Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1621 (4d04bb6b3b*) started at 2026-01-27T23:32:23.587 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 10.53s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.14.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.18.0+0 [e37daf67] + LibGit2_jll v1.9.2+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.12.2 [4536629a] + OpenBLAS_jll v0.3.30+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.18s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling packages... 1473.3 ms ✓ Measurements 5013.4 ms ✓ StatsBase 21522.9 ms ✓ GeometryBasics 5929.4 ms ✓ RayTraceHeatTransfer 4 dependencies successfully precompiled in 34 seconds. 57 already precompiled. Precompilation completed after 53.73s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_PhqQMl/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.16 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_PhqQMl/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.16 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.18.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.30+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:03:43 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:05 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001231171614686732 Iteration 10: d = 1.047139415355352e-5 Iteration 20: d = 1.2814987151122602e-7 Iteration 30: d = 1.8666967532300443e-9 Iteration 40: d = 2.924225064954367e-11 Iteration 50: d = 4.777537212525952e-13 Iteration 60: d = 8.029017711522947e-15 Converged after 64 iterations. d = 1.5511463271307619e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|█████████████ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011333387668979635 Iteration 10: d = 9.80225236375764e-6 Iteration 20: d = 1.3593669539031565e-7 Iteration 30: d = 2.253171366163247e-9 Iteration 40: d = 3.906643423559352e-11 Iteration 50: d = 6.881649650179967e-13 Iteration 60: d = 1.2199713813581604e-14 Converged after 65 iterations. d = 1.6228001733694078e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▊ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011532877520832145 Iteration 10: d = 8.929547055266415e-6 Iteration 20: d = 1.1169909998295423e-7 Iteration 30: d = 1.7747607177103122e-9 Iteration 40: d = 3.004631488175932e-11 Iteration 50: d = 5.192140888108891e-13 Iteration 60: d = 9.012108938079633e-15 Converged after 64 iterations. d = 1.7792448851415146e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 75%|████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011642581054697614 Iteration 10: d = 8.691331817311092e-6 Iteration 20: d = 8.917134115195e-8 Iteration 30: d = 1.2913587441937324e-9 Iteration 40: d = 2.1301761846396954e-11 Iteration 50: d = 3.6725509111076973e-13 Iteration 60: d = 6.4290121201303336e-15 Converged after 63 iterations. d = 1.8880839845706536e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012518213249066122 Iteration 10: d = 9.167623091020776e-6 Iteration 20: d = 1.150089617578696e-7 Iteration 30: d = 1.7307653669001904e-9 Iteration 40: d = 2.665684195894129e-11 Iteration 50: d = 4.1293341499920196e-13 Iteration 60: d = 6.448940096269041e-15 Converged after 63 iterations. d = 1.8815638046842437e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013286747105293315 Iteration 10: d = 1.216141278849377e-5 Iteration 20: d = 1.21074047462822e-7 Iteration 30: d = 1.4800594338773331e-9 Iteration 40: d = 2.020226358968704e-11 Iteration 50: d = 2.938576732483659e-13 Iteration 60: d = 4.41320924476939e-15 Converged after 62 iterations. d = 1.9297002575594463e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:01 Bin 1 progress: 79%|██████████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001231243946493155 Iteration 10: d = 9.67300268172456e-6 Iteration 20: d = 8.226093150662148e-8 Iteration 30: d = 8.361781030767431e-10 Iteration 40: d = 9.539331113553973e-12 Iteration 50: d = 1.20660175985032e-13 Converged after 60 iterations. d = 1.6385173803642515e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012208234910876443 Iteration 10: d = 1.283072784346167e-5 Iteration 20: d = 1.6625222543546437e-7 Iteration 30: d = 2.457424553108882e-9 Iteration 40: d = 3.741652458307882e-11 Iteration 50: d = 5.738979409960173e-13 Iteration 60: d = 8.83799917911789e-15 Converged after 64 iterations. d = 1.6443524281573788e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:01 Bin 1 progress: 83%|███████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013122686838748974 Iteration 10: d = 1.1084230490243546e-5 Iteration 20: d = 1.184185271255798e-7 Iteration 30: d = 1.6353240218789203e-9 Iteration 40: d = 2.4614370392380777e-11 Iteration 50: d = 3.79130386705837e-13 Iteration 60: d = 5.860324214935578e-15 Converged after 63 iterations. d = 1.7153006246063706e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:01 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015955997025683339 Iteration 10: d = 1.7369658499618368e-5 Iteration 20: d = 1.7789059745798016e-7 Iteration 30: d = 2.1608556404450822e-9 Iteration 40: d = 2.9367744840458995e-11 Iteration 50: d = 4.267361972143954e-13 Iteration 60: d = 6.4147841155241694e-15 Converged after 63 iterations. d = 1.82489792575461e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.005024620623272125 Iteration 10: d = 6.505995448599205e-5 Iteration 20: d = 8.651053145061794e-7 Iteration 30: d = 1.206664544759196e-8 Iteration 40: d = 1.6966636692624648e-10 Iteration 50: d = 2.3974885336875905e-12 Iteration 60: d = 3.400238683731677e-14 Converged after 67 iterations. d = 1.7359338115332757e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.003172474161957565 Iteration 10: d = 3.693632191252653e-5 Iteration 20: d = 5.451560331556427e-7 Iteration 30: d = 8.434777297230501e-9 Iteration 40: d = 1.315490027233407e-10 Iteration 50: d = 2.0583617326926936e-12 Iteration 60: d = 3.2281907052752637e-14 Converged after 67 iterations. d = 1.7622312782440394e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00260771760808936 Iteration 10: d = 2.3993864760665398e-5 Iteration 20: d = 3.329333139059005e-7 Iteration 30: d = 5.2387942136341405e-9 Iteration 40: d = 8.483774655177165e-11 Iteration 50: d = 1.3908982606585654e-12 Iteration 60: d = 2.2887382884657673e-14 Converged after 66 iterations. d = 1.962438913128072e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017268587918784929 Iteration 10: d = 1.4313557552464321e-5 Iteration 20: d = 2.0293771288536945e-7 Iteration 30: d = 3.376160402680167e-9 Iteration 40: d = 5.921567103447031e-11 Iteration 50: d = 1.0689887918381281e-12 Iteration 60: d = 1.9606044514294516e-14 Converged after 66 iterations. d = 1.7898984757665393e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012518213249066122 Iteration 10: d = 9.167623091020776e-6 Iteration 20: d = 1.150089617578696e-7 Iteration 30: d = 1.7307653669001904e-9 Iteration 40: d = 2.665684195894129e-11 Iteration 50: d = 4.1293341499920196e-13 Iteration 60: d = 6.448940096269041e-15 Converged after 63 iterations. d = 1.8815638046842437e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017189314738389055 Iteration 10: d = 1.60628045260204e-5 Iteration 20: d = 1.6827626325488486e-7 Iteration 30: d = 2.112515549420471e-9 Iteration 40: d = 2.785717447377267e-11 Iteration 50: d = 3.734352529223034e-13 Iteration 60: d = 5.066861697761289e-15 Converged after 62 iterations. d = 2.0854952795270334e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013269630340571055 Iteration 10: d = 1.3423039774868546e-5 Iteration 20: d = 1.7099713521711442e-7 Iteration 30: d = 2.39422165726994e-9 Iteration 40: d = 3.398590767940469e-11 Iteration 50: d = 4.83538760410681e-13 Iteration 60: d = 6.900674422553361e-15 Converged after 63 iterations. d = 1.9308372594921938e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.608354577049 Iteration 2: convergence error = 4815.773922545297 Iteration 3: convergence error = 1098.7233764561493 Iteration 4: convergence error = 320.3005898142271 Iteration 5: convergence error = 94.99661366001305 Iteration 6: convergence error = 28.42942738040233 Iteration 7: convergence error = 8.558041326822377 Iteration 8: convergence error = 2.565777949831954 Iteration 9: convergence error = 0.767392626838955 Iteration 10: convergence error = 0.22919922140454219 Iteration 11: convergence error = 0.06840140557505947 Iteration 12: convergence error = 0.02040429241151287 Iteration 13: convergence error = 0.0060850861007111234 Iteration 14: convergence error = 0.0018144634950658656 Iteration 15: convergence error = 0.0005409948937540321 Iteration 16: convergence error = 0.00016129354139593488 Iteration 17: convergence error = 4.8087101049532066e-5 Iteration 18: convergence error = 1.433617126167519e-5 Iteration 19: convergence error = 4.2739873151731445e-6 Iteration 20: convergence error = 1.2741857062792405e-6 Iteration 21: convergence error = 3.7986092138453387e-7 Iteration 22: convergence error = 1.1311112757539377e-7 Iteration 23: convergence error = 3.281229510321282e-8 Iteration 24: convergence error = 9.46693035075441e-9 Iteration 25: convergence error = 2.7173427952220663e-9 Iteration 26: convergence error = 7.855760486563668e-10 Iteration 27: convergence error = 2.2373569663614035e-10 Iteration 28: convergence error = 6.366462912410498e-11 Iteration 29: convergence error = 1.864464138634503e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017189314738389055 Iteration 10: d = 1.60628045260204e-5 Iteration 20: d = 1.6827626325488486e-7 Iteration 30: d = 2.112515549420471e-9 Iteration 40: d = 2.785717447377267e-11 Iteration 50: d = 3.734352529223034e-13 Iteration 60: d = 5.066861697761289e-15 Converged after 62 iterations. d = 2.0854952795270334e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.323715951456 Iteration 2: convergence error = 4829.1216122489095 Iteration 3: convergence error = 1100.5237097434583 Iteration 4: convergence error = 320.81117321287957 Iteration 5: convergence error = 95.24088045554595 Iteration 6: convergence error = 28.49689090807078 Iteration 7: convergence error = 8.593481976189878 Iteration 8: convergence error = 2.5812420910854144 Iteration 9: convergence error = 0.7735114805823287 Iteration 10: convergence error = 0.23148071212426657 Iteration 11: convergence error = 0.06921918823468332 Iteration 12: convergence error = 0.020689357565288446 Iteration 13: convergence error = 0.006182422026540735 Iteration 14: convergence error = 0.0018471751627657795 Iteration 15: convergence error = 0.0005518509638022806 Iteration 16: convergence error = 0.0001648598779411259 Iteration 17: convergence error = 4.924886434309883e-5 Iteration 18: convergence error = 1.4711966741742799e-5 Iteration 19: convergence error = 4.394812322061625e-6 Iteration 20: convergence error = 1.3128374121151865e-6 Iteration 21: convergence error = 3.921618372260127e-7 Iteration 22: convergence error = 1.1702809388225432e-7 Iteration 23: convergence error = 3.405693860258907e-8 Iteration 24: convergence error = 9.838458936428651e-9 Iteration 25: convergence error = 2.8369413485052064e-9 Iteration 26: convergence error = 8.060396794462577e-10 Iteration 27: convergence error = 2.326032699784264e-10 Iteration 28: convergence error = 7.09405867382884e-11 Iteration 29: convergence error = 1.9099388737231493e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 13:57:55 Bin 1 ray tracing: 7%|██▏ | ETA: 0:01:18 Bin 1 ray tracing: 16%|████▋ | ETA: 0:00:38 Bin 1 ray tracing: 24%|███████▎ | ETA: 0:00:25 Bin 1 ray tracing: 33%|█████████▉ | ETA: 0:00:19 Bin 1 ray tracing: 42%|████████████▋ | ETA: 0:00:14 Bin 1 ray tracing: 51%|███████████████▍ | ETA: 0:00:11 Bin 1 ray tracing: 59%|█████████████████▊ | ETA: 0:00:08 Bin 1 ray tracing: 68%|████████████████████▍ | ETA: 0:00:06 Bin 1 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:04 Bin 1 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:03 Bin 1 ray tracing: 93%|███████████████████████████▊ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 2 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 2 ray tracing: 26%|███████▋ | ETA: 0:00:09 Bin 2 ray tracing: 34%|██████████▏ | ETA: 0:00:08 Bin 2 ray tracing: 42%|████████████▌ | ETA: 0:00:07 Bin 2 ray tracing: 50%|██████████████▉ | ETA: 0:00:06 Bin 2 ray tracing: 58%|█████████████████▎ | ETA: 0:00:05 Bin 2 ray tracing: 66%|███████████████████▋ | ETA: 0:00:04 Bin 2 ray tracing: 73%|██████████████████████ | ETA: 0:00:03 Bin 2 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:02 Bin 2 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:01 Bin 2 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 3 ray tracing: 16%|████▉ | ETA: 0:00:10 Bin 3 ray tracing: 25%|███████▌ | ETA: 0:00:09 Bin 3 ray tracing: 33%|██████████ | ETA: 0:00:08 Bin 3 ray tracing: 42%|████████████▌ | ETA: 0:00:07 Bin 3 ray tracing: 51%|███████████████▎ | ETA: 0:00:06 Bin 3 ray tracing: 61%|██████████████████▏ | ETA: 0:00:05 Bin 3 ray tracing: 69%|████████████████████▌ | ETA: 0:00:04 Bin 3 ray tracing: 77%|███████████████████████ | ETA: 0:00:03 Bin 3 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:02 Bin 3 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 4 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 4 ray tracing: 26%|███████▋ | ETA: 0:00:09 Bin 4 ray tracing: 34%|██████████▎ | ETA: 0:00:08 Bin 4 ray tracing: 43%|████████████▉ | ETA: 0:00:07 Bin 4 ray tracing: 51%|███████████████▍ | ETA: 0:00:06 Bin 4 ray tracing: 60%|██████████████████ | ETA: 0:00:05 Bin 4 ray tracing: 69%|████████████████████▋ | ETA: 0:00:04 Bin 4 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 4 ray tracing: 88%|██████████████████████████▎ | ETA: 0:00:01 Bin 4 ray tracing: 97%|█████████████████████████████▎| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 5 ray tracing: 17%|█████▎ | ETA: 0:00:10 Bin 5 ray tracing: 26%|███████▉ | ETA: 0:00:09 Bin 5 ray tracing: 35%|██████████▍ | ETA: 0:00:08 Bin 5 ray tracing: 44%|█████████████▎ | ETA: 0:00:06 Bin 5 ray tracing: 53%|████████████████ | ETA: 0:00:05 Bin 5 ray tracing: 62%|██████████████████▌ | ETA: 0:00:04 Bin 5 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:03 Bin 5 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:02 Bin 5 ray tracing: 88%|██████████████████████████▎ | ETA: 0:00:01 Bin 5 ray tracing: 96%|█████████████████████████████ | ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 6 ray tracing: 18%|█████▎ | ETA: 0:00:10 Bin 6 ray tracing: 26%|███████▉ | ETA: 0:00:09 Bin 6 ray tracing: 35%|██████████▌ | ETA: 0:00:08 Bin 6 ray tracing: 44%|█████████████▏ | ETA: 0:00:07 Bin 6 ray tracing: 52%|███████████████▋ | ETA: 0:00:06 Bin 6 ray tracing: 60%|█████████████████▉ | ETA: 0:00:05 Bin 6 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:03 Bin 6 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:02 Bin 6 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 13%|███▉ | ETA: 0:00:07 Bin 7 ray tracing: 26%|███████▊ | ETA: 0:00:06 Bin 7 ray tracing: 39%|███████████▋ | ETA: 0:00:05 Bin 7 ray tracing: 51%|███████████████▍ | ETA: 0:00:04 Bin 7 ray tracing: 64%|███████████████████▏ | ETA: 0:00:03 Bin 7 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:02 Bin 7 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:08 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 13%|███▊ | ETA: 0:00:07 Bin 8 ray tracing: 26%|███████▉ | ETA: 0:00:06 Bin 8 ray tracing: 40%|████████████▏ | ETA: 0:00:04 Bin 8 ray tracing: 55%|████████████████▍ | ETA: 0:00:03 Bin 8 ray tracing: 69%|████████████████████▋ | ETA: 0:00:02 Bin 8 ray tracing: 82%|████████████████████████▊ | ETA: 0:00:01 Bin 8 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 14%|████▏ | ETA: 0:00:06 Bin 9 ray tracing: 27%|████████▎ | ETA: 0:00:05 Bin 9 ray tracing: 41%|████████████▍ | ETA: 0:00:04 Bin 9 ray tracing: 55%|████████████████▍ | ETA: 0:00:03 Bin 9 ray tracing: 68%|████████████████████▌ | ETA: 0:00:02 Bin 9 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:01 Bin 9 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 14%|████▏ | ETA: 0:00:06 Bin 10 ray tracing: 28%|████████▏ | ETA: 0:00:05 Bin 10 ray tracing: 42%|████████████▎ | ETA: 0:00:04 Bin 10 ray tracing: 56%|████████████████▎ | ETA: 0:00:03 Bin 10 ray tracing: 70%|████████████████████▍ | ETA: 0:00:02 Bin 10 ray tracing: 84%|████████████████████████▌ | ETA: 0:00:01 Bin 10 ray tracing: 98%|████████████████████████████▌| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 33%|███████████ | ETA: 0:00:02 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 33%|███████████ | ETA: 0:00:02 Bin 2 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 3 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 33%|███████████ | ETA: 0:00:02 Bin 4 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 5 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 33%|███████████ | ETA: 0:00:02 Bin 6 progress: 67%|██████████████████████ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 29%|█████████▌ | ETA: 0:00:02 Bin 7 progress: 62%|████████████████████▌ | ETA: 0:00:01 Bin 7 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 8 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 33%|███████████ | ETA: 0:00:02 Bin 9 progress: 64%|█████████████████████▎ | ETA: 0:00:01 Bin 9 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 33%|██████████▋ | ETA: 0:00:02 Bin 10 progress: 69%|██████████████████████ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:02 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017189314738389055 Iteration 10: d = 1.60628045260204e-5 Iteration 20: d = 1.6827626325488486e-7 Iteration 30: d = 2.112515549420471e-9 Iteration 40: d = 2.785717447377267e-11 Iteration 50: d = 3.734352529223034e-13 Iteration 60: d = 5.066861697761289e-15 Converged after 62 iterations. d = 2.0854952795270334e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013083830600902186 Iteration 10: d = 1.3183681476160513e-5 Iteration 20: d = 1.6754371788431887e-7 Iteration 30: d = 2.340160452563547e-9 Iteration 40: d = 3.316020868994618e-11 Iteration 50: d = 4.711613907385957e-13 Iteration 60: d = 6.670857256400412e-15 Converged after 63 iterations. d = 1.8935354022006163e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010608693878061328 Iteration 10: d = 8.309793942488072e-6 Iteration 20: d = 7.206695498827593e-8 Iteration 30: d = 7.950824971624874e-10 Iteration 40: d = 1.0036363451028437e-11 Iteration 50: d = 1.3470750112473169e-13 Converged after 60 iterations. d = 1.814353374522254e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013771045044030914 Iteration 10: d = 1.1237502585716557e-5 Iteration 20: d = 1.2496064529737163e-7 Iteration 30: d = 1.6404601678846366e-9 Iteration 40: d = 2.2013229602838932e-11 Iteration 50: d = 2.974090492471751e-13 Iteration 60: d = 4.04117113856365e-15 Converged after 62 iterations. d = 1.6701640076299824e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001539013370894125 Iteration 10: d = 1.4830463971645365e-5 Iteration 20: d = 1.667680394360917e-7 Iteration 30: d = 2.1724414350813713e-9 Iteration 40: d = 2.9100190199667252e-11 Iteration 50: d = 3.9251702414404556e-13 Iteration 60: d = 5.309529116446511e-15 Converged after 62 iterations. d = 2.2116511048580778e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014896985035410936 Iteration 10: d = 2.034006461068682e-5 Iteration 20: d = 2.502391387652661e-7 Iteration 30: d = 3.252438191176602e-9 Iteration 40: d = 4.279400109201196e-11 Iteration 50: d = 5.655492677767138e-13 Iteration 60: d = 7.488975854879538e-15 Converged after 63 iterations. d = 2.069014316662873e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013772913383827846 Iteration 10: d = 1.4447499706191598e-5 Iteration 20: d = 1.7054904455697864e-7 Iteration 30: d = 2.2336177278137484e-9 Iteration 40: d = 2.982016038937304e-11 Iteration 50: d = 4.004810086076262e-13 Iteration 60: d = 5.4008240237245414e-15 Converged after 63 iterations. d = 1.4904360477541068e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0009651051694247092 Iteration 10: d = 7.668350927985303e-6 Iteration 20: d = 7.94595871073004e-8 Iteration 30: d = 1.0262479145160522e-9 Iteration 40: d = 1.4036639770424949e-11 Iteration 50: d = 1.9622572612277201e-13 Iteration 60: d = 2.841409760015573e-15 Converged after 61 iterations. d = 1.8071888435079e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012924227347612743 Iteration 10: d = 1.4006788107014092e-5 Iteration 20: d = 1.7484076055631443e-7 Iteration 30: d = 2.3752518919554e-9 Iteration 40: d = 3.261023265684523e-11 Iteration 50: d = 4.492162820001268e-13 Iteration 60: d = 6.174791708245665e-15 Converged after 63 iterations. d = 1.7296642992777176e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001652863728734469 Iteration 10: d = 1.6160659554365284e-5 Iteration 20: d = 1.4744400082432384e-7 Iteration 30: d = 1.7142334311291563e-9 Iteration 40: d = 2.2343143413692973e-11 Iteration 50: d = 3.0520591897312297e-13 Iteration 60: d = 4.2357975228878395e-15 Converged after 62 iterations. d = 1.821387813914931e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8654.206347019122 Iteration 2: convergence error = 4804.339025407216 Iteration 3: convergence error = 1096.6154065114115 Iteration 4: convergence error = 323.66553325572227 Iteration 5: convergence error = 96.70389776818774 Iteration 6: convergence error = 29.03680614826476 Iteration 7: convergence error = 8.754718666739336 Iteration 8: convergence error = 2.640942349049965 Iteration 9: convergence error = 0.7947955942438512 Iteration 10: convergence error = 0.238871237343119 Iteration 11: convergence error = 0.07173597418136524 Iteration 12: convergence error = 0.021533741460643796 Iteration 13: convergence error = 0.006462393289211832 Iteration 14: convergence error = 0.0019391222112972173 Iteration 15: convergence error = 0.0005818101958539046 Iteration 16: convergence error = 0.00017455685679124144 Iteration 17: convergence error = 5.2369762443049694e-5 Iteration 18: convergence error = 1.5711488686065422e-5 Iteration 19: convergence error = 4.713572934633703e-6 Iteration 20: convergence error = 1.414106009178795e-6 Iteration 21: convergence error = 4.242365321260877e-7 Iteration 22: convergence error = 1.271444034500746e-7 Iteration 23: convergence error = 3.7188556234468706e-8 Iteration 24: convergence error = 1.0781604942167178e-8 Iteration 25: convergence error = 3.1175204640021548e-9 Iteration 26: convergence error = 9.010818757815287e-10 Iteration 27: convergence error = 2.5625013222452253e-10 Iteration 28: convergence error = 7.435119186993688e-11 Iteration 29: convergence error = 2.1373125491663814e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.2756408059971 K, F = -7456.276371255429, relative_change = 0.03272435919400292 Iter 2: T = 936.6244347502387 K, F = -6320.5575498652415, relative_change = 0.031688181489009475 Iter 3: T = 908.0151438872598 K, F = -5356.323126202518, relative_change = 0.030545104100992045 Iter 5: T = 856.7847960996737 K, F = -3843.0155767681445, relative_change = 0.02794321162025703 Iter 10: T = 761.4481615494175 K, F = -1664.1862391225704, relative_change = 0.0200345567722161 Iter 15: T = 705.5728177576499 K, F = -712.5775026487769, relative_change = 0.012020706173798468 Iter 20: T = 676.8116892672227 K, F = -302.02980976246994, relative_change = 0.00616171144356092 Iter 25: T = 663.392115467127 K, F = -127.15257876005643, relative_change = 0.0028480152083849813 Iter 30: T = 657.4826103885222 K, F = -53.33679995187315, relative_change = 0.001246158686195025 Iter 35: T = 654.954105359464 K, F = -22.335177567763658, relative_change = 0.0005314600610660671 Iter 40: T = 653.8862526972675 K, F = -9.346010780642974, relative_change = 0.00022411743583186097 Iter 45: T = 653.4378124704963 K, F = -3.909524404167195, relative_change = 9.405692790844205e-5 Iter 50: T = 653.2499431743018 K, F = -1.6351696140295429, relative_change = 3.9393453295253086e-5 Iter 55: T = 653.1713167536876 K, F = -0.6838754475066964, relative_change = 1.6484930166648143e-5 Iter 60: T = 653.1384242216526 K, F = -0.28600977676172257, relative_change = 6.895965832235266e-6 Iter 65: T = 653.1246664177824 K, F = -0.11961356104998144, relative_change = 2.884285161558771e-6 Iter 70: T = 653.1189124330282 K, F = -0.050023969566988236, relative_change = 1.2062967096179444e-6 Iter 75: T = 653.1165059942097 K, F = -0.020920647690578997, relative_change = 5.0449717200148e-7 Iter 80: T = 653.1154995833684 K, F = -0.008749269291771722, relative_change = 2.1098840069890563e-7 Iter 85: T = 653.1150786886935 K, F = -0.0036590497069354244, relative_change = 8.823815894903245e-8 Iter 90: T = 653.1149026652269 K, F = -0.001530258425190556, relative_change = 3.690230257359408e-8 Iter 95: T = 653.1148290500606 K, F = -0.0006399723723842787, relative_change = 1.5432992499252053e-8 Iter 100: T = 653.1147982633103 K, F = -0.0002676440934216151, relative_change = 6.454263326812053e-9 Iter 105: T = 653.114785387922 K, F = -0.0001119319568033128, relative_change = 2.6992502710030962e-9 Iter 110: T = 653.1147800032805 K, F = -4.681128062700157e-5, relative_change = 1.1288587324551623e-9 Iter 115: T = 653.1147777513593 K, F = -1.9577036150464355e-5, relative_change = 4.721022001709867e-10 Iter 120: T = 653.1147768095789 K, F = -8.187351342725524e-6, relative_change = 1.9743880428592087e-10 Iter 125: T = 653.114776415715 K, F = -3.4240475466629228e-6, relative_change = 8.257125254224635e-11 Iter 130: T = 653.1147762509966 K, F = -1.431978296606573e-6, relative_change = 3.453230134649606e-11 Iter 135: T = 653.1147761821093 K, F = -5.988703969395104e-7, relative_change = 1.4441820154679166e-11 Iter 140: T = 653.1147761532998 K, F = -2.5045476342855366e-7, relative_change = 6.039741936756401e-12 Iter 145: T = 653.1147761412512 K, F = -1.047430197576027e-7, relative_change = 2.525888509397531e-12 Iter 150: T = 653.1147761362124 K, F = -4.3804996130436535e-8, relative_change = 1.0563619097501336e-12 Iter 155: T = 653.1147761341051 K, F = -1.831907692206869e-8, relative_change = 4.417663917816789e-13 Converged in 159 iterations to T = 653.1147761333444 K Iter 1: T = 970.4300491521258 K, F = -6737.5414289730315, relative_change = 0.02956995084787425 Iter 2: T = 943.0260702475254 K, F = -5706.407574888116, relative_change = 0.02823900489122691 Iter 3: T = 917.7427820416507 K, F = -4831.328433948725, relative_change = 0.026810805134197688 Iter 5: T = 873.3195937514402 K, F = -3459.0354333879354, relative_change = 0.023708689472927993 Iter 10: T = 794.5617054658796 K, F = -1488.6273978564734, relative_change = 0.015403315437522611 Iter 15: T = 751.7220627499299 K, F = -633.5879199450748, relative_change = 0.00841749834704279 Iter 20: T = 730.9527202912445 K, F = -267.4174834747481, relative_change = 0.004044581861192468 Iter 25: T = 721.6113160103282 K, F = -112.31889422822063, relative_change = 0.0018045919357978356 Iter 30: T = 717.5738138530265 K, F = -47.062123215681254, relative_change = 0.0007764816556985483 Iter 35: T = 715.8610038868728 K, F = -19.697890708284135, relative_change = 0.00032870659402230417 Iter 40: T = 715.1403297528145 K, F = -8.240711329220128, relative_change = 0.0001381763955547249 Iter 45: T = 714.8381649295634 K, F = -3.4468589322309193, relative_change = 5.791167567437774e-5 Iter 50: T = 714.7116606490592 K, F = -1.4416043095742126, relative_change = 2.4241226120421026e-5 Iter 55: T = 714.6587313311285 K, F = -0.60291132099849, relative_change = 1.0141800730889609e-5 Iter 60: T = 714.636591506793 K, F = -0.2521473709338917, relative_change = 4.242092508443365e-6 Iter 65: