Package evaluation to test BifurcationKit on Julia 1.14.0-DEV.1640 (5532bea546*) started at 2026-01-30T12:56:58.281 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 10.13s ################################################################################ # Installation # Installing BifurcationKit... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [0f109fa4] + BifurcationKit v0.5.5 Updating `~/.julia/environments/v1.14/Manifest.toml` [47edcb42] + ADTypes v1.21.0 [7d9f7c33] + Accessors v0.1.43 [79e6a3ab] + Adapt v4.4.0 [ec485272] + ArnoldiMethod v0.4.0 ⌅ [7d9fca2a] + Arpack v0.5.3 [4fba245c] + ArrayInterface v7.22.0 [4c555306] + ArrayLayouts v1.12.2 [0f109fa4] + BifurcationKit v0.5.5 [8e7c35d0] + BlockArrays v1.9.3 [38540f10] + CommonSolve v0.2.6 [bbf7d656] + CommonSubexpressions v0.3.1 [a33af91c] + CompositionsBase v0.1.2 [187b0558] + ConstructionBase v1.6.0 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [e2d170a0] + DataValueInterfaces v1.0.0 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [ffbed154] + DocStringExtensions v0.9.5 [4e289a0a] + EnumX v1.0.6 [e2ba6199] + ExprTools v0.1.10 [55351af7] + ExproniconLite v0.10.14 [442a2c76] + FastGaussQuadrature v1.1.0 [1a297f60] + FillArrays v1.16.0 [f6369f11] + ForwardDiff v1.3.2 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [46192b85] + GPUArraysCore v0.2.0 [3587e190] + InverseFunctions v0.1.17 [92d709cd] + IrrationalConstants v0.2.6 [42fd0dbc] + IterativeSolvers v0.9.4 [82899510] + IteratorInterfaceExtensions v1.0.0 [692b3bcd] + JLLWrappers v1.7.1 [ae98c720] + Jieko v0.2.1 [ba0b0d4f] + Krylov v0.10.5 [0b1a1467] + KrylovKit v0.10.2 [7a12625a] + LinearMaps v3.11.4 [2ab3a3ac] + LogExpFunctions v0.3.29 [e6f89c97] + LoggingExtras v1.2.0 [1914dd2f] + MacroTools v0.5.16 [2e0e35c7] + Moshi v0.3.7 [77ba4419] + NaNMath v1.1.3 [bac558e1] + OrderedCollections v1.8.1 [65ce6f38] + PackageExtensionCompat v1.0.2 [d96e819e] + Parameters v0.12.3 ⌅ [d236fae5] + PreallocationTools v0.4.34 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.47.0 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [7e49a35a] + RuntimeGeneratedFunctions v0.5.16 [0bca4576] + SciMLBase v2.136.0 [a6db7da4] + SciMLLogging v1.8.0 [c0aeaf25] + SciMLOperators v1.14.1 [431bcebd] + SciMLPublic v1.0.1 [53ae85a6] + SciMLStructures v1.10.0 [276daf66] + SpecialFunctions v2.6.1 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [09ab397b] + StructArrays v0.7.2 [2efcf032] + SymbolicIndexingInterface v0.3.46 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.1 [3a884ed6] + UnPack v1.0.2 [409d34a3] + VectorInterface v0.5.0 ⌅ [68821587] + Arpack_jll v3.5.2+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.30+0 [05823500] + OpenLibm_jll v0.8.7+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.15.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.97s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling packages... 2986.9 ms ✓ Arpack Internal error: during type inference of _pullback(Zygote.Context{false}, typeof(Zygote.pow), Int64, Int64) Encountered unexpected error in runtime: TypeError(func=:typeassert, context="", expected=Union{Nothing, Array{Any, 1}, Core.SimpleVector}, got=Array{Core.MethodInstance, 1}(dims=(1,), mem=Memory{Core.MethodInstance}(1, 0x70d9563134c0)[pow(Int64, Int64) from pow(Any, Any)])) ijl_type_error_rt at /source/src/rtutils.c:121 ijl_type_error at /source/src/rtutils.c:140 compute_edges! at ./../usr/share/julia/Compiler/src/typeinfer.jl:820 finishinfer! at ./../usr/share/julia/Compiler/src/typeinfer.jl:668 finish_nocycle at ./../usr/share/julia/Compiler/src/typeinfer.jl:275 jfptr_finish_nocycle_90932.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 typeinf at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:4575 typeinf_ext at ./../usr/share/julia/Compiler/src/typeinfer.jl:1532 typeinf_ext_toplevel at ./../usr/share/julia/Compiler/src/typeinfer.jl:1715 [inlined] typeinf_ext_toplevel at ./../usr/share/julia/Compiler/src/typeinfer.jl:1724 jfptr_typeinf_ext_toplevel_86768.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 jl_apply at /source/src/julia.h:2285 [inlined] jl_type_infer at /source/src/gf.c:467 jl_compile_method_internal at /source/src/gf.c:3640 _jl_invoke at /source/src/gf.c:4112 [inlined] ijl_apply_generic at /source/src/gf.c:4317 jl_apply at /source/src/julia.h:2285 [inlined] jl_f__apply_iterate at /source/src/builtins.c:876 pullback at /home/pkgeval/.julia/packages/Zygote/55SqB/src/compiler/interface.jl:96 pullback at /home/pkgeval/.julia/packages/Zygote/55SqB/src/compiler/interface.jl:94 unknown function (ip: 0x70d9526fa140) at (unknown file) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 jl_apply at /source/src/julia.h:2285 [inlined] jl_f__apply_iterate at /source/src/builtins.c:876 gradient at /home/pkgeval/.julia/packages/Zygote/55SqB/src/compiler/interface.jl:153 _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 jl_apply at /source/src/julia.h:2285 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:693 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 top-level scope at /home/pkgeval/.julia/packages/Zygote/55SqB/src/precompile.jl:17 ijl_eval_thunk at /source/src/toplevel.c:765 jl_toplevel_eval_flex at /source/src/toplevel.c:712 jl_eval_toplevel_stmts at /source/src/toplevel.c:602 jl_toplevel_eval_flex at /source/src/toplevel.c:684 ijl_toplevel_eval at /source/src/toplevel.c:779 ijl_toplevel_eval_in at /source/src/toplevel.c:824 eval at ./boot.jl:489 include_string at ./loading.jl:3151 _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 _include at ./loading.jl:3211 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_74896.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 jl_apply at /source/src/julia.h:2285 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:693 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 macro expansion at /home/pkgeval/.julia/packages/Zygote/55SqB/src/Zygote.jl:68 [inlined] macro expansion at /home/pkgeval/.julia/packages/PrecompileTools/gn08A/src/workloads.jl:73 [inlined] top-level scope at /home/pkgeval/.julia/packages/Zygote/55SqB/src/Zygote.jl:85 ijl_eval_thunk at /source/src/toplevel.c:765 jl_toplevel_eval_flex at /source/src/toplevel.c:712 jl_eval_toplevel_stmts at /source/src/toplevel.c:602 jl_eval_module_expr at /source/src/toplevel.c:263 [inlined] jl_toplevel_eval_flex at /source/src/toplevel.c:665 jl_eval_toplevel_stmts at /source/src/toplevel.c:602 jl_toplevel_eval_flex at /source/src/toplevel.c:684 ijl_toplevel_eval at /source/src/toplevel.c:779 ijl_toplevel_eval_in at /source/src/toplevel.c:824 eval at ./boot.jl:489 include_string at ./loading.jl:3151 _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 _include at ./loading.jl:3211 include at ./Base.jl:309 include_package_for_output at ./loading.jl:3309 jfptr_include_package_for_output_50752.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 jl_apply at /source/src/julia.h:2285 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:693 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 top-level scope at stdin:5 ijl_eval_thunk at /source/src/toplevel.c:765 jl_toplevel_eval_flex at /source/src/toplevel.c:712 jl_eval_toplevel_stmts at /source/src/toplevel.c:602 jl_toplevel_eval_flex at /source/src/toplevel.c:684 ijl_toplevel_eval at /source/src/toplevel.c:779 ijl_toplevel_eval_in at /source/src/toplevel.c:824 eval at ./boot.jl:489 include_string at ./loading.jl:3151 include_string at ./loading.jl:3161 [inlined] exec_options at ./client.jl:342 _start at ./client.jl:585 jfptr__start_50962.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 jl_apply at /source/src/julia.h:2285 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x70d986bf7249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S  [26] signal 6 (-6): Aborted in expression starting at /home/pkgeval/.julia/packages/Zygote/55SqB/src/precompile.jl:17 unknown function (ip: 0x70d986c5aebc) at /lib/x86_64-linux-gnu/libc.so.6 gsignal at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) abort at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) jl_type_infer at /source/src/gf.c:486 jl_compile_method_internal at /source/src/gf.c:3640 _jl_invoke at /source/src/gf.c:4112 [inlined] ijl_apply_generic at /source/src/gf.c:4317 jl_apply at /source/src/julia.h:2285 [inlined] jl_f__apply_iterate at /source/src/builtins.c:876 pullback at /home/pkgeval/.julia/packages/Zygote/55SqB/src/compiler/interface.jl:96 pullback at /home/pkgeval/.julia/packages/Zygote/55SqB/src/compiler/interface.jl:94 unknown function (ip: 0x70d9526fa140) at (unknown file) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 jl_apply at /source/src/julia.h:2285 [inlined] jl_f__apply_iterate at /source/src/builtins.c:876 gradient at /home/pkgeval/.julia/packages/Zygote/55SqB/src/compiler/interface.jl:153 _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 jl_apply at /source/src/julia.h:2285 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:693 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 ijl_eval_thunk at /source/src/toplevel.c:765 jl_toplevel_eval_flex at /source/src/toplevel.c:712 jl_eval_toplevel_stmts at /source/src/toplevel.c:602 jl_toplevel_eval_flex at /source/src/toplevel.c:684 ijl_toplevel_eval at /source/src/toplevel.c:779 ijl_toplevel_eval_in at /source/src/toplevel.c:824 eval at ./boot.jl:489 include_string at ./loading.jl:3151 _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 _include at ./loading.jl:3211 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_74896.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 jl_apply at /source/src/julia.h:2285 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:693 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 ijl_eval_thunk at /source/src/toplevel.c:765 jl_toplevel_eval_flex at /source/src/toplevel.c:712 jl_eval_toplevel_stmts at /source/src/toplevel.c:602 jl_eval_module_expr at /source/src/toplevel.c:263 [inlined] jl_toplevel_eval_flex at /source/src/toplevel.c:665 jl_eval_toplevel_stmts at /source/src/toplevel.c:602 jl_toplevel_eval_flex at /source/src/toplevel.c:684 ijl_toplevel_eval at /source/src/toplevel.c:779 ijl_toplevel_eval_in at /source/src/toplevel.c:824 eval at ./boot.jl:489 include_string at ./loading.jl:3151 _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 _include at ./loading.jl:3211 include at ./Base.jl:309 include_package_for_output at ./loading.jl:3309 jfptr_include_package_for_output_50752.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 jl_apply at /source/src/julia.h:2285 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:693 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 ijl_eval_thunk at /source/src/toplevel.c:765 jl_toplevel_eval_flex at /source/src/toplevel.c:712 jl_eval_toplevel_stmts at /source/src/toplevel.c:602 jl_toplevel_eval_flex at /source/src/toplevel.c:684 ijl_toplevel_eval at /source/src/toplevel.c:779 ijl_toplevel_eval_in at /source/src/toplevel.c:824 eval at ./boot.jl:489 include_string at ./loading.jl:3151 include_string at ./loading.jl:3161 [inlined] exec_options at ./client.jl:342 _start at ./client.jl:585 jfptr__start_50962.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 jl_apply at /source/src/julia.h:2285 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x70d986bf7249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S Allocations: 45618721 (Pool: 45618388; Big: 333); GC: 15 ✗ Zygote 4124.0 ms ✓ ComponentArrays → ComponentArraysSciMLBaseExt 6382.0 ms ✓ NonlinearSolveBase → NonlinearSolveBaseTrackerExt 4298.5 ms ✓ LinearSolve → LinearSolveKrylovKitExt 86.4 ms ✓ NonlinearSolveQuasiNewton 3731.2 ms ✓ Tracker → TrackerPDMatsExt 3187.2 ms ✓ FastPower → FastPowerTrackerExt 3619.8 ms ✓ ComponentArrays → ComponentArraysTrackerExt 5580.1 ms ✓ SciMLBase → SciMLBaseTrackerExt 762.3 ms ✓ NonlinearSolveFirstOrder ┌ Warning: Enzyme.jl support for Julia 1.12 is presently in progress. │ For the time being we recommend using 1.11 or LTS (1.10). │ │ For latest updates, check the status of support for Julia 1.12+ at │ https://github.com/EnzymeAD/Enzyme.jl/issues/2699. │ └ @ Enzyme ~/.julia/packages/Enzyme/AePVW/src/Enzyme.jl:1587 32349.7 ms ✓ FastPower → FastPowerEnzymeExt ┌ Warning: Enzyme.jl support for Julia 1.12 is presently in progress. │ For the time being we recommend using 1.11 or LTS (1.10). │ │ For latest updates, check the status of support for Julia 1.12+ at │ https://github.com/EnzymeAD/Enzyme.jl/issues/2699. │ └ @ Enzyme ~/.julia/packages/Enzyme/AePVW/src/Enzyme.jl:1587 36117.4 ms ✓ SciMLBase → SciMLBaseEnzymeExt ┌ Warning: Enzyme.jl support for Julia 1.12 is presently in progress. │ For the time being we recommend using 1.11 or LTS (1.10). │ │ For latest updates, check the status of support for Julia 1.12+ at │ https://github.com/EnzymeAD/Enzyme.jl/issues/2699. │ └ @ Enzyme ~/.julia/packages/Enzyme/AePVW/src/Enzyme.jl:1587 35898.6 ms ✓ NonlinearSolveBase → NonlinearSolveBaseEnzymeExt 4948.3 ms ✓ KernelDensity 14724.5 ms ✓ PreallocationTools → PreallocationToolsReverseDiffExt 10786.2 ms ✓ ComponentArrays → ComponentArraysReverseDiffExt 12779.2 ms ✓ SciMLBase → SciMLBaseReverseDiffExt 16221.1 ms ✓ NonlinearSolveBase → NonlinearSolveBaseReverseDiffExt 15210.2 ms ✓ DiffEqBase → DiffEqBaseReverseDiffExt 9453.7 ms ✓ DiffEqNoiseProcess 6895.5 ms ✓ DiffEqBase → DiffEqBaseTrackerExt 15823.3 ms ✓ SimpleNonlinearSolve → SimpleNonlinearSolveReverseDiffExt 7269.6 ms ✓ SimpleNonlinearSolve → SimpleNonlinearSolveTrackerExt 4527.6 ms ✓ DiffEqCallbacks → DiffEqCallbacksFunctorsExt 43137.8 ms ✓ OrdinaryDiffEqRosenbrock 