Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1613 (8dab3f0623*) started at 2026-01-25T16:23:13.789 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 10.13s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.14.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.18.0+0 [e37daf67] + LibGit2_jll v1.9.2+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.12.2 [4536629a] + OpenBLAS_jll v0.3.30+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.14s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling packages... 1443.8 ms ✓ Measurements 5020.1 ms ✓ StatsBase 6417.1 ms ✓ RayTraceHeatTransfer 3 dependencies successfully precompiled in 14 seconds. 58 already precompiled. Precompilation completed after 32.44s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_r6AGSu/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.16 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_r6AGSu/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.16 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.18.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.30+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443558531181326e-15 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.0569008315563939e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.691850745534255e-16 Converged after 6 iterations. d = 1.6184142622847344e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.485546236472086e-16 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2585248453105973e-15 Converged after 6 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 8.64442489944963e-16 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2785653431858247e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.741771048821297e-15 Converged after 5 iterations. d = 2.1647144989062977e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.6708853471768988e-15 Converged after 5 iterations. d = 1.8174569082716346e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5394136982922497e-15 Converged after 5 iterations. d = 1.6288904732141786e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:03:10 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:05 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001182245591239711 Iteration 10: d = 1.3112578415978092e-5 Iteration 20: d = 2.140060954034355e-7 Iteration 30: d = 3.8048309130890395e-9 Iteration 40: d = 6.891676818631622e-11 Iteration 50: d = 1.2549335176577064e-12 Iteration 60: d = 2.2902460623643327e-14 Converged after 66 iterations. d = 2.0541866714095956e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:01 Bin 1 progress: 95%|███████████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012276003242832477 Iteration 10: d = 1.526422120073423e-5 Iteration 20: d = 2.4514849892867554e-7 Iteration 30: d = 4.241497532669651e-9 Iteration 40: d = 7.514946973105661e-11 Iteration 50: d = 1.3451040206119253e-12 Iteration 60: d = 2.4171523105407424e-14 Converged after 66 iterations. d = 2.1885744560674814e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:01 Bin 1 progress: 92%|██████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013137178260109693 Iteration 10: d = 1.5089170363301963e-5 Iteration 20: d = 2.4347995723440743e-7 Iteration 30: d = 4.290006383952577e-9 Iteration 40: d = 7.711119865344731e-11 Iteration 50: d = 1.396511498197231e-12 Iteration 60: d = 2.5393287897627918e-14 Converged after 67 iterations. d = 1.5216089204007193e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▍ | ETA: 0:00:01 Bin 1 progress: 85%|████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012094413974731684 Iteration 10: d = 1.3720807365072154e-5 Iteration 20: d = 2.2473176319779815e-7 Iteration 30: d = 3.95493344852553e-9 Iteration 40: d = 7.07380883520828e-11 Iteration 50: d = 1.2718359009688066e-12 Iteration 60: d = 2.2900675367478894e-14 Converged after 66 iterations. d = 2.0853334773628613e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 95%|███████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015299590786339893 Iteration 10: d = 2.2890811512195627e-5 Iteration 20: d = 3.258345046805493e-7 Iteration 30: d = 4.891420066490149e-9 Iteration 40: d = 7.496016413044749e-11 Iteration 50: d = 1.159930069768378e-12 Iteration 60: d = 1.8022097776738763e-14 Converged after 66 iterations. d = 1.512609421953492e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 64%|█████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014030317309617693 Iteration 10: d = 1.8911434027130573e-5 Iteration 20: d = 2.663678603350706e-7 Iteration 30: d = 4.00524922738694e-9 Iteration 40: d = 6.155042288123687e-11 Iteration 50: d = 9.54918739010759e-13 Iteration 60: d = 1.487946806523871e-14 Converged after 65 iterations. d = 1.8833060748029194e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:01 Bin 1 progress: 95%|███████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014606536584510382 Iteration 10: d = 1.9392304432290093e-5 Iteration 20: d = 2.6398495242823294e-7 Iteration 30: d = 3.883899220685824e-9 Iteration 40: d = 5.9033219514377e-11 Iteration 50: d = 9.1138516035997e-13 Iteration 60: d = 1.41812354125871e-14 Converged after 65 iterations. d = 1.773608308363043e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:01 Bin 1 progress: 92%|██████████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001177684821087625 Iteration 10: d = 1.702448101712947e-5 Iteration 20: d = 2.3760921960902518e-7 Iteration 30: d = 3.525262897324443e-9 Iteration 40: d = 5.3683753565037794e-11 Iteration 50: d = 8.275918541640961e-13 Iteration 60: d = 1.2865450296205953e-14 Converged after 65 iterations. d = 1.6105061880848874e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001303511722194838 Iteration 10: d = 1.6185769599465012e-5 Iteration 20: d = 2.2321731884550198e-7 Iteration 30: d = 3.334954021755116e-9 Iteration 40: d = 5.1027069547642923e-11 Iteration 50: d = 7.889908063072551e-13 Iteration 60: d = 1.2274949467029542e-14 Converged after 65 iterations. d = 1.548597861935994e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013433711902833534 Iteration 10: d = 1.982780404202099e-5 Iteration 20: d = 2.905306169909255e-7 Iteration 30: d = 4.42409552273957e-9 Iteration 40: d = 6.82354887090804e-11 Iteration 50: d = 1.0590030499399022e-12 Iteration 60: d = 1.6506401815618886e-14 Converged after 65 iterations. d = 2.0523660425091983e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.004890884886486324 Iteration 10: d = 6.773255363797469e-5 Iteration 20: d = 8.66138499124255e-7 Iteration 30: d = 1.1397562962855303e-8 Iteration 40: d = 1.5113872347327436e-10 Iteration 50: d = 2.0158252816521162e-12 Iteration 60: d = 2.704249756376704e-14 Converged after 66 iterations. d = 2.008406360957108e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002722278469898736 Iteration 10: d = 2.5441935204126982e-5 Iteration 20: d = 3.1771512822505366e-7 Iteration 30: d = 4.501934723288011e-9 Iteration 40: d = 6.605749004980495e-11 Iteration 50: d = 9.839176050718718e-13 Iteration 60: d = 1.4801793848947932e-14 Converged after 65 iterations. d = 1.7946389149378643e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0025007813019303844 Iteration 10: d = 1.775167835546778e-5 Iteration 20: d = 2.0148643166796807e-7 Iteration 30: d = 3.058323852919036e-9 Iteration 40: d = 4.922616282186697e-11 Iteration 50: d = 8.039074389852642e-13 Iteration 60: d = 1.3177891777857987e-14 Converged after 65 iterations. d = 1.6905348919931066e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0021958666128855924 Iteration 10: d = 1.821971112546482e-5 Iteration 20: d = 2.529119908171937e-7 Iteration 30: d = 4.316453035047709e-9 Iteration 40: d = 7.639742142713722e-11 Iteration 50: d = 1.3685490680142603e-12 Iteration 60: d = 2.4672045107248223e-14 Converged after 66 iterations. d = 2.1888426080016092e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015299590786339893 Iteration 10: d = 2.2890811512195627e-5 Iteration 20: d = 3.258345046805493e-7 Iteration 30: d = 4.891420066490149e-9 Iteration 40: d = 7.496016413044749e-11 Iteration 50: d = 1.159930069768378e-12 Iteration 60: d = 1.8022097776738763e-14 Converged after 66 iterations. d = 1.512609421953492e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013130498807393683 Iteration 10: d = 1.1745874002592105e-5 Iteration 20: d = 1.3114549471253766e-7 Iteration 30: d = 1.6914204229023379e-9 Iteration 40: d = 2.2526917871341752e-11 Iteration 50: d = 3.03597785308426e-13 Iteration 60: d = 4.101384927982206e-15 Converged after 62 iterations. d = 1.7240471864473474e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012703512285219573 Iteration 10: d = 8.557322274598134e-6 Iteration 20: d = 7.816287611826208e-8 Iteration 30: d = 9.618644945214711e-10 Iteration 40: d = 1.295353191135732e-11 Iteration 50: d = 1.7861157805866125e-13 Iteration 60: d = 2.485408103822348e-15 Converged after 61 iterations. d = 1.6236148869796733e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.649690954799 Iteration 2: convergence error = 4836.267787238087 Iteration 3: convergence error = 1096.750894397713 Iteration 4: convergence error = 320.977205491771 Iteration 5: convergence error = 95.38598541019473 Iteration 6: convergence error = 28.61491771383203 Iteration 7: convergence error = 8.625256126938666 Iteration 8: convergence error = 2.589505303882788 Iteration 9: convergence error = 0.7755878109212517 Iteration 10: convergence error = 0.23198043772367782 Iteration 11: convergence error = 0.06933200107164339 Iteration 12: convergence error = 0.02071210051030903 Iteration 13: convergence error = 0.006185934345694477 Iteration 14: convergence error = 0.0018472430651854665 Iteration 15: convergence error = 0.0005515780310361151 Iteration 16: convergence error = 0.0001646907658141572 Iteration 17: convergence error = 4.917218507216603e-5 Iteration 18: convergence error = 1.468125492465333e-5 Iteration 19: convergence error = 4.383315626910189e-6 Iteration 20: convergence error = 1.308695800616988e-6 Iteration 21: convergence error = 3.9072733670764137e-7 Iteration 22: convergence error = 1.1652809916995466e-7 Iteration 23: convergence error = 3.388504410395399e-8 Iteration 24: convergence error = 9.792756827664562e-9 Iteration 25: convergence error = 2.816932465066202e-9 Iteration 26: convergence error = 8.080860425252467e-10 Iteration 27: convergence error = 2.2873791749589145e-10 Iteration 28: convergence error = 6.639311322942376e-11 Iteration 29: convergence error = 1.978150976356119e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:01 Bin 1 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013130498807393683 Iteration 10: d = 1.1745874002592105e-5 Iteration 20: d = 1.3114549471253766e-7 Iteration 30: d = 1.6914204229023379e-9 Iteration 40: d = 2.2526917871341752e-11 Iteration 50: d = 3.03597785308426e-13 Iteration 60: d = 4.101384927982206e-15 Converged after 62 iterations. d = 1.7240471864473474e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.680613110637 Iteration 2: convergence error = 4826.093956726897 Iteration 3: convergence error = 1099.021154425699 Iteration 4: convergence error = 318.61887693456106 Iteration 5: convergence error = 94.40024487329902 Iteration 6: convergence error = 28.15683239838063 Iteration 7: convergence error = 8.472203254506212 Iteration 8: convergence error = 2.5394270485023753 Iteration 9: convergence error = 0.7594110228728823 Iteration 10: convergence error = 0.22679923643295297 Iteration 11: convergence error = 0.06768268370888109 Iteration 12: convergence error = 0.020189549059978162 Iteration 13: convergence error = 0.006021007202434703 Iteration 14: convergence error = 0.0017953566809865151 Iteration 15: convergence error = 0.0005353001124603907 Iteration 16: convergence error = 0.00015959662846398714 Iteration 17: convergence error = 4.758153158945788e-5 Iteration 18: convergence error = 1.4185556665324839e-5 Iteration 19: convergence error = 4.2291237605240894e-6 Iteration 20: convergence error = 1.2608188626472838e-6 Iteration 21: convergence error = 3.758834736800054e-7 Iteration 22: convergence error = 1.11920599010773e-7 Iteration 23: convergence error = 3.245918378524948e-8 Iteration 24: convergence error = 9.353925634059124e-9 Iteration 25: convergence error = 2.685510480660014e-9 Iteration 26: convergence error = 7.698872650507838e-10 Iteration 27: convergence error = 2.2214408090803772e-10 Iteration 28: convergence error = 6.502887117676437e-11 Iteration 29: convergence error = 1.8417267710901797e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 6:31:32 Bin 1 ray tracing: 9%|██▋ | ETA: 0:00:35 Bin 1 ray tracing: 18%|█████▎ | ETA: 0:00:21 Bin 1 ray tracing: 26%|███████▉ | ETA: 0:00:15 Bin 1 ray tracing: 35%|██████████▌ | ETA: 0:00:12 Bin 1 ray tracing: 44%|█████████████▎ | ETA: 0:00:10 Bin 1 ray tracing: 53%|████████████████ | ETA: 0:00:08 Bin 1 ray tracing: 63%|██████████████████▊ | ETA: 0:00:06 Bin 1 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:04 Bin 1 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:03 Bin 1 ray tracing: 90%|██████████████████████████▉ | ETA: 0:00:01 Bin 1 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 2 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 2 ray tracing: 27%|████████▏ | ETA: 0:00:08 Bin 2 ray tracing: 36%|██████████▊ | ETA: 0:00:07 Bin 2 ray tracing: 44%|█████████████▎ | ETA: 0:00:06 Bin 2 ray tracing: 53%|███████████████▉ | ETA: 0:00:05 Bin 2 ray tracing: 61%|██████████████████▍ | ETA: 0:00:04 Bin 2 ray tracing: 70%|████████████████████▉ | ETA: 0:00:04 Bin 2 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 2 ray tracing: 86%|██████████████████████████ | ETA: 0:00:02 Bin 2 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 3 ray tracing: 17%|█████▎ | ETA: 0:00:10 Bin 3 ray tracing: 26%|███████▉ | ETA: 0:00:09 Bin 3 ray tracing: 35%|██████████▌ | ETA: 0:00:08 Bin 3 ray tracing: 44%|█████████████▏ | ETA: 0:00:07 Bin 3 ray tracing: 53%|███████████████▉ | ETA: 0:00:06 Bin 3 ray tracing: 62%|██████████████████▌ | ETA: 0:00:04 Bin 3 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:03 Bin 3 ray tracing: 79%|███████████████████████▉ | ETA: 0:00:02 Bin 3 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:01 Bin 3 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 9%|██▉ | ETA: 0:00:10 Bin 4 ray tracing: 19%|█████▋ | ETA: 0:00:09 Bin 4 ray tracing: 28%|████████▌ | ETA: 0:00:08 Bin 4 ray tracing: 38%|███████████▍ | ETA: 0:00:07 Bin 4 ray tracing: 47%|██████████████▏ | ETA: 0:00:06 Bin 4 ray tracing: 56%|█████████████████ | ETA: 0:00:05 Bin 4 ray tracing: 66%|███████████████████▊ | ETA: 0:00:04 Bin 4 ray tracing: 75%|██████████████████████▋ | ETA: 0:00:03 Bin 4 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 4 ray tracing: 94%|████████████████████████████▍ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 5 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 5 ray tracing: 27%|████████▎ | ETA: 0:00:08 Bin 5 ray tracing: 36%|███████████ | ETA: 0:00:07 Bin 5 ray tracing: 46%|█████████████▋ | ETA: 0:00:06 Bin 5 ray tracing: 54%|████████████████▍ | ETA: 0:00:05 Bin 5 ray tracing: 63%|███████████████████ | ETA: 0:00:04 Bin 5 ray tracing: 72%|█████████████████████▊ | ETA: 0:00:03 Bin 5 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:02 Bin 5 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 10%|██▉ | ETA: 0:00:10 Bin 6 ray tracing: 19%|█████▋ | ETA: 0:00:09 Bin 6 ray tracing: 28%|████████▍ | ETA: 0:00:08 Bin 6 ray tracing: 37%|███████████▏ | ETA: 0:00:07 Bin 6 ray tracing: 46%|█████████████▊ | ETA: 0:00:06 Bin 6 ray tracing: 55%|████████████████▌ | ETA: 0:00:05 Bin 6 ray tracing: 64%|███████████████████▏ | ETA: 0:00:04 Bin 6 ray tracing: 73%|█████████████████████▊ | ETA: 0:00:03 Bin 6 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:02 Bin 6 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 9%|██▉ | ETA: 0:00:10 Bin 7 ray tracing: 19%|█████▋ | ETA: 0:00:09 Bin 7 ray tracing: 28%|████████▍ | ETA: 0:00:08 Bin 7 ray tracing: 37%|███████████▏ | ETA: 0:00:07 Bin 7 ray tracing: 46%|█████████████▉ | ETA: 0:00:06 Bin 7 ray tracing: 55%|████████████████▋ | ETA: 0:00:05 Bin 7 ray tracing: 64%|███████████████████▍ | ETA: 0:00:04 Bin 7 ray tracing: 74%|██████████████████████ | ETA: 0:00:03 Bin 7 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:02 Bin 7 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 8 ray tracing: 18%|█████▍ | ETA: 0:00:09 Bin 8 ray tracing: 28%|████████▎ | ETA: 0:00:08 Bin 8 ray tracing: 37%|███████████▏ | ETA: 0:00:07 Bin 8 ray tracing: 46%|█████████████▉ | ETA: 0:00:06 Bin 8 ray tracing: 55%|████████████████▌ | ETA: 0:00:05 Bin 8 ray tracing: 65%|███████████████████▍ | ETA: 0:00:04 Bin 8 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:03 Bin 8 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:02 Bin 8 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 11%|███▌ | ETA: 0:00:08 Bin 9 ray tracing: 24%|███████▎ | ETA: 0:00:06 Bin 9 ray tracing: 37%|███████████▏ | ETA: 0:00:05 Bin 9 ray tracing: 48%|██████████████▌ | ETA: 0:00:05 Bin 9 ray tracing: 58%|█████████████████▌ | ETA: 0:00:04 Bin 9 ray tracing: 68%|████████████████████▌ | ETA: 0:00:03 Bin 9 ray tracing: 79%|███████████████████████▌ | ETA: 0:00:02 Bin 9 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:01 Bin 9 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 10 ray tracing: 18%|█████▍ | ETA: 0:00:09 Bin 10 ray tracing: 28%|████████ | ETA: 0:00:08 Bin 10 ray tracing: 37%|██████████▊ | ETA: 0:00:07 Bin 10 ray tracing: 46%|█████████████▍ | ETA: 0:00:06 Bin 10 ray tracing: 55%|████████████████ | ETA: 0:00:05 Bin 10 ray tracing: 64%|██████████████████▋ | ETA: 0:00:04 Bin 10 ray tracing: 75%|█████████████████████▋ | ETA: 0:00:03 Bin 10 ray tracing: 85%|████████████████████████▌ | ETA: 0:00:02 Bin 10 ray tracing: 94%|███████████████████████████▍ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 24%|████████▏ | ETA: 0:00:03 Bin 1 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 1 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 22%|███████▍ | ETA: 0:00:04 Bin 2 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 2 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 2 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 24%|████████▏ | ETA: 0:00:03 Bin 3 progress: 56%|██████████████████▍ | ETA: 0:00:02 Bin 3 progress: 87%|████████████████████████████▋ | ETA: 0:00:00 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 27%|████████▊ | ETA: 0:00:03 Bin 4 progress: 53%|█████████████████▋ | ETA: 0:00:02 Bin 4 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 24%|████████▏ | ETA: 0:00:03 Bin 5 progress: 42%|█████████████▉ | ETA: 0:00:03 Bin 5 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 5 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 24%|████████▏ | ETA: 0:00:03 Bin 6 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 6 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 27%|████████▊ | ETA: 0:00:03 Bin 7 progress: 53%|█████████████████▋ | ETA: 0:00:02 Bin 7 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 24%|████████▏ | ETA: 0:00:03 Bin 8 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 8 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 8 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 24%|████████▏ | ETA: 0:00:03 Bin 9 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 9 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 24%|███████▉ | ETA: 0:00:03 Bin 10 progress: 49%|███████████████▋ | ETA: 0:00:02 Bin 10 progress: 76%|████████████████████████▏ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:04 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013130498807393683 Iteration 10: d = 1.1745874002592105e-5 Iteration 20: d = 1.3114549471253766e-7 Iteration 30: d = 1.6914204229023379e-9 Iteration 40: d = 2.2526917871341752e-11 Iteration 50: d = 3.03597785308426e-13 Iteration 60: d = 4.101384927982206e-15 Converged after 62 iterations. d = 1.7240471864473474e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001268264682600498 Iteration 10: d = 8.591091498859296e-6 Iteration 20: d = 8.021183891951618e-8 Iteration 30: d = 1.0028767303414836e-9 Iteration 40: d = 1.3636126890537073e-11 Iteration 50: d = 1.8928167629510577e-13 Iteration 60: d = 2.6683413603071166e-15 Converged after 61 iterations. d = 1.6824322653206045e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016281388472630194 Iteration 10: d = 1.2690436462984602e-5 Iteration 20: d = 1.2460646128116642e-7 Iteration 30: d = 1.581998949613926e-9 Iteration 40: d = 2.147164295285333e-11 Iteration 50: d = 2.9812388948101433e-13 Iteration 60: d = 4.173793280112439e-15 Converged after 62 iterations. d = 1.7296166126241743e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017355204901500023 Iteration 10: d = 1.881325481998175e-5 Iteration 20: d = 2.309652370463251e-7 Iteration 30: d = 3.0435972947648513e-9 Iteration 40: d = 4.0511665081208e-11 Iteration 50: d = 5.413745168671626e-13 Iteration 60: d = 7.280233020764172e-15 Converged after 63 iterations. d = 1.99905211888302e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016384507805772403 Iteration 10: d = 2.0432116927046462e-5 Iteration 20: d = 2.538929749082463e-7 Iteration 30: d = 3.4503621545182614e-9 Iteration 40: d = 4.8023374949423524e-11 Iteration 50: d = 6.743535774871243e-13 Iteration 60: d = 9.53578923543272e-15 Converged after 64 iterations. d = 1.725386908847179e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015560002162689742 Iteration 10: d = 1.2790892872834121e-5 Iteration 20: d = 1.1930909253710025e-7 Iteration 30: d = 1.4174536160392912e-9 Iteration 40: d = 1.8263599944637245e-11 Iteration 50: d = 2.433157642636866e-13 Iteration 60: d = 3.2946491621593112e-15 Converged after 61 iterations. d = 2.1465682918846143e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001417688831467253 Iteration 10: d = 1.1464803274679116e-5 Iteration 20: d = 1.356965879631368e-7 Iteration 30: d = 1.8364288730298554e-9 Iteration 40: d = 2.5242772999398303e-11 Iteration 50: d = 3.4829489500663227e-13 Iteration 60: d = 4.876267096047245e-15 Converged after 62 iterations. d = 2.0173466891418082e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001624785214153664 Iteration 10: d = 1.0952754482261268e-5 Iteration 20: d = 7.380157834408906e-8 Iteration 30: d = 6.968603345814328e-10 Iteration 40: d = 8.052449871286565e-12 Iteration 50: d = 1.0218059218110176e-13 Converged after 59 iterations. d = 2.0691232678447947e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014517105917557535 Iteration 10: d = 1.6763405252156524e-5 Iteration 20: d = 1.955988340937394e-7 Iteration 30: d = 2.6239989033602137e-9 Iteration 40: d = 3.6406506632125924e-11 Iteration 50: d = 5.099308169899888e-13 Iteration 60: d = 7.178661614958791e-15 Converged after 63 iterations. d = 1.9929693345447877e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010943952712887475 Iteration 10: d = 1.1165418260218834e-5 Iteration 20: d = 1.2706501119739705e-7 Iteration 30: d = 1.6376283297736988e-9 Iteration 40: d = 2.1885929417528488e-11 Iteration 50: d = 2.965786026622655e-13 Iteration 60: d = 4.034693381561266e-15 Converged after 62 iterations. d = 1.734424522548785e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8652.092533249323 Iteration 2: convergence error = 4803.111935065587 Iteration 3: convergence error = 1095.1720675925817 Iteration 4: convergence error = 321.0346769725825 Iteration 5: convergence error = 95.75417767589079 Iteration 6: convergence error = 28.717366127841387 Iteration 7: convergence error = 8.621785403591502 Iteration 8: convergence error = 2.594854687571342 Iteration 9: convergence error = 0.7804576761013777 Iteration 10: convergence error = 0.23443389753333577 Iteration 11: convergence error = 0.07036786087087421 Iteration 12: convergence error = 0.02111301515242303 Iteration 13: convergence error = 0.006333236790851515 Iteration 14: convergence error = 0.0018995213054040505 Iteration 15: convergence error = 0.0005696787734450481 Iteration 16: convergence error = 0.00017084300338865432 Iteration 17: convergence error = 5.123344453750178e-5 Iteration 18: convergence error = 1.536398008283868e-5 Iteration 19: convergence error = 4.6073396333667915e-6 Iteration 20: convergence error = 1.381638412567554e-6 Iteration 21: convergence error = 4.14320084018982e-7 Iteration 22: convergence error = 1.24110783872311e-7 Iteration 23: convergence error = 3.6249957702239044e-8 Iteration 24: convergence error = 1.0503754310775548e-8 Iteration 25: convergence error = 3.0356659408425912e-9 Iteration 26: convergence error = 8.737970347283408e-10 Iteration 27: convergence error = 2.573870006017387e-10 Iteration 28: convergence error = 7.207745511550456e-11 Iteration 29: convergence error = 2.1373125491663814e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.4018405341214 K, F = -7427.521643155345, relative_change = 0.0325981594658785 Iter 2: T = 936.8818286835055 K, F = -6295.967401717266, relative_change = 0.031548432690354636 Iter 3: T = 908.4084004165803 K, F = -5335.281995303023, relative_change = 0.030391696578143453 Iter 5: T = 857.4613939285555 K, F = -3827.5855631268337, relative_change = 0.027763777210488762 Iter 10: T = 762.851115480563 K, F = -1657.0533341398623, relative_change = 0.01981972889367261 Iter 15: T = 707.5924204885229 K, F = -709.3192475861886, relative_change = 0.011838466516581188 Iter 20: T = 679.2338274913677 K, F = -300.58312835962187, relative_change = 0.006047977272820059 Iter 25: T = 666.0278793527369 K, F = -126.52750103169028, relative_change = 0.002790074475933877 Iter 30: T = 660.2184384651456 K, F = -53.071301445187366, relative_change = 0.001219663411671739 Iter 35: T = 657.7339438471829 K, F = -22.223378122523616, relative_change = 0.0005199422450025785 Iter 40: T = 656.6848996070207 K, F = -9.299117136089576, relative_change = 0.00021922074598985407 Iter 45: T = 656.2443976506048 K, F = -3.8898885194253214, relative_change = 9.199486118385333e-5 Iter 50: T = 656.0598610352828 K, F = -1.6269533618861733, relative_change = 3.8528567559378985e-5 Iter 55: T = 655.9826306313249 K, F = -0.6804385606361323, relative_change = 1.612278512797742e-5 Iter 60: T = 655.9503223243947 K, F = -0.2845722979626951, relative_change = 6.7444354811085825e-6 Iter 65: T = 655.9368089194559 K, F = -0.1190123672110942, relative_change = 2.820899889191645e-6 Iter 70: T = 655.9311571573286 K, F = -0.04977253909219631, relative_change = 1.1797858752518672e-6 Iter 75: T = 655.9287934713459 K, F = -0.020815495758782554, relative_change = 4.93409612288708e-7 Iter 80: T = 655.9278049406206 K, F = -0.008705293374597911, relative_change = 2.0635137871434927e-7 Iter 85: T = 655.9273915236884 K, F = -0.003640658431232624, relative_change = 8.629888835878239e-8 Iter 90: T = 655.9272186275142 K, F = -0.001522566970165229, relative_change = 3.6091274245058725e-8 Iter 95: T = 655.9271463202213 K, F = -0.0006367557146007008, relative_change = 1.5093810410075707e-8 Iter 100: T = 655.9271160804393 K, F = -0.00026629884903173195, relative_change = 6.312413269003044e-9 Iter 105: T = 655.9271034337999 K, F = -0.0001113693598168708, relative_change = 2.639926878233345e-9 Iter 110: T = 655.927098144824 K, F = -4.65759971711166e-5, relative_change = 1.1040490107427944e-9 Iter 115: T = 655.927095932911 K, F = -1.94786380299794e-5, relative_change = 4.6172648357647585e-10 Iter 120: T = 655.9270950078626 K, F = -8.146198640868185e-6, relative_change = 1.9309952125141905e-10 Iter 125: T = 655.9270946209963 K, F = -3.406838551323066e-6, relative_change = 8.075654966088088e-11 Iter 130: T = 655.9270944592042 K, F = -1.4247797039956822e-6, relative_change = 3.377333305447687e-11 Iter 135: T = 655.9270943915408 K, F = -5.958597786848152e-7, relative_change = 1.4124408645586516e-11 Iter 140: T = 655.9270943632431 K, F = -2.491953312033779e-7, relative_change = 5.906988216221798e-12 Iter 145: T = 655.9270943514088 K, F = -1.0421681517769343e-7, relative_change = 2.4703813521179485e-12 Iter 150: T = 655.9270943464594 K, F = -4.358444538610229e-8, relative_change = 1.0331365523357882e-12 Iter 