T = 714.6273316415117 K, F = -0.10545150641985757, relative_change = 1.7742110157482513e-6 Iter 70: T = 714.6234589282101 K, F = -0.04410116060044311, relative_change = 7.420167474077785e-7 Iter 75: T = 714.6218392910342 K, F = -0.018443646252292334, relative_change = 3.103238530070724e-7 Iter 80: T = 714.621161935538 K, F = -0.007713355611245087, relative_change = 1.297817688705263e-7 Iter 85: T = 714.6208786567003 K, F = -0.0032258178662304404, relative_change = 5.4276395381103085e-8 Iter 90: T = 714.6207601859885 K, F = -0.0013490756331396847, relative_change = 2.2699055958874157e-8 Iter 95: T = 714.6207106401013 K, F = -0.0005641995543426148, relative_change = 9.493019641667467e-9 Iter 100: T = 714.6206899194159 K, F = -0.00023595499488038296, relative_change = 3.970094788150816e-9 Iter 105: T = 714.6206812537772 K, F = -9.867919950778958e-5, relative_change = 1.6603411954969769e-9 Iter 110: T = 714.6206776297033 K, F = -4.126881819255246e-5, relative_change = 6.94374507807012e-10 Iter 115: T = 714.6206761140724 K, F = -1.7259112346512673e-5, relative_change = 2.903957100466182e-10 Iter 120: T = 714.6206754802174 K, F = -7.217966822015143e-6, relative_change = 1.2144695318860418e-10 Iter 125: T = 714.6206752151317 K, F = -3.0186389073927344e-6, relative_change = 5.0790549162505545e-11 Iter 130: T = 714.6206751042697 K, F = -1.262430289639127e-6, relative_change = 2.1241204961773076e-11 Iter 135: T = 714.6206750579059 K, F = -5.279634706090164e-7, relative_change = 8.883326380108541e-12 Iter 140: T = 714.6206750385161 K, F = -2.208023749394883e-7, relative_change = 3.7151425648471086e-12 Iter 145: T = 714.620675030407 K, F = -9.234228381949094e-8, relative_change = 1.553718565144673e-12 Iter 150: T = 714.6206750270156 K, F = -3.862016695332926e-8, relative_change = 6.498092520976273e-13 Iter 155: T = 714.6206750255973 K, F = -1.614994449283813e-8, relative_change = 2.717332466503966e-13 Converged in 157 iterations to T = 714.6206750252971 K Iter 1: T = 974.4138409095084 K, F = -5829.830687489124, relative_change = 0.02558615909049164 Iter 2: T = 951.0169232462628 K, F = -4932.245253833151, relative_change = 0.024011273938193675 Iter 3: T = 929.7345198928841 K, F = -4171.052880020919, relative_change = 0.022378574800469318 Iter 5: T = 893.1598776242076 K, F = -2978.910858768038, relative_change = 0.019024146054618645 Iter 10: T = 831.5499473510821 K, F = -1273.807943700446, relative_change = 0.011177349123954928 Iter 15: T = 800.274391977334 K, F = -539.3676002966959, relative_change = 0.005641641709903799 Iter 20: T = 785.8115043688034 K, F = -226.93908733199208, relative_change = 0.002584872375254646 Iter 25: T = 779.4723292738407 K, F = -95.16752426663102, relative_change = 0.0011262261242633602 Iter 30: T = 776.7658839567935 K, F = -39.84707383949429, relative_change = 0.0004794011092431079 Iter 35: T = 775.6239735325452 K, F = -16.672844496000565, relative_change = 0.00020199917790210837 Iter 40: T = 775.1446284300787 K, F = -6.974247486748696, relative_change = 8.474512483639936e-5 Iter 45: T = 774.9438463748778 K, F = -2.916970464878527, relative_change = 3.548827817465154e-5 Iter 50: T = 774.8598218116757 K, F = -1.219956862058626, relative_change = 1.4849832641759387e-5 Iter 55: T = 774.824672085768 K, F = -0.5102083992958766, relative_change = 6.21181461539797e-6 Iter 60: T = 774.8099703619732 K, F = -0.213376622504325, relative_change = 2.5981065204354686e-6 Iter 65: T = 774.8038216301009 K, F = -0.089236892585002, relative_change = 1.0866031621389898e-6 Iter 70: T = 774.8012501053297 K, F = -0.037319976304973856, relative_change = 4.5443811302577126e-7 Iter 75: T = 774.8001746539225 K, F = -0.015607667147931936, relative_change = 1.9005279166232042e-7 Iter 80: T = 774.7997248857198 K, F = -0.006527314082273472, relative_change = 7.948258252265791e-8 Iter 85: T = 774.7995367870096 K, F = -0.0027298009272980206, relative_change = 3.3240606401667265e-8 Iter 90: T = 774.7994581218343 K, F = -0.0011416353867889084, relative_change = 1.3901625760169612e-8 Iter 95: T = 774.79942522311 K, F = -0.0004774455589601212, relative_change = 5.813827164221142e-9 Iter 100: T = 774.7994114644692 K, F = -0.00019967343608662258, relative_change = 2.4314121747649193e-9 Iter 105: T = 774.7994057104411 K, F = -8.350581506177956e-5, relative_change = 1.0168456383752782e-9 Iter 110: T = 774.7994033040377 K, F = -3.4923129068831216e-5, relative_change = 4.2525699522739277e-10 Iter 115: T = 774.7994022976511 K, F = -1.4605268898515433e-5, relative_change = 1.7784754603289581e-10 Iter 120: T = 774.7994018767682 K, F = -6.108098393631245e-6, relative_change = 7.437797418127706e-11 Iter 125: T = 774.79940170075 K, F = -2.554479508476426e-6, relative_change = 3.110575483389008e-11 Iter 130: T = 774.799401627137 K, F = -1.068312733165655e-6, relative_change = 1.3008784712712748e-11 Iter 135: T = 774.7994015963511 K, F = -4.467799391560945e-7, relative_change = 5.440414462081338e-12 Iter 140: T = 774.7994015834762 K, F = -1.868479138078527e-7, relative_change = 2.2752366511586886e-12 Iter 145: T = 774.7994015780918 K, F = -7.814297664499037e-8, relative_change = 9.515426791547628e-13 Iter 150: T = 774.7994015758399 K, F = -3.267956938390881e-8, relative_change = 3.979372982794146e-13 Converged in 154 iterations to T = 774.7994015750271 K Iter 1: T = 970.3921597256034 K, F = -6746.174570848306, relative_change = 0.029607840274396634 Iter 2: T = 942.9495698777822 K, F = -5713.778419192707, relative_change = 0.028279896506563974 Iter 3: T = 917.627180104205 K, F = -4837.622934149543, relative_change = 0.026854447557422778 Iter 5: T = 873.125496071228 K, F = -3463.627086082997, relative_change = 0.023756611337512043 Iter 10: T = 794.1861521312578 K, F = -1490.7048072336815, relative_change = 0.015451010260633818 Iter 15: T = 751.2146156373184 K, F = -634.5101109565506, relative_change = 0.008451391600468478 Iter 20: T = 730.3694443341503 K, F = -267.8171163533202, relative_change = 0.004063274018613052 Iter 25: T = 720.9908613364128 K, F = -112.48903195662201, relative_change = 0.0018134891162928583 Iter 30: T = 716.9366399556777 K, F = -47.13385613498433, relative_change = 0.0007804207055813968 Iter 35: T = 715.2166134290279 K, F = -19.727995991971184, relative_change = 0.00033039458717404926 Iter 40: T = 714.4928804098687 K, F = -8.253320548053441, relative_change = 0.00013888963528974055 Iter 45: T = 714.1894290611475 K, F = -3.452135576816785, relative_change = 5.821125253478515e-5 Iter 50: T = 714.0623854609413 K, F = -1.4438116476709417, relative_change = 2.4366739700896835e-5 Iter 55: T = 714.0092303686373 K, F = -0.6038345581365605, relative_change = 1.0194331783913778e-5 Iter 60: T = 713.9869960834602 K, F = -0.2525334975792384, relative_change = 4.264068584638609e-6 Iter 65: T = 713.9776967066489 K, F = -0.10561299231501697, relative_change = 1.7834028914021722e-6 Iter 70: T = 713.9738074679505 K, F = -0.044168696475965996, relative_change = 7.458611126606987e-7 Iter 75: T = 713.9721809194459 K, F = -0.018471890655265333, relative_change = 3.119316497010339e-7 Iter 80: T = 713.9715006735127 K, F = -0.007725167773283137, relative_change = 1.304541751460919e-7 Iter 85: T = 713.9712161858533 K, F = -0.003230757858300959, relative_change = 5.455760488821802e-8 Iter 90: T = 713.9710972095967 K, F = -0.0013511415956185546, relative_change = 2.2816661303675876e-8 Iter 95: T = 713.9710474522843 K, F = -0.0005650635651239799, relative_change = 9.542203644862146e-9 Iter 100: T = 713.9710266431783 K, F = -0.00023631633316301137, relative_change = 3.990664108857032e-9 Iter 105: T = 713.9710179405611 K, F = -9.883031231661121e-5, relative_change = 1.6689434785929803e-9 Iter 110: T = 713.9710143010225 K, F = -4.133201561284938e-5, relative_change = 6.979720894473264e-10 Iter 115: T = 713.971012778924 K, F = -1.7285542202816195e-5, relative_change = 2.919002606598906e-10 Iter 120: T = 713.9710121423643 K, F = -7.229020638988004e-6, relative_change = 1.2207618326545506e-10 Iter 125: T = 713.9710118761474 K, F = -3.0232621700543305e-6, relative_change = 5.1053707800443293e-11 Iter 130: T = 713.9710117648124 K, F = -1.2643650830757025e-6, relative_change = 2.1351282793709892e-11 Iter 135: T = 713.9710117182507 K, F = -5.287739538450964e-7, relative_change = 8.929384698394346e-12 Iter 140: T = 713.9710116987779 K, F = -2.2113783193500325e-7, relative_change = 3.734345760818991e-12 Iter 145: T = 713.9710116906343 K, F = -9.248333321387747e-8, relative_change = 1.5617623648129024e-12 Iter 150: T = 713.9710116872285 K, F = -3.867769449161784e-8, relative_change = 6.531486865467766e-13 Iter 155: T = 713.9710116858042 K, F = -1.617546885324117e-8, relative_change = 2.731544983417442e-13 Converged in 157 iterations to T = 713.9710116855027 K Iter 1: T = 969.3465866767348 K, F = -6984.409384629763, relative_change = 0.03065341332326528 Iter 2: T = 940.834755474204 K, F = -5917.237940681148, relative_change = 0.029413453964158884 Iter 3: T = 914.4253004242535 K, F = -5011.432146690942, relative_change = 0.028070237516512175 Iter 5: T = 867.7269851475792 K, F = -3590.529778841902, relative_change = 0.025106252864565984 Iter 10: T = 783.6219158996142 K, F = -1548.3170629512276, relative_change = 0.016836031797498634 Iter 15: T = 736.8016321716457 K, F = -660.1912650250515, relative_change = 0.00946313427555853 Iter 20: T = 713.7010378783274 K, F = -278.98222522522497, relative_change = 0.004631501184992924 Iter 25: T = 703.2039737097826 K, F = -117.25130222091852, relative_change = 0.0020865747563063182 Iter 30: T = 698.6439046733973 K, F = -49.1435314919605, relative_change = 0.0009018686975103273 Iter 35: T = 696.7049735564183 K, F = -20.57176980277622, relative_change = 0.00038254122849784935 Iter 40: T = 695.8883495268217 K, F = -8.606786149720785, relative_change = 0.00016094209157004827 Iter 45: T = 695.545810915704 K, F = -3.60006304788277, relative_change = 6.747707581478375e-5 Iter 50: T = 695.4023784079802 K, F = -1.5056949248345342, relative_change = 2.8249416459009226e-5 Iter 55: T = 695.3423618833361 K, F = -0.6297180789419828, relative_change = 1.1819445488528423e-5 Iter 60: T = 695.3172567699822 K, F = -0.26335885429056055, relative_change = 4.943943708192202e-6 Iter 65: T = 695.3067565518775 K, F = -0.11014038360200551, relative_change = 2.0677755836035893e-6 Iter 70: T = 695.3023650673557 K, F = -0.046062122693562024, relative_change = 8.647963050835627e-7 Iter 75: T = 695.3005284667137 K, F = -0.01926374710544898, relative_change = 3.6167301580976785e-7 Iter 80: T = 695.2997603732548 K, F = -0.008056332122120646, relative_change = 1.5125682683288765e-7 Iter 85: T = 695.299439146499 K, F = -0.003369254834939883, relative_change = 6.325756043519077e-8 Iter 90: T = 695.2993048054763 K, F = -0.0014090627017367963, relative_change = 2.645509329919393e-8 Iter 95: T = 695.2992486224286 K, F = -0.0005892868652062067, relative_change = 1.1063840507169716e-8 Iter 100: T = 695.2992251260024 K, F = -0.00024644680640628636, relative_change = 4.627031008616865e-9 Iter 105: T = 695.2992152995156 K, F = -0.000103066998164425, relative_change = 1.935079766360065e-9 Iter 110: T = 695.2992111899613 K, F = -4.310384968675418e-5, relative_change = 8.092734940739687e-10 Iter 115: T = 695.2992094712966 K, F = -1.802654603533238e-5, relative_change = 3.384478688980704e-10 Iter 120: T = 695.2992087525305 K, F = -7.5389169743589335e-6, relative_change = 1.415429440186896e-10 Iter 125: T = 695.299208451934 K, F = -3.152865547195738e-6, relative_change = 5.919495785423508e-11 Iter 130: T = 695.2992083262209 K, F = -1.3185671017268419e-6, relative_change = 2.475605854848887e-11 Iter 135: T = 695.2992082736461 K, F = -5.514399911143997e-7, relative_change = 1.0353269615966044e-11 Iter 140: T = 695.2992082516587 K, F = -2.3061860732198625e-7, relative_change = 4.329857570898001e-12 Iter 145: T = 695.2992082424634 K, F = -9.644814302767202e-8, relative_change = 1.8108110493038294e-12 Iter 150: T = 695.2992082386177 K, F = -4.033560363492228e-8, relative_change = 7.572997722042648e-13 Iter 155: T = 695.2992082370095 K, F = -1.6869058816482152e-8, relative_change = 3.167160832595678e-13 Converged in 158 iterations to T = 695.2992082365386 K Iter 1: T = 963.6109533568264 K, F = -8291.278892566703, relative_change = 0.03638904664317367 Iter 2: T = 929.1027943525505 K, F = -7035.334671329185, relative_change = 0.03581129799745793 Iter 3: T = 896.4421838723966 K, F = -5968.708776891615, relative_change = 0.03515284926348065 Iter 5: T = 836.5452973200379 K, F = -4293.681395928738, relative_change = 0.03356477972735939 Iter 10: T = 717.1970299449669 K, F = -1876.098461311469, relative_change = 0.027797825049201832 Iter 15: T = 637.9372501112402 K, F = -812.2481269225867, relative_change = 0.019859835210698833 Iter 20: T = 591.6152529044202 K, F = -347.7095748953452, relative_change = 0.011872159766024279 Iter 25: T = 567.8300208454157 K, F = -147.35222443490292, relative_change = 0.006068893665487391 Iter 30: T = 556.7498644935491 K, F = -62.02788749961686, relative_change = 0.00280070208746867 Iter 35: T = 551.8746732949176 K, F = -26.01756680325649, relative_change = 0.0012245173693158802 Iter 40: T = 549.7895430866122 K, F = -10.894798630141436, relative_change = 0.0005220512079114543 Iter 45: T = 548.9090914204328 K, F = -4.558813179201012, relative_change = 0.0002201171502640201 Iter 50: T = 548.539376783636 K, F = -1.9069865596731645, relative_change = 9.237231423492889e-5 Iter 55: T = 548.3844935727285 K, F = -0.7976011090088686, relative_change = 3.868687514139871e-5 Iter 60: T = 548.3196732253306 K, F = -0.3335797149900212, relative_change = 1.6189070591612878e-5 Iter 65: T = 548.2925564668168 K, F = -0.13950936645451917, relative_change = 6.7721707490668985e-6 Iter 70: T = 548.2812144944614 K, F = -0.058344893516380836, relative_change = 2.8325015411499227e-6 Iter 75: T = 548.2764708977381 K, F = -0.024400603030576118, relative_change = 1.1846382500970908e-6 Iter 80: T = 548.274487025483 K, F = -0.010204636145136448, relative_change = 4.954390078397598e-7 Iter 85: T = 548.273657338813 K, F = -0.004267702899601183, relative_change = 2.0720010917764155e-7 Iter 90: T = 548.2733103526098 K, F = -0.0017848047034883519, relative_change = 8.665383986898611e-8 Iter 95: T = 548.2731652386033 K, F = -0.0007464267089278831, relative_change = 3.6239719609553535e-8 Iter 100: T = 548.2731045501521 K, F = -0.00031216457586785706, relative_change = 1.5155892102705993e-8 Iter 105: T = 548.2730791695097 K, F = -0.00013055095543376694, relative_change = 6.338376559944403e-9 Iter 110: T = 548.2730685550208 K, F = -5.45979682070874e-5, relative_change = 2.6507849954142668e-9 Iter 115: T = 548.2730641159145 K, F = -2.2833522180798482e-5, relative_change = 1.1085899770635106e-9 Iter 120: T = 548.2730622594273 K, F = -9.54925161811282e-6, relative_change = 4.636255729243291e-10 Iter 125: T = 548.2730614830223 K, F = -3.993611735725322e-6, relative_change = 1.93893785140582e-10 Iter 130: T = 548.2730611583204 K, F = -1.6701761108295354e-6, relative_change = 8.108869622859314e-11 Iter 135: T = 548.2730610225262 K, F = -6.984882718885643e-7, relative_change = 3.3912294037699934e-11 Iter 140: T = 548.2730609657353 K, F = -2.921162780555875e-7, relative_change = 1.4182533219520122e-11 Iter 145: T = 548.2730609419848 K, F = -1.2216675315812608e-7, relative_change = 5.931316278833528e-12 Iter 150: T = 548.273060932052 K, F = -5.1091405051106875e-8, relative_change = 2.480538073415173e-12 Iter 155: T = 548.273060927898 K, F = -2.136705784527848e-8, relative_change = 1.0373917188413904e-12 Iter 160: T = 548.2730609261607 K, F = -8.935651663044553e-9, relative_change = 4.338346956776698e-13 Converged in 164 iterations to T = 548.2730609255336 K Iter 1: T = 966.9123398920829 K, F = -7539.054830079168, relative_change = 0.03308766010791713 Iter 2: T = 935.8828544567046 K, F = -6391.356206503229, relative_change = 0.03209131185443493 Iter 3: T = 906.8811154430637 K, F = -5416.913383756731, relative_change = 0.03098864230232847 Iter 5: T = 854.8297267508149 K, F = -3887.467585055999, relative_change = 0.02846471829888075 Iter 10: T = 757.3690975184401 K, F = -1684.7758998073496, relative_change = 0.020669233652056845 Iter 15: T = 699.6639821450088 K, F = -722.0108324283832, relative_change = 0.012568548295907601 Iter 20: T = 669.6926851192709 K, F = -306.23012110698807, relative_change = 0.00650818394710793 Iter 25: T = 655.6252237166528 K, F = -128.97079647108586, relative_change = 0.0030258930924339455 Iter 30: T = 649.4108069083752 K, F = -54.109820572821064, relative_change = 0.0013278090065236836 Iter 35: T = 646.7478959539953 K, F = -22.66083494172543, relative_change = 0.0005670151961368303 Iter 40: T = 645.6225466439603 K, F = -9.48263230135509, relative_change = 0.00023924452322507717 Iter 45: T = 645.1498291991855 K, F = -3.9667369539979247, relative_change = 0.00010042915549787411 Iter 50: T = 644.9517659177836 K, F = -1.6591099163888727, relative_change = 4.206648697206813e-5 Iter 55: T = 644.8688690504625 K, F = -0.6938899048403064, relative_change = 1.760424480841394e-5 Iter 60: T = 644.834189304623 K, F = -0.2901983515550979, relative_change = 7.364325296283498e-6 Iter 65: T = 644.819683845678 K, F = -0.12136534463699794, relative_change = 3.0802022084911073e-6 Iter 70: T = 644.8136171439899 K, F = -0.050756598906318395, relative_change = 1.2882391729318042e-6 Iter 75: T = 644.8110799164537 K, F = -0.021227044220873514, relative_change = 5.387678207026749e-7 Iter 80: T = 644.8100188070259 K, F = -0.008877408362227168, relative_change = 2.2532102820783508e-7 Iter 85: T = 644.8095750365421 K, F = -0.0037126390627103545, relative_change = 9.423227566617785e-8 Iter 90: T = 644.8093894461027 K, F = -0.0015526701457488357, relative_change = 3.940912090195819e-8 Iter 95: T = 644.809311829908 K, F = -0.0006493452230441621, relative_change = 1.6481375092775308e-8 Iter 100: T = 644.8092793698786 K, F = -0.0002715639312423357, relative_change = 6.8927096501966284e-9 Iter 105: T = 644.809265794705 K, F = -0.00011357128086719737, relative_change = 2.882613823204496e-9 Iter 110: T = 644.8092601174048 K, F = -4.749686597105285e-5, relative_change = 1.2055435766942502e-9 Iter 115: T = 644.8092577430901 K, F = -1.9863756710758462e-5, relative_change = 5.041727331246463e-10 Iter 120: T = 644.8092567501234 K, F = -8.307260964290908e-6, relative_change = 2.1085107700624565e-10 Iter 125: T = 644.8092563348528 K, F = -3.474195188590823e-6, relative_change = 8.818042464769542e-11 Iter 130: T = 644.8092561611818 K, F = -1.4529510948269042e-6, relative_change = 3.687813658806871e-11 Iter 135: T = 644.8092560885503 K, F = -6.076414441613665e-7, relative_change = 1.5422875736255387e-11 Iter 140: T = 644.809256058175 K, F = -2.5412225068688343e-7, relative_change = 6.450014120497591e-12 Iter 145: T = 644.8092560454717 K, F = -1.0627696006570986e-7, relative_change = 2.6974729340655286e-12 Iter 150: T = 644.8092560401591 K, F = -4.444637929923445e-8, relative_change = 1.1281175628985803e-12 Iter 155: T = 644.8092560379372 K, F = -1.8587863637176127e-8, relative_change = 4.717886081345541e-13 Converged in 160 iterations to T = 644.809256037008 K Iter 1: T = 965.2405240415692 K, F = -7919.979661926145, relative_change = 0.03475947595843083 Iter 2: T = 932.458755836936 K, F = -6717.326886164756, relative_change = 0.03396227923313065 Iter 3: T = 901.6252884131553 K, F = -5696.070433296244, relative_change = 0.03306684315072561 Iter 5: T = 845.6899836374992 K, F = -4092.6546203624835, relative_change = 0.03096308333846014 Iter 10: T = 737.7729931224853 K, F = -1780.6542389127653, relative_change = 0.023937975060332163 Iter 15: T = 670.4337306394807 K, F = -766.5692944411517, relative_change = 0.01563211783018885 Iter 20: T = 633.6696207934976 K, F = -326.35992408550004, relative_change = 0.00858055100819903 Iter 25: T = 615.7969850751905 K, F = -137.77193252554738, relative_change = 0.004134681803573361 Iter 30: T = 607.7457559089379 K, F = -57.87170021034557, relative_change = 0.001847523227782142 Iter 35: T = 604.2632011048452 K, F = -24.24960444376769, relative_change = 0.0007954979964613235 Iter 40: T = 602.7853012903865 K, F = -10.14989383724915, relative_change = 0.0003368573925528063 Iter 45: T = 602.1633738229798 K, F = -4.246294973797368, relative_change = 0.00014162072878663221 Iter 50: T = 601.9025950426626 K, F = -1.776112704783563, relative_change = 5.93584301674429e-5 Iter 55: T = 601.7934145248527 K, F = -0.7428373546971951, relative_change = 2.4847382116609213e-5 Iter 60: T = 601.7477329484925 K, F = -0.31067147154998587, relative_change = 1.039549623604847e-5 Iter 65: T = 601.7286246952744 K, F = -0.12992792247692528, relative_change = 4.348224927863012e-6 Iter 70: T = 601.7206327530455 K, F = -0.05433765423474407, relative_change = 1.8186027973660456e-6 Iter 75: T = 601.717290314966 K, F = -0.02272469884677969, relative_change = 7.605829590644249e-7 Iter 80: T = 601.7158924477851 K, F = -0.00950374795271064, relative_change = 3.18088646069478e-7 Iter 85: T = 601.7153078395976 K, F = -0.00397458220406488, relative_change = 1.3302912979903089e-7 Iter 90: T = 601.7150633488706 K, F = -0.0016622179734977482, relative_change = 5.5634486081074516e-8 Iter 95: T = 601.7149610998235 K, F = -0.0006951594475516076, relative_change = 2.3267026656227775e-8 Iter 100: T = 601.7149183380326 K, F = -0.0002907239906519421, relative_change = 9.730551965569372e-9 Iter 105: T = 601.7149004545377 K, F = -0.00012158424573549542, relative_change = 4.069433644179907e-9 Iter 110: T = 601.7148929754459 K, F = -5.084798368054644e-5, relative_change = 1.7018858530692333e-9 Iter 115: T = 601.7148898476004 K, F = -2.1265233585809895e-5, relative_change = 7.117489913650062e-10 Iter 120: T = 601.714888539498 K, F = -8.893374922769315e-6, relative_change = 2.976619406076162e-10 Iter 125: T = 601.7148879924339 K, F = -3.719315273542634e-6, relative_change = 1.244857679407964e-10 Iter 130: T = 601.7148877636453 K, F = -1.555462583791023e-6, relative_change = 5.206145227169432e-11 Iter 135: T = 601.7148876679631 K, F = -6.505139002466187e-7, relative_change = 2.1772750272694675e-11 Iter 140: T = 601.7148876279476 K, F = -2.720528916033693e-7, relative_change = 9.105631208609735e-12 Iter 145: T = 601.7148876112127 K, F = -1.1377538172707702e-7, relative_change = 3.80807077865261e-12 Iter 150: T = 601.7148876042139 K, F = -4.758206456623171e-8, relative_change = 1.5925753614021098e-12 Iter 155: T = 601.7148876012869 K, F = -1.9898723113698225e-8, relative_change = 6.660117933903707e-13 Iter 160: T = 601.714887600063 K, F = -8.322736777532924e-9, relative_change = 2.7856264020069536e-13 Converged in 162 iterations to T = 601.714887599804 K Iter 1: T = 980.0264108810437 K, F = -4551.001280542446, relative_change = 0.01997358911895628 Iter 2: T = 962.1015139808636 K, F = -3844.364976729123, relative_change = 0.01829021820347234 Iter 3: T = 946.1052333111604 K, F = -3245.9348151488994, relative_change = 0.016626395902357254 Iter 5: T = 919.3778804355981 K, F = -2310.8552998333603, relative_change = 0.013446666025876748 Iter 10: T = 876.8973056175961 K, F = -981.1626801542463, relative_change = 0.007078334189505569 Iter 15: T = 856.7633824025272 K, F = -413.48804232397976, relative_change = 0.003323197358029017 Iter 20: T = 847.8220512144426 K, F = -173.534880674818, relative_change = 0.0014653360531186104 Iter 25: T = 843.981073863524 K, F = -72.68581357144274, relative_change = 0.0006271112727788334 Iter 30: T = 842.3560819822351 K, F = -30.417951946488483, relative_change = 0.0002648512197161663 Iter 35: T = 841.6731609228679 K, F = -12.724656082128229, relative_change = 0.00011122277534901104 Iter 40: T = 841.3869676254503 K, F = -5.322218357705015, relative_change = 4.659543211455609e-5 Iter 45: T = 841.2671750275682 K, F = -2.2259230373564316, relative_change = 1.9500923565171416e-5 Iter 50: T = 841.2170582648203 K, F = -0.9309264559820674, relative_change = 8.157997909948582e-6 Iter 55: T = 841.1960956740201 K, F = -0.3893278606754982, relative_change = 3.4122058883969246e-6 Iter 60: T = 841.1873283149984 K, F = -0.16282213795382838, relative_change = 1.4271011276316073e-6 Iter 65: T = 841.1836616039849 K, F = -0.06809426352029502, relative_change = 5.96844006277476e-7 Iter 70: T = 841.1821281247243 K, F = -0.02847785186915197, relative_change = 2.496096124945472e-7 Iter 75: T = 841.1814868024237 K, F = -0.011909780835144712, relative_change = 1.0439012690320626e-7 Iter 80: T = 841.181218593261 K, F = -0.004980813117796634, relative_change = 4.3657268760427155e-8 Iter 85: T = 841.1811064248955 K, F = -0.0020830356245293835, relative_change = 1.825800359994235e-8 Iter 90: T = 841.1810595147294 K, F = -0.0008711503901903672, relative_change = 7.635717313791733e-9 Iter 95: T = 841.181039896335 K, F = -0.000364325496831297, relative_change = 3.1933485242630026e-9 Iter 100: T = 841.1810316916878 K, F = -0.00015236527721596005, relative_change = 1.335496581968974e-9 Iter 105: T = 841.1810282604063 K, F = -6.372097904794316e-5, relative_change = 5.585206349240376e-10 Iter 110: T = 841.1810268254034 K, F = -2.6648874128953892e-5, relative_change = 2.3357999895466403e-10 Iter 115: T = 841.1810262252679 K, F = -1.1144877973823242e-5, relative_change = 9.768595032275814e-11 Iter 120: T = 841.1810259742841 K, F = -4.660920543742009e-6, relative_change = 4.085342651669569e-11 Iter 125: T = 841.1810258693197 K, F = -1.949252558475223e-6, relative_change = 1.7085390205671106e-11 Iter 130: T = 841.1810258254224 K, F = -8.151997537009237e-7, relative_change = 7.145305943270356e-12 Iter 135: T = 841.181025807064 K, F = -3.409258666486892e-7, relative_change = 2.9882487210936093e-12 Iter 140: T = 841.1810257993862 K, F = -1.4257921110427674e-7, relative_change = 1.2497207954433297e-12 Iter 145: T = 841.1810257961753 K, F = -5.962563420780498e-8, relative_change = 5.226245427732644e-13 Converged in 150 iterations to T = 841.1810257948325 K Iter 1: T = 976.3172415968644 K, F = -5396.139030273583, relative_change = 0.023682758403135655 Iter 2: T = 954.7985052913695 K, F = -4562.942101909791, relative_change = 0.022040721385088845 Iter 3: T = 935.3531558010952 K, F = -3856.652217091934, relative_change = 0.0203659194924485 Iter 5: T = 902.2654839463405 K, F = -2751.297145858032, relative_change = 0.01701091687126804 Iter 10: T = 847.7036621677123 K, F = -1173.3973053188356, relative_change = 0.00959486400555428 Iter 15: T = 820.7240592517878 K, F = -495.9278748860851, relative_change = 0.004706996555011 Iter 20: T = 808.4481761609942 K, F = -208.44700843851476, relative_change = 0.0021232479086892653 Iter 25: T = 803.1118432392819 K, F = -87.36979800647828, relative_change = 0.0009182599162533443 Iter 30: T = 800.8421661678757 K, F = -36.5741390793166, relative_change = 0.0003895946608774196 Iter 35: T = 799.8861168538429 K, F = -15.301946215818274, relative_change = 0.00016392773644795334 Iter 40: T = 799.4850732027558 K, F = -6.4005473946637625, relative_change = 6.873205611403907e-5 Iter 45: T = 799.3171387528921 K, F = -2.6769765420201126, relative_change = 2.877538068852046e-5 Iter 50: T = 799.2468691855557 K, F = -1.1195770278149961, relative_change = 1.2039605741677437e-5 Iter 55: T = 799.2174750701674 K, F = -0.46822633934534774, relative_change = 5.036051622419931e-6 Iter 60: T = 799.205180955216 K, F = -0.19581887122022446, relative_change = 2.1063022091269032e-6 Iter 65: T = 799.2000392092511 K, F = -0.08189396966388873, relative_change = 8.809096488171624e-7 Iter 70: T = 799.197888834654 K, F = -0.03424906746260947, relative_change = 3.684119920670421e-7 Iter 75: T = 799.1969895161899 K, F = -0.014323374509674691, relative_change = 1.54075179251365e-7 Iter 80: T = 799.1966134093965 K, F = -0.005990207235656353, relative_change = 6.443623469999135e-8 Iter 85: T = 799.1964561168564 K, F = -0.0025051763712142794, relative_change = 2.694802993236532e-8 Iter 90: T = 799.1963903352049 K, F = -0.0010476947024603556, relative_change = 1.1269992640384333e-8 Iter 95: T = 799.196362824527 K, F = -0.00043815844169925455, relative_change = 4.713246340755141e-9 Iter 100: T = 799.196351319232 K, F = -0.00018324309579209608, relative_change = 1.9711360725132857e-9 Iter 105: T = 799.19634650758 K, F = -7.663445110617229e-5, relative_change = 8.243526701500732e-10 Iter 110: T = 799.1963444952896 K, F = -3.2049441423542824e-5, relative_change = 3.4475412232606246e-10 Iter 115: T = 799.1963436537258 K, F = -1.3403461325611765e-5, relative_change = 1.4418031526801623e-10 Iter 120: T = 799.1963433017736 K, F = -5.605486112170155e-6, relative_change = 6.029791387046101e-11 Iter 125: T = 799.196343154583 K, F = -2.3442804591988775e-6, relative_change = 2.5217299358575528e-11 Iter 130: T = 799.1963430930263 K, F = -9.804050025152833e-7, relative_change = 1.0546164113225746e-11 Iter 135: T = 799.1963430672824 K, F = -4.1001679829122395e-7, relative_change = 4.410528744272095e-12 Iter 140: T = 799.1963430565161 K, F = -1.7147448760912454e-7, relative_change = 1.8445418814784943e-12 Iter 145: T = 799.1963430520135 K, F = -7.171317595311422e-8, relative_change = 7.714147938113744e-13 Iter 150: T = 799.1963430501305 K, F = -2.9992608285844824e-8, relative_change = 3.226288813659091e-13 Converged in 153 iterations to T = 799.1963430495792 K Iter 1: T = 980.7393381741015 K, F = -4388.560118650293, relative_change = 0.019260661825898476 Iter 2: T = 963.4953081947357 K, F = -3706.4148402293017, relative_change = 0.0175826841120394 Iter 3: T = 948.1428712924765 K, F = -3128.844239873414, relative_change = 0.015934106551099305 Iter 5: T = 922.5769097830195 K, F = -2226.6518979395405, relative_change = 0.012810903181393664 Iter 10: T = 882.2037894345042 K, F = -944.6793119422471, relative_change = 0.006663770365110859 Iter 15: T = 863.2034626691263 K, F = -397.92741051519107, relative_change = 0.003106470124988206 Iter 20: T = 854.7978709486281 K, F = -166.96533253555415, relative_change = 0.0013649547129937379 Iter 25: T = 851.193595503062 K, F = -69.92672349494795, relative_change = 0.000583221742623831 Iter 30: T = 849.6699704883687 K, F = -29.261970019970796, relative_change = 0.0002461454103346683 Iter 35: T = 849.0298706006384 K, F = -12.240838909929563, relative_change = 0.00010333715343368097 Iter 40: T = 848.7616615209292 K, F = -5.1198148610113385, relative_change = 4.328652026453216e-5 Iter 45: T = 848.6494034837204 K, F = -2.141264016604867, relative_change = 1.8115157214330704e-5 Iter 50: T = 848.6024401037948 K, F = -0.8955190359279025, relative_change = 7.5781140579691285e-6 Iter 55: T = 848.5827967049338 K, F = -0.3745197036685849, relative_change = 3.169632063897231e-6 Iter 60: T = 848.5745811194006 K, F = -0.15662912843234733, relative_change = 1.3256434527109505e-6 Iter 65: T = 848.571145179186 K, F = -0.06550426223743999, relative_change = 5.544113750028899e-7 Iter 70: T = 848.5697082132223 K, F = -0.027394680518949555, relative_change = 2.3186346098212654e-7 Iter 75: T = 848.5691072543186 K, F = -0.011456785313431972, relative_change = 9.696841874126605e-8 Iter 80: T = 848.5688559256776 K, F = -0.00479136492249399, relative_change = 4.055341202888355e-8 Iter 85: T = 848.5687508169596 K, F = -0.002003806116847917, relative_change = 1.695993194463821e-8 Iter 90: T = 848.5687068592246 K, F = -0.0008380156625580337, relative_change = 7.092847951472287e-9 Iter 95: T = 848.5686884755725 K, F = -0.0003504681592676473, relative_change = 2.966314035638709e-9 Iter 100: T = 848.5686807873092 K, F = -0.0001465699709326529, relative_change = 1.2405480190975117e-9 Iter 105: T = 848.5686775719856 K, F = -6.129731366999458e-5, relative_change = 5.18812018159847e-10 Iter 110: T = 848.5686762272989 K, F = -2.5635269157220364e-5, relative_change = 2.169733880913393e-10 Iter 115: T = 848.5686756649349 K, F = -1.0720976529210446e-5, relative_change = 9.07408693181348e-11 Iter 120: T = 848.5686754297476 K, F = -4.483642623398509e-6, relative_change = 3.794893392289501e-11 Iter 125: T = 848.5686753313894 K, F = -1.8751137427219788e-6, relative_change = 1.5870704589252806e-11 Iter 130: T = 848.5686752902548 K, F = -7.841939417829735e-7, relative_change = 6.637309572231714e-12 Iter 135: T = 848.5686752730518 K, F = -3.279605427231047e-7, relative_change = 2.7758128872958186e-12 Iter 140: T = 848.5686752658573 K, F = -1.3715974289674193e-7, relative_change = 1.1609011828223943e-12 Iter 145: T = 848.5686752628484 K, F = -5.736085495477994e-8, relative_change = 4.854943801984471e-13 Converged in 150 iterations to T = 848.5686752615901 K Iter 1: T = 967.2726831756494 K, F = -7456.950270143597, relative_change = 0.03272731682435067 Iter 2: T = 936.6184011495533 K, F = -6321.133866755169, relative_change = 0.03169145842665082 Iter 3: T = 908.0059233456162 K, F = -5356.81628602766, relative_change = 0.030548703472854755 Iter 5: T = 856.7689236738837 K, F = -3843.3772657096742, relative_change = 0.027947427440349854 Iter 10: T = 761.415196217012 K, F = -1664.3535249565045, relative_change = 0.020039625743159182 Iter 15: T = 705.5252860901909 K, F = -712.6539764155475, relative_change = 0.01202502549924068 Iter 20: T = 676.754617069468 K, F = -302.0637890252179, relative_change = 0.006164416218400152 Iter 25: T = 663.3299688348038 K, F = -127.16726729912693, relative_change = 0.0028493958223309275 Iter 30: T = 657.4180840131809 K, F = -53.343040344329275, relative_change = 0.0012467906200890604 Iter 35: T = 654.8885317345739 K, F = -22.337805643512695, relative_change = 0.0005317348881757607 Iter 40: T = 653.8202314060711 K, F = -9.34711316568632, relative_change = 0.00022423429756085507 Iter 45: T = 653.3716022175806 K, F = -3.9099860179607524, relative_change = 9.410614392217333e-5 Iter 50: T = 653.1836535870749 K, F = -1.6353627689788457, relative_change = 3.9414096482661276e-5 Iter 55: T = 653.1049939337272 K, F = -0.6839562451893435, relative_change = 1.6493574003370574e-5 Iter 60: T = 653.0720874938714 K, F = -0.28604357046604584, relative_change = 6.89958264609394e-6 Iter 65: T = 653.0583238719221 K, F = -0.11962769452950411, relative_change = 2.8857980814274726e-6 Iter 70: T = 653.0525674536871 K, F = -0.050029880453170916, relative_change = 1.2069294876584148e-6 Iter 75: T = 653.050159997107 K, F = -0.020923119711124982, relative_change = 5.047618172973416e-7 Iter 80: T = 653.0491531606168 K, F = -0.008750303122669056, relative_change = 2.110990802489205e-7 Iter 85: T = 653.0487320879289 K, F = -0.003659482067967068, relative_change = 8.828444676516433e-8 Iter 90: T = 653.0485559900147 K, F = -0.0015304392436129577, relative_change = 3.692166073914781e-8 Iter 95: T = 653.0484823437138 K, F = -0.0006400479935392278, relative_change = 1.544108834183836e-8 Iter 100: T = 653.0484515439424 K, F = -0.0002676757193113555, relative_change = 6.457649111728321e-9 Iter 105: T = 653.0484386631086 K, F = -0.00011194518322127367, relative_change = 2.7006662492094507e-9 Iter 110: T = 653.0484332761898 K, F = -4.681681317936226e-5, relative_change = 1.1294509381855174e-9 Iter 115: T = 653.0484310233161 K, F = -1.9579350375664717e-5, relative_change = 4.723498784367536e-10 Iter 120: T = 653.0484300811373 K, F = -8.188319182755865e-6, relative_change = 1.975423863883982e-10 Iter 125: T = 653.0484296871069 K, F = -3.4244529220628372e-6, relative_change = 8.26145866012308e-11 Iter 130: T = 653.0484295223188 K, F = -1.4321481157653082e-6, relative_change = 3.455043108215779e-11 Iter 135: T = 653.0484294534024 K, F = -5.989419423202413e-7, relative_change = 1.4449414891481517e-11 Iter 140: T = 653.0484294245807 K, F = -2.5048546120620685e-7, relative_change = 6.042936882984056e-12 Iter 145: T = 653.0484294125272 K, F = -1.0475722189706715e-7, relative_change = 2.5272575780165666e-12 Iter 150: T = 653.0484294074862 K, F = -4.381117302276749e-8, relative_change = 1.0569401996594296e-12 Iter 155: T = 653.0484294053779 K, F = -1.8321730410608694e-8, relative_change = 4.4200992720576526e-13 Converged in 159 iterations to T = 653.0484294046169 K Iter 1: T = 973.5386653744092 K, F = -6029.240265668318, relative_change = 0.026461334625590777 Iter 2: T = 949.2703330020379 K, F = -5102.175603561027, relative_change = 0.024927959448881345 Iter 3: T = 927.1273886330179 K, F = -4315.843976152315, relative_change = 0.023326278720829315 Iter 5: T = 888.8945864463012 K, F = -3083.9455725934886, relative_change = 0.0199961865587928 Iter 10: T = 823.8167596737337 K, F = -1320.4288200052415, relative_change = 0.011988193690121472 Iter 15: T = 790.33637876295 K, F = -559.6493945258405, relative_change = 0.006141412886557449 Iter 20: T = 774.720224884081 K, F = -235.6034868480729, relative_change = 0.0028376687872024736 Iter 25: T = 767.8446723477704 K, F = -98.8277121261351, relative_change = 0.0012414259142309334 Iter 30: T = 764.9030733954872 K, F = -41.384628219685254, relative_change = 0.0005294023439171519 Iter 35: T = 763.6608068651609 K, F = -17.317093591672613, relative_change = 0.00022324255573773395 Iter 40: T = 763.1391305765428 K, F = -7.243896961473024, relative_change = 9.368849221765565e-5 Iter 45: T = 762.9205812743517 K, F = -3.0297791988031104, relative_change = 3.923891958672882e-5 Iter 50: T = 762.8291150196915 K, F = -1.2671414995919728, relative_change = 1.642022345231431e-5 Iter 55: T = 762.7908511240015 K, F = -0.5299427471563186, relative_change = 6.868890898206122e-6 Iter 60: T = 762.7748466731623 K, F = -0.22162996697818493, relative_change = 2.8729596834649315e-6 Iter 65: T = 762.7681530650873 K, F = -0.09268857558601551, relative_change = 1.2015598365368413e-6 Iter 70: T = 762.7653536560515 K, F = -0.03876351761499175, relative_change = 5.025160811704032e-7 Iter 75: T = 762.7641828988815 K, F = -0.016211374458993677, relative_change = 2.10159871925922e-7 Iter 80: T = 762.7636932723484 K, F = -0.006779791881808217, relative_change = 8.789165606350214e-8 Iter 85: T = 762.7634885043522 K, F = -0.002835390189925624, relative_change = 3.6757390529503636e-8 Iter 90: T = 762.7634028678725 K, F = -0.0011857940856572213, relative_change = 1.5372388515729306e-8 Iter 95: T = 762.7633670536638 K, F = -0.0004959132557853518, relative_change = 6.428918000584563e-9 Iter 100: T = 762.7633520757322 K, F = -0.00020739684606674302, relative_change = 2.6886505372580044e-9 Iter 105: T = 762.7633458117822 K, F = -8.673583919749372e-5, relative_change = 1.1244258251690306e-9 Iter 110: T = 762.7633431921233 K, F = -3.6273964976629713e-5, relative_change = 4.702483315470695e-10 Iter 115: T = 762.7633420965507 K, F = -1.5170205503345358e-5, relative_change = 1.9666347146101902e-10 Iter 120: T = 762.7633416383692 K, F = -6.344362237564738e-6, relative_change = 8.224702724949626e-11 Iter 125: T = 762.7633414467522 K, F = -2.653288167620005e-6, relative_change = 3.439669052815445e-11 Iter 130: T = 762.7633413666156 K, F = -1.1096365375440342e-6, relative_change = 1.438510338436538e-11 Iter 135: T = 762.7633413331016 K, F = -4.640627984109358e-7, relative_change = 6.016016152596111e-12 Iter 140: T = 762.7633413190856 K, F = -1.9407611073773978e-7, relative_change = 2.515963402219378e-12 Iter 145: T = 762.7633413132239 K, F = -8.116575600514153e-8, relative_change = 1.0522164260898136e-12 Iter 150: T = 762.7633413107726 K, F = -3.3944231425664384e-8, relative_change = 4.400461430478408e-13 Converged in 154 iterations to T = 762.7633413098878 K Iter 1: T = 970.0763503030184 K, F = -6818.132048196608, relative_change = 0.029923649696981604 Iter 2: T = 942.3115672015962 K, F = -5775.220361322526, relative_change = 0.02862123490872605 Iter 3: T = 916.6624752254138 K, F = -4890.098611478292, relative_change = 0.027219332616655705 Iter 5: T = 871.5035469137841 K, F = -3501.917699226235, relative_change = 0.024158692177392083 Iter 10: T = 791.0365020101394 K, F = -1508.047723446636, relative_change = 0.015855117073711945 Iter 15: T = 746.9458239364932 K, F = -642.2188991821552, relative_change = 0.008741048251927402 Iter 20: T = 725.4533980024589 K, F = -271.1610809594855, relative_change = 0.004223917502912454 Iter 25: T = 715.7563568141722 K, F = -113.91348968059076, relative_change = 0.0018901777392352943 Iter 30: T = 711.5586767089076 K, F = -47.73459738313637, relative_change = 0.0008144193678687949 Iter 35: T = 709.7766801635695 K, F = -19.980149568210546, relative_change = 0.0003449726601694237 Iter 40: T = 709.0266709848687 K, F = -8.358937482717923, relative_change = 0.00014505097937428835 Iter 45: T = 708.7121666495306 K, F = -3.496334626865236, relative_change = 6.079943440033786e-5 Iter 50: T = 708.5804892859429 K, F = -1.4623012697288513, relative_change = 2.5451157897382714e-5 Iter 55: T = 708.5253943208783 K, F = -0.6115680236270719, relative_change = 1.064820062998798e-5 Iter 60: T = 708.5023484114232 K, F = -0.255767880033971, relative_change = 4.453943610243946e-6 Iter 65: T = 708.4927095430417 K, F = -0.10696567676993818, relative_change = 1.8628216818631316e-6 Iter 70: T = 708.4886783143119 K, F = -0.04473441000771716, relative_change = 7.790768862661067e-7 Iter 75: T = 708.4869923820261 K, F = -0.018708479638752884, relative_change = 3.2582321295003347e-7 Iter 80: T = 708.486287300762 K, F = -0.007824112257872828, relative_change = 1.3626385054659485e-7 Iter 85: T = 708.485992426614 K, F = -0.003272137648627993, relative_change = 5.69872906174643e-8 Iter 90: T = 708.4858691065938 K, F = -0.0013684471233309514, relative_change = 2.383278667149297e-8 Iter 95: T = 708.4858175326658 K, F = -0.0005723009440816718, relative_change = 9.967159714754934e-9 Iter 100: T = 708.4857959638293 K, F = -0.00023934309264939113, relative_change = 4.168385884223857e-9 Iter 105: T = 708.4857869434836 K, F = -0.00010009614006767364, relative_change = 1.7432688697927475e-9 Iter 110: T = 708.4857831710673 K, F = -4.186140268280791e-5, relative_change = 7.290559050876409e-10 Iter 115: T = 708.4857815933976 K, F = -1.75069397748695e-5, relative_change = 3.0489991114046717e-10 Iter 120: T = 708.4857809335973 K, F = -7.3216122262742545e-6, relative_change = 1.2751280096928256e-10 Iter 125: T = 708.4857806576609 K, F = -3.0619852976476736e-6, relative_change = 5.3327369776931114e-11 Iter 130: T = 708.4857805422611 K, F = -1.280559612459875e-6, relative_change = 2.230215673487119e-11 Iter 135: T = 708.4857804939994 K, F = -5.355452511457415e-7, relative_change = 9.327027041403126e-12 Iter 140: T = 708.4857804738158 K, F = -2.2397171239862956e-7, relative_change = 3.9006791935239e-12 Iter 145: T = 708.4857804653748 K, F = -9.366700559620966e-8, relative_change = 1.6312994884785402e-12 Iter 150: T = 708.4857804618447 K, F = -3.9174025801003154e-8, relative_change = 6.822527083637605e-13 Iter 155: T = 708.4857804603683 K, F = -1.638303703810351e-8, relative_change = 2.853260843641602e-13 Converged in 157 iterations to T = 708.4857804600558 K Iter 1: T = 973.5341398335701 K, F = -6030.271414453414, relative_change = 0.026465860166429905 Iter 2: T = 949.2612884669336 K, F = -5103.054521412554, relative_change = 0.024932717172903712 Iter 3: T = 927.1138678179997 K, F = -4316.593072152355, relative_change = 0.023331216513318664 Iter 5: T = 888.8723983498223 K, F = -3084.489339909396, relative_change = 0.020001292327134094 Iter 10: T = 823.7762387150525 K, F = -1320.6706794329048, relative_change = 0.011992537714055566 Iter 15: T = 790.2840340679552 K, F = -559.7548205108219, relative_change = 0.006144129974409528 Iter 20: T = 774.6616368648464 K, F = -235.64858325217978, relative_change = 0.0028390547540548612 Iter 25: T = 767.783165929588 K, F = -98.84677545580419, relative_change = 0.0012420600893148326 Iter 30: T = 764.8402844914324 K, F = -41.39263873418859, relative_change = 0.000529678104922027 Iter 35: T = 763.5974700669476 K, F = -17.32045052271366, relative_change = 0.0002233598070964846 Iter 40: T = 763.0755625683697 K, F = -7.24530208064477, relative_change = 9.373787098818335e-5 Iter 45: T = 762.8569162044976 K, F = -3.03036704922261, relative_change = 3.925963080557372e-5 Iter 50: T = 762.7654092930014 K, F = -1.2673873829557691, relative_change = 1.642889573424309e-5 Iter 55: T = 762.7271283828366 K, F = -0.5300455850444318, relative_change = 6.872519607026109e-6 Iter 60: T = 762.7111168143626 K, F = -0.22167297615137826, relative_change = 2.874477577767674e-6 Iter 65: T = 762.7044202292618 K, F = -0.09270656273436362, relative_change = 1.202194694894465e-6 Iter 70: T = 762.7016195751374 K, F = -0.038771040088710795, relative_change = 5.027815964422475e-7 Iter 75: T = 762.7004482972462 K, F = -0.016214520452680348, relative_change = 2.102709153128044e-7 Iter 80: T = 762.6999584529393 K, F = -0.006781107573984979, relative_change = 8.793809602497075e-8 Iter 85: T = 762.6997535938672 K, F = -0.002835940428208672, relative_change = 3.6776812328098555e-8 Iter 90: T = 762.6996679192985 K, F = -0.0011860242004851917, relative_change = 1.5380510934666714e-8 Iter 95: T = 762.6996320891604 K, F = -0.0004960094919042035, relative_change = 6.432314886305357e-9 Iter 100: T = 762.6996171045671 K, F = -0.00020743709439707825, relative_change = 2.690071171729996e-9 Iter 105: T = 762.6996108378308 K, F = -8.675267081637017e-5, relative_change = 1.125019942270183e-9 Iter 110: T = 762.6996082170069 K, F = -3.628100341890317e-5, relative_change = 4.704967888081222e-10 Iter 115: T = 762.699607120947 K, F = -1.51731479138828e-5, relative_change = 1.9676736434249562e-10 Iter 120: T = 762.6996066625617 K, F = -6.345593780099357e-6, relative_change = 8.229048935381102e-11 Iter 125: T = 762.6996064708594 K, F = -2.653802949503792e-6, relative_change = 3.4414863477311444e-11 Iter 130: T = 762.6996063906873 K, F = -1.109851999192557e-6, relative_change = 1.4392705780393701e-11 Iter 135: T = 762.6996063571584 K, F = -4.641548049244548e-7, relative_change = 6.0192201753856814e-12 Iter 140: T = 762.6996063431362 K, F = -1.9411644802680428e-7, relative_change = 2.517327469290329e-12 Iter 145: T = 762.6996063372719 K, F = -8.118306127347097e-8, relative_change = 1.0527925493673283e-12 Iter 150: T = 762.6996063348194 K, F = -3.395091630054026e-8, relative_change = 4.4027992003831964e-13 Converged in 154 iterations to T = 762.6996063339341 K Iter 1: T = 964.3258096502499 K, F = -8128.39820610625, relative_change = 0.03567419034975007 Iter 2: T = 930.5772265562941 K, F = -6895.798500738305, relative_change = 0.03499707542432774 Iter 3: T = 898.7232925253822 K, F = -5849.043077795262, relative_change = 0.034230296123612336 Iter 5: T = 840.5864069695548 K, F = -4205.368464760635, relative_change = 0.032402278754195026 Iter 10: T = 726.4188540907886 K, F = -1833.968369495412, relative_change = 0.026010363690503777 Iter 15: T = 652.7612594889945 K, F = -791.8919685151028, relative_change = 0.017810732792361797 Iter 20: T = 611.108293624128 K, F = -338.0813197590654, relative_change = 0.010208275061089426 Iter 25: T = 590.3007253058338 K, F = -142.98984194185383, relative_change = 0.0050630125033202565 Iter 30: T = 580.774481873541 K, F = -60.124558657585254, relative_change = 0.002297387124561979 Iter 35: T = 576.6204870111592 K, F = -25.205654894794993, relative_change = 0.0009963476042601077 Iter 40: T = 574.8511738034525 K, F = -10.552280414646994, relative_change = 0.00042324589745107736 Iter 45: T = 574.1054307266737 K, F = -4.415034609804384, relative_change = 0.00017818079818236087 Iter 50: T = 573.7925242052526 K, F = -1.8467622686705805, relative_change = 7.47247317718558e-5 Iter 55: T = 573.6614821240098 K, F = -0.7723980038931864, relative_change = 3.128719707105332e-5 Iter 60: T = 573.6066470537071 K, F = -0.3230365683393991, relative_change = 1.30910605899451e-5 Iter 65: T = 573.5837088211084 K, F = -0.13509958772259154, relative_change = 5.475954744146235e-6 Iter 70: T = 573.5741148069417 K, F = -0.05650058234938174, relative_change = 2.29030506990661e-6 Iter 75: T = 573.5701023057194 K, F = -0.023629274499371106, relative_change = 9.578671119179232e-7 Iter 80: T = 573.5684242000675 K, F = -0.009882054617557479, relative_change = 4.005974438828817e-7 Iter 85: T = 573.5677223910448 K, F = -0.004132794976230647, relative_change = 1.6753568079240136e-7 Iter 90: T = 573.5674288852209 K, F = -0.0017283845155715016, relative_change = 7.006560538505322e-8 Iter 95: T = 573.5673061374212 K, F = -0.0007228310979542907, relative_change = 2.9302304906264248e-8 Iter 100: T = 573.5672548027975 K, F = -0.0003022966067884325, relative_change = 1.225457944979367e-8 Iter 105: T = 573.5672333340401 K, F = -0.00012642405265317347, relative_change = 5.125012451001477e-9 Iter 110: T = 573.5672243555485 K, F = -5.287204978593474e-5, relative_change = 2.14334161870737e-9 Iter 115: T = 573.5672206006359 K, F = -2.211172276606055e-5, relative_change = 8.963710946488333e-10 Iter 120: T = 573.5672190302867 K, F = -9.247386903665777e-6, relative_change = 3.748731167274282e-10 Iter 125: T = 573.5672183735477 K, F = -3.867367461496407e-6, relative_change = 1.5677640795474735e-10 Iter 130: T = 573.5672180988917 K, F = -1.617378949936299e-6, relative_change = 6.55657537524502e-11 Iter 135: T = 573.5672179840273 K, F = -6.764073562925965e-7, relative_change = 2.7420387907890652e-11 Iter 140: T = 573.5672179359896 K, F = -2.8288137532417323e-7, relative_change = 1.146752319329297e-11 Iter 145: T = 573.5672179158996 K, F = -1.1830445262317468e-7, relative_change = 4.795858521960404e-12 Iter 150: T = 573.5672179074978 K, F = -4.947657789022841e-8, relative_change = 2.005695157431093e-12 Iter 155: T = 573.567217903984 K, F = -2.0691352853319245e-8, relative_change = 8.387917675285945e-13 Iter 160: T = 573.5672179025145 K, F = -8.653139760284034e-9, relative_change = 3.5078336567658506e-13 Converged in 163 iterations to T = 573.5672179020842 K Iter 1: T = 963.6005865843073 K, F = -8293.64097154651, relative_change = 0.03639941341569271 Iter 2: T = 929.0813863671718 K, F = -7037.358592426531, relative_change = 0.03582314155649932 Iter 3: T = 896.4090177375379 K, F = -5970.444909875843, relative_change = 0.03516631493112474 Iter 5: T = 836.486347316695 K, F = -4294.963579136988, relative_change = 0.033581889311969725 Iter 10: T = 717.0609113294975 K, F = -1876.7125832828337, relative_change = 0.02782493768439264 Iter 15: T = 637.714980613307 K, F = -812.5473968017303, relative_change = 0.01989223030671546 Iter 20: T = 591.3185072196568 K, F = -347.8527626327625, relative_change = 0.011899582470899788 Iter 25: T = 567.4842845937173 K, F = -147.41774592939493, relative_change = 0.0060859805250210106 Iter 30: T = 556.3780485860361 K, F = -62.05664970430279, relative_change = 0.0028093987459653367 Iter 35: T = 551.490626360569 K, F = -26.029873727222824, relative_change = 0.0012284923922084808 Iter 40: T = 549.4001139873068 K, F = -10.899997743492296, relative_change = 0.0005237788461878605 Iter 45: T = 548.5173617090197 K, F = -4.560996924202341, relative_change = 0.00022085157467054988 Iter 50: T = 548.1466759943349 K, F = -1.9079014957554121, relative_change = 9.268157942886316e-5 Iter 55: T = 547.9913850865447 K, F = -0.7979840394994694, relative_change = 3.881658717400135e-5 Iter 60: T = 547.9263939576845 K, F = -0.3337399125084466, relative_change = 1.624338326987872e-5 Iter 65: T = 547.8992057276463 K, F = -0.13957637197109102, relative_change = 6.794896441039915e-6 Iter 70: T = 547.8878338565249 K, F = -0.05837291759859484, relative_change = 2.8420077061443567e-6 Iter 75: T = 547.8830777542898 K, F = -0.024412323311909206, relative_change = 1.1886141933179538e-6 Iter 80: T = 547.8810886518196 K, F = -0.010209537754581333, relative_change = 4.971018562421661e-7 Iter 85: T = 547.8802567777656 K, F = -0.004269752820314582, relative_change = 2.078955430247898e-7 Iter 90: T = 547.8799088767641 K, F = -0.0017856620056453665, relative_change = 8.694468045874854e-8 Iter 95: T = 547.8797633801768 K, F = -0.0007467852439824729, relative_change = 3.63613529852656e-8 Iter 100: T = 547.8797025317253 K, F = -0.0003123145194672272, relative_change = 1.5206760686353833e-8 Iter 105: T = 547.8796770841692 K, F = -0.00013061366400049512, relative_change = 6.359650436428582e-9 Iter 110: T = 547.879666441696 K, F = -5.462419476889857e-5, relative_change = 2.6596820392895044e-9 Iter 115: T = 547.8796619908863 K, F = -2.2844490361134673e-5, relative_change = 1.1123108233850272e-9 Iter 120: T = 547.8796601295046 K, F = -9.553838845183238e-6, relative_change = 4.6518168522326737e-10 Iter 125: T = 547.8796593510525 K, F = -3.995529147204913e-6, relative_change = 1.9454452024436785e-10 Iter 130: T = 547.8796590254946 K, F = -1.6709778823120747e-6, relative_change = 8.136083592342301e-11 Iter 135: T = 547.8796588893423 K, F = -6.988230975557563e-7, relative_change = 3.402608260040469e-11 Iter 140: T = 547.8796588324018 K, F = -2.9225598610627124e-7, relative_change = 1.4230105392075501e-11 Iter 145: T = 547.8796588085887 K, F = -1.2222531342587217e-7, relative_change = 5.951218023493563e-12 Iter 150: T = 547.8796587986297 K, F = -5.111606996011098e-8, relative_change = 2.4888696812186157e-12 Iter 155: T = 547.8796587944648 K, F = -2.1377635189834265e-8, relative_change = 1.0408888657437144e-12 Iter 160: T = 547.8796587927229 K, F = -8.94033655440829e-9, relative_change = 4.3530992520871603e-13 Converged in 164 iterations to T = 547.8796587920942 K Iter 1: T = 969.3011600262438 K, F = -6994.759890156032, relative_change = 0.030698839973756258 Iter 2: T = 940.7427090813811 K, F = -5926.0801241022855, relative_change = 0.029462928677491156 Iter 3: T = 914.2856704169529 K, F = -5018.988401015541, relative_change = 0.028123564933352524 Iter 5: T = 867.4905642902692 K, F = -3596.0518445744237, relative_change = 0.02516610414772525 Iter 10: T = 783.1538826063461 K, F = -1550.8329478492346, relative_change = 0.016899376202103102 Iter 15: T = 736.1566528451173 K, F = -661.317692740958, relative_change = 0.009510712633078677 Iter 20: T = 712.9503278361026 K, F = -279.47367227596186, relative_change = 0.004658719663045258 Iter 25: T = 702.4002176630867 K, F = -117.46134964302638, relative_change = 0.0020997841659110045 Iter 30: T = 697.8160176524324 K, F = -49.23226009896776, relative_change = 0.0009077701197518852 Iter 35: T = 695.8666161982987 K, F = -20.60903971044531, relative_change = 0.00038508022917654405 Iter 40: T = 695.0455440269407 K, F = -8.622401912047886, relative_change = 0.00016201673648813514 Iter 45: T = 694.7011327848167 K, F = -3.6065988716116038, relative_change = 6.792877445908117e-5 Iter 50: T = 694.5569149398096 K, F = -1.5084291842181097, relative_change = 2.8438721338769567e-5 Iter 55: T = 694.4965695950123 K, F = -0.6308617365013375, relative_change = 1.1898685017610646e-5 Iter 60: T = 694.4713268981075 K, F = -0.26383717312762445, relative_change = 4.977094874884522e-6 Iter 65: T = 694.4607691291869 K, F = -0.11034042708036906, relative_change = 2.0816419407488146e-6 Iter 70: T = 694.4563535741742 K, F = -0.04614578411002512, relative_change = 8.70595756178212e-7 Iter 75: T = 694.4545069066064 K, F = -0.019298735457675575, relative_change = 3.6409848111723056e-7 Iter 80: T = 694.4537346029759 K, F = -0.008070964692712956, relative_change = 1.5227119682341494e-7 Iter 85: T = 694.4534116154651 K, F = -0.0033753743544344683, relative_change = 6.368178407051668e-8 Iter 90: T = 694.4532765380718 K, F = -0.0014116219566131516, relative_change = 2.66325090020025e-8 Iter 95: T = 694.453220047065 K, F = -0.0005903571763652415, relative_change = 1.1138037935465404e-8 Iter 100: T = 694.4531964218464 K, F = -0.00024689442501435455, relative_change = 4.658061301475509e-9 Iter 105: T = 694.4531865414971 K, F = -0.00010325419701229244, relative_change = 1.9480569958994873e-9 Iter 110: T = 694.4531824094167 K, F = -4.318213779763713e-5, relative_change = 8.147007138862458e-10 Iter 115: T = 694.4531806813314 K, F = -1.805928614173613e-5, relative_change = 3.407175799218064e-10 Iter 120: T = 694.4531799586256 K, F = -7.552610240324498e-6, relative_change = 1.424921824556048e-10 Iter 125: T = 694.4531796563813 K, F = -3.1585912817488904e-6, relative_change = 5.959192277012478e-11 Iter 130: T = 694.453179529979 K, F = -1.320959774009367e-6, relative_change = 2.4922038301783492e-11 Iter 135: T = 694.4531794771161 K, F = -5.524405702894697e-7, relative_change = 1.042268305825448e-11 Iter 140: T = 694.4531794550082 K, F = -2.3103626545228906e-7, relative_change = 4.3588720663205085e-12 Iter 145: T = 694.4531794457627 K, F = -9.662350364258998e-8, relative_change = 1.822958357554369e-12 Iter 150: T = 694.4531794418959 K, F = -4.041002321653053e-8, relative_change = 7.624003143788158e-13 Iter 155: T = 694.4531794402787 K, F = -1.6899953214633e-8, relative_change = 3.1884489585483966e-13 Converged in 158 iterations to T = 694.4531794398054 K Iter 1: T = 966.4648438810715 K, F = -7641.017221866702, relative_change = 0.03353515611892847 Iter 2: T = 934.9681852014699 K, F = -6478.581019543215, relative_change = 0.032589554476828424 Iter 3: T = 905.4803189758342 K, F = -5491.581266762361, relative_change = 0.03153889799927424 Iter 5: T = 852.4065287061002 K, F = -3942.2879909785597, relative_change = 0.02911736251593178 Iter 10: T = 752.2601228398038 K, F = -1710.2536213821688, relative_change = 0.02148574698799298 Iter 15: T = 692.1826654248677 K, F = -733.7448904670321, relative_change = 0.013294766825697087 Iter 20: T = 660.6061919145297 K, F = -311.48149812088843, relative_change = 0.006978298726049065 Iter 25: T = 645.6659389739589 K, F = -131.25170741881072, relative_change = 0.003270597059810379 Iter 30: T = 639.0372817073019 K, F = -55.08128131052283, relative_change = 0.0014409035612880884 Iter 35: T = 636.1910383880081 K, F = -23.07042801518615, relative_change = 0.0006164149387729007 Iter 40: T = 634.9871230541021 K, F = -9.654528822020888, relative_change = 0.00026028988219148325 Iter 45: T = 634.4812068478136 K, F = -4.038732540552206, relative_change = 0.00010929944382921006 Iter 50: T = 634.2691989450789 K, F = -1.6892380532489628, relative_change = 4.578829649728977e-5 Iter 55: T = 634.1804596313073 K, F = -0.7064931343445964, relative_change = 1.9162882546006243e-5 Iter 60: T = 634.1433346395531 K, F = -0.2954697474282216, relative_change = 8.016539760148313e-6 Iter 65: T = 634.1278062230585 K, F = -0.12357000591991296, relative_change = 3.3530314615995414e-6 Iter 70: T = 634.1213116511776 K, F = -0.05167863217750457, relative_change = 1.402351062051268e-6 Iter 75: T = 634.1185954732234 K, F = -0.021612652624363238, relative_change = 5.864927761308335e-7 Iter 80: T = 634.1174595228458 K, F = -0.009038674940834879, relative_change = 2.452805244672356e-7 Iter 85: T = 634.1169844526772 K, F = -0.003780082766796311, relative_change = 1.0257963659150357e-7 Iter 90: T = 634.1167857722824 K, F = -0.001580875924892311, relative_change = 4.2900097638119995e-8 Iter 95: T = 634.1167026817025 K, F = -0.0006611412196177446, relative_change = 1.7941345125121784e-8 Iter 100: T = 634.1166679322182 K, F = -0.0002764971587246312, relative_change = 7.503286889187207e-9 Iter 105: T = 634.116653399567 K, F = -0.00011563441555290099, relative_change = 3.137964573773658e-9 Iter 110: T = 634.1166473218383 K, F = -4.8359693026966966e-5, relative_change = 1.312334305633121e-9 Iter 115: T = 634.1166447800595 K, F = -2.0224601716578583e-5, relative_change = 5.488339047591979e-10 Iter 120: T = 634.1166437170572 K, F = -8.458169888980738e-6, relative_change = 2.295288930476224e-10 Iter 125: T = 634.116643272497 K, F = -3.537307888212826e-6, relative_change = 9.59917307546488e-11 Iter 130: T = 634.1166430865766 K, F = -1.4793440155091986e-6, relative_change = 4.014487771948833e-11 Iter 135: T = 634.1166430088225 K, F = -6.18679906305708e-7, relative_change = 1.6789082823373922e-11 Iter 140: T = 634.1166429763048 K, F = -2.5874024411898233e-7, relative_change = 7.0214198732480695e-12 Iter 145: T = 634.1166429627054 K, F = -1.0820801565891713e-7, relative_change = 2.936435011325304e-12 Iter 150: T = 634.116642957018 K, F = -4.52537621264959e-8, relative_change = 1.2280488714160548e-12 Iter 155: T = 634.1166429546395 K, F = -1.8925507494493843e-8, relative_change = 5.135804633223307e-13 Converged in 160 iterations to T = 634.1166429536448 K Iter 1: T = 966.5969605737843 K, F = -7610.91430775668, relative_change = 0.033403039426215704 Iter 2: T = 935.2383691677829 K, F = -6452.827032506167, relative_change = 0.03244226154754968 Iter 3: T = 905.8943396425709 K, F = -5469.532542116251, relative_change = 0.031375989793194316 Iter 5: T = 853.1236832090141 K, F = -3926.095372920344, relative_change = 0.028923484220727262 Iter 10: T = 753.7783944749762 K, F = -1702.718076813139, relative_change = 0.021240551873810493 Iter 15: T = 694.4155774240467 K, F = -730.266961377152, relative_change = 0.013074096102344807 Iter 20: T = 663.3270418717625 K, F = -309.9217509040434, relative_change = 0.006834119097672677 Iter 25: T = 648.6537484487316 K, F = -130.573282549308, relative_change = 0.003195134546164192 Iter 30: T = 642.1522250238136 K, F = -54.79211864754576, relative_change = 0.0014059316205947588 Iter 35: T = 639.3623389639117 K, F = -22.948467306451235, relative_change = 0.0006011202807398764 Iter 40: T = 638.182592525035 K, F = -9.603337039450416, relative_change = 0.00025377054050205837 Iter 45: T = 637.6868922372757 K, F = -4.017290450700349, relative_change = 0.00010655101998887139 Iter 50: T = 637.4791759292724 K, F = -1.6802648945492298, relative_change = 4.463499837827583e-5 Iter 55: T = 637.3922347841803 K, F = -0.7027394315388473, relative_change = 1.8679879337972376e-5 Iter 60: T = 637.3558623992731 K, F = -0.29389972537471803, relative_change = 7.814422904481815e-6 Iter 65: T = 637.3406488354575 K, F = -0.12291337267547042, relative_change = 3.26848292648945e-6 Iter 70: T = 637.334285956838 K, F = -0.051404014842286294, relative_change = 1.366988206868087e-6 Iter 75: T = 637.3316248577468 K, F = -0.021497803417781902, relative_change = 5.717029696343481e-7 Iter 80: T = 637.3305119425617 K, F = -0.008990643464252435, relative_change = 2.3909513916450985e-7 Iter 85: T = 637.3300465060825 K, F = -0.003759995400704652, relative_change = 9.999281507557355e-8 Iter 90: T = 637.3298518546286 K, F = -0.0015724751433656148, relative_change = 4.181825457237549e-8 Iter 95: T = 637.3297704490029 K, F = -0.000657627912134362, relative_change = 1.748890485383572e-8 Iter 100: T = 637.3297364041872 K, F = -0.0002750278527175465, relative_change = 7.31407089458581e-9 Iter 105: T = 637.3297221662367 K, F = -0.00011501993347662332, relative_change = 3.0588321470122337e-9 Iter 110: T = 637.3297162117555 K, F = -4.810270995658783e-5, relative_change = 1.2792401949044041e-9 Iter 115: T = 637.3297137215202 K, F = -2.0117128259167227e-5, relative_change = 5.349935497840328e-10 Iter 120: T = 637.3297126800741 K, F = -8.413223329728492e-6, relative_change = 2.23740694562778e-10 Iter 125: T = 637.3297122445289 K, F = -3.518510758471205e-6, relative_change = 9.35710384278752e-11 Iter 130: T = 637.3297120623787 K, F = -1.4714831777506987e-6, relative_change = 3.913252469873399e-11 Iter 135: T = 637.3297119862012 K, F = -6.153916462525721e-7, relative_change = 1.6365684075905512e-11 Iter 140: T = 637.329711954343 K, F = -2.573642057246417e-7, relative_change = 6.844326389522597e-12 Iter 145: T = 637.3297119410194 K, F = -1.0763260288593202e-7, relative_change = 2.8623742074167458e-12 Iter 150: T = 637.3297119354473 K, F = -4.501310035820438e-8, relative_change = 1.1970753657522968e-12 Iter 155: T = 637.329711933117 K, F = -1.882480171744305e-8, relative_change = 5.006255117329986e-13 Converged in 160 iterations to T = 637.3297119321426 K Iter 1: T = 976.400719953938 K, F = -5377.118407205929, relative_change = 0.02359928004606198 Iter 2: T = 954.9638246998311 K, F = -4546.754030000374, relative_change = 0.021955017869218985 Iter 3: T = 935.597979371083 K, F = -3842.8790804712776, relative_change = 0.020279140243699992 Iter 5: T = 902.6596231780804 K, F = -2741.3399433310583, relative_change = 0.01692564349757017 Iter 10: T = 848.392539666904 K, F = -1169.0227451901349, relative_change = 0.009530562088716579 Iter 15: T = 821.5874585780628 K, F = -494.0420619534827, relative_change = 0.004670112542610773 Iter 20: T = 809.3988150300066 K, F = -207.64597718073995, relative_change = 0.002105321962271571 Iter 25: T = 804.1021097878179 K, F = -87.03238939671022, relative_change = 0.0009102459166479123 Iter 30: T = 801.8496167454603 K, F = -36.43258906796105, relative_change = 0.0003861457262078006 Iter 35: T = 800.9008659693189 K, F = -15.24266945875007, relative_change = 0.00016246777114649284 Iter 40: T = 800.5028946275656 K, F = -6.375743235772117, relative_change = 6.81183651647339e-5 Iter 45: T = 800.3362485766941 K, F = -2.6666007046039155, relative_change = 2.8518179743725438e-5 Iter 50: T = 800.266518451449 K, F = -1.115237300944421, relative_change = 1.193194515302315e-5 Iter 55: T = 800.2373500454754 K, F = -0.4664113388779536, relative_change = 4.9910098571238555e-6 Iter 60: T = 800.2251503438484 K, F = -0.19505980325497085, relative_change = 2.087462261711137e-6 Iter 65: T = 800.2200480859791 K, F = -0.08157651608815797, relative_change = 8.730300429760915e-7 Iter 70: T = 800.2179142263548 K, F = -0.03411630418624978, relative_change = 3.651165567537338e-7 Iter 75: T = 800.2170218147509 K, F = -0.014267851252542152, relative_change = 1.526969731029723e-7 Iter 80: T = 800.2166485965067 K, F = -0.005966986731315793, relative_change = 6.385984964381023e-8 Iter 85: T = 800.2164925119956 K, F = -0.002495465276879605, relative_change = 2.670697833693208e-8 Iter 90: T = 800.2164272355568 K, F = -0.0010436334096287636, relative_change = 1.1169181934235724e-8 Iter 95: T = 800.2163999361647 K, F = -0.0004364599593992269, relative_change = 4.67108607332218e-9 Iter 100: T = 800.2163885192322 K, F = -0.00018253276835034082, relative_change = 1.953504122712625e-9 Iter 105: T = 800.2163837445344 K, F = -7.633738413226343e-5, relative_change = 8.169787825153409e-10 Iter 110: T = 800.2163817476988 K, F = -3.192520827588474e-5, relative_change = 3.416703152085452e-10 Iter 115: T = 800.2163809125983 K, F = -1.3351504148051418e-5, relative_change = 1.428906152786346e-10 Iter 120: T = 800.2163805633493 K, F = -5.583759675409361e-6, relative_change = 5.975857464431816e-11 Iter 125: T = 800.2163804172892 K, F = -2.335196551794816e-6, relative_change = 2.499176642315443e-11 Iter 130: T = 800.2163803562051 K, F = -9.766090820484408e-7, relative_change = 1.0451876547778142e-11 Iter 135: T = 800.2163803306589 K, F = -4.084291129746731e-7, relative_change = 4.3710945827216215e-12 Iter 140: T = 800.2163803199753 K, F = -1.7081103109717333e-7, relative_change = 1.828055711571445e-12 Iter 145: T = 800.2163803155072 K, F = -7.143479230364846e-8, relative_change = 7.645102265367518e-13 Iter 150: T = 800.2163803136386 K, F = -2.987440050894463e-8, relative_change = 3.197221404930205e-13 Converged in 153 iterations to T = 800.2163803130916 K Iter 1: T = 965.2198341964315 K, F = -7924.693862821886, relative_change = 0.0347801658035685 Iter 2: T = 932.4162610352904 K, F = -6721.362778389365, relative_change = 0.033985597890713544 Iter 3: T = 901.559855996649 K, F = -5699.528664702596, relative_change = 0.03309295035715121 Iter 5: T = 845.575366294875 K, F = -4095.200536721667, relative_change = 0.030995054236635195 Iter 10: T = 737.5214018484185 K, F = -1781.8531244682213, relative_change = 0.023982421720024915 Iter 15: T = 670.0484692573011 K, F = -767.1339554298347, relative_change = 0.01567679057409571 Iter 20: T = 633.1847317961577 K, F = -326.6187037991921, relative_change = 0.00861257204677532 Iter 25: T = 615.2540169265741 K, F = -137.88624669879368, relative_change = 0.004152440538983534 Iter 30: T = 607.1741115417083 K, F = -57.920838064989326, relative_change = 0.0018560008917758472 Iter 35: T = 603.6786191934614 K, F = -24.27041251836834, relative_change = 0.0007992564128593327 Iter 40: T = 602.1951271606216 K, F = -10.158643252341841, relative_change = 0.0003384689363927456 Iter 45: T = 601.5708278764503 K, F = -4.249962506246534, relative_change = 0.000142301838377962 Iter 50: T = 601.3090512861841 K, F = -1.777647995895527, relative_change = 5.9644542198981744e-5 Iter 55: T = 601.1994524349869 K, F = -0.7434796924425213, relative_change = 2.4967259717360448e-5 Iter 60: T = 601.153595724617 K, F = -0.3109401505213111, relative_change = 1.044566941089428e-5 Iter 65: T = 601.1344141963934 K, F = -0.1300402952220919, relative_change = 4.3692147636250035e-6 Iter 70: T = 601.1263916041046 K, F = -0.0543846512567851, relative_change = 1.827382189705708e-6 Iter 75: T = 601.1230363468285 K, F = -0.022744353807301887, relative_change = 7.642548143670352e-7 Iter 80: T = 601.1216331183357 K, F = -0.009511967935470211, relative_change = 3.196242963160446e-7 Iter 85: T = 601.1210462679537 K, F = -0.003978019906986929, relative_change = 1.336713634687067e-7 Iter 90: T = 601.1208008395089 K, F = -0.0016636556634432864, relative_change = 5.5903076995018794e-8 Iter 95: T = 601.1206981982962 K, F = -0.0006957607070773864, relative_change = 2.3379354785718367e-8 Iter 100: T = 601.1206552724966 K, F = -0.0002909754433281231, relative_change = 9.777528922090679e-9 Iter 105: T = 601.1206373204114 K, F = -0.000121689406854808, relative_change = 4.0890799945105334e-9 Iter 110: T = 601.1206298126344 K, F = -5.089196404112206e-5, relative_change = 1.7101022167394578e-9 Iter 115: T = 601.1206266727922 K, F = -2.1283626283841173e-5, relative_change = 7.151851589764317e-10 Iter 120: T = 601.1206253596728 K, F = -8.901066600286445e-6, relative_change = 2.990989746246668e-10 Iter 125: T = 601.1206248105105 K, F = -3.7225320783651483e-6, relative_change = 1.2508675448550095e-10 Iter 130: T = 601.1206245808444 K, F = -1.5568083084338546e-6, relative_change = 5.231280615257956e-11 Iter 135: T = 601.1206244847953 K, F = -6.510754903543692e-7, relative_change = 2.1877828990890657e-11 Iter 140: T = 601.1206244446263 K, F = -2.722878348349056e-7, relative_change = 9.149579084094855e-12 Iter 145: T = 601.1206244278272 K, F = -1.1387351633862508e-7, relative_change = 3.826446172648764e-12 Iter 150: T = 601.1206244208016 K, F = -4.762404198777048e-8, relative_change = 1.6002916135338212e-12 Iter 155: T = 601.1206244178634 K, F = -1.9916668758668266e-8, relative_change = 6.692518453799916e-13 Iter 160: T = 601.1206244166347 K, F = -8.329547773744395e-9, relative_change = 2.7989445857441834e-13 Converged in 162 iterations to T = 601.1206244163747 K Iter 1: T = 964.625078551603 K, F = -8060.2095022547355, relative_change = 0.035374921448397004 Iter 2: T = 931.1934417122462 K, F = -6837.398219787332, relative_change = 0.034657648430159865 Iter 3: T = 899.6748171697582 K, F = -5798.9763431948, relative_change = 0.03384755855296046 Iter 5: T = 842.2643760272863 K, F = -4168.456165213934, relative_change = 0.03192555480409136 Iter 10: T = 730.1867387030223 K, F = -1816.4542941626419, relative_change = 0.02530733113170682 Iter 15: T = 658.6927674259194 K, F = -783.5233364118014, relative_change = 0.017049149637797117 Iter 20: T = 618.7564313972402 K, F = -334.17967771841853, relative_change = 0.00962354299581326 Iter 25: T = 598.9996466094498 K, F = -141.2431879463378, relative_change = 0.004723416091341988 Iter 30: T = 590.0076896913321 K, F = -59.36797867065892, relative_change = 0.0021312228457516947 Iter 35: T = 586.0983359514262 K, F = -24.8840759654862, relative_change = 0.0009218243884579784 Iter 40: T = 584.435483669083 K, F = -10.416837358221551, relative_change = 0.0003911285461650874 Iter 45: T = 583.7350260805277 K, F = -4.358219711681533, relative_change = 0.00016457702121919592 Iter 50: T = 583.4411946347344 K, F = -1.822971393330755, relative_change = 6.900497660913114e-5 Iter 55: T = 583.3181540009608 K, F = -0.7624430704113931, relative_change = 2.8889762349497942e-5 Iter 60: T = 583.2666694488152 K, F = -0.31887236674029085, relative_change = 1.2087484128448163e-5 Iter 65: T = 583.2451331816751 K, F = -0.13335790618738583, relative_change = 5.05608239546851e-6 Iter 70: T = 583.2361256154986 K, F = -0.055772161866973424, relative_change = 2.114680622929525e-6 Iter 75: T = 583.2323583964491 K, F = -0.02332463537602336, relative_change = 8.844138298901823e-7 Iter 80: T = 583.2307828746877 K, F = -0.009754650026930545, relative_change = 3.6987752238627036e-7 Iter 85: T = 583.230123968165 K, F = -0.004079512702128862, relative_change = 1.5468808851360607e-7 Iter 90: T = 583.2298484048001 K, F = -0.0017061012054173652, relative_change = 6.46925618821611e-8 Iter 95: T = 583.2297331607723 K, F = -0.0007135119473887785, relative_change = 2.705522924844217e-8 Iter 100: T = 583.2296849643194 K, F = -0.00029839922627789006, relative_change = 1.1314824762643957e-8 Iter 105: T = 583.2296648079829 K, F = -0.00012479412117705202, relative_change = 4.731995663892984e-9 Iter 110: T = 583.2296563783616 K, F = -5.219039211445953e-5, relative_change = 1.9789772454588827e-9 Iter 115: T = 583.2296528529931 K, F = -2.1826645216160845e-5, relative_change = 8.276319399131965e-10 Iter 120: T = 583.229651378642 K, F = -9.128163389549027e-6, relative_change = 3.461255538833845e-10 Iter 125: T = 583.2296507620506 K, F = -3.817506692704864e-6, relative_change = 1.4475383149138516e-10 Iter 130: T = 583.2296505041849 K, F = -1.5965271629725386e-6, relative_change = 6.053779155081553e-11 Iter 135: T = 583.2296503963422 K, F = -6.676862889798407e-7, relative_change = 2.531761084723696e-11 Iter 140: T = 583.2296503512412 K, F = -2.7923457834866383e-7, relative_change = 1.0588134740834777e-11 Iter 145: T = 583.2296503323793 K, F = -1.1677846406543679e-7, relative_change = 4.4280551493843034e-12 Iter 150: T = 583.2296503244911 K, F = -4.883751630879729e-8, relative_change = 1.8518415815698368e-12 Iter 155: T = 583.2296503211923 K, F = -2.042470736984825e-8, relative_change = 7.744726853172535e-13 Iter 160: T = 583.2296503198125 K, F = -8.542073104411685e-9, relative_change = 3.2390193776732996e-13 Converged in 163 iterations to T = 583.2296503194086 K Iter 1: T = 964.3023529068257 K, F = -8133.7428474085755, relative_change = 0.035697647093174266 Iter 2: T = 930.5289015087093 K, F = -6900.376308897808, relative_change = 0.03502371563888508 Iter 3: T = 898.6486262801493 K, F = -5852.968072676124, relative_change = 0.03426038157103017 Iter 5: T = 840.4545458463474 K, F = -4208.26312562362, relative_change = 0.03243988943473716 Iter 10: T = 726.1212703306552 K, F = -1835.344136018205, relative_change = 0.02606655138860259 Iter 15: T = 652.2898191541453 K, F = -792.5515540873666, relative_change = 0.017872641836416445 Iter 20: T = 610.4969024086596 K, F = -338.3901274854979, relative_change = 0.01025658106574973 Iter 25: T = 589.6026623871 K, F = -143.1285564057165, relative_change = 0.005091382010304612 Iter 30: T = 580.0320313271116 K, F = -60.184764579415706, relative_change = 0.0023113529393234545 Iter 35: T = 575.857637232275 K, F = -25.231270190264457, relative_change = 0.0010026292160688899 Iter 40: T = 574.07943185124 K, F = -10.563073870515908, relative_change = 0.0004259565390627799 Iter 45: T = 573.3299035090721 K, F = -4.419563051654776, relative_change = 0.00017932955644009823 Iter 50: T = 573.0154020651437 K, F = -1.8486586778917864, relative_change = 7.52078424059352e-5 Iter 55: T = 572.8836908713207 K, F = -0.7731915547187883, relative_change = 3.1489712423845546e-5 Iter 60: T = 572.8285756019676 K, F = -0.3233685195932896, relative_change = 1.3175837820662655e-5 Iter 65: T = 572.8055201222805 K, F = -0.13523842749697895, relative_change = 5.511424107918047e-6 Iter 70: T = 572.7958770626929 K, F = -0.05655864921588452, relative_change = 2.305141321033574e-6 Iter 75: T = 572.7918440481146 K, F = -0.02365355917942291, relative_change = 9.640722536091571e-7 Iter 80: T = 572.7901573631868 K, F = -0.009892210834327564, relative_change = 4.0319258593766786e-7 Iter 85: T = 572.789451966148 K, F = -0.004137042440161609, relative_change = 1.6862101377826304e-7 Iter 90: T = 572.7891569597624 K, F = -0.0017301608579611827, relative_change = 7.051950697806738e-8 Iter 95: T = 572.789033584408 K, F = -0.00072357398632239, relative_change = 2.9492132404044433e-8 Iter 100: T = 572.7889819873332 K, F = -0.0003026072912898359, relative_change = 1.2333967634626458e-8 Iter 105: T = 572.7889604088153 K, F = -0.00012655398381311578, relative_change = 5.1582135172281414e-9 Iter 110: T = 572.7889513844207 K, F = -5.292638769771596e-5, relative_change = 2.1572266687502644e-9 Iter 115: T = 572.788947610311 K, F = -2.2134447804578183e-5, relative_change = 9.021779999927003e-10 Iter 120: T = 572.7889460319332 K, F = -9.25689083614012e-6, relative_change = 3.7730163607401795e-10 Iter 125: T = 572.7889453718367 K, F = -3.871341685723895e-6, relative_change = 1.5779202603714374e-10 Iter 130: T = 572.7889450957765 K, F = -1.619041296752055e-6, relative_change = 6.599050866023842e-11 Iter 135: T = 572.7889449803248 K, F = -6.771024142482318e-7, relative_change = 2.7598019188164452e-11 Iter 140: T = 572.7889449320414 K, F = -2.8317148731416e-7, relative_change = 1.1541787444740265e-11 Iter 145: T = 572.7889449118488 K, F = -1.1842620611934862e-7, relative_change = 4.826934067798634e-12 Iter 150: T = 572.7889449034041 K, F = -4.952737991947842e-8, relative_change = 2.018686617369041e-12 Iter 155: T = 572.7889448998724 K, F = -2.0713307791186963e-8, relative_change = 8.442537705148764e-13 Iter 160: T = 572.7889448983954 K, F = -8.66257088283362e-9, relative_change = 3.5307775098027245e-13 Converged in 163 iterations to T = 572.788944897963 K Iter 1: T = 979.9787783611446 K, F = -4561.854395511683, relative_change = 0.020021221638855394 Iter 2: T = 962.0082781480303 K, F = -3853.583686149437, relative_change = 0.018337642212178325 Iter 3: T = 945.9687658774405 K, F = -3253.761292023103, relative_change = 0.0166729462052733 Iter 5: T = 919.1631447498794 K, F = -2316.486228852398, relative_change = 0.013489678685977557 Iter 10: T = 876.5395051656828 K, F = -983.6052535602533, relative_change = 0.007106734329236007 Iter 15: T = 856.328011643918 K, F = -414.5306831468894, relative_change = 0.0033381562971744184 Iter 20: T = 847.3498576510026 K, F = -173.97526850056724, relative_change = 0.0014722905997816024 Iter 25: T = 843.4925764670378 K, F = -72.87080694310518, relative_change = 0.0006301571695891467 Iter 30: T = 841.8605959010181 K, F = -30.495466127172875, relative_change = 0.00026615034369277204 Iter 35: T = 841.1747213569943 K, F = -12.757099635842906, relative_change = 0.00011177060535182965 Iter 40: T = 840.8872874289864 K, F = -5.335791247902831, relative_change = 4.682533911655933e-5 Iter 45: T = 840.7669750263059 K, F = -2.2316001901342903, relative_change = 1.9597213517311977e-5 Iter 50: T = 840.7166407069836 K, F = -0.9333008505375981, relative_change = 8.198292060544645e-6 Iter 55: T = 840.6955871020132 K, F = -0.3903208855849182, relative_change = 3.4290616787872773e-6 Iter 60: T = 840.6867816746322 K, F = -0.16323743716317063, relative_change = 1.434151171984048e-6 Iter 65: T = 840.6830990420759 K, F = -0.06826794736744302, relative_change = 5.997925504778214e-7 Iter 70: T = 840.6815589040785 K, F = -0.028550488659668805, relative_change = 2.508427518748565e-7 Iter 75: T = 840.6809147969872 K, F = -0.011940158430932435, relative_change = 1.0490584453458984e-7 Iter 80: T = 840.6806454231868 K, F = -0.00499351739545606, relative_change = 4.387294873850684e-8 Iter 85: T = 840.680532767755 K, F = -0.002088348704850418, relative_change = 1.8348203656557586e-8 Iter 90: T = 840.6804856538921 K, F = -0.000873372384349258, relative_change = 7.673440079628988e-9 Iter 95: T = 840.6804659503092 K, F = -0.0003652547632266856, relative_change = 3.2091246556620943e-9 Iter 100: T = 840.6804577100351 K, F = -0.00015275390488800333, relative_change = 1.3420943260865057e-9 Iter 105: T = 840.680454263854 K, F = -6.388350946862076e-5, relative_change = 5.61279905247656e-10 Iter 110: T = 840.6804528226198 K, F = -2.6716846937002714e-5, relative_change = 2.347339644370399e-10 Iter 115: T = 840.6804522198785 K, F = -1.1173303343881003e-5, relative_change = 9.81685378107856e-11 Iter 120: T = 840.6804519678049 K, F = -4.672810670625083e-6, relative_change = 4.105527054432065e-11 Iter 125: T = 840.6804518623846 K, F = -1.9542254636739642e-6, relative_change = 1.7169806529504746e-11 Iter 130: T = 840.6804518182967 K, F = -8.172790268989871e-7, relative_change = 7.180605839410219e-12 Iter 135: T = 840.6804517998586 K, F = -3.4179678753964993e-7, relative_change = 3.003023359191748e-12 Iter 140: T = 840.6804517921476 K, F = -1.4294512840073992e-7, relative_change = 1.2559145531437616e-12 Iter 145: T = 840.6804517889226 K, F = -5.977902040044114e-8, relative_change = 5.252179107810331e-13 Converged in 150 iterations to T = 840.6804517875739 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 1 ray tracing: 19%|█████▋ | ETA: 0:00:09 Bin 1 ray tracing: 29%|████████▋ | ETA: 0:00:08 Bin 1 ray tracing: 38%|███████████▌ | ETA: 0:00:06 Bin 1 ray tracing: 48%|██████████████▌ | ETA: 0:00:06 Bin 1 ray tracing: 58%|█████████████████▍ | ETA: 0:00:04 Bin 1 ray tracing: 68%|████████████████████▌ | ETA: 0:00:03 Bin 1 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:02 Bin 1 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:01 Bin 1 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 10%|███▏ | ETA: 0:00:09 Bin 2 ray tracing: 20%|██████▏ | ETA: 0:00:08 Bin 2 ray tracing: 30%|█████████▏ | ETA: 0:00:07 Bin 2 ray tracing: 40%|████████████ | ETA: 0:00:06 Bin 2 ray tracing: 50%|██████████████▉ | ETA: 0:00:05 Bin 2 ray tracing: 59%|█████████████████▊ | ETA: 0:00:04 Bin 2 ray tracing: 69%|████████████████████▊ | ETA: 0:00:03 Bin 2 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:02 Bin 2 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:01 Bin 2 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 10%|███ | ETA: 0:00:09 Bin 3 ray tracing: 20%|█████▉ | ETA: 0:00:08 Bin 3 ray tracing: 29%|████████▊ | ETA: 0:00:07 Bin 3 ray tracing: 39%|███████████▊ | ETA: 0:00:06 Bin 3 ray tracing: 49%|██████████████▋ | ETA: 0:00:05 Bin 3 ray tracing: 59%|█████████████████▋ | ETA: 0:00:04 Bin 3 ray tracing: 68%|████████████████████▌ | ETA: 0:00:03 Bin 3 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:02 Bin 3 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:01 Bin 3 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 10%|███▏ | ETA: 0:00:09 Bin 4 ray tracing: 21%|██████▎ | ETA: 0:00:09 Bin 4 ray tracing: 31%|█████████▍ | ETA: 0:00:07 Bin 4 ray tracing: 42%|████████████▌ | ETA: 0:00:06 Bin 4 ray tracing: 52%|███████████████▋ | ETA: 0:00:05 Bin 4 ray tracing: 63%|██████████████████▊ | ETA: 0:00:04 Bin 4 ray tracing: 73%|██████████████████████ | ETA: 0:00:03 Bin 4 ray