15379.0 ms ✓ OrdinaryDiffEqExponentialRK 23533.6 ms ✓ BifurcationKit ERROR: LoadError: Precompiled image Base.PkgId(Base.UUID("e88e6eb3-aa80-5325-afca-941959d7151f"), "Zygote") not available with flags CacheFlags(; use_pkgimages=false, debug_level=1, check_bounds=1, inline=true, opt_level=0) Stacktrace:  [1] error(s::String)  @ Base ./error.jl:44  [2] __require_prelocked(pkg::Base.PkgId, env::String)  @ Base ./loading.jl:2861  [3] _require_prelocked(uuidkey::Base.PkgId, env::String)  @ Base ./loading.jl:2715  [4] macro expansion  @ ./loading.jl:2642 [inlined]  [5] macro expansion  @ ./lock.jl:376 [inlined]  [6] __require(into::Module, mod::Symbol)  @ Base ./loading.jl:2606  [7] require  @ ./loading.jl:2582 [inlined]  [8] eval_import_path  @ ./module.jl:36 [inlined]  [9] eval_import_path_all(at::Module, path::Expr, keyword::String)  @ Base ./module.jl:60  [10] _eval_using  @ ./module.jl:137 [inlined]  [11] _eval_using(to::Module, path::Expr)  @ Base ./module.jl:137  [12] top-level scope  @ ~/.julia/packages/Zygote/55SqB/ext/ZygoteColorsExt.jl:3  [13] include(mod::Module, _path::String)  @ Base ./Base.jl:309  [14] include_package_for_output(pkg::Base.PkgId, input::String, syntax_version::VersionNumber, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::Nothing)  @ Base ./loading.jl:3309  [15] top-level scope  @ stdin:5  [16] eval(m::Module, e::Any)  @ Core ./boot.jl:489  [17] include_string(mapexpr::typeof(identity), mod::Module, code::String, filename::String)  @ Base ./loading.jl:3151  [18] include_string  @ ./loading.jl:3161 [inlined]  [19] exec_options(opts::Base.JLOptions)  @ Base ./client.jl:342  [20] _start()  @ Base ./client.jl:585 in expression starting at /home/pkgeval/.julia/packages/Zygote/55SqB/ext/ZygoteColorsExt.jl:1 in expression starting at stdin:5 ✗ Zygote → ZygoteColorsExt ERROR: LoadError: Precompiled image Base.PkgId(Base.UUID("e88e6eb3-aa80-5325-afca-941959d7151f"), "Zygote") not available with flags CacheFlags(; use_pkgimages=false, debug_level=1, check_bounds=1, inline=true, opt_level=0) Stacktrace:  [1] error(s::String)  @ Base ./error.jl:44  [2] __require_prelocked(pkg::Base.PkgId, env::String)  @ Base ./loading.jl:2861  [3] _require_prelocked(uuidkey::Base.PkgId, env::String)  @ Base ./loading.jl:2715  [4] macro expansion  @ ./loading.jl:2642 [inlined]  [5] macro expansion  @ ./lock.jl:376 [inlined]  [6] __require(into::Module, mod::Symbol)  @ Base ./loading.jl:2606  [7] require  @ ./loading.jl:2582 [inlined]  [8] eval_import_path  @ ./module.jl:36 [inlined]  [9] eval_import_path_all(at::Module, path::Expr, keyword::String)  @ Base ./module.jl:60  [10] _eval_using  @ ./module.jl:137 [inlined]  [11] _eval_using(to::Module, path::Expr)  @ Base ./module.jl:137  [12] top-level scope  @ ~/.julia/packages/Zygote/55SqB/ext/ZygoteTrackerExt.jl:3  [13] include(mod::Module, _path::String)  @ Base ./Base.jl:309  [14] include_package_for_output(pkg::Base.PkgId, input::String, syntax_version::VersionNumber, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::Nothing)  @ Base ./loading.jl:3309  [15] top-level scope  @ stdin:5  [16] eval(m::Module, e::Any)  @ Core ./boot.jl:489  [17] include_string(mapexpr::typeof(identity), mod::Module, code::String, filename::String)  @ Base ./loading.jl:3151  [18] include_string  @ ./loading.jl:3161 [inlined]  [19] exec_options(opts::Base.JLOptions)  @ Base ./client.jl:342  [20] _start()  @ Base ./client.jl:585 in expression starting at /home/pkgeval/.julia/packages/Zygote/55SqB/ext/ZygoteTrackerExt.jl:1 in expression starting at stdin:5 ✗ Zygote → ZygoteTrackerExt ERROR: LoadError: Precompiled image Base.PkgId(Base.UUID("e88e6eb3-aa80-5325-afca-941959d7151f"), "Zygote") not available with flags CacheFlags(; use_pkgimages=false, debug_level=1, check_bounds=1, inline=true, opt_level=0) Stacktrace:  [1] error(s::String)  @ Base ./error.jl:44  [2] __require_prelocked(pkg::Base.PkgId, env::String)  @ Base ./loading.jl:2861  [3] _require_prelocked(uuidkey::Base.PkgId, env::String)  @ Base ./loading.jl:2715  [4] macro expansion  @ ./loading.jl:2642 [inlined]  [5] macro expansion  @ ./lock.jl:376 [inlined]  [6] __require(into::Module, mod::Symbol)  @ Base ./loading.jl:2606  [7] require  @ ./loading.jl:2582 [inlined]  [8] eval_import_path  @ ./module.jl:36 [inlined]  [9] eval_import_path_all(at::Module, path::Expr, keyword::String)  @ Base ./module.jl:60  [10] _eval_import(::Bool, ::Module, ::Expr, ::Expr, ::Vararg{Expr})  @ Base ./module.jl:101  [11] top-level scope  @ ~/.julia/packages/DifferentiationInterface/M8gIf/ext/DifferentiationInterfaceZygoteExt/DifferentiationInterfaceZygoteExt.jl:6  [12] include(mod::Module, _path::String)  @ Base ./Base.jl:309  [13] include_package_for_output(pkg::Base.PkgId, input::String, syntax_version::VersionNumber, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::Nothing)  @ Base ./loading.jl:3309  [14] top-level scope  @ stdin:5  [15] eval(m::Module, e::Any)  @ Core ./boot.jl:489  [16] include_string(mapexpr::typeof(identity), mod::Module, code::String, filename::String)  @ Base ./loading.jl:3151  [17] include_string  @ ./loading.jl:3161 [inlined]  [18] exec_options(opts::Base.JLOptions)  @ Base ./client.jl:342  [19] _start()  @ Base ./client.jl:585 in expression starting at /home/pkgeval/.julia/packages/DifferentiationInterface/M8gIf/ext/DifferentiationInterfaceZygoteExt/DifferentiationInterfaceZygoteExt.jl:1 in expression starting at stdin:5 ✗ DifferentiationInterface → DifferentiationInterfaceZygoteExt ERROR: LoadError: Precompiled image Base.PkgId(Base.UUID("e88e6eb3-aa80-5325-afca-941959d7151f"), "Zygote") not available with flags CacheFlags(; use_pkgimages=false, debug_level=1, check_bounds=1, inline=true, opt_level=0) Stacktrace:  [1] error(s::String)  @ Base ./error.jl:44  [2] __require_prelocked(pkg::Base.PkgId, env::String)  @ Base ./loading.jl:2861  [3] _require_prelocked(uuidkey::Base.PkgId, env::String)  @ Base ./loading.jl:2715  [4] macro expansion  @ ./loading.jl:2642 [inlined]  [5] macro expansion  @ ./lock.jl:376 [inlined]  [6] __require(into::Module, mod::Symbol)  @ Base ./loading.jl:2606  [7] require  @ ./loading.jl:2582 [inlined]  [8] eval_import_path  @ ./module.jl:36 [inlined]  [9] eval_import_path_all(at::Module, path::Expr, keyword::String)  @ Base ./module.jl:60  [10] _eval_using  @ ./module.jl:137 [inlined]  [11] _eval_using(to::Module, path::Expr)  @ Base ./module.jl:137  [12] top-level scope  @ ~/.julia/packages/ComponentArrays/IAdmd/ext/ComponentArraysZygoteExt.jl:3  [13] include(mod::Module, _path::String)  @ Base ./Base.jl:309  [14] include_package_for_output(pkg::Base.PkgId, input::String, syntax_version::VersionNumber, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::Nothing)  @ Base ./loading.jl:3309  [15] top-level scope  @ stdin:5  [16] eval(m::Module, e::Any)  @ Core ./boot.jl:489  [17] include_string(mapexpr::typeof(identity), mod::Module, code::String, filename::String)  @ Base ./loading.jl:3151  [18] include_string  @ ./loading.jl:3161 [inlined]  [19] exec_options(opts::Base.JLOptions)  @ Base ./client.jl:342  [20] _start()  @ Base ./client.jl:585 in expression starting at /home/pkgeval/.julia/packages/ComponentArrays/IAdmd/ext/ComponentArraysZygoteExt.jl:1 in expression starting at stdin:5 ✗ ComponentArrays → ComponentArraysZygoteExt ERROR: LoadError: Precompiled image Base.PkgId(Base.UUID("e88e6eb3-aa80-5325-afca-941959d7151f"), "Zygote") not available with flags CacheFlags(; use_pkgimages=false, debug_level=1, check_bounds=1, inline=true, opt_level=0) Stacktrace:  [1] error(s::String)  @ Base ./error.jl:44  [2] __require_prelocked(pkg::Base.PkgId, env::String)  @ Base ./loading.jl:2861  [3] _require_prelocked(uuidkey::Base.PkgId, env::String)  @ Base ./loading.jl:2715  [4] macro expansion  @ ./loading.jl:2642 [inlined]  [5] macro expansion  @ ./lock.jl:376 [inlined]  [6] __require(into::Module, mod::Symbol)  @ Base ./loading.jl:2606  [7] require  @ ./loading.jl:2582 [inlined]  [8] eval_import_path  @ ./module.jl:36 [inlined]  [9] eval_import_path_all(at::Module, path::Expr, keyword::String)  @ Base ./module.jl:60  [10] _eval_using  @ ./module.jl:137 [inlined]  [11] _eval_using(to::Module, path::Expr)  @ Base ./module.jl:137  [12] top-level scope  @ ~/.julia/packages/RecursiveArrayTools/5VjiX/ext/RecursiveArrayToolsZygoteExt.jl:5  [13] include(mod::Module, _path::String)  @ Base ./Base.jl:309  [14] include_package_for_output(pkg::Base.PkgId, input::String, syntax_version::VersionNumber, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::Nothing)  @ Base ./loading.jl:3309  [15] top-level scope  @ stdin:5  [16] eval(m::Module, e::Any)  @ Core ./boot.jl:489  [17] include_string(mapexpr::typeof(identity), mod::Module, code::String, filename::String)  @ Base ./loading.jl:3151  [18] include_string  @ ./loading.jl:3161 [inlined]  [19] exec_options(opts::Base.JLOptions)  @ Base ./client.jl:342  [20] _start()  @ Base ./client.jl:585 in expression starting at /home/pkgeval/.julia/packages/RecursiveArrayTools/5VjiX/ext/RecursiveArrayToolsZygoteExt.jl:1 in expression starting at stdin:5 ✗ RecursiveArrayTools → RecursiveArrayToolsZygoteExt ERROR: LoadError: Precompiled image Base.PkgId(Base.UUID("e88e6eb3-aa80-5325-afca-941959d7151f"), "Zygote") not available with flags CacheFlags(; use_pkgimages=false, debug_level=1, check_bounds=1, inline=true, opt_level=0) Stacktrace:  [1] error(s::String)  @ Base ./error.jl:44  [2] __require_prelocked(pkg::Base.PkgId, env::String)  @ Base ./loading.jl:2861  [3] _require_prelocked(uuidkey::Base.PkgId, env::String)  @ Base ./loading.jl:2715  [4] macro expansion  @ ./loading.jl:2642 [inlined]  [5] macro expansion  @ ./lock.jl:376 [inlined]  [6] __require(into::Module, mod::Symbol)  @ Base ./loading.jl:2606  [7] require  @ ./loading.jl:2582 [inlined]  [8] eval_import_path  @ ./module.jl:36 [inlined]  [9] eval_import_path_all(at::Module, path::Expr, keyword::String)  @ Base ./module.jl:60  [10] _eval_using  @ ./module.jl:137 [inlined]  [11] _eval_using(to::Module, path::Expr)  @ Base ./module.jl:137  [12] top-level scope  @ ~/.julia/packages/SciMLBase/cgq4R/ext/SciMLBaseZygoteExt.jl:3  [13] include(mod::Module, _path::String)  @ Base ./Base.jl:309  [14] include_package_for_output(pkg::Base.PkgId, input::String, syntax_version::VersionNumber, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::Nothing)  @ Base ./loading.jl:3309  [15] top-level scope  @ stdin:5  [16] eval(m::Module, e::Any)  @ Core ./boot.jl:489  [17] include_string(mapexpr::typeof(identity), mod::Module, code::String, filename::String)  @ Base ./loading.jl:3151  [18] include_string  @ ./loading.jl:3161 [inlined]  [19] exec_options(opts::Base.JLOptions)  @ Base ./client.jl:342  [20] _start()  @ Base ./client.jl:585 in expression starting at /home/pkgeval/.julia/packages/SciMLBase/cgq4R/ext/SciMLBaseZygoteExt.jl:1 in expression starting at stdin:5 ✗ SciMLBase → SciMLBaseZygoteExt 6048.3 ms ✓ NonlinearSolveQuasiNewton → NonlinearSolveQuasiNewtonForwardDiffExt 378214.9 ms ✓ Makie 19963.6 ms ✓ DiffEqNoiseProcess → DiffEqNoiseProcessReverseDiffExt 24532.6 ms ✓ BifurcationKit → PlotsExt ERROR: LoadError: Precompiled image Base.PkgId(Base.UUID("e88e6eb3-aa80-5325-afca-941959d7151f"), "Zygote") not available with flags CacheFlags(; use_pkgimages=false, debug_level=1, check_bounds=1, inline=true, opt_level=0) Stacktrace:  [1] error(s::String)  @ Base ./error.jl:44  [2] __require_prelocked(pkg::Base.PkgId, env::String)  @ Base ./loading.jl:2861  [3] _require_prelocked(uuidkey::Base.PkgId, env::String)  @ Base ./loading.jl:2715  [4] macro expansion  @ ./loading.jl:2642 [inlined]  [5] macro expansion  @ ./lock.jl:376 [inlined]  [6] __require(into::Module, mod::Symbol)  @ Base ./loading.jl:2606  [7] require  @ ./loading.jl:2582 [inlined]  [8] eval_import_path  @ ./module.jl:36 [inlined]  [9] eval_import_path_all(at::Module, path::Expr, keyword::String)  @ Base ./module.jl:60  [10] _eval_import(::Bool, ::Module, ::Expr, ::Expr, ::Vararg{Expr})  @ Base ./module.jl:101  [11] top-level scope  @ ~/.julia/packages/RecursiveArrayTools/5VjiX/ext/RecursiveArrayToolsReverseDiffExt.jl:5  [12] include(mod::Module, _path::String)  @ Base ./Base.jl:309  [13] include_package_for_output(pkg::Base.PkgId, input::String, syntax_version::VersionNumber, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::Nothing)  @ Base ./loading.jl:3309  [14] top-level scope  @ stdin:5  [15] eval(m::Module, e::Any)  @ Core ./boot.jl:489  [16] include_string(mapexpr::typeof(identity), mod::Module, code::String, filename::String)  @ Base ./loading.jl:3151  [17] include_string  @ ./loading.jl:3161 [inlined]  [18] exec_options(opts::Base.JLOptions)  @ Base ./client.jl:342  [19] _start()  @ Base ./client.jl:585 in expression starting at /home/pkgeval/.julia/packages/RecursiveArrayTools/5VjiX/ext/RecursiveArrayToolsReverseDiffExt.jl:1 in expression starting at stdin:5 ✗ RecursiveArrayTools → RecursiveArrayToolsReverseDiffExt 38144.6 ms ✓ NonlinearSolve 76035.4 ms ✓ SciMLBase → SciMLBaseMakieExt 303267.9 ms ✓ CairoMakie 76873.2 ms ✓ BifurcationKit → MakieExt ┌ Warning: Enzyme.jl support for Julia 1.12 is presently in progress. │ For the time being we recommend using 1.11 or LTS (1.10). │ │ For latest updates, check the status of support for Julia 1.12+ at │ https://github.com/EnzymeAD/Enzyme.jl/issues/2699. │ └ @ Enzyme ~/.julia/packages/Enzyme/AePVW/src/Enzyme.jl:1587 ERROR: LoadError: Precompiled image Base.PkgId(Base.UUID("e88e6eb3-aa80-5325-afca-941959d7151f"), "Zygote") not available with flags CacheFlags(; use_pkgimages=false, debug_level=1, check_bounds=1, inline=true, opt_level=0) Stacktrace:  [1] error(s::String)  @ Base ./error.jl:44  [2] __require_prelocked(pkg::Base.PkgId, env::String)  @ Base ./loading.jl:2861  [3] _require_prelocked(uuidkey::Base.PkgId, env::String)  @ Base ./loading.jl:2715  [4] macro expansion  @ ./loading.jl:2642 [inlined]  [5] macro expansion  @ ./lock.jl:376 [inlined]  [6] __require(into::Module, mod::Symbol)  @ Base ./loading.jl:2606  [7] require  @ ./loading.jl:2582 [inlined]  [8] eval_import_path  @ ./module.jl:36 [inlined]  [9] eval_import_path_all(at::Module, path::Expr, keyword::String)  @ Base ./module.jl:60  [10] _eval_import(::Bool, ::Module, ::Expr, ::Expr, ::Vararg{Expr})  @ Base ./module.jl:101  [11] top-level scope  @ ~/.julia/packages/SciMLSensitivity/WtyIc/src/SciMLSensitivity.jl:54  [12] include(mod::Module, _path::String)  @ Base ./Base.jl:309  [13] include_package_for_output(pkg::Base.PkgId, input::String, syntax_version::VersionNumber, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::Nothing)  @ Base ./loading.jl:3309  [14] top-level scope  @ stdin:5  [15] eval(m::Module, e::Any)  @ Core ./boot.jl:489  [16] include_string(mapexpr::typeof(identity), mod::Module, code::String, filename::String)  @ Base ./loading.jl:3151  [17] include_string  @ ./loading.jl:3161 [inlined]  [18] exec_options(opts::Base.JLOptions)  @ Base ./client.jl:342  [19] _start()  @ Base ./client.jl:585 in expression starting at /home/pkgeval/.julia/packages/SciMLSensitivity/WtyIc/src/SciMLSensitivity.jl:1 in expression starting at stdin:5 ✗ SciMLSensitivity 14712.9 ms ✓ OrdinaryDiffEqNonlinearSolve 15496.2 ms ✓ OrdinaryDiffEqPDIRK 60983.2 ms ✓ OrdinaryDiffEqFIRK 13329.1 ms ✓ OrdinaryDiffEqIMEXMultistep 14587.4 ms ✓ OrdinaryDiffEqStabilizedIRK 17953.4 ms ✓ OrdinaryDiffEqSDIRK 31429.4 ms ✓ OrdinaryDiffEqBDF 62051.8 ms ✓ OrdinaryDiffEqDefault 22273.7 ms ✓ OrdinaryDiffEq 42 dependencies successfully precompiled in 1676 seconds. 