155: T = 655.9270943443895 K, F = -1.8226529063802843e-8, relative_change = 4.3204618600728335e-13 Converged in 159 iterations to T = 655.9270943436425 K Iter 1: T = 970.3735440642422 K, F = -6750.416166997508, relative_change = 0.02962645593575778 Iter 2: T = 942.9119805809278 K, F = -5717.39988317805, relative_change = 0.028299991947736365 Iter 3: T = 917.5703721804811 K, F = -4840.715621528491, relative_change = 0.026875900319808983 Iter 5: T = 873.0300940193948 K, F = -3465.8832151960933, relative_change = 0.02378018092775647 Iter 10: T = 794.0014556933083 K, F = -1491.725729176309, relative_change = 0.01547450451521387 Iter 15: T = 750.964934205802 K, F = -634.9634052268672, relative_change = 0.008468109897066069 Iter 20: T = 730.0823666966672 K, F = -268.0135829003366, relative_change = 0.0040725022419755555 Iter 25: T = 720.685438425579 K, F = -112.57268211062807, relative_change = 0.0018178836150249506 Iter 30: T = 716.6229649728024 K, F = -47.16912595835172, relative_change = 0.000782366694168061 Iter 35: T = 714.8993761496298 K, F = -19.742798517211234, relative_change = 0.00033122857492359737 Iter 40: T = 714.1741330995034 K, F = -8.259520450211253, relative_change = 0.00013924203995638722 Iter 45: T = 713.8700466381011 K, F = -3.4547300907414997, relative_change = 5.8359272946557224e-5 Iter 50: T = 713.742736792095 K, F = -1.4448969922867982, relative_change = 2.4428756178029536e-5 Iter 55: T = 713.6894702413827 K, F = -0.6042885126410642, relative_change = 1.02202875439139e-5 Iter 60: T = 713.6671893234884 K, F = -0.2527233555978406, relative_change = 4.274927046884222e-6 Iter 65: T = 713.6578704409093 K, F = -0.1056923947499232, relative_change = 1.787944634221191e-6 Iter 70: T = 713.6539730440695 K, F = -0.044201903793822606, relative_change = 7.477606294638896e-7 Iter 75: T = 713.6523430836285 K, F = -0.018485778400595176, relative_change = 3.127260688204496e-7 Iter 80: T = 713.6516614107643 K, F = -0.007730975802202056, relative_change = 1.3078641393769444e-7 Iter 85: T = 713.6513763263423 K, F = -0.0032331868462510682, relative_change = 5.4696551674860725e-8 Iter 90: T = 713.6512571005118 K, F = -0.001352157427969125, relative_change = 2.287477061368495e-8 Iter 95: T = 713.6512072388246 K, F = -0.000565488397625713, relative_change = 9.566505656683589e-9 Iter 100: T = 713.6511863860677 K, F = -0.00023649400359226913, relative_change = 4.000827510136611e-9 Iter 105: T = 713.6511776651952 K, F = -9.890461701600461e-5, relative_change = 1.6731939484680476e-9 Iter 110: T = 713.6511740180221 K, F = -4.136309176827613e-5, relative_change = 6.997497043985432e-10 Iter 115: T = 713.6511724927307 K, F = -1.7298540333055e-5, relative_change = 2.926437094105776e-10 Iter 120: T = 713.6511718548355 K, F = -7.234455737137324e-6, relative_change = 1.2238708762304478e-10 Iter 125: T = 713.6511715880603 K, F = -3.0255363122622114e-6, relative_change = 5.1183750632925406e-11 Iter 130: T = 713.6511714764915 K, F = -1.2653148457886232e-6, relative_change = 2.140564610800023e-11 Iter 135: T = 713.6511714298323 K, F = -5.291701743459498e-7, relative_change = 8.952103521257886e-12 Iter 140: T = 713.6511714103187 K, F = -2.2130557930655215e-7, relative_change = 3.74388155661041e-12 Iter 145: T = 713.651171402158 K, F = -9.255244282080355e-8, relative_change = 1.5657327067878968e-12 Iter 150: T = 713.6511713987451 K, F = -3.870761011715018e-8, relative_change = 6.548262727191178e-13 Iter 155: T = 713.6511713973177 K, F = -1.6187597262629083e-8, relative_change = 2.7384961116909585e-13 Converged in 157 iterations to T = 713.6511713970157 K Iter 1: T = 974.3944204981384 K, F = -5834.255646693356, relative_change = 0.02560557950186162 Iter 2: T = 950.9782196355617 K, F = -4936.015197739679, relative_change = 0.024031542432894536 Iter 3: T = 929.6768303200756 K, F = -4174.26425483036, relative_change = 0.02239945024571566 Iter 5: T = 893.0657767837977 K, F = -2981.2389885516404, relative_change = 0.019045389289202887 Iter 10: T = 831.3805254538653 K, F = -1274.8392650992596, relative_change = 0.011194731667322474 Iter 15: T = 800.0577429021989 K, F = -539.8154296713878, relative_change = 0.0056522033434092895 Iter 20: T = 785.5703776828233 K, F = -227.1301699823875, relative_change = 0.002590171145776177 Iter 25: T = 779.2198735524136 K, F = -95.24819495984264, relative_change = 0.0011286311869366903 Iter 30: T = 776.5084728034734 K, F = -39.880951905442956, relative_change = 0.0004804431423610244 Iter 35: T = 775.3644496839744 K, F = -16.687037940360117, relative_change = 0.00020244155346194046 Iter 40: T = 774.8842138090049 K, F = -6.980187816082905, relative_change = 8.493130247772233e-5 Iter 45: T = 774.6830579465678 K, F = -2.919455565424471, relative_change = 3.556634610756203e-5 Iter 50: T = 774.5988768286549 K, F = -1.2209962981503573, relative_change = 1.4882517756965801e-5 Iter 55: T = 774.5636615904378 K, F = -0.5106431279288045, relative_change = 6.225490255413814e-6 Iter 60: T = 774.548932461741 K, F = -0.21355843541803254, relative_change = 2.6038269448944637e-6 Iter 65: T = 774.542772267609 K, F = -0.08931292965162596, relative_change = 1.0889957058652582e-6 Iter 70: T = 774.5401959489737 K, F = -0.037351776043273666, relative_change = 4.554387373069389e-7 Iter 75: T = 774.5391184926785 K, F = -0.015620966200863062, relative_change = 1.9047127062041782e-7 Iter 80: T = 774.5386678860012 K, F = -0.006532875908877189, relative_change = 7.965759645709416e-8 Iter 85: T = 774.5384794366298 K, F = -0.0027321269474500642, relative_change = 3.33137994659613e-8 Iter 90: T = 774.5384006248037 K, F = -0.0011426081579536396, relative_change = 1.3932236025465555e-8 Iter 95: T = 774.5383676647483 K, F = -0.00047785238324704604, relative_change = 5.826628745192336e-9 Iter 100: T = 774.538353880458 K, F = -0.00019984357519542417, relative_change = 2.4367659538064383e-9 Iter 105: T = 774.538348115703 K, F = -8.35769693301458e-5, relative_change = 1.0190846536040669e-9 Iter 110: T = 774.5383457048134 K, F = -3.495288665034124e-5, relative_change = 4.2619337836614584e-10 Iter 115: T = 774.5383446965507 K, F = -1.4617712274067607e-5, relative_change = 1.782391331223997e-10 Iter 120: T = 774.5383442748831 K, F = -6.1133010386127395e-6, relative_change = 7.454172445274048e-11 Iter 125: T = 774.5383440985369 K, F = -2.5566566417278835e-6, relative_change = 3.117425330616267e-11 Iter 130: T = 774.5383440247865 K, F = -1.0692228314956864e-6, relative_change = 1.3037426637924758e-11 Iter 135: T = 774.5383439939434 K, F = -4.4716215941154047e-7, relative_change = 5.452412423268406e-12 Iter 140: T = 774.5383439810445 K, F = -1.8700892778777956e-7, relative_change = 2.2802685329073675e-12 Iter 145: T = 774.5383439756498 K, F = -7.820810377090481e-8, relative_change = 9.536201301332517e-13 Iter 150: T = 774.5383439733938 K, F = -3.2706855779274235e-8, relative_change = 3.9880670366690166e-13 Converged in 154 iterations to T = 774.5383439725795 K Iter 1: T = 970.404814862506 K, F = -6743.291085866899, relative_change = 0.029595185137494005 Iter 2: T = 942.9751221964553 K, F = -5711.316527437471, relative_change = 0.028266237188793262 Iter 3: T = 917.6657946699064 K, F = -4835.520528728589, relative_change = 0.026839867702550136 Iter 5: T = 873.1903368404639 K, F = -3462.093411421965, relative_change = 0.02374059781184618 Iter 10: T = 794.3116426118858 K, F = -1490.0108703031171, relative_change = 0.01543506159466814 Iter 15: T = 751.3842145071884 K, F = -634.202034555523, relative_change = 0.008440051192970569 Iter 20: T = 730.564412682329 K, F = -267.6836016534464, relative_change = 0.004057017336594066 Iter 25: T = 721.1982713046269 K, F = -112.43218781055614, relative_change = 0.0018105104259660094 Iter 30: T = 717.1496455771951 K, F = -47.10988923109466, relative_change = 0.0007791018254116957 Iter 35: T = 715.4320344474768 K, F = -19.717937338378945, relative_change = 0.0003298293868162153 Iter 40: T = 714.7093252671677 K, F = -8.249107592296198, relative_change = 0.00013865081297466627 Iter 45: T = 714.406304535427 K, F = -3.450372556849863, relative_change = 5.811094100487745e-5 Iter 50: T = 714.2794414533678 K, F = -1.4430741366257052, relative_change = 2.432471209444355e-5 Iter 55: T = 714.2263619311624 K, F = -0.6035260880510074, relative_change = 1.0176741995728674e-5 Iter 60: T = 714.2041592634813 K, F = -0.25240448572873364, relative_change = 4.2567099898189106e-6 Iter 65: T = 714.1948731117906 K, F = -0.10555903697111224, relative_change = 1.7803250305445472e-6 Iter 70: T = 714.1909894043991 K, F = -0.044146131526450194, relative_change = 7.445738430617652e-7 Iter 75: T = 714.1893651692238 K, F = -0.018462453694461534, relative_change = 3.113932857230508e-7 Iter 80: T = 714.1886858907646 K, F = -0.0077212211196103775, relative_change = 1.302290227420287e-7 Iter 85: T = 714.1884018077166 K, F = -0.0032291073175261253, relative_change = 5.446344304613583e-8 Iter 90: T = 714.1882830006737 K, F = -0.001350451319874879, relative_change = 2.277728163482105e-8 Iter 95: T = 714.1882333141286 K, F = -0.0005647748840288402, relative_change = 9.525734593686208e-9 Iter 100: T = 714.1882125346184 K, F = -0.0002361956039702573, relative_change = 3.983776564641335e-9 Iter 105: T = 714.1882038443783 K, F = -9.87798219727054e-5, relative_change = 1.6660630258031935e-9 Iter 110: T = 714.1882002100161 K, F = -4.1310901258029276e-5, relative_change = 6.96767471753388e-10 Iter 115: T = 714.1881986900825 K, F = -1.7276712804603633e-5, relative_change = 2.91396489944855e-10 Iter 120: T = 714.1881980544281 K, F = -7.225328730653402e-6, relative_change = 1.218655113124913e-10 Iter 125: T = 714.1881977885898 K, F = -3.0217196956838777e-6, relative_change = 5.0965628020200154e-11 Iter 130: T = 714.188197677413 K, F = -1.2637189376052405e-6, relative_change = 2.1314428812110605e-11 Iter 135: T = 714.1881976309176 K, F = -5.285026410950522e-7, relative_change = 8.913953561122808e-12 Iter 140: T = 714.1881976114727 K, F = -2.2102722552208576e-7, relative_change = 3.727940545804654e-12 Iter 145: T = 714.1881976033404 K, F = -9.24345434638596e-8, relative_change = 1.5590408901735666e-12 Iter 150: T = 714.1881975999395 K, F = -3.865754694132306e-8, relative_change = 6.520148652030423e-13 Iter 155: T = 714.1881975985171 K, F = -1.6166659899674585e-8, relative_change = 2.726738608471295e-13 Converged in 157 iterations to T = 714.1881975982161 K Iter 1: T = 969.3834932735343 K, F = -6976.000181441731, relative_change = 0.030616506726465657 Iter 2: T = 940.9095278635285 K, F = -5910.054320424736, relative_change = 0.029373272402082484 Iter 3: T = 914.5387099690548 K, F = -5005.293411689328, relative_change = 0.028026943200747924 Iter 5: T = 867.9189476636583 K, F = -3586.0439403239407, relative_change = 0.02505770277449519 Iter 10: T = 784.0015961715512 K, F = -1546.2738536575819, relative_change = 0.016784771393469476 Iter 15: T = 737.3244406262762 K, F = -659.2767873974732, relative_change = 0.009424717902485844 Iter 20: T = 714.3092356936397 K, F = -278.5833633351976, relative_change = 0.004609557149628583 Iter 25: T = 703.8549712619842 K, F = -117.08085499688765, relative_change = 0.002075933706928767 Iter 30: T = 699.3143627123595 K, F = -49.07153684006508, relative_change = 0.0008971165232844381 Iter 35: T = 697.3838735646324 K, F = -20.541530016362838, relative_change = 0.00038049701789982744 Iter 40: T = 696.5708356160468 K, F = -8.594116149549734, relative_change = 0.00016007693111847542 Iter 45: T = 696.2298066539478 K, F = -3.594760179998386, relative_change = 6.711343945069078e-5 Iter 50: T = 696.0870072465563 K, F = -1.5034764784091044, relative_change = 2.8097020024103685e-5 Iter 55: T = 696.0272557986558 K, F = -0.6287901713697374, relative_change = 1.175565549300855e-5 Iter 60: T = 696.0022615972682 K, F = -0.26297077007267955, relative_change = 4.917256168678153e-6 Iter 65: T = 695.9918077732711 K, F = -0.109978078265148, relative_change = 2.0566128208595845e-6 Iter 70: T = 695.9874356929638 K, F = -0.04599424398508434, relative_change = 8.601276044015162e-7 Iter 75: T = 695.9856072076835 K, F = -0.019235359300657895, relative_change = 3.5972045696325546e-7 Iter 80: T = 695.984842508216 K, F = -0.008044459980908303, relative_change = 1.5044023419949001e-7 Iter 85: T = 695.9845227008768 K, F = -0.003364289759488104, relative_change = 6.291605002763086e-8 Iter 90: T = 695.9843889534727 K, F = -0.001406986247930786, relative_change = 2.6312269300197887e-8 Iter 95: T = 695.9843330186837 K, F = -0.0005884184674515014, relative_change = 1.1004109758596086e-8 Iter 100: T = 695.9843096260823 K, F = -0.00024608363360612007, relative_change = 4.602050916348687e-9 Iter 105: T = 695.9842998430162 K, F = -0.00010291511399174169, relative_change = 1.924632773858468e-9 Iter 110: T = 695.984295751621 K, F = -4.304033061863777e-5, relative_change = 8.049044500058674e-10 Iter 115: T = 695.9842940405506 K, F = -1.7999980038485575e-5, relative_change = 3.366206531022088e-10 Iter 120: T = 695.9842933249604 K, F = -7.527806200502418e-6, relative_change = 1.407787701223338e-10 Iter 125: T = 695.9842930256921 K, F = -3.148218196247221e-6, relative_change = 5.887535821820149e-11 Iter 130: T = 695.9842929005346 K, F = -1.3166229888561531e-6, relative_change = 2.4622388075259758e-11 Iter 135: T = 695.9842928481921 K, F = -5.506264479926415e-7, relative_change = 1.0297357866741947e-11 Iter 140: T = 695.984292826302 K, F = -2.302784710694894e-7, relative_change = 4.306476440803828e-12 Iter 145: T = 695.9842928171472 K, F = -9.630498665202936e-8, relative_change = 1.801015762562159e-12 Iter 150: T = 695.9842928133186 K, F = -4.027548239360357e-8, relative_change = 7.531985742302791e-13 Iter 155: T = 695.9842928117174 K, F = -1.6843524575094193e-8, relative_change = 3.14993587690148e-13 Converged in 158 iterations to T = 695.9842928112486 K Iter 1: T = 963.5777826454042 K, F = -8298.836870717723, relative_change = 0.03642221735459579 Iter 2: T = 929.0342923012078 K, F = -7041.810679233214, relative_change = 0.035849197611593824 Iter 3: T = 896.3360530551633 K, F = -5974.263982505635, relative_change = 0.035195944344585194 Iter 5: T = 836.3566389984239 K, F = -4297.784165589004, relative_change = 0.033619551127569564 Iter 10: T = 716.761242658567 K, F = -1878.0638013703935, relative_change = 0.027884702995662522 Iter 15: T = 637.2252778995486 K, F = -813.2061356832786, relative_change = 0.019963784170550582 Iter 20: T = 590.6642235608592 K, F = -348.1681229325495, relative_change = 0.011960281659517992 Iter 25: T = 566.7215662489536 K, F = -147.5621264093403, relative_change = 0.00612386207836371 Iter 30: T = 555.5575450775862 K, F = -62.120049456651415, relative_change = 0.002828697012785189 Iter 35: T = 550.6430070369596 K, F = -26.057006024235218, relative_change = 0.0012373171205003624 Iter 40: T = 548.5405593977529 K, F = -10.911460763824914, relative_change = 0.0005276150562859471 Iter 45: T = 547.6527047801994 K, F = -4.565811809218582, relative_change = 0.00022248250174950403 Iter 50: T = 547.2798652835248 K, F = -1.909918843630556, relative_change = 9.336838614474009e-5 Iter 55: T = 547.1236701138034 K, F = -0.7988283701095882, relative_change = 3.910465217740178e-5 Iter 60: T = 547.0583001923834 K, F = -0.33409313588655787, relative_change = 1.636400186959407e-5 Iter 65: T = 547.0309534382171 K, F = -0.1397241142043912, relative_change = 6.845366215330344e-6 Iter 70: T = 547.0195152514099 K, F = -0.05843470866406078, relative_change = 2.8631192546563543e-6 Iter 75: T = 547.0147314118382 K, F = -0.024438165685952085, relative_change = 1.1974440798702805e-6 Iter 80: T = 547.0127307087008 K, F = -0.01022034545055342, relative_change = 5.007947575016596e-7 Iter 85: T = 547.0118939830076 K, F = -0.004274272745425467, relative_change = 2.0943998238922775e-7 Iter 90: T = 547.011544052975 K, F = -0.0017875522961508516, relative_change = 8.759058767274364e-8 Iter 95: T = 547.0113977078194 K, F = -0.0007475757858114163, relative_change = 3.6631479791004004e-8 Iter 100: T = 547.011336504486 K, F = -0.00031264513330392374, relative_change = 1.5319731056449986e-8 Iter 105: T = 547.0113109085139 K, F = -0.00013075193049938427, relative_change = 6.406896008344744e-9 Iter 110: T = 547.0113002039714 K, F = -5.468201887229296e-5, relative_change = 2.6794406762714e-9 Iter 115: T = 547.0112957272038 K, F = -2.2868673903220227e-5, relative_change = 1.1205741616682756e-9 Iter 120: T = 547.011293854966 K, F = -9.563952853897106e-6, relative_change = 4.686375201062803e-10 Iter 125: T = 547.0112930719738 K, F = -3.999759149414528e-6, relative_change = 1.9598980151956248e-10 Iter 130: T = 547.0112927445172 K, F = -1.6727475231625988e-6, relative_change = 8.196529934541422e-11 Iter 135: T = 547.0112926075709 K, F = -6.995636869511213e-7, relative_change = 3.4278901200859805e-11 Iter 140: T = 547.0112925502982 K, F = -2.9256603426008887e-7, relative_change = 1.433585301123372e-11 Iter 145: T = 547.0112925263462 K, F = -1.2235464430521148e-7, relative_change = 5.995426642067452e-12 Iter 150: T = 547.0112925163291 K, F = -5.117029983070509e-8, relative_change = 2.507365214098933e-12 Iter 155: T = 547.0112925121398 K, F = -2.140029695119061e-8, relative_change = 1.0486231334638607e-12 Iter 160: T = 547.0112925103879 K, F = -8.949941121549898e-9, relative_change = 4.3855070444794345e-13 Converged in 164 iterations to T = 547.0112925097554 K Iter 1: T = 966.9368178769653 K, F = -7533.477497939147, relative_change = 0.033063182123034766 Iter 2: T = 935.9328476561504 K, F = -6386.585608775942, relative_change = 0.0320641117884911 Iter 3: T = 906.9576126722887 K, F = -5412.830199414019, relative_change = 0.030958668729732196 Iter 5: T = 854.9617946859935 K, F = -3884.471041501943, relative_change = 0.028429347960906848 Iter 10: T = 757.6458362025705 K, F = -1683.3860117341965, relative_change = 0.020625696100908426 Iter 15: T = 700.0666286470047 K, F = -721.372691091493, relative_change = 0.012530509809558355 Iter 20: T = 670.1793696096413 K, F = -305.9454025280905, relative_change = 0.006483903115516238 Iter 25: T = 656.1571770127983 K, F = -128.8473832623175, relative_change = 0.0030133596741434556 Iter 30: T = 649.9641356412824 K, F = -54.05731443473422, relative_change = 0.0013220404986243898 Iter 35: T = 647.3106618376906 K, F = -22.638708072292303, relative_change = 0.0005645002476855213 Iter 40: T = 646.189352386162 K, F = -9.473348211920994, relative_change = 0.0002381739729986502 Iter 45: T = 645.7183412261319 K, F = -3.962848852936464, relative_change = 9.99780912839653e-5 Iter 50: T = 645.5209945022613 K, F = -1.6574829190346443, relative_change = 4.187725625599654e-5 Iter 55: T = 645.4383978297998 K, F = -0.693209309079212, relative_change = 1.7525002667467168e-5 Iter 60: T = 645.4038437205213 K, F = -0.28991368921176175, relative_change = 7.331167141508387e-6 Iter 65: T = 645.3893908203019 K, F = -0.12124629035861911, relative_change = 3.066331896647652e-6 Iter 70: T = 645.3833461021027 K, F = -0.05070680809479533, relative_change = 1.282437887313484e-6 Iter 75: T = 645.3808180688142 K, F = -0.021206220953713717, relative_change = 5.363415566126147e-7 Iter 80: T = 645.3797608046166 K, F = -0.008868699796239055, relative_change = 2.2430631859924205e-7 Iter 85: T = 645.3793186422689 K, F = -0.0037089970333100686, relative_change = 9.380790905898984e-8 Iter 90: T = 645.3791337243738 K, F = -0.0015511470052209653, relative_change = 3.9231645211438806e-8 Iter 95: T = 645.3790563894456 K, F = -0.0006487082288734736, relative_change = 1.640715258746114e-8 Iter 100: T = 645.3790240470452 K, F = -0.00027129753215765495, relative_change = 6.861668883823973e-9 Iter 105: T = 645.3790105210653 K, F = -0.00011345986805094688, relative_change = 2.8696321623690397e-9 Iter 110: T = 645.3790048643389 K, F = -4.745027147717851e-5, relative_change = 1.2001144824626114e-9 Iter 115: T = 645.3790024986282 K, F = -1.9844271036850714e-5, relative_change = 5.019022386904554e-10 Iter 120: T = 645.3790015092598 K, F = -8.299111299792106e-6, relative_change = 2.099015158164954e-10 Iter 125: T = 645.379001095494 K, F = -3.4707871690020653e-6, relative_change = 8.778331362925117e-11 Iter 130: T = 645.3790009224523 K, F = -1.4515243447754678e-6, relative_change = 3.67120225920425e-11 Iter 135: T = 645.3790008500843 K, F = -6.070452889250788e-7, relative_change = 1.5353418255451626e-11 Iter 140: T = 645.379000819819 K, F = -2.5387424851253115e-7, relative_change = 6.420999542676122e-12 Iter 145: T = 645.3790008071617 K, F = -1.0617260309819798e-7, relative_change = 2.685322516939992e-12 Iter 150: T = 645.3790008018683 K, F = -4.440306677899741e-8, relative_change = 1.123044472567065e-12 Iter 155: T = 645.3790007996545 K, F = -1.8569612569852012e-8, relative_change = 4.69663522531487e-13 Converged in 160 iterations to T = 645.3790007987287 K Iter 1: T = 965.2368442809916 K, F = -7920.818098874094, relative_change = 0.034763155719008385 Iter 2: T = 932.4511982033134 K, F = -6718.044680378946, relative_change = 0.03396642624235957 Iter 3: T = 901.6136517306577 K, F = -5696.685485493888, relative_change = 0.0330714857057129 Iter 5: T = 845.6696012919313 K, F = -4093.1074084749634, relative_change = 0.030968767535922447 Iter 10: T = 737.7282638818031 K, F = -1780.8674417409684, relative_change = 0.02394587224923296 Iter 15: T = 670.365256807797 K, F = -766.6696954058842, relative_change = 0.015640048888953408 Iter 20: T = 633.5834610113913 K, F = -326.4059292113461, relative_change = 0.00858623193684597 Iter 25: T = 615.7005201033046 K, F = -137.7922523794514, relative_change = 0.0041378309861480455 Iter 30: T = 607.6442042783897 K, F = -57.88043405561625, relative_change = 0.001849026224892566 Iter 35: T = 604.1593549083127 K, F = -24.25330277870227, relative_change = 0.0007961642485941444 Iter 40: T = 602.6804633379707 K, F = -10.151448895718493, relative_change = 0.00033714305603468886 Iter 45: T = 602.0581152508131 K, F = -4.246946810510983, relative_change = 0.00014174146028506473 Iter 50: T = 601.7971595202348 K, F = -1.7763855738988248, relative_change = 5.9409145107660195e-5 Iter 55: T = 601.6879048161204 K, F = -0.7429515180147639, relative_change = 2.4868631006436345e-5 Iter 60: T = 601.6421921819529 K, F = -0.31071922410347197, relative_change = 1.040438966249278e-5 Iter 65: T = 601.6230709343482 K, F = -0.12994789458072914, relative_change = 4.351945470566789e-6 Iter 70: T = 601.6150735567246 K, F = -0.054346007056358225, relative_change = 1.8201589837398788e-6 Iter 75: T = 601.6117288453255 K, F = -0.022728192139293002, relative_change = 7.612338116689741e-7 Iter 80: T = 601.6103300273849 K, F = -0.00950520889735007, relative_change = 3.183608468690946e-7 Iter 85: T = 601.609745021573 K, F = -0.003975193189378556, relative_change = 1.3314296853597e-7 Iter 90: T = 601.6095003645537 K, F = -0.0016624734948915698, relative_change = 5.5682094991344815e-8 Iter 95: T = 601.6093980459611 K, F = -0.0006952663087224087, relative_change = 2.3286937273170725e-8 Iter 100: T = 601.6093552550855 K, F = -0.0002907686812347876, relative_change = 9.738878828004987e-9 Iter 105: T = 601.609337359427 K, F = -0.00012160293617075046, relative_change = 4.072916048541568e-9 Iter 110: T = 601.6093298752484 K, F = -5.0855800437843435e-5, relative_change = 1.7033422428363983e-9 Iter 115: T = 601.6093267452753 K, F = -2.1268503431648433e-5, relative_change = 7.123580972569209e-10 Iter 120: T = 601.6093254362833 K, F = -8.894742458354088e-6, relative_change = 2.979166775520118e-10 Iter 125: T = 601.609324888847 K, F = -3.7198869990984207e-6, relative_change = 1.2459229546331898e-10 Iter 130: T = 601.6093246599028 K, F = -1.5557013919309526e-6, relative_change = 5.210599350848893e-11 Iter 135: T = 601.6093245641555 K, F = -6.506128968908342e-7, relative_change = 2.1791348637634133e-11 Iter 140: T = 601.6093245241129 K, F = -2.720944127787561e-7, relative_change = 9.113413277585217e-12 Iter 145: T = 601.6093245073665 K, F = -1.1379310504988638e-7, relative_change = 3.811337336941034e-12 Iter 150: T = 601.609324500363 K, F = -4.758937621751613e-8, relative_change = 1.5939381067955726e-12 Iter 155: T = 601.609324497434 K, F = -1.9902700487683944e-8, relative_change = 6.666124933261281e-13 Iter 160: T = 601.6093244962092 K, F = -8.32355756541503e-9, relative_change = 2.7878565853473983e-13 Converged in 162 iterations to T = 601.60932449595 K Iter 1: T = 979.9975983479408 K, F = -4557.566243617753, relative_change = 0.020002401652059253 Iter 2: T = 962.045118057248 K, F = -3849.941272389877, relative_change = 0.018318902332981904 Iter 3: T = 946.02269016329 K, F = -3250.6689386373787, relative_change = 0.016654549348281783 Iter 5: T = 919.2480035978672 K, F = -2314.261327681615, relative_change = 0.013472675935250084 Iter 10: T = 876.6809244410455 K, F = -982.6400972941614, relative_change = 0.007095502452230378 Iter 15: T = 856.5001076733369 K, F = -414.1186818996381, relative_change = 0.0033322385106410494 Iter 20: T = 847.5365185223992 K, F = -173.80124550887422, relative_change = 0.0014695389638963085 Iter 25: T = 843.6856866711709 K, F = -72.79770464299479, relative_change = 0.0006289519497901744 Iter 30: T = 842.0564707326905 K, F = -30.464835379420737, relative_change = 0.000265636283214195 Iter 35: T = 841.3717645652066 K, F = -12.744279119242488, relative_change = 0.0001115538275739744 Iter 40: T = 841.0848214247362 K, F = -5.3304277301219525, relative_change = 4.673436383926887e-5 Iter 45: T = 840.9647146549353 K, F = -2.2293567830397736, relative_change = 1.9559111049834425e-5 Iter 50: T = 840.9144664003015 K, F = -0.9323625748897334, relative_change = 8.182347427477284e-6 Iter 55: T = 840.8934488002651 K, F = -0.38992847770524375, relative_change = 3.422391740581132e-6 Iter 60: T = 840.8846584326164 K, F = -0.16307332578580946, relative_change = 1.4313614263484793e-6 Iter 65: T = 840.8809820985769 K, F = -0.06819931372889587, relative_change = 5.986257934364015e-7 Iter 70: T = 840.8794445947566 K, F = -0.02852178519865456, relative_change = 2.503547910234052e-7 Iter 75: T = 840.8788015893206 K, F = -0.01192815428959415, relative_change = 1.0470177186802339e-7 Iter 80: T = 840.8785326762476 K, F = -0.004988497117949464, relative_change = 4.3787602827897785e-8 Iter 85: T = 840.8784202134979 K, F = -0.002086249163968157, relative_change = 1.8312510923535583e-8 Iter 90: T = 840.8783731802168 K, F = -0.0008724943315863154, relative_change = 7.658512947030802e-9 Iter 95: T = 840.8783535103343 K, F = -0.00036488754934493883, relative_change = 3.20288193394842e-9 Iter 100: T = 840.8783452841541 K, F = -0.00015260033097019843, relative_change = 1.3394835390312988e-9 Iter 105: T = 840.8783418438672 K, F = -6.38192815458627e-5, relative_change = 5.601880299028961e-10 Iter 110: T = 840.8783404050981 K, F = -2.668998642518794e-5, relative_change = 2.3427733238773076e-10 Iter 115: T = 840.8783398033877 K, F = -1.1162072787396227e-5, relative_change = 9.797759368624299e-11 Iter 120: T = 840.8783395517453 K, F = -4.668112169259331e-6, relative_change = 4.0975400068134044e-11 Iter 125: T = 840.8783394465054 K, F = -1.9522606657940145e-6, relative_change = 1.713640524592463e-11 Iter 130: T = 840.8783394024928 K, F = -8.164609537342216e-7, relative_change = 7.166668887661105e-12 Iter 135: T = 840.8783393840862 K, F = -3.414532574463891e-7, relative_change = 2.9971824442975216e-12 Iter 140: T = 840.8783393763883 K, F = -1.4280043081349447e-7, relative_change = 1.2534627652752236e-12 Iter 145: T = 840.878339373169 K, F = -5.971983663144442e-8, relative_change = 5.242042418272984e-13 Converged in 150 iterations to T = 840.8783393718226 K Iter 1: T = 976.2934996885394 K, F = -5401.5486466698, relative_change = 0.02370650031146057 Iter 2: T = 954.751479015495 K, F = -4567.546250917671, relative_change = 0.022065107142387935 Iter 3: T = 935.2835017538223 K, F = -3860.569646621438, relative_change = 0.02039062278463009 Iter 5: T = 902.1533091186494 K, F = -2754.1294378971484, relative_change = 0.017035214313902432 Iter 10: T = 847.5074513168743 K, F = -1174.6418973908828, relative_change = 0.009613225047964807 Iter 15: T = 820.4780157070575 K, F = -496.46449652179643, relative_change = 0.004717543856632565 Iter 20: T = 808.1771999759219 K, F = -208.67497190655263, relative_change = 0.002128377996350274 Iter 25: T = 802.8295364773364 K, F = -87.46582534040165, relative_change = 0.0009205542254605306 Iter 30: T = 800.5549450199549 K, F = -36.61442552502426, relative_change = 0.0003905822086163501 Iter 35: T = 799.5968082386138 K, F = -15.318817103882937, relative_change = 0.00016434580338305077 Iter 40: T = 799.1948858370374 K, F = -6.407606991580388, relative_change = 6.890779413715427e-5 Iter 45: T = 799.0265828696854 K, F = -2.6799296501800587, relative_change = 2.884903427916934e-5 Iter 50: T = 798.956159006043 K, F = -1.1208121756078155, relative_change = 1.2070436226469157e-5 Iter 55: T = 798.9267003309377 K, F = -0.4687429143764751, relative_change = 5.048950144287689e-6 Iter 60: T = 798.9143792108886 K, F = -0.19603491282616026, relative_change = 2.1116973727691604e-6 Iter 65: T = 798.9092261701154 K, F = -0.08198432150198731, relative_change = 8.831661189933496e-7 Iter 70: T = 798.9070710717275 K, F = -0.03428685379451135, relative_change = 3.6935570077332333e-7 Iter 75: T = 798.9061697776884 K, F = -0.014339177225599964, relative_change = 1.5446985404541275e-7 Iter 80: T = 798.905792844681 K, F = -0.005996816121495163, relative_change = 6.460129318207423e-8 Iter 85: T = 798.9056352066074 K, F = -0.0025079402843367626, relative_change = 2.701705947288155e-8 Iter 90: T = 798.9055692804495 K, F = -0.0010488506066128611, relative_change = 1.1298861670510668e-8 Iter 95: T = 798.9055417093373 K, F = -0.0004386418545284654, relative_change = 4.725319716975445e-9 Iter 100: T = 798.9055301787679 K, F = -0.0001834452634542627, relative_change = 1.9761852887618524e-9 Iter 105: T = 798.9055253565459 K, F = -7.671900051609004e-5, relative_change = 8.26464317970098e-10 Iter 110: T = 798.9055233398351 K, F = -3.2084802856768846e-5, relative_change = 3.456372587045275e-10 Iter 115: T = 798.9055224964225 K, F = -1.3418247879259937e-5, relative_change = 1.4454963172506952e-10 Iter 120: T = 798.9055221436972 K, F = -5.611672174055116e-6, relative_change = 6.045238954636241e-11 Iter 125: T = 798.9055219961833 K, F = -2.3468675807158945e-6, relative_change = 2.5281903312853807e-11 Iter 130: T = 798.9055219344913 K, F = -9.81489422069437e-7, relative_change = 1.0573208682230901e-11 Iter 135: T = 798.905521908691 K, F = -4.104700984663978e-7, relative_change = 4.421836763576838e-12 Iter 140: T = 798.9055218979009 K, F = -1.7166484611585986e-7, relative_change = 1.849279473593183e-12 Iter 145: T = 798.9055218933884 K, F = -7.179225669506906e-8, relative_change = 7.733904155489678e-13 Iter 150: T = 798.9055218915012 K, F = -3.0024343122825314e-8, relative_change = 3.2344072012159904e-13 Converged in 153 iterations to T = 798.9055218909486 K Iter 1: T = 980.6785647156611 K, F = -4402.40740896642, relative_change = 0.019321435284338873 Iter 2: T = 963.3766175239801 K, F = -3718.1723107977136, relative_change = 0.017642832028960984 Iter 3: T = 947.9695301581505 K, F = -3138.8219580222726, relative_change = 0.015992797713347124 Iter 5: T = 922.3052959657466 K, F = -2233.8242780559613, relative_change = 0.012864518765728378 Iter 10: T = 881.7549598149155 K, F = -947.7838992743935, relative_change = 0.006698358516293235 Iter 15: T = 862.6599570929453 K, F = -399.25065078848763, relative_change = 0.003124436181920055 Iter 20: T = 854.2097906544824 K, F = -167.5237854095705, relative_change = 0.001373249299422516 Iter 25: T = 850.5858568618002 K, F = -70.16122281849516, relative_change = 0.0005868430807378568 Iter 30: T = 849.0538200259474 K, F = -29.36021121633458, relative_change = 0.00024768785724550176 Iter 35: T = 848.4101679030647 K, F = -12.281954803148302, relative_change = 0.00010398721304508244 Iter 40: T = 848.1404671596861 K, F = -5.137015338045182, relative_change = 4.355926313604037e-5 Iter 45: T = 848.0275842225324 K, F = -2.148458393988994, relative_change = 1.8229376033716753e-5 Iter 50: T = 847.9803593147135 K, F = -0.8985279737102944, relative_change = 7.625908793638278e-6 Iter 55: T = 847.9606065089797 K, F = -0.3757781059461336, relative_change = 3.1896251291588656e-6 Iter 60: T = 847.9523451624495 K, F = -0.15715541229094043, relative_change = 1.3340056199311209e-6 Iter 65: T = 847.948890083436 K, F = -0.06572436130525117, relative_change = 5.579086781216056e-7 Iter 70: T = 847.9474451132224 K, F = -0.027486728733530086, relative_change = 2.3332610028806942e-7 Iter 75: T = 847.9468408068153 K, F = -0.011495281001635105, relative_change = 9.758011639054717e-8 Iter 80: T = 847.9465880782029 K, F = -0.004807464286987084, relative_change = 4.080923209427601e-8 Iter 85: T = 847.9464823839992 K, F = -0.002010539062013983, relative_change = 1.7066919068527173e-8 Iter 90: T = 847.946438181407 K, F = -0.0008408314608228107, relative_change = 7.137591268463406e-9 Iter 95: T = 847.9464196953526 K, F = -0.0003516457606103085, relative_change = 2.9850262365290684e-9 Iter 100: T = 847.9464119642635 K, F = -0.00014706245669815488, relative_change = 1.248373675676496e-9 Iter 105: T = 847.9464087310295 K, F = -6.150327532372657e-5, relative_change = 5.220847862859568e-10 Iter 110: T = 847.9464073788524 K, F = -2.5721402937106674e-5, relative_change = 2.1834208319265188e-10 Iter 115: T = 847.9464068133559 K, F = -1.0756997917971134e-5, relative_change = 9.131326730154369e-11 Iter 120: T = 847.9464065768585 K, F = -4.498705518329871e-6, relative_change = 3.818830338949975e-11 Iter 125: T = 847.9464064779525 K, F = -1.8814117319632118e-6, relative_change = 1.5970799103861034e-11 Iter 130: T = 847.9464064365887 K, F = -7.868302605018584e-7, relative_change = 6.679190848416695e-12 Iter 135: T = 847.9464064192899 K, F = -3.290600918415265e-7, relative_change = 2.7933027802193673e-12 Iter 140: T = 847.9464064120554 K, F = -1.3761627259967213e-7, relative_change = 1.1681875937019816e-12 Iter 145: T = 847.9464064090298 K, F = -5.7552270948946216e-8, relative_change = 4.885457776396446e-13 Converged in 150 iterations to T = 847.9464064077645 K Iter 1: T = 967.3804201241002 K, F = -7432.402303954766, relative_change = 0.03261957987589978 Iter 2: T = 936.8381477010091 K, F = -6300.141076029889, relative_change = 0.03157214244544352 Iter 3: T = 908.3416756424338 K, F = -5338.853173806696, relative_change = 0.030417711029920615 Iter 5: T = 857.3466437220021 K, F = -3830.2041562068853, relative_change = 0.027794171345346556 Iter 10: T = 762.6134872363754 K, F = -1658.2633389539103, relative_change = 0.019855992431916877 Iter 15: T = 707.2507938444626 K, F = -709.8716247705735, relative_change = 0.011869117397741918 Iter 20: T = 678.8244973710102 K, F = -300.8282440426422, relative_change = 0.006067053758831863 Iter 25: T = 665.5826838085347 K, F = -126.63336999665977, relative_change = 0.00279977737993736 Iter 30: T = 659.7564594657722 K, F = -53.11625998737328, relative_change = 0.0012240969320603122 Iter 35: T = 657.2645864763278 K, F = -22.242308136362503, relative_change = 0.000521868877937021 Iter 40: T = 656.2123896254202 K, F = -9.307056913771138, relative_change = 0.00022003971250177747 Iter 45: T = 655.7705571943224 K, F = -3.893213105839991, relative_change = 9.233971782941444e-5 Iter 50: T = 655.5854620332849 K, F = -1.628344460363834, relative_change = 3.867320575270718e-5 Iter 55: T = 655.5079976653532 K, F = -0.6810204602656031, relative_change = 1.618334736633055e-5 Iter 60: T = 655.4755914464422 K, F = -0.28481567733143437, relative_change = 6.769776085407933e-6 Iter 65: T = 655.4620370820863 K, F = -0.11911415521744778, relative_change = 2.831499864270273e-6 Iter 70: T = 655.4563681882373 K, F = -0.04981510872712985, relative_change = 1.1842193018893923e-6 Iter 75: T = 655.4539973372132 K, F = -0.020833299007714745, relative_change = 4.952637925817237e-7 Iter 80: T = 655.4530058099207 K, F = -0.00871273892695329, relative_change = 2.0712683101172097e-7 Iter 85: T = 655.4525911397775 K, F = -0.0036437722542394524, relative_change = 8.662319387118869e-8 Iter 90: T = 655.4524177194936 K, F = -0.0015238692087927719, relative_change = 3.622690304941413e-8 Iter 95: T = 655.4523451930113 K, F = -0.0006373003259296794, relative_change = 1.5150532047218852e-8 Iter 100: T = 655.4523148615618 K, F = -0.0002665266114325604, relative_change = 6.336134932476615e-9 Iter 105: T = 655.4523021765858 K, F = -0.00011146461267180774, relative_change = 2.6498475606745846e-9 Iter 110: T = 655.4522968715772 K, F = -4.6615832672625146e-5, relative_change = 1.1081979499628889e-9 Iter 115: T = 655.4522946529592 K, F = -1.9495296974036957e-5, relative_change = 4.6346160199347505e-10 Iter 120: T = 655.4522937251066 K, F = -8.15316631458396e-6, relative_change = 1.9382518522163133e-10 Iter 125: T = 655.4522933370677 K, F = -3.4097524347354025e-6, relative_change = 8.10600291451351e-11 Iter 130: T = 655.452293174785 K, F = -1.4259986697018334e-6, relative_change = 3.3900259938426086e-11 Iter 135: T = 655.4522931069165 K, F = -5.963691880328525e-7, relative_change = 1.4177482022318897e-11 Iter 140: T = 655.4522930785331 K, F = -2.494088111593129e-7, relative_change = 5.9291945461027275e-12 Iter 145: T = 655.452293066663 K, F = -1.0430694952212605e-7, relative_change = 2.4796886421365456e-12 Iter 150: T = 655.4522930616985 K, F = -4.3621779188818266e-8, relative_change = 1.0370203606161103e-12 Iter 155: T = 655.4522930596223 K, F = -1.8241742616442735e-8, relative_change = 4.33660865247424e-13 Converged in 159 iterations to T = 655.452293058873 K Iter 1: T = 973.5366658324072 K, F = -6029.695863215536, relative_change = 0.026463334167592806 Iter 2: T = 949.2663368269356 K, F = -5102.563939903225, relative_change = 0.02493006155522623 Iter 3: T = 927.1214147147973 K, F = -4316.174952445448, relative_change = 0.023328460362516346 Iter 5: T = 888.8847831395875 K, F = -3084.185827178988, relative_change = 0.019998442363484727 Iter 10: T = 823.7988567883614 K, F = -1320.53568093709, relative_change = 0.011990112833277425 Iter 15: T = 790.3132522950891 K, F = -559.6959746927096, relative_change = 0.006142613214052012 Iter 20: T = 774.6943402700896 K, F = -235.623411630544, relative_change = 0.002838281049987172 Iter 25: T = 767.8174984770434 K, F = -98.83613479149514, relative_change = 0.001241706063039699 Iter 30: T = 764.8753329669752 K, F = -41.38816746600121, relative_change = 0.000529524161513956 Iter 35: T = 763.6328243967781 K, F = -17.318576767429573, relative_change = 0.0002232943514739675 Iter 40: T = 763.1110459680809 K, F = -7.2445177780149494, relative_change = 9.371030524552919e-5 Iter 45: T = 762.892453787624 K, F = -3.0300389256964118, relative_change = 3.924806874525821e-5 Iter 50: T = 762.8009695722798 K, F = -1.2672501369575349, relative_change = 1.6424054422804094e-5 Iter 55: T = 762.7626981602258 K, F = -0.5299881834832885, relative_change = 6.870493875990527e-6 Iter 60: T = 762.7466905650796 K, F = -0.2216489694960978, relative_change = 2.8736302114335812e-6 Iter 65: T = 762.7399956418651 K, F = -0.09269652275310547, relative_change = 1.2018402844365386e-6 Iter 70: T = 762.7371956827953 K, F = -0.03876684122797025, relative_change = 5.026333721891449e-7 Iter 75: T = 762.73602469559 K, F = -0.016212764435206695, relative_change = 2.1020892518431484e-7 Iter 80: T = 762.7355349728526 K, F = -0.006780373185885313, relative_change = 8.791217084276558e-8 Iter 85: T = 762.7353301646225 K, F = -0.0028356332995638223, relative_change = 3.6765970094872716e-8 Iter 90: T = 762.7352445113165 K, F = -0.0011858957566359685, relative_change = 1.5375976591487826e-8 Iter 95: T = 762.7352086900707 K, F = -0.0004959557737757025, relative_change = 6.43041855111967e-9 Iter 100: T = 762.7351937091963 K, F = -0.00020741462957507562, relative_change = 2.6892781111627352e-9 Iter 105: T = 762.7351874440154 K, F = -8.674327504598622e-5, relative_change = 1.1246882655908729e-9 Iter 110: T = 762.7351848238419 K, F = -3.627707390363444e-5, relative_change = 4.703580764628276e-10 Iter 115: T = 762.7351837280539 K, F = -1.5171505355238146e-5, relative_change = 1.9670936370731993e-10 Iter 120: T = 762.7351832697824 K, F = -6.344904584842936e-6, relative_change = 8.226620351866298e-11 Iter 125: T = 762.7351830781278 K, F = -2.65351515371659e-6, relative_change = 3.440471247718035e-11 Iter 130: T = 762.7351829979755 K, F = -1.1097306139573604e-6, relative_change = 1.4388447213483807e-11 Iter 135: T = 762.7351829644548 K, F = -4.641041367881016e-7, relative_change = 6.017440441080712e-12 Iter 140: T = 762.7351829504361 K, F = -1.9409355755950486e-7, relative_change = 2.5165611123334e-12 Iter 145: T = 762.7351829445734 K, F = -8.117349759029224e-8, relative_change = 1.0524721683905822e-12 Iter 150: T = 762.7351829421215 K, F = -3.3948104882775e-8, relative_change = 4.401613410772254e-13 Converged in 154 iterations to T = 762.7351829412364 K Iter 1: T = 970.0719834363118 K, F = -6819.12704292965, relative_change = 0.029928016563688122 Iter 2: T = 942.3027405611807 K, F = -5776.07002405187, relative_change = 0.028625961113487013 Iter 3: T = 916.6491211938306 K, F = -4890.824356691179, relative_change = 0.027224392186392558 Iter 5: T = 871.4810673373605 K, F = -3502.4474033028478, relative_change = 0.024164285346354678 Iter 10: T = 790.992704918066 K, F = -1508.2878823093827, relative_change = 0.01586078841709234 Iter 15: T = 746.8862991991894 K, F = -642.3257758421516, relative_change = 0.008745145286249483 Iter 20: T = 725.3847279274858 K, F = -271.2074856043783, relative_change = 0.004226201303875206 Iter 25: T = 715.6831727711303 K, F = -113.93326758451866, relative_change = 0.0018912709004032726 Iter 30: T = 711.4834560032407 K, F = -47.74294052998412, relative_change = 0.000814904603755779 Iter 35: T = 709.7005790494302 K, F = -19.983651900785578, relative_change = 0.0003451808342730652 Iter 40: T = 708.9501964496255 K, F = -8.360404540503684, relative_change = 0.00014513898338911838 Iter 45: T = 708.6355350152071 K, F = -3.496948580611778, relative_change = 6.083640565307115e-5 Iter 50: T = 708.5037917870512 K, F = -1.4625581049375627, relative_change = 2.5466649057675536e-5 Iter 55: T = 708.4486692478894 K, F = -0.6116754478636112, relative_change = 1.0654684360716456e-5 Iter 60: T = 708.4256118015828 K, F = -0.2558128083525912, relative_change = 4.456656084081186e-6 Iter 65: T = 708.4159681074711 K, F = -0.10698446671895623, relative_change = 1.8639562283432687e-6 Iter 70: T = 708.4119348604094 K, F = -0.04474226825755456, relative_change = 7.795513947199603e-7 Iter 75: T = 708.410248084006 K, F = -0.018711766066322744, relative_change = 3.2602166290207283e-7 Iter 80: T = 708.409542649717 K, F = -0.007825486681120264, relative_change = 1.363468454930388e-7 Iter 85: T = 708.4092476279291 K, F = -0.003272712449834514, relative_change = 5.702200025358354e-8 Iter 90: T = 708.409124246164 K, F = -0.0013686875127194575, relative_change = 2.3847302692005502e-8 Iter 95: T = 708.4090726464135 K, F = -0.0005724014787119591, relative_change = 9.973230508189163e-9 Iter 100: T = 708.4090510667777 K, F = -0.00023938513608279255, relative_change = 4.170924739783254e-9 Iter 105: T = 708.4090420419155 K, F = -0.00010011372417895181, relative_change = 1.744330667852729e-9 Iter 110: T = 708.4090382676103 K, F = -4.18687547271146e-5, relative_change = 7.294999296736146e-10 Iter 115: T = 708.4090366891508 K, F = -1.751001345018377e-5, relative_change = 3.0508558946298543e-10 Iter 120: T = 708.4090360290201 K, F = -7.322896440231652e-6, relative_change = 1.275904323724546e-10 Iter 125: T = 708.4090357529456 K, F = -3.0625232764203147e-6, relative_change = 5.3359851925180624e-11 Iter 130: T = 708.4090356374879 K, F = -1.2807830257477448e-6, relative_change = 2.2315713706215417e-11 Iter 135: T = 708.4090355892022 K, F = -5.35639420928824e-7, relative_change = 9.332709546264663e-12 Iter 140: T = 708.4090355690084 K, F = -2.2401106269942517e-7, relative_change = 3.903055118651095e-12 Iter 145: T = 708.4090355605632 K, F = -9.368357689609752e-8, relative_change = 1.6322951195014779e-12 Iter 150: T = 708.4090355570312 K, F = -3.9178788546756493e-8, relative_change = 6.826313368168699e-13 Iter 155: T = 708.4090355555542 K, F = -1.6385004797392355e-8, relative_change = 2.8548401172122955e-13 Converged in 157 iterations to T = 708.4090355552416 K Iter 1: T = 973.5539468778288 K, F = -6025.758360577711, relative_change = 0.02644605312217123 Iter 2: T = 949.3008729203322 K, F = -5099.207756038396, relative_change = 0.024911895262995813 Iter 3: T = 927.1730416956508 K, F = -4313.314514459128, relative_change = 0.023309608003002833 Iter 5: T = 888.9694993882988 K, F = -3082.1094686352726, relative_change = 0.01997895190307421 Iter 10: T = 823.9535464792085 K, F = -1319.6121879490054, relative_change = 0.011973536996975535 Iter 15: T = 790.5130577016444 K, F = -559.2934428964594, relative_change = 0.006132248615823512 Iter 20: T = 774.9179635016922 K, F = -235.45123171841, relative_change = 0.0028329950909281804 Iter 25: T = 768.0522539897862 K, F = -98.76335126757924, relative_change = 0.001239287585760853 Iter 30: T = 765.1149802953204 K, F = -41.357583637952004, relative_change = 0.0005284725663528266 Iter 35: T = 763.8745615237787 K, F = -17.30576017449725, relative_change = 0.00022284722927541848 Iter 40: T = 763.3536649764292 K, F = -7.239153110715324, relative_change = 9.352200733778045e-5 Iter 45: T = 763.1354430072741 K, F = -3.027794546480635, relative_change = 3.916909012096301e-5 Iter 50: T = 763.0441138643992 K, F = -1.2663113685675031, relative_change = 1.6390984228671576e-5 Iter 55: T = 763.00590734856 K, F = -0.5295955544378279, relative_change = 6.8566564520392955e-6 Iter 60: T = 762.9899269013229 K, F = -0.22148476298572173, relative_change = 2.8678419975790526e-6 Iter 65: T = 762.9832433330068 K, F = -0.09262784886935849, relative_change = 1.1994193677366361e-6 Iter 70: T = 762.9804481229219 K, F = -0.038738120858913816, relative_change = 5.016208780653079e-7 Iter 75: T = 762.9792791218389 K, F = -0.016200753209034136, relative_change = 2.0978548140453102e-7 Iter 80: T = 762.9787902297287 K, F = -0.0067753499430450725, relative_change = 8.77350804313396e-8 Iter 85: T = 762.978585768878 K, F = -0.002833532519137427, relative_change = 3.6691908572829396e-8 Iter 90: T = 762.9785002608504 K, F = -0.0011850171834966172, relative_change = 1.5345003122929905e-8 Iter 95: T = 762.978464500362 K, F = -0.0004955883449093701, relative_change = 6.417465082606749e-9 Iter 100: T = 762.9784495448969 K, F = -0.00020726096582646125, relative_change = 2.683860807006025e-9 Iter 105: T = 762.9784432903425 K, F = -8.667901138836864e-5, relative_change = 1.1224226887460868e-9 Iter 110: T = 762.9784406746131 K, F = -3.6250197932408135e-5, relative_change = 4.694105832923539e-10 Iter 115: T = 762.9784395806838 K, F = -1.5160265353419966e-5, relative_change = 1.963131088074189e-10 Iter 120: T = 762.9784391231894 K, F = -6.340202474475198e-6, relative_change = 8.210046676427906e-11 Iter 125: T = 762.9784389318598 K, F = -2.651547892029704e-6, relative_change = 3.433538924345056e-11 Iter 130: T = 762.9784388518436 K, F = -1.1089101201733342e-6, relative_change = 1.4359484414976627e-11 Iter 135: T = 762.9784388183798 K, F = -4.637586430433771e-7, relative_change = 6.0052973521801645e-12 Iter 140: T = 762.9784388043848 K, F = -1.9394795647276197e-7, relative_change = 2.511468340352654e-12 Iter 145: T = 762.978438798532 K, F = -8.111138782851413e-8, relative_change = 1.050326522050403e-12 Iter 150: T = 762.9784387960843 K, F = -3.392283354219927e-8, relative_change = 4.392731122829048e-13 Converged in 154 iterations to T = 762.9784387952009 K Iter 1: T = 964.3676180014903 K, F = -8118.8721335061255, relative_change = 0.03563238199850972 Iter 2: T = 930.6633497883754 K, F = -6887.639339273114, relative_change = 0.03494960592202586 Iter 3: T = 898.8563437309998 K, F = -5842.0475983353435, relative_change = 0.03417670424499705 Iter 5: T = 840.8213073874523 K, F = -4200.209668799879, relative_change = 0.03233533171784296 Iter 10: T = 726.9484345970411 K, F = -1831.517352653327, relative_change = 0.02591061352687602 Iter 15: T = 653.5991426058691 K, F = -790.7176877319308, relative_change = 0.017701210157888447 Iter 20: T = 612.1936079634962 K, F = -337.53202098241354, relative_change = 0.010123105532237405 Iter 25: T = 591.5388989173616 K, F = -142.74327670905217, relative_change = 0.005013111453305716 Iter 30: T = 582.0908208571038 K, F = -60.01758790256747, relative_change = 0.0022728535114963123 Iter 35: T = 577.9727203511343 K, F = -25.16015249026543, relative_change = 0.0009853195544002472 Iter 40: T = 576.2190481118635 K, F = -10.53310897994502, relative_change = 0.0004184883706382052 Iter 45: T = 575.4799621140877 K, F = -4.406991476836286, relative_change = 0.00017616481450479591 Iter 50: T = 575.1698603665704 K, F = -1.8433940441325363, relative_change = 7.387695111107553e-5 Iter 55: T = 575.0399949296409 K, F = -0.7709885834038671, relative_change = 3.093182290916665e-5 Iter 60: T = 574.9856525876504 K, F = -0.32244699365315244, relative_change = 1.2942294706526438e-5 Iter 65: T = 574.9629205323147 K, F = -0.134852996356393, relative_change = 5.413713833498596e-6 Iter 70: T = 574.9534127636134 K, F = -0.056397450662688975, relative_change = 2.2642707610127315e-6 Iter 75: T = 574.9494363347163 K, F = -0.02358614285620872, relative_change = 9.469784803948004e-7 Iter 80: T = 574.9477733155436 K, F = -0.009864016318854085, relative_change = 3.9604355295931316e-7 Iter 85: T = 574.947077815972 K, F = -0.004125251121191331, relative_change = 1.6563116556755924e-7 Iter 90: T = 574.9467869488543 K, F = -0.0017252295807669293, relative_change = 6.926911021601765e-8 Iter 95: T = 574.9466653045962 K, F = -0.0007215116657249276, relative_change = 2.8969200386476345e-8 Iter 100: T = 574.9466144314875 K, F = -0.0003017448046233606, relative_change = 1.2115271045950022e-8 Iter 105: T = 574.9465931557412 K, F = -0.00012619328287344356, relative_change = 5.066752010685473e-9 Iter 110: T = 574.9465842579691 K, F = -5.2775538404603584e-5, relative_change = 2.1189763744911418e-9 Iter 115: T = 574.9465805368145 K, F = -2.207136082776895e-5, relative_change = 8.861812688571964e-10 Iter 120: T = 574.9465789805831 K, F = -9.230506551605178e-6, relative_change = 3.706115892598322e-10 Iter 125: T = 574.9465783297485 K, F = -3.860307749514735e-6, relative_change = 1.5499418041594307e-10 Iter 130: T = 574.9465780575617 K, F = -1.614426301033145e-6, relative_change = 6.482039727687725e-11 Iter 135: T = 574.9465779437301 K, F = -6.751729265674911e-7, relative_change = 2.7108687057403642e-11 Iter 140: T = 574.9465778961243 K, F = -2.823654225991845e-7, relative_change = 1.1337178341858654e-11 Iter 145: T = 574.9465778762149 K, F = -1.180879783402311e-7, relative_change = 4.741318743527073e-12 Iter 150: T = 574.9465778678885 K, F = -4.938573533452839e-8, relative_change = 1.9828734127869945e-12 Iter 155: T = 574.9465778644063 K, F = -2.0653349031007906e-8, relative_change = 8.292470771644849e-13 Iter 160: T = 574.94657786295 K, F = -8.636717507837233e-9, relative_change = 3.4677052806317744e-13 Converged in 163 iterations to T = 574.9465778625238 K Iter 1: T = 963.6595574853369 K, F = -8280.204395651113, relative_change = 0.03634044251466313 Iter 2: T = 929.2031547958288 K, F = -7025.845757366257, relative_change = 0.035755783691308836 Iter 3: T = 896.5976489538992 K, F = -5960.5692860309155, relative_change = 0.035089749398336756 Iter 5: T = 836.8215486090808 K, F = -4287.670506274056, relative_change = 0.03348465915551885 Iter 10: T = 717.8342841723135 K, F = -1873.2204079116084, relative_change = 0.027671181014332445 Iter 15: T = 638.976437374827 K, F = -810.8466364124449, relative_change = 0.01970905510365516 Iter 20: T = 593.0007925218226 K, F = -347.0397032442813, relative_change = 0.011744997274754778 Iter 25: T = 569.4427536283481 K, F = -147.04597315365845, relative_change = 0.005989880927374649 Iter 30: T = 558.4833179863332 K, F = -61.89352737949188, relative_change = 0.002760551870469653 Iter 35: T = 553.6646874518295 K, F = -25.96009263695383, relative_change = 0.0012061801460058294 Iter 40: T = 551.604434778636 K, F = -10.870521610507064, relative_change = 0.0005140842296733641 Iter 45: T = 550.7346148710297 K, F = -4.5486168648042815, relative_change = 0.00021673087761032162 Iter 50: T = 550.3693874594129 K, F = -1.9027146553691592, relative_change = 9.094645085248864e-5 Iter 55: T = 550.2163880935909 K, F = -0.7958131964542934, relative_change = 3.808885558958381e-5 Iter 60: T = 550.1523568639287 K, F = -0.33283175175517427, relative_change = 1.5938672271070815e-5 Iter 65: T = 550.1255703466559 K, F = -0.1391965178330046, relative_change = 6.667398746249255e-6 Iter 70: T = 550.1143665241281 K, F = -0.058214049232212406, relative_change = 2.7886754623983518e-6 Iter 75: T = 550.1096807101353 K, F = -0.02434588111888178, relative_change = 1.1663080552998853e-6 Iter 80: T = 550.1077210045017 K, F = -0.010181750565871672, relative_change = 4.877728206657936e-7 Iter 85: T = 550.1069014248103 K, F = -0.004258131838499268, relative_change = 2.0399396905015538e-7 Iter 90: T = 550.1065586655026 K, F = -0.001780801964519213, relative_change = 8.531298518267273e-8 Iter 95: T = 550.1064153192407 K, F = -0.0007447527145279242, relative_change = 3.567895666566995e-8 Iter 100: T = 550.1063553700825 K, F = -0.0003114644908572828, relative_change = 1.4921374062816998e-8 Iter 105: T = 550.1063302986216 K, F = -0.0001302581714283102, relative_change = 6.240298266420984e-9 Iter 110: T = 550.1063198134361 K, F = -5.447552375736908e-5, relative_change = 2.6097675376950715e-9 Iter 115: T = 550.1063154284061 K, F = -2.2782314680780402e-5, relative_change = 1.0914359962585344e-9 Iter 120: T = 550.1063135945341 K, F = -9.527835697964449e-6, relative_change = 4.564515571814392e-10 Iter 125: T = 550.106312827587 K, F = -3.98465464146458e-6, relative_change = 1.908934920432797e-10 Iter 130: T = 550.1063125068406 K, F = -1.6664302552871213e-6, relative_change = 7.983394301003882e-11 Iter 135: T = 550.1063123727006 K, F = -6.969212436591654e-7, relative_change = 3.338751846159647e-11 Iter 140: T = 550.1063123166017 K, F = -2.914612473037259e-7, relative_change = 1.396308100585999e-11 Iter 145: T = 550.1063122931404 K, F = -1.2189254536276728e-7, relative_change = 5.839525840918222e-12 Iter 150: T = 550.1063122833285 K, F = -5.0976502019572933e-8, relative_change = 2.4421395087145437e-12 Iter 155: T = 550.1063122792252 K, F = -2.1319490284277265e-8, relative_change = 1.0213562615721916e-12 Iter 160: T = 550.1063122775091 K, F = -8.91649251655302e-9, relative_change = 4.271638459337115e-13 Converged in 164 iterations to T = 550.1063122768898 K Iter 1: T = 969.3028221158784 K, F = -6994.381181451727, relative_change = 0.03069717788412163 Iter 2: T = 940.746077156403 K, F = -5925.756598792611, relative_change = 0.029461118143800827 Iter 3: T = 914.2907800249146 K, F = -5018.711922469049, relative_change = 0.02812161301958859 Iter 5: T = 867.4992173395503 K, F = -3595.8497882086467, relative_change = 0.02516391246862399 Iter 10: T = 783.1710208937616 K, F = -1550.7408762585248, relative_change = 0.01689705364382188 Iter 15: T = 736.1802804718592 K, F = -661.2764621545944, relative_change = 0.009508966076060624 Iter 20: T = 712.9778362888525 K, F = -279.45568111549056, relative_change = 0.004657719695455828 Iter 25: T = 702.4296741500447 K, F = -117.45365941905634, relative_change = 0.0020992986616721714 Iter 30: T = 697.8463605411113 K, F = -49.2290114366382, relative_change = 0.0009075531723050363 Iter 35: T = 695.8973437385409 K, F = -20.607675102530543, relative_change = 0.00038498688235359636 Iter 40: T = 695.076434988111 K, F = -8.6218301484592, relative_change = 0.0001619772254595487 Iter 45: T = 694.7320925463472 K, F = -3.6063595647143103, relative_change = 6.791216677211726e-5 Iter 50: T = 694.587903554853 K, F = -1.5083290701140344, relative_change = 2.843176108427559e-5 Iter 55: T = 694.5275702910471 K, F = -0.6308198617907795, relative_change = 1.1895771575285716e-5 Iter 60: T = 694.5023326490283 