tracing: 83%|█████████████████████████ | ETA: 0:00:02 Bin 4 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 10%|███ | ETA: 0:00:09 Bin 5 ray tracing: 20%|█████▉ | ETA: 0:00:08 Bin 5 ray tracing: 29%|████████▊ | ETA: 0:00:07 Bin 5 ray tracing: 38%|███████████▌ | ETA: 0:00:07 Bin 5 ray tracing: 48%|██████████████▍ | ETA: 0:00:06 Bin 5 ray tracing: 57%|█████████████████▏ | ETA: 0:00:05 Bin 5 ray tracing: 66%|████████████████████ | ETA: 0:00:04 Bin 5 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:03 Bin 5 ray tracing: 87%|██████████████████████████ | ETA: 0:00:01 Bin 5 ray tracing: 98%|█████████████████████████████▎| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 11%|███▎ | ETA: 0:00:08 Bin 6 ray tracing: 22%|██████▌ | ETA: 0:00:07 Bin 6 ray tracing: 32%|█████████▋ | ETA: 0:00:06 Bin 6 ray tracing: 43%|████████████▉ | ETA: 0:00:05 Bin 6 ray tracing: 54%|████████████████▎ | ETA: 0:00:04 Bin 6 ray tracing: 65%|███████████████████▋ | ETA: 0:00:03 Bin 6 ray tracing: 76%|███████████████████████ | ETA: 0:00:02 Bin 6 ray tracing: 88%|██████████████████████████▎ | ETA: 0:00:01 Bin 6 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 11%|███▍ | ETA: 0:00:08 Bin 7 ray tracing: 23%|██████▊ | ETA: 0:00:07 Bin 7 ray tracing: 34%|██████████▏ | ETA: 0:00:06 Bin 7 ray tracing: 45%|█████████████▌ | ETA: 0:00:05 Bin 7 ray tracing: 56%|████████████████▉ | ETA: 0:00:04 Bin 7 ray tracing: 67%|████████████████████▎ | ETA: 0:00:03 Bin 7 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:02 Bin 7 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:01 Bin 7 ray tracing: 99%|██████████████████████████████| ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 10%|███▏ | ETA: 0:00:09 Bin 8 ray tracing: 21%|██████▎ | ETA: 0:00:08 Bin 8 ray tracing: 32%|█████████▌ | ETA: 0:00:07 Bin 8 ray tracing: 42%|████████████▋ | ETA: 0:00:05 Bin 8 ray tracing: 53%|███████████████▉ | ETA: 0:00:05 Bin 8 ray tracing: 63%|███████████████████ | ETA: 0:00:03 Bin 8 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:02 Bin 8 ray tracing: 84%|█████████████████████████▍ | ETA: 0:00:02 Bin 8 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 10%|███ | ETA: 0:00:09 Bin 9 ray tracing: 21%|██████▎ | ETA: 0:00:08 Bin 9 ray tracing: 32%|█████████▌ | ETA: 0:00:07 Bin 9 ray tracing: 42%|████████████▋ | ETA: 0:00:06 Bin 9 ray tracing: 52%|███████████████▋ | ETA: 0:00:05 Bin 9 ray tracing: 62%|██████████████████▌ | ETA: 0:00:04 Bin 9 ray tracing: 72%|█████████████████████▊ | ETA: 0:00:03 Bin 9 ray tracing: 83%|█████████████████████████ | ETA: 0:00:02 Bin 9 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 10%|███ | ETA: 0:00:09 Bin 10 ray tracing: 21%|██████▏ | ETA: 0:00:08 Bin 10 ray tracing: 31%|█████████ | ETA: 0:00:07 Bin 10 ray tracing: 42%|████████████ | ETA: 0:00:06 Bin 10 ray tracing: 52%|███████████████▏ | ETA: 0:00:05 Bin 10 ray tracing: 62%|██████████████████ | ETA: 0:00:04 Bin 10 ray tracing: 72%|█████████████████████ | ETA: 0:00:03 Bin 10 ray tracing: 82%|███████████████████████▊ | ETA: 0:00:02 Bin 10 ray tracing: 90%|██████████████████████████▎ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2697097062683 K, F = -7457.627777970585, relative_change = 0.0327302902937318 Iter 2: T = 936.6123351775325 K, F = -6321.7132709040625, relative_change = 0.031694752995051985 Iter 3: T = 907.996653233863 K, F = -5357.312088615079, relative_change = 0.030552322309790488 Iter 5: T = 856.7529655247213 K, F = -3843.7408948195557, relative_change = 0.027951666326878528 Iter 10: T = 761.3820503792473 K, F = -1664.521712139635, relative_change = 0.020044723451393565 Iter 15: T = 705.4774905791229 K, F = -712.7308649719246, relative_change = 0.012029370212735712 Iter 20: T = 676.6972249513227 K, F = -302.0979537361618, relative_change = 0.00616713731878773 Iter 25: T = 663.2674719274547 K, F = -127.18203632609966, relative_change = 0.0028507848959253247 Iter 30: T = 657.3531929945303 K, F = -53.349315002826586, relative_change = 0.0012474264545040425 Iter 35: T = 654.82258711578 K, F = -22.340448163800357, relative_change = 0.000532011417158155 Iter 40: T = 653.7538364010933 K, F = -9.3482216122176, relative_change = 0.00022435188397487604 Iter 45: T = 653.3050171018737 K, F = -3.9104501703948507, relative_change = 9.41556653164507e-5 Iter 50: T = 653.1169886544862 K, F = -1.6355569862628911, relative_change = 3.943486779106094e-5 Iter 55: T = 653.0382955662293 K, F = -0.6840374872645665, relative_change = 1.6502271493252002e-5 Iter 60: T = 653.0053751339376 K, F = -0.28607755003886376, relative_change = 6.903221910824382e-6 Iter 65: T = 652.9916056585114 K, F = -0.11964190574791128, relative_change = 2.8873203927819043e-6 Iter 70: T = 652.9858467919896 K, F = -0.05003582385120625, relative_change = 1.2075661937116336e-6 Iter 75: T = 652.9834383114556 K, F = -0.02092560532804577, relative_change = 5.050281053881887e-7 Iter 80: T = 652.9824310467267 K, F = -0.008751342639608861, relative_change = 2.1121044684369572e-7 Iter 85: T = 652.9820097949428 K, F = -0.003659916807105368, relative_change = 8.833102191687158e-8 Iter 90: T = 652.9818336221281 K, F = -0.001530621056452186, relative_change = 3.694113906893449e-8 Iter 95: T = 652.9817599445028 K, F = -0.0006401240284841236, relative_change = 1.5449234388246045e-8 Iter 100: T = 652.9817291316311 K, F = -0.00026770751796600933, relative_change = 6.461055885570796e-9 Iter 105: T = 652.9817162453188 K, F = -0.00011195848131356767, relative_change = 2.702090991288767e-9 Iter 110: T = 652.9817108561087 K, F = -4.6822374214050555e-5, relative_change = 1.130046773067524e-9 Iter 115: T = 652.9817086022767 K, F = -1.9581675058999437e-5, relative_change = 4.725990393856582e-10 Iter 120: T = 652.9817076596972 K, F = -8.189290407023542e-6, relative_change = 1.9764656468596203e-10 Iter 125: T = 652.9817072654992 K, F = -3.424858115830265e-6, relative_change = 8.265813146590871e-11 Iter 130: T = 652.981707100641 K, F = -1.432316397931288e-6, relative_change = 3.456861372331337e-11 Iter 135: T = 652.9817070316952 K, F = -5.990125156452031e-7, relative_change = 1.4457023817562954e-11 Iter 140: T = 652.9817070028613 K, F = -2.5051420071697805e-7, relative_change = 6.046100327742803e-12 Iter 145: T = 652.9817069908026 K, F = -1.0476802309034028e-7, relative_change = 2.528551183870015e-12 Iter 150: T = 652.9817069857595 K, F = -4.381514034923484e-8, relative_change = 1.0574679347536266e-12 Iter 155: T = 652.9817069836504 K, F = -1.8322963590833297e-8, relative_change = 4.422203446759178e-13 Converged in 159 iterations to T = 652.9817069828891 K Iter 1: T = 970.3124345898362 K, F = -6764.340018871021, relative_change = 0.02968756541016373 Iter 2: T = 942.7885703828958 K, F = -5729.288283258908, relative_change = 0.028365981127073912 Iter 3: T = 917.3838387585844 K, F = -4850.868433082952, relative_change = 0.026946372094852462 Iter 5: T = 872.7167383018003 K, F = -3473.2902214797264, relative_change = 0.023857667887374867 Iter 10: T = 793.3943120328315 K, F = -1495.0783019723833, relative_change = 0.015551913141583489 Iter 15: T = 750.1436094291375 K, F = -636.4523962801131, relative_change = 0.008523299139113486 Iter 20: T = 729.1376263901135 K, F = -268.6590844453093, relative_change = 0.0041030036992987535 Iter 25: T = 719.680107821545 K, F = -112.84755415104924, relative_change = 0.0018324179131451173 Iter 30: T = 715.5903691722199 K, F = -47.28502870062594, relative_change = 0.0007888047665565383 Iter 35: T = 713.8550083279721 K, F = -19.791443503185082, relative_change = 0.00033398808819954447 Iter 40: T = 713.1247748312891 K, F = -8.279895195876204, relative_change = 0.00014040814822788964 Iter 45: T = 712.8185893421996 K, F = -3.463256487112414, relative_change = 5.884908461226801e-5 Iter 50: T = 712.6903995503051 K, F = -1.4484637866540853, relative_change = 2.4633975820787543e-5 Iter 55: T = 712.6367646260106 K, F = -0.6057803556517578, relative_change = 1.0306178491319387e-5 Iter 60: T = 712.6143295851423 K, F = -0.25334729138926027, relative_change = 4.310859157387056e-6 Iter 65: T = 712.6049462351651 K, F = -0.10595333726314149, relative_change = 1.802973882380786e-6 Iter 70: T = 712.6010218753074 K, F = -0.04431103396172875, relative_change = 7.540463921754909e-7 Iter 75: T = 712.5993806382638 K, F = -0.018531418096124463, relative_change = 3.153549113590798e-7 Iter 80: T = 712.5986942493292 K, F = -0.007750062896828225, relative_change = 1.3188583806717073e-7 Iter 85: T = 712.5984071925794 K, F = -0.0032411693018009613, relative_change = 5.515634585472474e-8 Iter 90: T = 712.5982871418961 K, F = -0.0013554957869535977, relative_change = 2.3067062358292e-8 Iter 95: T = 712.5982369352454 K, F = -0.0005668845412227785, relative_change = 9.64692444982151e-9 Iter 100: T = 712.5982159382206 K, F = -0.0002370778868853174, relative_change = 4.034459608694928e-9 Iter 105: T = 712.5982071570133 K, F = -9.914880471917353e-5, relative_change = 1.6872593079601696e-9 Iter 110: T = 712.5982034846076 K, F = -4.14652139487659e-5, relative_change = 7.056320054127333e-10 Iter 115: T = 712.5982019487635 K, F = -1.734124699481754e-5, relative_change = 2.951037231833837e-10 Iter 120: T = 712.5982013064553 K, F = -7.252317512973505e-6, relative_change = 1.234159175295031e-10 Iter 125: T = 712.5982010378342 K, F = -3.0330051437044148e-6, relative_change = 5.161399961931943e-11 Iter 130: T = 712.5982009254938 K, F = -1.2684384640415658e-6, relative_change = 2.1585582400084546e-11 Iter 135: T = 712.5982008785116 K, F = -5.304763848190674e-7, relative_change = 9.02735295721064e-12 Iter 140: T = 712.598200858863 K, F = -2.2185000347896278e-7, relative_change = 3.775320339488815e-12 Iter 145: T = 712.5982008506458 K, F = -9.27798354810605e-8, relative_change = 1.5788757922580776e-12 Iter 150: T = 712.5982008472092 K, F = -3.880080468032787e-8, relative_change = 6.602905783748215e-13 Iter 155: T = 712.598200845772 K, F = -1.622575562798545e-8, relative_change = 2.761209118352588e-13 Converged in 157 iterations to T = 712.5982008454679 K Iter 1: T = 974.5158864872208 K, F = -5806.579505536937, relative_change = 0.025484113512779183 Iter 2: T = 951.2202534000027 K, F = -4912.436527897307, relative_change = 0.023904826396612684 Iter 3: T = 930.0375314392533 K, F = -4154.179720683556, relative_change = 0.0222689980422881 Iter 5: T = 893.6539312705794 K, F = -2966.6795210318137, relative_change = 0.018912762173373298 Iter 10: T = 832.4385935942419 K, F = -1268.3911585360522, relative_change = 0.011086450039739548 Iter 15: T = 801.4099821020595 K, F = -537.0160708765915, relative_change = 0.005586518464876074 Iter 20: T = 787.0749261937375 K, F = -225.93588424184478, relative_change = 0.002557247315559279 Iter 25: T = 780.7948772506138 K, F = -94.74403016002672, relative_change = 0.001113693994795875 Iter 30: T = 778.1142864394234 K, F = -39.66923210372948, relative_change = 0.00047397263734611216 Iter 35: T = 776.9833973365671 K, F = -16.59833773205089, relative_change = 0.00019969485587485072 Iter 40: T = 776.50869887256 K, F = -6.943064667862068, relative_change = 8.377537226212086e-5 Iter 45: T = 776.3098667039392 K, F = -2.903925361399899, relative_change = 3.508164924981703e-5 Iter 50: T = 776.226658767121 K, F = -1.2145005297030762, relative_change = 1.4679588441102126e-5 Iter 55: T = 776.1918507674636 K, F = -0.5079263709161892, relative_change = 6.140583688990787e-6 Iter 60: T = 776.1772919932594 K, F = -0.2124222291076805, relative_change = 2.5683111621678045e-6 Iter 65: T = 776.1712030508401 K, F = -0.08883775004205119, relative_change = 1.0741413843543865e-6 Iter 70: T = 776.1686565318215 K, F = -0.03715304945821751, relative_change = 4.4922627327779746e-7 Iter 75: T = 776.167591538309 K, F = -0.01553785622878956, relative_change = 1.8787310733272084e-7 Iter 80: T = 776.1671461437561 K, F = -0.006498118302191602, relative_change = 7.857100714351807e-8 Iter 85: T = 776.1669598741645 K, F = -0.002717590898522082, relative_change = 3.285937373711332e-8 Iter 90: T = 776.1668819739492 K, F = -0.0011365290055083133, relative_change = 1.3742189533173303e-8 Iter 95: T = 776.1668493951407 K, F = -0.00047531000981515525, relative_change = 5.7471490086056e-9 Iter 100: T = 776.1668357702926 K, F = -0.00019878032343956242, relative_change = 2.4035265630365836e-9 Iter 105: T = 776.166830072218 K, F = -8.313230517664749e-5, relative_change = 1.0051835476733576e-9 Iter 110: T = 776.1668276892152 K, F = -3.476692438986184e-5, relative_change = 4.2037978901813485e-10 Iter 115: T = 776.1668266926149 K, F = -1.453994264477565e-5, relative_change = 1.758078451281131e-10 Iter 120: T = 776.1668262758247 K, F = -6.080776508321506e-6, relative_change = 7.352492671290005e-11 Iter 125: T = 776.1668261015182 K, F = -2.5430541683579833e-6, relative_change = 3.0749012284780225e-11 Iter 130: T = 776.166826028621 K, F = -1.0635355052190931e-6, relative_change = 1.2859602731553775e-11 Iter 135: T = 776.1668259981346 K, F = -4.4478289240590385e-7, relative_change = 5.378035120720035e-12 Iter 140: T = 776.1668259853849 K, F = -1.8601525453298962e-7, relative_change = 2.249179518877236e-12 Iter 145: T = 776.1668259800527 K, F = -7.779417476871942e-8, relative_change = 9.406382558396674e-13 Iter 150: T = 776.1668259778228 K, F = -3.2535263483346455e-8, relative_change = 3.9339595268749245e-13 Converged in 154 iterations to T = 776.1668259770179 K Iter 1: T = 970.356550948343 K, F = -6754.288064619764, relative_change = 0.029643449051656962 Iter 2: T = 942.8776655728535 K, F = -5720.705730656981, relative_change = 0.02831833860309805 Iter 3: T = 917.5185093742656 K, F = -4843.538808260055, relative_change = 0.02689548933496139 Iter 5: T = 872.9429848615338 K, F = -3467.9428026514606, relative_change = 0.02380171049229479 Iter 10: T = 793.8327529576497 K, F = -1492.6578163263325, relative_change = 0.015495986238645945 Iter 15: T = 750.7368045881719 K, F = -635.377310005194, relative_change = 0.008483409190378426 Iter 20: T = 729.82001919633 K, F = -268.19299508253164, relative_change = 0.004080951875115758 Iter 25: T = 720.4062990343282 K, F = -112.6490752929786, relative_change = 0.0018219085109859793 Iter 30: T = 716.3362709618953 K, F = -47.201336867148854, relative_change = 0.0007841492527013369 Iter 35: T = 714.609420670331 K, F = -19.756317399074188, relative_change = 0.00033199256662519785 Iter 40: T = 713.8827950618954 K, F = -8.265182739601705, relative_change = 0.00013956487559749266 Iter 45: T = 713.5781270940419 K, F = -3.4570996315273734, relative_change = 5.849487491944008e-5 Iter 50: T = 713.450573473069 K, F = -1.445888226399905, relative_change = 2.4485569922356186e-5 Iter 55: T = 713.3972048706522 K, F = -0.6047031047971216, relative_change = 1.0244065847851942e-5 Iter 60: T = 713.3748812556364 K, F = -0.2528967510763647, relative_change = 4.284874589014414e-6 Iter 65: T = 713.3655445134822 K, F = -0.10576491222504159, relative_change = 1.7921053700296554e-6 Iter 70: T = 713.3616396470073 K, F = -0.04423223171452206, relative_change = 7.495007959171213e-7 Iter 75: T = 713.3600065625801 K, F = -0.018498461944101874, relative_change = 3.134538442176939e-7 Iter 80: T = 713.3593235832108 K, F = -0.0077362802193853275, relative_change = 1.310907812738532e-7 Iter 85: T = 713.3590379523897 K, F = -0.0032354052173036996, relative_change = 5.482384223410025e-8 Iter 90: T = 713.3589184980483 K, F = -0.0013530851788386977, relative_change = 2.2928005159787406e-8 Iter 95: T = 713.3588685407948 K, F = -0.0005658763942668621, relative_change = 9.588768997314707e-9 Iter 100: T = 713.3588476480711 K, F = -0.00023665626841418153, relative_change = 4.010138307607818e-9 Iter 105: T = 713.3588389104838 K, F = -9.89724768499789e-5, relative_change = 1.677087814407124e-9 Iter 110: T = 713.3588352563204 K, F = -4.139147137660615e-5, relative_change = 7.013781625805822e-10 Iter 115: T = 713.3588337281057 K, F = -1.7310407358306357e-5, relative_change = 2.9332472189399163e-10 Iter 120: T = 713.3588330889879 K, F = -7.239418848725698e-6, relative_change = 1.226718982159422e-10 Iter 125: T = 713.3588328217013 K, F = -3.027610126493663e-6, relative_change = 5.13028310280349e-11 Iter 130: T = 713.3588327099188 K, F = -1.2661827404336634e-6, relative_change = 2.14554571155355e-11 Iter 135: T = 713.3588326631701 K, F = -5.29532799831145e-7, relative_change = 8.972929355916062e-12 Iter 140: T = 713.3588326436192 K, F = -2.2145780309568153e-7, relative_change = 3.752600827346031e-12 Iter 145: T = 713.3588326354428 K, F = -9.261703981522373e-8, relative_change = 1.5693950513261126e-12 Iter 150: T = 713.3588326320233 K, F = -3.8732860030421534e-8, relative_change = 6.563280253624141e-13 Iter 155: T = 713.3588326305934 K, F = -1.619986333967205e-8, relative_change = 2.745065638999672e-13 Converged in 157 iterations to T = 713.3588326302907 K Iter 1: T = 969.3640357954039 K, F = -6980.433586342607, relative_change = 0.03063596420459616 Iter 2: T = 940.8701083420201 K, F = -5913.841569923978, relative_change = 0.0293944549221937 Iter 3: T = 914.47892304465 K, F = -5008.529772948928, relative_change = 0.0280497648542328 Iter 5: T = 867.8177563252844 K, F = -3588.408854230612, relative_change = 0.025083290353248487 Iter 10: T = 783.8014890627724 K, F = -1547.350961457144, relative_change = 0.01681177366705884 Iter 15: T = 737.0489452960086 K, F = -659.7588319948753, relative_change = 0.009444944836709135 Iter 20: T = 713.9887791618671 K, F = -278.79360100046824, relative_change = 0.004621107411456642 Iter 25: T = 703.511983355369 K, F = -117.17069349328524, relative_change = 0.0020815336738747832 Iter 30: T = 698.9611311257239 K, F = -49.10948276912802, relative_change = 0.0008996172049191917 Iter 35: T = 697.0261984712673 K, F = -20.55746825284969, relative_change = 0.0003815726810493835 Iter 40: T = 696.2112729947848 K, F = -8.600794000153615, relative_change = 0.00016053217145030042 Iter 45: T = 695.8694494382255 K, F = -3.5975551056727806, relative_change = 6.730478069793054e-5 Iter 50: T = 695.7263168035824 K, F = -1.5046457304590317, relative_change = 2.8177209049417247e-5 Iter 55: T = 695.666425834889 K, F = -0.6292792332384515, relative_change = 1.1789220922600011e-5 Iter 60: T = 695.6413732560087 K, F = -0.2631753132596729, relative_change = 4.931298783017092e-6 Iter 65: T = 695.6308950129066 K, F = -0.11006362271098974, relative_change = 2.062486511131925e-6 Iter 70: T = 695.6265127193734 K, F = -0.04603002005037948, relative_change = 8.625842094612602e-7 Iter 75: T = 695.624679962649 K, F = -0.019250321340012144, relative_change = 3.607478660966593e-7 Iter 80: T = 695.6239134767864 K, F = -0.008050717296971932, relative_change = 1.5086991382193565e-7 Iter 85: T = 695.6235929223506 K, F = -0.0033669066461370356, relative_change = 6.309574802883664e-8 Iter 90: T = 695.6234588625009 K, F = -0.001408080660381228, relative_change = 2.638742127668961e-8 Iter 95: T = 695.6234027970435 K, F = -0.0005888761648784602, relative_change = 1.103553925741558e-8 Iter 100: T = 695.6233793497948 K, F = -0.00024627504868790506, relative_change = 4.61519512278418e-9 Iter 105: T = 695.6233695438746 K, F = -0.00010299516833767175, relative_change = 1.9301298812757446e-9 Iter 110: T = 695.6233654429215 K, F = -4.30738094584493e-5, relative_change = 8.072033903291178e-10 Iter 115: T = 695.6233637278539 K, F = -1.8013981180398098e-5, relative_change = 3.375820953765147e-10 Iter 120: T = 695.6233630105921 K, F = -7.5336635469991364e-6, relative_change = 1.4118089238986707e-10 Iter 125: T = 695.6233627106245 K, F = -3.150666675000302e-6, relative_change = 5.904350930165739e-11 Iter 130: T = 695.6233625851746 K, F = -1.3176467903441846e-6, relative_change = 2.4692707485084324e-11 Iter 135: T = 695.62336253271 K, F = -5.510551271958875e-7, relative_change = 1.032677586178902e-11 Iter 140: T = 695.6233625107686 K, F = -2.304587928270152e-7, relative_change = 4.318798940082194e-12 Iter 145: T = 695.6233625015925 K, F = -9.637965492359513e-8, relative_change = 1.8061552195497695e-12 Iter 150: T = 695.623362497755 K, F = -4.030888545170086e-8, relative_change = 7.553887167623796e-13 Iter 155: T = 695.6233624961501 K, F = -1.6858202167568948e-8, relative_change = 3.1592279368972767e-13 Converged in 158 iterations to T = 695.6233624956801 K Iter 1: T = 963.5152144594064 K, F = -8313.093091415038, relative_change = 0.0364847855405936 Iter 2: T = 928.9050597595607 K, F = -7054.026339881291, relative_change = 0.03592071425593852 Iter 3: T = 896.1357954306111 K, F = -5984.743078666787, relative_change = 0.035277302006979684 Iter 5: T = 836.0005040164756 K, F = -4305.52419164965, relative_change = 0.03372306674418272 Iter 10: T = 715.9372807705082 K, F = -1881.7735019166585, relative_change = 0.02804957340425352 Iter 15: T = 635.876159802453 K, F = -815.0166084746805, relative_change = 0.020162209276991503 Iter 20: T = 588.8581338132204 K, F = -349.03616217073835, relative_change = 0.01212953496407973 Iter 25: T = 564.6131428365929 K, F = -147.9600737610097, relative_change = 0.00622993213364476 Iter 30: T = 553.2875613090604 K, F = -62.2949430908157, relative_change = 0.0028828637453714844 Iter 35: T = 548.2970983690894 K, F = -26.1318852601303, relative_change = 0.0012621158681381849 Iter 40: T = 546.161208401742 K, F = -10.943102480308285, relative_change = 0.0005384010863210419 Iter 45: T = 545.2590527555365 K, F = -4.579103625326423, relative_change = 0.00022706912779532425 Iter 50: T = 544.8801757633406 K, F = -1.915488073074576, relative_change = 9.530006755578529e-5 Iter 55: T = 544.7214456199355 K, F = -0.8011593232828149, relative_change = 3.9914883825750255e-5 Iter 60: T = 544.6550137810135 K, F = -0.33506829001424643, relative_change = 1.6703267933463464e-5 Iter 65: T = 544.627222611595 K, F = -0.14013199162267495, relative_change = 6.987324457440096e-6 Iter 70: T = 544.6155985109888 K, F = -0.05860529772569917, relative_change = 2.9225006833329826e-6 Iter 75: T = 544.6107369105922 K, F = -0.024509509792287942, relative_change = 1.2222803411405002e-6 Iter 80: T = 544.6087036852956 K, F = -0.01025018271002015, relative_change = 5.111819701842938e-7 Iter 85: T = 544.6078533581576 K, F = -0.004286751096778424, relative_change = 2.137841072907525e-7 Iter 90: T = 544.6074977397877 K, F = -0.001792770900576418, relative_change = 8.940736454757247e-8 Iter 95: T = 544.6073490156926 K, F = -0.0007497582697154059, relative_change = 3.739127965177545e-8 Iter 100: T = 544.6072868174571 K, F = -0.0003135578743964085, relative_change = 1.56374887973407e-8 Iter 105: T = 544.6072608054046 K, F = -0.000131133650099452, relative_change = 6.539786170649481e-9 Iter 110: T = 544.6072499268523 K, F = -5.484165900615512e-5, relative_change = 2.7350169615440414e-9 Iter 115: T = 544.6072453773116 K, F = -2.2935437018173355e-5, relative_change = 1.143816815477649e-9 Iter 120: T = 544.6072434746393 K, F = -9.591873538772333e-6, relative_change = 4.783578538038675e-10 Iter 125: T = 544.607242678919 K, F = -4.011435623785253e-6, relative_change = 2.000549466439116e-10 Iter 130: T = 544.6072423461393 K, F = -1.6776308369714776e-6, relative_change = 8.366539564161361e-11 Iter 135: T = 544.6072422069668 K, F = -7.016052705199893e-7, relative_change = 3.498986864099346e-11 Iter 140: T = 544.6072421487632 K, F = -2.9341985249842217e-7, relative_change = 1.4633188392661477e-11 Iter 145: T = 544.6072421244219 K, F = -1.227119899582796e-7, relative_change = 6.119789278708199e-12 Iter 150: T = 544.6072421142419 K, F = -5.131921171352971e-8, relative_change = 2.5593486159823613e-12 Iter 155: T = 544.6072421099846 K, F = -2.1462150778805977e-8, relative_change = 1.070342354446273e-12 Iter 160: T = 544.6072421082041 K, F = -8.975692022961113e-9, relative_change = 4.4762817258172454e-13 Converged in 165 iterations to T = 544.6072421074595 K Iter 1: T = 966.9010728250685 K, F = -7541.622042016155, relative_change = 0.03309892717493157 Iter 2: T = 935.8598415299244 K, F = -6393.552104102603, relative_change = 0.03210383375048755 Iter 3: T = 906.8458998456902 K, F = -5418.792888332095, relative_change = 0.031002443311172374 Iter 5: T = 854.7689200097676 K, F = -3888.846949668902, relative_change = 0.028481010438218723 Iter 10: T = 757.2416228013245 K, F = -1685.4157856464353, relative_change = 0.020689312085624398 Iter 15: T = 699.4784222217376 K, F = -722.3046914488865, relative_change = 0.012586113692170187 Iter 20: T = 669.468317240691 K, F = -306.3612608418625, relative_change = 0.006519407733758203 Iter 25: T = 655.3799370126095 K, F = -129.02764825731327, relative_change = 0.003031690119174962 Iter 30: T = 649.1556389395961 K, F = -54.1340100264517, relative_change = 0.0013304778788599343 Iter 35: T = 646.4883646960054 K, F = -22.671029102242535, relative_change = 0.0005681789238483158 Iter 40: T = 645.3611474039106 K, F = -9.486909678930532, relative_change = 0.00023973992138692128 Iter 45: T = 644.8876409675266 K, F = -3.968528296812591, relative_change = 0.00010063789100955605 Iter 50: T = 644.6892463429745 K, F = -1.6598595157799076, relative_change = 4.215405671408028e-5 Iter 55: T = 644.6062106618267 K, F = -0.69420347312592, relative_change = 1.7640915619218862e-5 Iter 60: T = 644.5714728199403 K, F = -0.2903295030144966, relative_change = 7.379669892016093e-6 Iter 65: T = 644.556943057104 K, F = -0.12142019609928595, relative_change = 3.0866209760867676e-6 Iter 70: T = 644.5508661899381 K, F = -0.05077953885477626, relative_change = 1.2909238361314592e-6 Iter 75: T = 644.5483247108502 K, F = -0.02123663805325038, relative_change = 5.398906240303947e-7 Iter 80: T = 644.5472618233332 K, F = -0.008881420631633052, relative_change = 2.257906058989254e-7 Iter 85: T = 644.5468173092241 K, F = -0.0037143170446256035, relative_change = 9.442866006326123e-8 Iter 90: T = 644.5466314077905 K, F = -0.0015533718973656518, relative_change = 3.9491251422053466e-8 Iter 95: T = 644.5465536615342 K, F = -0.0006496387047433272, relative_change = 1.651572311772428e-8 Iter 100: T = 644.5465211471113 K, F = -0.0002716866695394726, relative_change = 6.907074430452887e-9 Iter 105: T = 644.5465075491896 K, F = -0.00011362261039959964, relative_change = 2.888621319441457e-9 Iter 110: T = 644.5465018623761 K, F = -4.751833253552329e-5, relative_change = 1.2080559820758728e-9 Iter 115: T = 644.5464994840827 K, F = -1.9872733689307864e-5, relative_change = 5.052234359733175e-10 Iter 120: T = 644.5464984894521 K, F = -8.311014870199251e-6, relative_change = 2.1129048401910745e-10 Iter 125: T = 644.5464980734856 K, F = -3.4757657834116884e-6, relative_change = 8.836420683157753e-11 Iter 130: T = 644.5464978995234 K, F = -1.453605753098941e-6, relative_change = 3.695494103672894e-11 Iter 135: T = 644.5464978267704 K, F = -6.079153864746445e-7, relative_change = 1.5455000247948632e-11 Iter 140: T = 644.5464977963442 K, F = -2.5423725302786693e-7, relative_change = 6.463460042116287e-12 Iter 145: T = 644.5464977836198 K, F = -1.0632624120043843e-7, relative_change = 2.7031263251444847e-12 Iter 150: T = 644.5464977782982 K, F = -4.446759477305662e-8, relative_change = 1.1304972760678751e-12 Iter 155: T = 644.5464977760726 K, F = -1.8597283102383955e-8, relative_change = 4.727977305080727e-13 Converged in 160 iterations to T = 644.5464977751418 K Iter 1: T = 965.1307067464943 K, F = -7945.00163707217, relative_change = 0.034869293253505705 Iter 2: T = 932.233169010033 K, F = -6738.74904179511, relative_change = 0.0340860958070236 Iter 3: T = 901.2778776669152 K, F = -5714.426963869116, relative_change = 0.033205524510557964 Iter 5: T = 845.0811893177677 K, F = -4106.16966880932, relative_change = 