576 already precompiled. 3 dependencies had output during precompilation: ┌ SciMLBase → SciMLBaseEnzymeExt │ ┌ Warning: Enzyme.jl support for Julia 1.12 is presently in progress. │ │ For the time being we recommend using 1.11 or LTS (1.10). │ │ │ │ For latest updates, check the status of support for Julia 1.12+ at │ │ https://github.com/EnzymeAD/Enzyme.jl/issues/2699. │ │ │ └ @ Enzyme ~/.julia/packages/Enzyme/AePVW/src/Enzyme.jl:1587 └ ┌ FastPower → FastPowerEnzymeExt │ ┌ Warning: Enzyme.jl support for Julia 1.12 is presently in progress. │ │ For the time being we recommend using 1.11 or LTS (1.10). │ │ │ │ For latest updates, check the status of support for Julia 1.12+ at │ │ https://github.com/EnzymeAD/Enzyme.jl/issues/2699. │ │ │ └ @ Enzyme ~/.julia/packages/Enzyme/AePVW/src/Enzyme.jl:1587 └ ┌ NonlinearSolveBase → NonlinearSolveBaseEnzymeExt │ ┌ Warning: Enzyme.jl support for Julia 1.12 is presently in progress. │ │ For the time being we recommend using 1.11 or LTS (1.10). │ │ │ │ For latest updates, check the status of support for Julia 1.12+ at │ │ https://github.com/EnzymeAD/Enzyme.jl/issues/2699. │ │ │ └ @ Enzyme ~/.julia/packages/Enzyme/AePVW/src/Enzyme.jl:1587 └ Precompilation completed after 1673.71s ################################################################################ # Testing # Testing BifurcationKit Status `/tmp/jl_M9hKaa/Project.toml` ⌃ [c29ec348] AbstractDifferentiation v0.4.4 [7d9f7c33] Accessors v0.1.43 [ec485272] ArnoldiMethod v0.4.0 ⌅ [7d9fca2a] Arpack v0.5.3 [0f109fa4] BifurcationKit v0.5.5 [8e7c35d0] BlockArrays v1.9.3 [13f3f980] CairoMakie v0.15.8 [b0b7db55] ComponentArrays v0.15.31 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [442a2c76] FastGaussQuadrature v1.1.0 [f6369f11] ForwardDiff v1.3.2 [42fd0dbc] IterativeSolvers v0.9.4 [ba0b0d4f] Krylov v0.10.5 [0b1a1467] KrylovKit v0.10.2 [7a12625a] LinearMaps v3.11.4 [1dea7af3] OrdinaryDiffEq v6.106.0 [d96e819e] Parameters v0.12.3 [91a5bcdd] Plots v1.41.4 ⌅ [d236fae5] PreallocationTools v0.4.34 [731186ca] RecursiveArrayTools v3.47.0 [189a3867] Reexport v1.2.2 [0bca4576] SciMLBase v2.136.0 [1ed8b502] SciMLSensitivity v7.94.0 [09ab397b] StructArrays v0.7.2 [e88e6eb3] Zygote v0.7.10 [ade2ca70] Dates v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_M9hKaa/Manifest.toml` [47edcb42] ADTypes v1.21.0 ⌃ [c29ec348] AbstractDifferentiation v0.4.4 [621f4979] AbstractFFTs v1.5.0 [1520ce14] AbstractTrees v0.4.5 [7d9f7c33] Accessors v0.1.43 [79e6a3ab] Adapt v4.4.0 [35492f91] AdaptivePredicates v1.2.0 [66dad0bd] AliasTables v1.1.3 [27a7e980] Animations v0.4.2 [ec485272] ArnoldiMethod v0.4.0 ⌅ [7d9fca2a] Arpack v0.5.3 [4fba245c] ArrayInterface v7.22.0 [4c555306] ArrayLayouts v1.12.2 [a9b6321e] Atomix v1.1.2 [67c07d97] Automa v1.1.0 [13072b0f] AxisAlgorithms v1.1.0 [39de3d68] AxisArrays v0.4.8 [18cc8868] BaseDirs v1.3.2 [0f109fa4] BifurcationKit v0.5.5 [d1d4a3ce] BitFlags v0.1.9 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 [8e7c35d0] BlockArrays v1.9.3 [70df07ce] BracketingNonlinearSolve v1.6.2 [fa961155] CEnum v0.5.0 [2a0fbf3d] CPUSummary v0.2.7 [96374032] CRlibm v1.0.2 [159f3aea] Cairo v1.1.1 [13f3f980] CairoMakie v0.15.8 [7057c7e9] Cassette v0.3.14 [082447d4] ChainRules v1.72.6 [d360d2e6] ChainRulesCore v1.26.0 [fb6a15b2] CloseOpenIntervals v0.1.13 [944b1d66] CodecZlib v0.7.8 [a2cac450] ColorBrewer v0.4.2 [35d6a980] ColorSchemes v3.31.0 [3da002f7] ColorTypes v0.12.1 [c3611d14] ColorVectorSpace v0.11.0 [5ae59095] Colors v0.13.1 [38540f10] CommonSolve v0.2.6 [bbf7d656] CommonSubexpressions v0.3.1 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.18.1 [b0b7db55] ComponentArrays v0.15.31 [a33af91c] CompositionsBase v0.1.2 [95dc2771] ComputePipeline v0.1.6 [2569d6c7] ConcreteStructs v0.2.3 [f0e56b4a] ConcurrentUtilities v2.5.0 [187b0558] ConstructionBase v1.6.0 [d38c429a] Contour v0.6.3 [adafc99b] CpuId v0.3.1 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [e2d170a0] DataValueInterfaces v1.0.0 [927a84f5] DelaunayTriangulation v1.6.6 [8bb1440f] DelimitedFiles v1.9.1 [2b5f629d] DiffEqBase v6.199.0 [459566f4] DiffEqCallbacks v4.12.0 [77a26b50] DiffEqNoiseProcess v5.26.0 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [a0c0ee7d] DifferentiationInterface v0.7.15 [31c24e10] Distributions v0.25.123 [ffbed154] DocStringExtensions v0.9.5 [4e289a0a] EnumX v1.0.6 [7da242da] Enzyme v0.13.125 [f151be2c] EnzymeCore v0.8.18 [429591f6] ExactPredicates v2.2.9 [460bff9d] ExceptionUnwrapping v0.1.11 [d4d017d3] ExponentialUtilities v1.30.0 [e2ba6199] ExprTools v0.1.10 [55351af7] ExproniconLite v0.10.14 [411431e0] Extents v0.1.6 [c87230d0] FFMPEG v0.4.5 [b86e33f2] FFTA v0.3.1 [7034ab61] FastBroadcast v0.3.5 [9aa1b823] FastClosures v0.3.2 [442a2c76] FastGaussQuadrature v1.1.0 [a4df4552] FastPower v1.3.1 [5789e2e9] FileIO v1.17.1 [8fc22ac5] FilePaths v0.9.0 [48062228] FilePathsBase v0.9.24 [1a297f60] FillArrays v1.16.0 [6a86dc24] FiniteDiff v2.29.0 [53c48c17] FixedPointNumbers v0.8.5 [1fa38f19] Format v1.3.7 [f6369f11] ForwardDiff v1.3.2 [b38be410] FreeType v4.1.1 [663a7486] FreeTypeAbstraction v0.10.8 [f62d2435] FunctionProperties v0.1.2 [069b7b12] FunctionWrappers v1.1.3 [77dc65aa] FunctionWrappersWrappers v0.1.3 [d9f16b24] Functors v0.5.2 [46192b85] GPUArraysCore v0.2.0 [61eb1bfa] GPUCompiler v1.8.2 [28b8d3ca] GR v0.73.22 [c145ed77] GenericSchur v0.5.6 [5c1252a2] GeometryBasics v0.5.10 [a2bd30eb] Graphics v1.1.3 [3955a311] GridLayoutBase v0.11.2 [42e2da0e] Grisu v1.0.2 [cd3eb016] HTTP v1.10.19 [076d061b] HashArrayMappedTries v0.2.0 [34004b35] HypergeometricFunctions v0.3.28 [7869d1d1] IRTools v0.4.15 [615f187c] IfElse v0.1.1 [2803e5a7] ImageAxes v0.6.12 [c817782e] ImageBase v0.1.7 [a09fc81d] ImageCore v0.10.5 [82e4d734] ImageIO v0.6.9 [bc367c6b] ImageMetadata v0.9.10 [9b13fd28] IndirectArrays v1.0.0 [d25df0c9] Inflate v0.1.5 [18e54dd8] IntegerMathUtils v0.1.3 [a98d9a8b] Interpolations v0.16.2 [d1acc4aa] IntervalArithmetic v1.0.2 [8197267c] IntervalSets v0.7.13 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.6 [f1662d9f] Isoband v0.1.1 [c8e1da08] IterTools v1.10.0 [42fd0dbc] IterativeSolvers v0.9.4 [82899510] IteratorInterfaceExtensions v1.0.0 [1019f520] JLFzf v0.1.11 [692b3bcd] JLLWrappers v1.7.1 [682c06a0] JSON v1.4.0 [ae98c720] Jieko v0.2.1 [b835a17e] JpegTurbo v0.1.6 [63c18a36] KernelAbstractions v0.9.39 [5ab0869b] KernelDensity v0.6.11 [ba0b0d4f] Krylov v0.10.5 [0b1a1467] KrylovKit v0.10.2 [929cbde3] LLVM v9.4.4 [b964fa9f] LaTeXStrings v1.4.0 [23fbe1c1] Latexify v0.16.10 [10f19ff3] LayoutPointers v0.1.17 [8cdb02fc] LazyModules v0.3.1 [87fe0de2] LineSearch v0.1.6 [d3d80556] LineSearches v7.6.0 [7a12625a] LinearMaps v3.11.4 [7ed4a6bd] LinearSolve v3.57.0 [2ab3a3ac] LogExpFunctions v0.3.29 [e6f89c97] LoggingExtras v1.2.0 [1914dd2f] MacroTools v0.5.16 [ee78f7c6] Makie v0.24.8 [d125e4d3] ManualMemory v0.1.8 [dbb5928d] MappedArrays v0.4.3 [0a4f8689] MathTeXEngine v0.6.7 [bb5d69b7] MaybeInplace v0.1.4 [739be429] MbedTLS v1.1.9 [442fdcdd] Measures v0.3.3 [e1d29d7a] Missings v1.2.0 [e94cdb99] MosaicViews v0.3.4 [2e0e35c7] Moshi v0.3.7 [46d2c3a1] MuladdMacro v0.2.4 [d41bc354] NLSolversBase v8.0.0 [872c559c] NNlib v0.9.33 [77ba4419] NaNMath v1.1.3 [f09324ee] Netpbm v1.1.1 [8913a72c] NonlinearSolve v4.14.0 [be0214bd] NonlinearSolveBase v2.11.1 [5959db7a] NonlinearSolveFirstOrder v1.11.1 [9a2c21bd] NonlinearSolveQuasiNewton v1.12.0 [26075421] NonlinearSolveSpectralMethods v1.6.0 [d8793406] ObjectFile v0.5.0 [510215fc] Observables v0.5.5 [6fe1bfb0] OffsetArrays v1.17.0 [52e1d378] OpenEXR v0.3.3 [4d8831e6] OpenSSL v1.6.1 [3bd65402] Optimisers v0.4.7 [bac558e1] OrderedCollections v1.8.1 [1dea7af3] OrdinaryDiffEq v6.106.0 [89bda076] OrdinaryDiffEqAdamsBashforthMoulton v1.9.0 [6ad6398a] OrdinaryDiffEqBDF v1.14.0 [bbf590c4] OrdinaryDiffEqCore v3.2.0 [50262376] OrdinaryDiffEqDefault v1.12.0 [4302a76b] OrdinaryDiffEqDifferentiation v1.22.0 [9286f039] OrdinaryDiffEqExplicitRK v1.8.0 [e0540318] OrdinaryDiffEqExponentialRK v1.12.0 [becaefa8] OrdinaryDiffEqExtrapolation v1.13.0 [5960d6e9] OrdinaryDiffEqFIRK v1.20.0 [101fe9f7] OrdinaryDiffEqFeagin v1.8.0 [d3585ca7] OrdinaryDiffEqFunctionMap v1.9.0 [d28bc4f8] OrdinaryDiffEqHighOrderRK v1.9.0 [9f002381] OrdinaryDiffEqIMEXMultistep v1.11.0 [521117fe] OrdinaryDiffEqLinear v1.10.0 [1344f307] OrdinaryDiffEqLowOrderRK v1.10.0 [b0944070] OrdinaryDiffEqLowStorageRK v1.11.0 [127b3ac7] OrdinaryDiffEqNonlinearSolve v1.19.0 [c9986a66] OrdinaryDiffEqNordsieck v1.8.0 [5dd0a6cf] OrdinaryDiffEqPDIRK v1.10.0 [5b33eab2] OrdinaryDiffEqPRK v1.8.0 [04162be5] OrdinaryDiffEqQPRK v1.8.0 [af6ede74] OrdinaryDiffEqRKN v1.9.0 [43230ef6] OrdinaryDiffEqRosenbrock v1.22.0 [2d112036] OrdinaryDiffEqSDIRK v1.11.0 [669c94d9] OrdinaryDiffEqSSPRK v1.11.0 [e3e12d00] OrdinaryDiffEqStabilizedIRK v1.10.0 [358294b1] OrdinaryDiffEqStabilizedRK v1.8.0 [fa646aed] OrdinaryDiffEqSymplecticRK v1.11.0 [b1df2697] OrdinaryDiffEqTsit5 v1.9.0 [79d7bb75] OrdinaryDiffEqVerner v1.10.0 [90014a1f] PDMats v0.11.37 [f57f5aa1] PNGFiles v0.4.4 [65ce6f38] PackageExtensionCompat v1.0.2 [19eb6ba3] Packing v0.5.1 [5432bcbf] PaddedViews v0.5.12 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.3 [eebad327] PkgVersion v0.3.3 [ccf2f8ad] PlotThemes v3.3.0 [995b91a9] PlotUtils v1.4.4 [91a5bcdd] Plots v1.41.4 [e409e4f3] PoissonRandom v0.4.7 [f517fe37] Polyester v0.7.18 [1d0040c9] PolyesterWeave v0.2.2 [647866c9] PolygonOps v0.1.2 ⌅ [d236fae5] PreallocationTools v0.4.34 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [27ebfcd6] Primes v0.5.7 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [4b34888f] QOI v1.0.2 [1fd47b50] QuadGK v2.11.2 [74087812] Random123 v1.7.1 [e6cf234a] RandomNumbers v1.6.0 [b3c3ace0] RangeArrays v0.3.2 [c84ed2f1] Ratios v0.4.5 [c1ae055f] RealDot v0.1.0 [3cdcf5f2] RecipesBase v1.3.4 [01d81517] RecipesPipeline v0.6.12 [731186ca] RecursiveArrayTools v3.47.0 [189a3867] Reexport v1.2.2 [05181044] RelocatableFolders v1.0.1 [ae029012] Requires v1.3.1 [ae5879a3] ResettableStacks v1.2.0 [37e2e3b7] ReverseDiff v1.16.2 [79098fc4] Rmath v0.9.0 [5eaf0fd0] RoundingEmulator v0.2.1 [7e49a35a] RuntimeGeneratedFunctions v0.5.16 [fdea26ae] SIMD v3.7.2 [94e857df] SIMDTypes v0.1.0 [0bca4576] SciMLBase v2.136.0 [19f34311] SciMLJacobianOperators v0.1.12 [a6db7da4] SciMLLogging v1.8.0 [c0aeaf25] SciMLOperators v1.14.1 [431bcebd] SciMLPublic v1.0.1 [1ed8b502] SciMLSensitivity v7.94.0 [53ae85a6] SciMLStructures v1.10.0 [7e506255] ScopedValues v1.5.0 [6c6a2e73] Scratch v1.3.0 [efcf1570] Setfield v1.1.2 [65257c39] ShaderAbstractions v0.5.0 [992d4aef] Showoff v1.0.3 [73760f76] SignedDistanceFields v0.4.1 [777ac1f9] SimpleBufferStream v1.2.0 [727e6d20] SimpleNonlinearSolve v2.10.0 [699a6c99] SimpleTraits v0.9.5 [45858cf5] Sixel v0.1.5 [a2af1166] SortingAlgorithms v1.2.2 [dc90abb0] SparseInverseSubset v0.1.2 [0a514795] SparseMatrixColorings v0.4.23 [276daf66] SpecialFunctions v2.6.1 [860ef19b] StableRNGs v1.0.4 [cae243ae] StackViews v0.1.2 [aedffcd0] Static v1.3.1 [0d7ed370] StaticArrayInterface v1.8.0 [90137ffa] StaticArrays v1.9.16 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 [2913bbd2] StatsBase v0.34.10 [4c63d2b9] StatsFuns v1.5.2 [7792a7ef] StrideArraysCore v0.5.8 [09ab397b] StructArrays v0.7.2 [53d494c1] StructIO v0.3.1 [ec057cc2] StructUtils v2.6.2 [2efcf032] SymbolicIndexingInterface v0.3.46 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 [62fd8b95] TensorCore v0.1.1 [8290d209] ThreadingUtilities v0.5.5 [731e570b] TiffImages v0.11.6 [a759f4b9] TimerOutputs v0.5.29 [9f7883ad] Tracker v0.2.38 [e689c965] Tracy v0.1.6 [3bb67fe8] TranscodingStreams v0.11.3 [981d1d27] TriplotBase v0.1.0 [781d530d] TruncatedStacktraces