K, F = -0.2638196596092904, relative_change = 4.975875986693778e-6 Iter 65: T = 694.4917769945537 K, F = -0.11033310253851386, relative_change = 2.0811321080598546e-6 Iter 70: T = 694.4873623239033 K, F = -0.04614272086867721, relative_change = 8.703825242404997e-7 Iter 75: T = 694.4855160261995 K, F = -0.0192974543675688, relative_change = 3.640093025448181e-7 Iter 80: T = 694.4847438772531 K, F = -0.008070428924309536, relative_change = 1.5223390085121453e-7 Iter 85: T = 694.4844209544334 K, F = -0.003375150291073825, relative_change = 6.366618640478183e-8 Iter 90: T = 694.4842859040947 K, F = -0.0014115282524165274, relative_change = 2.6625985893043563e-8 Iter 95: T = 694.4842294244024 K, F = -0.0005903179892169375, relative_change = 1.1135309911334634e-8 Iter 100: T = 694.4842058039158 K, F = -0.00024687803548451015, relative_change = 4.656920390027287e-9 Iter 105: T = 694.4841959255454 K, F = -0.00010324734396516266, relative_change = 1.94757987662083e-9 Iter 110: T = 694.4841917942927 K, F = -4.317927171815228e-5, relative_change = 8.145011758902886e-10 Iter 115: T = 694.4841900665534 K, F = -1.8058087373762355e-5, relative_change = 3.4063412811780396e-10 Iter 120: T = 694.4841893439923 K, F = -7.552107615937942e-6, relative_change = 1.4245725766548922e-10 Iter 125: T = 694.4841890418086 K, F = -3.1583821383796007e-6, relative_change = 5.957733680539557e-11 Iter 130: T = 694.4841889154318 K, F = -1.3208735700764862e-6, relative_change = 2.491596209138442e-11 Iter 135: T = 694.4841888625793 K, F = -5.524037405280069e-7, relative_change = 1.042012723619327e-11 Iter 140: T = 694.4841888404759 K, F = -2.310218581991208e-7, relative_change = 4.357821970648601e-12 Iter 145: T = 694.484188831232 K, F = -9.661619382317355e-8, relative_change = 1.8224949598788822e-12 Iter 150: T = 694.484188827366 K, F = -4.0404755097256384e-8, relative_change = 7.621648049664732e-13 Iter 155: T = 694.4841888257492 K, F = -1.6897141463800835e-8, relative_change = 3.187349235849197e-13 Converged in 158 iterations to T = 694.4841888252759 K Iter 1: T = 966.5245694666585 K, F = -7627.408690377023, relative_change = 0.03347543053334155 Iter 2: T = 935.0903410931547 K, F = -6466.938273253928, relative_change = 0.0325229480620959 Iter 3: T = 905.6675314142083 K, F = -5481.613340320602, relative_change = 0.03146520543090003 Iter 5: T = 852.7309119261022 K, F = -3934.967043856993, relative_change = 0.029029591742213635 Iter 10: T = 752.9475253147737 K, F = -1706.8456227568167, relative_change = 0.02137446502379066 Iter 15: T = 693.1946502183821 K, F = -732.1711918265787, relative_change = 0.013194335939469804 Iter 20: T = 661.8402694622803 K, F = -310.77538969519844, relative_change = 0.006912534783223715 Iter 25: T = 647.021708129734 K, F = -130.9444757181609, relative_change = 0.003236130977795842 Iter 30: T = 640.4510514099353 K, F = -54.95030746614127, relative_change = 0.001424920185376256 Iter 35: T = 637.630529269976 K, F = -23.01518228923937, relative_change = 0.000609422652989663 Iter 40: T = 636.4376464215575 K, F = -9.631339131955931, relative_change = 0.0002573090349992379 Iter 45: T = 635.9363938703576 K, F = -4.029019200207422, relative_change = 0.00010804270888997666 Iter 50: T = 635.7263451795736 K, F = -1.6851731546876088, relative_change = 4.52609310502521e-5 Iter 55: T = 635.6384267821588 K, F = -0.7047926781329921, relative_change = 1.8942018847525634e-5 Iter 60: T = 635.6016453792531 K, F = -0.2947585145499943, relative_change = 7.92411706425964e-6 Iter 65: T = 635.5862607033073 K, F = -0.12327254552445377, relative_change = 3.3143695851141352e-6 Iter 70: T = 635.5798262537674 K, F = -0.051554228184515105, relative_change = 1.3861805238601142e-6 Iter 75: T = 635.5771352211507 K, F = -0.021560624950597906, relative_change = 5.797297701139265e-7 Iter 80: T = 635.5760097871084 K, F = -0.009016916270427167, relative_change = 2.424521032106178e-7 Iter 85: T = 635.5755391150414 K, F = -0.0037709830174539327, relative_change = 1.0139674805157002e-7 Iter 90: T = 635.5753422739929 K, F = -0.0015770702987691343, relative_change = 4.2405397953824895e-8 Iter 95: T = 635.5752599526511 K, F = -0.0006595496612465945, relative_change = 1.773445554346243e-8 Iter 100: T = 635.5752255248716 K, F = -0.0002758315502103259, relative_change = 7.416763154707087e-9 Iter 105: T = 635.5752111267611 K, F = -0.00011535604971024682, relative_change = 3.1017792953264066e-9 Iter 110: T = 635.575205105299 K, F = -4.8243277730342093e-5, relative_change = 1.2972012055559664e-9 Iter 115: T = 635.5752025870514 K, F = -2.0175914052622534e-5, relative_change = 5.425050236481592e-10 Iter 120: T = 635.5752015338903 K, F = -8.437808030392624e-6, relative_change = 2.2688207677929007e-10 Iter 125: T = 635.5752010934457 K, F = -3.5287916158033283e-6, relative_change = 9.488478169596876e-11 Iter 130: T = 635.5752009092466 K, F = -1.4757834864154162e-6, relative_change = 3.968196747723758e-11 Iter 135: T = 635.5752008322124 K, F = -6.171912219632425e-7, relative_change = 1.6595498077297684e-11 Iter 140: T = 635.5752007999956 K, F = -2.581162579229357e-7, relative_change = 6.940422531427743e-12 Iter 145: T = 635.5752007865223 K, F = -1.0794760285648408e-7, relative_change = 2.9025756888899872e-12 Iter 150: T = 635.5752007808875 K, F = -4.5144513516337526e-8, relative_change = 1.2138793632965494e-12 Iter 155: T = 635.5752007785311 K, F = -1.888116546444607e-8, relative_change = 5.076908649018612e-13 Converged in 160 iterations to T = 635.5752007775455 K Iter 1: T = 966.4135491943933 K, F = -7652.704765020163, relative_change = 0.03358645080560663 Iter 2: T = 934.8632535913583 K, F = -6488.580559735735, relative_change = 0.03264678524978823 Iter 3: T = 905.3194710769765 K, F = -5500.142678106346, relative_change = 0.03160225027659052 Iter 5: T = 852.1276961928173 K, F = -3948.5765643353798, relative_change = 0.029192908444970342 Iter 10: T = 751.6683739079544 K, F = -1713.1824357234718, relative_change = 0.021581901928051917 Iter 15: T = 691.3101288674718 K, F = -735.0983626243672, relative_change = 0.013381922059864888 Iter 20: T = 659.5408849778174 K, F = -312.0892647363039, relative_change = 0.007035567439383074 Iter 25: T = 644.4947609594834 K, F = -131.51629050166883, relative_change = 0.0033006735832823413 Iter 30: T = 637.8155785229864 K, F = -55.19410579563941, relative_change = 0.0014548659000792154 Iter 35: T = 634.9469152663795 K, F = -23.118024483107817, relative_change = 0.000622525975373797 Iter 40: T = 633.7333807987923 K, F = -9.674508849986239, relative_change = 0.0002628955840559255 Iter 45: T = 633.2233979110465 K, F = -4.047101673506191, relative_change = 0.0001103981121777379 Iter 50: T = 633.0096815012411 K, F = -1.6927404560546415, relative_change = 4.6249349178893675e-5 Iter 55: T = 632.9202263023158 K, F = -0.7079582898760056, relative_change = 1.93559770499151e-5 Iter 60: T = 632.8828016791674 K, F = -0.29608256455697174, relative_change = 8.097342671004825e-6 Iter 65: T = 632.8671479112846 K, F = -0.12382630588624627, relative_change = 3.3868326892411874e-6 Iter 70: T = 632.8606009086143 K, F = -0.05178582207600402, relative_change = 1.4164886236461928e-6 Iter 75: T = 632.8578628021934 K, F = -0.021657481103658283, relative_change = 5.924055329094641e-7 Iter 80: T = 632.8567176808444 K, F = -0.009057422812764948, relative_change = 2.4775335537008926e-7 Iter 85: T = 632.8562387752269 K, F = -0.0037879233620077835, relative_change = 1.0361381193839186e-7 Iter 90: T = 632.8560384907946 K, F = -0.0015841549576505187, relative_change = 4.333260351241502e-8 Iter 95: T = 632.855954729386 K, F = -0.0006625125523952446, relative_change = 1.812222453782789e-8 Iter 100: T = 632.8559196993529 K, F = -0.0002770706660325528, relative_change = 7.57893284854095e-9 Iter 105: T = 632.8559050493726 K, F = -0.00011587426234310749, relative_change = 3.1696006023903664e-9 Iter 110: T = 632.8558989225756 K, F = -4.846000112324056e-5, relative_change = 1.3255649073902827e-9 Iter 115: T = 632.8558963602759 K, F = -2.0266552423098272e-5, relative_change = 5.543671188816966e-10 Iter 120: T = 632.8558952886915 K, F = -8.47571505591116e-6, relative_change = 2.3184297337770556e-10 Iter 125: T = 632.8558948405421 K, F = -3.5446452529286354e-6, relative_change = 9.69595004501311e-11 Iter 130: T = 632.8558946531207 K, F = -1.4824136303492885e-6, relative_change = 4.054963896402304e-11 Iter 135: T = 632.8558945747388 K, F = -6.199633653114489e-7, relative_change = 1.6958350985480686e-11 Iter 140: T = 632.8558945419585 K, F = -2.5927604374587077e-7, relative_change = 7.092183827418215e-12 Iter 145: T = 632.8558945282493 K, F = -1.0843156916795493e-7, relative_change = 2.9660149476347795e-12 Iter 150: T = 632.8558945225161 K, F = -4.534773545561421e-8, relative_change = 1.2404326732577661e-12 Iter 155: T = 632.8558945201183 K, F = -1.8964835146739745e-8, relative_change = 5.187602186312729e-13 Converged in 160 iterations to T = 632.8558945191155 K Iter 1: T = 976.3893177572024 K, F = -5379.716408578411, relative_change = 0.02361068224279752 Iter 2: T = 954.9412465653292 K, F = -4548.9650941761, relative_change = 0.021966720448294366 Iter 3: T = 935.5645470827143 K, F = -3844.7602572469623, relative_change = 0.02029098601857202 Iter 5: T = 902.605813548013 K, F = -2742.6998602061794, relative_change = 0.01693727636155267 Iter 10: T = 848.2985398030611 K, F = -1169.6201211374416, relative_change = 0.009539321492810783 Iter 15: T = 821.4696844681253 K, F = -494.2995519852115, relative_change = 0.004675132102334791 Iter 20: T = 809.2691638779598 K, F = -207.7553426800972, relative_change = 0.002107760230559492 Iter 25: T = 803.9670652647804 K, F = -87.07845446361188, relative_change = 0.0009113357027743826 Iter 30: T = 801.7122337856125 K, F = -36.451914025280296, relative_change = 0.0003866146794797809 Iter 35: T = 800.7624898706505 K, F = -15.250762096235698, relative_change = 0.00016266627405804446 Iter 40: T = 800.3641004793682 K, F = -6.3791295627434055, relative_change = 6.820180347748536e-5 Iter 45: T = 800.1972791177992 K, F = -2.6680172386287975, relative_change = 2.8553148868584112e-5 Iter 50: T = 800.1274755917401 K, F = -1.1158297704844475, relative_change = 1.194658267129624e-5 Iter 55: T = 800.0982764739939 K, F = -0.4666591268844831, relative_change = 4.9971337202533445e-6 Iter 60: T = 800.0860639257684 K, F = -0.19516343293696836, relative_change = 2.0900237330186596e-6 Iter 65: T = 800.0809562948488 K, F = -0.08161985556855933, relative_change = 8.741013505830797e-7 Iter 70: T = 800.078820188072 K, F = -0.03413442932801958, relative_change = 3.6556460257577945e-7 Iter 75: T = 800.0779268366684 K, F = -0.014275431411961637, relative_change = 1.5288435334074681e-7 Iter 80: T = 800.0775532253865 K, F = -0.005970156847873609, relative_change = 6.393821468831894e-8 Iter 85: T = 800.0773969765019 K, F = -0.0024967910587679887, relative_change = 2.6739751610317924e-8 Iter 90: T = 800.0773316313198 K, F = -0.0010441878657334591, relative_change = 1.1182888101069347e-8 Iter 95: T = 800.0773043031788 K, F = -0.0004366918410634302, relative_change = 4.676818173930663e-9 Iter 100: T = 800.077292874223 K, F = -0.00018262974595195658, relative_change = 1.9559013765421453e-9 Iter 105: T = 800.0772880944969 K, F = -7.63779427259692e-5, relative_change = 8.179813577777282e-10 Iter 110: T = 800.0772860955583 K, F = -3.194216804525141e-5, relative_change = 3.4208957935111553e-10 Iter 115: T = 800.0772852595784 K, F = -1.3358597456880617e-5, relative_change = 1.4306596224169174e-10 Iter 120: T = 800.0772849099616 K, F = -5.586726291806343e-6, relative_change = 5.983190802485691e-11 Iter 125: T = 800.0772847637476 K, F = -2.336436613181725e-6, relative_change = 2.5022428765207133e-11 Iter 130: T = 800.0772847025992 K, F = -9.771270332858961e-7, relative_change = 1.0464692881419958e-11 Iter 135: T = 800.0772846770262 K, F = -4.0864829053965934e-7, relative_change = 4.376481984420122e-12 Iter 140: T = 800.0772846663313 K, F = -1.7090213100257046e-7, relative_change = 1.8303027684065954e-12 Iter 145: T = 800.0772846618585 K, F = -7.147336678059446e-8, relative_change = 7.65455060869759e-13 Iter 150: T = 800.0772846599879 K, F = -2.989075353898585e-8, relative_change = 3.2011964176975314e-13 Converged in 153 iterations to T = 800.0772846594402 K Iter 1: T = 965.2533423836338 K, F = -7917.058990493314, relative_change = 0.034746657616366146 Iter 2: T = 932.4850819174466 K, F = -6714.826481061525, relative_change = 0.03394783423931797 Iter 3: T = 901.6658221058352 K, F = -5693.9279373774525, relative_change = 0.03305067331290536 Iter 5: T = 845.7609756900642 K, F = -4091.077386037981, relative_change = 0.03094328913904746 Iter 10: T = 737.9287483312318 K, F = -1779.9116309101908, relative_change = 0.02391049174154924 Iter 15: T = 670.6721013921004 K, F = -766.2196380055839, relative_change = 0.015604537833673852 Iter 20: T = 633.9694884318619 K, F = -326.19973303468765, relative_change = 0.0085608091454142 Iter 25: T = 616.1326685511235 K, F = -137.70118699001668, relative_change = 0.0041237428573372495 Iter 30: T = 608.099113232467 K, F = -57.841294591067886, relative_change = 0.0018423036465236976 Iter 35: T = 604.62452991412 K, F = -24.236729653196036, relative_change = 0.0007931844956876714 Iter 40: T = 603.1500753158214 K, F = -10.144480385728125, relative_change = 0.0003358654982094492 Iter 45: T = 602.5296089810964 K, F = -4.244025821741403, relative_change = 0.00014120152750568473 Iter 50: T = 602.2694448767522 K, F = -1.775162804528296, relative_change = 5.918234033945335e-5 Iter 55: T = 602.1605220602838 K, F = -0.742439934698111, relative_change = 2.477360306622216e-5 Iter 60: T = 602.114948369369 K, F = -0.31050523767079147, relative_change = 1.036461708926331e-5 Iter 65: T = 602.0958852546884 K, F = -0.12985839656775675, relative_change = 4.3353067220215784e-6 Iter 70: T = 602.087912193357 K, F = -0.05430857681029527, relative_change = 1.8131995184661815e-6 Iter 75: T = 602.0845776520931 K, F = -0.022712538170624408, relative_change = 7.583231154468269e-7 Iter 80: T = 602.0831830875593 K, F = -0.009498662186090245, relative_change = 3.171435301045266e-7 Iter 85: T = 602.0825998605967 K, F = -0.003972455272423625, relative_change = 1.3263386714701145e-7 Iter 90: T = 602.0823559475176 K, F = -0.0016613284648322457, relative_change = 5.5469181847178386e-8 Iter 95: T = 602.0822539400504 K, F = -0.0006947874440346169, relative_change = 2.319789432415516e-8 Iter 100: T = 602.082211279291 K, F = -0.000290568413532033, relative_change = 9.701639951590877e-9 Iter 105: T = 602.0821934380488 K, F = -0.00012151918152786267, relative_change = 4.057342291227628e-9 Iter 110: T = 602.0821859766276 K, F = -5.082077267054563e-5, relative_change = 1.6968290915259963e-9 Iter 115: T = 602.0821828561722 K, F = -2.1253854088854052e-5, relative_change = 7.096342090012688e-10 Iter 120: T = 602.0821815511604 K, F = -8.88861594555701e-6, relative_change = 2.9677751547378085e-10 Iter 125: T = 602.0821810053889 K, F = -3.7173252355748865e-6, relative_change = 1.2411589826135715e-10 Iter 130: T = 602.0821807771406 K, F = -1.5546292773671588e-6, relative_change = 5.190673329454999e-11 Iter 135: T = 602.0821806816846 K, F = -6.501645178347282e-7, relative_change = 2.1708015371648052e-11 Iter 140: T = 602.0821806417637 K, F = -2.7190656998188345e-7, relative_change = 9.078551413940016e-12 Iter 145: T = 602.0821806250683 K, F = -1.1371421881900545e-7, relative_change = 3.796746736386109e-12 Iter 150: T = 602.0821806180861 K, F = -4.755681720647331e-8, relative_change = 1.5878505995714537e-12 Iter 155: T = 602.082180615166 K, F = -1.9888198476980534e-8, relative_change = 6.640370346840684e-13 Iter 160: T = 602.0821806139448 K, F = -8.317859012674234e-9, relative_change = 2.7772080212004453e-13 Converged in 162 iterations to T = 602.0821806136864 K Iter 1: T = 964.6369191317506 K, F = -8057.511614804814, relative_change = 0.03536308086824944 Iter 2: T = 931.2178096307792 K, F = -6835.087798867685, relative_change = 0.03464423643566446 Iter 3: T = 899.7124226787536 K, F = -5796.995819684134, relative_change = 0.03383245748330058 Iter 5: T = 842.3305993081757 K, F = -4166.9964423791225, relative_change = 0.03190681169574131 Iter 10: T = 730.3347300815135 K, F = -1815.7627993750468, relative_change = 0.025280032999429186 Iter 15: T = 658.9243401188253 K, F = -783.1939701740428, relative_change = 0.01702005712103108 Iter 20: T = 619.053403962887 K, F = -334.026720320541, relative_change = 0.009601549724885706 Iter 25: T = 599.3362078657824 K, F = -141.17492773218126, relative_change = 0.004710778875207846 Iter 30: T = 590.3642427974172 K, F = -59.33846543648767, relative_change = 0.0021250753466315127 Iter 35: T = 586.4640110170651 K, F = -24.87154287803511, relative_change = 0.000919074876051268 Iter 40: T = 584.8051219845893 K, F = -10.41156078896757, relative_change = 0.0003899450275538521 Iter 45: T = 584.1063490722468 K, F = -4.356006711442006, relative_change = 0.00016407598573295405 Iter 50: T = 583.8132270316391 K, F = -1.822044782012, relative_change = 6.879436088195832e-5 Iter 55: T = 583.6904839356841 K, F = -0.762055355889449, relative_change = 2.8801490954283996e-5 Iter 60: T = 583.6391239676732 K, F = -0.31871018580397403, relative_change = 1.2050534775086218e-5 Iter 65: T = 583.6176398294269 K, F = -0.13329007421667813, relative_change = 5.04062392188742e-6 Iter 70: T = 583.6086540687828 K, F = -0.05574379268391838, relative_change = 2.1082146876275777e-6 Iter 75: T = 583.604895969873 K, F = -0.02331277086243988, relative_change = 8.817095206151722e-7 Iter 80: T = 583.603324262404 K, F = -0.0097496881137345, relative_change = 3.6874651683148325e-7 Iter 85: T = 583.6026669510886 K, F = -0.0040774375659045625, relative_change = 1.5421508306765542e-7 Iter 90: T = 583.6023920548627 K, F = -0.0017052333567312283, relative_change = 6.449474436756943e-8 Iter 95: T = 583.602277089841 K, F = -0.0007131490023367659, relative_change = 2.6972499427445352e-8 Iter 100: T = 583.602229010072 K, F = -0.0002982474375149424, relative_change = 1.1280226104923215e-8 Iter 105: T = 583.6022089025342 K, F = -0.00012473064161294678, relative_change = 4.717526098875844e-9 Iter 110: T = 583.602200493321 K, F = -5.216384346301561e-5, relative_change = 1.972925871732831e-9 Iter 115: T = 583.6021969764876 K, F = -2.181554198515956e-5, relative_change = 8.251011728789997e-10 Iter 120: T = 583.6021955057058 K, F = -9.123520010090314e-6, relative_change = 3.4506716159300737e-10 Iter 125: T = 583.6021948906073 K, F = -3.815564951992201e-6, relative_change = 1.4431120587319407e-10 Iter 130: T = 583.6021946333657 K, F = -1.5957148931100562e-6, relative_change = 6.035267223469501e-11 Iter 135: T = 583.6021945257842 K, F = -6.673467501383534e-7, relative_change = 2.524019791207066e-11 Iter 140: T = 583.6021944807924 K, F = -2.790922750683933e-7, relative_change = 1.0555748206732714e-11 Iter 145: T = 583.6021944619763 K, F = -1.1672028127351908e-7, relative_change = 4.414561096789515e-12 Iter 150: T = 583.6021944541071 K, F = -4.881298298897718e-8, relative_change = 1.8461906824080735e-12 Iter 155: T = 583.6021944508161 K, F = -2.0414202384078095e-8, relative_change = 7.721001242599778e-13 Iter 160: T = 583.6021944494398 K, F = -8.537600959535041e-9, relative_change = 3.229067018045443e-13 Converged in 163 iterations to T = 583.6021944490369 K Iter 1: T = 964.3581846640133 K, F = -8121.021528423691, relative_change = 0.035641815335986766 Iter 2: T = 930.6439186076568 K, F = -6889.4802986052655, relative_change = 0.034960315153132346 Iter 3: T = 898.8263264647888 K, F = -5843.625977783718, relative_change = 0.03418879284191795 Iter 5: T = 840.7683199522894 K, F = -4201.373603282486, relative_change = 0.032350427248559466 Iter 10: T = 726.8290355190617 K, F = -1832.0702603586483, relative_change = 0.025933076203577408 Iter 15: T = 653.4103555031078 K, F = -790.9824948521056, relative_change = 0.017725830678942536 Iter 20: T = 611.9492157692487 K, F = -337.65583754826974, relative_change = 0.01014221952147715 Iter 25: T = 591.2601963687305 K, F = -142.79883503364366, relative_change = 0.005024297315108818 Iter 30: T = 581.7945867510722 K, F = -60.04168649910138, relative_change = 0.0022783494641142213 Iter 35: T = 577.6684386859922 K, F = -25.17040231334616, relative_change = 0.00098778927521908 Iter 40: T = 575.9112603470605 K, F = -10.537427317099873, relative_change = 0.00041955367034126196 Iter 45: T = 575.1706822058787 K, F = -4.408803144416288, relative_change = 0.00017661620506066354 Iter 50: T = 574.859951806317 K, F = -1.8441527101410848, relative_change = 7.406676953115733e-5 Iter 55: T = 574.7298226441968 K, F = -0.7713060431223303, relative_change = 3.1011390506066657e-5 Iter 60: T = 574.6753698660227 K, F = -0.32257979002950776, relative_change = 1.2975602960817403e-5 Iter 65: T = 574.6525915998775 K, F = -0.13490853880174256, relative_change = 5.42764936969475e-6 Iter 70: T = 574.6430645008745 K, F = -0.05642068012480367, relative_change = 2.2700997532200832e-6 Iter 75: T = 574.6390799870464 K, F = -0.02359585786013854, relative_change = 9.494164067624374e-7 Iter 80: T = 574.6374135865248 K, F = -0.009868079278967656, relative_change = 3.970631530242451e-7 Iter 85: T = 574.636716672809 K, F = -0.004126950305263499, relative_change = 1.6605757978276747e-7 Iter 90: T = 574.6364252142754 K, F = -0.0017259402012930192, relative_change = 6.94474426776275e-8 Iter 95: T = 574.6363033226794 K, F = -0.00072180885628359, relative_change = 2.9043781329422788e-8 Iter 100: T = 574.6362523461308 K, F = -0.0003018690928429102, relative_change = 1.2146461697146599e-8 Iter 105: T = 574.6362310271247 K, F = -0.00012624526211529874, relative_change = 5.079796335351024e-9 Iter 110: T = 574.636222111261 K, F = -5.279727738605189e-5, relative_change = 2.1244316935136496e-9 Iter 115: T = 574.6362183825399 K, F = -2.208045183293983e-5, relative_change = 8.884627286201549e-10 Iter 120: T = 574.6362168231443 K, F = -9.234308602779073e-6, relative_change = 3.7156572638173813e-10 Iter 125: T = 574.6362161709865 K, F = -3.861897952150972e-6, relative_change = 1.5539321754143576e-10 Iter 130: T = 574.6362158982462 K, F = -1.6150916938850735e-6, relative_change = 6.498729345361982e-11 Iter 135: T = 574.6362157841829 K, F = -6.754501488126508e-7, relative_change = 2.7178442711243875e-11 Iter 140: T = 574.6362157364803 K, F = -2.824805547252396e-7, relative_change = 1.13663185805353e-11 Iter 145: T = 574.6362157165305 K, F = -1.1813622285972158e-7, relative_change = 4.753509304216458e-12 Iter 150: T = 574.6362157081874 K, F = -4.94059969047278e-8, relative_change = 1.98797507065904e-12 Iter 155: T = 574.6362157046981 K, F = -2.066176696402522e-8, relative_change = 8.313783794433563e-13 Iter 160: T = 574.6362157032389 K, F = -8.640993920394635e-9, relative_change = 3.4769221504204307e-13 Converged in 163 iterations to T = 574.6362157028117 K Iter 1: T = 979.8304286370303 K, F = -4595.656021268133, relative_change = 0.020169571362969645 Iter 2: T = 961.7178078705049 K, F = -3882.2965427318363, relative_change = 0.018485464665269215 Iter 3: T = 945.5434791387561 K, F = -3278.1392592938255, relative_change = 0.01681816495377476 Iter 5: T = 918.493548939421 K, F = -2334.027650322607, relative_change = 0.013624075800460225 Iter 10: T = 875.4224878272299 K, F = -991.2166507171804, relative_change = 0.00719576531823497 Iter 15: T = 854.9678886498065 K, F = -417.78040271184483, relative_change = 0.0033851444459548014 Iter 20: T = 845.8741952559925 K, F = -175.3480391737135, relative_change = 0.0014941577685847085 Iter 25: T = 841.965728121364 K, F = -73.44749795779603, relative_change = 0.0006397387545474658 Iter 30: T = 840.3118009668209 K, F = -30.737111733807133, relative_change = 0.00027023785385782065 Iter 35: T = 839.616650570741 K, F = -12.858241452225792, relative_change = 0.00011349442022746321 Iter 40: T = 839.3253200798455 K, F = -5.378104519196135, relative_change = 4.7548795579222936e-5 Iter 45: T = 839.2033750465325 K, F = -2.249298657593313, relative_change = 1.9900217005288196e-5 Iter 50: T = 839.1523574083456 K, F = -0.9407030078074374, relative_change = 8.325089757245613e-6 Iter 55: T = 839.1310179379083 K, F = -0.3934166343412111, relative_change = 3.482103644800243e-6 Iter 60: T = 839.1220929418399 K, F = -0.16453212993912114, relative_change = 1.4563363445522704e-6 Iter 65: T = 839.1183603013732 K, F = -0.06880940573918215, relative_change = 6.090710724587104e-7 Iter 70: T = 839.1167992489704 K, F = -0.02877693343495724, relative_change = 2.54723213661746e-7 Iter 75: T = 839.1161463951377 K, F = -0.012034860412716064, relative_change = 1.0652871277358945e-7 Iter 80: T = 839.1158733633303 K, F = -0.005033122906482612, relative_change = 4.45516538395514e-8 Iter 85: T = 839.1157591780736 K, F = -0.0021049122041973956, relative_change = 1.8632046621072055e-8 Iter 90: T = 839.1157114244194 K, F = -0.0008802994388090735, relative_change = 7.792146672894746e-9 Iter 95: T = 839.1156914532679 K, F = -0.00036815174359805525, relative_change = 3.258769212620744e-9 Iter 100: T = 839.1156831010933 K, F = -0.00015396545506995984, relative_change = 1.3628562604749773e-9 Iter 105: T = 839.1156796081141 K, F = -6.439019218174025e-5, relative_change = 5.699627765687874e-10 Iter 110: T = 839.1156781473085 K, F = -2.692874746568208e-5, relative_change = 2.3836524293886665e-10 Iter 115: T = 839.1156775363821 K, F = -1.1261924965699777e-5, relative_change = 9.968720205553752e-11 Iter 120: T = 839.1156772808854 K, F = -4.709870937036342e-6, relative_change = 4.169037334794061e-11 Iter 125: T = 839.1156771740336 K, F = -1.9697258513140525e-6, relative_change = 1.743542599828306e-11 Iter 130: T = 839.1156771293469 K, F = -8.237618218664977e-7, relative_change = 7.291694059568892e-12 Iter 135: T = 839.1156771106585 K, F = -3.4450864649926416e-7, relative_change = 3.049487830988968e-12 Iter 140: T = 839.1156771028426 K, F = -1.4407577220154622e-7, relative_change = 1.27531578250062e-12 Iter 145: T = 839.115677099574 K, F = -6.02556384787789e-8, relative_change = 5.333649479286907e-13 Iter 150: T = 839.115677098207 K, F = -2.519964326097579e-8, relative_change = 2.2305972943179028e-13 Converged in 151 iterations to T = 839.1156770980498 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 7%|██ | ETA: 0:00:15 Bin 1 ray tracing: 13%|███▉ | ETA: 0:00:14 Bin 1 ray tracing: 19%|█████▊ | ETA: 0:00:13 Bin 1 ray tracing: 26%|███████▋ | ETA: 0:00:12 Bin 1 ray tracing: 32%|█████████▋ | ETA: 0:00:11 Bin 1 ray tracing: 38%|███████████▌ | ETA: 0:00:10 Bin 1 ray tracing: 45%|█████████████▍ | ETA: 0:00:09 Bin 1 ray tracing: 51%|███████████████▎ | ETA: 0:00:08 Bin 1 ray tracing: 57%|█████████████████▎ | ETA: 0:00:07 Bin 1 ray tracing: 64%|███████████████████▏ | ETA: 0:00:06 Bin 1 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:05 Bin 1 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:04 Bin 1 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:03 Bin 1 ray tracing: 90%|███████████████████████████ | ETA: 0:00:02 Bin 1 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 7%|██▏ | ETA: 0:00:14 Bin 2 ray tracing: 13%|████ | ETA: 0:00:13 Bin 2 ray tracing: 20%|██████▏ | ETA: 0:00:12 Bin 2 ray tracing: 27%|████████▎ | ETA: 0:00:11 Bin 2 ray tracing: 34%|██████████▎ | ETA: 0:00:10 Bin 2 ray tracing: 41%|████████████▍ | ETA: 0:00:09 Bin 2 ray tracing: 48%|██████████████▌ | ETA: 0:00:08 Bin 2 ray tracing: 55%|████████████████▌ | ETA: 0:00:07 Bin 2 ray tracing: 62%|██████████████████▌ | ETA: 0:00:06 Bin 2 ray tracing: 68%|████████████████████▌ | ETA: 0:00:05 Bin 2 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:04 Bin 2 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:03 Bin 2 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:02 Bin 2 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 7%|██ | ETA: 0:00:14 Bin 3 ray tracing: 13%|████ | ETA: 0:00:13 Bin 3 ray tracing: 20%|██████ | ETA: 0:00:12 Bin 3 ray tracing: 27%|████████ | ETA: 0:00:11 Bin 3 ray tracing: 33%|█████████▉ | ETA: 0:00:10 Bin 3 ray tracing: 39%|███████████▊ | ETA: 0:00:09 Bin 3 ray tracing: 