|██████████████████████████ | ETA: 0:00:02 Bin 1 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 2 ray tracing: 15%|████▋ | ETA: 0:00:11 Bin 2 ray tracing: 24%|███████▏ | ETA: 0:00:10 Bin 2 ray tracing: 33%|█████████▉ | ETA: 0:00:08 Bin 2 ray tracing: 42%|████████████▋ | ETA: 0:00:07 Bin 2 ray tracing: 51%|███████████████▍ | ETA: 0:00:06 Bin 2 ray tracing: 60%|██████████████████▏ | ETA: 0:00:05 Bin 2 ray tracing: 70%|████████████████████▉ | ETA: 0:00:04 Bin 2 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:02 Bin 2 ray tracing: 88%|██████████████████████████▎ | ETA: 0:00:01 Bin 2 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 3 ray tracing: 19%|█████▊ | ETA: 0:00:09 Bin 3 ray tracing: 29%|████████▋ | ETA: 0:00:08 Bin 3 ray tracing: 38%|███████████▌ | ETA: 0:00:07 Bin 3 ray tracing: 48%|██████████████▍ | ETA: 0:00:06 Bin 3 ray tracing: 57%|█████████████████▎ | ETA: 0:00:05 Bin 3 ray tracing: 67%|████████████████████▏ | ETA: 0:00:04 Bin 3 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:03 Bin 3 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:02 Bin 3 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 10%|███▏ | ETA: 0:00:09 Bin 4 ray tracing: 21%|██████▏ | ETA: 0:00:08 Bin 4 ray tracing: 31%|█████████▎ | ETA: 0:00:07 Bin 4 ray tracing: 41%|████████████▎ | ETA: 0:00:06 Bin 4 ray tracing: 51%|███████████████▎ | ETA: 0:00:05 Bin 4 ray tracing: 61%|██████████████████▎ | ETA: 0:00:04 Bin 4 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:03 Bin 4 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:02 Bin 4 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 10%|███▏ | ETA: 0:00:09 Bin 5 ray tracing: 21%|██████▎ | ETA: 0:00:08 Bin 5 ray tracing: 31%|█████████▍ | ETA: 0:00:07 Bin 5 ray tracing: 41%|████████████▌ | ETA: 0:00:06 Bin 5 ray tracing: 52%|███████████████▌ | ETA: 0:00:05 Bin 5 ray tracing: 62%|██████████████████▌ | ETA: 0:00:04 Bin 5 ray tracing: 70%|████████████████████▉ | ETA: 0:00:03 Bin 5 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:03 Bin 5 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:02 Bin 5 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 5 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 6%|██ | ETA: 0:00:15 Bin 6 ray tracing: 13%|███▉ | ETA: 0:00:14 Bin 6 ray tracing: 20%|█████▉ | ETA: 0:00:13 Bin 6 ray tracing: 26%|███████▊ | ETA: 0:00:12 Bin 6 ray tracing: 32%|█████████▋ | ETA: 0:00:11 Bin 6 ray tracing: 39%|███████████▋ | ETA: 0:00:10 Bin 6 ray tracing: 46%|█████████████▊ | ETA: 0:00:08 Bin 6 ray tracing: 53%|████████████████ | ETA: 0:00:07 Bin 6 ray tracing: 60%|█████████████████▉ | ETA: 0:00:06 Bin 6 ray tracing: 66%|███████████████████▊ | ETA: 0:00:05 Bin 6 ray tracing: 72%|█████████████████████▊ | ETA: 0:00:04 Bin 6 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:03 Bin 6 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:02 Bin 6 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 6 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 7%|██ | ETA: 0:00:14 Bin 7 ray tracing: 14%|████▎ | ETA: 0:00:12 Bin 7 ray tracing: 21%|██████▍ | ETA: 0:00:12 Bin 7 ray tracing: 28%|████████▎ | ETA: 0:00:11 Bin 7 ray tracing: 34%|██████████▏ | ETA: 0:00:10 Bin 7 ray tracing: 40%|████████████ | ETA: 0:00:09 Bin 7 ray tracing: 46%|█████████████▉ | ETA: 0:00:08 Bin 7 ray tracing: 52%|███████████████▊ | ETA: 0:00:07 Bin 7 ray tracing: 59%|█████████████████▋ | ETA: 0:00:06 Bin 7 ray tracing: 66%|████████████████████ | ETA: 0:00:05 Bin 7 ray tracing: 75%|██████████████████████▋ | ETA: 0:00:04 Bin 7 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:02 Bin 7 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 10%|███ | ETA: 0:00:10 Bin 8 ray tracing: 20%|█████▉ | ETA: 0:00:09 Bin 8 ray tracing: 29%|████████▊ | ETA: 0:00:08 Bin 8 ray tracing: 36%|██████████▉ | ETA: 0:00:08 Bin 8 ray tracing: 43%|█████████████ | ETA: 0:00:07 Bin 8 ray tracing: 51%|███████████████▏ | ETA: 0:00:06 Bin 8 ray tracing: 57%|█████████████████▏ | ETA: 0:00:06 Bin 8 ray tracing: 64%|███████████████████▏ | ETA: 0:00:05 Bin 8 ray tracing: 70%|█████████████████████ | ETA: 0:00:04 Bin 8 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:03 Bin 8 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:02 Bin 8 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:02 Bin 8 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 9 ray tracing: 17%|█████▎ | ETA: 0:00:10 Bin 9 ray tracing: 25%|███████▍ | ETA: 0:00:10 Bin 9 ray tracing: 32%|█████████▌ | ETA: 0:00:09 Bin 9 ray tracing: 38%|███████████▌ | ETA: 0:00:09 Bin 9 ray tracing: 45%|█████████████▍ | ETA: 0:00:08 Bin 9 ray tracing: 51%|███████████████▎ | ETA: 0:00:08 Bin 9 ray tracing: 57%|█████████████████▏ | ETA: 0:00:07 Bin 9 ray tracing: 63%|███████████████████ | ETA: 0:00:06 Bin 9 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:05 Bin 9 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:03 Bin 9 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:02 Bin 9 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 9 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 10 ray tracing: 15%|████▎ | ETA: 0:00:12 Bin 10 ray tracing: 22%|██████▎ | ETA: 0:00:11 Bin 10 ray tracing: 28%|████████▏ | ETA: 0:00:11 Bin 10 ray tracing: 34%|█████████▉ | ETA: 0:00:10 Bin 10 ray tracing: 41%|███████████▊ | ETA: 0:00:09 Bin 10 ray tracing: 47%|█████████████▋ | ETA: 0:00:08 Bin 10 ray tracing: 53%|███████████████▌ | ETA: 0:00:07 Bin 10 ray tracing: 60%|█████████████████▎ | ETA: 0:00:06 Bin 10 ray tracing: 66%|███████████████████▏ | ETA: 0:00:05 Bin 10 ray tracing: 72%|████████████████████▉ | ETA: 0:00:04 Bin 10 ray tracing: 78%|██████████████████████▊ | ETA: 0:00:03 Bin 10 ray tracing: 85%|████████████████████████▋ | ETA: 0:00:02 Bin 10 ray tracing: 92%|██████████████████████████▌ | ETA: 0:00:01 Bin 10 ray tracing: 98%|████████████████████████████▌| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2913777424862 K, F = -7452.690695306685, relative_change = 0.03270862225751377 Iter 2: T = 936.6565372928519 K, F = -6317.4911025020565, relative_change = 0.03167074694817551 Iter 3: T = 908.064201283613 K, F = -5353.699154234536, relative_change = 0.030525955748813942 Iter 5: T = 856.8692379448663 K, F = -3841.0911586283178, relative_change = 0.027920788278497026 Iter 10: T = 761.6234971223187 K, F = -1663.296237346454, relative_change = 0.020007612348782323 Iter 15: T = 705.8255689684347 K, F = -712.170689090257, relative_change = 0.01199776151693659 Iter 20: T = 677.1151206771152 K, F = -301.84907111058254, relative_change = 0.006147350529219506 Iter 25: T = 663.7224939768256 K, F = -127.07445450790316, relative_change = 0.002840686982631595 Iter 30: T = 657.825623995407 K, F = -53.30361022058555, relative_change = 0.0012428048851586952 Iter 35: T = 655.3026788150963 K, F = -22.321200289636405, relative_change = 0.0005300015898829449 Iter 40: T = 654.2372027274691 K, F = -9.34014784747251, relative_change = 0.0002234972829169641 Iter 45: T = 653.7897656466536 K, F = -3.9070693612436647, relative_change = 9.379575512546981e-5 Iter 50: T = 653.6023175118033 K, F = -1.6341423416740417, relative_change = 3.928390739329399e-5 Iter 55: T = 653.5238675130166 K, F = -0.6834457345646862, relative_change = 1.6439060555978112e-5 Iter 60: T = 653.4910488130168 K, F = -0.28583004898222286, relative_change = 6.876772769475723e-6 Iter 65: T = 653.4773218953937 K, F = -0.11953839382252629, relative_change = 2.876256670778447e-6 Iter 70: T = 653.4715808291783 K, F = -0.049992533223289004, relative_change = 1.2029387975151383e-6 Iter 75: T = 653.4691797933166 K, F = -0.020907500548436486, relative_change = 5.030928003823978e-7 Iter 80: T = 653.4681756421036 K, F = -0.0087437709841518, relative_change = 2.1040106649275563e-7 Iter 85: T = 653.4677556924405 K, F = -0.003656750246271545, relative_change = 8.799252715670244e-8 Iter 90: T = 653.4675800641904 K, F = -0.0015292967640245791, relative_change = 3.6799576171996144e-8 Iter 95: T = 653.4675066143088 K, F = -0.000639570195137884, relative_change = 1.539003106657661e-8 Iter 100: T = 653.4674758966823 K, F = -0.0002674758979394065, relative_change = 6.436296330593102e-9 Iter 105: T = 653.4674630502026 K, F = -0.00011186161479836976, relative_change = 2.6917362416386918e-9 Iter 110: T = 653.467457677651 K, F = -4.6781863211775576e-5, relative_change = 1.125716286275702e-9 Iter 115: T = 653.4674554307859 K, F = -1.95647345920813e-5, relative_change = 4.70788019446966e-10 Iter 120: T = 653.46745449112 K, F = -8.182205010365262e-6, relative_change = 1.9688915787644907e-10 Iter 125: T = 653.4674540981405 K, F = -3.421896076050146e-6, relative_change = 8.234140281620472e-11 Iter 130: T = 653.4674539337917 K, F = -1.4310780357962294e-6, relative_change = 3.443616361489201e-11 Iter 135: T = 653.4674538650592 K, F = -5.984937909153665e-7, relative_change = 1.4401611653072693e-11 Iter 140: T = 653.4674538363143 K, F = -2.50297538695321e-7, relative_change = 6.022932911721077e-12 Iter 145: T = 653.467453824293 K, F = -1.046775497393071e-7, relative_change = 2.518865598058709e-12 Iter 150: T = 653.4674538192655 K, F = -4.377816986700367e-8, relative_change = 1.0534381660884203e-12 Iter 155: T = 653.4674538171629 K, F = -1.830825968607286e-8, relative_change = 4.405533526608031e-13 Converged in 159 iterations to T = 653.4674538164039 K Iter 1: T = 970.3621693135769 K, F = -6753.00791475678, relative_change = 0.029637830686423085 Iter 2: T = 942.8890112168776 K, F = -5719.612728375027, relative_change = 0.028312272433429212 Iter 3: T = 917.5356572270678 K, F = -4842.605383238805, relative_change = 0.026889012055712962 Iter 5: T = 872.9717877738536 K, F = -3467.2618386845356, relative_change = 0.02379459074776791 Iter 10: T = 793.8885415049831 K, F = -1492.3496283706775, relative_change = 0.015488880097149651 Iter 15: T = 750.8122524178242 K, F = -635.2404496796045, relative_change = 0.008478346807596149 Iter 20: T = 729.9067889337459 K, F = -268.13366938488656, relative_change = 0.004078155481294962 Iter 25: T = 720.4986254339843 K, F = -112.62381412744242, relative_change = 0.0018205763543472486 Iter 30: T = 716.4310974232393 K, F = -47.190685495187196, relative_change = 0.0007835592377096186 Iter 35: T = 714.7053264809762 K, F = -19.75184701298226, relative_change = 0.00033173968572341474 Iter 40: T = 713.9791584208282 K, F = -8.26331034643886, relative_change = 0.00013945801629460875 Iter 45: T = 713.6746828994593 K, F = -3.4563160765401832, relative_change = 5.844999021875302e-5 Iter 50: T = 713.547209954676 K, F = -1.4455604469972174, relative_change = 2.4466764358825697e-5 Iter 55: T = 713.4938751258225 K, F = -0.6045660082363661, relative_change = 1.023619513492633e-5 Iter 60: T = 713.4715656412361 K, F = -0.25283941297936063, relative_change = 4.281581912282995e-6 Iter 65: T = 713.4622348096326 K, F = -0.10574093227867565, relative_change = 1.790728149467983e-6 Iter 70: T = 713.4583324152021 K, F = -0.04422220293378021, relative_change = 7.489247936964506e-7 Iter 75: T = 713.4567003646449 K, F = -0.018494267773792372, relative_change = 3.1321294758429744e-7 Iter 80: T = 713.4560178176581 K, F = -0.0077345261660280995, relative_change = 1.309900344625623e-7 Iter 85: T = 713.4557323676655 K, F = -0.0032346716522441143, relative_change = 5.478170856681162e-8 Iter 90: T = 713.4556129889486 K, F = -0.0013527783913108715, relative_change = 2.2910384296653998e-8 Iter 95: T = 713.4555630633224 K, F = -0.0005657480920898683, relative_change = 9.581399737405408e-9 Iter 100: T = 713.4555421838256 K, F = -0.00023660261132274485, relative_change = 4.007056401190128e-9 Iter 105: T = 713.4555334517701 K, F = -9.895003871973618e-5, relative_change = 1.6757989564782544e-9 Iter 110: T = 713.45552979992 K, F = -4.138208683523992e-5, relative_change = 7.008391358170463e-10 Iter 115: T = 713.4555282726727 K, F = -1.7306483248158422e-5, relative_change = 2.930993049137448e-10 Iter 120: T = 713.4555276339596 K, F = -7.237778119617566e-6, relative_change = 1.2257763259024083e-10 Iter 125: T = 713.4555273668421 K, F = -3.0269248770808943e-6, relative_change = 5.126342366268587e-11 Iter 130: T = 713.4555272551305 K, F = -1.2658965699019475e-6, relative_change = 2.1438983410445592e-11 Iter 135: T = 713.4555272084114 K, F = -5.294139037159695e-7, relative_change = 8.966053129793776e-12 Iter 140: T = 713.4555271888728 K, F = -2.2140712008233976e-7, relative_change = 3.749708854070366e-12 Iter 145: T = 713.4555271807016 K, F = -9.259375433057215e-8, relative_change = 1.5681502037277497e-12 Iter 150: T = 713.4555271772841 K, F = -3.872275533556291e-8, relative_change = 6.558012158461354e-13 Iter 155: T = 713.4555271758551 K, F = -1.6194373286815278e-8, relative_change = 2.742648243759469e-13 Converged in 157 iterations to T = 713.4555271755527 K Iter 1: T = 974.333638533082 K, F = -5848.104875250035, relative_change = 0.025666361466918038 Iter 2: T = 950.8570694084751 K, F = -4947.814613774451, relative_change = 0.02409500010689581 Iter 3: T = 929.4962258382853 K, F = -4184.315673289051, relative_change = 0.022464831211149665 Iter 5: T = 892.771100905931 K, F = -2988.5263297168926, relative_change = 0.01911197091599189 Iter 10: T = 830.8496412088708 K, F = -1278.0680194132865, relative_change = 0.011249309135049386 Iter 15: T = 799.3785659928594 K, F = -541.2176833252989, relative_change = 0.005685407438451443 Iter 20: T = 784.814278150804 K, F = -227.72855692279194, relative_change = 0.0026068418032258833 Iter 25: T = 778.4281562580528 K, F = -95.50083413583373, relative_change = 0.0011362005143629233 Iter 30: T = 775.7011727887576 K, F = -39.98705170025308, relative_change = 0.00048372319493312235 Iter 35: T = 774.5505055519058 K, F = -16.731489656499797, relative_change = 0.00020383413238366557 Iter 40: T = 774.0674682212505 K, F = -6.998792114460905, relative_change = 8.551739834821839e-5 Iter 45: T = 773.865136726195 K, F = -2.927238575579919, relative_change = 3.581211054984294e-5 Iter 50: T = 773.7804632366884 K, F = -1.224251678852187, relative_change = 1.498541377779266e-5 Iter 55: T = 773.7450419587364 K, F = -0.5120046427919127, relative_change = 6.268542632674353e-6 Iter 60: T = 773.7302266400478 K, F = -0.21412785045023675, relative_change = 2.621835468708309e-6 Iter 65: T = 773.7240303964331 K, F = -0.08955106813697455, relative_change = 1.0965276988329672e-6 Iter 70: T = 773.7214390008091 K, F = -0.037451368805574536, relative_change = 4.5858881396105413e-7 Iter 75: T = 773.7203552390209 K, F = -0.0156626171556703, relative_change = 1.9178868907434708e-7 Iter 80: T = 773.7199019952908 K, F = -0.006550294848003513, relative_change = 8.020855986922422e-8 Iter 85: T = 773.7197124430689 K, F = -0.002739411759326571, relative_change = 3.3544219534992024e-8 Iter 90: T = 773.7196331700169 K, F = -0.0011456547518992055, relative_change = 1.4028600528992645e-8 Iter 95: T = 773.7196000170712 K, F = -0.0004791265071107942, relative_change = 5.866929571261949e-9 Iter 100: T = 773.7195861521119 K, F = -0.00020037642915615717, relative_change = 2.4536202452906582e-9 Iter 105: T = 773.7195803536201 K, F = -8.379981620665333e-5, relative_change = 1.0261333321432475e-9 Iter 110: T = 773.7195779286216 K, F = -3.504608407289833e-5, relative_change = 4.2914122241342645e-10 Iter 115: T = 773.7195769144582 K, F = -1.4656692350345502e-5, relative_change = 1.794720031469172e-10 Iter 120: T = 773.719576490323 K, F = -6.129604301574609e-6, relative_change = 7.505734166186927e-11 Iter 125: T = 773.7195763129445 K, F = -2.5634729781121024e-6, relative_change = 3.1389867584065977e-11 Iter 130: T = 773.7195762387627 K, F = -1.0720758817361897e-6, relative_change = 1.3127628132017745e-11 Iter 135: T = 773.719576207739 K, F = -4.483552119571854e-7, relative_change = 5.490134229321226e-12 Iter 140: T = 773.7195761947645 K, F = -1.8750713293158583e-7, relative_change = 2.2960351555589365e-12 Iter 145: T = 773.7195761893383 K, F = -7.841626270543856e-8, relative_change = 9.602114497208805e-13 Iter 150: T = 773.7195761870692 K, F = -3.2795236193372546e-8, relative_change = 4.015794709307494e-13 Converged in 154 iterations to T = 773.71957618625 K Iter 1: T = 970.3321881658843 K, F = -6759.839147777967, relative_change = 0.02966781183411566 Iter 2: T = 942.8284653101981 K, F = -5725.4453278508645, relative_change = 0.028344646494386155 Iter 3: T = 917.4441439746143 K, F = -4847.586467687669, relative_change = 0.026923583949315873 Iter 5: T = 872.8180604581808 K, F = -3470.8957748786256, relative_change = 0.02383260095866784 Iter 10: T = 793.5907120571011 K, F = -1493.994384535606, relative_change = 0.015526843094456544 Iter 15: T = 750.4093871787632 K, F = -635.9709191009476, relative_change = 0.00850540737635776 Iter 20: T = 729.4434084337071 K, F = -268.450332124615, relative_change = 0.004093109072840692 Iter 25: T = 720.0055376940439 K, F = -112.75865587854054, relative_change = 0.001827701419477519 Iter 30: T = 715.9246421875769 K, F = -47.24754259442962, relative_change = 0.0007867152351084425 Iter 35: T = 714.1930998024142 K, F = -19.77571016507991, relative_change = 0.0003330924033311097 Iter 40: T = 713.4644851066223 K, F = -8.27330531382768, relative_change = 0.00014002964090562546 Iter 45: T = 713.1589805113172 K, F = -3.4604987549447586, relative_change = 5.869009458945108e-5 Iter 50: T = 713.0310761629428 K, F = -1.4473101604551655, relative_change = 2.4567362372697235e-5 Iter 55: T = 712.9775607348128 K, F = -0.6052978411603206, relative_change = 1.0278298584435013e-5 Iter 60: T = 712.9551756897304 K, F = -0.2531454885759249, relative_change = 4.299195707058146e-6 Iter 65: T = 712.9458132522738 K, F = -0.10586893925407481, relative_change = 1.7980954337091938e-6 Iter 70: T = 712.9418976389269 K, F = -0.044275737419220196, relative_change = 7.520060522601167e-7 Iter 75: T = 712.9402600598913 K, F = -0.018516656610712334, relative_change = 3.145015968336172e-7 Iter 80: T = 712.939575200799 K, F = -0.007743889459378095, relative_change = 1.3152896825546617e-7 Iter 85: T = 712.939288783851 K, F = -0.003238587494740819, relative_change = 5.5007098020992556e-8 Iter 90: T = 712.939169000741 K, F = -0.0013544160426788299, relative_change = 2.300464499996083e-8 Iter 95: T = 712.9391189059926 K, F = -0.0005664329768164666, relative_change = 9.62082070545704e-9 Iter 100: T = 712.9390979557668 K, F = -0.00023688903765761715, relative_change = 4.0235427147337774e-9 Iter 105: T = 712.9390891941316 K, F = -9.906982472318582e-5, relative_change = 1.6826937150824031e-9 Iter 110: T = 712.939085529911 K, F = -4.14321853982047e-5, relative_change = 7.037226508929596e-10 Iter 115: T = 712.9390839974902 K, F = -1.7327435037461925e-5, relative_change = 2.943052249195214e-10 Iter 120: T = 712.9390833566135 K, F = -7.2465419523881636e-6, relative_change = 1.2308198897893148e-10 Iter 125: T = 712.9390830885911 K, F = -3.0305896530080645e-6, relative_change = 5.147434533459452e-11 Iter 130: T = 712.9390829765009 K, F = -1.2674278234703351e-6, relative_change = 2.1527169623926603e-11 Iter 135: T = 712.9390829296235 K, F = -5.30052272407211e-7, relative_change = 9.002899391925006e-12 Iter 140: T = 712.9390829100188 K, F = -2.2167257585081757e-7, relative_change = 3.7650926191329925e-12 Iter 145: T = 712.9390829018199 K, F = -9.270672785000045e-8, relative_change = 1.5746170470181404e-12 Iter 150: T = 712.939082898391 K, F = -3.877064203017255e-8, relative_change = 6.585165422376128e-13 Iter 155: T = 712.9390828969571 K, F = -1.6214234288547402e-8, relative_change = 2.753975931200101e-13 Converged in 157 iterations to T = 712.9390828966535 K Iter 1: T = 969.3423918022843 K, F = -6985.365190763644, relative_change = 0.03065760819771569 Iter 2: T = 940.8262561268698 K, F = -5918.0544535709005, relative_change = 0.02941802186366253 Iter 3: T = 914.4124082641949 K, F = -5012.1299038781235, relative_change = 0.028075160201644037 Iter 5: T = 867.70515973442 K, F = -3591.039677848608, relative_change = 0.025111775453524884 Iter 10: T = 783.5787283827776 K, F = -1548.549343695022, relative_change = 0.01684186967010068 Iter 15: T = 736.7421407391471 K, F = -660.2952449046195, relative_change = 0.009467514238397964 Iter 20: T = 713.6318120300593 K, F = -279.0275839094642, relative_change = 0.004634004964361293 Iter 25: T = 703.129866362002 K, F = -117.27068715193697, relative_change = 0.0020877893718630907 Iter 30: T = 698.5675772382978 K, F = -49.15171976780323, relative_change = 0.0009024112339828319 Iter 35: T = 696.6276829407391 K, F = -20.575209173471336, relative_change = 0.0003827746271926759 Iter 40: T = 695.8106497402449 K, F = -8.608227204047166, relative_change = 0.0001610408751873845 Iter 45: T = 695.4679388750839 K, F = -3.6006661849342523, relative_change = 6.751859627015978e-5 Iter 50: T = 695.3244341286999 K, F = -1.5059472466303259, relative_change = 2.8266817384726717e-5 Iter 55: T = 695.2643873578903 K, F = -0.6298236174132732, relative_change = 1.1826729175391053e-5 Iter 60: T = 695.2392695890819 K, F = -0.26340299427365904, relative_change = 4.9469909555493955e-6 Iter 65: T = 695.228764077239 K, F = -0.1101588439133449, relative_change = 2.069050175249689e-6 Iter 70: T = 695.2243703786246 K, F = -0.04606984309381201, relative_change = 8.653293888907407e-7 Iter 75: T = 695.2225328519896 K, F = -0.019266975882632043, relative_change = 3.6189596383461555e-7 Iter 80: T = 695.2217643712637 K, F = -0.008057682437756064, relative_change = 1.5135006741217332e-7 Iter 85: T = 695.2214429825472 K, F = -0.00336981955233151, relative_change = 6.329655492125022e-8 Iter 90: T = 695.2213085737903 K, F = -0.001409298872289133, relative_change = 2.6471401270869852e-8 Iter 95: T = 695.2212523624157 K, F = -0.0005893856358474281, relative_change = 1.1070660725402129e-8 Iter 100: T = 695.2212288541426 K, F = -0.0002464881140158415, relative_change = 4.629883316555598e-9 Iter 105: T = 695.2212190227012 K, F = -0.00010308427375993467, relative_change = 1.9362726406501922e-9 Iter 110: T = 695.2212149110749 K, F = -4.3111074208734834e-5, relative_change = 8.097723620217392e-10 Iter 115: T = 695.2212131915437 K, F = -1.802956615204465e-5, relative_change = 3.386564776930763e-10 Iter 120: T = 695.2212124724152 K, F = -7.5401806554076245e-6, relative_change = 1.4163019858444772e-10 Iter 125: T = 695.221212171667 K, F = -3.153394368182738e-6, relative_change = 5.923145504217582e-11 Iter 130: T = 695.2212120458905 K, F = -1.3187865088859496e-6, relative_change = 2.4771289207193566e-11 Iter 135: T = 695.2212119932892 K, F = -5.515313694637314e-7, relative_change = 1.0359632110801843e-11 Iter 140: T = 695.2212119712908 K, F = -2.306563324783184e-7, relative_change = 4.332509230047148e-12 Iter 145: T = 695.2212119620909 K, F = -9.646442855615334e-8, relative_change = 1.811929560426766e-12 Iter 150: T = 695.2212119582433 K, F = -4.034251466222827e-8, relative_change = 7.57769428114286e-13 Iter 155: T = 695.2212119566342 K, F = -1.6871232078052856e-8, relative_change = 3.1689903295691717e-13 Converged in 158 iterations to T = 695.2212119561631 K Iter 1: T = 963.5264521289707 K, F = -8310.53257771501, relative_change = 0.03647354787102922 Iter 2: T = 928.9282727910621 K, F = -7051.832295291523, relative_change = 0.03590786663039899 Iter 3: T = 896.1717696626791 K, F = -5982.8609042057415, relative_change = 0.035262682908727305 Iter 5: T = 836.0644951253023 K, F = -4304.133916387911, relative_change = 0.03370445504323573 Iter 10: T = 716.0854591431483 K, F = -1881.1069652887197, relative_change = 0.02801986505827067 Iter 15: T = 636.1190675769252 K, F = -814.6911029636248, relative_change = 0.020126342014954696 Iter 20: T = 589.1837066529612 K, F = -348.87995466612904, relative_change = 0.012098839214757769 Iter 25: T = 564.9935445825223 K, F = -147.88840274352916, relative_change = 0.0062106468993693145 Iter 30: T = 553.6973112901522 K, F = -62.26342812780007, relative_change = 0.002873001010499097 Iter 35: T = 548.7206528179421 K, F = -26.118388826481674, relative_change = 0.0012575972620374007 Iter 40: T = 546.5908458089622 K, F = -10.937398603043539, relative_change = 0.000536435122194867 Iter 45: T = 545.6912919170609 K, F = -4.576707457185094, relative_change = 0.00022623301023755245 Iter 50: T = 545.3135134002822 K, F = -1.914484063670553, relative_change = 9.49479116685359e-5 Iter 55: T = 545.1552444911291 K, F = -0.8007390998112597, relative_change = 3.976717060940339e-5 Iter 60: T = 545.0890058690561 K, F = -0.3348924888549426, relative_change = 1.664141574700026e-5 Iter 65: T = 545.0612955618717 K, F = -0.140058459204022, relative_change = 6.961443691417545e-6 Iter 70: T = 545.0497052887324 K, F = -0.0585745437916069, relative_change = 2.9116746853286276e-6 Iter 75: T = 545.0448578371213 K, F = -0.02449664781528979, relative_change = 1.2177523679259058e-6 Iter 80: T = 545.0428305293192 K, F = -0.01024480362219407, relative_change = 5.092882456997539e-7 Iter 85: T = 545.0419826770012 K, F = -0.004284501488314302, relative_change = 2.1299211650041007e-7 Iter 90: T = 545.04162809364 K, F = -0.0017918300862636571, relative_change = 8.907614236312351e-8 Iter 95: T = 545.0414798023994 K, F = -0.0007493648096764949, relative_change = 3.7252758195359194e-8 Iter 100: T = 545.041417785189 K, F = -0.00031339332439453416, relative_change = 1.5579557389544343e-8 Iter 105: T = 545.0413918488434 K, F = -0.00013106483280544978, relative_change = 6.5155585269356495e-9 Iter 110: T = 545.0413810019528 K, F = -5.481287917361022e-5, relative_change = 2.7248846885791728e-9 Iter 115: T = 545.0413764656533 K, F = -2.2923400918417602e-5, relative_change = 1.139579376043499e-9 Iter 120: T = 545.0413745685186 K, F = -9.586839342767828e-6, relative_change = 4.765856783808518e-10 Iter 125: T = 545.0413737751143 K, F = -4.009330754950469e-6, relative_change = 1.993138262387843e-10 Iter 130: T = 545.0413734433031 K, F = -1.676749606632777e-6, relative_change = 8.335540296802011e-11 Iter 135: T = 545.0413733045357 K, F = -7.012367355951898e-7, relative_change = 3.4860226304002786e-11 Iter 140: T = 545.0413732465015 K, F = -2.932656612275597e-7, relative_change = 1.4578967135957148e-11 Iter 145: T = 545.0413732222308 K, F = -1.2264674578710277e-7, relative_change = 6.097075494815207e-12 Iter 150: T = 545.0413732120807 K, F = -5.129269403658654e-8, relative_change = 2.5498876948934066e-12 Iter 155: T = 545.0413732078357 K, F = -2.1450597798011728e-8, relative_change = 1.066362693608398e-12 Iter 160: T = 545.0413732060605 K, F = -8.971251630462973e-9, relative_change = 4.4598328419240176e-13 Converged in 165 iterations to T = 545.041373205318 K Iter 1: T = 966.8705095569504 K, F = -7548.585911730009, relative_change = 0.03312949044304954 Iter 2: T = 935.7974118860487 K, F = -6399.508804575025, relative_change = 0.03213780683531276 Iter 3: T = 906.7503593825941 K, F = -5423.891395690115, relative_change = 0.03103989403530395 Iter 5: T = 854.603921466851 K, F = -3892.5888760400744, relative_change = 0.028525241011480632 Iter 10: T = 756.8955346629235 K, F = -1687.151962333975, relative_change = 0.020743899439610722 Iter 15: T = 698.9743545696077 K, F = -723.1022220139304, relative_change = 0.012633942375286544 Iter 20: T = 668.8585765445911 K, F = -306.7172657921565, relative_change = 0.006550005448579738 Iter 25: T = 654.7131896160874 K, F = -129.18201056838066, relative_change = 0.0030475048271053815 Iter 30: T = 648.4619520844349 K, F = -54.199694504890275, relative_change = 0.0013377612970738462 Iter 35: T = 645.782779690845 K, F = -22.69871167644752, relative_change = 0.0005713552655736499 Iter 40: T = 644.6504681800711 K, F = -9.498525250759679, relative_change = 0.00024109218011951798 Iter 45: T = 644.1748099819915 K, F = -3.973392874257373, relative_change = 0.00010120768029854427 Iter 50: T = 643.9755116935502 K, F = -1.6618951375103914, relative_change = 4.239310040411822e-5 Iter 55: T = 643.8920974263079 K, F = -0.6950550043667991, relative_change = 1.774101835275224e-5 Iter 60: T = 643.8572011389723 K, F = -0.2906856603029005, relative_change = 7.421557137460793e-6 Iter 65: T = 643.8426050920108 K, F = -0.12156915176107819, relative_change = 3.1041427627134135e-6 Iter 70: T = 643.8365005004723 K, F = -0.050841835016794845, relative_change = 1.2982523634044252e-6 