v1.4.0 [5c2747f8] URIs v1.6.1 [3a884ed6] UnPack v1.0.2 [1cfade01] UnicodeFun v0.4.1 [1986cc42] Unitful v1.28.0 [013be700] UnsafeAtomics v0.3.0 [41fe7b60] Unzip v0.2.0 [409d34a3] VectorInterface v0.5.0 [e3aaa7dc] WebP v0.1.3 [efce3f68] WoodburyMatrices v1.1.0 [e88e6eb3] Zygote v0.7.10 [700de1a5] ZygoteRules v0.2.7 ⌅ [68821587] Arpack_jll v3.5.2+0 [6e34b625] Bzip2_jll v1.0.9+0 [4e9b3aee] CRlibm_jll v1.0.1+0 [83423d85] Cairo_jll v1.18.5+0 [ee1fde0b] Dbus_jll v1.16.2+0 [5ae413db] EarCut_jll v2.2.4+0 [7cc45869] Enzyme_jll v0.0.245+0 [2702e6a9] EpollShim_jll v0.0.20230411+1 [2e619515] Expat_jll v2.7.3+0 [b22a6f82] FFMPEG_jll v8.0.1+0 [a3f928ae] Fontconfig_jll v2.17.1+0 [d7e528f0] FreeType2_jll v2.13.4+0 [559328eb] FriBidi_jll v1.0.17+0 [0656b61e] GLFW_jll v3.4.1+0 [d2c73de3] GR_jll v0.73.22+0 [b0724c58] GettextRuntime_jll v0.22.4+0 [61579ee1] Ghostscript_jll v9.55.1+0 [59f7168a] Giflib_jll v5.2.3+0 [7746bdde] Glib_jll v2.86.2+0 [3b182d85] Graphite2_jll v1.3.15+0 [2e76f6c2] HarfBuzz_jll v8.5.1+0 [905a6f67] Imath_jll v3.2.2+0 [1d5cc7b8] IntelOpenMP_jll v2025.2.0+0 [aacddb02] JpegTurbo_jll v3.1.4+0 [c1c5ebd0] LAME_jll v3.100.3+0 [88015f11] LERC_jll v4.0.1+0 [dad2f222] LLVMExtra_jll v0.0.38+0 [1d63c593] LLVMOpenMP_jll v18.1.8+0 [dd4b983a] LZO_jll v2.10.3+0 [ad6e5548] LibTracyClient_jll v0.13.1+0 ⌅ [e9f186c6] Libffi_jll v3.4.7+0 [7e76a0d4] Libglvnd_jll v1.7.1+1 [94ce4f54] Libiconv_jll v1.18.0+0 [4b2f31a3] Libmount_jll v2.41.2+0 [89763e89] Libtiff_jll v4.7.2+0 [38a345b3] Libuuid_jll v2.41.2+0 [856f044c] MKL_jll v2025.2.0+0 [c8ffd9c3] MbedTLS_jll v2.28.1010+0 [e7412a2a] Ogg_jll v1.3.6+0 [6cdc7f73] OpenBLASConsistentFPCSR_jll v0.3.30+0 [18a262bb] OpenEXR_jll v3.4.4+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [91d4177d] Opus_jll v1.6.0+0 [36c8627f] Pango_jll v1.57.0+0 ⌅ [30392449] Pixman_jll v0.44.2+0 [c0090381] Qt6Base_jll v6.8.2+2 [629bc702] Qt6Declarative_jll v6.8.2+1 [ce943373] Qt6ShaderTools_jll v6.8.2+1 [e99dba38] Qt6Wayland_jll v6.8.2+2 [f50d1b31] Rmath_jll v0.5.1+0 [a44049a8] Vulkan_Loader_jll v1.3.243+0 [a2964d1f] Wayland_jll v1.24.0+0 [ffd25f8a] XZ_jll v5.8.2+0 [f67eecfb] Xorg_libICE_jll v1.1.2+0 [c834827a] Xorg_libSM_jll v1.2.6+0 [4f6342f7] Xorg_libX11_jll v1.8.12+0 [0c0b7dd1] Xorg_libXau_jll v1.0.13+0 [935fb764] Xorg_libXcursor_jll v1.2.4+0 [a3789734] Xorg_libXdmcp_jll v1.1.6+0 [1082639a] Xorg_libXext_jll v1.3.7+0 [d091e8ba] Xorg_libXfixes_jll v6.0.2+0 [a51aa0fd] Xorg_libXi_jll v1.8.3+0 [d1454406] Xorg_libXinerama_jll v1.1.6+0 [ec84b674] Xorg_libXrandr_jll v1.5.5+0 [ea2f1a96] Xorg_libXrender_jll v0.9.12+0 [c7cfdc94] Xorg_libxcb_jll v1.17.1+0 [cc61e674] Xorg_libxkbfile_jll v1.1.3+0 [e920d4aa] Xorg_xcb_util_cursor_jll v0.1.6+0 [12413925] Xorg_xcb_util_image_jll v0.4.1+0 [2def613f] Xorg_xcb_util_jll v0.4.1+0 [975044d2] Xorg_xcb_util_keysyms_jll v0.4.1+0 [0d47668e] Xorg_xcb_util_renderutil_jll v0.3.10+0 [c22f9ab0] Xorg_xcb_util_wm_jll v0.4.2+0 [35661453] Xorg_xkbcomp_jll v1.4.7+0 [33bec58e] Xorg_xkeyboard_config_jll v2.44.0+0 [c5fb5394] Xorg_xtrans_jll v1.6.0+0 [35ca27e7] eudev_jll v3.2.14+0 [214eeab7] fzf_jll v0.61.1+0 [9a68df92] isoband_jll v0.2.3+0 [a4ae2306] libaom_jll v3.13.1+0 [0ac62f75] libass_jll v0.17.4+0 [1183f4f0] libdecor_jll v0.2.2+0 [2db6ffa8] libevdev_jll v1.13.4+0 [f638f0a6] libfdk_aac_jll v2.0.4+0 [36db933b] libinput_jll v1.28.1+0 [b53b4c65] libpng_jll v1.6.54+0 [075b6546] libsixel_jll v1.10.5+0 [f27f6e37] libvorbis_jll v1.3.8+0 [c5f90fcd] libwebp_jll v1.6.0+0 [009596ad] mtdev_jll v1.1.7+0 [1317d2d5] oneTBB_jll v2022.0.0+1 ⌅ [1270edf5] x264_jll v10164.0.1+0 [dfaa095f] x265_jll v4.1.0+0 [d8fb68d0] xkbcommon_jll v1.13.0+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [8bf52ea8] CRC32c v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [4af54fe1] LazyArtifacts v1.11.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [3fa0cd96] REPL v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [1a1011a3] SharedArrays v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.18.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.30+0 [05823500] OpenLibm_jll v0.8.7+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... --> There are 1 threads Problem wrap of ┌─ Bifurcation problem with uType Vector{Float64} ├─ Inplace: false ├─ Dimension: 2 ├─ Symmetric: false └─ Parameter: p1Problem wrap for curve of PD of periodic orbits. Based on the formulation: ┌─ Bifurcation problem with uType Vector{Float64} ├─ Inplace: false ├─ Dimension: 2 ├─ Symmetric: false └─ Parameter: p10.13235197493687212 0.6994442121599355 │ 1 │ │ 1 │ GMRES: system of size 100 pass k ‖rₖ‖ hₖ₊₁.ₖ timer 0 0 5.7e+00 ✗ ✗ ✗ ✗ 0.00s 1 2 9.7e-01 3.4e-01 0.00s 1 4 9.1e-02 3.0e-01 0.00s 1 6 6.9e-03 2.5e-01 0.00s 1 8 5.1e-04 2.8e-01 0.00s 1 10 4.4e-05 2.9e-01 0.00s 1 12 2.6e-06 2.1e-01 0.00s 1 14 1.9e-07 2.8e-01 0.00s 1 16 1.2e-08 2.5e-01 0.00s === gmres === rest iter resnorm 1 1 3.71e-01 1 2 4.40e-02 1 3 7.65e-04 1 4 4.42e-16 === gmres === rest iter resnorm 1 1 1.80e-02 1 2 5.17e-03 1 3 2.39e-04 1 4 7.90e-17 === gmres === rest iter resnorm 1 1 3.06e-01 1 2 5.40e-02 1 3 1.00e-02 1 4 2.92e-04 1 5 1.78e-16 [ Info: GMRES linsolve starts with norm of residual = 1.37e+00 [ Info: GMRES linsolve in iteration 1; step 1: normres = 3.71e-01 [ Info: GMRES linsolve in iteration 1; step 2: normres = 4.40e-02 [ Info: GMRES linsolve in iteration 1; step 3: normres = 7.65e-04 ┌ Info: GMRES linsolve converged at iteration 1, step 4: │ * norm of residual = 3.51e-16 └ * number of operations = 6 [ Info: GMRES linsolve starts with norm of residual = 3.88e-01 [ Info: GMRES linsolve in iteration 1; step 1: normres = 1.80e-02 [ Info: GMRES linsolve in iteration 1; step 2: normres = 5.17e-03 [ Info: GMRES linsolve in iteration 1; step 3: normres = 2.39e-04 ┌ Info: GMRES linsolve converged at iteration 1, step 4: │ * norm of residual = 1.25e-16 └ * number of operations = 6 [ Info: GMRES linsolve starts with norm of residual = 1.50e+00 [ Info: GMRES linsolve in iteration 1; step 1: normres = 3.06e-01 [ Info: GMRES linsolve in iteration 1; step 2: normres = 5.40e-02 [ Info: GMRES linsolve in iteration 1; step 3: normres = 1.00e-02 [ Info: GMRES linsolve in iteration 1; step 4: normres = 2.92e-04 [ Info: GMRES linsolve in iteration 2; step 1: normres = 9.50e-05 [ Info: GMRES linsolve in iteration 2; step 2: normres = 4.70e-05 [ Info: GMRES linsolve in iteration 2; step 3: normres = 6.86e-06 [ Info: GMRES linsolve in iteration 2; step 4: normres = 6.01e-07 [ Info: GMRES linsolve in iteration 3; step 1: normres = 2.31e-07 [ Info: GMRES linsolve in iteration 3; step 2: normres = 2.34e-08 [ Info: GMRES linsolve in iteration 3; step 3: normres = 8.11e-09 [ Info: GMRES linsolve in iteration 3; step 4: normres = 5.00e-10 [ Info: GMRES linsolve in iteration 4; step 1: normres = 1.80e-10 ┌ Info: GMRES linsolve converged at iteration 4, step 2: │ * norm of residual = 9.37e-11 └ * number of operations = 13 [ Info: GMRES linsolve starts with norm of residual = 1.50e+00 [ Info: GMRES linsolve in iteration 1; step 1: normres = 3.06e-01 [ Info: GMRES linsolve in iteration 1; step 2: normres = 5.40e-02 [ Info: GMRES linsolve in iteration 1; step 3: normres = 1.00e-02 [ Info: GMRES linsolve in iteration 1; step 4: normres = 2.92e-04 [ Info: GMRES linsolve in iteration 2; step 1: normres = 9.50e-05 [ Info: GMRES linsolve in iteration 2; step 2: normres = 4.70e-05 [ Info: GMRES linsolve in iteration 2; step 3: normres = 6.86e-06 [ Info: GMRES linsolve in iteration 2; step 4: normres = 6.01e-07 [ Info: GMRES linsolve in iteration 3; step 1: normres = 2.31e-07 [ Info: GMRES linsolve in iteration 3; step 2: normres = 2.34e-08 [ Info: GMRES linsolve in iteration 3; step 3: normres = 8.11e-09 [ Info: GMRES linsolve in iteration 3; step 4: normres = 5.00e-10 [ Info: GMRES linsolve in iteration 4; step 1: normres = 1.80e-10 ┌ Info: GMRES linsolve converged at iteration 4, step 2: │ * norm of residual = 9.37e-11 └ * number of operations = 13 [ Info: GMRES linsolve starts with norm of residual = 1.50e+00 [ Info: GMRES linsolve in iteration 1; step 1: normres = 6.66e-01 [ Info: GMRES linsolve in iteration 1; step 2: normres = 4.93e-01 [ Info: GMRES linsolve in iteration 1; step 3: normres = 1.84e-01 [ Info: GMRES linsolve in iteration 1; step 4: normres = 2.80e-03 [ Info: GMRES linsolve in iteration 2; step 1: normres = 1.00e-03 [ Info: GMRES linsolve in iteration 2; step 2: normres = 3.60e-04 [ Info: GMRES linsolve in iteration 2; step 3: normres = 1.65e-04 [ Info: GMRES linsolve in iteration 2; step 4: normres = 1.33e-04 [ Info: GMRES linsolve in iteration 3; step 1: normres = 8.98e-05 [ Info: GMRES linsolve in iteration 3; step 2: normres = 3.26e-05 [ Info: GMRES linsolve in iteration 3; step 3: normres = 5.05e-06 [ Info: GMRES linsolve in iteration 3; step 4: normres = 2.26e-07 [ Info: GMRES linsolve in iteration 4; step 1: normres = 8.14e-08 [ Info: GMRES linsolve in iteration 4; step 2: normres = 3.35e-08 [ Info: GMRES linsolve in iteration 4; step 3: normres = 1.55e-08 [ Info: GMRES linsolve in iteration 4; step 4: normres = 1.29e-08 [ Info: GMRES linsolve in iteration 5; step 1: normres = 8.84e-09 [ Info: GMRES linsolve in iteration 5; step 2: normres = 3.34e-09 [ Info: GMRES linsolve in iteration 5; step 3: normres = 2.96e-10 ┌ Info: GMRES linsolve converged at iteration 5, step 4: │ * norm of residual = 4.50e-11 └ * number of operations = 18 0.185935 seconds (126.24 k allocations: 7.247 MiB, 99.95% compilation time) 0.136887 seconds (31.08 k allocations: 1.701 MiB, 99.50% compilation time) 0.000007 seconds (21 allocations: 2.828 KiB) Linear Solvers: Test Failed at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/test/test_linear.jl:513 Expression: ≈(out[1], outkk[1], rtol = 1.0e-9) Evaluated: [0.3379833856301271, 2.5143086649552666, 0.1037467752305229, 0.4860585453934952, -0.9565528035389156, -0.011284322098454801, 1.2642322764918703, 0.5137017665317971, -0.14735651533350713, -0.2945624569161391 … 0.7298121692962698, -0.3366999769706865, 1.5491366840347394, 0.5057034294998519, 0.23097911463894255, 0.7286776225406367, 1.63568652468374, 2.5175629144030425, 0.3525313461640814, 1.186894501621753] ≈ [0.33798338362149577, 2.5143086622410773, 0.10374677661344622, 0.4860585457390592, -0.956552803346991, -0.011284321413419498, 1.2642322734388964, 0.5137017663396086, -0.14735651406663797, -0.29456245975582684 … 0.7298121701070922, -0.3366999771550444, 1.549136680480121, 0.505703429419889, 0.23097911398960677, 0.7286776230311031, 1.6356865208237272, 2.517562911527472, 0.35253134434795474, 1.1868944994022117] (rtol=1.0e-9) Stacktrace: [1] top-level scope @ ~/.julia/packages/BifurcationKit/q52qN/test/test_linear.jl:513 [2] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:782 [inlined] [3] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [4] top-level scope @ ~/.julia/packages/BifurcationKit/q52qN/test/runtests.jl:8 [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:2244 [inlined] [6] macro expansion @ ~/.julia/packages/BifurcationKit/q52qN/test/runtests.jl:9 [inlined] [7] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:2244 [inlined] [8] macro expansion @ ~/.julia/packages/BifurcationKit/q52qN/test/runtests.jl:12 [inlined] ──▶ Gram matrix = 3×3 Matrix{Float64}: 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 ──▶ Gram matrix = 3×3 Matrix{Float64}: 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 ┌ Warning: Shift-Invert strategy not implemented for maps └ @ BifurcationKit ~/.julia/packages/BifurcationKit/q52qN/src/EigSolver.jl:230 SI-ev: 1.889430 seconds (1.12 M allocations: 71.519 MiB, 3.13% gc time, 99.97% compilation time) [ Info: Entry in test-record-from-solution.jl WARNING: Method definition f(Any, Any) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/test/test-record-from-solution.jl:5 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/test/test_results.jl:5. ┌─ Deflation operator with 1 root(s) ├─ eltype = Float64 ├─ power = 2 ├─ α = 1.0 ├─ dist = dot └─ autodiff = false ┌─ Deflation operator with 1 root(s) ├─ eltype = Float32 ├─ power = 2 ├─ α = 1.0 ├─ dist = dot └─ autodiff = false ┌─ Deflation operator with 1 root(s) ├─ eltype = Float16 ├─ power = 2 ├─ α = 1.0 ├─ dist = dot └─ autodiff = false ┌─ Deflated Problem with uType Vector{Float64} ├─ Symmetric: false ├─ jacobian: nothing ├─ Parameter p └─ deflation operator: ┌─ Deflation operator with 1 root(s) ├─ eltype = Float64 ├─ power = 2 ├─ α = 1.0 ├─ dist = dot └─ autodiff = false | 1 │ 1.0000e+00 │ ( 1, 1) | │ 1 │ │ ( 1, 1) │ 6.495839 seconds (4.71 M allocations: 267.162 MiB, 99.97% compilation time) ┌ Error: Unrecognized keyword arguments found. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/q52qN/src/Continuation.jl:55 Unrecognized keyword arguments: (:essai,) 6.362986 seconds (1.66 M allocations: 98.715 MiB, 1.66% gc time, 99.98% compilation time) ┌─ Bifurcation problem with uType Vector{Float64} ├─ Inplace: false ├─ Dimension: 1 ├─ Symmetric: false └─ Parameter: p 5.110592 seconds (1.77 M allocations: 103.043 MiB, 99.98% compilation time) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ───────────────────── AutoSwitch ───────────────────── ━━━━━━━━━━━━━━━━━━ INITIAL GUESS ━━━━━━━━━━━━━━━━━━ ──▶ convergence of initial guess = OK ──▶ parameter = -1.5, initial step ━━━━━━━━━━━━━━━━━━ INITIAL TANGENT ━━━━━━━━━━━━━━━━━━ ──▶ convergence of the initial guess = OK ──▶ parameter = -1.4999333333333333, initial step (bis) Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 0 Step size = 1.0000e-02 Parameter p = -1.5000e+00 ──▶ -1.4859e+00 [guess] Parameter p = -1.5000e+00 ──▶ -1.4859e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 1 Step size = 1.3200e-02 Parameter p = -1.4859e+00 ──▶ -1.4672e+00 [guess] Parameter p = -1.4859e+00 ──▶ -1.4672e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 2 Step size = 1.7424e-02 Parameter p = -1.4672e+00 ──▶ -1.4425e+00 [guess] Parameter p = -1.4672e+00 ──▶ -1.4425e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 3 Step size = 2.3000e-02 Parameter p = -1.4425e+00 ──▶ -1.4100e+00 [guess] Parameter p = -1.4425e+00 ──▶ -1.4100e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 4 Step size = 3.0360e-02 Parameter p = -1.4100e+00 ──▶ -1.3671e+00 [guess] Parameter p = -1.4100e+00 ──▶ -1.3671e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 5 Step size = 4.0075e-02 Parameter p = -1.3671e+00 ──▶ -1.3104e+00 [guess] Parameter p = -1.3671e+00 ──▶ -1.3104e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 6 Step size = 4.7288e-02 Parameter p = -1.3104e+00 ──▶ -1.2435e+00 [guess] Parameter p = -1.3104e+00 ──▶ -1.2435e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 7 Step size = 5.1000e-02 Parameter p = -1.2435e+00 ──▶ -1.1714e+00 [guess] Parameter p = -1.2435e+00 ──▶ -1.1714e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 8 Step size = 5.1000e-02 Parameter p = -1.1714e+00 ──▶ -1.0993e+00 [guess] Parameter p = -1.1714e+00 ──▶ -1.0993e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 9 Step size = 5.1000e-02 Parameter p = -1.0993e+00 ──▶ -1.0272e+00 [guess] Parameter p = -1.0993e+00 ──▶ -1.0272e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 10 Step size = 5.1000e-02 Parameter p = -1.0272e+00 ──▶ -9.5505e-01 [guess] Parameter p = -1.0272e+00 ──▶ -9.5505e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 11 Step size = 5.1000e-02 Parameter p = -9.5505e-01 ──▶ -8.8293e-01 [guess] Parameter p = -9.5505e-01 ──▶ -8.8293e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 12 Step size = 5.1000e-02 Parameter p = -8.8293e-01 ──▶ -8.1081e-01 [guess] Parameter p = -8.8293e-01 ──▶ -8.1081e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 13 Step size = 5.1000e-02 Parameter p = -8.1081e-01 ──▶ -7.3870e-01 [guess] Parameter p = -8.1081e-01 ──▶ -7.3870e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 14 Step size = 5.1000e-02 Parameter p = -7.3870e-01 ──▶ -6.6658e-01 [guess] Parameter p = -7.3870e-01 ──▶ -6.6658e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 15 Step size = 5.1000e-02 Parameter p = -6.6658e-01 ──▶ -5.9448e-01 [guess] Parameter p = -6.6658e-01 ──▶ -5.9448e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 16 Step size = 5.1000e-02 Parameter p = -5.9448e-01 ──▶ -5.2238e-01 [guess] Parameter p = -5.9448e-01 ──▶ -5.2238e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 17 Step size = 5.1000e-02 Parameter p = -5.2238e-01 ──▶ -4.5030e-01 [guess] Parameter p = -5.2238e-01 ──▶ -4.5030e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 18 Step size = 5.1000e-02 Parameter p = -4.5030e-01 ──▶ -3.7827e-01 [guess] Parameter p = -4.5030e-01 ──▶ -3.7827e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 19 Step size = 5.1000e-02 Parameter p = -3.7827e-01 ──▶ -3.0632e-01 [guess] Parameter p = -3.7827e-01 ──▶ -3.0632e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 20 Step size = 5.1000e-02 Parameter p = -3.0632e-01 ──▶ -2.3460e-01 [guess] Parameter p = -3.0632e-01 ──▶ -2.3460e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 21 Step size = 5.1000e-02 Parameter p = -2.3460e-01 ──▶ -1.6366e-01 [guess] Parameter p = -2.3460e-01 ──▶ -1.6366e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 22 Step size = 5.1000e-02 Parameter p = -1.6366e-01 ──▶ -9.6358e-02 [guess] Parameter p = -1.6366e-01 ──▶ -9.6358e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 23 Step size = 5.1000e-02 Parameter p = -9.6358e-02 ──▶ -5.1902e-02 [guess] Parameter p = -9.6358e-02 ──▶ -6.6989e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 24 Step size = 5.1000e-02 Parameter p = -6.6989e-02 ──▶ -5.2693e-02 [guess] Parameter p = -6.6989e-02 ──▶ -6.0828e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 25 Step size = 5.1000e-02 Parameter p = -6.0828e-02 ──▶ -6.1182e-02 [guess] Parameter p = -6.0828e-02 ──▶ -6.5523e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 26 Step size = 5.1000e-02 Parameter p = -6.5523e-02 ──▶ -7.3919e-02 [guess] Parameter p = -6.5523e-02 ──▶ -7.6829e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 27 Step size = 5.1000e-02 Parameter p = -7.6829e-02 ──▶ -9.0753e-02 [guess] Parameter p = -7.6829e-02 ──▶ -9.3007e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 28 Step size = 5.1000e-02 Parameter p = -9.3007e-02 ──▶ -1.1128e-01 [guess] Parameter p = -9.3007e-02 ──▶ -1.1317e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 29 Step size = 5.1000e-02 Parameter p = -1.1317e-01 ──▶ -1.3511e-01 [guess] Parameter p = -1.1317e-01 ──▶ -1.3677e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 30 Step size = 5.1000e-02 Parameter p = -1.3677e-01 ──▶ -1.6194e-01 [guess] Parameter p = -1.3677e-01 ──▶ -1.6342e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 31 Step size = 5.1000e-02 Parameter p = -1.6342e-01 ──▶ -1.9149e-01 [guess] Parameter p = -1.6342e-01 ──▶ -1.9283e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 32 Step size = 5.1000e-02 Parameter p = -1.9283e-01 ──▶ -2.2352e-01 [guess] Parameter p = -1.9283e-01 ──▶ -2.2474e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 33 Step size = 5.1000e-02 Parameter p = -2.2474e-01 ──▶ -2.5782e-01 [guess] Parameter p = -2.2474e-01 ──▶ -2.5894e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 34 Step size = 5.1000e-02 Parameter p = -2.5894e-01 ──▶ -2.9422e-01 [guess] Parameter p = -2.5894e-01 ──▶ -2.9525e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 35 Step size = 5.1000e-02 Parameter p = -2.9525e-01 ──▶ -3.3254e-01 [guess] Parameter p = -2.9525e-01 ──▶ -3.3349e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 36 Step size = 5.1000e-02 Parameter p = -3.3349e-01 ──▶ -3.7264e-01 [guess] Parameter p = -3.3349e-01 ──▶ -3.7351e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 37 Step size = 5.1000e-02 Parameter p = -3.7351e-01 ──▶ -4.1437e-01 [guess] Parameter p = -3.7351e-01 ──▶ -4.1517e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 38 Step size = 5.1000e-02 Parameter p = -4.1517e-01 ──▶ -4.5761e-01 [guess] Parameter p = -4.1517e-01 ──▶ -4.5835e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 39 Step size = 5.1000e-02 Parameter p = -4.5835e-01 ──▶ -5.0224e-01 [guess] Parameter p = -4.5835e-01 ──▶ -5.0293e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 40 Step size = 5.1000e-02 Parameter p = -5.0293e-01 ──▶ -5.4817e-01 [guess] Parameter p = -5.0293e-01 ──▶ -5.4881e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 41 Step size = 5.1000e-02 Parameter p = -5.4881e-01 ──▶ -5.9530e-01 [guess] Parameter p = -5.4881e-01 ──▶ -5.9530e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 42 Step size = 5.1000e-02 Parameter p = -5.9530e-01 ──▶ -6.4294e-01 [guess] Parameter p = -5.9530e-01 ──▶ -6.4294e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 43 Step size = 5.1000e-02 Parameter p = -6.4294e-01 ──▶ -6.9164e-01 [guess] Parameter p = -6.4294e-01 ──▶ -6.9164e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 44 Step size = 5.1000e-02 Parameter p = -6.9164e-01 ──▶ -7.4133e-01 [guess] Parameter p = -6.9164e-01 ──▶ -7.4133e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 45 Step size = 5.1000e-02 Parameter p = -7.4133e-01 ──▶ -7.9194e-01 [guess] Parameter p = -7.4133e-01 ──▶ -7.9194e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 46 Step size = 5.1000e-02 Parameter p = -7.9194e-01 ──▶ -8.4343e-01 [guess] Parameter p = -7.9194e-01 ──▶ -8.4343e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 47 Step size = 5.1000e-02 Parameter p = -8.4343e-01 ──▶ -8.9571e-01 [guess] Parameter p = -8.4343e-01 ──▶ -8.9571e-01 Predictor: Bordered 6.170098 seconds (2.31 M allocations: 134.641 MiB, 99.86% compilation time) 5.325970 seconds (1.62 M allocations: 92.917 MiB, 2.24% gc time, 99.94% compilation time) ┌ Warning: Assignment to `br0` in soft scope is ambiguous because a global variable by the same name exists: `br0` will be treated as a new local. Disambiguate by using `local br0` to suppress this warning or `global br0` to assign to the existing global variable. └ @ ~/.julia/packages/BifurcationKit/q52qN/test/simple_continuation.jl:174 ┌─ Curve type: EquilibriumCont ├─ Number of points: 89 ├─ Type of vectors: Vector{Float64} ├─ Parameter p starts at -1.5, ends at -3.0 ├─ Algo: PALC [Secant] └─ Special points: - # 1, bp at p ≈ -0.06090827 ∈ (-0.06090827, -0.06089831), |δp|=1e-05, [converged], δ = ( 1, 0), step = 30 - # 2, endpoint at p ≈ -3.00000000, step = 88 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ────────────────────── Multiple ────────────────────── ━━━━━━━━━━━━━━━━━━ INITIAL GUESS ━━━━━━━━━━━━━━━━━━ ──▶ convergence of initial guess = OK ──▶ parameter = -1.5, initial step ━━━━━━━━━━━━━━━━━━ INITIAL TANGENT ━━━━━━━━━━━━━━━━━━ ──▶ convergence of the initial guess = OK ──▶ parameter = -1.4999, initial step (bis) Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 0 Step size = 1.5000e-02 Parameter p = -1.5000e+00 ──▶ -1.4788e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.195, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.5000e+00 ──▶ -1.4788e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 dsnew = 0.0225 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 1 Step size = 2.2500e-02 Parameter p = -1.4788e+00 ──▶ -1.4470e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.2925, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.4788e+00 ──▶ -1.4470e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 dsnew = 0.03375 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 2 Step size = 3.3750e-02 Parameter p = -1.4470e+00 ──▶ -1.3992e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.4470e+00 ──▶ -1.3992e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 3 Step size = 3.3750e-02 Parameter p = -1.3992e+00 ──▶ -1.3515e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3992e+00 ──▶ -1.3515e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 4 Step size = 3.3750e-02 Parameter p = -1.3515e+00 ──▶ -1.3038e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3515e+00 ──▶ -1.3038e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 5 Step size = 3.3750e-02 Parameter p = -1.3038e+00 ──▶ -1.2561e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3038e+00 ──▶ -1.2561e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 6 Step size = 3.3750e-02 Parameter p = -1.2561e+00 ──▶ -1.2083e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.2561e+00 ──▶ -1.2083e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 7 Step size = 3.3750e-02 Parameter p = -1.2083e+00 ──▶ -1.1606e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.2083e+00 ──▶ -1.1606e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 8 Step size = 3.3750e-02 Parameter p = -1.1606e+00 ──▶ -1.1129e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1606e+00 ──▶ -1.1129e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 9 Step size = 3.3750e-02 Parameter p = -1.1129e+00 ──▶ -1.0651e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1129e+00 ──▶ -1.0651e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 10 Step size = 3.3750e-02 Parameter p = -1.0651e+00 ──▶ -1.0174e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0651e+00 ──▶ -1.0174e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 11 Step size = 3.3750e-02 Parameter p = -1.0174e+00 ──▶ -9.6968e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0174e+00 ──▶ -9.6968e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 12 Step size = 3.3750e-02 Parameter p = -9.6968e-01 ──▶ -9.2196e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.6968e-01 ──▶ -9.2196e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 13 Step size = 3.3750e-02 Parameter p = -9.2196e-01 ──▶ -8.7423e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.2196e-01 ──▶ -8.7423e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 14 Step size = 3.3750e-02 Parameter p = -8.7423e-01 ──▶ -8.2650e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.7423e-01 ──▶ -8.2651e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 15 Step size = 3.3750e-02 Parameter p = -8.2651e-01 ──▶ -7.7878e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.2651e-01 ──▶ -7.7878e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 16 Step size = 3.3750e-02 Parameter p = -7.7878e-01 ──▶ -7.3106e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -7.7878e-01 ──▶ -7.3106e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 17 Step size = 3.3750e-02 Parameter p = -7.3106e-01 ──▶ -6.8334e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -7.3106e-01 ──▶ -6.8334e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 18 Step size = 3.3750e-02 Parameter p = -6.8334e-01 ──▶ -6.3562e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.8334e-01 ──▶ -6.3562e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 19 Step size = 3.3750e-02 Parameter p = -6.3562e-01 ──▶ -5.8790e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.3562e-01 ──▶ -5.8791e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 20 Step size = 3.3750e-02 Parameter p = -5.8791e-01 ──▶ -5.4020e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -5.8791e-01 ──▶ -5.4020e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 21 Step size = 3.3750e-02 Parameter p = -5.4020e-01 ──▶ -4.9250e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -5.4020e-01 ──▶ -4.9250e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 22 Step size = 3.3750e-02 Parameter p = -4.9250e-01 ──▶ -4.4481e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -4.9250e-01 ──▶ -4.4482e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 23 Step size = 3.3750e-02 Parameter p = -4.4482e-01 ──▶ -3.9714e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -4.4482e-01 ──▶ -3.9717e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 24 Step size = 3.3750e-02 Parameter p = -3.9717e-01 ──▶ -3.4951e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.9717e-01 ──▶ -3.4956e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 25 Step size = 3.3750e-02 Parameter p = -3.4956e-01 ──▶ -3.0195e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.4956e-01 ──▶ -3.0203e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 26 Step size = 3.3750e-02 Parameter p = -3.0203e-01 ──▶ -2.5451e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.0203e-01 ──▶ -2.5467e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 27 Step size = 3.3750e-02 Parameter p = -2.5467e-01 ──▶ -2.0735e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.5467e-01 ──▶ -2.0771e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 28 Step size = 3.3750e-02 Parameter p = -2.0771e-01 ──▶ -1.6083e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.0771e-01 ──▶ -1.6179e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 29 Step size = 3.3750e-02 Parameter p = -1.6179e-01 ──▶ -1.1613e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor ├─ i = 13, s(i) = 0.43875000000000003, converged = [ NO] └─ i = 12, s(i) = 0.405, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.6179e-01 ──▶ -1.1904e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 30 Step size = 3.3750e-02 Parameter p = -1.1904e-01 ──▶ -7.7200e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor ├─ i = 13, s(i) = 0.43875000000000003, converged = [ NO] ├─ i = 12, s(i) = 0.405, converged = [ NO] └─ i = 11, s(i) = 0.37125, converged = [YES] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -1.1904e-01 ──▶ -8.5672e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 31 Step size = 3.3750e-02 Parameter p = -8.5672e-02 ──▶ -5.4366e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor ├─ i = 13, s(i) = 0.43875000000000003, converged = [ NO] ├─ i = 12, s(i) = 0.405, converged = [ NO] └─ i = 11, s(i) = 0.37125, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.5672e-02 ──▶ -6.7992e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 32 Step size = 3.3750e-02 Parameter p = -6.7992e-02 ──▶ -5.1454e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.7992e-02 ──▶ -6.1556e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 33 Step size = 3.3750e-02 Parameter p = -6.1556e-02 ──▶ -5.5277e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.1556e-02 ──▶ -6.1281e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ──▶ Bifurcation detected before p = -0.06128105033038877 Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.21937500000000001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.10968750000000001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.054843750000000004, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.027421875000000002, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.013710937500000001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.0068554687500000005, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.0034277343750000002, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.0017138671875000001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.0008569335937500001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.00042846679687500003, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.00021423339843750001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.00010711669921875001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -5.3558349609375004e-5, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -2.6779174804687502e-5, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -1.3389587402343751e-5, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -6.6947937011718754e-6, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -3.3473968505859377e-6, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -1.6736984252929689e-6, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -8.368492126464844e-7, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -4.184246063232422e-7, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -2.092123031616211e-7, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -1.0460615158081055e-7, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -5.230307579040528e-8, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -2.615153789520264e-8, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -1.307576894760132e-8, converged = [YES] Predictor: Secant Predictor: Secant Predictor: Secant ──> bp Bifurcation point at p ≈ -0.06496328859565723, δn_unstable = 1, δn_imag = 0 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 34 Step size = 3.3750e-02 Parameter p = -6.4963e-02 ──▶ -7.5203e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.4963e-02 ──▶ -7.1589e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 35 Step size = 3.3750e-02 Parameter p = -7.1589e-02 ──▶ -7.8194e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -7.1589e-02 ──▶ -8.0562e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 36 Step size = 3.3750e-02 Parameter p = -8.0562e-02 ──▶ -8.9523e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.0562e-02 ──▶ -9.1534e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 37 Step size = 3.3750e-02 Parameter p = -9.1534e-02 ──▶ -1.0250e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.1534e-02 ──▶ -1.0427e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 38 Step size = 3.3750e-02 Parameter p = -1.0427e-01 ──▶ -1.1699e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0427e-01 ──▶ -1.1859e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 39 Step size = 3.3750e-02 Parameter p = -1.1859e-01 ──▶ -1.3291e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1859e-01 ──▶ -1.3438e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 40 Step size = 3.3750e-02 Parameter p = -1.3438e-01 ──▶ -1.5015e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3438e-01 ──▶ -1.5151e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 41 Step size = 3.3750e-02 Parameter p = -1.5151e-01 ──▶ -1.6863e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.5151e-01 ──▶ -1.6990e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 42 Step size = 3.3750e-02 Parameter p = -1.6990e-01 ──▶ -1.8828e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.6990e-01 ──▶ -1.8947e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 43 Step size = 3.3750e-02 Parameter p = -1.8947e-01 ──▶ -2.0903e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.8947e-01 ──▶ -2.1014e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 44 Step size = 3.3750e-02 Parameter p = -2.1014e-01 ──▶ -2.3081e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.1014e-01 ──▶ -2.3186e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 45 Step size = 3.3750e-02 Parameter p = -2.3186e-01 ──▶ -2.5357e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.3186e-01 ──▶ -2.5457e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 46 Step size = 3.3750e-02 Parameter p = -2.5457e-01 ──▶ -2.7726e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.5457e-01 ──▶ -2.7820e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 47 Step size = 3.3750e-02 Parameter p = -2.7820e-01 ──▶ -3.0183e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.7820e-01 ──▶ -3.0271e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 48 Step size = 3.3750e-02 Parameter p = -3.0271e-01 ──▶ -3.2722e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.0271e-01 ──▶ -3.2806e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ┌ Error: --> Decrease ds └ @ BifurcationKit ~/.julia/packages/BifurcationKit/q52qN/src/continuation/Multiple.jl:139 ┌ Error: --> Decrease ds └ @ BifurcationKit ~/.julia/packages/BifurcationKit/q52qN/src/continuation/Multiple.jl:139 ┌ Warning: Assignment to `brbd` in soft scope is ambiguous because a global variable by the same name exists: `brbd` will be treated as a new local. Disambiguate by using `local brbd` to suppress this warning or `global brbd` to assign to the existing global variable. └ @ ~/.julia/packages/BifurcationKit/q52qN/test/simple_continuation.jl:333 ┌ Error: Initial continuation parameter p = -3.2 must be within bounds [p_min, p_max] = [-3.0, -2.0] └ @ BifurcationKit ~/.julia/packages/BifurcationKit/q52qN/src/Continuation.jl:343 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──────────────────────── PALC ──────────────────────── ━━━━━━━━━━━━━━━━━━ INITIAL GUESS ━━━━━━━━━━━━━━━━━━ ──▶ convergence of initial guess = OK ──▶ parameter = -1.5, initial step ━━━━━━━━━━━━━━━━━━ INITIAL TANGENT ━━━━━━━━━━━━━━━━━━ ──▶ convergence of the initial guess = OK ──▶ parameter = -1.4999933333333333, initial step (bis) Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 0 Step size = 1.0000e-03 Parameter p = -1.5000e+00 ──▶ -1.4986e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.5000e+00 ──▶ -1.4986e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 1 Step size = 1.4608e-03 Parameter p = -1.4986e+00 ──▶ -1.4965e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4986e+00 ──▶ -1.4965e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 2 Step size = 2.1339e-03 Parameter p = -1.4965e+00 ──▶ -1.4935e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4965e+00 ──▶ -1.4935e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 3 Step size = 3.1173e-03 Parameter p = -1.4935e+00 ──▶ -1.4891e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4935e+00 ──▶ -1.4891e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 4 Step size = 4.5537e-03 Parameter p = -1.4891e+00 ──▶ -1.4827e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4891e+00 ──▶ -1.4827e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 5 Step size = 6.6520e-03 Parameter p = -1.4827e+00 ──▶ -1.4732e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4827e+00 ──▶ -1.4732e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 6 Step size = 9.7173e-03 Parameter p = -1.4732e+00 ──▶ -1.4595e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4732e+00 ──▶ -1.4595e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 7 Step size = 1.4195e-02 Parameter p = -1.4595e+00 ──▶ -1.4394e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4595e+00 ──▶ -1.4394e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 8 Step size = 2.0736e-02 Parameter p = -1.4394e+00 ──▶ -1.4101e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4394e+00 ──▶ -1.4101e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 9 Step size = 3.0291e-02 Parameter p = -1.4101e+00 ──▶ -1.3673e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4101e+00 ──▶ -1.3673e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 10 Step size = 4.4249e-02 Parameter p = -1.3673e+00 ──▶ -1.3047e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3673e+00 ──▶ -1.3047e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 11 Step size = 5.1000e-02 Parameter p = -1.3047e+00 ──▶ -1.2326e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3047e+00 ──▶ -1.2326e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 12 Step size = 5.1000e-02 Parameter p = -1.2326e+00 ──▶ -1.1604e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.2326e+00 ──▶ -1.1604e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 13 Step size = 5.1000e-02 Parameter p = -1.1604e+00 ──▶ -1.0883e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1604e+00 ──▶ -1.0883e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 14 Step size = 5.1000e-02 Parameter p = -1.0883e+00 ──▶ -1.0162e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0883e+00 ──▶ -1.0162e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 15 Step size = 5.1000e-02 Parameter p = -1.0162e+00 ──▶ -9.4408e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0162e+00 ──▶ -9.4408e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 16 Step size = 5.1000e-02 Parameter p = -9.4408e-01 ──▶ -8.7196e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.4408e-01 ──▶ -8.7196e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 17 Step size = 5.1000e-02 Parameter p = -8.7196e-01 ──▶ -7.9984e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.7196e-01 ──▶ -7.9984e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 18 Step size = 5.1000e-02 Parameter p = -7.9984e-01 ──▶ -7.2772e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -7.9984e-01 ──▶ -7.2773e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 19 Step size = 5.1000e-02 Parameter p = -7.2773e-01 ──▶ -6.5561e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -7.2773e-01 ──▶ -6.5562e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 20 Step size = 5.1000e-02 Parameter p = -6.5562e-01 ──▶ -5.8351e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.5562e-01 ──▶ -5.8352e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 21 Step size = 5.1000e-02 Parameter p = -5.8352e-01 ──▶ -5.1142e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -5.8352e-01 ──▶ -5.1143e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 22 Step size = 5.1000e-02 Parameter p = -5.1143e-01 ──▶ -4.3934e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -5.1143e-01 ──▶ -4.3937e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 