45%|█████████████▋ | ETA: 0:00:09 Bin 3 ray tracing: 52%|███████████████▋ | ETA: 0:00:07 Bin 3 ray tracing: 59%|█████████████████▋ | ETA: 0:00:06 Bin 3 ray tracing: 65%|███████████████████▋ | ETA: 0:00:05 Bin 3 ray tracing: 74%|██████████████████████▎ | ETA: 0:00:04 Bin 3 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:02 Bin 3 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 3 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 4 ray tracing: 16%|████▊ | ETA: 0:00:11 Bin 4 ray tracing: 24%|███████▏ | ETA: 0:00:10 Bin 4 ray tracing: 31%|█████████▎ | ETA: 0:00:09 Bin 4 ray tracing: 38%|███████████▌ | ETA: 0:00:08 Bin 4 ray tracing: 46%|█████████████▉ | ETA: 0:00:07 Bin 4 ray tracing: 54%|████████████████▏ | ETA: 0:00:06 Bin 4 ray tracing: 61%|██████████████████▍ | ETA: 0:00:05 Bin 4 ray tracing: 69%|████████████████████▊ | ETA: 0:00:04 Bin 4 ray tracing: 77%|███████████████████████ | ETA: 0:00:03 Bin 4 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:02 Bin 4 ray tracing: 93%|███████████████████████████▊ | ETA: 0:00:01 Bin 4 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 7%|██▏ | ETA: 0:00:14 Bin 5 ray tracing: 14%|████▏ | ETA: 0:00:13 Bin 5 ray tracing: 21%|██████▏ | ETA: 0:00:12 Bin 5 ray tracing: 27%|████████▎ | ETA: 0:00:11 Bin 5 ray tracing: 34%|██████████▎ | ETA: 0:00:10 Bin 5 ray tracing: 41%|████████████▎ | ETA: 0:00:09 Bin 5 ray tracing: 48%|██████████████▍ | ETA: 0:00:08 Bin 5 ray tracing: 55%|████████████████▍ | ETA: 0:00:07 Bin 5 ray tracing: 61%|██████████████████▌ | ETA: 0:00:06 Bin 5 ray tracing: 68%|████████████████████▌ | ETA: 0:00:05 Bin 5 ray tracing: 75%|██████████████████████▋ | ETA: 0:00:04 Bin 5 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:03 Bin 5 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:02 Bin 5 ray tracing: 96%|████████████████████████████▋ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 6 ray tracing: 14%|████▎ | ETA: 0:00:12 Bin 6 ray tracing: 21%|██████▎ | ETA: 0:00:12 Bin 6 ray tracing: 28%|████████▎ | ETA: 0:00:11 Bin 6 ray tracing: 35%|██████████▍ | ETA: 0:00:10 Bin 6 ray tracing: 42%|████████████▌ | ETA: 0:00:09 Bin 6 ray tracing: 48%|██████████████▌ | ETA: 0:00:08 Bin 6 ray tracing: 55%|████████████████▋ | ETA: 0:00:07 Bin 6 ray tracing: 62%|██████████████████▋ | ETA: 0:00:06 Bin 6 ray tracing: 69%|████████████████████▉ | ETA: 0:00:04 Bin 6 ray tracing: 77%|███████████████████████ | ETA: 0:00:03 Bin 6 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:02 Bin 6 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 6 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 7%|██▎ | ETA: 0:00:13 Bin 7 ray tracing: 15%|████▌ | ETA: 0:00:11 Bin 7 ray tracing: 22%|██████▋ | ETA: 0:00:11 Bin 7 ray tracing: 31%|█████████▎ | ETA: 0:00:09 Bin 7 ray tracing: 42%|████████████▋ | ETA: 0:00:07 Bin 7 ray tracing: 53%|███████████████▉ | ETA: 0:00:06 Bin 7 ray tracing: 64%|███████████████████▏ | ETA: 0:00:04 Bin 7 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:03 Bin 7 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 7 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 10%|███ | ETA: 0:00:09 Bin 8 ray tracing: 20%|██████ | ETA: 0:00:08 Bin 8 ray tracing: 30%|█████████ | ETA: 0:00:07 Bin 8 ray tracing: 41%|████████████▍ | ETA: 0:00:06 Bin 8 ray tracing: 52%|███████████████▋ | ETA: 0:00:05 Bin 8 ray tracing: 63%|███████████████████ | ETA: 0:00:04 Bin 8 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:02 Bin 8 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:01 Bin 8 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 10%|███▏ | ETA: 0:00:09 Bin 9 ray tracing: 22%|██████▌ | ETA: 0:00:07 Bin 9 ray tracing: 33%|█████████▉ | ETA: 0:00:06 Bin 9 ray tracing: 44%|█████████████▍ | ETA: 0:00:05 Bin 9 ray tracing: 56%|████████████████▊ | ETA: 0:00:04 Bin 9 ray tracing: 67%|████████████████████▎ | ETA: 0:00:03 Bin 9 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:02 Bin 9 ray tracing: 90%|███████████████████████████▏ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 10%|███ | ETA: 0:00:09 Bin 10 ray tracing: 21%|██████▏ | ETA: 0:00:08 Bin 10 ray tracing: 33%|█████████▌ | ETA: 0:00:06 Bin 10 ray tracing: 45%|████████████▉ | ETA: 0:00:05 Bin 10 ray tracing: 57%|████████████████▍ | ETA: 0:00:04 Bin 10 ray tracing: 67%|███████████████████▋ | ETA: 0:00:03 Bin 10 ray tracing: 79%|██████████████████████▉ | ETA: 0:00:02 Bin 10 ray tracing: 90%|██████████████████████████▎ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:08 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2631004724897 K, F = -7459.133698174016, relative_change = 0.03273689952751027 Iter 2: T = 936.5988519168546 K, F = -6323.001135891162, relative_change = 0.03170207624032815 Iter 3: T = 907.9760475473587 K, F = -5358.414132504732, relative_change = 0.030560366704396654 Iter 5: T = 856.7174922000207 K, F = -3844.549157418357, relative_change = 0.02796109000528663 Iter 10: T = 761.3083617260262 K, F = -1664.8955673306161, relative_change = 0.020056060023278074 Iter 15: T = 705.3712204274283 K, F = -712.9017867004881, relative_change = 0.012039035471480128 Iter 20: T = 676.5696061672342 K, F = -302.1739053301704, relative_change = 0.006173192222599321 Iter 25: T = 663.1284951170558 K, F = -127.2148705205359, relative_change = 0.00285387627254755 Iter 30: T = 657.2088888687391 K, F = -53.36326494864914, relative_change = 0.0012488416031080317 Iter 35: T = 654.6759384465859 K, F = -22.346323117038548, relative_change = 0.0005326268954686536 Iter 40: T = 653.6061854829167 K, F = -9.350685962434945, relative_change = 0.00022461360301360322 Iter 45: T = 653.1569431249668 K, F = -3.911482097425739, relative_change = 9.426588866667388e-5 Iter 50: T = 652.9687370582375 K, F = -1.6359887801771626, relative_change = 3.948110011015699e-5 Iter 55: T = 652.8899695659846 K, F = -0.6842181089040505, relative_change = 1.6521630194306753e-5 Iter 60: T = 652.8570179957655 K, F = -0.2861530952156984, relative_change = 6.911322117888539e-6 Iter 65: T = 652.8432354943599 K, F = -0.11967350087703893, relative_change = 2.890708725365064e-6 Iter 70: T = 652.8374711795658 K, F = -0.05004903752753548, relative_change = 1.2089833624437265e-6 Iter 75: T = 652.8350604203853 K, F = -0.02093113148257708, relative_change = 5.056208045806669e-7 Iter 80: T = 652.8340522026793 K, F = -0.008753653752626156, relative_change = 2.114583246900512e-7 Iter 85: T = 652.8336305523453 K, F = -0.003660883342377408, relative_change = 8.843468805228853e-8 Iter 90: T = 652.8334542128517 K, F = -0.0015310252747308684, relative_change = 3.698449363999997e-8 Iter 95: T = 652.8333804655192 K, F = -0.0006402930786333916, relative_change = 1.5467365837528678e-8 Iter 100: T = 652.8333496234952 K, F = -0.0002677782168046816, relative_change = 6.468638678849278e-9 Iter 105: T = 652.8333367249909 K, F = -0.00011198804885070857, relative_change = 2.7052622171884534e-9 Iter 110: T = 652.8333313306821 K, F = -4.683474024952394e-5, relative_change = 1.1313730307255264e-9 Iter 115: T = 652.8333290747175 K, F = -1.958684683267542e-5, relative_change = 4.731536997955955e-10 Iter 120: T = 652.8333281312464 K, F = -8.19145385094755e-6, relative_change = 1.978785434970047e-10 Iter 125: T = 652.8333277366754 K, F = -3.4257639210388824e-6, relative_change = 8.275517256707743e-11 Iter 130: T = 652.8333275716611 K, F = -1.4326954703713923e-6, relative_change = 3.460920360016577e-11 Iter 135: T = 652.8333275026501 K, F = -5.991699132401607e-7, relative_change = 1.4473971585520156e-11 Iter 140: T = 652.8333274737888 K, F = -2.5057912061976495e-7, relative_change = 6.0531662094401e-12 Iter 145: T = 652.8333274617188 K, F = -1.0479486173275987e-7, relative_change = 2.5314986917129935e-12 Iter 150: T = 652.833327456671 K, F = -4.382601326291535e-8, relative_change = 1.058692128675887e-12 Iter 155: T = 652.8333274545599 K, F = -1.8328018769331322e-8, relative_change = 4.4274456563524e-13 Converged in 159 iterations to T = 652.8333274537979 K Iter 1: T = 970.3357196199885 K, F = -6759.034502601051, relative_change = 0.029664280380011485 Iter 2: T = 942.8355972707766 K, F = -5724.7583060684, relative_change = 0.02834083275835885 Iter 3: T = 917.4549242124433 K, F = -4846.99974088555, relative_change = 0.026919510815886304 Iter 5: T = 872.8361713257823 K, F = -3470.4677206749807, relative_change = 0.023828121556317756 Iter 10: T = 793.6258093043532 K, F = -1493.8006270432338, relative_change = 0.01552236600406498 Iter 15: T = 750.4568729455398 K, F = -635.8848591729869, relative_change = 0.008502214005954663 Iter 20: T = 729.4980348484238 K, F = -268.41302187799556, relative_change = 0.004091343697114262 Iter 25: T = 720.063670390327 K, F = -112.74276770778485, relative_change = 0.0018268600743957476 Iter 30: T = 715.9843528217517 K, F = -47.24084308390492, relative_change = 0.0007863425299576536 Iter 35: T = 714.2534917536685 K, F = -19.772898328158913, relative_change = 0.0003329326481666533 Iter 40: T = 713.5251658896691 K, F = -8.272127584754742, relative_change = 0.00013996213111119413 Iter 45: T = 713.2197827805417 K, F = -3.4600058999010734, relative_change = 5.866173765045411e-5 Iter 50: T = 713.0919293612646 K, F = -1.4471039873721647, relative_change = 2.4555481451276864e-5 Iter 55: T = 713.0384352537156 K, F = -0.605211607444456, relative_change = 1.0273326036303302e-5 Iter 60: T = 713.0160591289067 K, F = -0.25310942291288463, relative_change = 4.2971154619858845e-6 Iter 65: T = 713.0067004226717 K, F = -0.10585385586824358, relative_change = 1.7972253338646203e-6 Iter 70: T = 713.002786369881 K, F = -0.04426942931309097, relative_change = 7.51642145690946e-7 Iter 75: T = 713.0011494435088 K, F = -0.018514018477478356, relative_change = 3.143494032143043e-7 Iter 80: T = 713.0004648573715 K, F = -0.007742786156795689, relative_change = 1.3146531840575523e-7 Iter 85: T = 713.0001785545772 K, F = -0.003238126080513326, relative_change = 5.498047879084565e-8 Iter 90: T = 713.0000588192079 K, F = -0.001354223076154737, relative_change = 2.2993512542795604e-8 Iter 95: T = 713.0000087444251 K, F = -0.0005663522754707495, relative_change = 9.616164968248457e-9 Iter 100: T = 712.9999878025493 K, F = -0.0002368552874847385, relative_change = 4.02159563086552e-9 Iter 105: T = 712.9999790444061 K, F = -9.905571158119741e-5, relative_change = 1.6818794481438963e-9 Iter 110: T = 712.9999753816459 K, F = -4.1426281237488816e-5, relative_change = 7.03382082853127e-10 Iter 115: T = 712.9999738498358 K, F = -1.7324966725684732e-5, relative_change = 2.9416281021369136e-10 Iter 120: T = 712.9999732092145 K, F = -7.245508554576396e-6, relative_change = 1.230224104153285e-10 Iter 125: T = 712.9999729412991 K, F = -3.0301590918657695e-6, relative_change = 5.144945634695417e-11 Iter 130: T = 712.9999728292536 K, F = -1.2672486315867815e-6, relative_change = 2.151677559616119e-11 Iter 135: T = 712.9999727823948 K, F = -5.299783053525076e-7, relative_change = 8.998569015137236e-12 Iter 140: T = 712.9999727627978 K, F = -2.2164180413231094e-7, relative_change = 3.763284367005439e-12 Iter 145: T = 712.9999727546023 K, F = -9.269231049380267e-8, relative_change = 1.5738345228131996e-12 Iter 150: T = 712.9999727511748 K, F = -3.876575283001671e-8, relative_change = 6.58208645173423e-13 Iter 155: T = 712.9999727497413 K, F = -1.6211678999233925e-8, relative_change = 2.7526015854674535e-13 Converged in 157 iterations to T = 712.999972749438 K Iter 1: T = 974.4566178786943 K, F = -5820.083914368702, relative_change = 0.025543382121305684 Iter 2: T = 951.102166360244 K, F = -4923.941408525399, relative_change = 0.02396664057686922 Iter 3: T = 929.8615655552891 K, F = -4163.979499226343, relative_change = 0.02233261741610811 Iter 5: T = 893.3670649365109 K, F = -2973.783149042441, relative_change = 0.018977405513425444 Iter 10: T = 831.9227879637108 K, F = -1271.5367762654882, relative_change = 0.011139155243911115 Iter 15: T = 800.7509977822797 K, F = -538.3815220886623, relative_change = 0.00561845821221671 Iter 20: T = 786.3418570292031 K, F = -226.5183762452718, relative_change = 0.002573247759608558 Iter 25: T = 780.027549404799 K, F = -94.989917309089, relative_change = 0.0011209512533236956 Iter 30: T = 777.331979666122 K, F = -39.772488355642096, relative_change = 0.0004771159613670823 Iter 35: T = 776.1947056101997 K, F = -16.64159666970726, relative_change = 0.0002010291119232173 Iter 40: T = 775.7173152754668 K, F = -6.961169497804933, relative_change = 8.43368730509424e-5 Iter 45: T = 775.5173535164643 K, F = -2.9114993762956725, relative_change = 3.5317091788868634e-5 Iter 50: T = 775.4336725008342 K, F = -1.2176684865247185, relative_change = 1.4778161408915752e-5 Iter 55: T = 775.3986665364639 K, F = -0.5092513206409358, relative_change = 6.18182700856706e-6 Iter 60: T = 775.3840249504856 K, F = -0.21297635156430883, relative_change = 2.585562923036177e-6 Iter 65: T = 775.377901371595 K, F = -0.08906949288385702, relative_change = 1.0813568561684625e-6 Iter 70: T = 775.3753403665611 K, F = -0.03724996746685971, relative_change = 4.5224397107637843e-7 Iter 75: T = 775.374269314714 K, F = -0.01557838856599969, relative_change = 1.8913516232711612e-7 Iter 80: T = 775.373821386474 K, F = -0.0065150694212758875, relative_change = 7.909881671168884e-8 Iter 85: T = 775.3736340572607 K, F = -0.002724680063545537, relative_change = 3.308011057460389e-8 Iter 90: T = 775.3735557138986 K, F = -0.00113949378021172, relative_change = 1.3834504420025246e-8 Iter 95: T = 775.3735229497605 K, F = -0.000476549912670321, relative_change = 5.785756196393756e-9 Iter 100: T = 775.3735092474053 K, F = -0.00019929886685121634, relative_change = 2.419672567725056e-9 Iter 105: T = 775.3735035169163 K, F = -8.334916447183538e-5, relative_change = 1.011935978856195e-9 Iter 110: T = 775.3735011203574 K, F = -3.485761538080112e-5, relative_change = 4.232037103620597e-10 Iter 115: T = 775.3735001180879 K, F = -1.4577872554544236e-5, relative_change = 1.769888652691924e-10 Iter 120: T = 775.3734996989268 K, F = -6.0966404071827185e-6, relative_change = 7.401885744038367e-11 Iter 125: T = 775.3734995236288 K, F = -2.549690352071643e-6, relative_change = 3.095560083680124e-11 Iter 130: T = 775.3734994503169 K, F = -1.0663110556752287e-6, relative_change = 1.294600318638322e-11 Iter 135: T = 775.3734994196569 K, F = -4.459423127434192e-7, relative_change = 5.414152438990262e-12 Iter 140: T = 775.3734994068346 K, F = -1.8649831479145007e-7, relative_change = 2.264262163783887e-12 Iter 145: T = 775.3734994014723 K, F = -7.799617374182333e-8, relative_change = 9.46945742254162e-13 Iter 150: T = 775.3734993992296 K, F = -3.2618193590572275e-8, relative_change = 3.9601506149880666e-13 Converged in 154 iterations to T = 775.37349939842 K Iter 1: T = 970.4010256405845 K, F = -6744.154463686175, relative_change = 0.029598974359415425 Iter 2: T = 942.9674713903414 K, F = -5712.053669389299, relative_change = 0.028270326932242806 Iter 3: T = 917.6542329813212 K, F = -4836.1500311606305, relative_change = 0.02684423288928259 Iter 5: T = 873.1709233516633 K, F = -3462.5526210928506, relative_change = 0.023745391814849377 Iter 10: T = 794.2740738348409 K, F = -1490.2186417829757, relative_change = 0.015439835020858123 Iter 15: T = 751.3334445848277 K, F = -634.2942726701137, relative_change = 0.008443444648332781 Iter 20: T = 730.5060510698838 K, F = -267.7235749891514, relative_change = 0.004058889302382716 Iter 25: T = 721.1361869179078 K, F = -112.44920629882759, relative_change = 0.0018114015702790057 Iter 30: T = 717.0858869332666 K, F = -47.11706460007698, relative_change = 0.0007794963859022022 Iter 35: T = 715.3675531143191 K, F = -19.720948755069056, relative_change = 0.0003299984715403576 Iter 40: T = 714.6445376029145 K, F = -8.250368889228504, relative_change = 0.00013872225835598356 Iter 45: T = 714.3413880316515 K, F = -3.4509003787865375, relative_change = 5.814094982874518e-5 Iter 50: T = 714.2144709390944 K, F = -1.443294936404004, relative_change = 2.433728490294615e-5 Iter 55: T = 714.1613688065521 K, F = -0.6036184393734362, relative_change = 1.0182004083102991e-5 Iter 60: T = 714.1391566790177 K, F = -0.25244310994173347, relative_change = 4.258911355794503e-6 Iter 65: T = 714.1298665704138 K, F = -0.1055751903921841, relative_change = 1.7812457902645774e-6 Iter 70: T = 714.1259812080732 K, F = -0.04415288713311449, relative_change = 7.449589371140066e-7 Iter 75: T = 714.1243562807573 K, F = -0.01846527897862782, relative_change = 3.115543403790546e-7 Iter 80: T = 714.1236767128331 K, F = -0.007722402689429142, relative_change = 1.3029637838585195e-7 Iter 85: T = 714.1233925087267 K, F = -0.0032296014656810756, relative_change = 5.449161211624936e-8 Iter 90: T = 714.1232736510557 K, F = -0.0013506579794756446, relative_change = 2.2789062311361562e-8 Iter 95: T = 714.1232239433372 K, F = -0.0005648613107703815, relative_change = 9.530661403640892e-9 Iter 100: T = 714.123203154972 K, F = -0.00023623174824194404, relative_change = 3.9858370088398396e-9 Iter 105: T = 714.1231944610287 K, F = -9.879493788145233e-5, relative_change = 1.666924727304207e-9 Iter 110: T = 714.1231908251178 K, F = -4.131722321853992e-5, relative_change = 6.971278508086911e-10 Iter 115: T = 714.1231893045364 K, F = -1.727935702888761e-5, relative_change = 2.9154720992042065e-10 Iter 120: T = 714.123188668611 K, F = -7.226432170548414e-6, relative_change = 1.2192850361346804e-10 Iter 125: T = 714.1231884026595 K, F = -3.0221815402464713e-6, relative_change = 5.09919784490156e-11 Iter 130: T = 714.1231882914353 K, F = -1.2639127908720127e-6, relative_change = 2.132546075842841e-11 Iter 135: T = 714.12318824492 K, F = -5.285816865319148e-7, relative_change = 8.918533065464872e-12 Iter 140: T = 714.1231882254668 K, F = -2.2105961272611552e-7, relative_change = 3.729844442261781e-12 Iter 145: T = 714.1231882173313 K, F = -9.244920706752424e-8, relative_change = 1.559855990602126e-12 Iter 150: T = 714.1231882139289 K, F = -3.866353670556322e-8, relative_change = 6.523533436620645e-13 Iter 155: T = 714.123188212506 K, F = -1.6169894312412225e-8, relative_change = 2.728277214212167e-13 Converged in 157 iterations to T = 714.1231882122048 K Iter 1: T = 969.3870905832316 K, F = -6975.180531005294, relative_change = 0.030612909416768433 Iter 2: T = 940.9168154909676 K, F = -5909.3541358301, relative_change = 0.029369356543767166 Iter 3: T = 914.5497625375257 K, F = -5004.695079453809, relative_change = 0.028022724771566213 Iter 5: T = 867.9376528103331 K, F = -3585.606728117096, relative_change = 0.02505297419099872 Iter 10: T = 784.038576563628 K, F = -1546.0747392827584, relative_change = 0.016779784721739036 Iter 15: T = 737.375341727316 K, F = -659.1876852360987, relative_change = 0.009420984792200045 Iter 20: T = 714.368435412684 K, F = -278.54450563468447, relative_change = 0.004607426311892094 Iter 25: T = 703.9183285578317 K, F = -117.06425114996826, relative_change = 0.002074900835672623 Iter 30: T = 699.3796099581604 K, F = -49.06452387863065, relative_change = 0.0008966553404397277 Iter 35: T = 697.4499405832719 K, F = -20.53858442808253, relative_change = 0.00038029865028181494 Iter 40: T = 696.6372508513036 K, F = -8.592882003542822, relative_change = 0.00015999297998576327 Iter 45: T = 696.2963684766335 K, F = -3.594243645552526, relative_change = 6.707815439765002e-5 Iter 50: T = 696.1536305429817 K, F = -1.5032603873393264, relative_change = 2.8082232496313878e-5 Iter 55: T = 696.0939048338156 K, F = -0.628699787205802, relative_change = 1.1749465755842179e-5 Iter 60: T = 696.0689214018731 K, F = -0.2629329681834607, relative_change = 4.914666598415873e-6 Iter 65: T = 696.0584720826967 K, F = -0.10996226868856557, relative_change = 2.0555296657597987e-6 Iter 70: T = 696.054101886518 K, F = -0.04598763216425816, relative_change = 8.596745869561607e-7 Iter 75: T = 696.0522741892308 K, F = -0.019232594146366133, relative_change = 3.5953099457440517e-7 Iter 80: T = 696.0515098193164 K, F = -0.008043303559431947, relative_change = 1.5036099789819312e-7 Iter 85: T = 696.051190149801 K, F = -0.0033638061298777444, relative_change = 6.288291230511447e-8 Iter 90: T = 696.0510564600365 K, F = -0.0014067839879423616, relative_change = 2.629841067709133e-8 Iter 95: T = 696.0510005493533 K, F = -0.0005883338789587356, relative_change = 1.0998313894598679e-8 Iter 100: T = 696.050977166833 K, F = -0.00024604825670226926, relative_change = 4.59962699757659e-9 Iter 105: T = 696.050967387983 K, F = -0.00010290031939330646, relative_change = 1.9236190702711963e-9 Iter 110: T = 696.050963298351 K, F = -4.303414216610957e-5, relative_change = 8.044804850681553e-10 Iter 115: T = 696.0509615880181 K, F = -1.7997393780500026e-5, relative_change = 3.364433800491914e-10 Iter 120: T = 696.0509608727365 K, F = -7.526725665507605e-6, relative_change = 1.4070465240027413e-10 Iter 125: T = 696.0509605735972 K, F = -3.1477679313107743e-6, relative_change = 5.884439173168668e-11 Iter 130: T = 696.0509604484936 K, F = -1.316435890297285e-6, relative_change = 2.460946009203946e-11 Iter 135: T = 696.0509603961737 K, F = -5.505500769720229e-7, relative_change = 1.0291986303792869e-11 Iter 140: T = 696.0509603742928 K, F = -2.3024675110949744e-7, relative_change = 4.304234089475649e-12 Iter 145: T = 696.050960365142 K, F = -9.629285846468605e-8, relative_change = 1.800099250067558e-12 Iter 150: T = 696.050960361315 K, F = -4.0270460188729373e-8, relative_change = 7.528162144453296e-13 Iter 155: T = 696.0509603597145 K, F = -1.6840633221271162e-8, relative_change = 3.148188943265817e-13 Converged in 158 iterations to T = 696.0509603592459 K Iter 1: T = 963.5687723190142 K, F = -8300.889882156718, relative_change = 0.036431227680985785 Iter 2: T = 929.0156834335951 K, F = -7043.569808972863, relative_change = 0.03585949428628794 Iter 3: T = 896.307219859319 K, F = -5975.7730089455345, relative_change = 0.03520765489489604 Iter 5: T = 836.3053751281245 K, F = -4298.898696620142, relative_change = 0.033634441835428144 Iter 10: T = 716.6427435297713 K, F = -1878.5978200618117, relative_change = 0.02790836514358437 Iter 15: T = 637.0314918828493 K, F = -813.4665812474971, relative_change = 0.019992168586075058 Iter 20: T = 590.4051203528317 K, F = -348.2928763715114, relative_change = 0.01198440922148089 Iter 25: T = 566.4193623870981 K, F = -147.6192702961339, relative_change = 0.0061389429192595275 Iter 30: T = 555.2323493627341 K, F = -62.145150100961274, relative_change = 0.0028363865800826267 Iter 35: T = 550.3070164685762 K, F = -26.067749707185317, relative_change = 0.0012408349414228749 Iter 40: T = 548.1998161617036 K, F = -10.916000152346548, relative_change = 0.0005291445915434819 Iter 45: T = 547.3099295440788 K, F = -4.567718577740203, relative_change = 0.00022313282335032077 Iter 50: T = 546.9362322650545 K, F = -1.910717755175975, relative_change = 9.364225562910955e-5 Iter 55: T = 546.7796769494372 K, F = -0.7991627444159328, relative_change = 3.921952204420604e-5 Iter 60: T = 546.7141561627097 K, F = -0.33423302078634376, relative_change = 1.6412100490858027e-5 Iter 65: T = 546.6867462714083 K, F = -0.1397826237187691, relative_change = 6.865491908636751e-6 Iter 70: T = 546.6752816722891 K, F = -0.05845917943829221, relative_change = 2.871537858176941e-6 Iter 75: T = 546.6704867854419 K, F = -0.02444839989946951, relative_change = 1.2009651549479695e-6 Iter 80: T = 546.6684814619692 K, F = -0.010224625564578704, relative_change = 5.022673682243018e-7 Iter 85: T = 546.6676428039559 K, F = -0.004276062748711507, relative_change = 2.100558554542559e-7 Iter 90: T = 546.6672920657968 K, F = -0.0017883008983458903, relative_change = 8.784815483366466e-8 Iter 95: T = 546.6671453826716 K, F = -0.0007478888600376821, relative_change = 3.673919772939916e-8 Iter 100: T = 546.6670840379953 K, F = -0.0003127760645967592, relative_change = 1.5364780029925656e-8 Iter 105: T = 546.6670583829118 K, F = -0.00013080668767184722, relative_change = 6.425736042684407e-9 Iter 110: T = 546.6670476536483 K, F = -5.470491959577717e-5, relative_change = 2.687319835561578e-9 Iter 115: T = 546.6670431665418 K, F = -2.287825076283112e-5, relative_change = 1.1238692961207663e-9 Iter 120: T = 546.6670412899803 K, F = -9.567957478667788e-6, relative_change = 4.700155586225812e-10 Iter 125: T = 546.6670405051798 K, F = -4.0014339019733836e-6, relative_change = 1.965661122318818e-10 Iter 130: T = 546.6670401769669 K, F = -1.6734474428681256e-6, relative_change = 8.220629575987421e-11 Iter 135: T = 546.6670400397044 K, F = -6.998559286819361e-7, relative_change = 3.4379665627680574e-11 Iter 140: T = 546.6670399822996 K, F = -2.926882133602593e-7, relative_change = 1.4377991956816933e-11 Iter 145: T = 546.6670399582922 K, F = -1.2240608654456864e-7, relative_change = 6.013066628019448e-12 Iter 150: T = 546.6670399482521 K, F = -5.1192128175392426e-8, relative_change = 2.51475793618794e-12 Iter 155: T = 546.6670399440532 K, F = -2.1409654715753845e-8, relative_change = 1.051726135021962e-12 Iter 160: T = 546.667039942297 K, F = -8.95371235487552e-9, relative_change = 4.3984143669101044e-13 Converged in 164 iterations to T = 546.6670399416631 K Iter 1: T = 966.9362228369565 K, F = -7533.61307837116, relative_change = 0.03306377716304348 Iter 2: T = 935.9316324099843 K, F = -6386.7015774205765, relative_change = 0.0320647729340471 Iter 3: T = 906.9557532414076 K, F = -5412.929456919413, relative_change = 0.03095939720935071 Iter 5: T = 854.9585848095661 K, F = -3884.5438824441444, relative_change = 0.028430207383590745 Iter 10: T = 757.6391122079087 K, F = -1683.419794246702, relative_change = 0.020626753112238334 Iter 15: T = 700.0568485329868 K, F = -721.3881993368163, relative_change = 0.012531432506370076 Iter 20: T = 670.1675510236851 K, F = -305.9523207964701, relative_change = 0.006484491694730616 Iter 25: T = 656.1442608560726 K, F = -128.85038173880352, relative_change = 0.0030136633690149993 Iter 30: T = 649.9507013503753 K, F = -54.05859007075738, relative_change = 0.0013221802466429132 Iter 35: T = 647.2969988196227 K, F = -22.63924563155352, relative_change = 0.0005645611694643033 Iter 40: T = 646.1755914595263 K, F = -9.473573761063045, relative_change = 0.00023819990486777657 Iter 45: T = 645.7045389474987 K, F = -3.9629433106634675, relative_change = 9.998901720505076e-5 Iter 50: T = 645.5071748579394 K, F = -1.6575224453180093, relative_change = 4.188183987316305e-5 Iter 55: T = 645.4245709103186 K, F = -0.6932258434633858, relative_change = 1.75269220947044e-5 Iter 60: T = 645.3900137562694 K, F = -0.28992060479106174, relative_change = 7.331970307410892e-6 Iter 65: T = 645.3755595823034 K, F = -0.12124918266000423, relative_change = 3.0666678669778164e-6 Iter 70: T = 645.3695143313404 K, F = -0.05070801771163008, relative_change = 1.2825784075524837e-6 Iter 75: T = 645.3669860752318 K, F = -0.021206726832579514, relative_change = 5.364003261752826e-7 Iter 80: T = 645.3659287178461 K, F = -0.008868911361929466, relative_change = 2.2433089715432826e-7 Iter 85: T = 645.3654865165256 K, F = -0.003709085511534649, relative_change = 9.38181881460296e-8 Iter 90: T = 645.3653015823317 K, F = -0.0015511840077239714, relative_change = 3.9235944056731153e-8 Iter 95: T = 645.3652242405872 K, F = -0.0006487237043346639, relative_change = 1.640895043249241e-8 Iter 100: T = 645.3651918953361 K, F = -0.0002713040051556814, relative_change = 6.862420789123987e-9 Iter 105: T = 645.365178368164 K, F = -0.0001134625758523744, relative_change = 2.869946636327662e-9 Iter 110: T = 645.3651727109389 K, F = -4.745140379919244e-5, relative_change = 1.2002459963827252e-9 Iter 115: T = 645.3651703450197 K, F = -1.984474412858317e-5, relative_change = 5.019572277797561e-10 Iter 120: T = 645.365169355564 K, F = -8.299309163350976e-6, relative_change = 2.0992451318791716e-10 Iter 125: T = 645.3651689417618 K, F = -3.4708690799245545e-6, relative_change = 8.779291020799143e-11 Iter 130: T = 645.3651687687047 K, F = -1.4515586405638992e-6, relative_change = 3.6716036998470385e-11 Iter 135: T = 645.3651686963303 K, F = -6.070593669416091e-7, relative_change = 