Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1601 (79ea5eb99c*) started at 2026-01-24T13:12:24.516 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 10.14s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.14.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.18.0+0 [e37daf67] + LibGit2_jll v1.9.2+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.12.2 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.15s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling packages... 1433.2 ms ✓ Measurements 4802.0 ms ✓ StatsBase 6131.7 ms ✓ RayTraceHeatTransfer 3 dependencies successfully precompiled in 14 seconds. 58 already precompiled. Precompilation completed after 32.07s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_ltQVlS/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.16 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_ltQVlS/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.16 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.18.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443558531181326e-15 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.0569008315563939e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.691850745534255e-16 Converged after 6 iterations. d = 1.6184142622847344e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.485546236472086e-16 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2585248453105973e-15 Converged after 6 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 8.64442489944963e-16 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2785653431858247e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.741771048821297e-15 Converged after 5 iterations. d = 2.1647144989062977e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.6708853471768988e-15 Converged after 5 iterations. d = 1.8174569082716346e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5394136982922497e-15 Converged after 5 iterations. d = 1.6288904732141786e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:03:10 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:05 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011328778624082156 Iteration 10: d = 1.2605415629468688e-5 Iteration 20: d = 1.963001331201042e-7 Iteration 30: d = 3.3568654807901994e-9 Iteration 40: d = 5.858339468110127e-11 Iteration 50: d = 1.0277758123318607e-12 Iteration 60: d = 1.806073076768539e-14 Converged after 66 iterations. d = 1.5966104144080077e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 45%|██████████████▊ | ETA: 0:00:01 Bin 1 progress: 92%|██████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001163485187173273 Iteration 10: d = 1.6857289510428195e-5 Iteration 20: d = 2.7356653235935304e-7 Iteration 30: d = 4.598357491475187e-9 Iteration 40: d = 7.85605807142028e-11 Iteration 50: d = 1.3542736520242466e-12 Iteration 60: d = 2.3484456275654333e-14 Converged after 66 iterations. d = 2.074227878510871e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|██████████████ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010985235586173294 Iteration 10: d = 1.4789462361068467e-5 Iteration 20: d = 2.475624288842054e-7 Iteration 30: d = 4.2483194780100274e-9 Iteration 40: d = 7.342030401619675e-11 Iteration 50: d = 1.274825324798897e-12 Iteration 60: d = 2.2207675072860376e-14 Converged after 66 iterations. d = 1.9903828584969396e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011742505169859809 Iteration 10: d = 1.0976310231530763e-5 Iteration 20: d = 1.6044946605920496e-7 Iteration 30: d = 2.6021892111493e-9 Iteration 40: d = 4.3355767844536386e-11 Iteration 50: d = 7.324091134757972e-13 Iteration 60: d = 1.2474875845075408e-14 Converged after 65 iterations. d = 1.63943004531861e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 75%|████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014620851969769112 Iteration 10: d = 1.89166935516493e-5 Iteration 20: d = 2.431801763113878e-7 Iteration 30: d = 3.4803794063352056e-9 Iteration 40: d = 5.221692521970108e-11 Iteration 50: d = 8.001380637693274e-13 Iteration 60: d = 1.2408451731667553e-14 Converged after 65 iterations. d = 1.5453764517112321e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:01 Bin 1 progress: 96%|███████████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001389037875436591 Iteration 10: d = 1.7301587789104477e-5 Iteration 20: d = 2.5547285402873604e-7 Iteration 30: d = 3.935845171134211e-9 Iteration 40: d = 6.093623466480911e-11 Iteration 50: d = 9.44961797099264e-13 Iteration 60: d = 1.469970260359849e-14 Converged after 65 iterations. d = 1.8468086762478123e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 53%|█████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012617467753997659 Iteration 10: d = 1.22232570106492e-5 Iteration 20: d = 1.6998200836594899e-7 Iteration 30: d = 2.55408217757819e-9 Iteration 40: d = 3.907836462209386e-11 Iteration 50: d = 6.026707510957468e-13 Iteration 60: d = 9.31797200591767e-15 Converged after 64 iterations. d = 1.8156030214151045e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:01 Bin 1 progress: 92%|██████████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012029789304884551 Iteration 10: d = 9.02614052502448e-6 Iteration 20: d = 1.1681583870312043e-7 Iteration 30: d = 1.7826360764479047e-9 Iteration 40: d = 2.7710145711828128e-11 Iteration 50: d = 4.31978243918797e-13 Iteration 60: d = 6.705095359177031e-15 Converged after 63 iterations. d = 1.8696250448956937e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:01 Bin 1 progress: 92%|██████████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001460743836374696 Iteration 10: d = 2.2825799829886044e-5 Iteration 20: d = 3.391509193823748e-7 Iteration 30: d = 5.1837873047572906e-9 Iteration 40: d = 7.968512432014516e-11 Iteration 50: d = 1.2278370754983384e-12 Iteration 60: d = 1.8943261831528892e-14 Converged after 66 iterations. d = 1.525086133775193e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:01 Bin 1 progress: 91%|██████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001347886952461948 Iteration 10: d = 1.947562797827962e-5 Iteration 20: d = 2.823211884453588e-7 Iteration 30: d = 4.3042169694602376e-9 Iteration 40: d = 6.639899431277117e-11 Iteration 50: d = 1.0288417555428594e-12 Iteration 60: d = 1.596899624289854e-14 Converged after 65 iterations. d = 1.973444985358749e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0036176168110584705 Iteration 10: d = 4.7291082980180024e-5 Iteration 20: d = 6.238679527095737e-7 Iteration 30: d = 8.719034384055752e-9 Iteration 40: d = 1.230266979053323e-10 Iteration 50: d = 1.742630124753211e-12 Iteration 60: d = 2.477357208304999e-14 Converged after 66 iterations. d = 1.890450005199589e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0032987684548765554 Iteration 10: d = 4.3774939025386316e-5 Iteration 20: d = 6.51862786060934e-7 Iteration 30: d = 1.0225937393961115e-8 Iteration 40: d = 1.611070313520977e-10 Iteration 50: d = 2.5412553597253597e-12 Iteration 60: d = 4.011822480612961e-14 Converged after 67 iterations. d = 2.1956460404619057e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0023124819287470575 Iteration 10: d = 1.3977620446226367e-5 Iteration 20: d = 1.376631942699552e-7 Iteration 30: d = 1.9544504034479396e-9 Iteration 40: d = 3.026622950144414e-11 Iteration 50: d = 4.841354735315529e-13 Iteration 60: d = 7.889220405176524e-15 Converged after 64 iterations. d = 1.5324112110506576e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0019425439809791264 Iteration 10: d = 1.6368802347066194e-5 Iteration 20: d = 2.39344476525096e-7 Iteration 30: d = 4.1419445340885925e-9 Iteration 40: d = 7.356527636068171e-11 Iteration 50: d = 1.313427689338124e-12 Iteration 60: d = 2.349500532805262e-14 Converged after 66 iterations. d = 2.082164917261517e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 88%|█████████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014620851969769112 Iteration 10: d = 1.89166935516493e-5 Iteration 20: d = 2.431801763113878e-7 Iteration 30: d = 3.4803794063352056e-9 Iteration 40: d = 5.221692521970108e-11 Iteration 50: d = 8.001380637693274e-13 Iteration 60: d = 1.2408451731667553e-14 Converged after 65 iterations. d = 1.5453764517112321e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:01 Bin 1 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015664614631052257 Iteration 10: d = 1.6472901489915094e-5 Iteration 20: d = 2.0612797125312196e-7 Iteration 30: d = 2.8573807217462935e-9 Iteration 40: d = 3.996120104084438e-11 Iteration 50: d = 5.589207502614618e-13 Iteration 60: d = 7.808117569545419e-15 Converged after 63 iterations. d = 2.1907069276461414e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 87%|████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012964581695455093 Iteration 10: d = 9.07021543624726e-6 Iteration 20: d = 9.103926516596047e-8 Iteration 30: d = 1.2193133607577614e-9 Iteration 40: d = 1.715863915966757e-11 Iteration 50: d = 2.4354409138764374e-13 Iteration 60: d = 3.455835434767176e-15 Converged after 62 iterations. d = 1.4791479527056193e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.766846560593 Iteration 2: convergence error = 4829.047740497292 Iteration 3: convergence error = 1098.1461616772929 Iteration 4: convergence error = 321.0740168380437 Iteration 5: convergence error = 95.39392802950465 Iteration 6: convergence error = 28.48108845032084 Iteration 7: convergence error = 8.55657990322834 Iteration 8: convergence error = 2.567411919807455 Iteration 9: convergence error = 0.7685031571061245 Iteration 10: convergence error = 0.22971773891094927 Iteration 11: convergence error = 0.06861221852500421 Iteration 12: convergence error = 0.020483977459889502 Iteration 13: convergence error = 0.006113876630706727 Iteration 14: convergence error = 0.0018245507430947328 Iteration 15: convergence error = 0.000544451251926148 Iteration 16: convergence error = 0.00016245802839875978 Iteration 17: convergence error = 4.847426657761389e-5 Iteration 18: convergence error = 1.4463532124864287e-5 Iteration 19: convergence error = 4.315522801334737e-6 Iteration 20: convergence error = 1.2876234904979356e-6 Iteration 21: convergence error = 3.841889792965958e-7 Iteration 22: convergence error = 1.1450629244791344e-7 Iteration 23: convergence error = 3.3251126296818256e-8 Iteration 24: convergence error = 9.599261829862371e-9 Iteration 25: convergence error = 2.7653186407405883e-9 Iteration 26: convergence error = 7.942162483232096e-10 Iteration 27: convergence error = 2.2669155441690236e-10 Iteration 28: convergence error = 6.548361852765083e-11 Iteration 29: convergence error = 2.000888343900442e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015664614631052257 Iteration 10: d = 1.6472901489915094e-5 Iteration 20: d = 2.0612797125312196e-7 Iteration 30: d = 2.8573807217462935e-9 Iteration 40: d = 3.996120104084438e-11 Iteration 50: d = 5.589207502614618e-13 Iteration 60: d = 7.808117569545419e-15 Converged after 63 iterations. d = 2.1907069276461414e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.334861852642 Iteration 2: convergence error = 4816.98131627459 Iteration 3: convergence error = 1092.7513929812417 Iteration 4: convergence error = 318.95646668848553 Iteration 5: convergence error = 94.55180412132131 Iteration 6: convergence error = 28.38038999601781 Iteration 7: convergence error = 8.542586005190287 Iteration 8: convergence error = 2.561072933591504 Iteration 9: convergence error = 0.7659778223610374 Iteration 10: convergence error = 0.22877549218105742 Iteration 11: convergence error = 0.06827461214925279 Iteration 12: convergence error = 0.020366343787372898 Iteration 13: convergence error = 0.006073722634710066 Iteration 14: convergence error = 0.0018110591429376655 Iteration 15: convergence error = 0.0005399745882641582 Iteration 16: convergence error = 0.00016098767264338676 Iteration 17: convergence error = 4.7995398062994354e-5 Iteration 18: convergence error = 1.430866745977255e-5 Iteration 19: convergence error = 4.265739335096441e-6 Iteration 20: convergence error = 1.271708697458962e-6 Iteration 21: convergence error = 3.791246854234487e-7 Iteration 22: convergence error = 1.1288784662610851e-7 Iteration 23: convergence error = 3.273794391134288e-8 Iteration 24: convergence error = 9.443965609534644e-9 Iteration 25: convergence error = 2.714159563765861e-9 Iteration 26: convergence error = 7.723883754806593e-10 Iteration 27: convergence error = 2.248725650133565e-10 Iteration 28: convergence error = 6.548361852765083e-11 Iteration 29: convergence error = 1.7962520360015333e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 6:28:03 Bin 1 ray tracing: 13%|███▉ | ETA: 0:00:22 Bin 1 ray tracing: 26%|███████▊ | ETA: 0:00:13 Bin 1 ray tracing: 