23 Step size = 5.1000e-02 Parameter p = -4.3937e-01 ──▶ -3.6732e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -4.3937e-01 ──▶ -3.6737e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 24 Step size = 5.1000e-02 Parameter p = -3.6737e-01 ──▶ -2.9539e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.6737e-01 ──▶ -2.9552e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 25 Step size = 5.1000e-02 Parameter p = -2.9552e-01 ──▶ -2.2370e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -2.9552e-01 ──▶ -2.2410e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 26 Step size = 5.1000e-02 Parameter p = -2.2410e-01 ──▶ -1.5279e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -2.2410e-01 ──▶ -1.5429e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 27 Step size = 5.1000e-02 Parameter p = -1.5429e-01 ──▶ -8.5126e-02 [guess] ──▶ Step Converged in 4 Nonlinear Iteration(s) Parameter p = -1.5429e-01 ──▶ -9.3033e-02 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 28 Step size = 5.1000e-02 Parameter p = -9.3033e-02 ──▶ -3.5896e-02 [guess] ──▶ Step Converged in 4 Nonlinear Iteration(s) Parameter p = -9.3033e-02 ──▶ -6.4183e-02 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 29 Step size = 5.1000e-02 Parameter p = -6.4183e-02 ──▶ -3.9912e-02 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -6.4183e-02 ──▶ -6.1291e-02 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ──▶ Bifurcation detected before p = -0.0612908522750683 ┌─── Entering [Locate bifurcation], state.n_unstable = (2, 0) ├─── [Bisection] initial ds = 0.051 ├─── [Bisection] state.ds = -0.051 ├─── 0 - [Bisection] (n1, n_current, n2) = (0, 2, 2), ds = -0.0255 p = -0.0612908522750683, #reverse = 0 ├─── bifurcation ∈ (-0.06418257359763878, -0.0612908522750683), precision = 2.892E-03 ├─── 2 Eigenvalues closest to ℜ = 0: 2-element Vector{ComplexF64}: 0.011015084493654244 + 0.0im 0.011015084493654355 + 0.0im Predictor: Secant ├─── 1 - [Bisection] (n1, n_current, n2) = (0, 0, 2), ds = 0.01275 p = -0.06102065204612017, #reverse = 1 ├─── bifurcation ∈ (-0.0612908522750683, -0.06102065204612017), precision = -2.702E-04 ├─── 2 Eigenvalues closest to ℜ = 0: 2-element Vector{ComplexF64}: -0.00682553599602289 + 0.0im -0.0068255359960178105 + 0.0im Predictor: Secant ├─── 2 - [Bisection] (n1, n_current, n2) = (0, 2, 2), ds = -0.006375 p = -0.06083954839238358, #reverse = 2 ├─── bifurcation ∈ (-0.06102065204612017, -0.06083954839238358), precision = 1.811E-04 ├─── 2 Eigenvalues closest to ℜ = 0: 2-element Vector{ComplexF64}: 0.0020769073856158893 + 0.0im 0.002076907385616472 + 0.0im ────> Found at p = -0.06083954839238358, δn = 2, δim = 0 from p = -0.0612908522750683 ────> Found at p = -0.06083954839238358 ∈ (-0.06102065204612017, -0.06083954839238358), δn = 2, δim = 0 from p = -0.0612908522750683 ──────────────────────────────────────── ┌─── Stopping reason: ├───── isnothing(next) = false ├───── |ds| < dsmin_bisection = false ├───── step >= max_bisection_steps = false ├───── n_inversion >= n_inversion = true └───── biflocated = false ────> Leaving [Locate bifurcation] ──> nd Bifurcation point at p ≈ -0.06083954839238358, δn_unstable = 2, δn_imag = 0 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 30 Step size = 5.1000e-02 Parameter p = -6.0840e-02 ──▶ -6.0115e-02 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.0840e-02 ──▶ -6.5737e-02 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 31 Step size = 5.1000e-02 Parameter p = -6.5737e-02 ──▶ -7.0620e-02 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -6.5737e-02 ──▶ -7.7229e-02 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 32 Step size = 5.1000e-02 Parameter p = -7.7229e-02 ──▶ -8.8673e-02 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -7.7229e-02 ──▶ -9.3566e-02 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 33 Step size = 5.1000e-02 Parameter p = -9.3566e-02 ──▶ -1.0986e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -9.3566e-02 ──▶ -1.1387e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 34 Step size = 5.1000e-02 Parameter p = -1.1387e-01 ──▶ -1.3414e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -1.1387e-01 ──▶ -1.3759e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 35 Step size = 5.1000e-02 Parameter p = -1.3759e-01 ──▶ -1.6129e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -1.3759e-01 ──▶ -1.6436e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 36 Step size = 5.1000e-02 Parameter p = -1.6436e-01 ──▶ -1.9110e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -1.6436e-01 ──▶ -1.9387e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 37 Step size = 5.1000e-02 Parameter p = -1.9387e-01 ──▶ -2.2336e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -1.9387e-01 ──▶ -2.2589e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 38 Step size = 5.1000e-02 Parameter p = -2.2589e-01 ──▶ -2.5787e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -2.2589e-01 ──▶ -2.6018e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 39 Step size = 5.1000e-02 Parameter p = -2.6018e-01 ──▶ -2.9446e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -2.6018e-01 ──▶ -2.9658e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 40 Step size = 5.1000e-02 Parameter p = -2.9658e-01 ──▶ -3.3295e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -2.9658e-01 ──▶ -3.3490e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 41 Step size = 5.1000e-02 Parameter p = -3.3490e-01 ──▶ -3.7320e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -3.3490e-01 ──▶ -3.7499e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 42 Step size = 5.1000e-02 Parameter p = -3.7499e-01 ──▶ -4.1507e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -3.7499e-01 ──▶ -4.1672e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 43 Step size = 5.1000e-02 Parameter p = -4.1672e-01 ──▶ -4.5844e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -4.1672e-01 ──▶ -4.5997e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 44 Step size = 5.1000e-02 Parameter p = -4.5997e-01 ──▶ -5.0320e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -4.5997e-01 ──▶ -5.0461e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 45 Step size = 5.1000e-02 Parameter p = -5.0461e-01 ──▶ -5.4924e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -5.0461e-01 ──▶ -5.5054e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 46 Step size = 5.1000e-02 Parameter p = -5.5054e-01 ──▶ -5.9646e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -5.5054e-01 ──▶ -5.9767e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 47 Step size = 5.1000e-02 Parameter p = -5.9767e-01 ──▶ -6.4480e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -5.9767e-01 ──▶ -6.4592e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 48 Step size = 5.1000e-02 Parameter p = -6.4592e-01 ──▶ -6.9415e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -6.4592e-01 ──▶ -6.9520e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 49 Step size = 5.1000e-02 Parameter p = -6.9520e-01 ──▶ -7.4447e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -6.9520e-01 ──▶ -7.4544e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 50 Step size = 5.1000e-02 Parameter p = -7.4544e-01 ──▶ -7.9567e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -7.4544e-01 ──▶ -7.9657e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 51 Step size = 5.1000e-02 Parameter p = -7.9657e-01 ──▶ -8.4770e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -7.9657e-01 ──▶ -8.4855e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 52 Step size = 5.1000e-02 Parameter p = -8.4855e-01 ──▶ -9.0051e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.4855e-01 ──▶ -9.0130e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 53 Step size = 5.1000e-02 Parameter p = -9.0130e-01 ──▶ -9.5405e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.0130e-01 ──▶ -9.5478e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 54 Step size = 5.1000e-02 Parameter p = -9.5478e-01 ──▶ -1.0083e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.5478e-01 ──▶ -1.0090e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 55 Step size = 5.1000e-02 Parameter p = -1.0090e+00 ──▶ -1.0631e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0090e+00 ──▶ -1.0638e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 56 Step size = 5.1000e-02 Parameter p = -1.0638e+00 ──▶ -1.1186e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0638e+00 ──▶ -1.1192e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 57 Step size = 5.1000e-02 Parameter p = -1.1192e+00 ──▶ -1.1746e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1192e+00 ──▶ -1.1752e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 58 Step size = 5.1000e-02 Parameter p = -1.1752e+00 ──▶ -1.2311e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1752e+00 ──▶ -1.2317e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 59 Step size = 5.1000e-02 Parameter p = -1.2317e+00 ──▶ -1.2882e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.2317e+00 ──▶ -1.2887e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 60 Step size = 5.1000e-02 Parameter p = -1.2887e+00 ──▶ -1.3457e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.2887e+00 ──▶ -1.3462e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 61 Step size = 5.1000e-02 Parameter p = -1.3462e+00 ──▶ -1.4037e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3462e+00 ──▶ -1.4041e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 62 Step size = 5.1000e-02 Parameter p = -1.4041e+00 ──▶ -1.4621e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.4041e+00 ──▶ -1.4625e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 63 Step size = 5.1000e-02 Parameter p = -1.4625e+00 ──▶ -1.5209e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.4625e+00 ──▶ -1.5213e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 64 Step size = 5.1000e-02 Parameter p = -1.5213e+00 ──▶ -1.5801e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.5213e+00 ──▶ -1.5804e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 65 Step size = 5.1000e-02 Parameter p = -1.5804e+00 ──▶ -1.6396e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.5804e+00 ──▶ -1.6400e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 66 Step size = 5.1000e-02 Parameter p = -1.6400e+00 ──▶ -1.6995e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.6400e+00 ──▶ -1.6998e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 67 Step size = 5.1000e-02 Parameter p = -1.6998e+00 ──▶ -1.7597e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.6998e+00 ──▶ -1.7600e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 68 Step size = 5.1000e-02 Parameter p = -1.7600e+00 ──▶ -1.8202e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.7600e+00 ──▶ -1.8205e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 69 Step size = 5.1000e-02 Parameter p = -1.8205e+00 ──▶ -1.8810e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.8205e+00 ──▶ -1.8813e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 70 Step size = 5.1000e-02 Parameter p = -1.8813e+00 ──▶ -1.9421e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.8813e+00 ──▶ -1.9424e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 71 Step size = 5.1000e-02 Parameter p = -1.9424e+00 ──▶ -2.0035e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.9424e+00 ──▶ -2.0038e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 72 Step size = 5.1000e-02 Parameter p = -2.0038e+00 ──▶ -2.0651e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.0038e+00 ──▶ -2.0654e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 73 Step size = 5.1000e-02 Parameter p = -2.0654e+00 ──▶ -2.1270e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.0654e+00 ──▶ -2.1273e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 74 Step size = 5.1000e-02 Parameter p = -2.1273e+00 ──▶ -2.1891e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.1273e+00 ──▶ -2.1894e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 75 Step size = 5.1000e-02 Parameter p = -2.1894e+00 ──▶ -2.2515e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.1894e+00 ──▶ -2.2517e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 76 Step size = 5.1000e-02 Parameter p = -2.2517e+00 ──▶ -2.3140e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.2517e+00 ──▶ -2.3143e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 77 Step size = 5.1000e-02 Parameter p = -2.3143e+00 ──▶ -2.3768e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.3143e+00 ──▶ -2.3770e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 78 Step size = 5.1000e-02 Parameter p = -2.3770e+00 ──▶ -2.4398e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.3770e+00 ──▶ -2.4400e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 79 Step size = 5.1000e-02 Parameter p = -2.4400e+00 ──▶ -2.5029e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.4400e+00 ──▶ -2.5031e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 80 Step size = 5.1000e-02 Parameter p = -2.5031e+00 ──▶ -2.5663e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.5031e+00 ──▶ -2.5665e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 81 Step size = 5.1000e-02 Parameter p = -2.5665e+00 ──▶ -2.6298e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.5665e+00 ──▶ -2.6300e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 82 Step size = 5.1000e-02 Parameter p = -2.6300e+00 ──▶ -2.6935e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.6300e+00 ──▶ -2.6937e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 83 Step size = 