Iter 75: T = 643.8339474260979 K, F = -0.02126269124938507, relative_change = 5.429556253082747e-7 Iter 80: T = 643.8328796891846 K, F = -0.008892316421946267, relative_change = 2.270724476152025e-7 Iter 85: T = 643.8324331469812 K, F = -0.003718873801104694, relative_change = 9.496474538089244e-8 Iter 90: T = 643.8322463973709 K, F = -0.0015552775893045157, relative_change = 3.971544938867563e-8 Iter 95: T = 643.8321682963964 K, F = -0.0006504356886748996, relative_change = 1.6609485516328057e-8 Iter 100: T = 643.8321356336261 K, F = -0.0002720199777385135, relative_change = 6.946287004771682e-9 Iter 105: T = 643.8321219736638 K, F = -0.00011376200505347489, relative_change = 2.905020519934341e-9 Iter 110: T = 643.8321162609041 K, F = -4.757663021609515e-5, relative_change = 1.2149143540570962e-9 Iter 115: T = 643.8321138717596 K, F = -1.9897115151989997e-5, relative_change = 5.080917063642302e-10 Iter 120: T = 643.8321128725909 K, F = -8.32121093624627e-6, relative_change = 2.124900148869083e-10 Iter 125: T = 643.8321124547266 K, F = -3.4800301745296913e-6, relative_change = 8.886587199185587e-11 Iter 130: T = 643.8321122799707 K, F = -1.4553900611891102e-6, relative_change = 3.7164765980934924e-11 Iter 135: T = 643.8321122068858 K, F = -6.086617445610898e-7, relative_change = 1.554275510985957e-11 Iter 140: T = 643.8321121763207 K, F = -2.5454958485493506e-7, relative_change = 6.500165152426163e-12 Iter 145: T = 643.8321121635381 K, F = -1.064559174701607e-7, relative_change = 2.718452852590021e-12 Iter 150: T = 643.8321121581922 K, F = -4.452047502878642e-8, relative_change = 1.1368725686796616e-12 Iter 155: T = 643.8321121559565 K, F = -1.861915216450072e-8, relative_change = 4.754577154569139e-13 Converged in 160 iterations to T = 643.8321121550215 K Iter 1: T = 965.2083190157501 K, F = -7927.317607693904, relative_change = 0.03479168098424989 Iter 2: T = 932.3926087776932 K, F = -6723.609021351553, relative_change = 0.033998577914786325 Iter 3: T = 901.523434659312 K, F = -5701.453421645433, relative_change = 0.03310748479532541 Iter 5: T = 845.5115583702997 K, F = -4096.617567577673, relative_change = 0.031012859507045146 Iter 10: T = 737.3812740785359 K, F = -1782.520515641148, relative_change = 0.024007205346023717 Iter 15: T = 669.8337730023302 K, F = -767.4483782424617, relative_change = 0.015701737763038227 Iter 20: T = 632.9143894547062 K, F = -326.7628480011978, relative_change = 0.008630477760918031 Iter 25: T = 614.9512048454299 K, F = -137.94993687581965, relative_change = 0.00416237956462746 Iter 30: T = 606.8552589757572 K, F = -57.9482189741639, relative_change = 0.001860747734880553 Iter 35: T = 603.3525278529632 K, F = -24.282008085821545, relative_change = 0.0008013612815927256 Iter 40: T = 601.865906496215 K, F = -10.16351911831034, relative_change = 0.00033937155085747605 Iter 45: T = 601.2402799075991 K, F = -4.252006370842547, relative_change = 0.0001426833381110186 Iter 50: T = 600.9779449152725 K, F = -1.7785035966970488, relative_change = 5.980480051139638e-5 Iter 55: T = 600.8681119509192 K, F = -0.7438376609738642, relative_change = 2.503440654639702e-5 Iter 60: T = 600.8221572293945 K, F = -0.3110898828194667, relative_change = 1.0473772904760362e-5 Iter 65: T = 600.8029346938309 K, F = -0.13010291953427242, relative_change = 4.380971811907225e-6 Iter 70: T = 600.7948949486497 K, F = -0.05441084227503845, relative_change = 1.8322997980766282e-6 Iter 75: T = 600.7915325172809 K, F = -0.022755307340779685, relative_change = 7.663115341787713e-7 Iter 80: T = 600.7901262884011 K, F = -0.009516548857321006, relative_change = 3.204844615940789e-7 Iter 85: T = 600.7895381832046 K, F = -0.003979935708412929, relative_change = 1.34031098482013e-7 Iter 90: T = 600.7892922299784 K, F = -0.0016644568747480881, relative_change = 5.605352308556173e-8 Iter 95: T = 600.7891893692953 K, F = -0.000696095782853734, relative_change = 2.3442273230800808e-8 Iter 100: T = 600.7891463517107 K, F = -0.00029111557690125744, relative_change = 9.803842215322997e-9 Iter 105: T = 600.7891283612397 K, F = -0.00012174801194053675, relative_change = 4.100084516139514e-9 Iter 110: T = 600.7891208374093 K, F = -5.091647207106087e-5, relative_change = 1.7147043953692341e-9 Iter 115: T = 600.7891176908536 K, F = -2.1293877208283796e-5, relative_change = 7.171098913329395e-10 Iter 120: T = 600.7891163749264 K, F = -8.905353864940846e-6, relative_change = 2.9990392761725315e-10 Iter 125: T = 600.7891158245899 K, F = -3.7243251375662645e-6, relative_change = 1.254233979121425e-10 Iter 130: T = 600.7891155944326 K, F = -1.5575575790238716e-6, relative_change = 5.245357404239541e-11 Iter 135: T = 600.789115498178 K, F = -6.513895452475715e-7, relative_change = 2.1936723385571944e-11 Iter 140: T = 600.7891154579232 K, F = -2.724183114644063e-7, relative_change = 9.174180318467229e-12 Iter 145: T = 600.7891154410881 K, F = -1.1392843002333564e-7, relative_change = 3.836746344086931e-12 Iter 150: T = 600.7891154340476 K, F = -4.764598299233924e-8, relative_change = 1.604564822222526e-12 Iter 155: T = 600.7891154311031 K, F = -1.9926109207091258e-8, relative_change = 6.710478380380939e-13 Iter 160: T = 600.7891154298717 K, F = -8.333011725092376e-9, relative_change = 2.806292710939213e-13 Converged in 162 iterations to T = 600.7891154296111 K Iter 1: T = 980.099647744472 K, F = -4534.314191544076, relative_change = 0.019900352255528022 Iter 2: T = 962.2448401166496 K, F = -3830.1913150952723, relative_change = 0.01821733909293017 Iter 3: T = 946.314977062087 K, F = -3233.902120582312, relative_change = 0.01655489579204339 Iter 5: T = 919.7077991138378 K, F = -2302.198772654583, relative_change = 0.013380664524116495 Iter 10: T = 877.4466316651122 K, F = -977.4083685337204, relative_change = 0.007034842888933519 Iter 15: T = 857.4315185330222 K, F = -411.8856836069184, relative_change = 0.0033003175422069092 Iter 20: T = 848.5465460138994 K, F = -172.85812966269222, relative_change = 0.0014547055397594814 Iter 25: T = 844.7305135958085 K, F = -72.40154099809308, relative_change = 0.0006224567029471608 Iter 30: T = 843.1162127719077 K, F = -30.298840520168277, relative_change = 0.0002628662107417884 Iter 35: T = 842.4378095536564 K, F = -12.674802325284686, relative_change = 0.00011038575619037875 Iter 40: T = 842.1535139514385 K, F = -5.301361896129796, relative_change = 4.6244169119011004e-5 Iter 45: T = 842.0345164487076 K, F = -2.2171993843881883, relative_change = 1.9353808469512256e-5 Iter 50: T = 841.984732459566 K, F = -0.927277904493129, relative_change = 8.096435356426624e-6 Iter 55: T = 841.9639090833615 K, F = -0.3878019551375014, relative_change = 3.3864531714954755e-6 Iter 60: T = 841.9551999533677 K, F = -0.16218397943392548, relative_change = 1.4163298928806315e-6 Iter 65: T = 841.9515575957971 K, F = -0.06782737685144657, relative_change = 5.923391476850768e-7 Iter 70: T = 841.9500343016765 K, F = -0.02836623647139147, relative_change = 2.477255918913513e-7 Iter 75: T = 841.949397238965 K, F = -0.011863101906875562, relative_change = 1.0360220087570556e-7 Iter 80: T = 841.9491308112206 K, F = -0.004961291428111414, relative_change = 4.332774763335339e-8 Iter 85: T = 841.9490193878668 K, F = -0.0020748714179588124, relative_change = 1.8120193727412904e-8 Iter 90: T = 841.948972789274 K, F = -0.000867736021088028, relative_change = 7.578083544713616e-9 Iter 95: T = 841.9489533011831 K, F = -0.00036289756821461516, relative_change = 3.16924539992283e-9 Iter 100: T = 841.9489451510304 K, F = -0.00015176809988304285, relative_change = 1.325416361825004e-9 Iter 105: T = 841.9489417425391 K, F = -6.347123185279635e-5, relative_change = 5.543049619074665e-10 Iter 110: T = 841.9489403170674 K, F = -2.654442651728317e-5, relative_change = 2.318169510598491e-10 Iter 115: T = 841.9489397209179 K, F = -1.1101194426155203e-5, relative_change = 9.694860244933603e-11 Iter 120: T = 841.9489394716012 K, F = -4.6426509017205575e-6, relative_change = 4.054505307609891e-11 Iter 125: T = 841.948939367334 K, F = -1.9416128254068354e-6, relative_change = 1.6956432170378825e-11 Iter 130: T = 841.9489393237282 K, F = -8.120060042138277e-7, relative_change = 7.091385345017167e-12 Iter 135: T = 841.9489393054916 K, F = -3.3958971634717727e-7, relative_change = 2.965694250503489e-12 Iter 140: T = 841.948939297865 K, F = -1.420195343548869e-7, relative_change = 1.2402805392464813e-12 Iter 145: T = 841.9489392946754 K, F = -5.939573988200664e-8, relative_change = 5.187130110358144e-13 Converged in 150 iterations to T = 841.9489392933415 K Iter 1: T = 976.328861720636 K, F = -5393.491374018608, relative_change = 0.023671138279363946 Iter 2: T = 954.8215202911501 K, F = -4560.688691099019, relative_change = 0.02202878791433281 Iter 3: T = 935.3872430179351 K, F = -3854.734928240183, relative_change = 0.020353832480953037 Iter 5: T = 902.3203735669148 K, F = -2749.9109847544014, relative_change = 0.016999032124315396 Iter 10: T = 847.7996479910213 K, F = -1172.7882281376565, relative_change = 0.009585889290988456 Iter 15: T = 820.8444030075586 K, F = -495.66527893107207, relative_change = 0.004701843600283247 Iter 20: T = 808.5807032236108 K, F = -208.33545837860137, relative_change = 0.002120742218632574 Iter 25: T = 803.2499061378693 K, F = -87.3228094791205, relative_change = 0.0009171394428896907 Iter 30: T = 800.9826299459129 K, F = -36.55442608968805, relative_change = 0.00038911239744521384 Iter 35: T = 800.0276004146587 K, F = -15.293690970076014, relative_change = 0.00016372358048766556 Iter 40: T = 799.6269860508293 K, F = -6.397093004886281, relative_change = 6.864623823807146e-5 Iter 45: T = 799.4592316281847 K, F = -2.6755315331094227, relative_change = 2.8739413691641718e-5 Iter 50: T = 799.3890374371135 K, F = -1.1189726479493887, relative_change = 1.2024550426029322e-5 Iter 55: T = 799.3596748601713 K, F = -0.4679735699856379, relative_change = 5.029752948197354e-6 Iter 60: T = 799.3473939376335 K, F = -0.19571315822505797, relative_change = 2.1036676151979933e-6 Iter 65: T = 799.3422577093588 K, F = -0.08184975890962431, relative_change = 8.798077579317194e-7 Iter 70: T = 799.3401096424067 K, F = -0.03423057794030304, relative_change = 3.679511554884615e-7 Iter 75: T = 799.3392112890416 K, F = -0.014315641963380199, relative_change = 1.5388244970691328e-7 Iter 80: T = 799.3388355858666 K, F = -0.0059869733911456224, relative_change = 6.435563252049556e-8 Iter 85: T = 799.338678462125 K, F = -0.0025038239385668515, relative_change = 2.6914321071175883e-8 Iter 90: T = 799.3386127510671 K, F = -0.0010471291001790117, relative_change = 1.1255895193759752e-8 Iter 95: T = 799.3385852699122 K, F = -0.00043792190019831256, relative_change = 4.707350619622094e-9 Iter 100: T = 799.338573776964 K, F = -0.00018314416894549268, relative_change = 1.968670385733871e-9 Iter 105: T = 799.3385689704758 K, F = -7.659307954310801e-5, relative_change = 8.233214993076994e-10 Iter 110: T = 799.3385669603448 K, F = -3.203213949642958e-5, relative_change = 3.4432287602642153e-10 Iter 115: T = 799.3385661196841 K, F = -1.339622265128515e-5, relative_change = 1.4399993277976805e-10 Iter 120: T = 799.3385657681097 K, F = -5.602458471143379e-6, relative_change = 6.022247210546004e-11 Iter 125: T = 799.3385656210771 K, F = -2.343016393346886e-6, relative_change = 2.5185771611038578e-11 Iter 130: T = 799.3385655595864 K, F = -9.79876756734832e-7, relative_change = 1.053298315846401e-11 Iter 135: T = 799.3385655338702 K, F = -4.0979661319884286e-7, relative_change = 4.405024199434347e-12 Iter 140: T = 799.3385655231154 K, F = -1.7138278585182576e-7, relative_change = 1.8422439199755227e-12 Iter 145: T = 799.3385655186177 K, F = -7.167477300562553e-8, relative_change = 7.704531941903327e-13 Iter 150: T = 799.3385655167366 K, F = -2.997581183272757e-8, relative_change = 3.222188087490621e-13 Converged in 153 iterations to T = 799.3385655161858 K Iter 1: T = 980.8705161104572 K, F = -4358.67110106923, relative_change = 0.01912948388954284 Iter 2: T = 963.7514207604908 K, F = -3681.0379687498926, relative_change = 0.017452961495723687 Iter 3: T = 948.516797545679 K, F = -3107.3099178085536, relative_change = 0.015807627243537795 Iter 5: T = 923.1624956923841 K, F = -2211.1739998191206, relative_change = 0.012695539213949076 Iter 10: T = 883.1703737293742 K, F = -937.9815477422924, relative_change = 0.0065895775809138475 Iter 15: T = 864.3731936174029 K, F = -395.0732414423061, relative_change = 0.0030680030456732145 Iter 20: T = 856.0631429200361 K, F = -165.76090140441104, relative_change = 0.001347211385699731 Iter 25: T = 852.5009812802914 K, F = -69.42099697711339, relative_change = 0.0005754783659275039 Iter 30: T = 850.9953726735353 K, F = -29.050105409715698, relative_change = 0.00024284783965215645 Iter 35: T = 850.3628802036767 K, F = -12.152170175319707, relative_change = 0.00010194750728639142 Iter 40: T = 850.097865517826 K, F = -5.082721209489181, relative_change = 4.2703490624828214e-5 Iter 45: T = 849.986945678899 K, F = -2.1257490228960276, relative_change = 1.7871000260292627e-5 Iter 50: T = 849.9405423464253 K, F = -0.8890301326563275, relative_change = 7.4759474275236214e-6 Iter 55: T = 849.9211332355871 K, F = -0.37180590600404306, relative_change = 3.126894735012824e-6 Iter 60: T = 849.9130156442617 K, F = -0.15549417519871178, relative_change = 1.3077684377262835e-6 Iter 65: T = 849.909620688522 K, F = -0.06502960938081359, relative_change = 5.46935523523962e-7 Iter 70: T = 849.908200863127 K, F = -0.02719617470359781, relative_change = 2.2873691698878537e-7 Iter 75: T = 849.907607072679 K, F = -0.011373767750331831, relative_change = 9.566085129061718e-8 Iter 80: T = 849.9073587419831 K, F = -0.0047566459762673485, relative_change = 4.0006570064604034e-8 Iter 85: T = 849.9072548870436 K, F = -0.001989286235294818, relative_change = 1.6731235801679976e-8 Iter 90: T = 849.9072114536541 K, F = -0.000831943274709035, relative_change = 6.997204445845042e-9 Iter 95: T = 849.9071932892896 K, F = -0.00034792861605104086, relative_change = 2.9263147870952263e-9 Iter 100: T = 849.9071856927351 K, F = -0.00014550790480427622, relative_change = 1.2238198640332895e-9 Iter 105: T = 849.907182515765 K, F = -6.0853141803152155e-5, relative_change = 5.118160772995295e-10 Iter 110: T = 849.9071811871182 K, F = -2.544950818705871e-5, relative_change = 2.140475768463967e-10 Iter 115: T = 849.9071806314623 K, F = -1.0643289591660832e-5, relative_change = 8.95172644247636e-11 Iter 120: T = 849.9071803990803 K, F = -4.4511478238806745e-6, relative_change = 3.74371639361346e-11 Iter 125: T = 849.9071803018954 K, F = -1.861522543444849e-6, relative_change = 1.5656663724760104e-11 Iter 130: T = 849.9071802612516 K, F = -7.785131819204594e-7, relative_change = 6.5478224479842675e-12 Iter 135: T = 849.9071802442538 K, F = -3.255832727866448e-7, relative_change = 2.7383755496402053e-12 Iter 140: T = 849.9071802371452 K, F = -1.361615888928469e-7, relative_change = 1.1452110627425226e-12 Iter 145: T = 849.9071802341722 K, F = -5.6944787329982205e-8, relative_change = 4.789441790975449e-13 Converged in 150 iterations to T = 849.9071802329289 K Iter 1: T = 967.2838296857434 K, F = -7454.410527215602, relative_change = 0.03271617031425664 Iter 2: T = 936.6411398531554 K, F = -6318.961888696741, relative_change = 0.031679108956616554 Iter 3: T = 908.0406720874481 K, F = -5354.957708813575, relative_change = 0.030535139392010125 Iter 5: T = 856.8287388263992 K, F = -3842.014174378933, relative_change = 0.0279315416852244 Iter 10: T = 761.539413136481 K, F = -1663.7230981815587, relative_change = 0.02002053039103551 Iter 15: T = 705.7043720269608 K, F = -712.365794586391, relative_change = 0.012008758794001578 Iter 20: T = 676.9696329252096 K, F = -301.9357483468334, relative_change = 0.006154232163910239 Iter 25: T = 663.5640924339228 K, F = -127.11191960314967, relative_change = 0.0028441981686950007 Iter 30: T = 657.6611678299793 K, F = -53.3195263678599, relative_change = 0.00124441169909242 Iter 35: T = 655.1355585172626 K, F = -22.32790305027991, relative_change = 0.0005307003275468955 Iter 40: T = 654.0689436560925 K, F = -9.34295939023093, relative_change = 0.00022379438788782012 Iter 45: T = 653.6210259051911 K, F = -3.9082466642745595, relative_change = 9.392087804059258e-5 Iter 50: T = 653.43337596613 K, F = -1.6346349644990141, relative_change = 3.9336388640960394e-5 Iter 55: T = 653.3548414329356 K, F = -0.6836518010002175, relative_change = 1.6461035748211202e-5 Iter 60: T = 653.3219873555437 K, F = -0.28591623642475383, relative_change = 6.885967769849953e-6 Iter 65: T = 653.3082456384552 K, F = -0.11957443984156191, relative_change = 2.8801029544847765e-6 Iter 70: T = 653.3024983821886 K, F = -0.05000760834406737, relative_change = 1.2045475035773558e-6 Iter 75: T = 653.3000947574444 K, F = -0.020913805186031975, relative_change = 5.037656056872194e-7 Iter 80: T = 653.2990895235073 K, F = -0.008746407666309686, relative_change = 2.1068244611857438e-7 Iter 85: T = 653.2986691210319 K, F = -0.0036578529386958603, relative_change = 8.811020422806848e-8 Iter 90: T = 653.2984933034097 K, F = -0.001529757922414221, relative_change = 3.68487902400319e-8 Iter 95: T = 653.2984197743305 K, F = -0.0006397630567667179, relative_change = 1.5410612992590444e-8 Iter 100: T = 653.2983890235827 K, F = -0.00026755655592347605, relative_change = 6.4449039646401125e-9 Iter 105: T = 653.2983761632511 K, F = -0.000111895348071267, relative_change = 2.695336085144076e-9 Iter 110: T = 653.2983707849064 K, F = -4.679597013740322e-5, relative_change = 1.1272217663072149e-9 Iter 115: T = 653.2983685356185 K, F = -1.9570633055632225e-5, relative_change = 4.714175997967982e-10 Iter 120: T = 653.2983675949395 K, F = -8.184673404909582e-6, relative_change = 1.9715249410409467e-10 Iter 125: T = 653.2983672015363 K, F = -3.422928912533152e-6, relative_change = 8.245154580962115e-11 Iter 130: T = 653.2983670370104 K, F = -1.4315101339312797e-6, relative_change = 3.448223043549653e-11 Iter 135: T = 653.2983669682036 K, F = -5.986739808894193e-7, relative_change = 1.442086485159845e-11 Iter 140: T = 653.2983669394278 K, F = -2.503721877045173e-7, relative_change = 6.030967767931046e-12 Iter 145: T = 653.2983669273933 K, F = -1.0470800193562724e-7, relative_change = 2.522207400763226e-12 Iter 150: T = 653.2983669223605 K, F = -4.3789791737136596e-8, relative_change = 1.0548089425795582e-12 Iter 155: T = 653.2983669202556 K, F = -1.831282459008321e-8, relative_change = 4.41119502411911e-13 Converged in 159 iterations to T = 653.298366919496 K Iter 1: T = 973.5127701920101 K, F = -6035.1405076106375, relative_change = 0.02648722980798991 Iter 2: T = 949.2185783002757 K, F = -5107.20480750866, relative_change = 0.02495518562837418 Iter 3: T = 927.0500169290611 K, F = -4320.130362589339, relative_change = 0.02335453801474342 Iter 5: T = 888.7676074254139 K, F = -3087.057102061648, relative_change = 0.020025412996636224 Iter 10: T = 823.5848228365683 K, F = -1321.812852429996, relative_change = 0.012013071981530763 Iter 15: T = 790.0367252988154 K, F = -560.2527213311189, relative_change = 0.0061569794840991765 Iter 20: T = 774.3848061920735 K, F = -235.86157094802115, relative_change = 0.002845610908573704 Iter 25: T = 767.4925332826 K, F = -98.93681234265412, relative_change = 0.001245060364477166 Iter 30: T = 764.5435861400174 K, F = -41.430473089212725, relative_change = 0.0005309828020811172 Iter 35: T = 763.298180285501 K, F = -17.33630566643606, relative_change = 0.00022391456756738708 Iter 40: T = 762.775179194691 K, F = -7.251938620495622, relative_change = 9.397150305736517e-5 Iter 45: T = 762.5560737393239 K, F = -3.033143536628006, relative_change = 3.935762486685511e-5 Iter 50: T = 762.4643745248148 K, F = -1.2685487196811835, relative_change = 1.6469928263805175e-5 Iter 55: T = 762.4260131376993 K, F = -0.5305313008348207, relative_change = 6.889688700302022e-6 Iter 60: T = 762.4099679034325 K, F = -0.22187611370297478, relative_change = 2.8816594375148194e-6 Iter 65: T = 762.4032572372555 K, F = -0.09279151823094167, relative_change = 1.2051985038114138e-6 Iter 70: T = 762.4004506939702 K, F = -0.03880656965763962, relative_change = 5.040378723290077e-7 Iter 75: T = 762.3992769531111 K, F = -0.016229379370021113, relative_change = 2.107963131124339e-7 Iter 80: T = 762.3987860787531 K, F = -0.006787321757974918, relative_change = 8.815782513000357e-8 Iter 85: T = 762.3985807888997 K, F = -0.002838539275806351, relative_change = 3.686870592584337e-8 Iter 90: T = 762.3984949341728 K, F = -0.001187111069436142, relative_change = 1.5418941974804954e-8 Iter 95: T = 762.3984590286905 K, F = -0.0004964640339787385, relative_change = 6.448387220084939e-9 Iter 100: T = 762.3984440125871 K, F = -0.0002076271886543024, relative_change = 2.696792806286246e-9 Iter 105: T = 762.3984377326731 K, F = -8.683216958205175e-5, relative_change = 1.1278309983606107e-9 Iter 110: T = 762.398435106338 K, F = -3.63142485995116e-5, relative_change = 4.716723781242025e-10 Iter 115: T = 762.3984340079733 K, F = -1.5187052406773205e-5, relative_change = 1.9725902230650768e-10 Iter 120: T = 762.3984335486241 K, F = -6.35140740623541e-6, relative_change = 8.24960884614846e-11 Iter 125: T = 762.3984333565187 K, F = -2.6562326532753033e-6, relative_change = 3.45008263816688e-11 Iter 130: T = 762.398433276178 K, F = -1.1108681758909e-6, relative_change = 1.4428657083672286e-11 Iter 135: T = 762.3984332425786 K, F = -4.6458003866156616e-7, relative_change = 6.03425880104772e-12 Iter 140: T = 762.3984332285269 K, F = -1.9429135666992892e-7, relative_change = 2.5235787840423517e-12 Iter 145: T = 762.3984332226502 K, F = -8.125445427609179e-8, relative_change = 1.0553841428775533e-12 Iter 150: T = 762.3984332201925 K, F = -3.398010994803968e-8, relative_change = 4.4135511748184014e-13 Converged in 154 iterations to T = 762.3984332193055 K Iter 1: T = 969.949939124868 K, F = -6846.934955386231, relative_change = 0.030050060875131922 Iter 2: T = 942.0560042087311 K, F = -5799.817020676346, relative_change = 0.028758118116182372 Iter 3: T = 916.2757446480604 K, F = -4911.108837356696, relative_change = 0.02736595217852737 Iter 5: T = 870.8522360212587 K, F = -3517.2541135512815, relative_change = 0.0243209732059393 Iter 10: T = 789.765935021909 K, F = -1515.003685564684, relative_change = 0.016020230097694415 Iter 15: T = 745.2171210814067 K, F = -645.3159222791334, relative_change = 0.008860692696857136 Iter 20: T = 723.4577324785337 K, F = -272.5062647876883, relative_change = 0.004290744614834289 Iter 25: T = 713.6287578309699 K, F = -114.48693474246376, relative_change = 0.0019221989784971314 Iter 30: T = 709.3715132040916 K, F = -47.976525183756195, relative_change = 0.0008286400641205287 Iter 35: T = 707.5637607928336 K, F = -20.08171199382722, relative_change = 0.00035107488891140975 Iter 40: T = 706.8028260403623 K, F = -8.401480806101734, relative_change = 0.0001476308879006654 Iter 45: T = 706.4837250519015 K, F = -3.5141388672364786, relative_change = 6.188331858304683e-5 Iter 50: T = 706.3501204763165 K, F = -1.4697493417543068, relative_change = 2.5905318804370127e-5 Iter 55: T = 706.2942186795578 K, F = -0.6146832686811597, relative_change = 1.0838288208798556e-5 Iter 60: T = 706.2708351948324 K, F = -0.2570707778892698, relative_change = 4.533467125395318e-6 Iter 65: T = 706.2610551224332 K, F = -0.1075105756145075, relative_change = 1.89608402312645e-6 Iter 70: T = 706.2569648359471 K, F = -0.04496229520752637, relative_change = 7.929884093685242e-7 Iter 75: T = 706.2552542042064 K, F = -0.018803784302373616, relative_change = 3.3164132060304605e-7 Iter 80: T = 706.2545387931959 K, F = -0.007863969867365261, relative_change = 1.3869707757452818e-7 Iter 85: T = 706.2542395990002 K, F = -0.003288806587009474, relative_change = 5.800489956861887e-8 Iter 90: T = 706.2541144722803 K, F = -0.0013754182734656561, relative_change = 2.4258363635518535e-8 Iter 95: T = 706.2540621427682 K, F = -0.0005752163615923012, relative_change = 1.0145141198371706e-8 Iter 100: T = 706.2540402579374 K, F = -0.00024056235597613718, relative_change = 4.24281990466523e-9 Iter 105: T = 706.2540311054389 K, F = -0.0001006060510124751, relative_change = 1.7743980780802833e-9 Iter 110: T = 706.2540272777546 K, F = -4.207465323768922e-5, relative_change = 7.420745076062614e-10 Iter 115: T = 706.2540256769713 K, F = -1.7596121272944742e-5, relative_change = 3.1034440370895476e-10 Iter 120: T = 706.2540250075045 K, F = -7.3589077967950445e-6, relative_change = 1.297897318975681e-10 Iter 125: T = 706.2540247275256 K, F = -3.0775825841100612e-6, relative_change = 5.427960646716501e-11 Iter 130: T = 706.2540246104351 K, F = -1.2870816905596882e-6, relative_change = 2.2700377910418012e-11 Iter 135: T = 706.2540245614664 K, F = -5.382734888925711e-7, relative_change = 9.493578931839825e-12 Iter 140: T = 706.2540245409871 K, F = -2.251116367757433e-7, relative_change = 3.97031460140841e-12 Iter 145: T = 706.2540245324225 K, F = -9.414463841839193e-8, relative_change = 1.6604376296672854e-12 Iter 150: T = 706.2540245288405 K, F = -3.937146053623053e-8, relative_change = 6.943980635452198e-13 Iter 155: T = 706.2540245273426 K, F = -1.6465259156106526e-8, relative_change = 2.9039928715280224e-13 Converged in 157 iterations to T = 706.2540245270256 K Iter 1: T = 973.6031895781614 K, F = -6014.538364465012, relative_change = 0.02639681042183856 Iter 2: T = 949.3992736082113 K, F = -5089.644409693339, relative_change = 0.024860144491142364 Iter 3: T = 927.320121387761 K, F = -4305.163949585963, relative_change = 0.02325591859422643 Iter 5: T = 889.210790431984 K, F = -3076.1933641972782, relative_change = 0.019923479547634283 Iter 10: T = 824.393891734633 K, F = -1316.9813296046727, relative_change = 0.011926432016686498 Iter 15: T = 791.0816011316276 K, F = -558.146882873766, relative_change = 0.006102828607554106 Iter 20: T = 775.5541358334976 K, F = -234.96084963540366, relative_change = 0.002818000858637681 Iter 25: T = 768.7200229324174 K, F = -98.55606909518286, relative_change = 0.0012324295370390237 Iter 30: T = 765.7966309956297 K, F = -41.27048527824886, relative_change = 0.0005254910070550585 Iter 35: T = 764.5621420600329 K, F = -17.269260748533117, relative_change = 0.00022157959595521022 Iter 40: T = 764.0437477754995 K, F = -7.223875542219874, relative_change = 9.298817942810922e-5 Iter 45: T = 763.8265762334163 K, F = -3.0214029868875025, relative_change = 3.894518684151258e-5 Iter 50: T = 763.7356870859991 K, F = -1.2636379392423418, relative_change = 1.6297231140173753e-5 Iter 55: T = 763.6976647031934 K, F = -0.5284774238602074, relative_change = 6.817427814274829e-6 Iter 60: T = 763.681761283889 K, F = -0.22101713508581666, relative_change = 2.8514326168668405e-6 Iter 65: T = 763.6751099333011 K, F = -0.09243227913674024, relative_change = 1.1925561571487493e-6 Iter 70: T = 763.6723281977067 K, F = -0.038656330882824386, relative_change = 4.987504944468108e-7 Iter 75: T = 763.6711648319308 K, F = -0.01616654759968994, relative_change = 2.0858503400370463e-7 Iter 80: T = 763.6706782965932 K, F = -0.006761044736798394, relative_change = 8.72330357146778e-8 Iter 85: T = 763.6704748213765 K, F = -0.0028275499102771162, relative_change = 3.6481946920403204e-8 Iter 90: T = 763.6703897255534 K, F = -0.0011825151843544157, relative_change = 1.5257194548254742e-8 Iter 95: T = 763.6703541374538 K, F = -0.0004945419808776164, relative_change = 6.380742495747789e-9 Iter 100: T = 763.6703392540838 K, F = -0.00020682336258592837, relative_change = 2.6685029628434937e-9 Iter 105: T = 763.6703330296805 K, F = -8.649600067889285e-5, relative_change = 1.1159998568684481e-9 Iter 110: T = 763.6703304265607 K, F = -3.617365992691912e-5, relative_change = 4.667244686364205e-10 Iter 115: T = 763.6703293379048 K, F = -1.5128256513396998e-5, relative_change = 1.951897470369082e-10 Iter 120: T = 763.6703288826159 K, F = -6.326816776591748e-6, relative_change = 8.163067360628297e-11 Iter 125: T = 763.6703286922086 K, F = -2.645949389923352e-6, relative_change = 3.413891043646399e-11 Iter 130: T = 763.670328612578 K, F = -1.1065665372900213e-6, relative_change = 1.4277285903938443e-11 Iter 135: T = 763.6703285792756 K, F = -4.627804275347813e-7, relative_change = 5.970945490737434e-12 Iter 140: T = 763.6703285653481 K, F = -1.9353896729690234e-7, relative_change = 2.4971034974829653e-12 Iter 145: T = 763.6703285595235 K, F = -8.093915659923567e-8, relative_change = 1.044303655524607e-12 Iter 150: T = 763.6703285570875 K, F = -3.3849431035903876e-8, relative_change = 4.367365074458061e-13 Converged in 154 iterations to T = 763.6703285562082 K Iter 1: T = 964.3563442650751 K, F = -8121.440865072409, relative_change = 0.03564365573492486 Iter 2: T = 930.6401276061054 K, F = -6889.839462004291, relative_change = 0.03496240457116971 Iter 3: T = 898.8204700051954 K, F = -5843.9339141242945, relative_change = 0.034191151506393735 Iter 5: T = 840.7579814193381 K, F = -4201.600685354135, relative_change = 0.032353372987817264 Iter 10: T = 726.8057351093458 K, F = -1832.1781382973038, relative_change = 0.02593746156416441 Iter 15: T = 653.3735059516487 K, F = -791.0341675684286, relative_change = 0.01773064021188094 Iter 20: T = 611.9015028056401 K, F = -337.6800019169231, relative_change = 0.010145955535707265 Iter 25: T = 591.2057774724033 K, F = -142.809679265042, relative_change = 0.005026484583206174 Iter 30: T = 581.7367404323392 K, F = -60.0463905579563, relative_change = 0.0022794243729828897 Iter 35: T = 577.6090188577656 K, F = -25.172403155448357, relative_change = 0.0009882723587078793 Iter 40: T = 575.851154941948 K, F = -10.53827030228701, relative_change = 0.0004197620552899516 Iter 45: T = 575.1102850217006 K, F = -4.409156803572992, relative_change = 0.00017670450403719612 Iter 50: T = 574.7994316918619 K, F = -1.8443008112440344, relative_change = 7.410390126382039e-5 Iter 55: T = 574.6692509591356 K, F = -0.7713680153093785, relative_change = 3.102695534527393e-5 Iter 60: T = 574.6147765854803 K, F = -0.3226057135899155, relative_change = 1.2982118658310891e-5 Iter 65: T = 574.5919892829351 K, F = -0.13491938140257667, relative_change = 5.4303754144862694e-6 Iter 70: T = 574.5824584039422 K, F = -0.05642521481472687, relative_change = 2.2712400105690584e-6 Iter 75: T = 574.5784723091268 K, F = -0.02359775435404765, relative_change = 9.498933097455386e-7 Iter 80: T = 574.576805247391 K, F = -0.009868872421289976, relative_change = 3.97262605459198e-7 Iter 85: T = 574.5761080571432 K, F = -0.004127282008197897, relative_change = 1.6614099421945209e-7 Iter 90: T = 574.5758164829596 K, F = -0.0017260789232874107, relative_change = 6.948232775939354e-8 Iter 95: T = 574.5756945429971 K, F = -0.0007218668711324039, relative_change = 2.9058370703664965e-8 Iter 100: T = 574.5756435462213 K, F = -0.0003018933556572234, relative_change = 1.2152563165542307e-8 Iter 105: T = 574.5756222187557 K, F = -0.00012625540798927304, relative_change = 5.082347997968105e-9 Iter 110: T = 574.5756132993541 K, F = -5.280151913750197e-5, relative_change = 2.1254987741512033e-9 Iter 115: T = 574.5756095691538 K, F = -2.2082226498187918e-5, relative_change = 8.889090232593785e-10 Iter 120: T = 574.5756080091394 K, F = -9.235050898670494e-6, relative_change = 3.7175237654926345e-10 Iter 125: T = 574.5756073567227 K, F = -3.8622082971229155e-6, relative_change = 1.5547127316343436e-10 Iter 130: T = 574.5756070838743 K, F = -1.615221538409095e-6, relative_change = 6.501993944041441e-11 Iter 135: T = 574.5756069697658 K, F = -6.755043562289842e-7, relative_change = 2.7192091815796433e-11 Iter 140: T = 574.5756069220442 K, F = -2.8250455480494097e-7, relative_change = 1.1372080320189932e-11 Iter 145: T = 574.5756069020865 K, F = -1.1814670508591973e-7, relative_change = 4.755936841275869e-12 Iter 150: T = 574.57560689374 K, F = -4.940991354951407e-8, relative_change = 1.9889714911621925e-12 Iter 155: T = 574.5756068902493 K, F = -2.0663874833459772e-8, relative_change = 8.318140022790692e-13 Iter 160: T = 574.5756068887896 K, F = -8.642258686464288e-9, relative_change = 3.4788982437918893e-13 Converged in 163 iterations to T = 574.5756068883621 K Iter 1: T = 963.555751701781 K, F = -8303.856642179102, relative_change = 0.03644424829821896 Iter 2: T = 928.988791192555 K, F = -7046.111901814409, relative_change = 0.03587437514453692 Iter 3: T = 896.2655503807849 K, F = -5977.953697430401, relative_change = 0.035224580879778755 Iter 5: T = 836.2312815356548 K, F = -4300.509336761753, relative_change = 0.03365596978773964 Iter 10: T = 716.471409322491 K, F = -1879.3696419450805, relative_change = 0.027942606525249165 Iter 15: T = 636.7511610149345 K, F = -813.8431095011207, relative_change = 0.020033298888674382 Iter 20: T = 590.0301112958709 K, F = -348.4733033851922, relative_change = 0.01201942071428169 Iter 25: T = 565.9818113546171 K, F = -147.7019443839051, relative_change = 0.006160850188286403 Iter 30: T = 554.7614118806315 K, F = -62.18147292158751, relative_change = 0.0028475638088759137 Iter 35: T = 549.8203978239128 K, F = -26.083298488788532, relative_change = 0.0012459498511332844 Iter 40: T = 547.7062923094129 K, F = -10.922570111919995, relative_change = 0.0005313688384728051 Iter 45: T = 546.8134531414415 K, F = -4.570478348104714, relative_change = 0.0002240785752929269 Iter 50: T = 546.4385094396514 K, F = -1.9118740744491824, relative_change = 9.404054941780093e-5 Iter 55: T = 546.281430797285 K, F = -0.7996467091195266, relative_change = 3.938658130672678e-5 Iter 60: T = 546.2156907873908 K, F = -0.334435486900591, relative_change = 1.648205230438007e-5 Iter 65: T = 546.1881891509579 K, F = -0.13986730907187397, relative_change = 6.894761590290748e-6 Iter 70: T = 546.1766861718334 K, F = -0.05849459789436648, relative_change = 2.8837814131830066e-6 Iter 75: T = 546.1718752320684 K, F = -0.024463212676886698, relative_change = 1.2060860150695363e-6 Iter 80: T = 546.1698631947343 K, F = -0.010230820506433758, relative_change = 5.044090533634415e-7 Iter 85: T = 546.1690217288443 K, F = -0.004278653558192069, relative_change = 2.1095154780153735e-7 Iter 90: T = 546.1686698163874 K, F = -0.0017893844069809817, relative_change = 8.822274649103692e-8 Iter 95: T = 546.1685226421552 K, F = -0.000748341997532459, relative_change = 3.689585690862279e-8 Iter 100: T = 546.1684610920915 K, F = -0.00031296557227095123, relative_change = 1.54302968498273e-8 Iter 105: T = 546.1684353511125 K, F = -0.00013088594190166503, relative_change = 6.453135964817145e-9 Iter 110: T = 546.1684245859265 K, F = -5.473806418665461e-5, relative_change = 2.6987787890884356e-9 Iter 115: T = 546.1684200837968 K, F = -2.2892112631150985e-5, relative_change = 1.1286615876704344e-9 Iter 120: T = 546.1684182009524 K, F = -9.573754272879098e-6, relative_change = 4.720197322564052e-10 Iter 125: T = 546.1684174135244 K, F = -4.003858606271837e-6, relative_change = 1.974043020563792e-10 Iter 130: T = 546.1684170842126 K, F = -1.6744611687213862e-6, relative_change = 8.255682125313356e-11 Iter 135: T = 546.1684169464905 K, F = -7.002800468947079e-7, relative_change = 3.452626779764174e-11 Iter 140: T = 546.1684168888935 K, F = -2.9286604036338204e-7, relative_change = 1.44393252218681e-11 Iter 145: T = 546.1684168648056 K, F = -1.2247965397449434e-7, relative_change = 6.03867746146526e-12 Iter 150: T = 546.1684168547318 K, F = -5.122173207805503e-8, relative_change = 2.5254114379563523e-12 Iter 155: T = 546.168416850519 K, F = -2.1422052631780986e-8, relative_change = 1.0561824941872135e-12 Iter 160: T = 546.168416848757 K, F = -8.959090913585044e-9, relative_change = 4.417146736381113e-13 Converged in 164 iterations to T = 546.1684168481211 K Iter 1: T = 969.279313542855 K, F = -6999.737632177531, relative_change = 0.030720686457145013 Iter 2: T = 940.6984374377465 K, F = -5930.332562723672, relative_change = 0.02948672865063143 Iter 3: T = 914.2185043913686 K, F = -5022.622481343635, relative_change = 0.028149226141486277 Iter 5: T = 867.3768090707916 K, F = -3598.7077601977658, relative_change = 0.02519492437626936 Iter 10: T = 782.9285203823607 K, F = -1552.043272226544, relative_change = 0.016929938482228343 Iter 15: T = 735.8458873714873 K, F = -661.859742905947, relative_change = 0.009533710080058351 Iter 20: T = 712.5884655081975 K, F = -279.71021790305855, relative_change = 0.004671892252991273 Iter 25: T = 702.0126995138683 K, F = -117.56246471941084, relative_change = 0.002106181214866981 Iter 30: T = 697.4168238711777 K, F = -49.27497623109368, relative_change = 0.0009106289536688672 Iter 35: T = 695.4623554865113 K, F = -20.626982911259265, relative_change = 0.00038631037035568303 Iter 40: T = 694.6391305475937 K, F = -8.629920054407163, relative_change = 0.0001625374306952371 Iter 45: T = 694.2938129776957 K, F = -3.6097455338115183, relative_change = 6.814763998419899e-5 Iter 50: T = 694.1492150348272 K, F = -1.5097455922623684, relative_change = 2.8530447859552737e-5 Iter 55: T = 694.0887105423877 K, F = -0.6314123505049758, relative_change = 1.1937080214619196e-5 Iter 60: T = 694.0634012554281 K, F = -0.2640674598582331, relative_change = 4.993158169628655e-6 Iter 65: T = 694.052815632044 K, F = -0.11043673807944421, relative_change = 2.0883608460809376e-6 Iter 70: T = 694.0483884269637 K, F = -0.04618606292941374, relative_change = 8.734058651998769e-7 Iter 75: T = 694.0465368870239 K, F = -0.01931558061214289, relative_change = 3.6527373419568566e-7 Iter 80: T = 694.0457625456789 K, F = -0.00807800955226623, relative_change = 1.5276270732435835e-7 Iter 85: T = 694.0454387059661 K, F = -0.0033783206017121703, relative_change = 6.388734062176477e-8 Iter 90: T = 694.0453032721707 K, F = -0.0014128541145255191, relative_change = 2.6718475410119503e-8 Iter 95: T = 694.0452466321123 K, F = -0.0005908724812611066, relative_change = 1.117399017552891e-8 Iter 100: T = 694.0452229445584 K, F = -0.0002471099319067971, relative_change = 4.673096967032074e-9 Iter 105: T = 694.0452130381395 K, F = -0.00010334432520053838, relative_change = 1.9543451036033436e-9 Iter 110: T = 694.0452088951567 K, F = -4.321983091737369e-5, relative_change = 8.17330483977841e-10 Iter 115: T = 694.0452071625119 K, F = -1.807504911388591e-5, relative_change = 3.418173672176427e-10 Iter 120: T = 694.0452064378992 K, F = -7.559202454987535e-6, relative_change = 1.4295212577252852e-10 Iter 125: T = 694.0452061348574 K, F = -3.161348091529348e-6, relative_change = 5.978427401853024e-11 Iter 130: T = 694.0452060081218 K, F = -1.3221143004837899e-6, relative_change = 2.500251203100554e-11 Iter 135: T = 694.0452059551193 K, F = -5.52923185237475e-7, relative_change = 1.0456333912347582e-11 Iter 140: T = 694.0452059329531 K, F = -2.3123818304604526e-7, relative_change = 4.372946767539148e-12 Iter 145: T = 694.0452059236829 K, F = -9.670773559733448e-8, relative_change = 1.8288406102857062e-12 Iter 150: T = 694.045205919806 K, F = -4.044277712722533e-8, relative_change = 7.648136185603061e-13 Iter 155: T = 694.0452059181846 K, F = -1.691366169342956e-8, relative_change = 3.1985436515170546e-13 Converged in 158 iterations to T = 694.04520591771 K Iter 1: T = 966.4536272917688 K, F = -7643.572932409053, relative_change = 0.033546372708231166 Iter 2: T = 934.9452413718894 K, F = -6480.767592173152, relative_change = 0.03260206701088527 Iter 3: T = 905.4451513617172 K, F = -5493.45334280046, relative_change = 0.031552746305104844 Iter 5: T = 852.3455754230715 K, F = -3943.6630275228185, relative_change = 0.029133869079168137 Iter 10: T = 752.1308345588318 K, F = -1710.8939145269658, relative_change = 0.021506727069919383 Iter 15: T = 691.9921379418978 K, F = -734.0407017454991, relative_change = 0.01331375342484813 Iter 20: T = 660.3736726614086 K, F = -311.61429244053664, relative_change = 0.006990758905355052 Iter 25: T = 645.4103770217731 K, F = -131.3095064781415, relative_change = 0.0032771359539063172 Iter 30: T = 638.770728176207 K, F = -55.10592565821477, relative_change = 0.0014439379362778928 Iter 35: T = 635.9196085726172 K, F = -23.080824052176897, relative_change = 0.0006177427940944343 Iter 40: T = 634.7136013087501 K, F = -9.658892774634959, relative_change = 0.000260856027612888 Iter 45: T = 634.2068007351617 K, F = -4.040560474481929, relative_change = 0.0001095381458232434 Iter 50: T = 633.9944212959928 K, F = -1.6900030233675505, relative_change = 4.5888465686872634e-5 Iter 55: T = 633.9055263051445 K, F = -0.7068131427725658, relative_change = 1.9204834392154092e-5 Iter 60: T = 633.8683361554665 K, F = -0.2956035943211252, relative_change = 8.034095015389531e-6 Iter 65: T = 633.8527804800618 K, F = -0.12362598500858368, relative_change = 3.3603751152751943e-6 Iter 70: T = 633.8462745065889 K, F = -0.051702043777140216, relative_change = 1.4054225869885818e-6 Iter 75: T = 633.8435535600745 K, F = -0.021622443717120132, relative_change = 5.877773807079725e-7 Iter 80: T = 633.8424156153795 K, F = -0.009042769706972542, relative_change = 2.4581777126247754e-7 Iter 85: T = 633.8419397111551 K, F = -0.0037817952503213514, relative_change = 1.0280432136032723e-7 Iter 90: T = 633.8417406819466 K, F = -0.0015815921059007532, relative_change = 4.299406377886299e-8 Iter 95: T = 633.8416574454885 K, F = -0.0006614407357988794, relative_change = 1.7980642957640914e-8 Iter 100: T = 633.8416226349962 K, F = -0.0002766224208414214, relative_change = 7.519721744609805e-9 Iter 105: T = 633.8416080768304 K, F = -0.00011568679992157715, relative_change = 3.1448377807437806e-9 Iter 110: T = 633.8416019884314 K, F = -4.838160080250509e-5, relative_change = 1.3152087632984837e-9 Iter 115: T = 633.8415994421902 K, F = -2.0233763420030026e-5, relative_change = 5.500360267558463e-10 Iter 120: T = 633.8415983773217 K, F = -8.46200171328304e-6, relative_change = 2.3003164272428504e-10 Iter 125: T = 633.8415979319809 K, F = -3.538910650136007e-6, relative_change = 9.620199340665698e-11 Iter 130: T = 633.8415977457341 K, F = -1.4800143922077957e-6, relative_change = 4.0232814296864125e-11 Iter 135: T = 633.8415976678434 K, F = -6.189598604211533e-7, relative_change = 1.682584795608555e-11 Iter 140: T = 633.8415976352687 K, F = -2.588567590278146e-7, relative_change = 7.03678016844133e-12 Iter 145: T = 633.8415976216455 K, F = -1.0825777257972291e-7, relative_change = 2.942886830954731e-12 Iter 150: T = 633.8415976159481 K, F = -4.5274473503553736e-8, relative_change = 1.2307444415559226e-12 Iter 155: T = 633.8415976135653 K, F = -1.8933971890344736e-8, relative_change = 5.147024108233047e-13 Converged in 160 iterations to T = 633.8415976125689 K Iter 1: T = 966.4747816624435 K, F = -7638.752888927814, relative_change = 0.03352521833755644 Iter 2: T = 934.9885124825714 K, F = -6476.643749689081, relative_change = 0.032578469482372016 Iter 3: T = 905.511474809316 K, F = -5489.922647672927, relative_change = 0.03152663084061668 Iter 5: T = 852.4605238410148 K, F = -3941.0697618785402, relative_change = 0.02910274396230483 Iter 10: T = 752.3746199293571 K, F = -1709.6863981404993, relative_change = 0.0214671803349954 Iter 15: T = 692.3513450599899 K, F = -733.482875584594, relative_change = 0.013277978194935754 Iter 20: T = 660.8120008712077 K, F = -311.36389297479076, relative_change = 0.006967288261719803 Iter 25: T = 645.8921133506168 K, F = -131.20052466973846, relative_change = 0.0032648212514838843 Iter 30: T = 639.2731681909756 K, F = -55.0594592000897, relative_change = 0.0014382238308798458 Iter 35: T = 636.4312330264246 K, F = -23.06122274979506, relative_change = 0.0006152423835829089 Iter 40: T = 635.2291657977441 K, F = -9.650664763158934, relative_change = 0.00025978997026891146 Iter 45: T = 634.7240308638399 K, F = -4.037114005320289, relative_change = 0.00010908867115426817 Iter 50: T = 634.5123511826454 K, F = -1.6885607155125977, relative_change = 4.569984822065154e-5 Iter 55: T = 634.4237493960749 K, F = -0.7062097852330051, relative_change = 1.9125839642903454e-5 Iter 60: T = 634.3866819656013 K, F = -0.29535123372198857, relative_change = 8.00103873033478e-6 Iter 65: T = 634.3711776299335 K, F = -0.12352043967023568, relative_change = 3.3465471276993706e-6 Iter 70: T = 634.3646931303438 K, F = -0.0516579025598739, relative_change = 1.3996389530931015e-6 Iter 75: T = 634.3619811649871 K, F = -0.021603983175974673, relative_change = 5.85358490224176e-7 Iter 80: T = 634.3608469764112 K, F = -0.00903504926028642, relative_change = 2.4480614387098774e-7 Iter 85: T = 634.3603726430565 K, F = -0.0037785664607141722, relative_change = 1.0238124342086336e-7 Iter 90: T = 634.3601742708074 K, F = -0.001580241787152048, relative_change = 4.2817126978955456e-8 Iter 95: T = 634.3600913090982 K, F = -0.0006608760170462857, relative_change = 1.7906645798217266e-8 Iter 100: T = 634.360056613509 K, F = -0.00027638624751519236, relative_change = 7.4887751996494e-9 Iter 105: T = 634.3600421033973 K, F = -0.00011558803055222722, relative_change = 3.131895594026092e-9 Iter 110: T = 634.3600360350949 K, F = -4.834029407030371e-5, relative_change = 1.3097961803189781e-9 Iter 115: T = 634.3600334972583 K, F = -2.0216487749136203e-5, relative_change = 5.477724007869647e-10 Iter 120: T = 634.3600324359047 K, F = -8.454776192934332e-6, relative_change = 2.2908495024856002e-10 Iter 125: T = 634.3600319920341 K, F = -3.5358887135461536e-6, relative_change = 9.580607153179853e-11 Iter 130: T = 634.360031806402 K, F = -1.47875124423269e-6, relative_change = 4.0067253004122036e-11 Iter 135: T = 634.3600317287685 K, F = -6.184312137391679e-7, relative_change = 1.6756597850795755e-11 Iter 140: T = 634.3600316963011 K, F = -2.586345418942315e-7, relative_change = 7.0077882772106085e-12 Iter 145: T = 634.360031682723 K, F = -1.0816386142309398e-7, relative_change = 2.930735525983279e-12 Iter 150: T = 634.3600316770444 K, F = -4.5234715362330036e-8, relative_change = 1.2256495430318205e-12 Iter 155: T = 634.3600316746696 K, F = -1.8917608757273996e-8, relative_change = 5.125788532833286e-13 Converged in 160 iterations to T = 634.3600316736764 K Iter 1: T = 976.4021862550596 K, F = -5376.784309100566, relative_change = 0.02359781374494041 Iter 2: T = 954.9667281454141 K, F = -4546.469692276601, relative_change = 0.02195351302096129 Iter 3: T = 935.6022785208756 K, F = -3842.637166443441, relative_change = 0.02027761706645535 Iter 5: T = 902.6665424147826 K, F = -2741.165063417363, relative_change = 0.016924147865818424 Iter 10: T = 848.4046257419252 K, F = -1168.945926957784, relative_change = 0.009529436183897627 Iter 15: T = 821.6026005244747 K, F = -494.00895129412646, relative_change = 0.004669467456839978 Iter 20: T = 809.4154834525086 K, F = -207.63191404237762, relative_change = 0.002105008638899155 Iter 25: T = 804.1194713461052 K, F = -87.02646599902091, relative_change = 0.000910105882648877 Iter 30: T = 801.867278823364 K, F = -36.430104124558255, relative_change = 0.00038608546839321765 Iter 35: T = 800.918655677123 K, F = -15.24162884990201, relative_change = 0.00016244226486840198 Iter 40: T = 800.5207380593527 K, F = -6.375307798004508, relative_change = 6.810764394480792e-5 Iter 45: T = 800.3541145377988 K, F = -2.666418556721906, relative_change = 2.8513686470586545e-5 Iter 50: T = 800.2843938453433 K, F = -1.1151611170626259, relative_change = 1.193006434167476e-5 Iter 55: T = 800.2552293861596 K, F = -0.46637947656496515, relative_change = 4.990222986858114e-6 Iter 60: T = 800.243031335457 K, F = -0.19504647782613682, relative_change = 2.087133131979623e-6 Iter 65: T = 800.2379297680817 K, F = -0.08157094319409952, relative_change = 8.728923880316051e-7 Iter 70: T = 800.2357961972403 K, F = -0.03411397352914369, relative_change = 3.650589862537629e-7 Iter 75: T = 800.2349039064106 K, F = -0.014266876541599527, relative_change = 1.5267289614682684e-7 Iter 80: T = 800.234530738676 K, F = -0.005966579094886182, relative_change = 6.384978032039131e-8 Iter 85: T = 800.2343746752887 K, F = -0.002495294798005143, relative_change = 2.6702767212815965e-8 Iter 90: T = 800.2343094076841 K, F = -0.0010435621154337715, relative_change = 1.1167420812983146e-8 Iter 95: T = 800.2342821119868 K, F = -0.00043643014428318416, relative_change = 4.670349561495151e-9 Iter 100: T = 800.2342706965992 K, F = -0.00018252030088972138, relative_change = 1.953196121503685e-9 Iter 105: T = 800.2342659225476 K, F = -7.633217037406048e-5, relative_change = 8.168499757491184e-10 Iter 110: T = 800.2342639259822 K, F = -3.1923026791336184e-5, relative_change = 3.416164356695555e-10 Iter 115: T = 800.2342630909947 K, F = -1.3350590592486888e-5, relative_change = 1.4286806901984487e-10 Iter 120: T = 800.2342627417929 K, F = -5.5833769557755986e-6, relative_change = 5.974913846791216e-11 Iter 125: T = 800.2342625957525 K, F = -2.335035880984826e-6, relative_change = 2.4987813541303865e-11 Iter 130: T = 800.2342625346768 K, F = -9.765399331396196e-7, relative_change = 1.0450202488325721e-11 Iter 135: T = 800.234262509134 K, F = -4.0840018000753986e-7, relative_change = 4.370394320972308e-12 Iter 140: T = 800.2342624984519 K, F = -1.7079866099223295e-7, relative_change = 1.827759963435352e-12 Iter 145: T = 800.2342624939845 K, F = -7.143294156186641e-8, relative_change = 7.644220973524155e-13 Iter 150: T = 800.234262492116 K, F = -2.9872284312837394e-8, relative_change = 3.196709211198281e-13 Converged in 153 iterations to T = 800.234262491569 K Iter 1: T = 965.133870018492 K, F = -7944.2808825384445, relative_change = 0.034866129981508 Iter 2: T = 932.239668161031 K, F = -6738.1319623806485, relative_change = 0.0340825276982878 Iter 3: T = 901.2878885580723 K, F = -5713.898172959903, relative_change = 0.03320152602389823 Iter 5: T = 845.0987403855255 K, F = -4105.780305339948, relative_change = 0.031128174350380716 Iter 10: T = 736.4735468167132 K, F = -1786.8377672074732, relative_change = 0.024168242594253493 Iter 15: T = 668.4409323776149 K, F = -769.4838877440445, relative_change = 0.015864494804867763 Iter 20: T = 631.1583360824826 K, F = -327.6968249128982, relative_change = 0.008747715837548577 Iter 25: T = 612.9826818925923 K, F = -138.36288645124492, relative_change = 0.004227608224343239 Iter 30: T = 604.7816177703038 K, F = -58.125815063664575, relative_change = 0.0018919390856988068 Iter 35: T = 601.2314138315069 K, F = -24.357231807427564, relative_change = 0.0008152002236890947 Iter 40: T = 599.7242631345513 K, F = -10.19515273872788, relative_change = 0.0003453074848195991 Iter 45: T = 599.0899277604865 K, F = -4.265266995845211, relative_change = 0.0001451924929619286 Iter 50: T = 598.8239287247526 K, F = -1.7840548274973405, relative_change = 6.085888004741544e-5 Iter 55: T = 598.7125595503829 K, F = -0.7461602136370351, relative_change = 2.5476064999974127e-5 Iter 60: T = 598.6659616896817 K, F = -0.31206137051938504, relative_change = 1.0658625178999295e-5 Iter 65: T = 598.6464700669312 K, F = -0.1305092367708104, relative_change = 4.458304699307464e-6 Iter 70: T = 598.6383177655022 K, F = -0.05458077415341722, relative_change = 1.8646457895228128e-6 Iter 75: T = 598.6349082581323 K, F = -0.022826375783440656, relative_change = 7.798397932723202e-7 Iter 80: T = 598.633482340871 K, F = -0.009546270686060454, relative_change = 3.2614227738077824e-7 Iter 85: T = 598.6328860016471 K, F = -0.003992365758099525, relative_change = 1.3639728839446987e-7 Iter 90: T = 598.632636604833 K, F = -0.0016696552757664573, relative_change = 5.7043096167260493e-8 Iter 95: T = 598.6325323039969 K, F = -0.0006982698170241997, relative_change = 2.3856125238440806e-8 Iter 100: T = 598.6324886841224 K, F = -0.000292024783903444, relative_change = 9.976920188237639e-9 Iter 105: T = 598.6324704417666 K, F = -0.00012212825377716507, relative_change = 4.172467833564421e-9 Iter 110: T = 598.632462812595 K, F = -5.107549464256067e-5, relative_change = 1.7449759971089203e-9 Iter 115: T = 598.6324596219841 K, F = -2.136038152122932e-5, relative_change = 7.2976980938304e-10 Iter 120: T = 598.6324582876326 K, F = -8.933166920965796e-6, relative_change = 3.0519846210626344e-10 Iter 125: T = 598.6324577295909 K, F = -3.735957352313246e-6, relative_change = 1.276376511900778e-10 Iter 130: T = 598.6324574962111 K, F = -1.5624222471921634e-6, relative_change = 5.337959921983492e-11 Iter 135: T = 598.632457398609 K, F = -6.53423935292885e-7, relative_change = 2.2323995882891646e-11 Iter 140: T = 598.6324573577905 K, F = -2.732697636509407e-7, relative_change = 9.336164090634893e-12 Iter 145: T = 598.6324573407197 K, F = -1.1428355917164623e-7, relative_change = 3.904457072667636e-12 Iter 150: T = 598.6324573335805 K, F = -4.779452100756032e-8, relative_change = 1.6328827781172622e-12 Iter 155: T = 598.6324573305949 K, F = -1.9988729893505308e-8, relative_change = 6.829078336229067e-13 Iter 160: T = 598.6324573293463 K, F = -8.359662240220445e-9, relative_change = 2.856048813886752e-13 Converged in 162 iterations to T = 598.6324573290821 K Iter 1: T = 964.5774745844159 K, F = -8071.056111461371, relative_change = 0.03542252541558407 Iter 2: T = 931.0954630194012 K, F = -6846.6871992922515, relative_change = 0.034711583514263886 Iter 3: T = 899.5235957637734 K, F = -5806.939138905117, relative_change = 0.03390830318649074 Iter 5: T = 841.9980045595605 K, F = -4174.325393786092, relative_change = 0.03200100035334996 Iter 10: T = 729.5909267923284 K, F = -1819.2354908248676, relative_change = 0.02541747247344943 Iter 15: T = 657.7594024932966 K, F = -784.848837608358, relative_change = 0.017166890222242392 Iter 20: T = 617.5582586217147 K, F = -334.7956866458117, relative_change = 0.009712807355088993 Iter 25: T = 597.6408477733522 K, F = -141.51825229318305, relative_change = 0.004774807233598467 Iter 30: T = 588.5676748968266 K, F = -59.48694640904559, relative_change = 0.0021562489856725214 Iter 35: T = 584.6212400705236 K, F = -24.934605076499967, relative_change = 0.0009330230824092804 Iter 40: T = 582.9422723533769 K, F = -10.43811223772667, relative_change = 0.0003959500462969141 Iter 45: T = 582.2349636388162 K, F = -4.3671427068089725, relative_change = 0.00016661836614511604 Iter 50: T = 581.9382470772997 K, F = -1.8267076147766677, relative_change = 6.986311225072178e-5 Iter 55: T = 581.813996344543 K, F = -0.7640063962956695, relative_change = 2.924942254028896e-5 Iter 60: T = 581.762005098598 K, F = -0.31952630730713366, relative_change = 1.2238034646241427e-5 Iter 65: T = 581.7402568181672 K, F = -0.13363141627243016, relative_change = 5.119068288156238e-6 Iter 70: T = 581.7311605666182 K, F = -0.05588655130881115, relative_change = 2.141026251823474e-6 Iter 75: T = 581.7273562549831 K, F = -0.023372475150157723, relative_change = 8.954326170523776e-7 Iter 80: T = 581.7257652200818 K, F = -0.009774657322544622, relative_change = 3.7448583857515284e-7 Iter 85: T = 581.7250998256777 K, F = -0.0040878800149253824, relative_change = 1.5661536373103043e-7 Iter 90: T = 581.7248215489856 K, F = -0.001709600519858634, relative_change = 6.549857531591149e-8 Iter 95: T = 581.7247051702086 K, F = -0.0007149754020571164, relative_change = 2.7392314333227363e-8 Iter 100: T = 581.7246564991897 K, F = -0.0002990112603974415, relative_change = 1.1455797881972214e-8 Iter 105: T = 581.7246361443841 K, F = -0.00012505008184293676, relative_change = 4.790952352282015e-9 Iter 110: T = 581.7246276317605 K, F = -5.22974386049091e-5, relative_change = 2.0036336663334355e-9 Iter 115: T = 581.7246240716795 K, F = -2.1871413586727062e-5, relative_change = 8.379435597323828e-10 Iter 120: T = 581.7246225828111 K, F = -9.146886899569218e-6, relative_change = 3.5043802871248644e-10 Iter 125: T = 581.7246219601485 K, F = -3.825337023422026e-6, relative_change = 1.4655735740466937e-10 Iter 130: T = 581.7246216997436 K, F = -1.5998010831630438e-6, relative_change = 6.129201641204538e-11 Iter 135: T = 581.7246215908392 K, F = -6.690563297828689e-7, relative_change = 2.56330690194969e-11 Iter 140: T = 581.7246215452941 K, F = -2.798072929466322e-7, relative_change = 1.0720053507693043e-11 Iter 145: T = 581.7246215262466 K, F = -1.1701874635949849e-7, relative_change = 4.483254204570709e-12 Iter 150: T = 581.7246215182806 K, F = -4.893889460344525e-8, relative_change = 1.8749603105317606e-12 Iter 155: T = 581.7246215149493 K, F = -2.046737257455078e-8, relative_change = 7.841515741243094e-13 Iter 160: T = 581.724621513556 K, F = -8.560229247667195e-9, relative_change = 3.279618434193206e-13 Converged in 163 iterations to T = 581.724621513148 K Iter 1: T = 964.269193500322 K, F = -8141.298249723191, relative_change = 0.035730806499678004 Iter 2: T = 930.4605808016136 K, F = -6906.847780144286, relative_change = 0.03506138423439857 Iter 3: T = 898.5430537747778 K, F = -5858.51679275868, relative_change = 0.034302933069274226 Iter 5: T = 840.2680565183706 K, F = -4212.355501246892, relative_change = 0.032493118574261265 Iter 10: T = 725.7000271350398 K, F = -1837.2897303860805, relative_change = 0.026146254981791784 Iter 15: T = 651.6217145801274 K, F = -793.4848974899105, relative_change = 0.017960730444887933 Iter 20: T = 609.6295557358862 K, F = -338.8274402748473, relative_change = 0.010325518011252921 Iter 25: T = 588.6116591856103 K, F = -143.32511819361446, relative_change = 0.005131951936747031 Iter 30: T = 578.9776142542598 K, F = -60.27010979626484, relative_change = 0.002331347625053478 Iter 35: T = 574.774056903891 K, F = -25.26758800106913, relative_change = 0.0010116274135957418 Iter 40: T = 572.9831350024249 K, F = -10.578378293746214, relative_change = 0.00042984037727937556 Iter 45: T = 572.2281926754247 K, F = -4.425984320419336, relative_change = 0.00018097568032466395 Iter 50: T = 571.9114099126696 K, F = -1.8513478012500482, relative_change = 7.590015051253739e-5 Iter 55: T = 571.7787416208143 K, F = -0.7743168233075057, relative_change = 3.177992667346015e-5 Iter 60: T = 571.7232255507981 K, F = -0.3238392333901698, relative_change = 1.3297328606412387e-5 Iter 65: T = 571.7000023584918 K, F = -0.135435305414153, relative_change = 5.562253967480134e-6 Iter 70: T = 571.6902891432075 K, F = -0.056640989372417266, relative_change = 2.3264026432364694e-6 Iter 75: T = 571.6862267858318 K, F = -0.02368799542176092, relative_change = 9.729646341179138e-7 Iter 80: T = 571.6845278288976 K, F = -0.009906612588715474, relative_change = 4.0691159792524956e-7 Iter 85: T = 571.6838172994718 K, F = -0.0041430654438742165, relative_change = 1.7017636861596587e-7 Iter 90: T = 571.6835201466455 K, F = -0.0017326797533991356, relative_change = 7.116997838418669e-8 Iter 95: T = 571.6833958736212 K, F = -0.0007246274182405865, relative_change = 2.976416788191993e-8 Iter 100: T = 571.6833439011298 K, F = -0.00030304784852264177, relative_change = 1.2447736197451576e-8 Iter 105: T = 571.6833221656082 K, F = -0.000126738231166712, relative_change = 5.205792949688444e-9 Iter 110: T = 571.6833130755526 K, F = -5.300344182990191e-5, relative_change = 2.1771249459216033e-9 Iter 115: T = 571.6833092739828 K, F = -2.2166672920265196e-5, relative_change = 9.104997042553575e-10 Iter 120: T = 571.6833076841208 K, F = -9.270367912039834e-6, relative_change = 3.807818784698911e-10 Iter 125: T = 571.6833070192215 K, F = -3.8769787801817834e-6, relative_change = 1.5924753848902438e-10 Iter 130: T = 571.6833067411526 K, F = -1.621397858531104e-6, relative_change = 6.659918279673273e-11 Iter 135: T = 571.683306624861 K, F = -6.780885857815555e-7, relative_change = 2.785259983104464e-11 Iter 140: T = 571.6833065762264 K, F = -2.8358473486145286e-7, relative_change = 1.1648289481800155e-11 Iter 145: T = 571.6833065558868 K, F = -1.185982222984272e-7, relative_change = 4.87144142743752e-12 Iter 150: T = 571.6833065473805 K, F = -4.959938676440956e-8, relative_change = 2.0373029442951533e-12 Iter 155: T = 571.6833065438232 K, F = -2.0743031847736404e-8, relative_change = 8.520234344626495e-13 Iter 160: T = 571.6833065423355 K, F = -8.675761054011133e-9, relative_change = 3.5635830789673554e-13 Converged in 163 iterations to T = 571.6833065418999 K Iter 1: T = 980.0991455247704 K, F = -4534.428622780819, relative_change = 0.019900854475229622 Iter 2: T = 962.2438573756519 K, F = -3830.28850865709, relative_change = 0.01821783870606096 Iter 3: T = 946.3135390813549 K, F = -3233.984631059234, relative_change = 0.016555385801832127 Iter 5: T = 919.7055377192775 K, F = -2302.258129402579, relative_change = 0.013381116583199897 Iter 10: T = 877.4428679966069 K, F = -977.4341085092173, relative_change = 0.007035140409786402 Iter 15: T = 857.4269420071361 K, F = -411.89666868112636, relative_change = 0.0033004739466316597 Iter 20: T = 848.5415840688538 K, F = -172.86276897225366, relative_change = 0.0014547781822671533 Iter 25: T = 844.7253810958875 K, F = -72.40348972297767, relative_change = 0.0006224885041441495 Iter 30: T = 843.1110071813056 K, F = -30.29965703689974, relative_change = 0.00026287977184065106 Iter 35: T = 842.4325730775344 K, F = -12.675144074781139, relative_change = 0.0001103914743256466 Iter 40: T = 842.1482645022376 K, F = -5.3015048677787515, relative_change = 4.62465687573895e-5 Iter 45: T = 842.0292615640926 K, F = -2.217259185242061, relative_change = 1.9354813474639003e-5 Iter 50: T = 841.9794753000574 K, F = -0.927302915395309, relative_change = 8.096855915177475e-6 Iter 55: T = 841.958650972161 K, F = -0.3878124152525465, relative_change = 3.3866290985700813e-6 Iter 60: T = 841.9499414441048 K, F = -0.1621883540241189, relative_change = 1.4164034754506307e-6 Iter 65: T = 841.9462989200506 K, F = -0.06782920636746392, relative_change = 5.923699221728151e-7 Iter 70: T = 841.944775556303 K, F = -0.028367001602757513, relative_change = 2.477384624268849e-7 Iter 75: T = 841.9441384644723 K, F = -0.011863421895176751, relative_change = 1.0360758353753155e-7 Iter 80: T = 841.9438720245497 K, F = -0.004961425246785556, relative_change = 4.3329998696552334e-8 Iter 85: T = 841.9437605961028 K, F = -0.002074927381130909, relative_change = 1.8121135137944676e-8 Iter 90: T = 841.9437139953801 K, F = -0.0008677594289954182, relative_change = 7.578477284098593e-9 Iter 95: T = 841.9436945063985 K, F = -0.0003629073596422838, relative_change = 3.1694100836007735e-9 Iter 100: T = 841.9436863558733 K, F = -0.00015177219329487457, relative_change = 1.3254852215860952e-9 Iter 105: T = 841.9436829472262 K, F = -6.3472944422438e-5, relative_change = 5.543337656114941e-10 Iter 110: T = 841.9436815216892 K, F = -2.6545143979594954e-5, relative_change = 2.318290079880356e-10 Iter 115: T = 841.9436809255126 K, F = -1.1101495568155428e-5, relative_change = 9.69536543257907e-11 Iter 120: T = 841.9436806761844 K, F = -4.642777906349593e-6, relative_change = 4.054717511841613e-11 Iter 125: T = 841.9436805719124 K, F = -1.941666758265015e-6, relative_change = 1.695732677794712e-11 Iter 130: T = 841.9436805283046 K, F = -8.120270715838984e-7, relative_change = 7.091746485420312e-12 Iter 135: T = 841.9436805100673 K, F = -3.396011747369698e-7, relative_change = 2.965868407485805e-12 Iter 140: T = 841.9436805024402 K, F = -1.4202374187810562e-7, relative_change = 1.2403482687997462e-12 Iter 145: T = 841.9436804992505 K, F = -5.939643732411071e-8, relative_change = 5.187320601114198e-13 Converged in 150 iterations to T = 841.9436804979165 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012511952105151256 Iteration 10: d = 9.719737434124373e-6 Iteration 20: d = 1.051049504721967e-7 Iteration 30: d = 1.3764700797398675e-9 Iteration 40: d = 1.880996240540097e-11 Iteration 50: d = 2.6098138383589075e-13 Iteration 60: d = 3.696951143434349e-15 Converged after 62 iterations. d = 1.5536938705363961e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.852409721498 Iteration 2: convergence error = 4821.2105525199 Iteration 3: convergence error = 1090.2461983237768 Iteration 4: convergence error = 320.75065002786505 Iteration 5: convergence error = 95.20285176157086 Iteration 6: convergence error = 28.394636831352727 Iteration 7: convergence error = 8.526900000734258 Iteration 8: convergence error = 2.555862732196829 Iteration 9: convergence error = 0.7642731897044541 Iteration 10: convergence error = 0.2282236431178717 Iteration 11: convergence error = 0.06809735390743299 Iteration 12: convergence error = 0.0203097533037635 Iteration 13: convergence error = 0.006055744816421793 Iteration 14: convergence error = 0.0018053713822610007 Iteration 15: convergence error = 0.0005381814480642788 Iteration 16: convergence error = 0.00016042410175032273 Iteration 17: convergence error = 4.781874326909019e-5 Iteration 18: convergence error = 1.4253432254918152e-5 Iteration 19: convergence error = 4.248504865245195e-6 Iteration 20: convergence error = 1.2663456345762825e-6 Iteration 21: convergence error = 3.774528067879146e-7 Iteration 22: convergence error = 1.1237375474593136e-7 Iteration 23: convergence error = 3.257309799664654e-8 Iteration 24: convergence error = 9.392579158884473e-9 Iteration 25: convergence error = 2.7077931008534506e-9 Iteration 26: convergence error = 7.746621122350916e-10 Iteration 27: convergence error = 2.2282620193436742e-10 Iteration 28: convergence error = 6.480149750132114e-11 Iteration 29: convergence error = 1.9554136088117957e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 75%|████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017841520594602987 Iteration 10: d = 2.0218198263646456e-5 Iteration 20: d = 2.2509288625914576e-7 Iteration 30: d = 2.841598470851264e-9 Iteration 40: d = 3.686349565156255e-11 Iteration 50: d = 4.81271781412669e-13 Iteration 60: d = 6.31795542962079e-15 Converged after 63 iterations. d = 1.6585156338457845e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12293.135921622914 Iteration 2: convergence error = 8315.940225253926 Iteration 3: convergence error = 1953.1897886870888 Iteration 4: convergence error = 480.96080157436836 Iteration 5: convergence error = 122.68917194072856 Iteration 6: convergence error = 32.76515556666732 Iteration 7: convergence error = 8.926006456063533 Iteration 8: convergence error = 2.4454094434445324 Iteration 9: convergence error = 0.6707660491797469 Iteration 10: convergence error = 0.1840142217988614 Iteration 11: convergence error = 0.05047890153582557 Iteration 12: convergence error = 0.01384667138813711 Iteration 13: convergence error = 0.0037981069958732405 Iteration 14: convergence error = 0.0010417946966754243 Iteration 15: convergence error = 0.0002857550693988742 Iteration 16: convergence error = 7.83798391239543e-5 Iteration 17: convergence error = 2.1498803562280955e-5 Iteration 18: convergence error = 5.89690102970053e-6 Iteration 19: convergence error = 1.6174612937902566e-6 Iteration 20: convergence error = 4.4365606299834326e-7 Iteration 21: convergence error = 1.2253758541191928e-7 Iteration 22: convergence error = 3.294962880318053e-8 Iteration 23: convergence error = 8.810047802398913e-9 Iteration 24: convergence error = 2.3537722881883383e-9 Iteration 25: convergence error = 6.259597284952179e-10 Iteration 26: convergence error = 1.6711965145077556e-10 Iteration 27: convergence error = 4.433786671143025e-11 Iteration 28: convergence error = 1.2960299500264227e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017841520594602987 Iteration 10: d = 2.0218198263646456e-5 Iteration 20: d = 2.2509288625914576e-7 Iteration 30: d = 2.841598470851264e-9 Iteration 40: d = 3.686349565156255e-11 Iteration 50: d = 4.81271781412669e-13 Iteration 60: d = 6.31795542962079e-15 Converged after 63 iterations. d = 1.6585156338457845e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10995.372901438232 Iteration 2: convergence error = 5731.611113635592 Iteration 3: convergence error = 2012.41675420916 Iteration 4: convergence error = 892.5466725732081 Iteration 5: convergence error = 410.6056446263183 Iteration 6: convergence error = 193.7847077941683 Iteration 7: convergence error = 91.52126385546626 Iteration 8: convergence error = 43.24109535997104 Iteration 9: convergence error = 20.4300801437098 Iteration 10: convergence error = 9.650737930784999 Iteration 11: convergence error = 4.557498997895436 Iteration 12: convergence error = 2.151728897983503 Iteration 13: convergence error = 1.0157083397448332 Iteration 14: convergence error = 0.47939538013815763 Iteration 15: convergence error = 0.22624539415210165 Iteration 16: convergence error = 0.10667817841613214 Iteration 17: convergence error = 0.04986380604077567 Iteration 18: convergence error = 0.02277973734862826 Iteration 19: convergence error = 0.010367434588715696 Iteration 20: convergence error = 0.004708072076482495 Iteration 21: convergence error = 0.002135316120529751 Iteration 22: convergence error = 0.0009677382481640961 Iteration 23: convergence error = 0.00043839237787324237 Iteration 24: convergence error = 0.0001985430640161212 Iteration 25: convergence error = 8.990389551399858e-5 Iteration 26: convergence error = 4.0706255731493e-5 Iteration 27: convergence error = 1.842972505983198e-5 Iteration 28: convergence error = 8.343750778294634e-6 Iteration 29: convergence error = 3.777412075578468e-6 Iteration 30: convergence error = 1.7100974218919873e-6 Iteration 31: convergence error = 7.741837180219591e-7 Iteration 32: convergence error = 3.5048242352786474e-7 Iteration 33: convergence error = 1.5866635294514708e-7 Iteration 34: convergence error = 7.183462003013119e-8 Iteration 35: convergence error = 3.2511707104276866e-8 Iteration 36: convergence error = 1.4725173969054595e-8 Iteration 37: convergence error = 6.664777174592018e-9 Iteration 38: convergence error = 3.018612915184349e-9 Iteration 39: convergence error = 1.3669705367647111e-9 Iteration 40: convergence error = 6.170921551529318e-10 Iteration 41: convergence error = 2.8194335754960775e-10 Iteration 42: convergence error = 1.2641976354643703e-10 Iteration 43: convergence error = 5.6843418860808015e-11 Iteration 44: convergence error = 2.7284841053187847e-11 Iteration 45: convergence error = 1.3642420526593924e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 75%|████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017841520594602987 Iteration 10: d = 2.0218198263646456e-5 Iteration 20: d = 2.2509288625914576e-7 Iteration 30: d = 2.841598470851264e-9 Iteration 40: d = 3.686349565156255e-11 Iteration 50: d = 4.81271781412669e-13 Iteration 60: d = 6.31795542962079e-15 Converged after 63 iterations. d = 