38%|███████████▍ | ETA: 0:00:09 Bin 1 ray tracing: 50%|███████████████▏ | ETA: 0:00:06 Bin 1 ray tracing: 63%|██████████████████▊ | ETA: 0:00:05 Bin 1 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:03 Bin 1 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:02 Bin 1 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 9%|██▉ | ETA: 0:00:10 Bin 2 ray tracing: 19%|█████▊ | ETA: 0:00:09 Bin 2 ray tracing: 29%|████████▋ | ETA: 0:00:08 Bin 2 ray tracing: 37%|███████████▎ | ETA: 0:00:07 Bin 2 ray tracing: 46%|█████████████▉ | ETA: 0:00:06 Bin 2 ray tracing: 55%|████████████████▌ | ETA: 0:00:05 Bin 2 ray tracing: 63%|███████████████████ | ETA: 0:00:04 Bin 2 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:03 Bin 2 ray tracing: 80%|████████████████████████▏ | ETA: 0:00:02 Bin 2 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:01 Bin 2 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 3 ray tracing: 16%|████▉ | ETA: 0:00:10 Bin 3 ray tracing: 25%|███████▋ | ETA: 0:00:09 Bin 3 ray tracing: 34%|██████████▍ | ETA: 0:00:08 Bin 3 ray tracing: 43%|████████████▉ | ETA: 0:00:07 Bin 3 ray tracing: 52%|███████████████▌ | ETA: 0:00:06 Bin 3 ray tracing: 61%|██████████████████▏ | ETA: 0:00:05 Bin 3 ray tracing: 70%|█████████████████████ | ETA: 0:00:03 Bin 3 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:02 Bin 3 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:01 Bin 3 ray tracing: 97%|█████████████████████████████▎| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 10%|███ | ETA: 0:00:09 Bin 4 ray tracing: 20%|█████▉ | ETA: 0:00:08 Bin 4 ray tracing: 29%|████████▊ | ETA: 0:00:08 Bin 4 ray tracing: 40%|████████████ | ETA: 0:00:06 Bin 4 ray tracing: 51%|███████████████▍ | ETA: 0:00:05 Bin 4 ray tracing: 61%|██████████████████▎ | ETA: 0:00:04 Bin 4 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:03 Bin 4 ray tracing: 80%|████████████████████████ | ETA: 0:00:02 Bin 4 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:01 Bin 4 ray tracing: 99%|██████████████████████████████| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 10%|███ | ETA: 0:00:09 Bin 5 ray tracing: 20%|██████▏ | ETA: 0:00:08 Bin 5 ray tracing: 31%|█████████▍ | ETA: 0:00:07 Bin 5 ray tracing: 44%|█████████████▏ | ETA: 0:00:05 Bin 5 ray tracing: 58%|█████████████████▍ | ETA: 0:00:04 Bin 5 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:02 Bin 5 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:01 Bin 5 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:08 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 12%|███▋ | ETA: 0:00:07 Bin 6 ray tracing: 24%|███████▎ | ETA: 0:00:06 Bin 6 ray tracing: 37%|███████████ | ETA: 0:00:05 Bin 6 ray tracing: 50%|███████████████▏ | ETA: 0:00:04 Bin 6 ray tracing: 64%|███████████████████▏ | ETA: 0:00:03 Bin 6 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:02 Bin 6 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:01 Bin 6 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 7 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 7 ray tracing: 25%|███████▋ | ETA: 0:00:09 Bin 7 ray tracing: 34%|██████████▏ | ETA: 0:00:08 Bin 7 ray tracing: 42%|████████████▋ | ETA: 0:00:07 Bin 7 ray tracing: 51%|███████████████▏ | ETA: 0:00:06 Bin 7 ray tracing: 59%|█████████████████▋ | ETA: 0:00:05 Bin 7 ray tracing: 68%|████████████████████▍ | ETA: 0:00:04 Bin 7 ray tracing: 77%|███████████████████████▎ | ETA: 0:00:03 Bin 7 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 7 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 8 ray tracing: 18%|█████▎ | ETA: 0:00:10 Bin 8 ray tracing: 26%|████████ | ETA: 0:00:08 Bin 8 ray tracing: 35%|██████████▋ | ETA: 0:00:07 Bin 8 ray tracing: 45%|█████████████▋ | ETA: 0:00:06 Bin 8 ray tracing: 55%|████████████████▌ | ETA: 0:00:05 Bin 8 ray tracing: 64%|███████████████████▎ | ETA: 0:00:04 Bin 8 ray tracing: 74%|██████████████████████ | ETA: 0:00:03 Bin 8 ray tracing: 83%|█████████████████████████ | ETA: 0:00:02 Bin 8 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 9 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 9 ray tracing: 27%|████████▎ | ETA: 0:00:08 Bin 9 ray tracing: 37%|███████████ | ETA: 0:00:07 Bin 9 ray tracing: 46%|█████████████▊ | ETA: 0:00:06 Bin 9 ray tracing: 55%|████████████████▌ | ETA: 0:00:05 Bin 9 ray tracing: 64%|███████████████████▎ | ETA: 0:00:04 Bin 9 ray tracing: 73%|██████████████████████ | ETA: 0:00:03 Bin 9 ray tracing: 82%|████████████████████████▊ | ETA: 0:00:02 Bin 9 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 10%|██▉ | ETA: 0:00:09 Bin 10 ray tracing: 20%|█████▋ | ETA: 0:00:09 Bin 10 ray tracing: 29%|████████▎ | ETA: 0:00:08 Bin 10 ray tracing: 37%|██████████▊ | ETA: 0:00:07 Bin 10 ray tracing: 46%|█████████████▍ | ETA: 0:00:06 Bin 10 ray tracing: 55%|████████████████ | ETA: 0:00:05 Bin 10 ray tracing: 64%|██████████████████▋ | ETA: 0:00:04 Bin 10 ray tracing: 73%|█████████████████████▎ | ETA: 0:00:03 Bin 10 ray tracing: 84%|████████████████████████▎ | ETA: 0:00:02 Bin 10 ray tracing: 97%|████████████████████████████▎| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 29%|█████████▌ | ETA: 0:00:03 Bin 1 progress: 53%|█████████████████▋ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 24%|████████▏ | ETA: 0:00:03 Bin 2 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 2 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 2 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 22%|███████▍ | ETA: 0:00:04 Bin 3 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 3 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 3 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 22%|███████▍ | ETA: 0:00:04 Bin 4 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 4 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 4 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 22%|███████▍ | ETA: 0:00:04 Bin 5 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 5 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 5 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 20%|██████▋ | ETA: 0:00:04 Bin 6 progress: 42%|█████████████▉ | ETA: 0:00:03 Bin 6 progress: 64%|█████████████████████▎ | ETA: 0:00:02 Bin 6 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 24%|████████▏ | ETA: 0:00:03 Bin 7 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 7 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 24%|████████▏ | ETA: 0:00:03 Bin 8 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 8 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 27%|████████▊ | ETA: 0:00:03 Bin 9 progress: 60%|███████████████████▊ | ETA: 0:00:01 Bin 9 progress: 89%|█████████████████████████████▍ | ETA: 0:00:00 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 24%|███████▉ | ETA: 0:00:03 Bin 10 progress: 49%|███████████████▋ | ETA: 0:00:02 Bin 10 progress: 73%|███████████████████████▌ | ETA: 0:00:01 Bin 10 progress: 98%|███████████████████████████████▎| ETA: 0:00:00 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:04 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015664614631052257 Iteration 10: d = 1.6472901489915094e-5 Iteration 20: d = 2.0612797125312196e-7 Iteration 30: d = 2.8573807217462935e-9 Iteration 40: d = 3.996120104084438e-11 Iteration 50: d = 5.589207502614618e-13 Iteration 60: d = 7.808117569545419e-15 Converged after 63 iterations. d = 2.1907069276461414e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001272798527657019 Iteration 10: d = 8.972438885186643e-6 Iteration 20: d = 8.786575608401338e-8 Iteration 30: d = 1.1568333306116953e-9 Iteration 40: d = 1.6168018900176947e-11 Iteration 50: d = 2.287664829923362e-13 Iteration 60: d = 3.261099605942905e-15 Converged after 61 iterations. d = 2.118749718411188e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015278274954609505 Iteration 10: d = 1.1684955832655118e-5 Iteration 20: d = 1.1523219792428694e-7 Iteration 30: d = 1.455176988946864e-9 Iteration 40: d = 1.9524448192370797e-11 Iteration 50: d = 2.6624217125705234e-13 Iteration 60: d = 3.620279704862068e-15 Converged after 62 iterations. d = 1.5544890255323603e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014816477373180653 Iteration 10: d = 1.631686421525722e-5 Iteration 20: d = 1.495122764925864e-7 Iteration 30: d = 1.6177987759827331e-9 Iteration 40: d = 1.962407874028119e-11 Iteration 50: d = 2.562751246291088e-13 Iteration 60: d = 3.497904795476562e-15 Converged after 62 iterations. d = 1.4465471120691389e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016425209931735366 Iteration 10: d = 1.3493813633554956e-5 Iteration 20: d = 1.293571156017391e-7 Iteration 30: d = 1.629487803063674e-9 Iteration 40: d = 2.2155126888798006e-11 Iteration 50: d = 3.084188965093229e-13 Iteration 60: d = 4.363219096528889e-15 Converged after 62 iterations. d = 1.835376149703214e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017478463873819153 Iteration 10: d = 1.752978232578609e-5 Iteration 20: d = 2.0772627070104448e-7 Iteration 30: d = 2.8061132569429824e-9 Iteration 40: d = 3.8943676735892365e-11 Iteration 50: d = 5.444866931744442e-13 Iteration 60: d = 7.619734866388267e-15 Converged after 63 iterations. d = 2.1320352270614887e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001315360319443264 Iteration 10: d = 1.245804302523867e-5 Iteration 20: d = 1.4278580549719553e-7 Iteration 30: d = 1.836309841772711e-9 Iteration 40: d = 2.444849923003381e-11 Iteration 50: d = 3.306826138129132e-13 Iteration 60: d = 4.4993529064786925e-15 Converged after 62 iterations. d = 1.903841347123088e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014594040900842518 Iteration 10: d = 1.3826304655430706e-5 Iteration 20: d = 1.6837668547888344e-7 Iteration 30: d = 2.3378282199502214e-9 Iteration 40: d = 3.3066355367934206e-11 Iteration 50: d = 4.693336983934457e-13 Iteration 60: d = 6.6338260298339044e-15 Converged after 63 iterations. d = 1.880945131370354e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015878933696319877 Iteration 10: d = 1.798685155274922e-5 Iteration 20: d = 2.1797569610713953e-7 Iteration 30: d = 2.8500680564950206e-9 Iteration 40: d = 3.829442139418437e-11 Iteration 50: d = 5.221780377482524e-13 Iteration 60: d = 7.148226060707229e-15 Converged after 63 iterations. d = 1.9593012323945627e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014194918714716608 Iteration 10: d = 1.705658036224588e-5 Iteration 20: d = 1.9110694928720197e-7 Iteration 30: d = 2.4463554335585975e-9 Iteration 40: d = 3.2981813142582685e-11 Iteration 50: d = 4.548109965406252e-13 Iteration 60: d = 6.34502579877652e-15 Converged after 63 iterations. d = 1.7536253856460113e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.350238066721 Iteration 2: convergence error = 4810.001184383084 Iteration 3: convergence error = 1101.7510490912239 Iteration 4: convergence error = 327.28914268523386 Iteration 5: convergence error = 97.68685471122308 Iteration 6: convergence error = 29.296403231341856 Iteration 7: convergence error = 8.794437061706958 Iteration 8: convergence error = 2.6392178989867716 Iteration 9: convergence error = 0.7917208438427679 Iteration 10: convergence error = 0.2374412250928799 Iteration 11: convergence error = 0.07119973574231153 Iteration 12: convergence error = 0.02134860608339295 Iteration 13: convergence error = 0.0064009683967469755 Iteration 14: convergence error = 0.0019191760400190105 Iteration 15: convergence error = 0.0005754143583089899 Iteration 16: convergence error = 0.00017252224347430456 Iteration 17: convergence error = 5.1725988214457175e-5 Iteration 18: convergence error = 1.5508588603552198e-5 Iteration 19: convergence error = 4.649813490686938e-6 Iteration 20: convergence error = 1.3941123597760452e-6 Iteration 21: convergence error = 4.1798921301960945e-7 Iteration 22: convergence error = 1.2517512004706077e-7 Iteration 23: convergence error = 3.6545543480315246e-8 Iteration 24: convergence error = 1.0569692676654086e-8 Iteration 25: convergence error = 3.055220076930709e-9 Iteration 26: convergence error = 8.842562237987295e-10 Iteration 27: convergence error = 2.530669007683173e-10 Iteration 28: convergence error = 7.548806024715304e-11 Iteration 29: convergence error = 2.2509993868879974e-11 Iteration 30: convergence error = 6.366462912410498e-12 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.2077779769548 K, F = -7471.7389814069065, relative_change = 0.0327922220230451 Iter 2: T = 936.4859789135055 K, F = -6333.7813663616325, relative_change = 0.03176339124123686 Iter 3: T = 907.8035307816548 K, F = -5367.639112508922, relative_change = 0.030627738992021588 Iter 5: T = 856.4204229437139 K, F = -3851.3153319952303, relative_change = 0.02804006597726002 Iter 10: T = 760.6907796582839 K, F = -1668.0259838935135, relative_change = 0.020151263005896286 Iter 15: T = 704.4798744893491 K, F = -714.3335081643061, relative_change = 0.012120379709003736 Iter 20: T = 675.498586559372 K, F = -302.81033641429644, relative_change = 0.006224235411899013 Iter 25: T = 661.9617803222611 K, F = -127.49006562061834, relative_change = 0.0028799617554255367 Iter 30: T = 655.9972633979513 K, F = -53.48019835451783, relative_change = 0.0012607884479591443 Iter 35: T = 653.444542406056 K, F = -22.39557176611745, relative_change = 0.0005378239308473808 Iter 40: T = 652.3663368611737 K, F = -9.37134464982001, relative_change = 0.0002268237329668139 Iter 45: T = 651.9135264034138 K, F = -3.920132846357712, relative_change = 9.519672402083284e-5 Iter 50: T = 651.72382225279 K, F = -1.6396085678753143, relative_change = 3.987153803285579e-5 Iter 55: T = 651.6444272136952 K, F = -0.6857322876308999, relative_change = 1.668511804442583e-5 Iter 60: T = 651.6112130153292 K, F = -0.2867864024137111, relative_change = 6.979730075840448e-6 Iter 65: T = 651.5973206480885 K, F = -0.11993836793289858, relative_change = 2.9193239430020603e-6 Iter 70: T = 651.5915103805601 K, F = -0.050159809916774545, relative_change = 1.2209516715601786e-6 Iter 75: T = 651.5890804024298 K, F = -0.020977458138106142, relative_change = 5.106262838973881e-7 Iter 80: T = 651.5880641469603 K, F = -0.008773028167756436, relative_change = 2.135517090330462e-7 Iter 85: T = 651.587639135108 K, F = -0.00366898596530868, relative_change = 8.931017221554502e-8 Iter 90: T = 651.5874613897822 K, F = -0.001534413889717312, relative_change = 3.7350632576914554e-8 Iter 95: T = 651.5873870545129 K, F = -0.0006417102383770024, relative_change = 1.5620489695487775e-8 Iter 100: T = 651.5873559666065 K, F = -0.0002683708892607939, relative_change = 6.5326769183507315e-9 Iter 105: T = 651.5873429652713 K, F = -0.00011223591186187987, relative_change = 2.7320437865024018e-9 Iter 110: T = 651.5873375279573 K, F = -4.693839859326587e-5, relative_change = 1.1425733813054073e-9 Iter 115: T = 651.5873352540076 K, F = -1.963019905981689e-5, relative_change = 4.778378462054208e-10 Iter 120: T = 651.5873343030147 K, F = -8.20958312180986e-6, relative_change = 1.9983748165136693e-10 Iter 125: T = 651.5873339052981 K, F = -3.4333454327906132e-6, relative_change = 8.357441501496231e-11 Iter 130: T = 651.5873337389683 K, F = -1.4358664809366317e-6, relative_change = 3.495182866938546e-11 Iter 135: T = 651.5873336694071 K, F = -6.004965187877964e-7, relative_change = 1.4617272379121408e-11 Iter 140: T = 651.5873336403158 K, F = -2.5113444201974033e-7, relative_change = 6.113108783664317e-12 Iter 145: T = 651.5873336281495 K, F = -1.0502727554317914e-7, relative_change = 2.5565715142089074e-12 Iter 150: T = 651.5873336230615 K, F = -4.39237820559768e-8, relative_change = 1.0691916878167395e-12 Iter 155: T = 651.5873336209335 K, F = -1.8368716714345368e-8, relative_change = 4.471308778036212e-13 Converged in 160 iterations to T = 651.5873336200435 K Iter 1: T = 970.4280693105183 K, F = -6737.992537766611, relative_change = 0.02957193068948173 Iter 2: T = 943.0220730981007 K, F = -5706.792721006033, relative_change = 0.028241141285092114 Iter 3: T = 917.7367422138984 K, F = -4831.6573344678145, relative_change = 0.026813084874177634 Iter 5: T = 873.3094541625929 K, F = -3459.275349569419, relative_change = 0.023711191863800166 Iter 10: T = 794.5420938584742 K, F = -1488.7359315700032, relative_change = 0.015405803525506282 Iter 15: T = 751.6955716475752 K, F = -633.6360933244765, relative_change = 0.008419264930572974 Iter 20: T = 730.9222763414359 K, F = -267.4383574104551, relative_change = 0.004045555592677868 Iter 25: T = 721.5789346580949 K, F = -112.3277804931607, relative_change = 0.0018050552828047916 Iter 30: T = 717.5405614023263 K, F = -47.06586971211268, relative_change = 0.0007766867658482796 Iter 35: T = 715.8273754707975 K, F = -19.69946304040247, relative_change = 0.0003287944843039782 Iter 40: T = 715.106541981537 K, F = -8.241369877300365, relative_change = 0.00013821353153034902 Iter 45: T = 714.8043101366052 K, F = -3.4471345176239607, relative_change = 5.792727346158345e-5 Iter 50: T = 714.6777777603515 K, F = -1.4417195929829818, relative_change = 2.4247761089273503e-5 Iter 55: T = 714.6248366807805 K, F = -0.6029595392054778, relative_change = 1.0144535798755847e-5 Iter 60: T = 714.6026919355443 K, F = -0.25216753729419866, relative_change = 4.243236708130172e-6 Iter 65: T = 714.5934300119261 K, F = -0.10545994039474316, relative_change = 1.7746895969856498e-6 Iter 70: T = 714.5895564377408 K, F = -0.0441046878184701, relative_change = 7.422169068739991e-7 Iter 75: T = 714.5879364405223 K, F = -0.018445121381957974, relative_change = 3.1040756402193105e-7 Iter 80: T = 714.58725893445 K, F = -0.007713972528774704, relative_change = 1.2981677815216803e-7 Iter 85: T = 714.5869755926393 K, F = -0.003226075870481737, relative_change = 5.429103677063958e-8 Iter 90: T = 714.5868570955913 K, F = -0.001349183532419973, relative_change = 2.2705179152908583e-8 Iter 95: T = 714.5868075386899 K, F = -0.0005642446788601818, relative_change = 9.495580432064137e-9 Iter 100: T = 714.5867868133982 K, F = -0.0002359738667643274, relative_change = 3.971165746157259e-9 Iter 105: T = 714.5867781458331 K, F = -9.868708978288954e-5, relative_change = 1.6607890464310675e-9 Iter 110: T = 714.5867745209538 K, F = -4.1272119617907777e-5, relative_change = 6.945618316506961e-10 Iter 115: T = 714.5867730049858 K, F = -1.726049349504155e-5, relative_change = 2.904740587396347e-10 Iter 120: T = 714.58677237099 K, F = -7.2185455198825466e-6, relative_change = 1.2147973780800026e-10 Iter 125: T = 714.5867721058454 K, F = -3.0188819933885114e-6, relative_change = 5.080427804574787e-11 Iter 130: T = 714.5867719949588 K, F = -1.2625326963888739e-6, relative_change = 2.124695908520146e-11 Iter 135: T = 714.5867719485847 K, F = -5.280070438651308e-7, relative_change = 8.885745369806632e-12 Iter 140: T = 714.5867719291904 K, F = -2.2081864559098108e-7, relative_change = 3.716121367467533e-12 Iter 145: T = 714.5867719210795 K, F = -9.235003728402802e-8, relative_change = 1.554143881000973e-12 Iter 150: T = 714.5867719176874 K, F = -3.86207007485595e-8, relative_change = 6.499415432296839e-13 Iter 155: T = 714.5867719162687 K, F = -1.6151751269788406e-8, relative_change = 2.718152167821309e-13 Converged in 157 iterations to T = 714.5867719159686 K Iter 1: T = 974.4103998366232 K, F = -5830.614739219301, relative_change = 0.025589600163376743 Iter 2: T = 951.0100655904278 K, F = -4932.913241553468, relative_change = 0.024014865040560857 Iter 3: T = 929.7242985046595 K, F = -4171.6218933623795, relative_change = 0.022382273180834536 Iter 5: T = 893.1432058356487 K, F = -2979.3233678848424, relative_change = 0.019027909045095527 Iter 10: T = 831.5199348156102 K, F = -1273.9906715201366, relative_change = 0.011180427157514463 Iter 15: T = 800.2360167397655 K, F = -539.4469433148686, relative_change = 0.005643511443556977 Iter 20: T = 785.7687954928599 K, F = -226.97294118480923, relative_change = 0.0025858102844799804 Iter 25: T = 779.4276148218713 K, F = -95.18181642643641, relative_change = 0.0011266518027206588 Iter 30: T = 776.7202922813849 K, F = -39.85307587413086, relative_change = 0.00047958553570081664 Iter 35: T = 775.5780078689382 K, F = -16.675359083410008, relative_change = 0.0002020774716337013 Iter 40: T = 775.0985050835833 K, F = -6.9752999066598775, relative_change = 8.477807525393181e-5 Iter 45: T = 774.8976568579327 K, F = -2.9174107381572654, relative_change = 3.550209489733038e-5 Iter 50: T = 774.8136045818327 K, F = -1.2201410139098263, relative_change = 1.4855617356499217e-5 Iter 55: T = 774.7784432591171 K, F = -0.5102854180562714, relative_change = 6.214234972297124e-6 Iter 60: T = 774.7637366841833 K, F = -0.21340883341534445, relative_change = 2.5991189386144137e-6 Iter 65: T = 774.7575859232942 K, F = -0.08925036370396222, relative_change = 1.0870266018139203e-6 Iter 70: T = 774.7550135499266 K, F = -0.03732561010921709, relative_change = 4.5461520653581547e-7 Iter 75: T = 774.7539377436198 K, F = -0.01561002327658223, relative_change = 1.9012685533767135e-7 Iter 80: T = 774.7534878269927 K, F = -0.006528299444075181, relative_change = 7.951355701924737e-8 Iter 85: T = 774.7532996662094 K, F = -0.0027302130156073856, relative_change = 3.325356031517892e-8 Iter 90: T = 774.7532209750744 K, F = -0.0011418077282184802, relative_change = 1.3907043261190858e-8 Iter 95: T = 774.7531880654935 K, F = -0.0004775176352432853, relative_change = 5.8160928414375114e-9 Iter 100: T = 774.7531743023123 K, F = -0.0001997035787928425, relative_change = 2.432359702642996e-9 Iter 105: T = 774.7531685463853 K, F = -8.35184210902229e-5, relative_change = 1.0172419057389345e-9 Iter 110: T = 774.7531661391878 K, F = -3.492840096586125e-5, relative_change = 4.254227178236644e-10 Iter 115: T = 774.7531651324691 K, F = -1.4607475288030969e-5, relative_change = 1.779168729223166e-10 Iter 120: T = 774.7531647114472 K, F = -6.1090192626789275e-6, relative_change = 7.440694474703814e-11 Iter 125: T = 774.753164535371 K, F = -2.5548655474549875e-6, relative_change = 3.111788188206393e-11 Iter 130: T = 774.7531644617337 K, F = -1.0684757327794614e-6, relative_change = 1.3013875307313015e-11 Iter 135: T = 774.7531644309378 K, F = -4.4685001310273975e-7, relative_change = 5.442566615493836e-12 Iter 140: T = 774.7531644180585 K, F = -1.8687765312996873e-7, relative_change = 2.2761419858203225e-12 Iter 145: T = 774.7531644126722 K, F = -7.815243197040189e-8, relative_change = 9.518849831872154e-13 Iter 150: T = 774.7531644104196 K, F = -3.268371984166407e-8, relative_change = 3.9808284052108875e-13 Converged in 154 iterations to T = 774.7531644096065 K Iter 1: T = 970.4044065643488 K, F = -6743.3841169904035, relative_change = 0.02959559343565118 Iter 2: T = 942.9742978074942 K, F = -5711.395956258857, relative_change = 0.028266677862654258 Iter 3: T = 917.664548883298 K, F = -4835.588359059129, relative_change = 0.026840338048495817 Iter 5: T = 873.1882450393872 K, F = -3462.1428921796664, relative_change = 0.023741114345096247 Iter 10: T = 794.3075947198221 K, F = -1490.033257861481, relative_change = 0.015435575863234068 Iter 15: T = 751.378744399319 K, F = -634.2119731712686, relative_change = 0.00844041675973834 Iter 20: T = 730.5581247347914 K, F = -267.68790872220865, relative_change = 0.004057218987300348 Iter 25: T = 721.1915823221173 K, F = -112.43402151813562, relative_change = 0.0018106064186242195 Iter 30: T = 717.1427762386356 K, F = -47.11066236055779, relative_change = 0.0007791443263068739 Iter 35: T = 715.4250872592153 K, F = -19.718261811212997, relative_change = 0.00032984760002441847 Iter 40: T = 714.7023450803385 K, F = -8.24924349390915, relative_change = 0.00013865850880016246 Iter 45: T = 714.3993104697782 K, F = -3.450429428341592, relative_change = 5.8114173438356206e-5 Iter 50: T = 714.2724415696167 K, F = -1.443097927245271, relative_change = 2.432606638775394e-5 Iter 55: T = 714.2193596117881 K, F = -0.6035360386740437, relative_change = 1.0177308806933522e-5 Iter 60: T = 714.197155925076 K, F = -0.25240864739054675, relative_change = 4.256947112222114e-6 Iter 65: T = 714.1878693471401 K, F = -0.105560777463102, relative_change = 1.7804242111484133e-6 Iter 70: T = 714.1839854614747 K, F = -0.04414685942648766, relative_change = 7.446153238694182e-7 Iter 75: T = 714.1823611517407 K, F = -0.01846275810950615, relative_change = 3.1141063385297036e-7 Iter 80: T = 714.1816818420999 K, F = -0.007721348429082564, relative_change = 1.3023627799547942e-7 Iter 85: T = 714.1813977460114 K, F = -0.0032291605621713737, relative_change = 5.4466477330409794e-8 Iter 90: T = 714.1812789335147 K, F = -0.001350473587080403, relative_change = 2.2778550605050266e-8 Iter 95: T = 714.1812292446887 K, F = -0.0005647841945275456, relative_change = 9.526265260292282e-9 Iter 100: T = 714.1812084642246 K, F = -0.00023619949746367386, relative_change = 3.983998491290726e-9 Iter 105: T = 714.1811997735857 K, F = -9.878145033992425e-5, relative_change = 1.6661558392307823e-9 Iter 110: T = 714.1811961390567 K, F = -4.131158379017119e-5, relative_change = 6.968063132377579e-10 Iter 115: T = 714.1811946190533 K, F = -1.7276998233284324e-5, relative_change = 2.914127336750795e-10 Iter 120: T = 714.1811939833697 K, F = -7.225447876346713e-6, relative_change = 1.2187230085719806e-10 Iter 125: T = 714.1811937175191 K, F = -3.0217684539035616e-6, relative_change = 5.0968449442862156e-11 Iter 130: T = 714.1811936063373 K, F = -1.2637405314430694e-6, relative_change = 2.1315629048376085e-11 Iter 135: T = 714.1811935598397 K, F = -5.285117962161578e-7, relative_change = 8.914457611375702e-12 Iter 140: T = 714.1811935403938 K, F = -2.2102863117545724e-7, relative_change = 3.728110475255275e-12 Iter 145: T = 714.1811935322613 K, F = -9.243755327847936e-8, relative_change = 1.5591528069030357e-12 Iter 150: T = 714.1811935288603 K, F = -3.865811704084621e-8, relative_change = 6.520500549555397e-13 Iter 155: T = 714.1811935274379 K, F = -1.616866818210383e-8, relative_change = 2.72718429758468e-13 Converged in 157 iterations to T = 714.1811935271369 K Iter 1: T = 969.315984978064 K, F = -6991.38201078163, relative_change = 0.03068401502193606 Iter 2: T = 940.7727498613699 K, F = -5923.194461159304, relative_change = 0.029446780574179834 Iter 3: T = 914.3312433362777 K, F = -5016.522379082739, relative_change = 0.028106156910889028 Iter 5: T = 867.5677374019117 K, F = -3594.249643714628, relative_change = 0.025146560411937073 Iter 10: T = 783.3067102305712 K, F = -1550.0117703102917, relative_change = 0.016878673349301203 Iter 15: T = 736.3673211637572 K, F = -660.9499819019217, relative_change = 0.009495149709776331 Iter 20: T = 713.195577961095 K, F = -279.3132273001619, relative_change = 0.004649811479213429 Iter 25: T = 702.662823940934 K, F = -117.39277017468493, relative_change = 0.0020954596280797874 Iter 30: T = 698.0865207776238 K, F = -49.203289739582715, relative_change = 0.0009058378195721063 Iter 35: T = 696.1405460167963 K, F = -20.596870719071248, relative_change = 0.00038424883330743576 Iter 40: T = 695.320929668864 K, F = -8.617303181465443, relative_change = 0.00016166483456500898 Iter 45: T = 694.9771313257086 K, F = -3.6044648426493313, relative_change = 6.77808600995478e-5 Iter 50: T = 694.8331705177195 K, F = -1.5075364130532476, relative_change = 2.8376730799192707e-5 Iter 55: T = 694.7729327944247 K, F = -0.6304883173020097, relative_change = 1.187273687027778e-5 Iter 60: T = 694.7477351281087 K, F = -0.2636809957208434, relative_change = 4.966239029533062e-6 Iter 65: T = 694.7371961953668 K, F = -0.11027511024162462, relative_change = 2.0771011931272307e-6 Iter 70: T = 694.7327885185423 K, F = -0.046118467550415376, relative_change = 8.686966382237639e-7 Iter 75: T = 694.7309451458447 K, F = -0.01928731129759531, relative_change = 3.6330422578040846e-7 Iter 80: T = 694.7301742201889 K, F = -0.008066186965398847, relative_change = 1.5193902601662253e-7 Iter 85: T = 694.7298518089672 K, F = -0.0033733762498676656, relative_change = 6.354286560498578e-8 Iter 90: T = 694.7297169725854 K, F = -0.0014107863264322118, relative_change = 2.6574411549510784e-8 Iter 95: T = 694.7296605823726 K, F = -0.0005900077049029173, relative_change = 1.1113740850002695e-8 Iter 100: T = 694.7296369993074 K, F = -0.00024674827173620795, relative_change = 4.647899964154427e-9 Iter 105: T = 694.729627136587 K, F = -0.00010319307462836047, relative_change = 1.9438074151847465e-9 Iter 110: T = 694.7296230118794 K, F = -4.3156577307357225e-5, relative_change = 8.129235189225847e-10 Iter 115: T = 694.7296212868774 K, F = -1.804859540721626e-5, relative_change = 3.399743162902096e-10 Iter 120: T = 694.729620565461 K, F = -7.548139533408715e-6, relative_change = 1.4218134607831333e-10 Iter 125: T = 694.729620263756 K, F = -3.156721408936747e-6, relative_change = 5.946192410173676e-11 Iter 130: T = 694.7296201375793 K, F = -1.3201776580817892e-6, relative_change = 2.4867669206193482e-11 Iter 135: T = 694.7296200848108 K, F = -5.521145355347201e-7, relative_change = 1.0399965152056148e-11 Iter 140: T = 694.7296200627424 K, F = -2.3090143075332747e-7, relative_change = 4.349399769799538e-12 Iter 145: T = 694.729620053513 K, F = -9.656589872175658e-8, relative_change = 1.8189739939123626e-12 Iter 150: T = 694.7296200496532 K, F = -4.038515333260051e-8, relative_change = 7.607193080216839e-13 Iter 155: T = 694.7296200480391 K, F = -1.6890017717763328e-8, relative_change = 3.181506452397485e-13 Converged in 158 iterations to T = 694.7296200475665 K Iter 1: T = 963.6089457733503 K, F = -8291.736322371407, relative_change = 0.03639105422664964 Iter 2: T = 929.0986486344004 K, F = -7035.726614116745, relative_change = 0.03581359148887252 Iter 3: T = 896.4357612569396 K, F = -5969.0449870700995, relative_change = 0.035155456770353866 Iter 5: T = 836.5338821016626 K, F = -4293.929694560251, relative_change = 0.03356809252613136 Iter 10: T = 717.1706752782612 K, F = -1876.2173822596394, relative_change = 0.027803072788948485 Iter 15: T = 637.8942234972977 K, F = -812.3060726758313, relative_change = 0.019866102206147963 Iter 20: T = 591.5578202263283 K, F = -347.73729541994965, relative_change = 0.011877462008393088 Iter 25: T = 567.7631156321797 K, F = -147.36490747556763, relative_change = 0.006072196126204277 Iter 30: T = 556.6779180033802 K, F = -62.03345456757968, relative_change = 0.0028023825446510478 Iter 35: T = 551.8003628446389 K, F = -26.019948771301863, relative_change = 0.0012252853770569497 Iter 40: T = 549.7141924639343 K, F = -10.895804883882683, relative_change = 0.0005223849851894707 Iter 45: T = 548.8332961880001 K, F = -4.559235825029971, relative_change = 0.00022025903692338977 Iter 50: T = 548.4633938858057 K, F = -1.9071636373876224, relative_change = 9.243206197580135e-5 Iter 55: T = 548.3084318859632 K, F = -0.7976752216799313, relative_change = 3.871193444619219e-5 Iter 60: T = 548.2435785344876 K, F = -0.3336107197262421, relative_change = 1.6199563340158445e-5 Iter 65: T = 548.2164479638801 K, F = -0.13952233474456416, relative_change = 6.7765611569244905e-6 Iter 70: T = 548.2051002134978 K, F = -0.05835031731402532, relative_change = 2.8343380497681614e-6 Iter 75: T = 548.2003542000468 K, F = -0.024402871380826058, relative_change = 1.1854063677516052e-6 Iter 80: T = 548.1983693170371 K, F = -0.010205584804925255, relative_change = 4.957602556447406e-7 Iter 85: T = 548.1975392076487 K, F = -0.004268099642398215, relative_change = 2.073344609362434e-7 Iter 90: T = 548.1971920446579 K, F = -0.0017849706257956344, relative_change = 8.671002771492592e-8 Iter 95: T = 548.1970468567164 K, F = -0.0007464960995345882, relative_change = 3.626321809472349e-8 Iter 100: T = 548.1969861373448 K, F = -0.00031219359559298, relative_change = 1.5165719448117075e-8 Iter 105: T = 548.1969607437712 K, F = -0.00013056309219444673, relative_change = 6.34248649275264e-9 Iter 110: T = 548.1969501238742 K, F = -5.4603044555151525e-5, relative_change = 2.6525038483251347e-9 Iter 115: T = 548.1969456825062 K, F = -2.2835645089258616e-5, relative_change = 1.109308817998217e-9 Iter 120: T = 548.1969438250732 K, F = -9.550139435349214e-6, relative_change = 4.6392620038667364e-10 Iter 125: T = 548.1969430482726 K, F = -3.993983222982944e-6, relative_change = 1.9401952045728894e-10 Iter 130: T = 548.1969427234051 K, F = -1.6703313496513328e-6, relative_change = 8.114127433325018e-11 Iter 135: T = 548.1969425875417 K, F = -6.985524529934395e-7, relative_change = 3.393424682067822e-11 Iter 140: T = 548.196942530722 K, F = -2.9214290353518635e-7, relative_change = 1.419170365501193e-11 Iter 145: T = 548.1969425069594 K, F = -1.221781550098111e-7, relative_change = 5.935164429432525e-12 Iter 150: T = 548.1969424970215 K, F = -5.1096135184058866e-8, relative_change = 2.4821455523511794e-12 Iter 155: T = 548.1969424928653 K, F = -2.136908730521192e-8, relative_change = 1.038066476520875e-12 Iter 160: T = 548.1969424911272 K, F = -8.936195394770863e-9, relative_change = 4.341020622265599e-13 Converged in 164 iterations to T = 548.1969424904999 K Iter 1: T = 966.85562075554 K, F = -7551.978339294268, relative_change = 0.03314437924445991 Iter 2: T = 935.7669971887871 K, F = -6402.410627353251, relative_change = 0.03215435986446359 Iter 3: T = 906.7038097613935 K, F = -5426.375184562307, relative_change = 0.031058145365998817 Iter 5: T = 854.5235148770263 K, F = -3894.4118681819655, relative_change = 0.02854680697634707 Iter 10: T = 756.7267810357409 K, F = -1687.9979526549748, relative_change = 0.02077055637137695 Iter 15: T = 698.7284204428927 K, F = -723.4909503854036, relative_change = 0.012657337960122108 Iter 20: T = 668.5609502725988 K, F = -306.89083743840075, relative_change = 0.006564991941504088 Iter 25: T = 654.3876531758985 K, F = -129.25728482144783, relative_change = 0.0030552566899835856 Iter 30: T = 648.1232200140252 K, F = -54.23172850561788, relative_change = 0.0013413327542892174 Iter 35: T = 645.4382183000757 K, F = -22.712212955921558, relative_change = 0.0005729130667395619 Iter 40: T = 644.3034107058398 K, F = -9.504190484122557, relative_change = 0.00024175542948705466 Iter 45: T = 643.8266981351 K, F = -3.9757654826467577, relative_change = 0.00010148715661214948 Iter 50: T = 643.6269570394453 K, F = -1.6628879782509898, relative_change = 4.251035064998806e-5 Iter 55: T = 643.5433572586297 K, F = -0.695470325238259, relative_change = 1.7790118729745054e-5 Iter 60: T = 643.5083833301056 K, F = -0.29085937048733534, relative_change = 7.442102873325002e-6 Iter 65: T = 643.493754802659 K, F = -0.12164180259100504, relative_change = 3.1127372249874848e-6 Iter 70: T = 643.4876366256418 K, F = -0.05087221901280825, relative_change = 1.301847018316911e-6 Iter 75: T = 643.4850778693516 K, F = -0.021275398296195458, relative_change = 5.444590138299395e-7 Iter 80: T = 643.4840077561396 K, F = -0.00889763067894328, relative_change = 2.277011933365518e-7 Iter 85: T = 643.4835602201302 K, F = -0.0037210962887913035, relative_change = 9.522769618765787e-8 Iter 90: T = 643.4833730548968 K, F = -0.0015562070601156108, relative_change = 3.9825418866893026e-8 Iter 95: T = 643.4832947801034 K, F = -0.0006508244035607347, relative_change = 1.6655476096890437e-8 Iter 100: T = 643.4832620446399 K, F = -0.00027218254252875385, relative_change = 6.9655208137033706e-9 Iter 105: T = 643.4832483542764 K, F = -0.00011382999082815148, relative_change = 2.9130643107529567e-9 Iter 110: T = 643.4832426288026 K, F = -4.760506164080969e-5, relative_change = 1.218278337217659e-9 Iter 115: T = 643.4832402343411 K, F = -1.9909006074181335e-5, relative_change = 5.094985787103476e-10 Iter 120: T = 643.4832392329487 K, F = -8.32618445611999e-6, relative_change = 2.1307840090548518e-10 Iter 125: T = 643.4832388141543 K, F = -3.48211024503442e-6, relative_change = 8.911194425223315e-11 Iter 130: T = 643.4832386390095 K, F = -1.4562595841427495e-6, relative_change = 3.726766641927235e-11 Iter 135: T = 643.4832385657619 K, F = -6.090257192448156e-7, relative_change = 1.558579775544253e-11 Iter 140: T = 643.4832385351289 K, F = -2.5470217729361977e-7, relative_change = 6.518175667509385e-12 Iter 145: T = 643.4832385223178 K, F = -1.0651986354082155e-7, relative_change = 2.7259884076436885e-12 Iter 150: T = 643.48323851696 K, F = -4.45477978949782e-8, relative_change = 1.14003883046696e-12 Iter 155: T = 643.4832385147192 K, F = -1.862985182787824e-8, relative_change = 4.767632855848391e-13 Converged in 160 iterations to T = 643.4832385137822 K Iter 1: T = 965.1619514903189 K, F = -7937.882492470323, relative_change = 0.034838048509681155 Iter 2: T = 932.2973603966873 K, F = -6732.65397729236, relative_change = 0.0340508564836035 Iter 3: T = 901.3767489248545 K, F = -5709.203998476157, relative_change = 0.03316603991957694 Iter 5: T = 845.2545087452903 K, F = -4102.323957146269, relative_change = 0.031084638215901562 Iter 10: T = 736.8162919895199 K, F = -1785.2088562607964, relative_change = 0.02410733675898952 Iter 15: T = 668.9672721823224 K, F = -768.7155664283333, relative_change = 0.015802804291987986 Iter 20: T = 631.8223818859949 K, F = -327.3441197777694, relative_change = 0.008703192658043932 Iter 25: T = 613.7273910656791 K, F = -138.20688535629824, relative_change = 0.00420280527805615 Iter 30: T = 605.5662665502801 K, F = -58.058710597135594, relative_change = 0.0018800708410162505 Iter 35: T = 602.0341070163762 K, F = -24.328805868344205, relative_change = 0.000809932914184249 Iter 40: T = 600.5347609145313 K, F = -10.183198344996182, relative_change = 0.00034304787450406765 Iter 45: T = 599.9037365975229 K, F = -4.260255692928896, relative_change = 0.00014423728721841563 Iter 50: T = 599.6391306672057 K, F = -1.7819569538392845, relative_change = 6.045759463327322e-5 Iter 55: T = 599.528345583117 K, F = -0.7452824915282621, relative_change = 2.5307925032228093e-5 Iter 60: T = 599.4819922550778 K, F = -0.3116942324925865, relative_change = 1.0588251369426148e-5 Iter 65: T = 599.4626029441883 K, F = -0.13035568403492062, relative_change = 4.428863786979188e-6 Iter 70: T = 599.4544934387433 K, F = -0.05451655460196675, relative_change = 1.8523315434350327e-6 Iter 75: T = 599.4511018305543 K, F = -0.02279951805680458, relative_change = 7.74689530258231e-7 Iter 80: T = 599.4496833991873 K, F = -0.009535038405002694, relative_change = 3.2398832375057727e-7 Iter 85: T = 599.4490901906961 K, F = -0.003987668273466416, relative_change = 1.3549647013719096e-7 Iter 90: T = 