0.031133081606201988 Iter 10: T = 736.4349105522705 K, F = -1787.021294686495, relative_change = 0.0241751159155817 Iter 15: T = 668.3815679564741 K, F = -769.5704778828643, relative_change = 0.01587146696710628 Iter 20: T = 631.0834055610459 K, F = -327.73658774143416, relative_change = 0.008752754392284675 Iter 25: T = 612.8986248848964 K, F = -138.38047778328348, relative_change = 0.00423041751367411 Iter 30: T = 604.6930394225849 K, F = -58.13338308157545, relative_change = 0.0018932839428167443 Iter 35: T = 601.1407922248774 K, F = -24.360437886357122, relative_change = 0.0008157972175890293 Iter 40: T = 599.6327576660236 K, F = -10.196501079559932, relative_change = 0.00034556361140501105 Iter 45: T = 598.9980472984623 K, F = -4.2658322298161355, relative_change = 0.0001453007696905496 Iter 50: T = 598.7318904831359 K, F = -1.7842914517431325, relative_change = 6.090436825066045e-5 Iter 55: T = 598.6204551555529 K, F = -0.7462592142582496, relative_change = 2.5495124846214647e-5 Iter 60: T = 598.5738295993292 K, F = -0.31210278103746975, relative_change = 1.0666602567860938e-5 Iter 65: T = 598.5543263888212 K, F = -0.13052655641748734, relative_change = 4.4616420473159555e-6 Iter 70: T = 598.5461692403508 K, F = -0.05458801765960042, relative_change = 1.866041702313663e-6 Iter 75: T = 598.5427577057325 K, F = -0.022829405143623527, relative_change = 7.80423614620166e-7 Iter 80: T = 598.5413309406239 K, F = -0.009547537607054957, relative_change = 3.2638644436146725e-7 Iter 85: T = 598.5407342468154 K, F = -0.003992895602036695, relative_change = 1.36499403022767e-7 Iter 90: T = 598.5404847017089 K, F = -0.0016698768629447858, relative_change = 5.7085801902742653e-8 Iter 95: T = 598.540380338855 K, F = -0.0006983624884226991, relative_change = 2.3873985351520524e-8 Iter 100: T = 598.5403366930439 K, F = -0.0002920635400630034, relative_change = 9.984389501852412e-9 Iter 105: T = 598.540318439841 K, F = -0.00012214446171771032, relative_change = 4.175591578757274e-9 Iter 110: T = 598.5403108061331 K, F = -5.1082273732516725e-5, relative_change = 1.7462824099697476e-9 Iter 115: T = 598.5403076136251 K, F = -2.136321676055042e-5, relative_change = 7.3031617175112e-10 Iter 120: T = 598.5403062784801 K, F = -8.934352509926136e-6, relative_change = 3.054269525303046e-10 Iter 125: T = 598.5403057201065 K, F = -3.7364529852368378e-6, relative_change = 1.2773320197007954e-10 Iter 130: T = 598.5403054865881 K, F = -1.5626296210879964e-6, relative_change = 5.341956292619042e-11 Iter 135: T = 598.5403053889278 K, F = -6.535103168059386e-7, relative_change = 2.2340697403612274e-11 Iter 140: T = 598.5403053480852 K, F = -2.733064641824434e-7, relative_change = 9.343168515804682e-12 Iter 145: T = 598.5403053310043 K, F = -1.143005005088682e-7, relative_change = 3.9074408321618835e-12 Iter 150: T = 598.5403053238608 K, F = -4.780224854838977e-8, relative_change = 1.6341525804889247e-12 Iter 155: T = 598.5403053208734 K, F = -1.9991205746361373e-8, relative_change = 6.834130496017898e-13 Iter 160: T = 598.5403053196239 K, F = -8.360719783162551e-9, relative_change = 2.8581692752443904e-13 Converged in 162 iterations to T = 598.5403053193595 K Iter 1: T = 980.0994727045843 K, F = -4534.354074548994, relative_change = 0.019900527295415724 Iter 2: T = 962.2444975996522 K, F = -3830.225190207263, relative_change = 0.01821751322410296 Iter 3: T = 946.3144758795876 K, F = -3233.9308781597315, relative_change = 0.016555066575909258 Iter 5: T = 919.7070109459279 K, F = -2302.219460402246, relative_change = 0.013380822080546114 Iter 10: T = 877.445319909519 K, F = -977.417339743704, relative_change = 0.007034946583494484 Iter 15: T = 857.4299234731536 K, F = -411.88951225750134, relative_change = 0.0033003720534609637 Iter 20: T = 848.5448166245832 K, F = -172.85974661051455, relative_change = 0.0014547308576343505 Iter 25: T = 844.7287247633634 K, F = -72.40222019100568, relative_change = 0.0006224677865144608 Iter 30: T = 843.1143984653332 K, F = -30.29912510233645, relative_change = 0.00026287093714572935 Iter 35: T = 842.4359844826238 K, F = -12.6749214359014, relative_change = 0.00011038774911246215 Iter 40: T = 842.1516843589293 K, F = -5.301411726318685, relative_change = 4.6245005456721116e-5 Iter 45: T = 842.0326849618062 K, F = -2.2172202268958148, relative_change = 1.9354158740474438e-5 Iter 50: T = 841.9829001798014 K, F = -0.9272866215904001, relative_change = 8.096581932303984e-6 Iter 55: T = 841.962076471906 K, F = -0.38780560082200544, relative_change = 3.3865144867524477e-6 Iter 60: T = 841.9533672031764 K, F = -0.16218550411913357, relative_change = 1.4163555383659525e-6 Iter 65: T = 841.9497247875818 K, F = -0.06782801449746101, relative_change = 5.923498734216122e-7 Iter 70: T = 841.9482014691941 K, F = -0.028366503145206945, relative_change = 2.4773007762410147e-7 Iter 75: T = 841.9475643963337 K, F = -0.011863213432028896, relative_change = 1.036040768675445e-7 Iter 80: T = 841.9472979643449 K, F = -0.004961338065426979, relative_change = 4.332853216445351e-8 Iter 85: T = 841.9471865392161 K, F = -0.0020748909223506917, relative_change = 1.812052182906542e-8 Iter 90: T = 841.9471399398808 K, F = -0.0008677441786875129, relative_change = 7.578220766317317e-9 Iter 95: T = 841.9471204514796 K, F = -0.00036290097955427036, relative_change = 3.1693027853270897e-9 Iter 100: T = 841.947112301197 K, F = -0.00015176952288653567, relative_change = 1.3254403291296e-9 Iter 105: T = 841.9471088926514 K, F = -6.347182539223617e-5, relative_change = 5.543149715431653e-10 Iter 110: T = 841.9471074671569 K, F = -2.654467620355483e-5, relative_change = 2.3182114996823591e-10 Iter 115: T = 841.9471068709981 K, F = -1.1101301881089043e-5, relative_change = 9.695038497211606e-11 Iter 120: T = 841.9471066216774 K, F = -4.642697397860829e-6, relative_change = 4.054581214776591e-11 Iter 125: T = 841.9471065174084 K, F = -1.94162969213707e-6, relative_change = 1.695672710450781e-11 Iter 130: T = 841.9471064738019 K, F = -8.120118641929963e-7, relative_change = 7.091498263494162e-12 Iter 135: T = 841.9471064555652 K, F = -3.395919265791747e-7, relative_change = 2.9657393741094887e-12 Iter 140: T = 841.9471064479384 K, F = -1.4201996045848375e-7, relative_change = 1.2402950591381747e-12 Iter 145: T = 841.9471064447488 K, F = -5.9396039198134076e-8, relative_change = 5.187201412627288e-13 Converged in 150 iterations to T = 841.9471064434148 K Iter 1: T = 976.3617147933402 K, F = -5386.005770151621, relative_change = 0.023638285206659768 Iter 2: T = 954.8865849415872 K, F = -4554.317796453957, relative_change = 0.02199505524066809 Iter 3: T = 935.4836023951265 K, F = -3849.3143982484166, relative_change = 0.02031967235946416 Iter 5: T = 902.4755155582199 K, F = -2745.9921721842093, relative_change = 0.016965456733556015 Iter 10: T = 848.0708588868757 K, F = -1171.0664587964075, relative_change = 0.009560557411518617 Iter 15: T = 821.1843667734172 K, F = -494.92301431498083, relative_change = 0.004687307708057582 Iter 20: T = 808.955042852294 K, F = -208.02016027628142, relative_change = 0.0021136762486497073 Iter 25: T = 803.6398624658485 K, F = -87.18999853187707, relative_change = 0.000913980225033526 Iter 30: T = 801.3793586124574 K, F = -36.49870876620157, relative_change = 0.000387752728740376 Iter 35: T = 800.427205549304 K, F = -15.270358221223711, relative_change = 0.0001631480102714778 Iter 40: T = 800.0278020426015 K, F = -6.387329484095499, relative_change = 6.840429765424417e-5 Iter 45: T = 799.8605554052704 K, F = -2.671447349003797, relative_change = 2.863801486704138e-5 Iter 50: T = 799.7905738201144 K, F = -1.117264424677271, relative_change = 1.198210629186059e-5 Iter 55: T = 799.7613002002491 K, F = -0.4672591410907888, relative_change = 5.011995663063955e-6 Iter 60: T = 799.7490564881036 K, F = -0.1954143703627249, relative_change = 2.09624014441577e-6 Iter 65: T = 799.7439358229681 K, F = -0.08172480135126081, relative_change = 8.767012976400664e-7 Iter 70: T = 799.7417942649357 K, F = -0.03417831904138313, relative_change = 3.6665196116408043e-7 Iter 75: T = 799.7408986337184 K, F = -0.014293786637582295, relative_change = 1.5333910487865856e-7 Iter 80: T = 799.7405240689853 K, F = -0.005977833227395202, relative_change = 6.412839812959066e-8 Iter 85: T = 799.7403674213549 K, F = -0.002500001410312258, relative_change = 2.6819288725901782e-8 Iter 90: T = 799.7403019094127 K, F = -0.0010455304751727512, relative_change = 1.1216151521430006e-8 Iter 95: T = 799.7402745115304 K, F = -0.00043725333648469977, relative_change = 4.6907293394863344e-9 Iter 100: T = 799.7402630534078 K, F = -0.00018286457006222445, relative_change = 1.961719193163711e-9 Iter 105: T = 799.740258261484 K, F = -7.647614855077478e-5, relative_change = 8.204144338089038e-10 Iter 110: T = 799.7402562574441 K, F = -3.198323931175029e-5, relative_change = 3.4310712531460903e-10 Iter 115: T = 799.7402554193307 K, F = -1.3375771557355698e-5, relative_change = 1.4349148646499186e-10 Iter 120: T = 799.7402550688216 K, F = -5.593907558831823e-6, relative_change = 6.000985505752835e-11 Iter 125: T = 799.7402549222345 K, F = -2.3394377196561678e-6, relative_change = 2.5096824915089854e-11 Iter 130: T = 799.74025486093 K, F = -9.78379671612295e-7, relative_change = 1.0495779871202283e-11 Iter 135: T = 799.7402548352918 K, F = -4.091693759367132e-7, relative_change = 4.3894531183864146e-12 Iter 140: T = 799.7402548245697 K, F = -1.711214216992829e-7, relative_change = 1.8357421212890574e-12 Iter 145: T = 799.7402548200855 K, F = -7.156605108527003e-8, relative_change = 7.677403163815141e-13 Iter 150: T = 799.7402548182101 K, F = -2.992699865700388e-8, relative_change = 3.210483611867595e-13 Converged in 153 iterations to T = 799.740254817661 K Iter 1: T = 980.8509231557069 K, F = -4363.135374446788, relative_change = 0.0191490768442931 Iter 2: T = 963.713174146864 K, F = -3684.828185483728, relative_change = 0.017472327959589726 Iter 3: T = 948.4609669146656 K, F = -3110.5261182210734, relative_change = 0.015826500707226125 Iter 5: T = 923.0750910320028 K, F = -2213.4855009695016, relative_change = 0.012712738653737612 Iter 10: T = 883.0261937563316 K, F = -938.981641918015, relative_change = 0.0066006189933841665 Iter 15: T = 864.1987756944201 K, F = -395.49937095322065, relative_change = 0.003073721636306818 Iter 20: T = 855.8745128161142 K, F = -165.94071295739812, relative_change = 0.0013498477474285099 Iter 25: T = 852.3060884190543 K, F = -69.49649560339314, relative_change = 0.0005766286271001914 Iter 30: T = 850.7978009417317 K, F = -29.081733745719806, relative_change = 0.00024333763569314604 Iter 35: T = 850.1641773846459 K, F = -12.165407070562106, relative_change = 0.0001021539056887283 Iter 40: T = 849.8986877608744 K, F = -5.0882587158341135, relative_change = 4.279008401065534e-5 Iter 45: T = 849.7875689625458 K, F = -2.1280651684323555, relative_change = 1.7907262934208033e-5 Iter 50: T = 849.7410823642095 K, F = -0.8899988238910612, relative_change = 7.491121368456096e-6 Iter 55: T = 849.7216384203234 K, F = -0.3722110332606431, relative_change = 3.133242138491118e-6 Iter 60: T = 849.7135062596044 K, F = -0.1556636058334977, relative_change = 1.3104232566230315e-6 Iter 65: T = 849.710105210456 K, F = -0.06510046757203436, relative_change = 5.480458457915595e-7 Iter 70: T = 849.7086828366697 K, F = -0.027225808491263548, relative_change = 2.292012749237415e-7 Iter 75: T = 849.7080879804445 K, F = -0.011386160967062686, relative_change = 9.58550527472406e-8 Iter 80: T = 849.7078392040261 K, F = -0.004761828968108839, relative_change = 4.008778766798734e-8 Iter 85: T = 849.7077351626798 K, F = -0.0019914538260878967, relative_change = 1.6765202027937012e-8 Iter 90: T = 849.7076916513328 K, F = -0.0008328497888658859, relative_change = 7.011409549497789e-9 Iter 95: T = 849.7076734543654 K, F = -0.00034830773066119036, relative_change = 2.9322555286489553e-9 Iter 100: T = 849.7076658441758 K, F = -0.00014566645193481165, relative_change = 1.2263043270043406e-9 Iter 105: T = 849.7076626615037 K, F = -6.09194488687681e-5, relative_change = 5.128551158246458e-10 Iter 110: T = 849.7076613304721 K, F = -2.547724037116339e-5, relative_change = 2.1448213011651813e-10 Iter 115: T = 849.7076607738188 K, F = -1.0654884926353247e-5, relative_change = 8.969897794996143e-11 Iter 120: T = 849.7076605410198 K, F = -4.456000086028311e-6, relative_change = 3.7513183553440844e-11 Iter 125: T = 849.7076604436605 K, F = -1.8635533249877767e-6, relative_change = 1.5688468723154667e-11 Iter 130: T = 849.7076604029437 K, F = -7.793600260708189e-7, relative_change = 6.561103045419369e-12 Iter 135: T = 849.7076603859155 K, F = -3.2593669629932265e-7, relative_change = 2.743923449203363e-12 Iter 140: T = 849.707660378794 K, F = -1.3631087303345168e-7, relative_change = 1.1475436953233087e-12 Iter 145: T = 849.7076603758157 K, F = -5.7007885079229936e-8, relative_change = 4.799253181470232e-13 Converged in 150 iterations to T = 849.7076603745702 K Iter 1: T = 967.3262840815646 K, F = -7444.737252743166, relative_change = 0.03267371591843535 Iter 2: T = 936.7277384674471 K, F = -6310.68945922927, relative_change = 0.031632083318370204 Iter 3: T = 908.172997081893 K, F = -5347.879056096048, relative_change = 0.03048350146251858 Iter 5: T = 857.0564674227502 K, F = -3836.8228990780044, relative_change = 0.02787109971321006 Iter 10: T = 762.0120150335993 K, F = -1661.3226591458479, relative_change = 0.019948005423213695 Iter 15: T = 706.3852719304666 K, F = -711.2688538907103, relative_change = 0.011947092387420283 Iter 20: T = 677.786741992434 K, F = -301.4485188702574, relative_change = 0.006115679324393494 Iter 25: T = 664.4535709899674 K, F = -126.90134788760679, relative_change = 0.002824537973386295 Iter 30: T = 658.584565783144 K, F = -53.23007591793456, relative_change = 0.0012354170009929123 Iter 35: T = 656.0738792804007 K, F = -22.290233960545397, relative_change = 0.0005267893579501421 Iter 40: T = 655.0136426901412 K, F = -9.327158906987982, relative_change = 0.0002221315177431866 Iter 45: T = 654.5684170950433 K, F = -3.9016304205173995, relative_change = 9.32205911326163e-5 Iter 50: T = 654.3818974151593 K, F = -1.6318665141665352, relative_change = 3.904266465819105e-5 Iter 55: T = 654.3038363374101 K, F = -0.6824937464036229, relative_change = 1.6338046737738576e-5 Iter 60: T = 654.2711803992573 K, F = -0.28543187941617437, relative_change = 6.834506003108409e-6 Iter 65: T = 654.2575215699121 K, F = -0.1193718681271404, relative_change = 2.85857642765851e-6 Iter 70: T = 654.2518089824094 K, F = -0.04992288906501807, relative_change = 1.195544048016127e-6 Iter 75: T = 654.2494198572771 K, F = -0.020878374331470106, relative_change = 5.000001122245934e-7 Iter 80: T = 654.2484206873769 K, F = -0.008731590018557778, relative_change = 2.0910764717101678e-7 Iter 85: T = 654.2480028209764 K, F = -0.0036516560154095656, relative_change = 8.745160022477729e-8 Iter 90: T = 654.2478280639747 K, F = -0.001527166293772808, relative_change = 3.657335342630851e-8 Iter 95: T = 654.2477549784602 K, F = -0.0006386792067650804, relative_change = 1.529542190240423e-8 Iter 100: T = 654.2477244132166 K, F = -0.00026710327634932307, relative_change = 6.396729639415429e-9 Iter 105: T = 654.2477116304651 K, F = -0.0001117057811165223, relative_change = 2.6751890025351517e-9 Iter 110: T = 654.2477062845655 K, F = -4.6716692484960465e-5, relative_change = 1.1187960514069044e-9 Iter 115: T = 654.2477040488465 K, F = -1.953747971261688e-5, relative_change = 4.678939015124661e-10 Iter 120: T = 654.2477031138419 K, F = -8.17080645537649e-6, relative_change = 1.9567879752950854e-10 Iter 125: T = 654.247702722812 K, F = -3.417129731730917e-6, relative_change = 8.183523162149677e-11 Iter 130: T = 654.2477025592785 K, F = -1.4290846959696957e-6, relative_change = 3.422447680420743e-11 Iter 135: T = 654.2477024908869 K, F = -5.976602774349082e-7, relative_change = 1.4313084710607715e-11 Iter 140: T = 654.2477024622847 K, F = -2.499488127027938e-7, relative_change = 5.9859064845834204e-12 Iter 145: T = 654.2477024503229 K, F = -1.0453206744642785e-7, relative_change = 2.503389288641965e-12 Iter 150: T = 654.2477024453203 K, F = -4.371635897726378e-8, relative_change = 1.0469425074958958e-12 Iter 155: T = 654.2477024432281 K, F = -1.8282662661572857e-8, relative_change = 4.378428839614703e-13 Converged in 159 iterations to T = 654.247702442473 K Iter 1: T = 973.5107373282259 K, F = -6035.6036975576135, relative_change = 0.026489262671774077 Iter 2: T = 949.2145151880572 K, F = -5107.599620821599, relative_change = 0.024957323230814038 Iter 3: T = 927.0439424124336 K, F = -4320.4668645732645, relative_change = 0.02335675700369084 Iter 5: T = 888.7576372179112 K, F = -3087.3013772416834, relative_change = 0.020027708524174657 Iter 10: T = 823.5666072132967 K, F = -1321.9215152601423, relative_change = 0.01201502724930699 Iter 15: T = 790.0131874036513 K, F = -560.3000926817721, relative_change = 0.006158203510121083 Iter 20: T = 774.3584564003473 K, F = -235.88183578966473, relative_change = 0.002846235586061777 Iter 25: T = 767.4648686967357 K, F = -98.94537911875587, relative_change = 0.0012453462670140429 Iter 30: T = 764.5153436885797 K, F = -41.434072961507226, relative_change = 0.0005311071358791114 Iter 35: T = 763.2696909472616 K, F = -17.337814261244024, relative_change = 0.00022396743579133243 Iter 40: T = 762.7465856680717 K, F = -7.252570079036536, relative_change = 9.399376821583031e-5 Iter 45: T = 762.5274364740491 K, F = -3.0334077161452173, relative_change = 3.9366963747512766e-5 Iter 50: T = 762.4357189383683 K, F = -1.2686592195399018, relative_change = 1.647383868994385e-5 Iter 55: T = 762.3973498840126 K, F = -0.5305775161427111, relative_change = 6.891324926964262e-6 Iter 60: T = 762.3813014423201 K, F = -0.22189544201217815, relative_change = 2.8823438739998548e-6 Iter 65: T = 762.374589434603 K, F = -0.09279960164941337, relative_change = 1.2054847690131102e-6 Iter 70: T = 762.3717823302421 K, F = -0.03880995025385259, relative_change = 5.041575963298634e-7 Iter 75: T = 762.3706083547299 K, F = -0.016230793179276337, relative_change = 2.1084638391616017e-7 Iter 80: T = 762.3701173822363 K, F = -0.006787913029091652, relative_change = 8.81787654590251e-8 Iter 85: T = 762.3699120513412 K, F = -0.002838786551544459, relative_change = 3.6877463432737716e-8 Iter 90: T = 762.3698261794503 K, F = -0.0011872144834332854, relative_change = 1.542260447708227e-8 Iter 95: T = 762.3697902667898 K, F = -0.0004965072835221296, relative_change = 6.449918930445221e-9 Iter 100: T = 762.3697752476844 K, F = -0.00020764527754790763, relative_change = 2.6974334043940518e-9 Iter 105: T = 762.3697689665149 K, F = -8.683973632728215e-5, relative_change = 1.128098926944227e-9 Iter 110: T = 762.3697663396547 K, F = -3.6317414044861884e-5, relative_change = 4.717844412967448e-10 Iter 115: T = 762.3697652410705 K, F = -1.5188377841202083e-5, relative_change = 1.9730590934495006e-10 Iter 120: T = 762.3697647816293 K, F = -6.351960520123434e-6, relative_change = 8.251568161166206e-11 Iter 125: T = 762.3697645894856 K, F = -2.6564658712757705e-6, relative_change = 3.450904513890401e-11 Iter 130: T = 762.3697645091288 K, F = -1.1109660288388667e-6, relative_change = 1.44320984021592e-11 Iter 135: T = 762.3697644755226 K, F = -4.6461869018799007e-7, relative_change = 6.03566849356406e-12 Iter 140: T = 762.3697644614681 K, F = -1.943098045797953e-7, relative_change = 2.5241979936736424e-12 Iter 145: T = 762.3697644555903 K, F = -8.126065287328288e-8, relative_change = 1.0556234020123612e-12 Iter 150: T = 762.3697644531321 K, F = -3.398496006834506e-8, relative_change = 4.414845056819201e-13 Converged in 154 iterations to T = 762.3697644522448 K Iter 1: T = 970.0076328611498 K, F = -6833.789382693528, relative_change = 0.029992367138850194 Iter 2: T = 942.1726556554179 K, F = -5788.590964703256, relative_change = 0.02869562698556241 Iter 3: T = 916.452288812113 K, F = -4901.519438955723, relative_change = 0.02729899524138987 Iter 5: T = 871.1496409205711 K, F = -3510.2539329156425, relative_change = 0.02424681309455248 Iter 10: T = 790.3465232342784 K, F = -1511.8280007572116, relative_change = 0.01594463065500858 Iter 15: T = 746.0075375943529 K, F = -643.9016298631999, relative_change = 0.008805817708974269 Iter 20: T = 724.3705645689716 K, F = -271.89184382982256, relative_change = 0.004260059848873186 Iter 25: T = 714.6021305732927 K, F = -114.2249790440793, relative_change = 0.0019074871896658247 Iter 30: T = 710.3722280752733 K, F = -47.86600365636745, relative_change = 0.0008221047274923531 Iter 35: T = 708.5763003596494 K, F = -20.035313342482084, relative_change = 0.00034827017813040477 Iter 40: T = 707.8203819594253 K, F = -8.382044733231966, relative_change = 0.00014644504731450665 Iter 45: T = 707.5033915334798 K, F = -3.506004896765379, relative_change = 6.138510641576788e-5 Iter 50: T = 707.3706718520606 K, F = -1.4663466401477228, relative_change = 2.5696559824898135e-5 Iter 55: T = 707.3151405201753 K, F = -0.6132600469313441, relative_change = 1.0750912478939764e-5 Iter 60: T = 707.2919120368601 K, F = -0.25647553957723246, relative_change = 4.496913257213295e-6 Iter 65: T = 707.2821967999023 K, F = -0.1072616345996098, relative_change = 1.8807946078054774e-6 Iter 70: T = 707.2781336304715 K, F = -0.044858184185029404, relative_change = 7.865938170030838e-7 Iter 75: T = 707.2764343397744 K, F = -0.018760243667282572, relative_change = 3.2896695986139084e-7 Iter 80: T = 707.275723671788 K, F = -0.00784576062419795, relative_change = 1.3757861643525116e-7 Iter 85: T = 707.275426461193 K, F = -0.0032811912587469294, relative_change = 5.753714374258271e-8 Iter 90: T = 707.2753021640403 K, F = -0.0013722334511230283, relative_change = 2.4062742206266647e-8 Iter 95: T = 707.2752501814637 K, F = -0.0005738844296591106, relative_change = 1.0063329900619467e-8 Iter 100: T = 707.2752284417253 K, F = -0.00024000532476486924, relative_change = 4.2086054084216406e-9 Iter 105: T = 707.2752193499064 K, F = -0.00010037309402544103, relative_change = 1.760089167368734e-9 Iter 110: T = 707.275215547599 K, F = -4.197722673693338e-5, relative_change = 7.360903304250067e-10 Iter 115: T = 707.2752139574286 K, F = -1.7555376921052357e-5, relative_change = 3.078417594821722e-10 Iter 120: T = 707.2752132924004 K, F = -7.341868702992471e-6, relative_change = 1.287431081484763e-10 Iter 125: T = 707.2752130142777 K, F = -3.0704574309758925e-6, relative_change = 5.3841909986811926e-11 Iter 130: T = 707.2752128979635 K, F = -1.2841028874666094e-6, relative_change = 2.2517345929444292e-11 Iter 135: T = 707.2752128493194 K, F = -5.370274478444514e-7, relative_change = 9.417027980161962e-12 Iter 140: T = 707.2752128289759 K, F = -2.2459151138853883e-7, relative_change = 3.938317409345847e-12 Iter 145: T = 707.2752128204679 K, F = -9.392668431917883e-8, relative_change = 1.6470484293486816e-12 Iter 150: T = 707.2752128169099 K, F = -3.928107472628284e-8, relative_change = 6.888120548655559e-13 Iter 155: T = 707.2752128154218 K, F = -1.642801605861166e-8, relative_change = 2.880729607746355e-13 Converged in 157 iterations to T = 707.2752128151069 K Iter 1: T = 973.5783586361574 K, F = -6020.196118220953, relative_change = 0.02642164136384259 Iter 2: T = 949.349656408468 K, F = -5094.466755947492, relative_change = 0.02488623746899041 Iter 3: T = 927.2459615331195 K, F = -4309.273865380838, relative_change = 0.023282986122278835 Iter 5: T = 889.0891381892027 K, F = -3079.1765004605045, relative_change = 0.019951439605832427 Iter 10: T = 824.1719273606169 K, F = -1318.3078355472262, relative_change = 0.011950161313767107 Iter 15: T = 790.7950585116089 K, F = -558.7249574765553, relative_change = 0.0061176427626959675 Iter 20: T = 775.2335353094863 K, F = -235.20808204190536, relative_change = 0.0028255492064558994 Iter 25: T = 768.3835126985261 K, F = -98.6605710094635, relative_change = 0.001235881579588775 Iter 30: T = 765.4531314221684 K, F = -41.31439577389111, relative_change = 0.0005269917131376791 Iter 35: T = 764.2156569589495 K, F = -17.287661801730227, relative_change = 0.0002222176181051536 Iter 40: T = 763.6960028626477 K, F = -7.231577659990066, relative_change = 9.325686176352266e-5 Iter 45: T = 763.4783024660118 K, F = -3.0246252607609536, relative_change = 3.9057879726540674e-5 Iter 50: T = 763.3871917962557 K, F = -1.2649857353126475, relative_change = 1.6344417977875955e-5 Iter 55: T = 763.3490767089916 K, F = -0.5290411237489498, relative_change = 6.837171953385123e-6 Iter 60: T = 763.333134508868 K, F = -0.22125288732070025, relative_change = 2.85969160866786e-6 Iter 65: T = 763.3264669378048 K, F = -0.09253087462276122, relative_change = 1.1960104735278047e-6 Iter 70: T = 763.3236784182862 K, F = -0.0386975648829474, relative_change = 5.001951845809245e-7 Iter 75: T = 763.3225122153348 K, F = -0.01618379218332977, relative_change = 2.0918923006371365e-7 Iter 80: T = 763.3220244934465 K, F = -0.006768256634598679, relative_change = 8.74857193824161e-8 Iter 85: T = 763.3218205219982 K, F = -0.002830566009867308, relative_change = 3.658762249409227e-8 Iter 90: T = 763.3217352186449 K, F = -0.0011837765522713095, relative_change = 1.5301389370899102e-8 Iter 95: T = 763.3216995437539 K, F = -0.0004950694994229066, relative_change = 6.3992252992749685e-9 Iter 100: T = 763.3216846240865 K, F = -0.00020704397771142968, relative_change = 2.6762327008161274e-9 Iter 105: T = 763.3216783845032 K, F = -8.658826419605248e-5, relative_change = 1.1192325211706667e-9 Iter 110: T = 763.321675775035 K, F = -3.6212247555011956e-5, relative_change = 4.680764323462001e-10 Iter 115: T = 763.321674683724 K, F = -1.5144393439081583e-5, relative_change = 1.957551430216226e-10 Iter 120: T = 763.3216742273248 K, F = -6.333564868787889e-6, relative_change = 8.186712166737052e-11 Iter 125: T = 763.3216740364533 K, F = -2.648772800095678e-6, relative_change = 3.4237812329271056e-11 Iter 130: T = 763.3216739566285 K, F = -1.1077486724575536e-6, relative_change = 1.4318665297799393e-11 Iter 135: T = 763.3216739232448 K, F = -4.632729702080951e-7, relative_change = 5.988227084571447e-12 Iter 140: T = 763.3216739092833 K, F = -1.9374572368668908e-7, relative_change = 2.5043407770594106e-12 Iter 145: T = 763.3216739034444 K, F = -8.10255855743236e-8, relative_change = 1.0473298408094178e-12 Iter 150: T = 763.3216739010026 K, F = -3.3885057537652585e-8, relative_change = 4.3799537720976783e-13 Converged in 154 iterations to T = 763.3216739001213 K Iter 1: T = 964.3393307722597 K, F = -8125.317405594421, relative_change = 0.03566066922774032 Iter 2: T = 930.6050807446384 K, F = -6893.159749687846, relative_change = 0.03498172163174798 Iter 3: T = 898.766326573192 K, F = -5846.7806511081735, relative_change = 0.03421295975084297 Iter 5: T = 840.6623927632063 K, F = -4203.699998632818, relative_change = 0.03238061517270194 Iter 10: T = 726.5902391369337 K, F = -1833.1755398472055, relative_change = 0.025978048307716307 Iter 15: T = 653.032571540655 K, F = -791.5120105682969, relative_change = 0.017775197699381202 Iter 20: T = 611.4599073277057 K, F = -337.903517892377, relative_change = 0.010180601165592754 Iter 25: T = 590.7020005852129 K, F = -142.91000695656473, relative_change = 0.005046781808448708 Iter 30: T = 581.2011685206352 K, F = -60.089916432904836, relative_change = 0.0022894029336782465 Iter 35: T = 577.0588467551454 K, F = -25.190917722734163, relative_change = 0.0009927576977533607 Iter 40: T = 575.2946208889438 K, F = -10.546070980790837, relative_change = 0.00042169702173067445 Iter 45: T = 574.5510432231656 K, F = -4.412429474850906, relative_change = 0.00017752443508627552 Iter 50: T = 574.2390490633381 K, F = -1.8456713076648956, relative_change = 7.444870585130117e-5 Iter 55: T = 574.1083897359816 K, F = -0.7719414940717568, relative_change = 3.117149101729543e-5 Iter 60: T = 574.053714947452 K, F = -0.32284560546532537, relative_change = 1.3042623816931914e-5 Iter 65: T = 574.0308437833107 K, F = -0.1350197168884564, relative_change = 5.4556896571026445e-6 Iter 70: T = 574.0212778243981 K, F = -0.05646717803469958, relative_change = 2.2818285249126615e-6 Iter 75: T = 574.017277057342 K, F = -0.02361530417534416, relative_change = 9.54321867054191e-7 Iter 80: T = 574.0156038592551 K, F = -0.009876212019032937, relative_change = 3.9911473596999916e-7 Iter 85: T = 574.0149041026689 K, F = -0.004130351523684905, relative_change = 1.6691558688218383e-7 Iter 90: T = 574.0146114552047 K, F = -0.001727362632791607, relative_change = 6.980627333669011e-8 Iter 95: T = 574.0144890663822 K, F = -0.0007224037344225609, relative_change = 2.9193848921422965e-8 Iter 100: T = 574.0144378818875 K, F = -0.0003021178787946943, relative_change = 1.2209221843736343e-8 Iter 105: T = 574.0144164759156 K, F = -0.00012634930671151512, relative_change = 5.1060433612158215e-9 Iter 110: T = 574.0144075236817 K, F = -5.284078937795034e-5, relative_change = 2.1354084866802776e-9 Iter 115: T = 574.0144037797504 K, F = -2.209864900820646e-5, relative_change = 8.93053352479484e-10 Iter 120: T = 574.0144022139937 K, F = -9.241919435576396e-6, relative_change = 3.7348560264502314e-10 Iter 125: T = 574.0144015591754 K, F = -3.865081017018213e-6, relative_change = 1.5619613769798216e-10 Iter 130: T = 574.0144012853226 K, F = -1.6164231991244726e-6, relative_change = 6.532309673469817e-11 Iter 135: T = 574.0144011707941 K, F = -6.760074508505021e-7, relative_change = 2.73188977806983e-11 Iter 140: T = 574.014401122897 K, F = -2.827148850581551e-7, relative_change = 1.1425109352473495e-11 Iter 145: T = 574.0144011028658 K, F = -1.1823511664177389e-7, relative_change = 4.778132346591096e-12 Iter 150: T = 574.0144010944886 K, F = -4.944756842872877e-8, relative_change = 1.9982813304260384e-12 Iter 155: T = 574.0144010909851 K, F = -2.0680475776302387e-8, relative_change = 8.357419780687126e-13 Iter 160: T = 574.0144010895198 K, F = -8.64848048731659e-9, relative_change = 3.4950347700070187e-13 Converged in 163 iterations to T = 574.0144010890908 K Iter 1: T = 963.5927828951473 K, F = -8295.419049544853, relative_change = 0.03640721710485276 Iter 2: T = 929.065270807679 K, F = -7038.882125978425, relative_change = 0.035832057587365004 Iter 3: T = 896.3840499831269 K, F = -5971.751815143681, relative_change = 0.03517645299144678 Iter 5: T = 836.4419655392591 K, F = -4295.928783091983, relative_change = 0.03359477351923591 Iter 10: T = 716.9584005143109 K, F = -1877.1749305083279, relative_change = 0.02784537044406821 Iter 15: T = 637.5475202781101 K, F = -812.7727557597036, relative_change = 0.019916671026240347 Iter 20: T = 591.0948430602098 K, F = -347.9606212409009, relative_change = 0.011920295669015611 Iter 25: T = 567.2236171835552 K, F = -147.46711499087772, relative_change = 0.006098897996559029 Iter 30: T = 556.09767148863 K, F = -62.07832525164214, relative_change = 0.0028159766294696045 Iter 35: T = 551.2010028212738 K, F = -26.039149210156566, relative_change = 0.0012314997162650478 Iter 40: T = 549.1064210359484 K, F = -10.903916372625622, relative_change = 0.0005250860440745798 Iter 45: T = 548.2219291720814 K, F = -4.56264286632867, relative_change = 0.00022140729499407907 Iter 50: T = 547.8505091661934 K, F = -1.9085911107412878, relative_change = 9.291559727394154e-5 Iter 55: T = 547.6949099703753 K, F = -0.7982726667112651, relative_change = 3.8914739789192634e-5 Iter 60: T = 547.6297897011232 K, F = -0.3338606587709685, relative_change = 1.628448161861223e-5 Iter 65: T = 547.6025474261126 K, F = -0.13962687631255416, relative_change = 6.8120929747269394e-6 Iter 70: T = 547.5911529462759 K, F = -0.058394040309191486, relative_change = 2.849201026734609e-6 Iter 75: T = 547.5863873876752 K, F = -0.02442115729021166, relative_change = 1.191622792651197e-6 Iter 80: T = 547.5843943302423 K, F = -0.01021323226664303, relative_change = 4.983601350920263e-7 Iter 85: T = 547.5835608021409 K, F = -0.0042712979152864095, relative_change = 2.0842177840504936e-7 Iter 90: T = 547.5832122093913 K, F = -0.0017863081840118755, relative_change = 8.71647598106724e-8 Iter 95: T = 547.5830664235052 K, F = -0.0007470554827367915, relative_change = 3.645339300186956e-8 Iter 100: T = 547.5830054540658 K, F = -0.00031242753680937874, relative_change = 1.5245252975569793e-8 Iter 105: T = 547.5829799559108 K, F = -0.00013066092900895776, relative_change = 6.375748369373989e-9 Iter 110: T = 547.5829692922766 K, F = -5.464396171009356e-5, relative_change = 2.6664143957389998e-9 Iter 115: T = 547.5829648326172 K, F = -2.2852757420449565e-5, relative_change = 1.1151263895208013e-9 Iter 120: T = 547.5829629675344 K, F = -9.557296303919216e-6, relative_change = 4.663591923595429e-10 Iter 125: T = 547.5829621875345 K, F = -3.996975526332491e-6, relative_change = 1.9503698867407762e-10 Iter 130: T = 547.5829618613292 K, F = -1.6715832569236255e-6, relative_change = 8.156681558973046e-11 Iter 135: T = 547.5829617249061 K, F = -6.990758628921956e-7, relative_change = 3.4112205792450115e-11 Iter 140: T = 547.5829616678525 K, F = -2.923618590278121e-7, relative_change = 1.4266131095853691e-11 Iter 145: T = 547.5829616439919 K, F = -1.2226910930945856e-7, relative_change = 5.966260949852306e-12 Iter 150: T = 547.5829616340131 K, F = -5.113430526226814e-8, relative_change = 2.4951568751385805e-12 Iter 155: T = 547.5829616298399 K, F = -2.1385038462273798e-8, relative_change = 1.0435073963067013e-12 Iter 160: T = 547.5829616280947 K, F = -8.94404772466828e-9, relative_change = 4.3643503238107923e-13 Converged in 164 iterations to T = 547.5829616274647 K Iter 1: T = 969.34526040831 K, F = -6984.7115761519435, relative_change = 0.030654739591690006 Iter 2: T = 940.8320682989479 K, F = -5917.496092494012, relative_change = 0.029414898152338137 Iter 3: T = 914.4212244269704 K, F = -5011.652752046343, relative_change = 0.02807179385342276 Iter 5: T = 867.7200848823189 K, F = -3590.6909899059137, relative_change = 0.025107998813777826 Iter 10: T = 783.6082622742675 K, F = -1548.3905007594478, relative_change = 0.016837877268264332 Iter 15: T = 736.7828246238622 K, F = -660.224138869986, relative_change = 0.009464518763897489 Iter 20: T = 713.6791532979095 K, F = -278.9965654950389, relative_change = 0.004632292577881494 Iter 25: T = 703.180546146743 K, F = -117.25743078291596, relative_change = 0.0020869586603438086 Iter 30: T = 698.6197753795544 K, F = -49.146120214674575, relative_change = 0.0009020401749613883 Iter 35: T = 696.6805398203644 K, F = -20.572857158119998, relative_change = 0.000382614997509669 Iter 40: T = 695.8637864604225 K, F = -8.6072417380773, relative_change = 0.00016097331347397325 Iter 45: T = 695.5211934034893 K, F = -3.6002537292113503, relative_change = 6.749019890479878e-5 Iter 50: T = 695.377738062685 K, F = -1.505774696175496, relative_change = 2.825491624971597e-5 Iter 55: T = 695.3177119778835 K, F = -0.6297514448449658, relative_change = 1.1821747592791903e-5 Iter 60: T = 695.2926028644151 K, F = -0.26337280911003447, relative_change = 4.944906830392706e-6 Iter 65: T = 695.2821009730748 K, F = -0.11014621981292333, relative_change = 2.0681784348495417e-6 Iter 70: T = 695.2777087887265 K, F = -0.04606456349132193, relative_change = 8.649647931454968e-7 Iter 75: T = 695.2758718953983 K, F = -0.01926476788214493, relative_change = 3.617434814592118e-7 Iter 80: T = 695.2751036795325 K, F = -0.008056759021875637, relative_change = 1.5128629670362663e-7 Iter 85: T = 695.2747824015845 K, F = -0.0033694333700556856, relative_change = 6.326988515284919e-8 Iter 90: T = 695.2746480391526 K, F = -0.0014091373680362729, relative_change = 2.6460247667718626e-8 Iter 95: T = 695.2745918471514 K, F = -0.0005893180916423102, relative_change = 1.1065996129182542e-8 Iter 100: T = 695.2745683469807 K, F = -0.0002464598671583218, relative_change = 4.6279325436383766e-9 Iter 105: T = 695.2745585189277 K, F = -0.00010307246061258546, relative_change = 1.9354568044892255e-9 Iter 110: T = 695.2745544087186 K, F = -4.310613433611277e-5, relative_change = 8.094311794675843e-10 Iter 115: T = 695.2745526897799 K, F = -1.8027500050088463e-5, relative_change = 3.3851378753609136e-10 Iter 120: T = 695.2745519708992 K, F = -7.539316134397289e-6, relative_change = 1.4157051535484174e-10 Iter 125: T = 695.2745516702548 K, F = -3.1530327255779866e-6, relative_change = 5.920649311589327e-11 Iter 130: T = 695.2745515445216 K, F = -1.3186351464078427e-6, relative_change = 2.4760847596682946e-11 Iter 135: T = 695.2745514919385 K, F = -5.514685549323772e-7, relative_change = 1.0355274455681057e-11 Iter 140: T = 695.2745514699477 K, F = -2.30631016839844e-7, relative_change = 4.330704727165962e-12 Iter 145: T = 695.2745514607509 K, F = -9.645290888204983e-8, relative_change = 1.8111573811460721e-12 Iter 150: T = 695.2745514569046 K, F = -4.033758782551189e-8, relative_change = 7.574444438899063e-13 Iter 155: T = 695.2745514552961 K, F = -1.686973860604013e-8, relative_change = 3.167737702223085e-13 Converged in 158 iterations to T = 695.2745514548252 K Iter 1: T = 966.4753986162293 K, F = -7638.612315420857, relative_change = 0.0335246013837707 Iter 2: T = 934.9897744114734 K, F = -6476.523481128045, relative_change = 0.03257778133808279 Iter 3: T = 905.5134089431791 K, F = -5489.819678520434, relative_change = 0.03152586934637664 Iter 5: T = 852.4638756739197 K, F = -3940.9941334224077, relative_change = 0.029101836607043085 Iter 10: T = 752.3817265186234 K, F = -1709.6511861516146, relative_change = 0.021466028351313074 Iter 15: T = 692.3618130787555 K, F = -733.4666114619197, relative_change = 0.01327693695854719 Iter 20: T = 660.8247716227045 K, F = -311.3565933769152, relative_change = 0.006966605613757072 Iter 25: T = 645.9061468708771 K, F = -131.19734798348463, relative_change = 0.0032644632228036327 Iter 30: T = 639.2878038419767 K, F = -55.0581048348086, relative_change = 0.0014380577372374006 Iter 35: T = 636.446135758544 K, F = -23.060651442272892, relative_change = 0.0006151697101599454 Iter 40: T = 635.2441830989029 K, F = -9.650424948912343, relative_change = 0.0002597589869931977 Iter 45: T = 634.7390965976441 K, F = -4.037013554755823, relative_change = 0.0001090756081057323 Iter 50: T = 634.5274372634664 K, F = -1.688518678188416, relative_change = 4.569436648496224e-5 Iter 55: T = 634.4388440024262 K, F = -0.706192199863955, relative_change = 1.9123543847933796e-5 Iter 60: T = 634.401780140265 K, F = -0.29534387845959686, relative_change = 8.000078029038276e-6 Iter 65: T = 634.3862772974043 K, F = -0.1235173634623602, relative_change = 3.3461452507504217e-6 Iter 70: T = 634.3797934222113 K, F = -0.05165661602746896, relative_change = 1.399470865840696e-6 Iter 75: T = 634.3770817179999 K, F = -0.021603445128329124, relative_change = 5.852881910654601e-7 Iter 80: T = 634.3759476386408 K, F = -0.009034824243205564, relative_change = 2.447767434321935e-7 Iter 85: T = 634.3754733509624 K, F = -0.003778472357414686, relative_change = 1.0236894775771303e-7 Iter 90: T = 634.3752749978155 K, F = -0.0015802024316206587, relative_change = 4.281198475899586e-8 Iter 95: T = 634.3751920440951 K, F = -0.0006608595583045829, relative_change = 1.7904495263395832e-8 Iter 100: T = 634.3751573518471 K, F = -0.0002763793649200319, relative_change = 7.487875837357735e-9 Iter 105: T = 634.3751428431325 K, F = -0.00011558515126436353, relative_change = 3.1315194453884095e-9 Iter 110: T = 634.3751367754146 K, F = -4.833909144652537e-5, relative_change = 1.3096389118732468e-9 Iter 115: T = 634.3751342378224 K, F = -2.0215984910976204e-5, relative_change = 5.477066323177744e-10 Iter 120: T = 634.375133176571 K, F = -8.454566506332917e-6, relative_change = 2.290574615168847e-10 Iter 125: T = 634.375132732743 K, F = -3.5358012439035136e-6, relative_change = 9.579458147828832e-11 Iter 130: T = 634.3751325471288 K, F = -1.4787138551963785e-6, relative_change = 4.006242582957719e-11 Iter 135: T = 634.3751324695028 K, F = -6.184159894173646e-7, relative_change = 1.6754590237474452e-11 Iter 140: T = 634.3751324370387 K, F = -2.586294721163007e-7, relative_change = 7.006983816478006e-12 Iter 145: T = 634.3751324234618 K, F = -1.0816229922827603e-7, relative_change = 2.930414210419135e-12 Iter 150: T = 634.3751324177837 K, F = -4.523478053242158e-8, relative_change = 1.2255346329434772e-12 Iter 155: T = 634.3751324154091 K, F = -1.8917629129866498e-8, relative_change = 5.125306102817919e-13 Converged in 160 iterations to T = 634.375132414416 K Iter 1: T = 966.4484338588127 K, F = -7644.756261048332, relative_change = 0.033551566141187275 Iter 2: T = 934.9346177785542 K, F = -6481.7800093055175, relative_change = 0.03260786088134144 Iter 3: T = 905.4288673442851 K, F = -5494.320147823695, relative_change = 0.03155915918952288 Iter 5: T = 852.3173496419527 K, F = -3944.299703889256, relative_change = 0.029141514311615407 Iter 10: T = 752.0709516466218 K, F = -1711.1904072612767, relative_change = 0.02151644985265245 Iter 15: T = 691.9038700905462 K, F = -734.1776951334344, relative_change = 0.013322558009038438 Iter 20: T = 660.2659315869658 K, F = -311.6757980115155, relative_change = 0.006996539982398405 Iter 25: T = 645.2919464607528 K, F = -131.33627904122937, relative_change = 0.0032801707054332507 Iter 30: T = 638.647197658509 K, F = -55.11734141562902, relative_change = 0.0014453464316492844 Iter 35: T = 635.7938153123056 K, F = -23.08563979984739, relative_change = 0.0006183592010135737 Iter 40: T = 634.586837290509 K, F = -9.660914302173527, relative_change = 0.0002611188473616436 Iter 45: T = 634.0796263200219 K, F = -4.041407237185114, relative_change = 0.00010964895906731696 Iter 50: T = 633.8670744654696 K, F = -1.690357384735497, relative_change = 4.5934967742389375e-5 Iter 55: T = 633.778107230815 K, F = -0.7069613821549086, relative_change = 1.922430995691689e-5 Iter 60: T = 633.7408868437851 K, F = -0.2956655970199139, relative_change = 8.042244807811335e-6 Iter 65: T = 633.7253185185342 K, F = -0.12365191653980517, relative_change = 3.363784309611381e-6 Iter 70: T = 633.7188072540054 K, F = -0.051712888873727325, relative_change = 1.4068485021421747e-6 Iter 75: T = 633.7160840945791 K, F = -0.02162697930535734, relative_change = 5.883737416021867e-7 Iter 80: T = 633.7149452243951 K, F = -0.00904466655068803, relative_change = 2.460671810750071e-7 Iter 85: T = 633.7144689331162 K, F = -0.003782588532949105, relative_change = 1.0290862828788436e-7 Iter 90: T = 633.7142697420363 K, F = -0.001581923866594337, relative_change = 4.3037686327381997e-8 Iter 95: T = 633.7141864378815 K, F = -0.0006615794825280408, relative_change = 1.7998886463958457e-8 Iter 100: T = 633.7141515990776 K, F = -0.00027668044551926174, relative_change = 7.527351377513348e-9 Iter 105: T = 633.7141370290716 K, F = -0.00011571106671282028, relative_change = 3.148028589881232e-9 Iter 110: T = 633.714130935721 K, F = -4.839175117837824e-5, relative_change = 1.316543244527011e-9 Iter 115: T = 633.7141283874088 K, F = -2.023800817307908e-5, relative_change = 5.505941158203101e-10 Iter 120: T = 633.7141273216741 K, F = -8.463776398237588e-6, relative_change = 2.3026502805742892e-10 Iter 125: T = 633.7141268759713 K, F = -3.539653240236529e-6, relative_change = 9.62996087155109e-11 Iter 130: T = 633.7141266895729 K, F = -1.4803256883078042e-6, relative_change = 4.027365820321605e-11 Iter 135: T = 633.7141266116189 K, F = -6.190894196178576e-7, relative_change = 1.6842912268867463e-11 Iter 140: T = 633.7141265790176 K, F = -2.5891014138190727e-7, relative_change = 7.043894887713299e-12 Iter 145: T = 633.7141265653834 K, F = -1.08279701593883e-7, relative_change = 2.9458515317611983e-12 Iter 150: T = 633.7141265596814 K, F = -4.528348068744137e-8, relative_change = 1.2319798539214703e-12 Iter 155: T = 633.7141265572967 K, F = -1.8938054680006644e-8, relative_change = 5.152276610468229e-13 Converged in 160 iterations to T = 633.7141265562994 K Iter 1: T = 976.5627660009314 K, F = -5340.196061252881, relative_change = 0.023437233999068507 Iter 2: T = 955.2846116272507 K, F = -4515.332233787567, relative_change = 0.021788824143701202 Iter 3: T = 936.0728456320707 K, F = -3816.146769990855, relative_change = 0.020111038910649203 Iter 5: T = 903.4234924867387 K, F = -2722.0172758907934, relative_change = 0.016760813651590562 Iter 10: T = 849.7252855238703 K, F = -1160.5376858270486, relative_change = 0.009406871975557911 Iter 15: T = 823.2559305119946 K, F = -490.3857369785268, relative_change = 0.004599396440408151 Iter 20: T = 811.234766998972 K, F = -206.09326417289554, relative_change = 0.0020710141914679746 Iter 25: T = 806.0140591292014 K, F = -86.37843694590984, relative_change = 0.0008949210231487917 Iter 30: T = 803.7945057514295 K, F = -36.15825697461089, relative_change = 0.00037955287134210824 Iter 35: T = 802.8597424892416 K, F = -15.127790343139571, relative_change = 0.00015967739449624976 Iter 40: T = 802.4676586558563 K, F = -6.327672929724714, relative_change = 6.69455186027654e-5 Iter 45: T = 802.3034814904302 K, F = -2.6464924791159863, relative_change = 2.8026647579228677e-5 Iter 50: T = 802.2347850512648 K, F = -1.1068269864960425, relative_change = 1.1726199312268608e-5 Iter 55: T = 802.2060491498563 K, F = -0.46289390240726325, relative_change = 4.904932763160354e-6 Iter 60: T = 802.1940303626277 K, F = -0.193588744381467, relative_change = 2.0514582418361602e-6 Iter 65: T = 802.1890037715876 K, F = -0.08096129733858803, relative_change = 8.57971760820788e-7 Iter 70: T = 802.1869015578311 K, F = -0.03385901159354321, relative_change = 3.5881883345279754e-7 Iter 75: T = 802.1860223810988 K, F = -0.014160248283080157, relative_change = 1.500631602885315e-7 Iter 80: T = 802.1856546978696 K, F = -0.005921985861997658, relative_change = 6.275835248413783e-8 Iter 85: T = 802.1855009281736 K, F = -0.0024766453699822666, relative_change = 2.624631814181331e-8 Iter 90: T = 802.1854366198193 K, F = -0.0010357626995110003, relative_change = 1.09765281846935e-8 Iter 95: T = 802.1854097252921 K, F = -0.00043316833758288986, relative_change = 4.5905159815313945e-9 Iter 100: T = 802.1853984776785 K, F = -0.00018115617339975465, relative_change = 1.9198087498766047e-9 Iter 105: T = 802.185393773792 K, F = -7.576167539169454e-5, relative_change = 8.028869712440099e-10 Iter 110: T = 802.1853918065705 K, F = -3.168443627066253e-5, relative_change = 3.3577691145865416e-10 Iter 115: T = 802.185390983855 K, F = -1.3250809478781989e-5, relative_change = 1.404259133674006e-10 Iter 120: T = 802.1853906397856 K, F = -5.541648989693115e-6, relative_change = 5.872781763064954e-11 Iter 125: T = 802.1853904958916 K, F = -2.3175852739143465e-6, relative_change = 2.4560690451399673e-11 Iter 130: T = 802.1853904357135 K, F = -9.692435460895155e-7, relative_change = 1.0271592154112065e-11 Iter 135: T = 802.1853904105462 K, F = -4.0534982415074694e-7, relative_change = 4.29570884514812e-12 Iter 140: T = 802.185390400021 K, F = -1.695237874521638e-7, relative_change = 1.7965342276698279e-12 Iter 145: T = 802.1853903956193 K, F = -7.089653331071588e-8, relative_change = 7.51328475097358e-13 Iter 150: T = 802.1853903937783 K, F = -2.9649910748830166e-8, relative_change = 3.1421595936578236e-13 Converged in 152 iterations to T = 802.1853903933887 K Iter 1: T = 965.1749679159158 K, F = -7934.916687516247, relative_change = 0.034825032084084245 Iter 2: T = 932.3241002814846 K, F = -6730.114829036995, relative_change = 0.03403617864786262 Iter 3: T = 901.4179318211378 K, F = -5707.028190961614, relative_change = 0.0331495972816917 Iter 5: T = 845.3266875334757 K, F = -4100.721960193589, relative_change = 0.031064474815390493 Iter 10: T = 736.9750148703852 K, F = -1784.4540164632049, relative_change = 0.024079173000907117 Iter 15: T = 669.2108424572438 K, F = -768.3596561136474, relative_change = 0.015774332982151376 Iter 20: T = 632.1294911648706 K, F = -327.18080472907883, relative_change = 0.0086826798092379 Iter 25: T = 614.0716742924094 K, F = -138.13467426028618, relative_change = 0.004191390875783722 Iter 30: T = 605.9289429406249 K, F = -58.02765429454094, relative_change = 0.0018746122729861152 Iter 35: T = 602.4050903497165 K, F = -24.315651327823456, relative_change = 0.0008075109862290425 Iter 40: T = 600.909336603436 K, F = -10.177666477489401, relative_change = 0.0003420090231483605 Iter 45: T = 600.2798362178032 K, F = -4.257936762477286, relative_change = 0.00014379815593155144 Iter 50: T = 600.0158714526406 K, F = -1.7809861904767021, relative_change = 6.0273117993351415e-5 Iter 55: T = 599.9053551878966 K, F = -0.7448763383873678, relative_change = 2.5230629391939127e-5 Iter 60: T = 599.8591144019929 K, F = -0.3115243449180958, relative_change = 1.0555899942588488e-5 Iter 65: T = 599.8397721783522 K, F = -0.13028462986352068, relative_change = 4.4153295758686375e-6 Iter 70: T = 599.8316823689937 K, F = -0.054486837995268156, relative_change = 1.8466705946772186e-6 Iter 75: T = 599.8282989985798 K, F = -0.02278709005917323, relative_change = 7.723219174400373e-7 Iter 80: T = 599.8268840124598 K, F = -0.009529840839869963, relative_change = 3.229981359126218e-7 Iter 85: T = 599.8262922448317 K, F = -0.00398549458516817, relative_change = 1.3508235759550094e-7 Iter 90: T = 599.8260447599243 K, F = -0.0016667816654744039, relative_change = 5.64931740425835e-8 Iter 95: T = 599.8259412586724 K, F = -0.0006970680382352712, relative_change = 2.3626140825768275e-8 Iter 100: T = 599.8258979731938 K, F = -0.0002915221852294869, relative_change = 9.880737877222354e-9 Iter 105: T = 599.8258798706864 K, F = -0.00012191805999434147, relative_change = 4.132243195975065e-9 Iter 110: T = 599.8258723000012 K, F = -5.098758874849674e-5, relative_change = 1.7281535594931498e-9 Iter 115: T = 599.82586913385 K, F = -2.1323617929780436e-5, relative_change = 7.227344547407304e-10 Iter 120: T = 599.8258678097278 K, F = -8.91779142292437e-6, relative_change = 3.0225617484336034e-10 Iter 125: T = 599.8258672559641 K, F = -3.7295270409187786e-6, relative_change = 1.2640714823402634e-10 Iter 130: T = 599.8258670243736 K, F = -1.5597328285599232e-6, relative_change = 5.286498182329811e-11 Iter 135: T = 599.8258669275197 K, F = -6.522999728142409e-7, relative_change = 2.2108803252227815e-11 Iter 140: T = 599.8258668870142 K, F = -2.7279991438033946e-7, relative_change = 9.246174900448964e-12 Iter 145: T = 599.8258668700743 K, F = -1.1408809269530806e-7, relative_change = 3.866857735851663e-12 Iter 150: T = 599.8258668629898 K, F = -4.771243439227746e-8, relative_change = 1.617146817671842e-12 Iter 155: T = 599.8258668600271 K, F = -1.9954866592453158e-8, relative_change = 6.763425387708514e-13 Iter 160: T = 599.8258668587879 K, F = -8.344939239623983e-9, relative_change = 2.828401465437932e-13 Converged in 162 iterations to T = 599.8258668585256 K Iter 1: T = 964.5750180292836 K, F = -8071.6158398850575, relative_change = 0.03542498197071639 Iter 2: T = 931.0904065048908 K, F = -6847.166554048766, relative_change = 0.03471436736232815 Iter 3: T = 899.5157907474135 K, F = -5807.350063293242, relative_change = 0.033911439251105104 Iter 5: T = 841.9842532102565 K, F = -4174.628293228466, relative_change = 0.0320048975872154 Iter 10: T = 729.560144534121 K, F = -1819.3790598206622, relative_change = 0.02542317329020084 Iter 15: T = 657.7111346746818 K, F = -784.9172961183862, relative_change = 0.01717300009134771 Iter 20: T = 617.4962436020801 K, F = -334.82752141049036, relative_change = 0.009717450718576765 Iter 25: T = 597.5704795772165 K, F = -141.53247431260752, relative_change = 0.004777484916634973 Iter 30: T = 588.4930786886538 K, F = -59.49309931142569, relative_change = 0.0021575541103135967 Iter 35: T = 584.5447124255871 K, F = -24.937218760048218, relative_change = 0.0009336073451613528 Iter 40: T = 582.8649050999584 K, F = -10.439212777060403, relative_change = 0.0003962016422187503 Iter 45: T = 582.1572394059657 K, F = -4.367604301487663, relative_change = 0.00016672489623414886 Iter 50: T = 581.8603725080186 K, F = -1.8269008951208319, relative_change = 6.990789661327182e-5 Iter 55: T = 581.7360587187105 K, F = -0.7640872698786871, relative_change = 2.926819274210398e-5 Iter 60: T = 581.6840410694539 K, F = -0.31956013686382656, relative_change = 1.2245891730039953e-5 Iter 65: T = 581.6622817411835 K, F = -0.13364556546811754, relative_change = 5.12235546822585e-6 Iter 70: T = 581.6531808683055 K, F = -0.055892468893061265, relative_change = 2.142401209139058e-6 Iter 75: T = 581.6493746238025 K, F = -0.02337494999505546, relative_change = 8.960076790600902e-7 Iter 80: T = 581.6477827805221 K, F = -0.009775692337847752, relative_change = 3.747263430413651e-7 Iter 85: T = 581.647117048039 K, F = -0.004088312872487232, relative_change = 1.567159467685257e-7 Iter 90: T = 581.6468386299573 K, F = -0.001709781545682576, relative_change = 6.554064052629607e-8 Iter 95: T = 581.6467221920494 K, F = -0.000715051110078746, relative_change = 2.7409906574048924e-8 Iter 100: T = 581.6466734963011 K, F = -0.0002990429218682755, relative_change = 1.1463155152982172e-8 Iter 105: T = 581.6466531311534 K, F = -0.00012506332276734922, relative_change = 4.794029241180936e-9 Iter 110: T = 581.6466446142045 K, F = -5.230297526626071e-5, relative_change = 2.004920425580632e-9 Iter 115: T = 581.6466410523147 K, F = -2.187372908091234e-5, relative_change = 8.38481697709809e-10 Iter 120: T = 581.6466395626899 K, F = -9.147855060620547e-6, relative_change = 3.5066307655100336e-10 Iter 125: T = 581.6466389397109 K, F = -3.825741659191362e-6, relative_change = 1.4665146509778962e-10 Iter 130: T = 581.6466386791737 K, F = -1.5999716066472658e-6, relative_change = 6.133142319381284e-11 Iter 135: T = 581.6466385702139 K, F = -6.691271657865983e-7, relative_change = 2.564953105507362e-11 Iter 140: T = 581.6466385246456 K, F = -2.7983622452598667e-7, relative_change = 1.072691156628391e-11 Iter 145: T = 581.6466385055885 K, F = -1.1703132146712036e-7, relative_change = 4.4861405566254255e-12 Iter 150: T = 581.6466384976185 K, F = -4.8943988528726834e-8, relative_change = 1.8761610926331575e-12 Iter 155: T = 581.6466384942854 K, F = -2.0468845229881794e-8, relative_change = 7.846285557610791e-13 Iter 160: T = 581.6466384928914 K, F = -8.559925657181111e-9, relative_change = 3.2812608774274464e-13 Converged in 163 iterations to T = 581.6466384924832 K Iter 1: T = 964.302553321915 K, F = -8133.69718263984, relative_change = 0.03569744667808499 Iter 2: T = 930.5293144153266 K, F = -6900.337195736479, relative_change = 0.035023488002021125 Iter 3: T = 898.6492642834768 K, F = -5852.934536941226, relative_change = 0.034260124466772734 Iter 5: T = 840.4556726827186 K, F = -4208.238392651398, relative_change = 0.032439567936273866 Iter 10: T = 726.1238143000879 K, F = -1835.3323795573888, relative_change = 0.02606607063941949 Iter 15: T = 652.293851259413 K, F = -792.5459162743027, relative_change = 0.017872111470263193 Iter 20: T = 610.5021337234863 K, F = -338.38748711906317, relative_change = 0.01025616673385883 Iter 25: T = 589.6086370266403 K, F = -143.1273700649302, relative_change = 0.005091138472102962 Iter 30: T = 580.0383868578967 K, F = -60.1842495959222, relative_change = 0.0023112329938581727 Iter 35: T = 575.8641678586413 K, F = -25.23105106813539, relative_change = 0.0010025752544579498 Iter 40: T = 574.0860388129433 K, F = -10.56298153641217, relative_change = 0.00042593325125844296 Iter 45: T = 573.3365429674287 K, F = -4.419524311908806, relative_change = 0.0001793196867535539 Iter 50: T = 573.0220552163034 K, F = -1.8486424544603612, relative_change = 7.520369163247994e-5 Iter 55: T = 572.8903497670353 K, F = -0.7731847660197131, relative_change = 3.148797244634473e-5 Iter 60: T = 572.8352369032948 K, F = -0.32336567980037123, relative_change = 1.3175109426802678e-5 Iter 65: T = 572.8121824302193 K, F = -0.1352372397437668, relative_change = 5.511119359837601e-6 Iter 70: T = 572.8025397917056 K, F = -0.05655815246174817, relative_change = 2.305013849824281e-6 Iter 75: T = 572.7985069532428 K, F = -0.02365335142729788, relative_change = 9.6401893979855e-7 Iter 80: T = 572.7968203419714 K, F = -0.009892123948688158, relative_change = 4.031702887717486e-7 Iter 85: T = 572.7961149757372 K, F = -0.004137006103487828, relative_change = 1.6861168872205044e-7 Iter 90: T = 572.7958199822344 K, F = -0.0017301456607372034, relative_change = 7.051560707617388e-8 Iter 95: T = 572.7956966122678 K, F = -0.0007235676298460447, relative_change = 2.9490501381803524e-8 Iter 100: T = 572.7956450174462 K, F = -0.00030260463238007684, relative_change = 1.2333285498406781e-8 Iter 105: T = 572.7956234398708 K, F = -0.00012655287233104273, relative_change = 5.157928260223575e-9 Iter 110: T = 572.7956144158702 K, F = -5.292592217609471e-5, relative_change = 2.157107342864253e-9 Iter 115: T = 572.7956106419254 K, F = -2.213425289676607e-5, relative_change = 9.021280874664109e-10 Iter 120: T = 572.7956090636164 K, F = -9.256808996660482e-6, relative_change = 3.7728074874254515e-10 Iter 125: T = 572.7956084035488 K, F = -3.8713083781449775e-6, relative_change = 1.5778332814902362e-10 Iter 130: T = 572.7956081275006 K, F = -1.6190265707538565e-6, relative_change = 6.598683864181724e-11 Iter 135: T = 572.795608012054 K, F = -6.770959265489651e-7, relative_change = 2.759647092900207e-11 Iter 140: T = 572.7956079637728 K, F = -2.831694311256072e-7, relative_change = 1.1541166725082478e-11 Iter 145: T = 572.7956079435811 K, F = -1.1842437158682273e-7, relative_change = 4.826634752180438e-12 Iter 150: T = 572.7956079351368 K, F = -4.9527244860847475e-8, relative_change = 2.0185872049710245e-12 Iter 155: T = 572.7956079316052 K, F = -2.071309257445364e-8, relative_change = 8.44205724846458e-13 Iter 160: T = 572.7956079301282 K, F = -8.662383144120156e-9, relative_change = 3.530536743793008e-13 Converged in 163 iterations to T = 572.7956079296958 K Iter 1: T = 980.1875813474173 K, F = -4514.2784364665185, relative_change = 0.01981241865258264 Iter 2: T = 962.4168839130897 K, F = -3813.1741114525694, relative_change = 0.018129894494173356 Iter 3: T = 946.5666825544482 K, F = -3219.456088471269, relative_change = 0.01646916385568398 Iter 5: T = 920.1035310740219 K, F = -2291.807098106452, relative_change = 0.013301629141933821 Iter 10: T = 878.1049075486685 K, F = -972.9026433766794, relative_change = 0.006982902380663419 Iter 15: T = 858.2317196298509 K, F = -409.9629559275872, relative_change = 0.0032730370070474988 Iter 20: T = 849.4140061719892 K, F = -172.0461494895149, relative_change = 0.0014420406431136397 Iter 25: T = 845.6277295845512 K, F = -72.06048012160275, relative_change = 0.0006169134253777381 Iter 30: T = 844.0261790825522 K, F = -30.155937387796083, relative_change = 0.0002605025777521096 Iter 35: T = 843.35316343624 K, F = -12.61499112345785, relative_change = 0.00010938915029659852 Iter 40: T = 843.071130770474 K, F = -5.276339798638395, relative_change = 4.582594600673737e-5 Iter 45: T = 842.953081376556 K, F = -2.2067333824711017, relative_change = 1.9178651405145846e-5 Iter 50: T = 842.9036941996853 K, F = -0.9229006415531367, relative_change = 8.023138581906241e-6 Iter 55: T = 842.8830368279558 K, F = -0.3859712867177759, relative_change = 3.35579188459887e-6 Iter 60: T = 842.8743971322621 K, F = -0.16141836420801603, relative_change = 1.403505629373055e-6 Iter 65: T = 842.8707838145625 K, F = -0.06750718605190209, relative_change = 5.869756518940983e-7 Iter 70: T = 842.8692726655456 K, F = -0.028232328617474156, relative_change = 2.454824726978525e-7 Iter 75: T = 842.868640682111 K, F = -0.011807100001208326, relative_change = 1.0266409443099811e-7 Iter 80: T = 842.8683763785895 K, F = -0.004937870749742279, relative_change = 4.293541900791686e-8 Iter 85: T = 842.8682658436126 K, F = -0.002065076608770644, relative_change = 1.795611698593056e-8 Iter 90: T = 842.8682196165499 K, F = -0.0008636397166692511, relative_change = 7.509464670658106e-9 Iter 95: T = 842.8682002838376 K, F = -0.000361184448969043, relative_change = 3.140548197334689e-9 Iter 100: T = 842.8681921986658 K, F = -0.0001510516494822589, relative_change = 1.313414817571444e-9 Iter 105: T = 842.8681888173504 K, F = -6.317160564894841e-5, relative_change = 5.492857891873468e-10 Iter 110: T = 842.868187403244 K, F = -2.6419120833232057e-5, relative_change = 2.2971788675251256e-10 Iter 115: T = 842.8681868118476 K, F = -1.104878939273135e-5, relative_change = 9.60707426629573e-11 Iter 120: T = 842.8681865645187 K, F = -4.620737667604402e-6, relative_change = 4.01779492954868e-11 Iter 125: T = 842.8681864610827 K, F = -1.932446084484951e-6, relative_change = 1.6802884394066366e-11 Iter 130: T = 842.8681864178245 K, F = -8.081706994733651e-7, relative_change = 7.027155347964278e-12 Iter 135: T = 842.8681863997335 K, F = -3.3798540099994057e-7, relative_change = 2.938829531881068e-12 Iter 140: T = 842.8681863921677 K, F = -1.4135066139786545e-7, relative_change = 1.2290634354493766e-12 Iter 145: T = 842.8681863890034 K, F = -5.9113618666728485e-8, relative_change = 5.140010419701476e-13 Converged in 150 iterations to T = 842.8681863876801 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 62%|████████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017189314738389055 Iteration 10: d = 1.60628045260204e-5 Iteration 20: d = 1.6827626325488486e-7 Iteration 30: d = 2.112515549420471e-9 Iteration 40: d = 2.785717447377267e-11 Iteration 50: d = 3.734352529223034e-13 Iteration 60: d = 5.066861697761289e-15 Converged after 62 iterations. d = 2.0854952795270334e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.323715951456 Iteration 2: convergence error = 4829.1216122489095 Iteration 3: convergence error = 1100.5237097434583 Iteration 4: convergence error = 320.81117321287957 Iteration 5: convergence error = 95.24088045554595 Iteration 6: convergence error = 28.49689090807078 Iteration 7: convergence error = 8.593481976189878 Iteration 8: convergence error = 2.5812420910854144 Iteration 9: convergence error = 0.7735114805823287 Iteration 10: convergence error = 0.23148071212426657 Iteration 11: convergence error = 0.06921918823468332 Iteration 12: convergence error = 0.020689357565288446 Iteration 13: convergence error = 0.006182422026540735 Iteration 14: convergence error = 0.0018471751627657795 Iteration 15: convergence error = 0.0005518509638022806 Iteration 16: convergence error = 0.0001648598779411259 Iteration 17: convergence error = 4.924886434309883e-5 Iteration 18: convergence error = 1.4711966741742799e-5 Iteration 19: convergence error = 4.394812322061625e-6 Iteration 20: convergence error = 1.3128374121151865e-6 Iteration 21: convergence error = 3.921618372260127e-7 Iteration 22: convergence error = 1.1702809388225432e-7 Iteration 23: convergence error = 3.405693860258907e-8 Iteration 24: convergence error = 9.838458936428651e-9 Iteration 25: convergence error = 2.8369413485052064e-9 Iteration 26: convergence error = 8.060396794462577e-10 Iteration 27: convergence error = 2.326032699784264e-10 Iteration 28: convergence error = 7.09405867382884e-11 Iteration 29: convergence error = 1.9099388737231493e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 66%|█████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017207197433844405 Iteration 10: d = 1.3952253662662865e-5 Iteration 20: d = 1.1518407545141482e-7 Iteration 30: d = 1.2410748851866753e-9 Iteration 40: d = 1.50258625667717e-11 Iteration 50: d = 1.9046749696930348e-13 Iteration 60: d = 2.436598810603647e-15 Converged after 61 iterations. d = 1.5941102300906474e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12298.645046401882 Iteration 2: convergence error = 8334.837266450002 Iteration 3: convergence error = 1951.5439920793117 Iteration 4: convergence error = 479.847438756065 Iteration 5: convergence error = 122.21535933421137 Iteration 6: convergence error = 32.60890346582005 Iteration 7: convergence error = 8.878637895267957 Iteration 8: convergence error = 2.4313582680606487 Iteration 9: convergence error = 0.6666231844576487 Iteration 10: convergence error = 0.18279678426506507 Iteration 11: convergence error = 0.05012227871407049 Iteration 12: convergence error = 0.013742548597974746 Iteration 13: convergence error = 0.0037678047258395964 Iteration 14: convergence error = 0.0010330031284411234 Iteration 15: convergence error = 0.0002832116842910182 Iteration 16: convergence error = 7.764598399262468e-5 Iteration 17: convergence error = 2.128757159880479e-5 Iteration 18: convergence error = 5.8362352319818456e-6 Iteration 19: convergence error = 1.6000733467080863e-6 Iteration 20: convergence error = 4.386793079902418e-7 Iteration 21: convergence error = 1.2113264347135555e-7 Iteration 22: convergence error = 3.2538309824303724e-8 Iteration 23: convergence error = 8.69727045937907e-9 Iteration 24: convergence error = 2.32012098422274e-9 Iteration 25: convergence error = 6.195932655828074e-10 Iteration 26: convergence error = 1.6507328837178648e-10 Iteration 27: convergence error = 4.3655745685100555e-11 Iteration 28: convergence error = 1.2278178473934531e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017207197433844405 Iteration 10: d = 1.3952253662662865e-5 Iteration 20: d = 1.1518407545141482e-7 Iteration 30: d = 1.2410748851866753e-9 Iteration 40: d = 1.50258625667717e-11 Iteration 50: d = 1.9046749696930348e-13 Iteration 60: d = 2.436598810603647e-15 Converged after 61 iterations. d = 1.5941102300906474e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10994.669441219232 Iteration 2: convergence error = 5732.46985376986 Iteration 3: convergence error = 2015.3712897107011 Iteration 4: convergence error = 893.7999093974372 Iteration 5: convergence error = 410.74191309564685 Iteration 6: convergence error = 193.68544381271795 Iteration 7: convergence error = 91.42270993876627 Iteration 8: convergence error = 43.17710701094802 Iteration 9: convergence error = 20.392838984040736 Iteration 10: convergence error = 9.629918877680666 Iteration 11: convergence error = 4.546360498909962 Iteration 12: convergence error = 2.145912665886499 Iteration 13: convergence error = 1.0127163184465644 Iteration 14: convergence error = 0.4778715664529045 Iteration 15: convergence error = 0.2254749198209538 Iteration 16: convergence error = 0.10628969498429797 Iteration 17: convergence error = 0.0496650834461434 Iteration 18: convergence error = 0.02267603606742341 Iteration 19: convergence error = 0.010314908564396319 Iteration 20: convergence error = 0.004682017621689738 Iteration 21: convergence error = 0.0021225776818027953 Iteration 22: convergence error = 0.0009615726262381941 Iteration 23: convergence error = 0.0004354294501354161 Iteration 24: convergence error = 0.00019712671883098665 Iteration 25: convergence error = 8.922956931201043e-5 Iteration 26: convergence error = 4.0386238651990425e-5 Iteration 27: convergence error = 1.8278246443514945e-5 Iteration 28: convergence error = 8.272204468084965e-6 Iteration 29: convergence error = 3.743686193047324e-6 Iteration 30: convergence error = 1.6942285583354533e-6 Iteration 31: convergence error = 7.667231329833157e-7 Iteration 32: convergence error = 3.469872353889514e-7 Iteration 33: convergence error = 1.5702062228228897e-7 Iteration 34: convergence error = 7.10683707438875e-8 Iteration 35: convergence error = 3.2157913665287197e-8 Iteration 36: convergence error = 1.4555098459823057e-8 Iteration 37: convergence error = 6.5829226514324546e-9 Iteration 38: convergence error = 2.9813236324116588e-9 Iteration 39: convergence error = 1.3469616533257067e-9 Iteration 40: convergence error = 6.134541763458401e-10 Iteration 41: convergence error = 2.7830537874251604e-10 Iteration 42: convergence error = 1.2869350030086935e-10 Iteration 43: convergence error = 5.820766091346741e-11 Iteration 44: convergence error = 2.637534635141492e-11 Iteration 45: convergence error = 1.2278178473934531e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 66%|█████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017207197433844405 Iteration 10: d = 1.3952253662662865e-5 Iteration 20: d = 1.1518407545141482e-7 Iteration 30: d = 1.2410748851866753e-9 Iteration 40: d = 1.50258625667717e-11 Iteration 50: d = 1.9046749696930348e-13 Iteration 60: d = 2.436598810603647e-15 Converged after 61 iterations. d = 1.5941102300906474e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.669564363116 Iteration 2: convergence error = 7351.510474647004 Iteration 3: convergence error = 1731.1426145420241 Iteration 4: convergence error = 505.75775207195466 Iteration 5: convergence error = 157.07982056199035 Iteration 6: convergence error = 48.7865800712766 Iteration 7: convergence error = 15.127419757146072 Iteration 8: convergence error = 4.682913112784718 Iteration 9: convergence error = 1.447999690011784 Iteration 10: convergence error = 0.44741795235813697 Iteration 11: convergence error = 0.13819064442577655 Iteration 12: convergence error = 0.042671818217968394 Iteration 13: convergence error = 0.013174841681120597 Iteration 14: convergence error = 0.004067398164352198 Iteration 15: convergence error = 0.0012556519668578403 Iteration 16: convergence error = 0.000387624534596398 Iteration 17: convergence error = 0.00011965949397563236 Iteration 18: convergence error = 3.6938534776709275e-5 Iteration 19: convergence error = 1.1402763448131736e-5 Iteration 20: convergence error = 3.519973233778728e-6 Iteration 21: convergence error = 1.0865928743442055e-6 Iteration 22: convergence error = 3.352774911036249e-7 Iteration 23: convergence error = 1.0225903679383919e-7 Iteration 24: convergence error = 3.041714080609381e-8 Iteration 25: convergence error = 9.02446117834188e-9 Iteration 26: convergence error = 2.665274223545566e-9 Iteration 27: convergence error = 7.962626114021987e-10 Iteration 28: convergence error = 2.3919710656628013e-10 Iteration 29: convergence error = 7.275957614183426e-11 Iteration 30: convergence error = 2.2737367544323206e-11 Iteration 31: convergence error = 1.000444171950221e-11 Converged after 31 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 59%|███████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017207197433844405 Iteration 10: d = 1.3952253662662865e-5 Iteration 20: d = 1.1518407545141482e-7 Iteration 30: d = 1.2410748851866753e-9 Iteration 40: d = 1.50258625667717e-11 Iteration 50: d = 1.9046749696930348e-13 Iteration 60: d = 2.436598810603647e-15 Converged after 61 iterations. d = 1.5941102300906474e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.705776689588 Iteration 2: convergence error = 5523.312131860078 Iteration 3: convergence error = 936.2689078235921 Iteration 4: convergence error = 170.17823147501758 Iteration 5: convergence error = 30.85245329534132 Iteration 6: convergence error = 5.610030959185224 Iteration 7: convergence error = 1.0283534890413648 Iteration 8: convergence error = 0.18813778637877476 Iteration 9: convergence error = 0.034379374431409815 Iteration 10: convergence error = 0.006278658901464951 Iteration 11: convergence error = 0.0011463265514066734 Iteration 12: convergence error = 0.00020925926219206303 Iteration 13: convergence error = 3.819683433903265e-5 Iteration 14: convergence error = 6.971925358811859e-6 Iteration 15: convergence error = 1.2725154192594346e-6 Iteration 16: convergence error = 2.3227448764373548e-7 Iteration 17: convergence error = 4.239200279698707e-8 Iteration 18: convergence error = 7.732523954473436e-9 Iteration 19: convergence error = 1.4160832506604493e-9 Iteration 20: convergence error = 2.5920599000528455e-10 Iteration 21: convergence error = 4.5929482439532876e-11 Iteration 22: convergence error = 8.185452315956354e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017207197433844405 Iteration 10: d = 1.3952253662662865e-5 Iteration 20: d = 1.1518407545141482e-7 Iteration 30: d = 1.2410748851866753e-9 Iteration 40: d = 1.50258625667717e-11 Iteration 50: d = 1.9046749696930348e-13 Iteration 60: d = 2.436598810603647e-15 Converged after 61 iterations. d = 1.5941102300906474e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.4822952531085 Iteration 2: convergence error = 2717.0297677468857 Iteration 3: convergence error = 204.44674942889685 Iteration 4: convergence error = 19.26768299458527 Iteration 5: convergence error = 1.5917888394894384 Iteration 6: convergence error = 0.12986782686695983 Iteration 7: convergence error = 0.010613928329010463 Iteration 8: convergence error = 0.0008685582637865567 Iteration 9: convergence error = 7.113821812482645e-5 Iteration 10: convergence error = 5.829315544254473e-6 Iteration 11: convergence error = 4.777952340926118e-7 Iteration 12: convergence error = 3.9167062876915604e-8 Iteration 13: convergence error = 3.2116546650830077e-9 Iteration 14: convergence error = 2.6243367871658807e-10 Iteration 15: convergence error = 2.1373125491663814e-11 Converged after 15 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346352 Iteration 2: convergence error = 858.4060420534064 Iteration 3: convergence error = 199.12106737711963 Iteration 4: convergence error = 59.265629268140174 Iteration 5: convergence error = 17.985482911037252 Iteration 6: convergence error = 5.463033078096487 Iteration 7: convergence error = 1.660989611064224 Iteration 8: convergence error = 0.5052487627317532 Iteration 9: convergence error = 0.15371874094239502 Iteration 10: convergence error = 0.04677131697644654 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.004330236512828378 Iteration 13: convergence error = 0.0013175920926187246 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198903971238906 Iteration 16: convergence error = 3.711853855747904e-5 Iteration 17: convergence error = 1.1294342471046548e-5 Iteration 18: convergence error = 3.4366166801191866e-6 Iteration 19: convergence error = 1.045686303768889e-6 Iteration 20: convergence error = 3.1818046863918426e-7 Iteration 21: convergence error = 9.68161657510791e-8 Iteration 22: convergence error = 2.946035237982869e-8 Iteration 23: convergence error = 8.963752406998537e-9 Iteration 24: convergence error = 2.7299620342091657e-9 Iteration 25: convergence error = 8.292317943414673e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.696598913753405e-11 Iteration 28: convergence error = 2.3646862246096134e-11 Iteration 29: convergence error = 9.094947017729282e-12 Converged after 29 iterations Energy conservation errors by band: [1.5428857128674637e-25, 8.401053096241687e-26, 1.1490863489811346e-25, 9.400697635337753e-26, 1.2440020930973268e-25, -3.2610768469290563e-19, 2.7533531010703882e-14, 1.7053025658242404e-12, 5.6701310313655995e-12, 2.6432189770275727e-12, 7.176481631177012e-13, 8.526512829121202e-14, 4.9960036108132044e-15, 2.636779683484747e-16, 2.0166160408230382e-17, 1.0062751413381088e-18, 3.560185356428231e-20, 1.2755125045567687e-21, 4.105530024647957e-23, 5.6284752489113644e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 87%|████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017189314738389055 Iteration 10: d = 1.60628045260204e-5 Iteration 20: d = 1.6827626325488486e-7 Iteration 30: d = 2.112515549420471e-9 Iteration 40: d = 2.785717447377267e-11 Iteration 50: d = 3.734352529223034e-13 Iteration 60: d = 5.066861697761289e-15 Converged after 62 iterations. d = 2.0854952795270334e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.230167549808 Iteration 2: convergence error = 3615.8165692289685 Iteration 3: convergence error = 595.2570195476383 Iteration 4: convergence error = 105.29287863163404 Iteration 5: convergence error = 18.76419156749762 Iteration 6: convergence error = 3.3149985757490867 Iteration 7: convergence error = 0.5835434402722512 Iteration 8: convergence error = 0.10256778411121559 Iteration 9: convergence error = 0.018016948701870206 Iteration 10: convergence error = 0.003164047229120115 Iteration 11: convergence error = 0.0005555983452723012 Iteration 12: convergence error = 9.755767746355559e-5 Iteration 13: convergence error = 1.7129909338109428e-5 Iteration 14: convergence error = 3.007778104802128e-6 Iteration 15: convergence error = 5.281272024149075e-7 Iteration 16: convergence error = 9.271775525121484e-8 Iteration 17: convergence error = 1.6296326066367328e-8 Iteration 18: convergence error = 2.8417161956895143e-9 Iteration 19: convergence error = 5.038600647822022e-10 Iteration 20: convergence error = 8.844835974741727e-11 Iteration 21: convergence error = 1.546140993013978e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.492427513024 Iteration 2: convergence error = 871.304602661783 Iteration 3: convergence error = 207.75299581225158 Iteration 4: convergence error = 62.49550550490892 Iteration 5: convergence error = 18.97931530918413 Iteration 6: convergence error = 5.76621559404623 Iteration 7: convergence error = 1.7533061530655232 Iteration 8: convergence error = 0.5333443698997371 Iteration 9: convergence error = 0.16226812526508638 Iteration 10: convergence error = 0.04937275063014113 Iteration 11: convergence error = 0.015022831428041172 Iteration 12: convergence error = 0.0045710916562029524 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318846916256 Iteration 15: convergence error = 0.0001287742984459328 Iteration 16: convergence error = 3.9183143599075265e-5 Iteration 17: convergence error = 1.1922556950594299e-5 Iteration 18: convergence error = 3.6277691606301232e-6 Iteration 19: convergence error = 1.1038513321182108e-6 Iteration 20: convergence error = 3.3587832604098367e-7 Iteration 21: convergence error = 1.0220117019343888e-7 Iteration 22: convergence error = 3.1099034458748065e-8 Iteration 23: convergence error = 9.464656613999978e-9 Iteration 24: convergence error = 2.880597094190307e-9 Iteration 25: convergence error = 8.786855687503703e-10 Iteration 26: convergence error = 2.6830093702301383e-10 Iteration 27: convergence error = 8.185452315956354e-11 Iteration 28: convergence error = 2.6261659513693303e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [9.81469183839774e-26, 1.2278462217584005e-25, 1.7064639101740927e-25, 1.3045866106183005e-25, 1.2440020930973268e-25, -2.642742795433417e-19, -7.993605777301127e-15, 8.526512829121202e-14, 7.013056801952189e-12, 4.575895218295045e-12, 5.826450433232822e-13, 8.79296635503124e-14, 5.218048215738236e-15, 3.642919299551295e-16, 2.0166160408230382e-17, 8.775261333554552e-19, 3.7613556814011274e-20, 1.2358078351542233e-21, 3.6499344528902346e-23, 4.998575315730623e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729987 Iteration 2: convergence error = 2115.1156110176394 Iteration 3: convergence error = 714.8959934551629 Iteration 4: convergence error = 296.01907471323966 Iteration 5: convergence error = 115.88799395378669 Iteration 6: convergence error = 44.11524923618913 Iteration 7: convergence error = 16.599581025126554 Iteration 8: convergence error = 6.215983404932786 Iteration 9: convergence error = 2.323124567003788 Iteration 10: convergence error = 0.867563639824084 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.12090784413658184 Iteration 13: convergence error = 0.04513241840754745 Iteration 14: convergence error = 0.016846741615154315 Iteration 15: convergence error = 0.0062884074741305085 Iteration 16: convergence error = 0.0023472777563711134 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782211112615 Iteration 19: convergence error = 0.00012207719146317686 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985607473878e-6 Iteration 23: convergence error = 2.3698869426880265e-6 Iteration 24: convergence error = 8.846079708746402e-7 Iteration 25: convergence error = 3.302000095573021e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7174670574604534e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.949427865445614e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.248281478183344e-10 Iteration 34: convergence error = 4.774847184307873e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.9952501103574007e-25, 1.4136387421560532e-25, 1.0339757656912846e-25, 1.6478988765704848e-25, 2.1729646950855903e-25, 9.486769009248164e-20, 5.240252676230739e-14, 2.9274360713316128e-12, 1.2093437362636905e-11, 5.6203930398623925e-12, 2.0961010704922955e-13, 1.84297022087776e-14, 1.582067810090848e-15, 1.723881454251952e-16, 7.101524229780054e-18, 4.641740550953566e-19, 1.4770137017746862e-20, 4.963083675318166e-22, 1.7991178323028352e-23, 9.298117831235686e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238243 Iteration 2: convergence error = 864.8522700482431 Iteration 3: convergence error = 203.43244494690748 Iteration 4: convergence error = 60.87736397590345 Iteration 5: convergence error = 18.481426659698286 Iteration 6: convergence error = 5.6143306186266955 Iteration 7: convergence error = 1.7070587705935623 Iteration 8: convergence error = 0.5192694771476454 Iteration 9: convergence error = 0.1579851928424887 Iteration 10: convergence error = 0.04806952669207476 Iteration 11: convergence error = 0.014626287390910875 Iteration 12: convergence error = 0.004450431969985402 Iteration 13: convergence error = 0.0013541649049102489 Iteration 14: convergence error = 0.0004120419150694943 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.8148852013364376e-5 Iteration 17: convergence error = 1.1607843930505624e-5 Iteration 18: convergence error = 3.532008690854127e-6 Iteration 19: convergence error = 1.0747122587417834e-6 Iteration 20: convergence error = 3.270116621933994e-7 Iteration 21: convergence error = 9.950440471584443e-8 Iteration 22: convergence error = 3.027832917723572e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8029489840264432e-9 Iteration 25: convergence error = 8.546976459911093e-10 Iteration 26: convergence error = 2.609112925711088e-10 Iteration 27: convergence error = 8.003553375601768e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.753886504564434e-12 Converged after 29 iterations Energy conservation errors by band: [1.4621063561728321e-25, 7.674038885990003e-26, 1.32882041762669e-25, 1.3116548043290807e-25, 1.126872025890111e-25, -1.5246593050577406e-19, -3.6637359812630166e-14, 2.5721647034515627e-12, 7.627676268384675e-12, 2.8421709430404007e-12, 4.973799150320701e-13, 7.194245199571014e-14, 4.385380947269368e-15, 4.198030811863873e-16, 2.3310346708438345e-17, 9.84252284709497e-19, 4.1081097941833566e-20, 9.880672416945916e-22, 2.4156258825962636e-23, 4.8210806556121566e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 8m46.8s Testing RayTraceHeatTransfer tests passed Testing completed after 527.92s PkgEval succeeded after 621.69s