1.535509042895983e-11 Iter 140: T = 645.3651686660625 K, F = -2.53879641698429e-7, relative_change = 6.42168636135507e-12 Iter 145: T = 645.3651686534041 K, F = -1.0617656387434948e-7, relative_change = 2.6856528850826192e-12 Iter 150: T = 645.3651686481103 K, F = -4.4405238985856244e-8, relative_change = 1.1231956831917789e-12 Iter 155: T = 645.3651686458962 K, F = -1.8571242488274464e-8, relative_change = 4.697450091716044e-13 Converged in 160 iterations to T = 645.3651686449703 K Iter 1: T = 965.1840887691766 K, F = -7932.838492424595, relative_change = 0.0348159112308234 Iter 2: T = 932.342836729292 K, F = -6728.335610571301, relative_change = 0.03402589456459487 Iter 3: T = 901.4467871904056 K, F = -5705.503581974406, relative_change = 0.03313807788481679 Iter 5: T = 845.3772556878469 K, F = -4099.599449435568, relative_change = 0.03105035221265886 Iter 10: T = 737.0861793500554 K, F = -1783.925161040051, relative_change = 0.024059463547454293 Iter 15: T = 669.3813659499056 K, F = -768.1103476700304, relative_change = 0.015754429052065543 Iter 20: T = 632.3444284399876 K, F = -327.06643149037717, relative_change = 0.008668352797722637 Iter 25: T = 614.3125793337717 K, F = -138.08411179408668, relative_change = 0.004183423405250948 Iter 30: T = 606.182691575968 K, F = -58.00591064770932, relative_change = 0.0018708032976811496 Iter 35: T = 602.6646384641577 K, F = -24.306441780039908, relative_change = 0.0008058212202963341 Iter 40: T = 601.1713924998818 K, F = -10.17379367365393, relative_change = 0.00034128426908669376 Iter 45: T = 600.5429559136264 K, F = -4.2563133172629914, relative_change = 0.00014349180468815317 Iter 50: T = 600.2794387147661 K, F = -1.7803065774772162, relative_change = 6.01444230170548e-5 Iter 55: T = 600.1691100985247 K, F = -0.7445919987289258, relative_change = 2.5176706510281266e-5 Iter 60: T = 600.1229478720879 K, F = -0.311405410116554, relative_change = 1.0533331029434343e-5 Iter 65: T = 600.103638517424 K, F = -0.1302348863101186, relative_change = 4.405887884890738e-6 Iter 70: T = 600.0955624567964 K, F = -0.054466034018887666, relative_change = 1.8427214240647076e-6 Iter 75: T = 600.0921848367088 K, F = -0.022778389478149308, relative_change = 7.70670232204361e-7 Iter 80: T = 600.0907722555215 K, F = -0.009526202133494532, relative_change = 3.223073648084136e-7 Iter 85: T = 600.0901814936785 K, F = -0.003983972832292404, relative_change = 1.347934659980753e-7 Iter 90: T = 600.0899344294048 K, F = -0.0016661452496266604, relative_change = 5.637235561739454e-8 Iter 95: T = 600.0898311040673 K, F = -0.0006968018818461763, relative_change = 2.3575613042945597e-8 Iter 100: T = 600.0897878921585 K, F = -0.000291410875814635, relative_change = 9.859606552473503e-9 Iter 105: T = 600.0897698204188 K, F = -0.00012187151031511911, relative_change = 4.1234058632340166e-9 Iter 110: T = 600.0897622626007 K, F = -5.096812048599464e-5, relative_change = 1.7244576596139815e-9 Iter 115: T = 600.0897591018309 K, F = -2.131547565170644e-5, relative_change = 7.211887710821036e-10 Iter 120: T = 600.0897577799592 K, F = -8.914386053937573e-6, relative_change = 3.016097456919168e-10 Iter 125: T = 600.0897572271367 K, F = -3.7281021868507125e-6, relative_change = 1.2613678054974283e-10 Iter 130: T = 600.0897569959398 K, F = -1.559136612538925e-6, relative_change = 5.2751899826478384e-11 Iter 135: T = 600.0897568992506 K, F = -6.520501588669347e-7, relative_change = 2.206149506858247e-11 Iter 140: T = 600.0897568588139 K, F = -2.7269546981623094e-7, relative_change = 9.226391072367341e-12 Iter 145: T = 600.0897568419028 K, F = -1.1404493494016066e-7, relative_change = 3.858601576443051e-12 Iter 150: T = 600.0897568348304 K, F = -4.7695081106802206e-8, relative_change = 1.6137175689054174e-12 Iter 155: T = 600.0897568318726 K, F = -1.994638265667703e-8, relative_change = 6.748668286750182e-13 Iter 160: T = 600.0897568306356 K, F = -8.34188640386202e-9, relative_change = 2.822397684580837e-13 Converged in 162 iterations to T = 600.0897568303739 K Iter 1: T = 980.1647477180306 K, F = -4519.481100642667, relative_change = 0.019835252281969338 Iter 2: T = 962.3722141075292 K, F = -3817.592873361846, relative_change = 0.018152594910115998 Iter 3: T = 946.5013359027975 K, F = -3223.2071373541203, relative_change = 0.016491413584139927 Iter 5: T = 920.0008129089367 K, F = -2294.5052848068735, relative_change = 0.013322130103632892 Iter 10: T = 877.9341082195062 K, F = -974.0724333018277, relative_change = 0.006996360650646254 Iter 15: T = 858.0241426167329 K, F = -410.4621049933407, relative_change = 0.003280101033382129 Iter 20: T = 849.1890067607271 K, F = -172.2569352324792, relative_change = 0.0014453190196454294 Iter 25: T = 845.395023826935 K, F = -72.14901611337581, relative_change = 0.000618348119121496 Iter 30: T = 843.7901714421278 K, F = -30.19303331594798, relative_change = 0.0002611142863976589 Iter 35: T = 843.1157606546853 K, F = -12.630517336588614, relative_change = 0.00010964706502056582 Iter 40: T = 842.8331419980033 K, F = -5.282835201646921, relative_change = 4.593417801317493e-5 Iter 45: T = 842.714847091385 K, F = -2.209450215437074, relative_change = 1.922398010256313e-5 Iter 50: T = 842.6653571602812 K, F = -0.9240369196987914, relative_change = 8.04210693241928e-6 Iter 55: T = 842.6446568018679 K, F = -0.3864465033824831, relative_change = 3.363726661376503e-6 Iter 60: T = 842.6359991262436 K, F = -0.16161710751524705, relative_change = 1.4068243952263474e-6 Iter 65: T = 842.6323782887052 K, F = -0.06759030323271653, relative_change = 5.883636602046917e-7 Iter 70: T = 842.6308639947289 K, F = -0.028267089279879087, relative_change = 2.460629650048123e-7 Iter 75: T = 842.6302306960217 K, F = -0.011821637333729429, relative_change = 1.0290686508422992e-7 Iter 80: T = 842.6299658424354 K, F = -0.0049439504409696244, relative_change = 4.303694894793733e-8 Iter 85: T = 842.6298550774144 K, F = -0.0020676192098765256, relative_change = 1.7998578087519936e-8 Iter 90: T = 842.6298087541443 K, F = -0.0008647030588502247, relative_change = 7.527222385355591e-9 Iter 95: T = 842.6297893811969 K, F = -0.00036162914878623553, relative_change = 3.147974664895231e-9 Iter 100: T = 842.6297812791985 K, F = -0.0001512376293917317, relative_change = 1.316520665155732e-9 Iter 105: T = 842.6297778908458 K, F = -6.324938130219948e-5, relative_change = 5.505846625064951e-10 Iter 110: T = 842.6297764737963 K, F = -2.645164574399672e-5, relative_change = 2.3026107546774339e-10 Iter 115: T = 842.6297758811693 K, F = -1.1062393701966045e-5, relative_change = 9.629792808525802e-11 Iter 120: T = 842.6297756333256 K, F = -4.6264244617511e-6, relative_change = 4.0272937551872515e-11 Iter 125: T = 842.6297755296745 K, F = -1.934826698635206e-6, relative_change = 1.684262987490243e-11 Iter 130: T = 842.6297754863263 K, F = -8.091683627586832e-7, relative_change = 7.043795319434441e-12 Iter 135: T = 842.6297754681975 K, F = -3.3840315283306666e-7, relative_change = 2.945793056126262e-12 Iter 140: T = 842.629775460616 K, F = -1.4152592453520185e-7, relative_change = 1.2319805010243681e-12 Iter 145: T = 842.6297754574452 K, F = -5.918932499682228e-8, relative_change = 5.152419565932476e-13 Converged in 150 iterations to T = 842.6297754561192 K Iter 1: T = 976.4873448639268 K, F = -5357.380839063442, relative_change = 0.023512655136073285 Iter 2: T = 955.1353285041381 K, F = -4529.956548573385, relative_change = 0.021866147546196864 Iter 3: T = 935.8518906790613 K, F = -3828.588181232172, relative_change = 0.02018922057388147 Iter 5: T = 903.0681651895836 K, F = -2731.009646405019, relative_change = 0.016837415704895737 Iter 10: T = 849.105719195295 K, F = -1164.4857885781714, relative_change = 0.009464256475608338 Iter 15: T = 822.4806048077166 K, F = -492.08678757206314, relative_change = 0.0046321661941815025 Iter 20: T = 810.3817951168722 K, F = -206.8155798949475, relative_change = 0.002086902434863767 Iter 25: T = 805.1258666110901 K, F = -86.6826402724649, relative_change = 0.0009020160345818067 Iter 30: T = 802.8910500429525 K, F = -36.28586742959812, relative_change = 0.0003826047894059563 Iter 35: T = 801.949805883177 K, F = -15.181227975258276, relative_change = 0.000160969024474217 Iter 40: T = 801.5549942483334 K, F = -6.350033430138112, relative_change = 6.748840170714604e-5 Iter 45: T = 801.3896732133213 K, F = -2.6558460566590707, relative_change = 2.825416402922764e-5 Iter 50: T = 801.3204978553701 K, F = -1.1107391407896716, relative_change = 1.1821432898259192e-5 Iter 55: T = 801.2915615700228 K, F = -0.4645300779380016, relative_change = 4.944775202664535e-6 Iter 60: T = 801.2794589633204 K, F = -0.19427302405392333, relative_change = 2.0681233833251945e-6 Iter 65: T = 801.2743973150856 K, F = -0.08124747328313808, relative_change = 8.649417693679297e-7 Iter 70: T = 801.2722804394863 K, F = -0.033978694145328836, relative_change = 3.6173385253497595e-7 Iter 75: T = 801.2713951309079 K, F = -0.014210301018657945, relative_change = 1.5128226978334167e-7 Iter 80: T = 801.2710248832519 K, F = -0.005942918525261853, relative_change = 6.326820103537631e-8 Iter 85: T = 801.2708700410793 K, F = -0.0024853996649065735, relative_change = 2.6459543348230127e-8 Iter 90: T = 801.2708052842019 K, F = -0.001039423849289678, relative_change = 1.106570157253277e-8 Iter 95: T = 801.2707782020968 K, F = -0.0004346994718587016, relative_change = 4.6278093452499035e-9 Iter 100: T = 801.2707668760361 K, F = -0.00018179651317251633, relative_change = 1.935405294186088e-9 Iter 105: T = 801.2707621393421 K, F = -7.602947263740667e-5, relative_change = 8.094096274476358e-10 Iter 110: T = 801.2707601584 K, F = -3.1796432138131436e-5, relative_change = 3.385047627092131e-10 Iter 115: T = 801.2707593299464 K, F = -1.3297648873367152e-5, relative_change = 1.4156674808902337e-10 Iter 120: T = 801.2707589834772 K, F = -5.56123529293906e-6, relative_change = 5.920490192645427e-11 Iter 125: T = 801.2707588385797 K, F = -2.325776008671454e-6, relative_change = 2.4760207644816168e-11 Iter 130: T = 801.2707587779818 K, F = -9.726683758426447e-7, relative_change = 1.0355025967371245e-11 Iter 135: T = 801.270758752639 K, F = -4.067822636510954e-7, relative_change = 4.3306033262963985e-12 Iter 140: T = 801.2707587420402 K, F = -1.7012014552619803e-7, relative_change = 1.8110987964904966e-12 Iter 145: T = 801.2707587376078 K, F = -7.11453034263343e-8, relative_change = 7.574127862178218e-13 Iter 150: T = 801.270758735754 K, F = -2.9753698838064224e-8, relative_change = 3.1675783013289987e-13 Converged in 153 iterations to T = 801.2707587352114 K Iter 1: T = 980.9218232224072 K, F = -4346.980726805746, relative_change = 0.019078176777592784 Iter 2: T = 963.8515640108684 K, F = -3671.112905002711, relative_change = 0.017402262654797145 Iter 3: T = 948.6629658755355 K, F = -3098.8881467356896, relative_change = 0.01575823363519658 Iter 5: T = 923.3912792884284 K, F = -2205.1214892033436, relative_change = 0.012650552176689233 Iter 10: T = 883.5476145784105 K, F = -935.3631395228947, relative_change = 0.0065607303932391 Iter 15: T = 864.8294444880936 K, F = -393.95764517855304, relative_change = 0.003053072505750156 Iter 20: T = 856.5565147394112 K, F = -165.29017728489487, relative_change = 0.001340330463946654 Iter 25: T = 853.0107077831394 K, F = -69.22335455773477, relative_change = 0.0005724766287819645 Iter 30: T = 851.5120942457013 K, F = -28.96730851366678, relative_change = 0.00024156974450524507 Iter 35: T = 850.8825551660715 K, F = -12.11751864711306, relative_change = 0.00010140893717249568 Iter 40: T = 850.6187805753626 K, F = -5.068225152575215, relative_change = 4.247753893541963e-5 Iter 45: T = 850.5083802296302 K, F = -2.119685832075217, relative_change = 1.777637903220044e-5 Iter 50: T = 850.462194308012 K, F = -0.886494299626424, relative_change = 7.436353711915052e-6 Iter 55: T = 850.4428761477035 K, F = -0.37074536686198756, relative_change = 3.1103323222108843e-6 Iter 60: T = 850.4347965976499 K, F = -0.1550506409604837, relative_change = 1.3008411657280844e-6 Iter 65: T = 850.4314175520419 K, F = -0.06484411734628615, relative_change = 5.440383378830466e-7 Iter 70: T = 850.4300043805971 K, F = -0.02711859959448093, relative_change = 2.2752525876280746e-7 Iter 75: T = 850.4294133729354 K, F = -0.011341324892865323, relative_change = 9.515411776120874e-8 Iter 80: T = 850.4291662060383 K, F = -0.004743077982087618, relative_change = 3.979464742176577e-8 Iter 85: T = 850.4290628378141 K, F = -0.001983611936336338, relative_change = 1.6642607102277302e-8 Iter 90: T = 850.429019607975 K, F = -0.0008295702135321381, relative_change = 6.960138833710801e-9 Iter 95: T = 850.4290015287377 K, F = -0.0003469361729302456, relative_change = 2.910813497231302e-9 Iter 100: T = 850.4289939677843 K, F = -0.00014509285247155113, relative_change = 1.2173370324493695e-9 Iter 105: T = 850.4289908057033 K, F = -6.0679564965582244e-5, relative_change = 5.091049048589343e-10 Iter 110: T = 850.4289894832833 K, F = -2.5376920942843384e-5, relative_change = 2.12913771303423e-10 Iter 115: T = 850.4289889302313 K, F = -1.0612931364173406e-5, relative_change = 8.904308183867721e-11 Iter 120: T = 850.4289886989384 K, F = -4.4384547623899095e-6, relative_change = 3.723888128502112e-11 Iter 125: T = 850.4289886022088 K, F = -1.8562132058086434e-6, relative_change = 1.557373161352471e-11 Iter 130: T = 850.4289885617555 K, F = -7.762905454011815e-7, relative_change = 6.513120676601422e-12 Iter 135: T = 850.4289885448374 K, F = -3.246523967437298e-7, relative_change = 2.7238515922505815e-12 Iter 140: T = 850.428988537762 K, F = -1.3577266999575954e-7, relative_change = 1.1391402222070758e-12 Iter 145: T = 850.428988534803 K, F = -5.6781279234030535e-8, relative_change = 4.763980781032536e-13 Converged in 150 iterations to T = 850.4289885335656 K Iter 1: T = 967.3385155887081 K, F = -7441.95029220535, relative_change = 0.03266148441129184 Iter 2: T = 936.7526860785016 K, F = -6308.30612941572, relative_change = 0.03161853789269669 Iter 3: T = 908.2111138977526 K, F = -5345.839696156189, relative_change = 0.030468631267268245 Iter 5: T = 857.1220508259851 K, F = -3835.3273659551974, relative_change = 0.027853704337096774 Iter 10: T = 762.1480262321084 K, F = -1660.6312774547935, relative_change = 0.019927170266126618 Iter 15: T = 706.5810952393089 K, F = -710.9530128462123, relative_change = 0.011929410369006745 Iter 20: T = 678.0216216383249 K, F = -301.3082742977864, relative_change = 0.00610464069523089 Iter 25: T = 664.7091820860513 K, F = -126.8407487730838, relative_change = 0.0028189134562510666 Iter 30: T = 658.8498887322805 K, F = -53.2043361778063, relative_change = 0.0012328447869310506 Iter 35: T = 656.3434739312249 K, F = -22.27939503505484, relative_change = 0.0005256711423348184 Iter 40: T = 655.2850629490943 K, F = -9.322612560498744, relative_change = 0.00022165611113834484 Iter 45: T = 654.8406078763352 K, F = -3.899726714629343, relative_change = 9.302038914860986e-5 Iter 50: T = 654.6544116819587 K, F = -1.6310699450046693, relative_change = 3.895869436319601e-5 Iter 55: T = 654.576486108309 K, F = -0.6821605386372738, relative_change = 1.6302886644245177e-5 Iter 60: T = 654.5438868778988 K, F = -0.2852925151636665, relative_change = 6.8197941514852635e-6 Iter 65: T = 654.5302517711145 K, F = -0.11931358209419357, relative_change = 2.852422446482994e-6 Iter 70: T = 654.5245491058437 K, F = -0.04989851275829649, relative_change = 1.1929701505694344e-6 Iter 75: T = 654.5221641305124 K, F = -0.02086817980056732, relative_change = 4.989236375175764e-7 Iter 80: T = 654.5211666961444 K, F = -0.00872732653100522, relative_change = 2.0865744556195775e-7 Iter 85: T = 654.5207495555704 K, F = -0.0036498729717171496, relative_change = 8.726331930537164e-8 Iter 90: T = 654.5205751021193 K, F = -0.0015264206040891404, relative_change = 3.649461190323582e-8 Iter 95: T = 654.5205021435534 K, F = -0.000638367349758362, relative_change = 1.52624912049635e-8 Iter 100: T = 654.5204716314013 K, F = -0.0002669728549676287, relative_change = 6.382957644708126e-9 Iter 105: T = 654.5204588708532 K, F = -0.00011165123648460007, relative_change = 2.6694293683805394e-9 Iter 110: T = 654.5204535342394 K, F = -4.669388021971699e-5, relative_change = 1.116387278326096e-9 Iter 115: T = 654.5204513024037 K, F = -1.952793823944976e-5, relative_change = 4.668864971983894e-10 Iter 120: T = 654.5204503690235 K, F = -8.166817581478636e-6, relative_change = 1.9525752452760588e-10 Iter 125: T = 654.5204499786726 K, F = -3.4154601232239123e-6, relative_change = 8.165901638228075e-11 Iter 130: T = 654.5204498154231 K, F = -1.428386411039817e-6, relative_change = 3.4150780647305e-11 Iter 135: T = 654.5204497471503 K, F = -5.973673015691183e-7, relative_change = 1.4282241509872609e-11 Iter 140: T = 654.5204497185978 K, F = -2.4982594098998945e-7, relative_change = 5.9729992184355165e-12 Iter 145: T = 654.5204497066568 K, F = -1.0447910292477047e-7, relative_change = 2.497953565965791e-12 Iter 150: T = 654.520449701663 K, F = -4.3694512896763626e-8, relative_change = 1.0446765070921815e-12 Iter 155: T = 654.5204496995746 K, F = -1.827394879860833e-8, relative_change = 4.369053168553692e-13 Converged in 159 iterations to T = 654.5204496988207 K Iter 1: T = 973.5736215868579 K, F = -6021.275459409934, relative_change = 0.026426378413142056 Iter 2: T = 949.340190379816 K, F = -5095.386732007653, relative_change = 0.024891215897512753 Iter 3: T = 927.2318125189324 K, F = -4310.057935755795, relative_change = 0.023288151165324986 Iter 5: T = 889.0659256568008 K, F = -3079.745621769803, relative_change = 0.019956776427266194 Iter 10: T = 824.1295637121586 K, F = -1318.560923721659, relative_change = 0.011954693668889859 Iter 15: T = 790.7403597893933 K, F = -558.8352576913549, relative_change = 0.006120473752231638 Iter 20: T = 775.1723290446423 K, F = -235.2552576570932, relative_change = 0.0028269921250441334 Iter 25: T = 768.3192659794979 K, F = -98.68051199925742, relative_change = 0.0012365415568392595 Iter 30: T = 765.3875488808987 K, F = -41.32277483887457, relative_change = 0.0005272786436250824 Iter 35: T = 764.1495037941919 K, F = -17.291173134385957, relative_change = 0.00022233960943888285 Iter 40: T = 763.6296089064379 K, F = -7.23304739938162, relative_change = 9.330823506707599e-5 Iter 45: T = 763.411807427634 K, F = -3.0252401444895107, relative_change = 3.9079427234219875e-5 Iter 50: T = 763.3206544172746 K, F = -1.2652429257945936, relative_change = 1.635344038310252e-5 Iter 55: T = 763.2825216109518 K, F = -0.5291486906658085, relative_change = 6.84094715402539e-6 Iter 60: T = 763.266571998456 K, F = -0.22129787427642922, relative_change = 2.861270779178465e-6 Iter 65: T = 763.2599013270915 K, F = -0.09254968891155846, relative_change = 1.1966709603540962e-6 Iter 70: T = 763.2571115109272 K, F = -0.03870543327993603, relative_change = 5.004714183626011e-7 Iter 75: T = 763.255944765692 K, F = -0.01618708284754966, relative_change = 2.0930475613489439e-7 Iter 80: T = 763.2554568170123 K, F = -0.0067696328308332054, relative_change = 8.753403408069918e-8 Iter 85: T = 763.2552527507169 K, F = -0.0028311415538926354, relative_change = 3.660782836055275e-8 Iter 90: T = 763.2551674076973 K, F = -0.001184017253425096, relative_change = 1.530983973762312e-8 Iter 95: T = 763.2551317162172 K, F = -0.0004951701643158835, relative_change = 6.402759355457987e-9 Iter 100: T = 763.2551167896122 K, F = -0.00020708607715769212, relative_change = 2.6777106879984262e-9 Iter 105: T = 763.2551105471273 K, F = -8.660586872288878e-5, relative_change = 1.1198506077096672e-9 Iter 110: T = 763.2551079364456 K, F = -3.621960846622585e-5, relative_change = 4.683349039802286e-10 Iter 115: T = 763.2551068446273 K, F = -1.5147472173349108e-5, relative_change = 1.9586324299391976e-10 Iter 120: T = 763.2551063880159 K, F = -6.334852682532421e-6, relative_change = 8.191233359759581e-11 Iter 125: T = 763.2551061970555 K, F = -2.6493100636626465e-6, relative_change = 3.425670348974197e-11 Iter 130: T = 763.2551061171936 K, F = -1.1079724238083344e-6, relative_change = 1.432655367022176e-11 Iter 135: T = 763.2551060837945 K, F = -4.6336824022219503e-7, relative_change = 5.991548003681137e-12 Iter 140: T = 763.2551060698265 K, F = -1.937869911206036e-7, relative_change = 2.5057480403327386e-12 Iter 145: T = 763.255106063985 K, F = -8.104262994024225e-8, relative_change = 1.047915600470782e-12 Iter 150: T = 763.2551060615419 K, F = -3.389251346241906e-8, relative_change = 4.3824458341449046e-13 Converged in 154 iterations to T = 763.2551060606602 K Iter 1: T = 970.0102034906404 K, F = -6833.20366231879, relative_change = 0.02998979650935957 Iter 2: T = 942.1778527185352 K, F = -5788.090779195968, relative_change = 0.028692843304069206 Iter 3: T = 916.4601533823904 K, F = -4901.092184231426, relative_change = 0.027296013445804915 Iter 5: T = 871.1628864359988 K, F = -3509.9420561534075, relative_change = 0.024243512516069366 Iter 10: T = 790.3723646123542 K, F = -1511.686542637578, relative_change = 0.015941271705742877 Iter 15: T = 746.042699308342 K, F = -643.8386460686461, relative_change = 0.008803383255245784 Iter 20: T = 724.4111581332082 K, F = -271.8644863168636, relative_change = 0.004258699915884681 Iter 25: T = 714.6454087848593 K, F = -114.21331651182017, relative_change = 0.0019068355132513637 Iter 30: T = 710.4167183835497 K, F = -47.861083377133895, relative_change = 0.0008218153077404702 Iter 35: T = 708.6213147913746 K, F = -20.033247779959364, relative_change = 0.00034814598383037015 Iter 40: T = 707.8656187247352 K, F = -8.381179491904373, relative_change = 0.00014639253997760022 Iter 45: T = 707.5487218402149 K, F = -3.5056427959281224, relative_change = 6.136304671494143e-5 Iter 50: T = 707.416041377419 K, F = -1.4661951619769917, relative_change = 2.568731652737796e-5 Iter 55: T = 707.3605264645093 K, F = -0.6131966893703614, relative_change = 1.074704372498128e-5 Iter 60: T = 707.337304850832 K, F = -0.25644904136280305, relative_change = 4.4952947560541364e-6 Iter 65: T = 707.3275924873683 K, F = -0.10725055249754334, relative_change = 1.8801176364444638e-6 Iter 70: T = 707.3235305197596 K, F = -0.044853549474299426, relative_change = 7.863106828571465e-7 Iter 75: T = 707.3218317316952 K, F = -0.018758305369931505, relative_change = 3.288485468980848e-7 Iter 80: T = 707.3211212739188 K, F = -0.00784495000613894, relative_change = 1.3752909425232477e-7 Iter 85: T = 707.3208241512364 K, F = -0.003280852248213173, relative_change = 5.751643288262952e-8 Iter 90: T = 707.3206998908502 K, F = -0.0013720916742882006, relative_change = 2.405408068731491e-8 Iter 95: T = 707.3206479236494 K, F = -0.0005738251381212089, relative_change = 1.0059707568883672e-8 Iter 100: T = 707.3206261903415 K, F = -0.0002399805275152822, relative_change = 4.207090491193246e-9 Iter 105: T = 707.3206171012118 K, F = -0.00010036272300306681, relative_change = 1.7594556017561612e-9 Iter 110: T = 707.3206133000292 K, F = -4.197289030005713e-5, relative_change = 7.358253805810832e-10 Iter 115: T = 707.3206117103291 K, F = -1.7553563132599592e-5, relative_change = 3.077309501079185e-10 Iter 120: T = 707.3206110454977 K, F = -7.341110596525979e-6, relative_change = 1.28696774082891e-10 Iter 125: T = 707.3206107674572 K, F = -3.0701402613519946e-6, relative_change = 5.3822530414467184e-11 Iter 130: T = 707.3206106511773 K, F = -1.283969637055904e-6, relative_change = 2.2509230527907985e-11 Iter 135: T = 707.3206106025477 K, F = -5.369717005487828e-7, relative_change = 9.413633663710635e-12 Iter 140: T = 707.3206105822102 K, F = -2.2456764781075833e-7, relative_change = 3.936888233291567e-12 Iter 145: T = 707.3206105737047 K, F = -9.391649935519553e-8, relative_change = 1.6464471389759084e-12 Iter 150: T = 707.3206105701477 K, F = -3.927647651558175e-8, relative_change = 6.885546504998109e-13 Iter 155: T = 707.3206105686601 K, F = -1.6425753979198987e-8, relative_change = 2.8795936636448473e-13 Converged in 157 iterations to T = 707.3206105683453 K Iter 1: T = 973.5235488734464 K, F = -6032.684574792201, relative_change = 0.026476451126553596 Iter 2: T = 949.240121347651 K, F = -5105.111429480398, relative_change = 0.024943852209734493 Iter 3: T = 927.0822239543057 K, F = -4318.346169822696, relative_change = 0.02334277375664157 Iter 5: T = 888.8204669817027 K, F = -3085.761924521666, relative_change = 0.02001324440930017 Iter 10: T = 823.6813871166955 K, F = -1321.2367263732913, relative_change = 0.012002710166719034 Iter 15: T = 790.1614941343886 K, F = -560.0015678300794, relative_change = 0.006150494285940858 Iter 20: T = 774.5244740861993 K, F = -235.7541329164151, relative_change = 0.0028423016381240317 Iter 25: T = 767.6391671775139 K, F = -98.8913943718212, relative_change = 0.001243545872815115 Iter 30: T = 764.693281551949 K, F = -41.41138795072038, relative_change = 0.0005303241960291273 Iter 35: T = 763.4491836762553 K, F = -17.328307693741362, relative_change = 0.0002236345238027162 Iter 40: T = 762.9267345600792 K, F = -7.248590880187846, relative_change = 9.385356479679345e-5 Iter 45: T = 762.7078608249668 K, F = -3.031742963150885, relative_change = 3.930815704323932e-5 Iter 50: T = 762.6162586729141 K, F = -1.2679628939984404, relative_change = 1.6449214850721593e-5 Iter 55: T = 762.577937905515 K, F = -0.5302862859383146, relative_change = 6.881021658894877e-6 Iter 60: T = 762.5619096636315 K, F = -0.22177364281717793, relative_change = 2.8780339994652256e-6 Iter 65: T = 762.5552061047001 K, F = -0.09274866320440078, relative_change = 1.2036821662371293e-6 Iter 70: T = 762.5524025338948 K, F = -0.03878864709067975, relative_change = 5.034036980506611e-7 Iter 75: T = 762.5512300361876 K, F = -0.01622188392417423, relative_change = 2.1053108969644433e-7 Iter 80: T = 762.5507396817351 K, F = -0.00678418706837991, relative_change = 8.804690477495545e-8 Iter 85: T = 762.550534609313 K, F = -0.0028372283109374674, relative_change = 3.682231758397929e-8 Iter 90: T = 762.5504488455188 K, F = -0.001186562807714342, relative_change = 1.5399541787754043e-8 Iter 95: T = 762.5504129780655 K, F = -0.0004962347458611349, relative_change = 6.440273845692682e-9 Iter 100: T = 762.5503979778665 K, F = -0.0002075312985402311, relative_change = 2.6933997074539314e-9 Iter 105: T = 762.5503917046037 K, F = -8.679206774286907e-5, relative_change = 1.126411970958719e-9 Iter 110: T = 762.5503890810503 K, F = -3.6297479546143485e-5, relative_change = 4.710789500635394e-10 Iter 115: T = 762.5503879838489 K, F = -1.5180037976403327e-5, relative_change = 1.9701082527637457e-10 Iter 120: T = 762.5503875249861 K, F = -6.34847257974247e-6, relative_change = 8.239227251651434e-11 Iter 125: T = 762.5503873330844 K, F = -2.655008145224791e-6, relative_change = 3.44574465982663e-11 Iter 130: T = 762.5503872528286 K, F = -1.1103552879365708e-6, relative_change = 1.441050496480105e-11 Iter 135: T = 762.5503872192648 K, F = -4.6436360856549896e-7, relative_change = 6.0266422475854165e-12 Iter 140: T = 762.5503872052279 K, F = -1.9420275254589114e-7, relative_change = 2.52041824898502e-12 Iter 145: T = 762.5503871993575 K, F = -8.121612893319252e-8, relative_change = 1.0540458917247858e-12 Iter 150: T = 762.5503871969024 K, F = -3.396426384583151e-8, relative_change = 4.407978223408398e-13 Converged in 154 iterations to T = 762.5503871960163 K Iter 1: T = 964.3102418118983 K, F = -8131.945352883513, relative_change = 0.03568975818810174 Iter 2: T = 930.545154473137 K, F = -6898.836707264735, relative_change = 0.03501475549540797 Iter 3: T = 898.673739209665 K, F = -5851.648017310765, relative_change = 0.0342502619139608 Iter 5: T = 840.4988985665393 K, F = -4207.289577645171, relative_change = 0.03242723632045936 Iter 10: T = 726.2213898697989 K, F = -1834.8813928252, relative_change = 0.026047636595702233 Iter 15: T = 652.448480746373 K, F = -792.3296637063419, relative_change = 0.017851783549917892 Iter 20: T = 610.702723097584 K, F = -338.28622001116145, relative_change = 0.010240292716326236 Iter 25: T = 589.8377059177776 K, F = -143.08187380564704, relative_change = 0.005081810647375907 Iter 30: T = 580.2820463818562 K, F = -60.164500966849154, relative_change = 0.0023066396571679473 Iter 35: T = 576.1145340489296 K, F = -25.222648370610088, relative_change = 0.0010005089391914575 Iter 40: T = 574.339328737918 K, F = -10.559440832509711, relative_change = 0.00042504153700826405 Iter 45: T = 573.5910775290833 K, F = -4.418038779660909, relative_change = 0.00017894177160272692 Iter 50: T = 573.2771142142738 K, F = -1.848020344540741, relative_change = 7.504475743741149e-5 Iter 55: T = 573.1456287815189 K, F = -0.7729244442045566, relative_change = 3.1421348425168935e-5 Iter 60: T = 573.0906080526348 K, F = -0.3232567841721183, relative_change = 1.3147219138012476e-5 Iter 65: T = 573.0675921327107 K, F = -0.1351916937522324, relative_change = 5.499450523234545e-6 Iter 70: T = 573.0579656213052 K, F = -0.05653910379022509, relative_change = 2.300132965775947e-6 Iter 75: T = 573.0539395280424 K, F = -0.02364538490664908, relative_change = 9.619775493463552e-7 Iter 80: T = 573.0522557378081 K, F = -0.009888792230316079, relative_change = 4.02316529287328e-7 Iter 85: T = 573.051551551385 K, F = -0.004135612734495253, relative_change = 1.6825463181544633e-7 Iter 90: T = 573.0512570512971 K, F = -0.0017295629372244825, relative_change = 7.036628086191618e-8 Iter 95: T = 573.0511338876829 K, F = -0.0007233239284191728, relative_change = 2.9428051264501066e-8 Iter 100: T = 573.0510823791606 K, F = -0.00030250271370091397, relative_change = 1.2307168097389646e-8 Iter 105: T = 573.0510608376765 K, F = -0.00012651024910120823, relative_change = 5.147005662626987e-9 Iter 110: T = 573.0510518287698 K, F = -5.290809718311307e-5, relative_change = 2.1525394038576063e-9 Iter 115: T = 573.0510480611373 K, F = -2.2126798507771106e-5, relative_change = 9.002177302881035e-10 Iter 120: T = 573.0510464854684 K, F = -9.253692006327974e-6, relative_change = 3.764818358537238e-10 Iter 125: T = 573.0510458265047 K, F = -3.870004092965118e-6, relative_change = 1.5744918381345524e-10 Iter 130: T = 573.0510455509183 K, F = -1.6184820274545153e-6, relative_change = 6.584713315578501e-11 Iter 135: T = 573.0510454356648 K, F = -6.768693475156518e-7, relative_change = 2.7538091459506022e-11 Iter 140: T = 573.0510453874643 K, F = -2.8307498650681495e-7, relative_change = 1.151676449828374e-11 Iter 145: T = 573.0510453673064 K, F = -1.1838564217825365e-7, relative_change = 4.8164607477268025e-12 Iter 150: T = 573.0510453588761 K, F = -4.951012183562753e-8, relative_change = 2.014294588985023e-12 Iter 155: T = 573.0510453553504 K, F = -2.070579957491603e-8, relative_change = 8.42405118372595e-13 Iter 160: T = 573.0510453538759 K, F = -8.659359396201438e-9, relative_change = 3.523017138693065e-13 Converged in 163 iterations to T = 573.0510453534442 K Iter 1: T = 963.5502210962695 K, F = -8305.116795905868, relative_change = 0.03644977890373049 Iter 2: T = 928.9773681556893 K, F = -7047.191680157138, relative_change = 0.03588069639094191 Iter 3: T = 896.2478497800967 K, F = -5978.879971629455, relative_change = 0.035231771512982096 Iter 5: T = 836.1998049489554 K, F = -4301.193488632079, relative_change = 0.03366511742993216 Iter 10: T = 716.3986002336231 K, F = -1879.6975233837013, relative_change = 0.027957167918305843 Iter 15: T = 636.6319825968786 K, F = -814.0031016026714, relative_change = 0.02005080971410393 Iter 20: T = 589.870613530874 K, F = -348.5499944610512, relative_change = 0.012034344345760414 Iter 25: T = 565.795655563077 K, F = -147.73709557628166, relative_change = 0.0061701966078931145 Iter 30: T = 554.561016832437 K, F = -62.19691944280988, relative_change = 0.0028523349138402285 Iter 35: T = 549.6133126386046 K, F = -26.089911336820983, relative_change = 0.0012481337594174124 Iter 40: T = 547.4962606727158 K, F = -10.925364415897706, relative_change = 0.0005323186327114338 Iter 45: T = 546.6021615676692 K, F = -4.571652142569497, relative_change = 0.0002244824488150846 Iter 50: T = 546.2266859666919 K, F = -1.9123658878327119, relative_change = 9.421064021981823e-5 Iter 55: T = 546.069383996865 K, F = -0.7998525528901097, relative_change = 3.945792436217006e-5 Iter 60: T = 546.0035504339443 K, F = -0.33452160154227917, relative_change = 1.651192550373243e-5 Iter 65: T = 545.9760096453857 K, F = -0.13990332820123047, relative_change = 6.907261343354374e-6 Iter 70: T = 545.9644902876252 K, F = -0.058509662391743406, relative_change = 2.889010083444449e-6 Iter 75: T = 545.9596724972881 K, F = -0.024469512981102753, relative_change = 1.2082729040849954e-6 Iter 80: T = 545.9576575948174 K, F = -0.01023345539546161, relative_change = 5.053236708706167e-7 Iter 85: T = 545.9568149306677 K, F = -0.004279755503949267, relative_change = 2.113340577366015e-7 Iter 90: T = 545.9564625170799 K, F = -0.0017898452551572686, relative_change = 8.838271779053455e-8 Iter 95: T = 545.9563151332679 K, F = -0.000748534729228173, relative_change = 3.696275896817013e-8 Iter 100: T = 545.9562534955555 K, F = -0.00031304617529004375, relative_change = 1.54582761369771e-8 Iter 105: T = 545.9562277179208 K, F = -0.00013091965144881867, relative_change = 6.464837262103124e-9 Iter 110: T = 545.9562169374046 K, F = -5.475216194750221e-5, relative_change = 2.7036724135557444e-9 Iter 115: T = 545.9562124288639 K, F = -2.2898007632221606e-5, relative_change = 1.1307081180457376e-9 Iter 120: T = 545.9562105433383 K, F = -9.576220489831977e-6, relative_change = 4.728756580047042e-10 Iter 125: T = 545.956209754789 K, F = -4.004890115094639e-6, relative_change = 1.977622657545579e-10 Iter 130: T = 545.9562094250083 K, F = -1.6748931986332316e-6, relative_change = 8.270655755640357e-11 Iter 135: T = 545.95620928709 K, F = -7.004609269833928e-7, relative_change = 3.458889921489509e-11 Iter 140: T = 545.956209229411 K, F = -2.9294133976898173e-7, relative_change = 1.4465501346204676e-11 Iter 145: T = 545.9562092052888 K, F = -1.2251143466368575e-7, relative_change = 6.049638896385774e-12 Iter 150: T = 545.9562091952007 K, F = -5.1235868187005096e-8, relative_change = 2.530037314087092e-12 Iter 155: T = 545.9562091909818 K, F = -2.1427758567504895e-8, relative_change = 1.0581069600920953e-12 Iter 160: T = 545.9562091892174 K, F = -8.961699021758918e-9, relative_change = 4.4253047183850596e-13 Converged in 164 iterations to T = 545.9562091885804 K Iter 1: T = 969.2824294685619 K, F = -6999.027665541214, relative_change = 0.030717570531438164 Iter 2: T = 940.7047520193518 K, F = -5929.726041844331, relative_change = 0.02948333383581368 Iter 3: T = 914.2280847787795 K, F = -5022.104153130418, relative_change = 0.028145565528117596 Iter 5: T = 867.3930360131903 K, F = -3598.3289414243095, relative_change = 0.025190812339160096 Iter 10: T = 782.9606744096781 K, F = -1551.8706302413368, relative_change = 0.016925575501379762 Iter 15: T = 735.8902345410236 K, F = -661.7824180567254, relative_change = 0.009530425359479601 Iter 20: T = 712.6401104723747 K, F = -279.6764718435415, relative_change = 0.0046700101644276985 Iter 25: T = 702.0680095161522 K, F = -117.54803888444488, relative_change = 0.002105267039878535 Iter 30: T = 697.4738019698871 K, F = -49.26888191066562, relative_change = 0.0009102203741311746 Iter 35: T = 695.5200575338102 K, F = -20.624422928626114, relative_change = 0.00038613455394928884 Iter 40: T = 694.6971401829671 K, F = -8.628847426089832, relative_change = 0.00016246300989186045 Iter 45: T = 694.3519521106678 K, F = -3.609296592553871, relative_change = 6.811635816572011e-5 Iter 50: T = 694.2074084770196 K, F = -1.509557777290292, relative_change = 2.851733761405871e-5 Iter 55: T = 694.1469267239836 K, F = -0.6313337931138551, relative_change = 1.1931592477048894e-5 Iter 60: T = 694.1216269515801 K, F = -0.26403460430695297, relative_change = 4.990862278532085e-6 Iter 65: T = 694.1110453081137 K, F = -0.11042299716228476, relative_change = 2.0874005276545917e-6 Iter 70: T = 694.1066197676253 K, F = -0.046180316255147735, relative_change = 8.730042224332274e-7 Iter 75: T = 694.1047689238627 K, F = -0.019313177275420035, relative_change = 3.6510575784845933e-7 Iter 80: T = 694.1039948736717 K, F = -0.008077004445762315, relative_change = 1.5269245679923585e-7 Iter 85: T = 694.1036711557236 K, F = -0.0033779002543314895, relative_change = 6.385796088236996e-8 Iter 90: T = 694.1035357728521 K, F = -0.0014126783211628746, relative_change = 2.6706188446438338e-8 Iter 95: T = 694.1034791540903 K, F = -0.0005907989622268017, relative_change = 1.1168851613629168e-8 Iter 100: T = 694.1034554754431 K, F = -0.0002470791833344421, relative_change = 4.6709479199003145e-9 Iter 105: T = 694.1034455727491 K, F = -0.000103331464421208, relative_change = 1.9534463206077307e-9 Iter 110: T = 694.1034414313242 K, F = -4.3214452407625004e-5, relative_change = 8.169546025857624e-10 Iter 115: T = 694.1034396993308 K, F = -1.8072800812340972e-5, relative_change = 3.416601890820658e-10 Iter 120: T = 694.1034389749905 K, F = -7.5582605343349485e-6, relative_change = 1.428863607216597e-10 Iter 125: T = 694.1034386720627 K, F = -3.1609551014444293e-6, relative_change = 5.975678791921857e-11 Iter 130: T = 694.1034385453746 K, F = -1.3219486856286267e-6, relative_change = 2.4990993158918563e-11 Iter 135: T = 694.1034384923922 K, F = -5.528550058864212e-7, relative_change = 1.0451537056775047e-11 Iter 140: T = 694.1034384702343 K, F = -2.3120937808762676e-7, relative_change = 4.3709351594809854e-12 Iter 145: T = 694.1034384609676 K, F = -9.669490230734823e-8, relative_change = 1.8279844518436957e-12 Iter 150: T = 694.1034384570922 K, F = -4.043905099671008e-8, relative_change = 7.644865934742021e-13 Iter 155: T = 694.1034384554714 K, F = -1.6911550715370538e-8, relative_change = 3.1970715133634994e-13 Converged in 158 iterations to T = 694.1034384549969 K Iter 1: T = 966.4623369926794 K, F = -7641.5884187715155, relative_change = 0.033537663007320605 Iter 2: T = 934.9630573691358 K, F = -6479.0697136452345, relative_change = 0.03259235090480536 Iter 3: T = 905.4724593142198 K, F = -5491.999670373065, relative_change = 0.03154199283327686 Iter 5: T = 852.3929066705066 K, F = -3942.595305230766, relative_change = 0.029121051071782523 Iter 10: T = 752.2312324287197 K, F = -1710.3967185432998, relative_change = 0.02149043376768049 Iter 15: T = 692.1400959278119 K, F = -733.8109964169334, relative_change = 0.013299006835611213 Iter 20: T = 660.5542451231278 K, F = -311.51117230394595, relative_change = 0.006981080525153767 Iter 25: T = 645.608847397713 K, F = -131.26462264168603, relative_change = 0.003272056661916586 Iter 30: T = 638.9777362699908 K, F = -55.08678797740062, relative_change = 0.001441580834192742 Iter 35: T = 636.1304043770198 K, F = -23.072750938046905, relative_change = 0.0006167113051899629 Iter 40: T = 634.9260220541915 K, F = -9.65550391273788, relative_change = 0.00026041623916093424 Iter 45: T = 634.4199084292933 K, F = -4.039140977145485, relative_change = 0.00010935271892800985 Iter 50: T = 634.2078175882604 K, F = -1.6894089793033311, relative_change = 4.581065285866195e-5 Iter 55: T = 634.11904352266 K, F = -0.7065646374754228, relative_change = 1.917224559962148e-5 Iter 60: T = 634.081903985698 K, F = -0.29549965436065484, relative_change = 8.020457840694892e-6 Iter 65: T = 634.0663694841967 K, F = -0.12358251396223974, relative_change = 3.3546704591345384e-6 Iter 70: T = 634.0598723671387 K, F = -0.051683863296303756, relative_change = 1.4030365820314957e-6 Iter 75: T = 634.057155124699 K, F = -0.021614840359644616, relative_change = 5.867794813141715e-7 Iter 80: T = 634.0560187291301 K, F = -0.009039589881513266, relative_change = 2.45400430201777e-7 Iter 85: T = 634.0555434727752 K, F = -0.003780465406764466, relative_change = 1.0262978299266035e-7 Iter 90: T = 634.0553447145146 K, F = -0.001581035949786036, relative_change = 4.292106953416319e-8 Iter 95: T = 634.0552615913705 K, F = -0.0006612081458496899, relative_change = 1.79501158856059e-8 Iter 100: T = 634.0552268282673 K, F = -0.00027652514763887304, relative_change = 7.506954916118267e-9 Iter 105: T = 634.0552122899204 K, F = -0.00011564612010561692, relative_change = 3.139498566556602e-9 Iter 110: T = 634.0552062098099 K, F = -4.8364589013694115e-5, relative_change = 1.3129758670166337e-9 Iter 115: T = 634.0552036670349 K, F = -2.02266487159819e-5, relative_change = 5.49102198185707e-10 Iter 120: T = 634.0552026036161 K, F = -8.459026692497762e-6, relative_change = 2.2964111621621888e-10 Iter 125: T = 634.0552021588816 K, F = -3.537666836306297e-6, relative_change = 9.603868072953502e-11 Iter 130: T = 634.0552019728882 K, F = -1.4794938454354423e-6, relative_change = 4.016450497918614e-11 Iter 135: T = 634.0552018951037 K, F = -6.187423408077208e-7, relative_change = 1.6797285044065688e-11 Iter 140: T = 634.0552018625732 K, F = -2.5876564252458323e-7, relative_change = 7.024830808384377e-12 Iter 145: T = 634.0552018489685 K, F = -1.0821844276254211e-7, relative_change = 2.9378562138871467e-12 Iter 150: T = 634.055201843279 K, F = -4.5257843916957086e-8, relative_change = 1.2286356612615152e-12 Iter 155: T = 634.0552018408995 K, F = -1.8927832745596618e-8, relative_change = 5.138426466961163e-13 Converged in 160 iterations to T = 634.0552018399044 K Iter 1: T = 966.5049374757486 K, F = -7631.881858180678, relative_change = 0.033495062524251405 Iter 2: T = 935.050190730396 K, F = -6470.7652409761795, relative_change = 0.03254483813347497 Iter 3: T = 905.6060027190936 K, F = -5484.889751762943, relative_change = 0.03148941982280406 Iter 5: T = 852.6243191826444 K, F = -3937.37331679492, relative_change = 0.029058419516919877 Iter 10: T = 752.7217641934664 K, F = -1707.9655821200108, relative_change = 0.021410963756097457 Iter 15: T = 692.8624757816287 K, F = -732.6882078135594, relative_change = 0.013227224358488112 Iter 20: T = 661.4353702351854 K, F = -311.00730681180494, relative_change = 0.006934043889996909 Iter 25: T = 646.5769940411309 K, F = -131.04536498366733, relative_change = 0.0032473951833066057 Iter 30: T = 639.9873695721042 K, F = -54.99331253620801, relative_change = 0.0014301419103248416 Iter 35: T = 637.1584377730203 K, F = -23.033321288513438, relative_change = 0.0006117066240668292 Iter 40: T = 635.9619481573377 K, F = -9.638952917140491, relative_change = 0.0002582826316195962 Iter 45: T = 635.4591710170143 K, F = -4.032208317239129, relative_change = 0.00010845316753910752 Iter 50: T = 635.2484818543758 K, F = -1.6865077510908333, relative_change = 4.543317011569656e-5 Iter 55: T = 635.1602950991289 K, F = -0.705350974772484, relative_change = 1.9014153164723646e-5 Iter 60: T = 635.1234013772671 K, F = -0.2949920275697817, relative_change = 7.954302344368909e-6 Iter 65: T = 635.1079697126976 K, F = -0.12337020812964605, relative_change = 3.326996553271574e-6 Iter 70: T = 635.1015156092428 K, F = -0.05159507266907748, relative_change = 1.3914618191851563e-6 Iter 75: T = 635.09881635665 K, F = -0.021577706744335068, relative_change = 5.819385664656671e-7 Iter 80: T = 635.0976874848326 K, F = -0.009024060104730391, relative_change = 2.433758649198479e-7 Iter 85: T = 635.0972153750324 K, F = -0.0037739706583736488, relative_change = 1.0178307914717188e-7 Iter 90: T = 635.0970179327044 K, F = -0.001578319766657954, relative_change = 4.256696674351765e-8 Iter 95: T = 635.0969353598998 K, F = -0.0006600722045791985, relative_change = 1.780202565196506e-8 Iter 100: T = 635.0969008269554 K, F = -0.0002760500838077662, relative_change = 7.445021788924147e-9 Iter 105: T = 635.0968863848638 K, F = -0.0001154474432419339, relative_change = 3.11359740091633e-9 Iter 110: T = 635.0968803450081 K, F = -4.828149923163938e-5, relative_change = 1.3021436690591057e-9 Iter 115: T = 635.0968778190683 K, F = -2.0191899592458817e-5, relative_change = 5.445720438863107e-10 Iter 120: T = 635.0968767626902 K, F = -8.44449432158001e-6, relative_change = 2.2774655488203156e-10 Iter 125: T = 635.0968763209002 K, F = -3.531588101957084e-6, relative_change = 9.524632210260946e-11 Iter 130: T = 635.0968761361382 K, F = -1.476952148027344e-6, relative_change = 3.983314479342588e-11 Iter 135: T = 635.0968760588686 K, F = -6.176787722411703e-7, relative_change = 1.6658690004020696e-11 Iter 140: T = 635.0968760265536 K, F = -2.583196787031561e-7, relative_change = 6.966837203879784e-12 Iter 145: T = 635.096876013039 K, F = -1.0803206068610294e-7, relative_change = 2.9136060537644064e-12 Iter 150: T = 635.0968760073871 K, F = -4.518073370984865e-8, relative_change = 1.2185165997953037e-12 Iter 155: T = 635.0968760050233 K, F = -1.889454526171619e-8, relative_change = 5.095826286321275e-13 Converged in 160 iterations to T = 635.0968760040348 K Iter 1: T = 976.4451695653784 K, F = -5366.990520956745, relative_change = 0.023554830434621615 Iter 2: T = 955.0518339716326 K, F = -4538.1346849586, relative_change = 0.021909407983725336 Iter 3: T = 935.7282860630278 K, F = -3835.545852414937, relative_change = 0.020232983405986362 Iter 5: T = 902.8693148903188 K, F = -2736.0389027702913, relative_change = 0.016880338417020153 Iter 10: T = 848.7587027127022 K, F = -1166.69439207046, relative_change = 0.009496485667663876 Iter 15: T = 822.046110932675 K, F = -493.03855171068557, relative_change = 0.00465059977325381 Iter 20: T = 809.9036513466198 K, F = -207.2197727950478, relative_change = 0.0020958473978528805 Iter 25: T = 804.627913313905 K, F = -86.85287574312403, relative_change = 0.0009060120574297255 Iter 30: T = 802.3845101703902 K, F = -36.3572814330552, relative_change = 0.0003843239782039848 Iter 35: T = 801.439619711111 K, F = -15.211133338968427, relative_change = 0.00016169667231777097 Iter 40: T = 801.0432732896066 K, F = -6.362547120912318, relative_change = 6.779424794680108e-5 Iter 45: T = 800.8773086496293 K, F = -2.6610806445957325, relative_change = 2.8382342583759348e-5 Iter 50: T = 800.8078638232184 K, F = -1.1129285204567763, relative_change = 1.1875086034456015e-5 Iter 55: T = 800.7788147894904 K, F = -0.4654457398474787, relative_change = 4.967221871782303e-6 Iter 60: T = 800.766665020714 K, F = -0.19465597130521783, relative_change = 2.077512298379602e-6 Iter 65: T = 800.7615836471 K, F = -0.08140762753463304, relative_change = 8.688685794103959e-7 Iter 70: T = 800.7594585218253 K, F = -0.034045672762218926, relative_change = 3.633761357266242e-7 Iter 75: T = 800.7585697630841 K, F = -0.014238312311643742, relative_change = 1.5196909999426463e-7 Iter 80: T = 800.75819807252 K, F = -0.005954633188085867, relative_change = 6.355544298373488e-8 Iter 85: T = 800.7580426269046 K, F = -0.002490298877498631, relative_change = 2.65796715948987e-8 Iter 90: T = 800.7579776176599 K, F = -0.001041472760755613, relative_change = 1.1115940703449971e-8 Iter 95: T = 800.7579504300118 K, F = -0.00043555635203040843, relative_change = 4.648819966587701e-9 Iter 100: T = 800.7579390598116 K, F = -0.00018215486930373004, relative_change = 1.944192173371779e-9 Iter 105: T = 800.757934304658 K, F = -7.617933996861836e-5, relative_change = 8.130843896367095e-10 Iter 110: T = 800.7579323159958 K, F = -3.185910965275429e-5, relative_change = 3.400416050250932e-10 Iter 115: T = 800.7579314843136 K, F = -1.3323859637259794e-5, relative_change = 1.4220945556762994e-10 Iter 120: T = 800.7579311364942 K, F = -5.57219679664378e-6, relative_change = 5.947368825390791e-11 Iter 125: T = 800.7579309910319 K, F = -2.330358129909449e-6, relative_change = 2.4872594798077567e-11 Iter 130: T = 800.7579309301979 K, F = -9.745829854246324e-7, relative_change = 1.0402009627283192e-11 Iter 135: T = 800.7579309047563 K, F = -4.075817878756993e-7, relative_change = 4.350239790183099e-12 Iter 140: T = 800.7579308941164 K, F = -1.7045607925147976e-7, relative_change = 1.819327655315763e-12 Iter 145: T = 800.7579308896667 K, F = -7.128719792248717e-8, relative_change = 7.608691413254768e-13 Iter 150: T = 800.7579308878059 K, F = -2.9814120727778004e-8, relative_change = 3.182148421997913e-13 Converged in 153 iterations to T = 800.757930887261 K Iter 1: T = 965.1915025063862 K, F = -7931.149265349096, relative_change = 0.03480849749361377 Iter 2: T = 932.3580659269879 K, F = -6726.889408026838, relative_change = 0.03401753589224227 Iter 3: T = 901.4702404374797 K, F = -5704.2643405608815, relative_change = 0.033128715906799534 Iter 5: T = 845.4183538034569 K, F = -4098.6870582047595, relative_change = 0.03103887668916811 Iter 10: T = 737.1765038575048 K, F = -1783.495334983689, relative_change = 0.024043458446003068 Iter 15: T = 669.5198818320005 K, F = -767.9077526170614, relative_change = 0.01573827858177403 Iter 20: T = 632.5189792800005 K, F = -326.97350422710036, relative_change = 0.008656735567117138 Iter 25: T = 614.5081888578794 K, F = -138.04303543000955, relative_change = 0.004176965790215048 Iter 30: T = 606.3887137150464 K, F = -57.988247620353995, relative_change = 0.001867716861871963 Iter 35: T = 602.8753617188622 K, F = -24.298960839829345, relative_change = 0.0008044521430523484 Iter 40: T = 601.384148457845 K, F = -10.170647832655026, relative_change = 0.00034069708920342004 Iter 45: T = 600.7565741190487 K, F = -4.2549946170704835, relative_change = 0.00014324361070669253 Iter 50: T = 600.4934196844331 K, F = -1.7797545395582677, relative_change = 6.004016020491109e-5 Iter 55: T = 600.383243161481 K, F = -0.7443610347958973, relative_change = 2.5133020804561393e-5 Iter 60: T = 600.3371446091095 K, F = -0.31130880158675694, relative_change = 1.0515046817434305e-5 Iter 65: T = 600.3178618954047 K, F = -0.1301944805541844, relative_change = 4.398238700887896e-6 Iter 70: T = 600.3097969783928 K, F = -0.05444913533933793, relative_change = 1.8395220051249156e-6 Iter 75: T = 600.3064240190566 K, F = -0.02277132215909422, relative_change = 7.693321202206191e-7 Iter 80: T = 600.305013387114 K, F = -0.00952324648074132, relative_change = 3.2174773697192925e-7 Iter 85: T = 600.3044234404792 K, F = -0.003982736740295367, relative_change = 1.3455942060538268e-7 Iter 90: T = 600.3041767171374 K, F = -0.0016656283006732386, relative_change = 5.627447462697204e-8 Iter 95: T = 600.304073534382 K, F = -0.0006965856882238386, relative_change = 2.353467799519293e-8 Iter 100: T = 600.3040303821026 K, F = -0.00029132046099245024, relative_change = 9.842487012279684e-9 Iter 105: T = 600.3040123353009 K, F = -0.00012183369747009731, relative_change = 4.116246255249973e-9 Iter 110: T = 600.3040047879122 K, F = -5.095230759383229e-5, relative_change = 1.7214634558306663e-9 Iter 115: T = 600.304001631504 K, F = -2.1308863908164888e-5, relative_change = 7.199366064804251e-10 Iter 120: T = 600.3040003114564 K, F = -8.9116217660834e-6, relative_change = 3.010861032915429e-10 Iter 125: T = 600.3039997593967 K, F = -3.726946828319644e-6, relative_change = 1.2591781070616084e-10 Iter 130: T = 600.3039995285188 K, F = -1.5586542614354215e-6, relative_change = 5.266035219923806e-11 Iter 135: T = 600.3039994319628 K, F = -6.518474467975821e-7, relative_change = 2.2023175379002023e-11 Iter 140: T = 600.303999391582 K, F = -2.726107485861995e-7, relative_change = 9.210367176757506e-12 Iter 145: T = 600.3039993746944 K, F = -1.1401001609456785e-7, relative_change = 3.851917489114006e-12 Iter 150: T = 600.3039993676317 K, F = -4.7680821069207013e-8, relative_change = 1.6109338010244566e-12 Iter 155: T = 600.303999364678 K, F = -1.994098003388345e-8, relative_change = 6.737215937675008e-13 Iter 160: T = 600.3039993634427 K, F = -8.340179713517415e-9, relative_change = 2.8177948924304206e-13 Converged in 162 iterations to T = 600.3039993631812 K Iter 1: T = 964.5829855322229 K, F = -8069.800436761282, relative_change = 0.03541701446777707 Iter 2: T = 931.1068064722681 K, F = -6845.61183423239, relative_change = 0.034705338537029874 Iter 3: T = 899.5411047626627 K, F = -5806.017290232943, relative_change = 0.033901268350942426 Iter 5: T = 842.0288518736535 K, F = -4173.645888514562, relative_change = 0.03199225884693629 Iter 10: T = 729.6599697422826 K, F = -1818.9134304856036, relative_change = 0.025404689579452813 Iter 15: T = 657.8676481079958 K, F = -784.695280768561, relative_change = 0.01715319574993728 Iter 20: T = 617.6973147619029 K, F = -334.7242862514555, relative_change = 0.00970240388520018 Iter 25: T = 597.7986200420763 K, F = -141.4863570277813, relative_change = 0.004768809462883708 Iter 30: T = 588.7349188439005 K, F = -59.47314812385051, relative_change = 0.0021533260414290257 Iter 35: T = 584.7928104885668 K, F = -24.928743851605805, relative_change = 0.0009317146617269742 Iter 40: T = 583.115723443076 K, F = -10.435644286348552, relative_change = 0.000395386629420309 Iter 45: T = 582.40921432688 K, F = -4.36610758859833, relative_change = 0.00016637980868376508 Iter 50: T = 582.1128345015309 K, F = -1.8262741876856734, relative_change = 6.976282522017641e-5 Iter 55: T = 581.988725007701 K, F = -0.7638250391356651, relative_change = 2.9207389932646414e-5 Iter 60: T = 581.9367929018529 K, F = -0.3194504453223969, relative_change = 1.2220440087997677e-5 Iter 65: T = 581.9150693671797 K, F = -0.13359968704016364, relative_change = 5.111707229117219e-6 Iter 70: T = 581.9059834668184 K, F = -0.05587328126656135, relative_change = 2.1379472782504724e-6 Iter 75: T = 581.9021834845613 K, F = -0.023366925373328018, relative_change = 8.941448677007582e-7 Iter 80: T = 581.9005942603253 K, F = -0.009772336323822683, relative_change = 3.739472713806188e-7 Iter 85: T = 581.899929623175 K, F = -0.004086909343186507, relative_change = 1.5639012588391466e-7 Iter 90: T = 581.8996516631776 K, F = -0.0017091945724318491, relative_change = 6.540437768185571e-8 Iter 95: T = 581.8995354168466 K, F = -0.0007148056313643347, relative_change = 2.7352919732916275e-8 Iter 100: T = 581.899486801218 K, F = -0.0002989402602543434, relative_change = 1.1439322575682972e-8 Iter 105: T = 581.8994664695773 K, F = -0.00012502038853351438, relative_change = 4.784062172341886e-9 Iter 110: T = 581.8994579666416 K, F = -5.228502031140447e-5, relative_change = 2.0007521028164536e-9 Iter 115: T = 581.8994544106122 K, F = -2.1866219745370064e-5, relative_change = 8.367384414976598e-10 Iter 120: T = 581.8994529234382 K, F = -9.14471414986684e-6, relative_change = 3.499340099892847e-10 Iter 125: T = 581.8994523014843 K, F = -3.824428599530361e-6, relative_change = 1.4634658018052385e-10 Iter 130: T = 581.8994520413758 K, F = -1.5994215121217792e-6, relative_change = 6.120387999740878e-11 Iter 135: T = 581.8994519325952 K, F = -6.688976524338308e-7, relative_change = 2.5596211740478094e-11 Iter 140: T = 581.8994518871019 K, F = -2.797409183741273e-7, relative_change = 1.0704638827467599e-11 Iter 145: T = 581.899451868076 K, F = -1.1699001711829027e-7, relative_change = 4.476770460124858e-12 Iter 150: T = 581.8994518601193 K, F = -4.892745025797396e-8, relative_change = 1.872270552767883e-12 Iter 155: T = 581.8994518567915 K, F = -2.0461717320507944e-8, relative_change = 7.829934034432345e-13 Iter 160: T = 581.8994518554 K, F = -8.558035502481687e-9, relative_change = 3.274840151484468e-13 Converged in 163 iterations to T = 581.8994518549924 K Iter 1: T = 964.2685612553829 K, F = -8141.44230733398, relative_change = 0.03573143874461708 Iter 2: T = 930.4592780684898 K, F = -6906.971171706225, relative_change = 0.035062102556653686 Iter 3: T = 898.5410405991563 K, F = -5858.622591426163, relative_change = 0.03430374463629568 Iter 5: T = 840.2644997881981 K, F = -4212.433534057442, relative_change = 0.03249413418214047 Iter 10: T = 725.6919888982262 K, F = -1837.3268353189496, relative_change = 0.026147777809941163 Iter 15: T = 651.6089570071493 K, F = -793.5027039769373, relative_change = 0.01796241656088769 Iter 20: T = 609.6129831738626 K, F = -338.83578725476644, relative_change = 0.010326839882874497 Iter 25: T = 588.5927158553395 K, F = -143.3288713852286, relative_change = 0.005132730837005767 Iter 30: T = 578.9574541615323 K, F = -60.27173976321847, relative_change = 0.00233173176517615 Iter 35: T = 574.7533370052084 K, F = -25.268281694672822, relative_change = 0.0010118003443803539 Iter 40: T = 572.96217095596 K, F = -10.578670632772532, relative_change = 0.00042991502915182956 Iter 45: T = 572.2071246757857 K, F = -4.426106979607585, relative_change = 0.00018100732269487653 Iter 50: T = 571.8902981081869 K, F = -1.8513991694033234, relative_change = 7.591345865017092e-5 Iter 55: T = 571.7576114382964 K, F = -0.774338318487601, relative_change = 3.178550548095478e-5 Iter 60: T = 571.702087672125 K, F = -0.3238482251047366, relative_change = 1.3299664042486694e-5 Iter 65: T = 571.6788612594005 K, F = -0.13543906623695962, relative_change = 5.563231079574861e-6 Iter 70: T = 571.6691466969847 K, F = -0.056642562260244805, relative_change = 2.3268113540333187e-6 Iter 75: T = 571.6650837761676 K, F = -0.023688653233897794, relative_change = 9.731355742472167e-7 Iter 80: T = 571.663384583586 K, F = -0.009906887694906802, relative_change = 4.0698308926609153e-7 Iter 85: T = 571.662673955608 K, F = -0.004143180498055177, relative_change = 1.7020626757403486e-7 Iter 90: T = 571.6623767615657 K, F = -0.001732727870040418, relative_change = 7.118248253319853e-8 Iter 95: T = 571.6622524713043 K, F = -0.0007246475417463927, relative_change = 2.9769397300181476e-8 Iter 100: T = 571.6622004916042 K, F = -0.00030305626555243714, relative_change = 1.2449923251370475e-8 Iter 105: T = 571.6621787530677 K, F = -0.0001267417507291868, relative_change = 5.206707579918089e-9 Iter 110: T = 571.6621696617512 K, F = -5.300491383025685e-5, relative_change = 2.177507458439835e-9 Iter 115: T = 571.6621658596541 K, F = -2.216728811360591e-5, relative_change = 9.106596585321628e-10 Iter 120: T = 571.6621642695717 K, F = -9.270625049628833e-6, relative_change = 3.8084876736414626e-10 Iter 125: T = 571.6621636045802 K, F = -3.877086665271534e-6, relative_change = 1.592755264834384e-10 Iter 130: T = 571.6621633264728 K, F = -1.6214438166572975e-6, relative_change = 6.661092218362194e-11 Iter 135: T = 571.6621632101649 K, F = -6.781065607364134e-7, relative_change = 2.7857458228980364e-11 Iter 140: T = 571.6621631615236 K, F = -2.8359241943665126e-7, relative_change = 1.1650328191977421e-11 Iter 145: T = 571.6621631411812 K, F = -1.1860166532207117e-7, relative_change = 4.872303456122315e-12 Iter 150: T = 571.6621631326738 K, F = -4.9600703544427915e-8, relative_change = 2.0376583976832544e-12 Iter 155: T = 571.6621631291158 K, F = -2.0743409767653986e-8, relative_change = 8.52164991430767e-13 Iter 160: T = 571.6621631276279 K, F = -8.675175022787585e-9, relative_change = 3.56386945630004e-13 Converged in 163 iterations to T = 571.6621631271922 K Iter 1: T = 980.215864660884 K, F = -4507.834056588768, relative_change = 0.019784135339116 Iter 2: T = 962.4722105210349 K, F = -3807.7008031177083, relative_change = 0.018101782249757496 Iter 3: T = 946.6476123567036 K, F = -3214.809913561967, relative_change = 0.01644161565533888 Iter 5: T = 920.230724920008 K, F = -2288.465140353719, relative_change = 0.013276256666027041 Iter 10: T = 878.3163408813269 K, F = -971.4538617236053, relative_change = 0.006966260205246693 Iter 15: T = 858.4886348230709 K, F = -409.34479532795876, relative_change = 0.0032643062594366313 Iter 20: T = 849.6924606222174 K, F = -171.78511417671714, relative_change = 0.0014379897866726341 Iter 25: T = 845.9157099845205 K, F = -71.95083943361975, relative_change = 0.0006151408823497628 Iter 30: T = 844.318240733981 K, F = -30.109999033146956, relative_change = 0.00025974685875117167 Iter 35: T = 843.6469494867493 K, F = -12.595764032391543, relative_change = 0.00010907052329394546 Iter 40: T = 843.3656410991985 K, F = -5.268296139574375, relative_change = 4.5692237744224246e-5 Iter 45: T = 843.2478951547329 K, F = -2.203368961855092, relative_change = 1.91226531962049e-5 Iter 50: T = 843.1986349800546 K, F = -0.9214935190266803, relative_change = 7.999705480165518e-6 Iter 55: T = 843.1780307389669 K, F = -0.38538279698649625, relative_change = 3.345989434521538e-6 Iter 60: T = 843.169413266083 K, F = -0.16117224827185073, relative_change = 1.3994056995407485e-6 Iter 65: T = 843.1658092427425 K, F = -0.06740425699148478, relative_change = 5.852609373924884e-7 Iter 70: T = 843.1643019808276 K, F = -0.028189282379943892, relative_change = 2.4476534552764884e-7 Iter 75: T = 843.1636716230411 K, F = -0.011789097534564696, relative_change = 1.0236418097012063e-7 Iter 80: T = 843.1634079993878 K, F = -0.004930341905514668, relative_change = 4.2809991256638044e-8 Iter 85: T = 843.1632977487404 K, F = -0.0020619279555980086, relative_change = 1.790366153067174e-8 Iter 90: T = 843.1632516405876 K, F = -0.0008623229092861173, relative_change = 7.487527134922686e-9 Iter 95: T = 843.1632323576049 K, F = -0.0003606337410353433, relative_change = 3.1313736266583367e-9 Iter 100: T = 843.1632242932308 K, F = -0.000150821337128626, relative_change = 1.3095779046441843e-9 Iter 105: T = 843.1632209206133 K, F = -6.307528627269576e-5, relative_change = 5.476811462992082e-10 Iter 110: T = 843.1632195101442 K, F = -2.6378838173579666e-5, relative_change = 2.2904679943198483e-10 Iter 115: T = 843.1632189202693 K, F = -1.1031945488459982e-5, relative_change = 9.57901101416801e-11 Iter 120: T = 843.1632186735765 K, F = -4.613691106936102e-6, relative_change = 4.006056596010714e-11 Iter 125: T = 843.1632185704067 K, F = -1.929501584285731e-6, relative_change = 1.6753814622794405e-11 Iter 130: T = 843.1632185272597 K, F = -8.069392212206594e-7, relative_change = 7.006633338677249e-12 Iter 135: T = 843.1632185092152 K, F = -3.374709736103654e-7, relative_change = 2.930252133733635e-12 Iter 140: T = 843.1632185016688 K, F = -1.41135621634092e-7, relative_change = 1.2254771189128489e-12 Iter 145: T = 843.1632184985127 K, F = -5.9023626874932233e-8, relative_change = 5.125006952482638e-13 Converged in 150 iterations to T = 843.1632184971928 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 73%|████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013130498807393683 Iteration 10: d = 1.1745874002592105e-5 Iteration 20: d = 1.3114549471253766e-7 Iteration 30: d = 1.6914204229023379e-9 Iteration 40: d = 2.2526917871341752e-11 Iteration 50: d = 3.03597785308426e-13 Iteration 60: d = 4.101384927982206e-15 Converged after 62 iterations. d = 1.7240471864473474e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.680613110637 Iteration 2: convergence error = 4826.093956726897 Iteration 3: convergence error = 1099.021154425699 Iteration 4: convergence error = 318.61887693456106 Iteration 5: convergence error = 94.40024487329902 Iteration 6: convergence error = 28.15683239838063 Iteration 7: convergence error = 8.472203254506212 Iteration 8: convergence error = 2.5394270485023753 Iteration 9: convergence error = 0.7594110228728823 Iteration 10: convergence error = 0.22679923643295297 Iteration 11: convergence error = 0.06768268370888109 Iteration 12: convergence error = 0.020189549059978162 Iteration 13: convergence error = 0.006021007202434703 Iteration 14: convergence error = 0.0017953566809865151 Iteration 15: convergence error = 0.0005353001124603907 Iteration 16: convergence error = 0.00015959662846398714 Iteration 17: convergence error = 4.758153158945788e-5 Iteration 18: convergence error = 1.4185556665324839e-5 Iteration 19: convergence error = 4.2291237605240894e-6 Iteration 20: convergence error = 1.2608188626472838e-6 Iteration 21: convergence error = 3.758834736800054e-7 Iteration 22: convergence error = 1.11920599010773e-7 Iteration 23: convergence error = 3.245918378524948e-8 Iteration 24: convergence error = 9.353925634059124e-9 Iteration 25: convergence error = 2.685510480660014e-9 Iteration 26: convergence error = 7.698872650507838e-10 Iteration 27: convergence error = 2.2214408090803772e-10 Iteration 28: convergence error = 6.502887117676437e-11 Iteration 29: convergence error = 1.8417267710901797e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 81%|██████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014018789460232112 Iteration 10: d = 1.3248886376767624e-5 Iteration 20: d = 1.3249767637533453e-7 Iteration 30: d = 1.5238629057546186e-9 Iteration 40: d = 1.8268723085921843e-11 Iteration 50: d = 2.2356853443861706e-13 Iteration 60: d = 2.8001879066158706e-15 Converged after 61 iterations. d = 1.7911941503225943e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12279.797041083653 Iteration 2: convergence error = 8334.056673440009 Iteration 3: convergence error = 1951.4407444136596 Iteration 4: convergence error = 479.5662787241595 Iteration 5: convergence error = 122.13129361423012 Iteration 6: convergence error = 32.6010435038761 Iteration 7: convergence error = 8.882398214302157 Iteration 8: convergence error = 2.434324893351004 Iteration 9: convergence error = 0.6680191671457578 Iteration 10: convergence error = 0.18334759403273893 Iteration 11: convergence error = 0.05032070475090222 Iteration 12: convergence error = 0.013810163191919855 Iteration 13: convergence error = 0.0037899998624197906 Iteration 14: convergence error = 0.0010400969349575462 Iteration 15: convergence error = 0.0002854341355487122 Iteration 16: convergence error = 7.833160043446696e-5 Iteration 17: convergence error = 2.1496499130080338e-5 Iteration 18: convergence error = 5.899273901377455e-6 Iteration 19: convergence error = 1.6189335383387515e-6 Iteration 20: convergence error = 4.4428406908991747e-7 Iteration 21: convergence error = 1.2278405847609974e-7 Iteration 22: convergence error = 3.3035121305147186e-8 Iteration 23: convergence error = 8.837560017127544e-9 Iteration 24: convergence error = 2.3635493562323973e-9 Iteration 25: convergence error = 6.302798283286393e-10 Iteration 26: convergence error = 1.6893864085432142e-10 Iteration 27: convergence error = 4.4565240386873484e-11 Iteration 28: convergence error = 1.2732925824820995e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014018789460232112 Iteration 10: d = 1.3248886376767624e-5 Iteration 20: d = 1.3249767637533453e-7 Iteration 30: d = 1.5238629057546186e-9 Iteration 40: d = 1.8268723085921843e-11 Iteration 50: d = 2.2356853443861706e-13 Iteration 60: d = 2.8001879066158706e-15 Converged after 61 iterations. d = 1.7911941503225943e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10995.214990563576 Iteration 2: convergence error = 5736.364702054531 Iteration 3: convergence error = 2019.8187990455417 Iteration 4: convergence error = 897.8007329976499 Iteration 5: convergence error = 410.8088444744094 Iteration 6: convergence error = 193.66423108504387 Iteration 7: convergence error = 91.41997081398767 Iteration 8: convergence error = 43.18808063768938 Iteration 9: convergence error = 20.40611973284922 Iteration 10: convergence error = 9.64060105983799 Iteration 11: convergence error = 4.553634347412753 Iteration 12: convergence error = 2.1504365381802018 Iteration 13: convergence error = 1.0153756135114236 Iteration 14: convergence error = 0.47937638402981975 Iteration 15: convergence error = 0.226303577287581 Iteration 16: convergence error = 0.10673927421839835 Iteration 17: convergence error = 0.04990868537015558 Iteration 18: convergence error = 0.022796958616254415 Iteration 19: convergence error = 0.010374725105975813 Iteration 20: convergence error = 0.0047117668914324895 Iteration 21: convergence error = 0.002137256335117854 Iteration 22: convergence error = 0.0009687633505564008 Iteration 23: convergence error = 0.00043893010069950833 Iteration 24: convergence error = 0.00019882185551978182 Iteration 25: convergence error = 9.004666617329349e-5 Iteration 26: convergence error = 4.0778547827358125e-5 Iteration 27: convergence error = 1.846596251198207e-5 Iteration 28: convergence error = 8.361753771168878e-6 Iteration 29: convergence error = 3.7862846511416137e-6 Iteration 30: convergence error = 1.7144516277767252e-6 Iteration 31: convergence error = 7.7630284067709e-7 Iteration 32: convergence error = 3.515042408253066e-7 Iteration 33: convergence error = 1.5916248230496421e-7 Iteration 34: convergence error = 7.20729076419957e-8 Iteration 35: convergence error = 3.262948666815646e-8 Iteration 36: convergence error = 1.4778379409108311e-8 Iteration 37: convergence error = 6.6906977735925466e-9 Iteration 38: convergence error = 3.0308910936582834e-9 Iteration 39: convergence error = 1.374701241729781e-9 Iteration 40: convergence error = 6.184563972055912e-10 Iteration 41: convergence error = 2.828528522513807e-10 Iteration 42: convergence error = 1.3142198440618813e-10 Iteration 43: convergence error = 5.729816621169448e-11 Iteration 44: convergence error = 2.637534635141492e-11 Iteration 45: convergence error = 1.3642420526593924e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 50%|████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014018789460232112 Iteration 10: d = 1.3248886376767624e-5 Iteration 20: d = 1.3249767637533453e-7 Iteration 30: d = 1.5238629057546186e-9 Iteration 40: d = 1.8268723085921843e-11 Iteration 50: d = 2.2356853443861706e-13 Iteration 60: d = 2.8001879066158706e-15 Converged after 61 iterations. d = 1.7911941503225943e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.847107728687 Iteration 2: convergence error = 7353.571138950716 Iteration 3: convergence error = 1736.6743613454382 Iteration 4: convergence error = 505.97875619823526 Iteration 5: convergence error = 157.08760616438985 Iteration 6: convergence error = 48.79792834349519 Iteration 7: convergence error = 15.137855685460181 Iteration 8: convergence error = 4.688873954720748 Iteration 9: convergence error = 1.4507707031966675 Iteration 10: convergence error = 0.44857296550389947 Iteration 11: convergence error = 0.1386414723569942 Iteration 12: convergence error = 0.0428403619312121 Iteration 13: convergence error = 0.013235981736215763 Iteration 14: convergence error = 0.004089091997684591 Iteration 15: convergence error = 0.001263220774490037 Iteration 16: convergence error = 0.00039023051203912473 Iteration 17: convergence error = 0.00012054722265020246 Iteration 18: convergence error = 3.723830832313979e-5 Iteration 19: convergence error = 1.1503237601573346e-5 Iteration 20: convergence error = 3.5534512790036388e-6 Iteration 21: convergence error = 1.0976864359690808e-6 Iteration 22: convergence error = 3.389241101103835e-7 Iteration 23: convergence error = 1.0347230272600427e-7 Iteration 24: convergence error = 3.082368493778631e-8 Iteration 25: convergence error = 9.139512258116156e-9 Iteration 26: convergence error = 2.6989255275111645e-9 Iteration 27: convergence error = 8.099050319287926e-10 Iteration 28: convergence error = 2.3646862246096134e-10 Iteration 29: convergence error = 6.957634468562901e-11 Iteration 30: convergence error = 2.2737367544323206e-11 Iteration 31: convergence error = 6.366462912410498e-12 Converged after 31 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▌ | ETA: 0:00:01 Bin 1 progress: 94%|███████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014018789460232112 Iteration 10: d = 1.3248886376767624e-5 Iteration 20: d = 1.3249767637533453e-7 Iteration 30: d = 1.5238629057546186e-9 Iteration 40: d = 1.8268723085921843e-11 Iteration 50: d = 2.2356853443861706e-13 Iteration 60: d = 2.8001879066158706e-15 Converged after 61 iterations. d = 1.7911941503225943e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.757904354239 Iteration 2: convergence error = 5521.469730791406 Iteration 3: convergence error = 939.6961191708374 Iteration 4: convergence error = 171.19289020155657 Iteration 5: convergence error = 31.083031450385533 Iteration 6: convergence error = 5.658602423198317 Iteration 7: convergence error = 1.0316287259602177 Iteration 8: convergence error = 0.18887916499261337 Iteration 9: convergence error = 0.03454207084087102 Iteration 10: convergence error = 0.0063134459996945225 Iteration 11: convergence error = 0.001153613135102205 Iteration 12: convergence error = 0.00021076098755656858 Iteration 13: convergence error = 3.850235589197837e-5 Iteration 14: convergence error = 7.033418569335481e-6 Iteration 15: convergence error = 1.2848045116697904e-6 Iteration 16: convergence error = 2.346992005186621e-7 Iteration 17: convergence error = 4.286539478925988e-8 Iteration 18: convergence error = 7.832113624317572e-9 Iteration 19: convergence error = 1.4360921340994537e-9 Iteration 20: convergence error = 2.601154847070575e-10 Iteration 21: convergence error = 4.9112713895738125e-11 Iteration 22: convergence error = 9.549694368615746e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 91%|█████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014018789460232112 Iteration 10: d = 1.3248886376767624e-5 Iteration 20: d = 1.3249767637533453e-7 Iteration 30: d = 1.5238629057546186e-9 Iteration 40: d = 1.8268723085921843e-11 Iteration 50: d = 2.2356853443861706e-13 Iteration 60: d = 2.8001879066158706e-15 Converged after 61 iterations. d = 1.7911941503225943e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.4916261198564 Iteration 2: convergence error = 2714.7837757390853 Iteration 3: convergence error = 205.2982810687302 Iteration 4: convergence error = 19.361193513225054 Iteration 5: convergence error = 1.602612882986421 Iteration 6: convergence error = 0.13066095220159285 Iteration 7: convergence error = 0.01066403694534303 Iteration 8: convergence error = 0.0008722809822665248 Iteration 9: convergence error = 7.148621314978644e-5 Iteration 10: convergence error = 5.868843063571511e-6 Iteration 11: convergence error = 4.817128258955447e-7 Iteration 12: convergence error = 3.953458467549434e-8 Iteration 13: convergence error = 3.2455681797747345e-9 Iteration 14: convergence error = 2.652420402484137e-10 Iteration 15: convergence error = 2.2964741219766438e-11 Iteration 16: convergence error = 3.5302999629934447e-12 Converged after 16 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346345 Iteration 2: convergence error = 858.4060420534043 Iteration 3: convergence error = 199.12106737711986 Iteration 4: convergence error = 59.265629268140856 Iteration 5: convergence error = 17.98548291103714 Iteration 6: convergence error = 5.463033078096942 Iteration 7: convergence error = 1.660989611064906 Iteration 8: convergence error = 0.5052487627306164 Iteration 9: convergence error = 0.15371874094194027 Iteration 10: convergence error = 0.046771316975991795 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.00433023651169151 Iteration 13: convergence error = 0.0013175920927324114 Iteration 14: convergence error = 0.0004009136252989265 Iteration 15: convergence error = 0.00012198904050819692 Iteration 16: convergence error = 3.711853867116588e-5 Iteration 17: convergence error = 1.1294342129986035e-5 Iteration 18: convergence error = 3.4366162253718358e-6 Iteration 19: convergence error = 1.0456861900820513e-6 Iteration 20: convergence error = 3.181812644470483e-7 Iteration 21: convergence error = 9.681605206424138e-8 Iteration 22: convergence error = 2.9460807127179578e-8 Iteration 23: convergence error = 8.963411346485373e-9 Iteration 24: convergence error = 2.730530468397774e-9 Iteration 25: convergence error = 8.295728548546322e-10 Iteration 26: convergence error = 2.538627086323686e-10 Iteration 27: convergence error = 7.707967597525567e-11 Iteration 28: convergence error = 2.4556356947869062e-11 Iteration 29: convergence error = 8.640199666842818e-12 Converged after 29 iterations Energy conservation errors by band: [4.6852026882886333e-26, 1.7771458472818954e-26, 2.50416005753358e-26, 4.13994203059987e-26, 6.522933053091502e-26, 4.828087799349512e-20, -1.176836406102666e-14, 1.1084466677857563e-12, -1.4779288903810084e-12, -7.389644451905042e-13, -1.1368683772161603e-13, 7.993605777301127e-15, 2.220446049250313e-16, 1.5612511283791264e-16, 6.451002926288751e-18, 2.0328790734103208e-20, 1.3923104070492562e-20, 4.793511649744795e-22, 1.0481929324695398e-23, 1.318298825299594e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 89%|█████████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013130498807393683 Iteration 10: d = 1.1745874002592105e-5 Iteration 20: d = 1.3114549471253766e-7 Iteration 30: d = 1.6914204229023379e-9 Iteration 40: d = 2.2526917871341752e-11 Iteration 50: d = 3.03597785308426e-13 Iteration 60: d = 4.101384927982206e-15 Converged after 62 iterations. d = 1.7240471864473474e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.332227809972 Iteration 2: convergence error = 3612.501278621732 Iteration 3: convergence error = 594.438691906065 Iteration 4: convergence error = 104.43209682431439 Iteration 5: convergence error = 18.56441754933894 Iteration 6: convergence error = 3.271940191464637 Iteration 7: convergence error = 0.5746185864620657 Iteration 8: convergence error = 0.10076372907860787 Iteration 9: convergence error = 0.017658769602121538 Iteration 10: convergence error = 0.0030939036205381854 Iteration 11: convergence error = 0.0005420112975116353 Iteration 12: convergence error = 9.494926848674368e-5 Iteration 13: convergence error = 1.663287957853754e-5 Iteration 14: convergence error = 2.913669050030876e-6 Iteration 15: convergence error = 5.104043339088093e-7 Iteration 16: convergence error = 8.940583029470872e-8 Iteration 17: convergence error = 1.5677869669161737e-8 Iteration 18: convergence error = 2.725755621213466e-9 Iteration 19: convergence error = 4.847606760449708e-10 Iteration 20: convergence error = 8.344613888766617e-11 Iteration 21: convergence error = 1.3415046851150692e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.4924275130247 Iteration 2: convergence error = 871.3046026617826 Iteration 3: convergence error = 207.75299581225215 Iteration 4: convergence error = 62.495505504907555 Iteration 5: convergence error = 18.979315309184585 Iteration 6: convergence error = 5.766215594047026 Iteration 7: convergence error = 1.7533061530645 Iteration 8: convergence error = 0.5333443699004192 Iteration 9: convergence error = 0.16226812526360845 Iteration 10: convergence error = 0.04937275062957269 Iteration 11: convergence error = 0.015022831427586425 Iteration 12: convergence error = 0.004571091655407145 Iteration 13: convergence error = 0.0013908789693459767 Iteration 14: convergence error = 0.00042321318755966786 Iteration 15: convergence error = 0.00012877429912805383 Iteration 16: convergence error = 3.918314223483321e-5 Iteration 17: convergence error = 1.192255740534165e-5 Iteration 18: convergence error = 3.6277690469432855e-6 Iteration 19: convergence error = 1.1038503089366714e-6 Iteration 20: convergence error = 3.358788944751723e-7 Iteration 21: convergence error = 1.0220196600130294e-7 Iteration 22: convergence error = 3.1098920771910343e-8 Iteration 23: convergence error = 9.464429240324534e-9 Iteration 24: convergence error = 2.8813929020543583e-9 Iteration 25: convergence error = 8.774350135354325e-10 Iteration 26: convergence error = 2.6773250283440575e-10 Iteration 27: convergence error = 8.174083632184193e-11 Iteration 28: convergence error = 2.546585164964199e-11 Iteration 29: convergence error = 8.526512829121202e-12 Converged after 29 iterations Energy conservation errors by band: [3.473512337869159e-26, 2.928251680180396e-26, 6.54312789226516e-26, 3.0090310368750274e-26, 3.4028304007613565e-26, 3.3881317890172014e-20, -1.4654943925052066e-14, 3.552713678800501e-13, -3.268496584496461e-13, 2.0463630789890885e-12, 7.815970093361102e-14, 2.220446049250313e-14, 1.6653345369377348e-15, 1.8735013540549517e-16, 3.7947076036992655e-18, -1.3976043629695956e-19, 2.2658131339052534e-20, 1.5923226791645783e-22, -7.302453845194697e-25, 1.6176561218948528e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729989 Iteration 2: convergence error = 2115.1156110176375 Iteration 3: convergence error = 714.8959934551624 Iteration 4: convergence error = 296.0190747132401 Iteration 5: convergence error = 115.88799395378715 Iteration 6: convergence error = 44.115249236190266 Iteration 7: convergence error = 16.5995810251261 Iteration 8: convergence error = 6.21598340493324 Iteration 9: convergence error = 2.323124567003333 Iteration 10: convergence error = 0.8675636398231745 Iteration 11: convergence error = 0.32389343048794217 Iteration 12: convergence error = 0.12090784413680922 Iteration 13: convergence error = 0.04513241840777482 Iteration 14: convergence error = 0.016846741615609062 Iteration 15: convergence error = 0.0062884074734483875 Iteration 16: convergence error = 0.002347277756598487 Iteration 17: convergence error = 0.0008761691049130604 Iteration 18: convergence error = 0.0003270478227932472 Iteration 19: convergence error = 0.00012207719078105583 Iteration 20: convergence error = 4.556777048492222e-5 Iteration 21: convergence error = 1.7009089560815482e-5 Iteration 22: convergence error = 6.3489862895949045e-6 Iteration 23: convergence error = 2.369887170061702e-6 Iteration 24: convergence error = 8.846072887536138e-7 Iteration 25: convergence error = 3.3019910006260034e-7 Iteration 26: convergence error = 1.2325517673161812e-7 Iteration 27: convergence error = 4.600769898388535e-8 Iteration 28: convergence error = 1.7175352695630863e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.956249075708911e-10 Iteration 32: convergence error = 3.3514879760332406e-10 Iteration 33: convergence error = 1.2505552149377763e-10 Iteration 34: convergence error = 4.8203219193965197e-11 Iteration 35: convergence error = 1.887201506178826e-11 Converged after 35 iterations Energy conservation errors by band: [-2.3022116657970009e-26, -1.308625578453032e-25, -1.0743654440386004e-25, -8.320273739547056e-26, -1.0057029908481635e-25, -6.945670167485263e-20, -9.769962616701378e-15, -1.4068746168049984e-12, -7.837286375433905e-12, -1.0373923942097463e-12, -8.881784197001252e-15, -1.5543122344752192e-15, 9.71445146547012e-16, 2.927345865710862e-18, 1.4365678785432934e-18, 4.1504614415460717e-20, 5.717472393966527e-21, 1.2904017555827232e-22, -3.9291079096268815e-24, 5.551115123125783e-17] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.362166223825 Iteration 2: convergence error = 864.8522700482426 Iteration 3: convergence error = 203.43244494690714 Iteration 4: convergence error = 60.87736397590493 Iteration 5: convergence error = 18.481426659698172 Iteration 6: convergence error = 5.614330618626127 Iteration 7: convergence error = 1.7070587705939033 Iteration 8: convergence error = 0.5192694771479864 Iteration 9: convergence error = 0.15798519284180657 Iteration 10: convergence error = 0.04806952669321163 Iteration 11: convergence error = 0.01462628739034244 Iteration 12: convergence error = 0.00445043197044015 Iteration 13: convergence error = 0.0013541649042281279 Iteration 14: convergence error = 0.00041204191563792847 Iteration 15: convergence error = 0.00012537513089228014 Iteration 16: convergence error = 3.814885076280916e-5 Iteration 17: convergence error = 1.1607843816818786e-5 Iteration 18: convergence error = 3.5320085771672893e-6 Iteration 19: convergence error = 1.074713281923323e-6 Iteration 20: convergence error = 3.270117758802371e-7 Iteration 21: convergence error = 9.950326784746721e-8 Iteration 22: convergence error = 3.0277988116722554e-8 Iteration 23: convergence error = 9.213749763148371e-9 Iteration 24: convergence error = 2.8026079235132784e-9 Iteration 25: convergence error = 8.545839591533877e-10 Iteration 26: convergence error = 2.629576556500979e-10 Iteration 27: convergence error = 8.01492205937393e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.86757334228605e-12 Converged after 29 iterations Energy conservation errors by band: [4.281305904815475e-26, 4.52364397489937e-26, 4.119747191426212e-26, 5.634360129450555e-26, 9.895471195092372e-26, -6.606856988583543e-20, 2.4424906541753444e-15, -8.526512829121202e-14, 3.126388037344441e-12, 5.684341886080801e-13, 2.984279490192421e-13, 3.552713678800501e-14, 8.326672684688674e-16, 1.3010426069826053e-16, 2.0599841277224584e-18, 3.9810548520952116e-19, 2.3002238473874594e-20, 5.438712527536157e-22, -1.2782525403358506e-23, 3.1963148993622903e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 8m24.3s Testing RayTraceHeatTransfer tests passed Testing completed after 530.72s PkgEval succeeded after 598.48s