5.1000e-02 Parameter p = -2.6937e+00 ──▶ -2.7574e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.6937e+00 ──▶ -2.7575e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 84 Step size = 5.1000e-02 Parameter p = -2.7575e+00 ──▶ -2.8214e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.7575e+00 ──▶ -2.8215e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 85 Step size = 5.1000e-02 Parameter p = -2.8215e+00 ──▶ -2.8856e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.8215e+00 ──▶ -2.8857e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 86 Step size = 5.1000e-02 Parameter p = -2.8857e+00 ──▶ -2.9499e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.8857e+00 ──▶ -2.9500e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 87 Step size = 5.1000e-02 Parameter p = -2.9500e+00 ──▶ -3.0000e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -2.9500e+00 ──▶ -3.0000e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ┌─ Entry in detect_loop, rtol = 0.001 ├─ bp type = nd, ||δx|| = 0.24416479616388265, |δp| = 1.3891604516076164 └─ Loop detected = false ┌─ Continuation algorithm: deflated continuation ├─ max_branches: 100 ├─ seek every: 1 ├─ deflated newton iterations: 5 ├─ jacobian (def. newton): BifurcationKit.DeflatedProblemCustomLS{Nothing}(nothing) └─ deflation operator: ┌─ Deflation operator with 1 root(s) ├─ eltype = Float64 ├─ power = 2 ├─ α = 0.001 ├─ dist = inner └─ autodiff = false Deflated continuation result, # branches = 3 Branch #1: ┌─ Curve type: EquilibriumCont ├─ Number of points: 801 ├─ Type of vectors: Vector{Float64} ├─ Parameter p starts at 0.5, ends at -0.30000000000000066 ├─ Algo: PALC [Secant] Branch #2: ┌─ Curve type: EquilibriumCont ├─ Number of points: 238 ├─ Type of vectors: Vector{Float64} ├─ Parameter p starts at -0.06300000000000049, ends at -0.30000000000000066 ├─ Algo: PALC [Secant] Branch #3: ┌─ Curve type: EquilibriumCont ├─ Number of points: 236 ├─ Type of vectors: Vector{Float64} ├─ Parameter p starts at -0.06500000000000049, ends at -0.30000000000000066 ├─ Algo: PALC [Secant] WARNING: Method definition Ftb(Any, Any) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/test/test_bif_detection.jl:51 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/test/test_bif_detection.jl:112. ┌─ Curve type: EquilibriumCont ├─ Number of points: 134 ├─ Type of vectors: Vector{Float64} ├─ Parameter p1 starts at -3.0, ends at 4.0 ├─ Algo: PALC [Secant] └─ Special points: - # 1, bp at p1 ≈ -1.13286415 ∈ (-1.13286415, -1.13286415), |δp|=6e-10, [converged], δ = ( 1, 0), step = 36 - # 2, bp at p1 ≈ -2.32505847 ∈ (-2.32505847, -2.32505842), |δp|=5e-08, [converged], δ = (-1, 0), step = 49 - # 3, hopf at p1 ≈ -0.95381648 ∈ (-0.95385638, -0.95381648), |δp|=4e-05, [converged], δ = ( 2, 2), step = 63 - # 4, hopf at p1 ≈ +0.95387028 ∈ (+0.95385033, +0.95387028), |δp|=2e-05, [converged], δ = (-2, -2), step = 83 - # 5, bp at p1 ≈ +2.32505862 ∈ (+2.32505862, +2.32505862), |δp|=9e-11, [converged], δ = ( 1, 0), step = 97 - # 6, bp at p1 ≈ +1.13286415 ∈ (+1.13286415, +1.13286415), |δp|=5e-09, [converged], δ = (-1, 0), step = 110 - # 7, endpoint at p1 ≈ +4.00000000, step = 133 Newton failed to converge for the initial guess on the branch. Residuals: 6-element Vector{Float64}: 0.8128508702022819 2.3665451984059733 2.1672921788699626 624.7839569042914 6.275088578401012e9 NaN WARNING: Method definition F0_simple(Any, Any) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/test/simple_continuation.jl:10 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/test/plots-utils.jl:8. ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ┌─ Normal form computation for 1d kernel ├─ analyse bifurcation at p = 0.0 ├─ smallest eigenvalue at bifurcation = 2.6121282233639645e-7 ┌── Normal form: a01⋅δμ + a02⋅δμ²/2 + b11⋅x⋅δμ + b20⋅x²/2 + b30⋅x³/6 ├─── a01 = 0.0 ├─── a02 = 0.0 ├─── b11 = 3.23 ├─── b20/2 = 3.3122999999999996 └─── b30/6 = 0.234 ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 193 running 1 of 1 signal (10): User defined signal 1 unknown function (ip: 0x797689f8cfac) at /lib/x86_64-linux-gnu/libc.so.6 malloc at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) _ZN4llvm19SmallPtrSetImplBase4GrowEj at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm17IDFCalculatorBaseINS_17MachineBasicBlockELb0EE9calculateERNS_15SmallVectorImplIPS1_EE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZZN15LiveDebugValues16InstrRefBasedLDV13placeMLocPHIsERN4llvm15MachineFunctionERNS1_15SmallPtrSetImplIPNS1_17MachineBasicBlockEEERNS_14FuncValueTableERNS1_15SmallVectorImplINS1_13SmallDenseMapINS_6LocIdxENS_10ValueIDNumELj4ENS1_12DenseMapInfoISD_vEENS1_6detail12DenseMapPairISD_SE_EEEEEEENKUlSD_E_clESD_ at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN15LiveDebugValues16InstrRefBasedLDV13placeMLocPHIsERN4llvm15MachineFunctionERNS1_15SmallPtrSetImplIPNS1_17MachineBasicBlockEEERNS_14FuncValueTableERNS1_15SmallVectorImplINS1_13SmallDenseMapINS_6LocIdxENS_10ValueIDNumELj4ENS1_12DenseMapInfoISD_vEENS1_6detail12DenseMapPairISD_SE_EEEEEE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN15LiveDebugValues16InstrRefBasedLDV17buildMLocValueMapERN4llvm15MachineFunctionERNS_14FuncValueTableES5_RNS1_15SmallVectorImplINS1_13SmallDenseMapINS_6LocIdxENS_10ValueIDNumELj4ENS1_12DenseMapInfoIS8_vEENS1_6detail12DenseMapPairIS8_S9_EEEEEE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN15LiveDebugValues16InstrRefBasedLDV12ExtendRangesERN4llvm15MachineFunctionEPNS1_20MachineDominatorTreeEPNS1_16TargetPassConfigEjj at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm19MachineFunctionPass13runOnFunctionERNS_8FunctionE.part.0 at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm13FPPassManager13runOnFunctionERNS_8FunctionE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm13FPPassManager11runOnModuleERNS_6ModuleE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm6legacy15PassManagerImpl3runERNS_6ModuleE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) operator() at /source/src/jitlayers.cpp:1635 addModule at /source/src/jitlayers.cpp:2143 jl_compile_codeinst_now at /source/src/jitlayers.cpp:688 jl_compile_codeinst_impl at /source/src/jitlayers.cpp:882 jl_compile_method_internal at /source/src/gf.c:3652 _jl_invoke at /source/src/gf.c:4112 [inlined] ijl_apply_generic at /source/src/gf.c:4317 #get_normal_form#517 at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/NormalForms.jl:0 get_normal_form at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/NormalForms.jl:130 [inlined] get_normal_form at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/NormalForms.jl:130 [inlined] #get_normal_form#576 at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/NormalForms.jl:877 [inlined] get_normal_form at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/NormalForms.jl:877 unknown function (ip: 0x797618fdb621) at (unknown file) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 jl_apply at /source/src/julia.h:2285 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 ijl_eval_thunk at /source/src/toplevel.c:765 jl_toplevel_eval_flex at /source/src/toplevel.c:712 jl_eval_toplevel_stmts at /source/src/toplevel.c:602 jl_toplevel_eval_flex at /source/src/toplevel.c:684 ijl_toplevel_eval at /source/src/toplevel.c:779 ijl_toplevel_eval_in at /source/src/toplevel.c:824 eval at ./boot.jl:489 include_string at ./loading.jl:3151 _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 _include at ./loading.jl:3211 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_74896.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 jl_apply at /source/src/julia.h:2285 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:693 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 ijl_eval_thunk at /source/src/toplevel.c:765 jl_toplevel_eval_flex at /source/src/toplevel.c:712 jl_eval_toplevel_stmts at /source/src/toplevel.c:602 jl_toplevel_eval_flex at /source/src/toplevel.c:684 ijl_toplevel_eval at /source/src/toplevel.c:779 ijl_toplevel_eval_in at /source/src/toplevel.c:824 eval at ./boot.jl:489 include_string at ./loading.jl:3151 _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 _include at ./loading.jl:3211 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_74896.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 jl_apply at /source/src/julia.h:2285 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:693 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 ijl_eval_thunk at /source/src/toplevel.c:765 jl_toplevel_eval_flex at /source/src/toplevel.c:712 jl_eval_toplevel_stmts at /source/src/toplevel.c:602 jl_toplevel_eval_flex at /source/src/toplevel.c:684 ijl_toplevel_eval at /source/src/toplevel.c:779 ijl_toplevel_eval_in at /source/src/toplevel.c:824 eval at ./boot.jl:489 exec_options at ./client.jl:310 _start at ./client.jl:585 jfptr__start_50962.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 jl_apply at /source/src/julia.h:2285 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x797689f1c249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) #= 545.0 ms =# precompile(Tuple{typeof(Core.kwcall), NamedTuple{(:nev, :verbose), Tuple{Int64, Bool}}, typeof(BifurcationKit.get_adjoint_basis), LinearAlgebra.Adjoint{Float64, Array{Float64, 2}}, Float64, BifurcationKit.DefaultEig{typeof(Base.real)}}) # recompile #= 15.7 ms =# precompile(Tuple{typeof(BifurcationKit.istranscritical), BifurcationKit.Transcritical{Array{Float64, 1}, BifurcationKit.BorderedArray{Array{Float64, 1}, Float64}, Float64, NamedTuple{(:μ, :ν, :x2, :x3, :γ), Tuple{Float64, Int64, Float64, Float64, Float64}}, Accessors.PropertyLens{:μ}, Array{Float64, 1}, Array{Float64, 1}, NamedTuple{(:a01, :a02, :b11, :b20, :b30, :Ψ01, :Ψ20), Tuple{Float64, Float64, Float64, Float64, Float64, Base.SubArray{Float64, 1, Array{Float64, 1}, Tuple{Base.UnitRange{Int64}}, true}, Base.SubArray{Float64, 1, Array{Float64, 1}, Tuple{Base.UnitRange{Int64}}, true}}}}}) #= 71.8 ms =# precompile(Tuple{typeof(Accessors.set), BifurcationKit.ODEBifProblem{BifurcationKit.BifFunction{typeof(Main.Fbp), BifurcationKit.var"#128#129"{typeof(Main.Fbp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Array{Float64, 1}, NamedTuple{(:μ, :ν, :x2, :x3, :γ), Tuple{Float64, Int64, Float64, Float64, Float64}}, Accessors.PropertyLens{:μ}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Base.ComposedFunction{Accessors.PropertyLens{:J}, Accessors.PropertyLens{:VF}}, Function}) #= 16.6 ms =# precompile(Tuple{typeof(Base.getproperty), NamedTuple{(:J,), Tuple{Main.var"#205#206"}}, Symbol}) #= 47.4 ms =# precompile(Tuple{typeof(ConstructionBase.setproperties), BifurcationKit.BifFunction{typeof(Main.Fbp), BifurcationKit.var"#128#129"{typeof(Main.Fbp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, NamedTuple{(:J,), Tuple{Main.var"#205#206"}}}) #= 49.5 ms =# precompile(Tuple{typeof(ConstructionBase.setproperties), BifurcationKit.ODEBifProblem{BifurcationKit.BifFunction{typeof(Main.Fbp), BifurcationKit.var"#128#129"{typeof(Main.Fbp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Array{Float64, 1}, NamedTuple{(:μ, :ν, :x2, :x3, :γ), Tuple{Float64, Int64, Float64, Float64, Float64}}, Accessors.PropertyLens{:μ}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, NamedTuple{(:VF,), Tuple{BifurcationKit.BifFunction{typeof(Main.Fbp), BifurcationKit.var"#128#129"{typeof(Main.Fbp)}, Nothing, Nothing, Main.var"#205#206", Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}}}}) #= 15.9 ms =# precompile(Tuple{Type{NamedTuple{(:verbose, :autodiff), T} where T<:Tuple}, Tuple{Bool, Bool}}) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1246 wait_forever at ./task.jl:1168 jfptr_wait_forever_46727.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4120 [inlined] ijl_apply_generic at /source/src/gf.c:4317 jl_apply at /source/src/julia.h:2285 [inlined] start_task at /source/src/task.c:1275 unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.14/Profile/src/Profile.jl:1361 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x00007d52da4ca950 Total snapshots: 445. Utilization: 0% ╎445 @Base/task.jl:1168 wait_forever() 444╎ 445 @Base/task.jl:1246 wait() Transcritical bifurcation point at μ ≈ 0.0 [193] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/test/testNF.jl:10 unknown function (ip: 0x797689f7ae94) at /lib/x86_64-linux-gnu/libc.so.6 __pthread_rwlock_wrlock at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv_rwlock_wrlock at /opt/julia/bin/../lib/julia/libjulia-internal.so.1.14 (unknown line) jl_lock_profile_wr at /opt/julia/bin/../lib/julia/libjulia-internal.so.1.14 (unknown line) jl_getFunctionInfo_impl at /opt/julia/bin/../lib/julia/libjulia-codegen.so.1.14 (unknown line) ijl_lookup_code_address at /opt/julia/bin/../lib/julia/libjulia-internal.so.1.14 (unknown line) julia_lookup_4766.2 at /opt/julia/share/julia/compiled/v1.14/Profile/nGhxz_wscuQ.so (unknown line) julia__lookup_corrected_5117.2 at /opt/julia/share/julia/compiled/v1.14/Profile/nGhxz_wscuQ.so (unknown line) julia_YY.getdictNOT.YY.YY.0_5113.2 at /opt/julia/share/julia/compiled/v1.14/Profile/nGhxz_wscuQ.so (unknown line) jfptr_YY.getdictNOT.YY.YY.0_5114.1 at /opt/julia/share/julia/compiled/v1.14/Profile/nGhxz_wscuQ.so (unknown line) ijl_apply_generic at /opt/julia/bin/../lib/julia/libjulia-internal.so.1.14 (unknown line) start_task at /opt/julia/bin/../lib/julia/libjulia-internal.so.1.14 (unknown line) unknown function (ip: (nil)) at (unknown file) Allocations: 479781864 (Pool: 479776295; Big: 5569); GC: 123 PkgEval terminated after 2726.07s: test duration exceeded the time limit