1.6585156338457845e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.9048339919 Iteration 2: convergence error = 7348.456106417838 Iteration 3: convergence error = 1728.600655679622 Iteration 4: convergence error = 505.46611866979765 Iteration 5: convergence error = 157.16056220880773 Iteration 6: convergence error = 48.842232056088505 Iteration 7: convergence error = 15.151186267905814 Iteration 8: convergence error = 4.691994885552049 Iteration 9: convergence error = 1.4513424258420855 Iteration 10: convergence error = 0.4485994076608222 Iteration 11: convergence error = 0.13859865703625474 Iteration 12: convergence error = 0.042810640313291515 Iteration 13: convergence error = 0.013221581483321643 Iteration 14: convergence error = 0.0040830108391674 Iteration 15: convergence error = 0.001260834420008905 Iteration 16: convergence error = 0.00038933588712097844 Iteration 17: convergence error = 0.00012022214468743186 Iteration 18: convergence error = 3.712280977197224e-5 Iteration 19: convergence error = 1.146291879194905e-5 Iteration 20: convergence error = 3.5395469240029342e-6 Iteration 21: convergence error = 1.0929566087725107e-6 Iteration 22: convergence error = 3.3732612791936845e-7 Iteration 23: convergence error = 1.0293024388374761e-7 Iteration 24: convergence error = 3.065679266001098e-8 Iteration 25: convergence error = 9.091763786273077e-9 Iteration 26: convergence error = 2.7025635063182563e-9 Iteration 27: convergence error = 7.921698852442205e-10 Iteration 28: convergence error = 2.3874235921539366e-10 Iteration 29: convergence error = 6.912159733474255e-11 Iteration 30: convergence error = 2.1373125491663814e-11 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017841520594602987 Iteration 10: d = 2.0218198263646456e-5 Iteration 20: d = 2.2509288625914576e-7 Iteration 30: d = 2.841598470851264e-9 Iteration 40: d = 3.686349565156255e-11 Iteration 50: d = 4.81271781412669e-13 Iteration 60: d = 6.31795542962079e-15 Converged after 63 iterations. d = 1.6585156338457845e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.775724988233 Iteration 2: convergence error = 5517.346092609261 Iteration 3: convergence error = 935.0873480260034 Iteration 4: convergence error = 170.01701110540466 Iteration 5: convergence error = 30.845631926186343 Iteration 6: convergence error = 5.612111733909387 Iteration 7: convergence error = 1.027423015505974 Iteration 8: convergence error = 0.18803718463914265 Iteration 9: convergence error = 0.034373098292689974 Iteration 10: convergence error = 0.006279673050812562 Iteration 11: convergence error = 0.0011469019291325822 Iteration 12: convergence error = 0.00020943516165061737 Iteration 13: convergence error = 3.824185387202306e-5 Iteration 14: convergence error = 6.982490049267653e-6 Iteration 15: convergence error = 1.274885107704904e-6 Iteration 16: convergence error = 2.3277834770851769e-7 Iteration 17: convergence error = 4.249932317179628e-8 Iteration 18: convergence error = 7.74753061705269e-9 Iteration 19: convergence error = 1.420630724169314e-9 Iteration 20: convergence error = 2.573870006017387e-10 Iteration 21: convergence error = 4.4792614062316716e-11 Iteration 22: convergence error = 8.640199666842818e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017841520594602987 Iteration 10: d = 2.0218198263646456e-5 Iteration 20: d = 2.2509288625914576e-7 Iteration 30: d = 2.841598470851264e-9 Iteration 40: d = 3.686349565156255e-11 Iteration 50: d = 4.81271781412669e-13 Iteration 60: d = 6.31795542962079e-15 Converged after 63 iterations. d = 1.6585156338457845e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.4948812082075 Iteration 2: convergence error = 2713.092673604831 Iteration 3: convergence error = 204.21468912546277 Iteration 4: convergence error = 19.27150235927814 Iteration 5: convergence error = 1.5935013989850844 Iteration 6: convergence error = 0.12980969846494175 Iteration 7: convergence error = 0.010587255926813139 Iteration 8: convergence error = 0.0008656950797308551 Iteration 9: convergence error = 7.106229025639107e-5 Iteration 10: convergence error = 5.830858531072279e-6 Iteration 11: convergence error = 4.783355890889111e-7 Iteration 12: convergence error = 3.923657988167834e-8 Iteration 13: convergence error = 3.2194684691254917e-9 Iteration 14: convergence error = 2.6286644193455796e-10 Iteration 15: convergence error = 2.2509993868879974e-11 Iteration 16: convergence error = 4.5774949436186305e-12 Converged after 16 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346352 Iteration 2: convergence error = 858.4060420534064 Iteration 3: convergence error = 199.12106737711963 Iteration 4: convergence error = 59.265629268140174 Iteration 5: convergence error = 17.985482911037252 Iteration 6: convergence error = 5.463033078096487 Iteration 7: convergence error = 1.660989611064224 Iteration 8: convergence error = 0.5052487627317532 Iteration 9: convergence error = 0.15371874094239502 Iteration 10: convergence error = 0.04677131697644654 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.004330236512828378 Iteration 13: convergence error = 0.0013175920926187246 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198903971238906 Iteration 16: convergence error = 3.711853855747904e-5 Iteration 17: convergence error = 1.1294342471046548e-5 Iteration 18: convergence error = 3.4366166801191866e-6 Iteration 19: convergence error = 1.045686303768889e-6 Iteration 20: convergence error = 3.1818046863918426e-7 Iteration 21: convergence error = 9.68161657510791e-8 Iteration 22: convergence error = 2.946035237982869e-8 Iteration 23: convergence error = 8.963752406998537e-9 Iteration 24: convergence error = 2.7299620342091657e-9 Iteration 25: convergence error = 8.292317943414673e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.696598913753405e-11 Iteration 28: convergence error = 2.3646862246096134e-11 Iteration 29: convergence error = 9.094947017729282e-12 Converged after 29 iterations Energy conservation errors by band: [1.5428857128674637e-25, 8.401053096241687e-26, 1.1490863489811346e-25, 9.400697635337753e-26, 1.2440020930973268e-25, -3.2610768469290563e-19, 2.7533531010703882e-14, 1.7053025658242404e-12, 5.6701310313655995e-12, 2.6432189770275727e-12, 7.176481631177012e-13, 8.526512829121202e-14, 4.9960036108132044e-15, 2.636779683484747e-16, 2.0166160408230382e-17, 1.0062751413381088e-18, 3.560185356428231e-20, 1.2755125045567687e-21, 4.105530024647957e-23, 5.6284752489113644e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012511952105151256 Iteration 10: d = 9.719737434124373e-6 Iteration 20: d = 1.051049504721967e-7 Iteration 30: d = 1.3764700797398675e-9 Iteration 40: d = 1.880996240540097e-11 Iteration 50: d = 2.6098138383589075e-13 Iteration 60: d = 3.696951143434349e-15 Converged after 62 iterations. d = 1.5536938705363961e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.387405139127 Iteration 2: convergence error = 3608.2242468382774 Iteration 3: convergence error = 589.7203057040963 Iteration 4: convergence error = 104.82988105363165 Iteration 5: convergence error = 18.65587066043372 Iteration 6: convergence error = 3.2888988016268286 Iteration 7: convergence error = 0.5775714790606798 Iteration 8: convergence error = 0.1012655419949624 Iteration 9: convergence error = 0.017743094735124032 Iteration 10: convergence error = 0.003107985515043765 Iteration 11: convergence error = 0.0005443527224997524 Iteration 12: convergence error = 9.533716593068675e-5 Iteration 13: convergence error = 1.66969057318056e-5 Iteration 14: convergence error = 2.9241944048408186e-6 Iteration 15: convergence error = 5.121230515214847e-7 Iteration 16: convergence error = 8.96939127414953e-8 Iteration 17: convergence error = 1.572243490954861e-8 Iteration 18: convergence error = 2.73166733677499e-9 Iteration 19: convergence error = 4.84988049720414e-10 Iteration 20: convergence error = 8.230927051045e-11 Iteration 21: convergence error = 1.432454155292362e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.492427513024 Iteration 2: convergence error = 871.304602661783 Iteration 3: convergence error = 207.75299581225158 Iteration 4: convergence error = 62.49550550490892 Iteration 5: convergence error = 18.97931530918413 Iteration 6: convergence error = 5.76621559404623 Iteration 7: convergence error = 1.7533061530655232 Iteration 8: convergence error = 0.5333443698997371 Iteration 9: convergence error = 0.16226812526508638 Iteration 10: convergence error = 0.04937275063014113 Iteration 11: convergence error = 0.015022831428041172 Iteration 12: convergence error = 0.0045710916562029524 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318846916256 Iteration 15: convergence error = 0.0001287742984459328 Iteration 16: convergence error = 3.9183143599075265e-5 Iteration 17: convergence error = 1.1922556950594299e-5 Iteration 18: convergence error = 3.6277691606301232e-6 Iteration 19: convergence error = 1.1038513321182108e-6 Iteration 20: convergence error = 3.3587832604098367e-7 Iteration 21: convergence error = 1.0220117019343888e-7 Iteration 22: convergence error = 3.1099034458748065e-8 Iteration 23: convergence error = 9.464656613999978e-9 Iteration 24: convergence error = 2.880597094190307e-9 Iteration 25: convergence error = 8.786855687503703e-10 Iteration 26: convergence error = 2.6830093702301383e-10 Iteration 27: convergence error = 8.185452315956354e-11 Iteration 28: convergence error = 2.6261659513693303e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [9.81469183839774e-26, 1.2278462217584005e-25, 1.7064639101740927e-25, 1.3045866106183005e-25, 1.2440020930973268e-25, -2.642742795433417e-19, -7.993605777301127e-15, 8.526512829121202e-14, 7.013056801952189e-12, 4.575895218295045e-12, 5.826450433232822e-13, 8.79296635503124e-14, 5.218048215738236e-15, 3.642919299551295e-16, 2.0166160408230382e-17, 8.775261333554552e-19, 3.7613556814011274e-20, 1.2358078351542233e-21, 3.6499344528902346e-23, 4.998575315730623e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729987 Iteration 2: convergence error = 2115.1156110176394 Iteration 3: convergence error = 714.8959934551629 Iteration 4: convergence error = 296.01907471323966 Iteration 5: convergence error = 115.88799395378669 Iteration 6: convergence error = 44.11524923618913 Iteration 7: convergence error = 16.599581025126554 Iteration 8: convergence error = 6.215983404932786 Iteration 9: convergence error = 2.323124567003788 Iteration 10: convergence error = 0.867563639824084 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.12090784413658184 Iteration 13: convergence error = 0.04513241840754745 Iteration 14: convergence error = 0.016846741615154315 Iteration 15: convergence error = 0.0062884074741305085 Iteration 16: convergence error = 0.0023472777563711134 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782211112615 Iteration 19: convergence error = 0.00012207719146317686 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985607473878e-6 Iteration 23: convergence error = 2.3698869426880265e-6 Iteration 24: convergence error = 8.846079708746402e-7 Iteration 25: convergence error = 3.302000095573021e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7174670574604534e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.949427865445614e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.248281478183344e-10 Iteration 34: convergence error = 4.774847184307873e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.9952501103574007e-25, 1.4136387421560532e-25, 1.0339757656912846e-25, 1.6478988765704848e-25, 2.1729646950855903e-25, 9.486769009248164e-20, 5.240252676230739e-14, 2.9274360713316128e-12, 1.2093437362636905e-11, 5.6203930398623925e-12, 2.0961010704922955e-13, 1.84297022087776e-14, 1.582067810090848e-15, 1.723881454251952e-16, 7.101524229780054e-18, 4.641740550953566e-19, 1.4770137017746862e-20, 4.963083675318166e-22, 1.7991178323028352e-23, 9.298117831235686e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238243 Iteration 2: convergence error = 864.8522700482431 Iteration 3: convergence error = 203.43244494690748 Iteration 4: convergence error = 60.87736397590345 Iteration 5: convergence error = 18.481426659698286 Iteration 6: convergence error = 5.6143306186266955 Iteration 7: convergence error = 1.7070587705935623 Iteration 8: convergence error = 0.5192694771476454 Iteration 9: convergence error = 0.1579851928424887 Iteration 10: convergence error = 0.04806952669207476 Iteration 11: convergence error = 0.014626287390910875 Iteration 12: convergence error = 0.004450431969985402 Iteration 13: convergence error = 0.0013541649049102489 Iteration 14: convergence error = 0.0004120419150694943 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.8148852013364376e-5 Iteration 17: convergence error = 1.1607843930505624e-5 Iteration 18: convergence error = 3.532008690854127e-6 Iteration 19: convergence error = 1.0747122587417834e-6 Iteration 20: convergence error = 3.270116621933994e-7 Iteration 21: convergence error = 9.950440471584443e-8 Iteration 22: convergence error = 3.027832917723572e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8029489840264432e-9 Iteration 25: convergence error = 8.546976459911093e-10 Iteration 26: convergence error = 2.609112925711088e-10 Iteration 27: convergence error = 8.003553375601768e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.753886504564434e-12 Converged after 29 iterations Energy conservation errors by band: [1.4621063561728321e-25, 7.674038885990003e-26, 1.32882041762669e-25, 1.3116548043290807e-25, 1.126872025890111e-25, -1.5246593050577406e-19, -3.6637359812630166e-14, 2.5721647034515627e-12, 7.627676268384675e-12, 2.8421709430404007e-12, 4.973799150320701e-13, 7.194245199571014e-14, 4.385380947269368e-15, 4.198030811863873e-16, 2.3310346708438345e-17, 9.84252284709497e-19, 4.1081097941833566e-20, 9.880672416945916e-22, 2.4156258825962636e-23, 4.8210806556121566e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 10m21.8s Testing RayTraceHeatTransfer tests passed Testing completed after 620.95s PkgEval succeeded after 723.93s