599.4488421031992 K, F = -0.0016676907287662135, relative_change = 5.666636158450165e-8 Iter 95: T = 599.4487383499367 K, F = -0.0006974482206903443, relative_change = 2.369857009189488e-8 Iter 100: T = 599.448694959064 K, F = -0.0002916811820629639, relative_change = 9.911028682412715e-9 Iter 105: T = 599.4486768124797 K, F = -0.00012198455507916872, relative_change = 4.144911200286541e-9 Iter 110: T = 599.4486692233608 K, F = -5.101539775481667e-5, relative_change = 1.73345146972941e-9 Iter 115: T = 599.4486660495005 K, F = -2.1335248063636403e-5, relative_change = 7.249501066905311e-10 Iter 120: T = 599.4486647221543 K, F = -8.922655996668194e-6, relative_change = 3.0318281116981127e-10 Iter 125: T = 599.4486641670422 K, F = -3.7315620214362077e-6, relative_change = 1.2679469757927197e-10 Iter 130: T = 599.4486639348877 K, F = -1.5605833763032706e-6, relative_change = 5.302704242184826e-11 Iter 135: T = 599.4486638377979 K, F = -6.526548758101214e-7, relative_change = 2.2176551627172164e-11 Iter 140: T = 599.4486637971938 K, F = -2.729487986741219e-7, relative_change = 9.27452372099392e-12 Iter 145: T = 599.4486637802127 K, F = -1.1415026918148996e-7, relative_change = 3.878710529473111e-12 Iter 150: T = 599.448663773111 K, F = -4.773913070410529e-8, relative_change = 1.6221273087490523e-12 Iter 155: T = 599.448663770141 K, F = -1.9965623709872204e-8, relative_change = 6.784116714963589e-13 Iter 160: T = 599.4486637688989 K, F = -8.350455382721833e-9, relative_change = 2.8374001615601085e-13 Converged in 162 iterations to T = 599.4486637686359 K Iter 1: T = 980.0830154394397 K, F = -4538.103878067077, relative_change = 0.01991698456056026 Iter 2: T = 962.2122932690876 K, F = -3833.4101454970155, relative_change = 0.01823388620028209 Iter 3: T = 946.2673521782486 K, F = -3236.6346933835116, relative_change = 0.016571125937984543 Iter 5: T = 919.6328997424313 K, F = -2304.164562702458, relative_change = 0.013395639624868241 Iter 10: T = 877.3219636914331 K, F = -978.260851921033, relative_change = 0.0070447013366661025 Iter 15: T = 857.2799169074211 K, F = -412.2495051738558, relative_change = 0.003305500893544442 Iter 20: T = 848.3821724769876 K, F = -173.01178333980775, relative_change = 0.0014571131590463773 Iter 25: T = 844.5604879982834 K, F = -72.46608295043183, relative_change = 0.0006235107415690395 Iter 30: T = 842.9437649541436 K, F = -30.32588368527729, relative_change = 0.0002633156954352151 Iter 35: T = 842.2643381827892 K, F = -12.68612113306141, relative_change = 0.00011057528594869321 Iter 40: T = 841.9796126481913 K, F = -5.306097145707034, relative_change = 4.6323706268760926e-5 Iter 45: T = 841.8604350136585 K, F = -2.2191800008968805, relative_change = 1.938711987998835e-5 Iter 50: T = 841.8105756335781 K, F = -0.9281062707431471, relative_change = 8.110374999008746e-6 Iter 55: T = 841.7897207178864 K, F = -0.38814839632997533, relative_change = 3.3922843689017413e-6 Iter 60: T = 841.7809983959359 K, F = -0.16232886677485925, relative_change = 1.4187688269067666e-6 Iter 65: T = 841.7773505210225 K, F = -0.06788797073094166, relative_change = 5.933591840990819e-7 Iter 70: T = 841.7758249194292 K, F = -0.02839157760372668, relative_change = 2.4815219120557417e-7 Iter 75: T = 841.7751868916955 K, F = -0.011873699879523247, relative_change = 1.0378061118623977e-7 Iter 80: T = 841.7749200603655 K, F = -0.004965723624268392, relative_change = 4.3402361162316057e-8 Iter 85: T = 841.7748084682272 K, F = -0.002076725016544323, relative_change = 1.8151398046997106e-8 Iter 90: T = 841.7747617990466 K, F = -0.0008685112190267574, relative_change = 7.591133578449314e-9 Iter 95: T = 841.7747422814351 K, F = -0.00036322176520764415, relative_change = 3.1747030807205524e-9 Iter 100: T = 841.7747341189365 K, F = -0.00015190368200679316, relative_change = 1.3276988212123167e-9 Iter 105: T = 841.7747307052821 K, F = -6.35279350627016e-5, relative_change = 5.552595237396996e-10 Iter 110: T = 841.774729277651 K, F = -2.656814174106792e-5, relative_change = 2.322161712695196e-10 Iter 115: T = 841.7747286805986 K, F = -1.1111115422623996e-5, relative_change = 9.711558737661402e-11 Iter 120: T = 841.7747284309041 K, F = -4.646799901086851e-6, relative_change = 4.0614887460724776e-11 Iter 125: T = 841.7747283264789 K, F = -1.943345947275077e-6, relative_change = 1.6985619926089747e-11 Iter 130: T = 841.7747282828071 K, F = -8.127304922389555e-7, relative_change = 7.103589181474096e-12 Iter 135: T = 841.7747282645429 K, F = -3.398913677177262e-7, relative_change = 2.9707863380319902e-12 Iter 140: T = 841.7747282569047 K, F = -1.4214759480601913e-7, relative_change = 1.242426765609351e-12 Iter 145: T = 841.7747282537104 K, F = -5.9447473388374306e-8, relative_change = 5.195946662881761e-13 Converged in 150 iterations to T = 841.7747282523744 K Iter 1: T = 976.4300652543527 K, F = -5370.432052591855, relative_change = 0.02356993474564729 Iter 2: T = 955.0219291750491 K, F = -4541.063579882197, relative_change = 0.02192490465123781 Iter 3: T = 935.6840110948327 K, F = -3838.0376964864913, relative_change = 0.020248663920126427 Iter 5: T = 902.7980737081963 K, F = -2737.8401692404523, relative_change = 0.01689572561678062 Iter 10: T = 848.6343277414713 K, F = -1167.4855089846108, relative_change = 0.009508052487683119 Iter 15: T = 821.8903413991076 K, F = -493.379503356798, relative_change = 0.004657220528382794 Iter 20: T = 809.7322089615805 K, F = -207.3645754106124, relative_change = 0.002099061470026645 Iter 25: T = 804.4493564418964 K, F = -86.9138645017935, relative_change = 0.0009074481729077345 Iter 30: T = 802.2028691351804 K, F = -36.382866616186, relative_change = 0.0003849418837872229 Iter 35: T = 801.256668919501 K, F = -15.221847460656438, relative_change = 0.00016195821084756054 Iter 40: T = 800.859771189019 K, F = -6.367030380594676, relative_change = 6.790417998563441e-5 Iter 45: T = 800.6935753584453 K, F = -2.6629560337155773, relative_change = 2.8428414823184103e-5 Iter 50: T = 800.6240337353943 K, F = -1.1137129070222953, relative_change = 1.189437106117534e-5 Iter 55: T = 800.5949442008932 K, F = -0.4657737930543677, relative_change = 4.975290088037649e-6 Iter 60: T = 800.5827774908388 K, F = -0.19479316941378755, relative_change = 2.080887045542147e-6 Iter 65: T = 800.5776890315904 K, F = -0.08146500583278415, relative_change = 8.702800304402447e-7 Iter 70: T = 800.5755609429154 K, F = -0.034069669123920066, relative_change = 3.639664374054212e-7 Iter 75: T = 800.5746709448268 K, F = -0.014248347887187651, relative_change = 1.5221597398219595e-7 Iter 80: T = 800.5742987359497 K, F = -0.005958830186502118, relative_change = 6.3658689109041e-8 Iter 85: T = 800.5741430735691 K, F = -0.002492054111229991, relative_change = 2.6622850426957877e-8 Iter 90: T = 800.5740779736705 K, F = -0.0010422068210722557, relative_change = 1.1133998627442554e-8 Iter 95: T = 800.5740507481098 K, F = -0.000435863344186882, relative_change = 4.656372001779603e-9 Iter 100: T = 800.5740393620541 K, F = -0.00018228325515867727, relative_change = 1.9473505044882895e-9 Iter 105: T = 800.5740346002694 K, F = -7.623303265280601e-5, relative_change = 8.144052434768393e-10 Iter 110: T = 800.5740326088344 K, F = -3.188156504629891e-5, relative_change = 3.405940069276925e-10 Iter 115: T = 800.5740317759925 K, F = -1.3333252635416848e-5, relative_change = 1.424404967690398e-10 Iter 120: T = 800.5740314276879 K, F = -5.576125571615798e-6, relative_change = 5.957031789850043e-11 Iter 125: T = 800.5740312820228 K, F = -2.332002713156811e-6, relative_change = 2.4913022725026102e-11 Iter 130: T = 800.5740312211041 K, F = -9.752726152223445e-7, relative_change = 1.0418936778183316e-11 Iter 135: T = 800.574031195627 K, F = -4.078700780452138e-7, relative_change = 4.357317627072761e-12 Iter 140: T = 800.5740311849722 K, F = -1.7057724421842835e-7, relative_change = 1.8222940908530152e-12 Iter 145: T = 800.5740311805162 K, F = -7.133669766012929e-8, relative_change = 7.620972141161054e-13 Iter 150: T = 800.5740311786526 K, F = -2.983162039615905e-8, relative_change = 3.186942421283477e-13 Converged in 153 iterations to T = 800.574031178107 K Iter 1: T = 980.7060837662686 K, F = -4396.13716710813, relative_change = 0.019293916233731386 Iter 2: T = 963.4303651200948 K, F = -3712.848319690774, relative_change = 0.017615592410550565 Iter 3: T = 948.048029610498 K, F = -3134.303826709598, relative_change = 0.015966214130773582 Iter 5: T = 922.4283113558738 K, F = -2230.576399264702, relative_change = 0.012840227640992354 Iter 10: T = 881.9582762848609 K, F = -946.3779756473162, relative_change = 0.006682679549071335 Iter 15: T = 862.906188304208 K, F = -398.6513962056065, relative_change = 0.003116289483877418 Iter 20: T = 854.4762304994347 K, F = -167.27087475390215, relative_change = 0.0013694875269770514 Iter 25: T = 850.861209920283 K, F = -70.0550224777298, relative_change = 0.0005852006085433507 Iter 30: T = 849.3329872069428 K, F = -29.315719455719307, relative_change = 0.00024698825264394213 Iter 35: T = 848.690945780645 K, F = -12.263334087158281, relative_change = 0.00010369236290681461 Iter 40: T = 848.4219214099826 K, F = -5.1292255178630946, relative_change = 4.343555337529391e-5 Iter 45: T = 848.3093218252794 K, F = -2.145200174930498, relative_change = 1.817756893947765e-5 Iter 50: T = 848.2622155039068 K, F = -0.8971652734953999, relative_change = 7.604230152604071e-6 Iter 55: T = 848.2425123073332 K, F = -0.375208195480629, relative_change = 3.180556710758512e-6 Iter 60: T = 848.2342717105519 K, F = -0.1569170666593036, relative_change = 1.330212722589798e-6 Iter 65: T = 848.230825309787 K, F = -0.06562468191956294, relative_change = 5.563223773115703e-7 Iter 70: T = 848.2293839690003 K, F = -0.027445041553787908, relative_change = 2.3266267881999493e-7 Iter 75: T = 848.2287811804767 K, F = -0.01147784691198983, relative_change = 9.730266358591252e-8 Iter 80: T = 848.2285290866638 K, F = -0.004800173137097241, relative_change = 4.069319763779436e-8 Iter 85: T = 848.2284236579412 K, F = -0.002007489815983199, relative_change = 1.70183920140066e-8 Iter 90: T = 848.2283795663765 K, F = -0.0008395562284746472, relative_change = 7.117296653975226e-9 Iter 95: T = 848.2283611267552 K, F = -0.00035111244231278427, relative_change = 2.9765387769686863e-9 Iter 100: T = 848.2283534150849 K, F = -0.000146839418200706, relative_change = 1.2448241318441928e-9 Iter 105: T = 848.2283501899722 K, F = -6.140999776360623e-5, relative_change = 5.206003229463209e-10 Iter 110: T = 848.2283488411915 K, F = -2.568239262079608e-5, relative_change = 2.1772125843604856e-10 Iter 115: T = 848.2283482771153 K, F = -1.074068194140132e-5, relative_change = 9.105361913414472e-11 Iter 120: T = 848.228348041212 K, F = -4.491881228974037e-6, relative_change = 3.8079709034475634e-11 Iter 125: T = 848.2283479425544 K, F = -1.8785583106861736e-6, relative_change = 1.5925388555115394e-11 Iter 130: T = 848.2283479012947 K, F = -7.85636454558869e-7, relative_change = 6.660195605129171e-12 Iter 135: T = 848.2283478840393 K, F = -3.285626342108827e-7, relative_change = 2.785374074605096e-12 Iter 140: T = 848.2283478768229 K, F = -1.3740819326812925e-7, relative_change = 1.1648714105975489e-12 Iter 145: T = 848.2283478738049 K, F = -5.7466070790823665e-8, relative_change = 4.87165876740086e-13 Converged in 150 iterations to T = 848.2283478725427 K Iter 1: T = 967.4459490674267 K, F = -7417.471471883721, relative_change = 0.03255405093257335 Iter 2: T = 936.9717660512044 K, F = -6287.373192546547, relative_change = 0.03149962335942168 Iter 3: T = 908.5457676241863 K, F = -5327.928571625538, relative_change = 0.030338159010721698 Iter 5: T = 857.6975678241528 K, F = -3822.1939268208607, relative_change = 0.027701269773233256 Iter 10: T = 763.3397935105329 K, F = -1654.562601959905, relative_change = 0.019745311151036633 Iter 15: T = 708.2943993619414 K, F = -708.1826452191314, relative_change = 0.011775707996632275 Iter 20: T = 680.0744333114162 K, F = -300.07894509242414, relative_change = 0.006008983563329161 Iter 25: T = 666.9418403546741 K, F = -126.30978741481482, relative_change = 0.002770260333958785 Iter 30: T = 661.1667061648603 K, F = -52.97885773467883, relative_change = 0.0012106140935706849 Iter 35: T = 658.6972893181675 K, F = -22.184456378285798, relative_change = 0.0005160106063859932 Iter 40: T = 657.6546866775459 K, F = -9.282792656447896, relative_change = 0.00021754965199706733 Iter 45: T = 657.2169030826047 K, F = -3.883053114875277, relative_change = 9.129121158723259e-5 Iter 50: T = 657.0335076355841 K, F = -1.624093252674196, relative_change = 3.823345089726089e-5 Iter 55: T = 656.9567552404642 K, F = -0.6792421726488681, relative_change = 1.5999216084974238e-5 Iter 60: T = 656.9246469754855 K, F = -0.2840719093759765, relative_change = 6.692731559325319e-6 Iter 65: T = 656.9112172537515 K, F = -0.11880309088295016, relative_change = 2.7992721640600223e-6 Iter 70: T = 656.9056004930117 K, F = -0.04968501586109875, relative_change = 1.170740110277374e-6 Iter 75: T = 656.9032514457393 K, F = -0.020778892259047776, relative_change = 4.896264268212742e-7 Iter 80: T = 656.9022690372221 K, F = -0.008689985312180126, relative_change = 2.0476918114560856e-7 Iter 85: T = 656.9018581806922 K, F = -0.0036342564107191278, relative_change = 8.563719023370506e-8 Iter 90: T = 656.9016863553127 K, F = -0.001519889569028876, relative_change = 3.581454348292559e-8 Iter 95: T = 656.9016144958393 K, F = -0.0006356359925984711, relative_change = 1.4978078155503015e-8 Iter 100: T = 656.9015844433411 K, F = -0.00026583056740236977, relative_change = 6.2640126240259636e-9 Iter 105: T = 656.9015718750261 K, F = -0.00011117351989259339, relative_change = 2.6196851712920535e-9 Iter 110: T = 656.9015666188062 K, F = -4.649409380713676e-5, relative_change = 1.0955836682776016e-9 Iter 115: T = 656.9015644205923 K, F = -1.9444385092659555e-5, relative_change = 4.581861768289346e-10 Iter 120: T = 656.901563501273 K, F = -8.13187422027406e-6, relative_change = 1.9161893608419438e-10 Iter 125: T = 656.9015631168027 K, F = -3.400847028933729e-6, relative_change = 8.013733041523893e-11 Iter 130: T = 656.9015629560125 K, F = -1.422274380158406e-6, relative_change = 3.351437777324656e-11 Iter 135: T = 656.9015628887682 K, F = -5.948117256515673e-7, relative_change = 1.401610347852757e-11 Iter 140: T = 656.9015628606459 K, F = -2.487576181708917e-7, relative_change = 5.861707776938361e-12 Iter 145: T = 656.9015628488846 K, F = -1.0403214656395932e-7, relative_change = 2.4514065020457303e-12 Iter 150: T = 656.9015628439661 K, F = -4.350794730045848e-8, relative_change = 1.0252183428824737e-12 Iter 155: T = 656.9015628419091 K, F = -1.8195906947848783e-8, relative_change = 4.2876712706689227e-13 Converged in 159 iterations to T = 656.9015628411667 K Iter 1: T = 973.5721794804094 K, F = -6021.604044736022, relative_change = 0.026427820519590556 Iter 2: T = 949.3373085947429 K, F = -5095.666802049697, relative_change = 0.024892731526696413 Iter 3: T = 927.2275050267259 K, F = -4310.296632232295, relative_change = 0.023289723650221895 Iter 5: T = 889.0588587353006 K, F = -3079.9188815760185, relative_change = 0.019958401302944125 Iter 10: T = 824.1166656751955 K, F = -1318.6379734820794, relative_change = 0.011956073808361419 Iter 15: T = 790.7237055909637 K, F = -558.8688377953767, relative_change = 0.006121335904209607 Iter 20: T = 775.1536930929757 K, F = -235.2696200689702, relative_change = 0.0028274315799339967 Iter 25: T = 768.2997040786379 K, F = -98.68658297741608, relative_change = 0.0012367425654250005 Iter 30: T = 765.3675801575337 K, F = -41.325325827448864, relative_change = 0.000527366034934979 Iter 35: T = 764.1293612870234 K, F = -17.292242153242, relative_change = 0.00022237676493640408 Iter 40: T = 763.6093930658127 K, F = -7.233494859062106, relative_change = 9.332388212443308e-5 Iter 45: T = 763.3915608022155 K, F = -3.025427344838363, relative_change = 3.9085990087257896e-5 Iter 50: T = 763.3003948969259 K, F = -1.2653212270248038, relative_change = 1.6356188392141206e-5 Iter 55: T = 763.2622566942209 K, F = -0.5291814392411138, relative_change = 6.842096990125582e-6 Iter 60: T = 763.246304824269 K, F = -0.22131157048400196, relative_change = 2.861751756910943e-6 Iter 65: T = 763.2396332087002 K, F = -0.09255541689385272, relative_change = 1.1968721289424856e-6 Iter 70: T = 763.2368429976392 K, F = -0.038707828801262556, relative_change = 5.005555526019497e-7 Iter 75: T = 763.2356760872501 K, F = -0.016188084684484627, relative_change = 2.093399426192405e-7 Iter 80: T = 763.2351880695005 K, F = -0.006770051811845534, relative_change = 8.754874959115908e-8 Iter 85: T = 763.2349839743191 K, F = -0.002831316775589121, relative_change = 3.661398256370469e-8 Iter 90: T = 763.234898619219 K, F = -0.001184090534003479, relative_change = 1.531241351166736e-8 Iter 95: T = 763.2348629226867 K, F = -0.000495200808083851, relative_change = 6.4038356996138534e-9 Iter 100: T = 763.2348479939689 K, F = -0.00020709889306769202, relative_change = 2.678160832205379e-9 Iter 105: T = 763.2348417506005 K, F = -8.661123036168838e-5, relative_change = 1.1200388876156558e-9 Iter 110: T = 763.2348391395492 K, F = -3.6221850956197343e-5, relative_change = 4.68413647326701e-10 Iter 115: T = 763.2348380475763 K, F = -1.5148409827747678e-5, relative_change = 1.9589617205181853e-10 Iter 120: T = 763.2348375909003 K, F = -6.335246270139372e-6, relative_change = 8.192612366402653e-11 Iter 125: T = 763.2348373999129 K, F = -2.6494755793748936e-6, relative_change = 3.42624824613994e-11 Iter 130: T = 763.2348373200397 K, F = -1.1080415992514858e-6, relative_change = 1.4328969919673078e-11 Iter 135: T = 763.2348372866356 K, F = -4.6339418735552584e-7, relative_change = 5.992519935567224e-12 Iter 140: T = 763.2348372726657 K, F = -1.937956153330589e-7, relative_change = 2.5061257134826472e-12 Iter 145: T = 763.2348372668234 K, F = -8.104709203760052e-8, relative_change = 1.048084607160766e-12 Iter 150: T = 763.2348372643801 K, F = -3.389498737238483e-8, relative_change = 4.383231234128101e-13 Converged in 154 iterations to T = 763.2348372634982 K Iter 1: T = 970.0259578004835 K, F = -6829.614027834833, relative_change = 0.02997404219951652 Iter 2: T = 942.2097023804706 K, F = -5785.0253668878495, relative_change = 0.028675784597647015 Iter 3: T = 916.50834902561 K, F = -4898.473747311178, relative_change = 0.02727774219467998 Iter 5: T = 871.2440518471071 K, F = -3508.030743859681, relative_change = 0.024223291605762826 Iter 10: T = 790.5306842761912 K, F = -1510.819678078715, relative_change = 0.01592070374966207 Iter 15: T = 746.2580858160634 K, F = -643.4527044301271, relative_change = 0.008788483125615403 Iter 20: T = 724.6597923684358 K, F = -271.6968587142669, relative_change = 0.0042503789199557765 Iter 25: T = 714.9104723376844 K, F = -114.14185898079708, relative_change = 0.0019028487459322207 Iter 30: T = 710.6891989438801 K, F = -47.83093678571121, relative_change = 0.0008200448524710112 Iter 35: T = 708.8970024075302 K, F = -20.020592148336807, relative_change = 0.0003473862798807465 Iter 40: T = 708.142666751397 K, F = -8.375878203255592, relative_change = 0.00014607135390318427 Iter 45: T = 707.8263422218802 K, F = -3.5034242256916244, relative_change = 6.122810886041423e-5 Iter 50: T = 707.6939017265764 K, F = -1.4652670647565826, relative_change = 2.5630775974592677e-5 Iter 55: T = 707.6384872765236 K, F = -0.6128085016743418, relative_change = 1.0723378873623513e-5 Iter 60: T = 707.6153076961041 K, F = -0.2562866885206364, relative_change = 4.4853945210979655e-6 Iter 65: T = 707.6056129146868 K, F = -0.10718265318130615, relative_change = 1.8759766605601335e-6 Iter 70: T = 707.601558300666 K, F = -0.04482515292278555, relative_change = 7.845787759647657e-7 Iter 75: T = 707.599862588059 K, F = -0.01874642955072059, relative_change = 3.2812422504513603e-7 Iter 80: T = 707.5991534164926 K, F = -0.007839983387310068, relative_change = 1.3722617107074e-7 Iter 85: T = 707.5988568317218 K, F = -0.0032787751477748595, relative_change = 5.7389746251605974e-8 Iter 90: T = 707.5987327962971 K, F = -0.0013712230054565566, relative_change = 2.4001098723565993e-8 Iter 95: T = 707.5986809231782 K, F = -0.0005734618515241818, relative_change = 1.003754988199103e-8 Iter 100: T = 707.5986592292163 K, F = -0.00023982859748816754, relative_change = 4.197823892570621e-9 Iter 105: T = 707.5986501565417 K, F = -0.00010029918349496736, relative_change = 1.7555801893225664e-9 Iter 110: T = 707.5986463622406 K, F = -4.194631615050959e-5, relative_change = 7.342046162583e-10 Iter 115: T = 707.5986447754186 K, F = -1.754245050589187e-5, relative_change = 3.0705314462446883e-10 Iter 120: T = 707.5986441117907 K, F = -7.336460586149229e-6, relative_change = 1.284132625993631e-10 Iter 125: T = 707.5986438342536 K, F = -3.068196081312813e-6, relative_change = 5.3703971445789666e-11 Iter 130: T = 707.5986437181842 K, F = -1.283155227738142e-6, relative_change = 2.245962446288551e-11 Iter 135: T = 707.5986436696427 K, F = -5.366303468257172e-7, relative_change = 9.392874539642015e-12 Iter 140: T = 707.598643649342 K, F = -2.2442504032937904e-7, relative_change = 3.928209166934268e-12 Iter 145: T = 707.598643640852 K, F = -9.385597554700809e-8, relative_change = 1.6428019930185708e-12 Iter 150: T = 707.5986436373014 K, F = -3.9251220718128366e-8, relative_change = 6.870312012621675e-13 Iter 155: T = 707.5986436358165 K, F = -1.641578717404002e-8, relative_change = 2.873326682741515e-13 Converged in 157 iterations to T = 707.5986436355023 K Iter 1: T = 973.4078481658737 K, F = -6059.047091072433, relative_change = 0.026592151834126325 Iter 2: T = 949.0088341756757 K, F = -5127.582832916216, relative_change = 0.025065561199420577 Iter 3: T = 926.7363862836571 K, F = -4337.4992428427495, relative_change = 0.023469168136211065 Iter 5: T = 888.2526535471882 K, F = -3099.6665816544196, relative_change = 0.0201441106863209 Iter 10: T = 822.643181790826 K, F = -1327.4234255546532, relative_change = 0.012114415936766832 Iter 15: T = 788.8191858511522 K, F = -562.6992326461054, relative_change = 0.006220536792669798 Iter 20: T = 773.0213321488898 K, F = -236.90832474028346, relative_change = 0.002878081132566911 Iter 25: T = 766.0607798637949 K, F = -99.37935517544446, relative_change = 0.0012599289732710152 Iter 30: T = 763.08181433345 K, F = -41.61644266672929, relative_change = 0.0005374503797758178 Iter 35: T = 761.8235817699156 K, F = -17.414241073370587, relative_change = 0.00022666493276514554 Iter 40: T = 761.2951673930609 K, F = -7.284560590807339, relative_change = 9.512985287221055e-5 Iter 45: T = 761.0737893670407 K, F = -3.0467914361160475, relative_change = 3.984349081696928e-5 Iter 50: T = 760.9811382126503 K, F = -1.2742573109598618, relative_change = 1.6673374167935162e-5 Iter 55: T = 760.9423784458724 K, F = -0.532918855359878, relative_change = 6.974816160191996e-6 Iter 60: T = 760.9261665577286 K, F = -0.22287464437271498, relative_change = 2.917268449707829e-6 Iter 65: T = 760.9193861867315 K, F = -0.09320912038117646, relative_change = 1.220091963622582e-6 Iter 70: T = 760.9165504906273 K, F = -0.03898121668599441, relative_change = 5.102667304656477e-7 Iter 75: T = 760.915364557461 K, F = -0.016302418987366174, relative_change = 2.134013371506082e-7 Iter 80: T = 760.9148685840906 K, F = -0.006817867822395907, relative_change = 8.924728448132343e-8 Iter 85: T = 760.9146611617617 K, F = -0.0028513140084684974, relative_change = 3.732433208797145e-8 Iter 90: T = 760.9145744152069 K, F = -0.0011924536164080735, relative_change = 1.560949050313248e-8 Iter 95: T = 760.914538136751 K, F = -0.0004986983501164, relative_change = 6.528076916399436e-9 Iter 100: T = 760.9145229646658 K, F = -0.000208561607658031, relative_change = 2.7301200125011778e-9 Iter 105: T = 760.9145166195183 K, F = -8.722295517260559e-5, relative_change = 1.1417688403663447e-9 Iter 110: T = 760.9145139659017 K, F = -3.647768304115839e-5, relative_change = 4.775013925438163e-10 Iter 115: T = 760.9145128561275 K, F = -1.5255402916913852e-5, relative_change = 1.9969678937689778e-10 Iter 120: T = 760.9145123920067 K, F = -6.37999054042826e-6, relative_change = 8.351556742339102e-11 Iter 125: T = 760.914512197906 K, F = -2.6681886534651866e-6, relative_change = 3.492721317459523e-11 Iter 130: T = 760.9145121167305 K, F = -1.1158678384637355e-6, relative_change = 1.4606970851884107e-11 Iter 135: T = 760.914512082782 K, F = -4.66668282239624e-7, relative_change = 6.108796904663679e-12 Iter 140: T = 760.9145120685844 K, F = -1.9516417570919486e-7, relative_change = 2.5547446825779865e-12 Iter 145: T = 760.9145120626468 K, F = -8.162078812823381e-8, relative_change = 1.0684351967180863e-12 Iter 150: T = 760.9145120601637 K, F = -3.413611215918877e-8, relative_change = 4.4684968801402594e-13 Converged in 155 iterations to T = 760.9145120591252 K Iter 1: T = 964.3469958691782 K, F = -8123.570905970145, relative_change = 0.03565300413082179 Iter 2: T = 930.6208706698981 K, F = -6891.6638552728755, relative_change = 0.03497301836760768 Iter 3: T = 898.7907206501259 K, F = -5845.498102194113, relative_change = 0.034203133652976836 Iter 5: T = 840.7054616073082 K, F = -4202.754180106534, relative_change = 0.03236833941045919 Iter 10: T = 726.6873481565599 K, F = -1832.726151375629, relative_change = 0.025959752358439732 Iter 15: T = 653.1862355295165 K, F = -791.2966927100109, relative_change = 0.017755101731379223 Iter 20: T = 611.6589746989418 K, F = -337.8027881835624, relative_change = 0.010164968039402124 Iter 25: T = 590.9291248059253 K, F = -142.86478868330485, relative_change = 0.005037620025256538 Iter 30: T = 581.4426420743896 K, F = -60.07029788590218, relative_change = 0.0022848979702374903 Iter 35: T = 577.3069102184317 K, F = -25.18257234885164, relative_change = 0.0009907325501308615 Iter 40: T = 575.5455560151414 K, F = -10.542554806335685, relative_change = 0.0004208233431557195 Iter 45: T = 574.8032006013221 K, F = -4.4109543019554724, relative_change = 0.0001771542125966555 Iter 50: T = 574.4917214067871 K, F = -1.8450535480611092, relative_change = 7.429301555373533e-5 Iter 55: T = 574.3612781156631 K, F = -0.7716829947635611, relative_change = 3.110622834691194e-5 Iter 60: T = 574.3066937939808 K, F = -0.3227374725844657, relative_change = 1.3015303688631512e-5 Iter 65: T = 574.283860484812 K, F = -0.13497448998365705, relative_change = 5.444259413324951e-6 Iter 70: T = 574.2743103609162 K, F = -0.056448262824625894, relative_change = 2.2770474485369576e-6 Iter 75: T = 574.2703162168857 K, F = -0.02360739347222046, relative_change = 9.523222217744399e-7 Iter 80: T = 574.2686457887379 K, F = -0.009872903644172315, relative_change = 3.9827843556850144e-7 Iter 85: T = 574.2679471905928 K, F = -0.004128967918594906, relative_change = 1.665658317599524e-7 Iter 90: T = 574.2676550276057 K, F = -0.0017267839918997385, relative_change = 6.966000080801402e-8 Iter 95: T = 574.267532841398 K, F = -0.0007221617394722046, relative_change = 2.9132675858383016e-8 Iter 100: T = 574.2674817416391 K, F = -0.0003020166726633855, relative_change = 1.2183638477374566e-8 Iter 105: T = 574.267460371105 K, F = -0.00012630698135079887, relative_change = 5.095344098121856e-9 Iter 110: T = 574.2674514336915 K, F = -5.282308784920753e-5, relative_change = 2.1309339039004157e-9 Iter 115: T = 574.2674476959584 K, F = -2.209124678215213e-5, relative_change = 8.911820592659643e-10 Iter 120: T = 574.2674461327937 K, F = -9.2388228791207e-6, relative_change = 3.7270297084181867e-10 Iter 125: T = 574.2674454790595 K, F = -3.863785980273704e-6, relative_change = 1.5586883093126871e-10 Iter 130: T = 574.26744520566 K, F = -1.6158811188549116e-6, relative_change = 6.518619374276496e-11 Iter 135: T = 574.2674450913211 K, F = -6.757799295153966e-7, relative_change = 2.7261610362671175e-11 Iter 140: T = 574.2674450435032 K, F = -2.8261958023856337e-7, relative_change = 1.1401144875528904e-11 Iter 145: T = 574.2674450235053 K, F = -1.1819451029015937e-7, relative_change = 4.768079884614582e-12 Iter 150: T = 574.2674450151419 K, F = -4.943100379017906e-8, relative_change = 1.994094093591966e-12 Iter 155: T = 574.2674450116442 K, F = -2.067279747386408e-8, relative_change = 8.339604738118006e-13 Iter 160: T = 574.2674450101814 K, F = -8.645409499408174e-9, relative_change = 3.487641095321613e-13 Converged in 163 iterations to T = 574.2674450097531 K Iter 1: T = 963.5494662729344 K, F = -8305.288783120805, relative_change = 0.03645053372706564 Iter 2: T = 928.9758091102287 K, F = -7047.339049775201, relative_change = 0.035881559144481316 Iter 3: T = 896.2454339276303 K, F = -5979.006391062501, relative_change = 0.03523275295397356 Iter 5: T = 836.1955087677811 K, F = -4301.2868633971375, relative_change = 0.03366636607161532 Iter 10: T = 716.388661611907 K, F = -1879.7422750637777, relative_change = 0.027959156065813867 Iter 15: T = 636.6157120931036 K, F = -814.0249402333262, relative_change = 0.02005320148488949 Iter 20: T = 589.8488353707381 K, F = -348.56046381829395, relative_change = 0.012036383564067641 Iter 25: T = 565.770234775328 K, F = -147.74189466248836, relative_change = 0.006171474128944741 Iter 30: T = 554.5336499557015 K, F = -62.19902844264645, relative_change = 0.002852987171529404 Iter 35: T = 549.5850313162374 K, F = -26.09081425495115, relative_change = 0.0012484323475778028 Iter 40: T = 547.4675765920273 K, F = -10.925745955715952, relative_change = 0.0005324484955111058 Iter 45: T = 546.5733052588996 K, F = -4.571812415823131, relative_change = 0.00022453767028500775 Iter 50: T = 546.1977569488414 K, F = -1.9124330416216677, relative_change = 9.423389683594819e-5 Iter 55: T = 546.040424450671 K, F = -0.7998806594964583, relative_change = 3.946767916984589e-5 Iter 60: T = 545.9745780992475 K, F = -0.33453335993350464, relative_change = 1.651601010148913e-5 Iter 65: T = 545.9470319586716 K, F = -0.13990824637894544, relative_change = 6.908970450234502e-6 Iter 70: T = 545.9355103619836 K, F = -0.058511719351507535, relative_change = 2.8897250062564743e-6 Iter 75: T = 545.9306916351863 K, F = -0.024470373246104293, relative_change = 1.2085719202192114e-6 Iter 80: T = 545.9286763410572 K, F = -0.010233815172378175, relative_change = 5.054487277071195e-7 Iter 85: T = 545.9278335131077 K, F = -0.004279905967782355, relative_change = 2.1138635883235306e-7 Iter 90: T = 545.9274810310162 K, F = -0.0017899081810459905, relative_change = 8.840459087771825e-8 Iter 95: T = 545.927333618555 K, F = -0.0007485610458930203, relative_change = 3.697190659382916e-8 Iter 100: T = 545.9272719688613 K, F = -0.00031305718123592063, relative_change = 1.5462101787629708e-8 Iter 105: T = 545.9272461862157 K, F = -0.0001309242544602629, relative_change = 6.466437205192416e-9 Iter 110: T = 545.9272354036041 K, F = -5.4754086728531215e-5, relative_change = 2.7043415164788976e-9 Iter 115: T = 545.9272308941869 K, F = -2.2898813372085325e-5, relative_change = 1.1309879830983232e-9 Iter 120: T = 545.9272290082947 K, F = -9.576557257695573e-6, relative_change = 4.729926909330224e-10 Iter 125: T = 545.927228219592 K, F = -4.005030455694891e-6, relative_change = 1.9781118564450198e-10 Iter 130: T = 545.9272278897473 K, F = -1.6749516764946737e-6, relative_change = 8.272700585998814e-11 Iter 135: T = 545.9272277518022 K, F = -7.004849203184893e-7, relative_change = 3.459742808760157e-11 Iter 140: T = 545.9272276941119 K, F = -2.9295120979044853e-7, relative_change = 1.4469060111089568e-11 Iter 145: T = 545.9272276699852 K, F = -1.225160422557714e-7, relative_change = 6.0511509121691304e-12 Iter 150: T = 545.927227659895 K, F = -5.1237228765321774e-8, relative_change = 2.5306416849502157e-12 Iter 155: T = 545.9272276556752 K, F = -2.142740895827444e-8, relative_change = 1.0583143471838376e-12 Iter 160: T = 545.9272276539106 K, F = -8.96150750828717e-9, relative_change = 4.4261496978147505e-13 Converged in 164 iterations to T = 545.9272276532736 K Iter 1: T = 969.2974619254069 K, F = -6995.602505949508, relative_change = 0.030702538074593097 Iter 2: T = 940.7352151468783 K, F = -5926.799959474597, relative_change = 0.0294669571524439 Iter 3: T = 914.2743014799115 K, F = -5019.603559630792, relative_change = 0.0281279080881812 Iter 5: T = 867.4713107500404 K, F = -3596.501417534785, relative_change = 0.025170981064623534 Iter 10: T = 783.1157466833429 K, F = -1551.0378097182681, relative_change = 0.01690454516092543 Iter 15: T = 736.104074188427 K, F = -661.4094340600645, relative_change = 0.009514600241156258 Iter 20: T = 712.8891110890313 K, F = -279.51370478335195, relative_change = 0.004660945680276761 Iter 25: T = 702.3346646359782 K, F = -117.47846151115404, relative_change = 0.0021008649991766937 Iter 30: T = 697.7484914526367 K, F = -49.23948888517812, relative_change = 0.0009082531019050016 Iter 35: T = 695.7982337332975 K, F = -20.612076185793853, relative_change = 0.0003852880460789841 Iter 40: T = 694.9767977715655 K, F = -8.623674180699926, relative_change = 0.0001621046998274728 Iter 45: T = 694.632233372952 K, F = -3.607131369321934, relative_change = 6.796574819945717e-5 Iter 50: T = 694.4879512970641 K, F = -1.5086519548156685, relative_change = 2.8454216985888298e-5 Iter 55: T = 694.4275790587274 K, F = -0.63095491473724, relative_change = 1.190517123025729e-5 Iter 60: T = 694.4023251091199 K, F = -0.26387614363788753, relative_change = 4.9798084927727e-6 Iter 65: T = 694.3917626332217 K, F = -0.11035672540764829, relative_change = 2.0827769842170002e-6 Iter 70: T = 694.3873451095262 K, F = -0.04615260033397128, relative_change = 8.710704757070068e-7 Iter 75: T = 694.3854976186024 K, F = -0.01930158609650412, relative_change = 3.6429701989001694e-7 Iter 80: T = 694.3847249706296 K, F = -0.008072156867489966, relative_change = 1.5235422907908672e-7 Iter 85: T = 694.3844018391097 K, F = -0.0033758729372019847, relative_change = 6.371650932886732e-8 Iter 90: T = 694.3842667014899 K, F = -0.0014118304719711317, relative_change = 2.6647031586791832e-8 Iter 95: T = 694.3842101852955 K, F = -0.0005904443802816628, relative_change = 1.1144111464413224e-8 Iter 100: T = 694.3841865495432 K, F = -0.000246930892134789, relative_change = 4.660601275613124e-9 Iter 105: T = 694.3841766647885 K, F = -0.00010326944894978318, relative_change = 1.9491192615331768e-9 Iter 110: T = 694.3841725308658 K, F = -4.318851630935594e-5, relative_change = 8.151449655025696e-10 Iter 115: T = 694.38417080201 K, F = -1.8061952422265826e-5, relative_change = 3.4090334692733733e-10 Iter 120: T = 694.3841700789818 K, F = -7.553723086584085e-6, relative_change = 1.4256983046696504e-10 Iter 125: T = 694.3841697766029 K, F = -3.159057630486295e-6, relative_change = 5.962441389299789e-11 Iter 130: T = 694.3841696501444 K, F = -1.321154422195825e-6, relative_change = 2.493561921557738e-11 Iter 135: T = 694.3841695972579 K, F = -5.5252268715833e-7, relative_change = 1.0428376205292345e-11 Iter 140: T = 694.3841695751403 K, F = -2.3107222002494154e-7, relative_change = 4.361283432126455e-12 Iter 145: T = 694.3841695658904 K, F = -9.663738376186615e-8, relative_change = 1.8239450017224546e-12 Iter 150: T = 694.384169562022 K, F = -4.0415529589665766e-8, relative_change = 7.62807314513422e-13 Iter 155: T = 694.3841695604041 K, F = -1.6901859578588585e-8, relative_change = 3.190076251992462e-13 Converged in 158 iterations to T = 694.3841695599303 K Iter 1: T = 966.4657445291082 K, F = -7640.812008354817, relative_change = 0.03353425547089184 Iter 2: T = 934.9700274637906 K, F = -6478.4054469122375, relative_change = 0.03258854982042141 Iter 3: T = 905.4831426772844 K, F = -5491.430947493792, relative_change = 0.03153778615395046 Iter 5: T = 852.411422556244 K, F = -3942.1775829712724, relative_change = 0.02911603741995392 Iter 10: T = 752.270501533297 K, F = -1710.2022119845917, relative_change = 0.021484063485534777 Iter 15: T = 692.1979575027399 K, F = -733.7211416627563, relative_change = 0.013293244006424417 Iter 20: T = 660.6248518721908 K, F = -311.47083781675326, relative_change = 0.006977299736226479 Iter 25: T = 645.6864465624134 K, F = -131.2470677642955, relative_change = 0.0032700729262909473 Iter 30: T = 639.0586705084924 K, F = -55.07930311702287, relative_change = 0.001440660364854346 Iter 35: T = 636.2128181024498 K, F = -23.06959354083341, relative_change = 0.0006163085205121973 Iter 40: T = 635.0090704656166 K, F = -9.654178536282469, relative_change = 0.0002602445106407386 Iter 45: T = 634.5032251526654 K, F = -4.038585816352489, relative_change = 0.00010928031415735882 Iter 50: T = 634.2912470331601 K, F = -1.6891766508655546, relative_change = 4.578026893126622e-5 Iter 55: T = 634.2025201987984 K, F = -0.7064674480203624, relative_change = 1.9159520527733856e-5 Iter 60: T = 634.1654004302388 K, F = -0.2954590038549937, relative_change = 8.015132884109117e-6 Iter 65: T = 634.1498741988742 K, F = -0.12356551260977566, relative_change = 3.352442942209819e-6 Iter 70: T = 634.143380540968 K, F = -0.05167675298361657, relative_change = 1.4021049105043964e-6 Iter 75: T = 634.1406647452712 K, F = -0.021611866715251116, relative_change = 5.863898280858488e-7 Iter 80: T = 634.1395289547622 K, F = -0.009038346263477715, relative_change = 2.45237469589071e-7 Iter 85: T = 634.1390539514532 K, F = -0.003779945309816901, relative_change = 1.0256163039022526e-7 Iter 90: T = 634.13885529902 K, F = -0.0015808184378298673, relative_change = 4.2892567181859856e-8 Iter 95: T = 634.1387722201341 K, F = -0.0006611171791109371, relative_change = 1.793819582878439e-8 Iter 100: T = 634.1387374755403 K, F = -0.0002764871047121198, relative_change = 7.501969815536864e-9 Iter 105: T = 634.1387229449342 K, F = -0.00011563020966953719, relative_change = 3.1374137258287342e-9 Iter 110: T = 634.138716868061 K, F = -4.835793484636586e-5, relative_change = 1.3121039553189046e-9 Iter 115: T = 634.1387143266398 K, F = -2.022386560368572e-5, relative_change = 5.487375472310065e-10 Iter 120: T = 634.1387132637873 K, F = -8.457862123834037e-6, relative_change = 2.2948859751322166e-10 Iter 125: T = 634.1387128192896 K, F = -3.537179813772884e-6, relative_change = 9.597489595347065e-11 Iter 130: T = 634.1387126333952 K, F = -1.4792902360838411e-6, relative_change = 4.0137831313654653e-11 Iter 135: T = 634.1387125556521 K, F = -6.186562974686005e-7, relative_change = 1.6786105605047203e-11 Iter 140: T = 634.1387125231389 K, F = -2.587285410915463e-7, relative_change = 7.0201251205772615e-12 Iter 145: T = 634.1387125095416 K, F = -1.0820308915526766e-7, relative_change = 2.9358926586755275e-12 Iter 150: T = 634.1387125038551 K, F = -4.5252984581800604e-8, relative_change = 1.2278568593535336e-12 Iter 155: T = 634.1387125014769 K, F = -1.8925044087403364e-8, relative_change = 5.134964115946175e-13 Converged in 160 iterations to T = 634.1387125004823 K Iter 1: T = 966.4577816230436 K, F = -7642.6263640763145, relative_change = 0.03354221837695644 Iter 2: T = 934.9537392657237 K, F = -6479.95774136892, relative_change = 0.03259743255873304 Iter 3: T = 905.4581768480016 K, F = -5492.759971903508, relative_change = 0.031547616934380907 Iter 5: T = 852.3681521585407 K, F = -3943.153744516279, relative_change = 0.029127754629814567 Iter 10: T = 752.1787266749398 K, F = -1710.6567569463216, relative_change = 0.021498953595828138 Iter 15: T = 692.0627219007489 K, F = -733.9311310917832, relative_change = 0.013306716630909815 Iter 20: T = 660.4598197511257 K, F = -311.5651020177899, relative_change = 0.006986139907810793 Iter 25: T = 645.505065540816 K, F = -131.28809549846795, relative_change = 0.003274711658721619 Iter 30: T = 638.869491369746 K, F = -55.09679628568551, relative_change = 0.0014428128666893391 Iter 35: T = 636.0201795185002 K, F = -23.076972861049168, relative_change = 0.0006172504439926296 Iter 40: T = 634.8149477954302 K, F = -9.657276151143943, relative_change = 0.0002606461060907039 Iter 45: T = 634.3084750856247 K, F = -4.039883316444357, relative_change = 0.00010944963682362887 Iter 50: T = 634.096233387559 K, F = -1.6897196400350722, relative_change = 4.585132357764694e-5 Iter 55: T = 634.0073961115374 K, F = -0.7066945955534834, relative_change = 1.9189278894600836e-5 Iter 60: T = 633.9702301181482 K, F = -0.29555401069319204, relative_change = 8.027585627424704e-6 Iter 65: T = 633.9546845485635 K, F = -0.12360524753462271, relative_change = 3.357652130135897e-6 Iter 70: T = 633.948182802055 K, F = -0.05169337094048315, relative_change = 1.4042836828559274e-6 Iter 75: T = 633.945463623411 K, F = -0.02161881660282622, relative_change = 5.873010565591241e-7 Iter 80: T = 633.9443264180785 K, F = -0.009041252798295596, relative_change = 2.456185631471431e-7 Iter 85: T = 633.9438508230675 K, F = -0.0037811608587942636, relative_change = 1.0272100947537252e-7 Iter 90: T = 633.9436519231764 K, F = -0.001581326796638638, relative_change = 4.295922166966511e-8 Iter 95: T = 633.9435687408005 K, F = -0.0006613297816141506, relative_change = 1.7966071588536186e-8 Iter 100: T = 633.9435339529259 K, F = -0.0002765760177992349, relative_change = 7.513627802350079e-9 Iter 105: T = 633.9435194042192 K, F = -0.00011566739431295714, relative_change = 3.142289239713972e-9 Iter 110: T = 633.943513319776 K, F = -4.837348512831685e-5, relative_change = 1.3141429324559716e-9 Iter 115: T = 633.9435107751891 K, F = -2.0230369234652823e-5, relative_change = 5.49590280465172e-10 Iter 120: T = 633.9435097110126 K, F = -8.46058258885396e-6, relative_change = 2.2984523619590455e-10 Iter 125: T = 633.9435092659612 K, F = -3.5383169538771853e-6, relative_change = 9.612403048810513e-11 Iter 130: T = 633.9435090798353 K, F = -1.4797663984156273e-6, relative_change = 4.0200217348969396e-11 Iter 135: T = 633.9435090019953 K, F = -6.188558132058652e-7, relative_change = 1.6812206466999977e-11 Iter 140: T = 633.9435089694416 K, F = -2.5881245302450395e-7, relative_change = 7.031053606819781e-12 Iter 145: T = 633.9435089558273 K, F = -1.0823847790275565e-7, relative_change = 2.9404711080908144e-12 Iter 150: T = 633.9435089501337 K, F = -4.526680930094784e-8, relative_change = 1.2297451653946118e-12 Iter 155: T = 633.9435089477525 K, F = -1.893137252517718e-8, relative_change = 5.143009679069621e-13 Converged in 160 iterations to T = 633.9435089467567 K Iter 1: T = 976.4560870656425 K, F = -5364.502958136361, relative_change = 0.023543912934357578 Iter 2: T = 955.0734484591916 K, F = -4536.017674301817, relative_change = 0.021898208111650046 Iter 3: T = 935.7602856101852 K, F = -3833.7447570900904, relative_change = 0.02022165193699406 Iter 5: T = 902.9207997752154 K, F = -2734.7369777536032, relative_change = 0.016869221441778194 Iter 10: T = 848.8485698059771 K, F = -1166.122615276431, relative_change = 0.009488133152423837 Iter 15: T = 822.1586484888633 K, F = -492.79214064499877, relative_change = 0.004645820529225877 Iter 20: T = 810.0275040487087 K, F = -207.1151243503732, relative_change = 0.002093527730278145 Iter 25: T = 804.75690181592 K, F = -86.80879989287965, relative_change = 0.0009049756724468092 Iter 30: T = 802.5157249538581 K, F = -36.3387914304747, relative_change = 0.0003838780787300113 Iter 35: T = 801.5717799123634 K, F = -15.203390433570789, relative_change = 0.00016150794129730982 Iter 40: T = 801.1758314369757 K, F = -6.35930715215304, relative_change = 6.771491952028962e-5 Iter 45: T = 801.0100336744556 K, F = -2.659725336196156, relative_change = 2.8349096338972426e-5 Iter 50: T = 800.9406587174553 K, F = -1.112361659160832, relative_change = 1.1861169760044582e-5 Iter 55: T = 800.9116389178328 K, F = -0.465208662032492, relative_change = 4.961399766617115e-6 Iter 60: T = 800.8995013775381 K, F = -0.194556820842141, relative_change = 2.0750770477400054e-6 Iter 65: T = 800.8944251184464 K, F = -0.08136616133255836, relative_change = 8.678500626214898e-7 Iter 70: T = 800.8923021322003 K, F = -0.03402833105111025, relative_change = 3.629501683308489e-7 Iter 75: T = 800.8914142680393 K, F = -0.014231059789011846, relative_change = 1.517909532951373e-7 Iter 80: T = 800.8910429516018 K, F = -0.005951600095419951, relative_change = 6.348093955928238e-8 Iter 85: T = 800.8908876624508 K, F = -0.002489030400825154, relative_change = 2.6548513302594376e-8 Iter 90: T = 800.8908227186415 K, F = -0.0010409422667239099, relative_change = 1.1102909902549827e-8 Iter 95: T = 800.8907955583593 K, F = -0.0004353344919534319, relative_change = 4.643370316096993e-9 Iter 100: T = 800.890784199604 K, F = -0.00018206208605608953, relative_change = 1.941913077855242e-9 Iter 105: T = 800.8907794492367 K, F = -7.614053897875284e-5, relative_change = 8.121312667364317e-10 Iter 110: T = 800.8907774625764 K, F = -3.184288388002887e-5, relative_change = 3.396430111254476e-10 Iter 115: T = 800.8907766317311 K, F = -1.331707284002448e-5, relative_change = 1.42042748330984e-10 Iter 120: T = 800.8907762842617 K, F = -5.569358151324977e-6, relative_change = 5.94039658257552e-11 Iter 125: T = 800.890776138946 K, F = -2.329172573145577e-6, relative_change = 2.4843453104921884e-11 Iter 130: T = 800.8907760781732 K, F = -9.740879722830442e-7, relative_change = 1.0389830769621076e-11 Iter 135: T = 800.8907760527574 K, F = -4.073768753443119e-7, relative_change = 4.345168932744066e-12 Iter 140: T = 800.890776042128 K, F = -1.7036938082526376e-7, relative_change = 1.8171962757431318e-12 Iter 145: T = 800.8907760376827 K, F = -7.12504508726397e-8, relative_change = 7.599725569643073e-13 Iter 150: T = 800.8907760358236 K, F = -2.979655322477015e-8, relative_change = 3.1781641331195376e-13 Converged in 153 iterations to T = 800.8907760352793 K Iter 1: T = 965.1539775046641 K, F = -7939.699372686972, relative_change = 0.034846022495335895 Iter 2: T = 932.2809787175347 K, F = -6734.20949209788, relative_change = 0.034059849053433115 Iter 3: T = 901.35151802057 K, F = -5710.536935438153, relative_change = 0.03317611471544972 Iter 5: T = 845.2102839763602 K, F = -4103.305387596114, relative_change = 0.031096995706345748 Iter 10: T = 736.7190106973482 K, F = -1785.6713404712837, relative_change = 0.02412461125123066 Iter 15: T = 668.8179335177276 K, F = -768.9336707008401, relative_change = 0.015820284710457207 Iter 20: T = 631.6340277953188 K, F = -327.4442218802741, relative_change = 0.008715797926127969 Iter 25: T = 613.5161966564316 K, F = -138.2511534967231, relative_change = 0.0042098235258497246 Iter 30: T = 605.34376695914 K, F = -58.07775102851979, relative_change = 0.0018834281040821163 Iter 35: T = 601.8065007209107 K, F = -24.336871191681436, relative_change = 0.0008114227171804681 Iter 40: T = 600.3049460332497 K, F = -10.186590114587123, relative_change = 0.0003436869435048892 Iter 45: T = 599.6729847677091 K, F = -4.261677517230283, relative_change = 0.00014450743420016073 Iter 50: T = 599.407984628191 K, F = -1.7825521678201, relative_change = 6.057108315158289e-5 Iter 55: T = 599.2970342641777 K, F = -0.745531520690675, relative_change = 2.535547689809134e-5 Iter 60: T = 599.2506117409508 K, F = -0.31179839760278494, relative_change = 1.0608153833476814e-5 Iter 65: T = 599.2311934789969 K, F = -0.130399250302621, relative_change = 4.437189984488362e-6 Iter 70: T = 599.2230718636292 K, F = -0.05453477509061494, relative_change = 1.855814139703382e-6 Iter 75: T = 599.2196751905338 K, F = -0.02280713818045116, relative_change = 7.761460777743892e-7 Iter 80: T = 599.2182546408937 K, F = -0.009538225248309162, relative_change = 3.2459748402146044e-7 Iter 85: T = 599.2176605465037 K, F = -0.003989001053137153, relative_change = 1.357512308378031e-7 Iter 90: T = 599.2174120885111 K, F = -0.001668248113980808, relative_change = 5.677290601308711e-8 Iter 95: T = 599.2173081803024 K, F = -0.0006976813256910352, relative_change = 2.374312831482455e-8 Iter 100: T = 599.2172647246296 K, F = -0.0002917786704160763, relative_change = 9.92966351260033e-9 Iter 105: T = 599.2172465509448 K, F = -0.00012202532559746349, relative_change = 4.152704501769646e-9 Iter 110: T = 599.2172389504922 K, F = -5.1032448639631856e-5, relative_change = 1.736710727564252e-9 Iter 115: T = 599.2172357718921 K, F = -2.1342379571076542e-5, relative_change = 7.263131885099372e-10 Iter 120: T = 599.2172344425636 K, F = -8.925639289891762e-6, relative_change = 3.037528959229566e-10 Iter 125: T = 599.2172338866225 K, F = -3.732808649570263e-6, relative_change = 1.2703307913480728e-10 Iter 130: T = 599.2172336541213 K, F = -1.5611056617403918e-6, relative_change = 5.312676808516078e-11 Iter 135: T = 599.2172335568865 K, F = -6.528731871235927e-7, relative_change = 2.2218254201616675e-11 Iter 140: T = 599.2172335162218 K, F = -2.730401816863903e-7, relative_change = 9.291967085754178e-12 Iter 145: T = 599.2172334992152 K, F = -1.1418826667553006e-7, relative_change = 3.8859980575694214e-12 Iter 150: T = 599.2172334921029 K, F = -4.775494361064503e-8, relative_change = 1.6251723887543562e-12 Iter 155: T = 599.2172334891285 K, F = -1.9971769127380412e-8, relative_change = 6.796692716422196e-13 Iter 160: T = 599.2172334878845 K, F = -8.352435576508555e-9, relative_change = 2.8424591575102235e-13 Converged in 162 iterations to T = 599.2172334876212 K Iter 1: T = 964.606213865631 K, F = -8064.507838898385, relative_change = 0.035393786134368915 Iter 2: T = 931.1546161937498 K, F = -6841.0792652693335, relative_change = 0.03467901947036494 Iter 3: T = 899.6148966739642 K, F = -5802.131816846595, relative_change = 0.03387162450926739 Iter 5: T = 842.1588416113503 K, F = -4170.781941258922, relative_change = 0.03195543529319613 Iter 10: T = 729.9507864825457 K, F = -1817.5562256817125, relative_change = 0.025350903194782934 Iter 15: T = 658.3233406983533 K, F = -784.0483588825447, relative_change = 0.017095659018622478 Iter 20: T = 618.282425931975 K, F = -334.4235888962184, relative_change = 0.009658754850969974 Iter 25: T = 598.4622693666681 K, F = -141.35207029854695, relative_change = 0.004743668964376365 Iter 30: T = 589.4382898153868 K, F = -59.41506355953145, relative_change = 0.0021410804003753102 Iter 35: T = 585.5143198944636 K, F = -24.904072713990335, relative_change = 0.000926234376796883 Iter 40: T = 583.8451163204539 K, F = -10.425256529226674, relative_change = 0.00039302702523891665 Iter 45: T = 583.141958784821 K, F = -4.361750780645796, relative_change = 0.0001653807696848786 Iter 50: T = 582.8469903790885 K, F = -1.8244499069361617, relative_change = 6.934284791759917e-5 Iter 55: T = 582.7234728774788 K, F = -0.7630617147541017, relative_change = 2.9031369185997258e-5 Iter 60: T = 582.6717886517021 K, F = -0.31913114590585095, relative_change = 1.2146759273860565e-5 Iter 65: T = 582.6501688363093 K, F = -0.13346614030081072, relative_change = 5.0808813313469075e-6 Iter 70: T = 582.6411263218431 K, F = -0.05581742834142284, relative_change = 2.1250534722217096e-6 Iter 75: T = 582.6373444857047 K, F = -0.023343566649538072, relative_change = 8.887521659127259e-7 Iter 80: T = 582.6357628506753 K, F = -0.009762567363038543, relative_change = 3.716919164516723e-7 Iter 85: T = 582.6351013874713 K, F = -0.004082823836289884, relative_change = 1.554468985729176e-7 Iter 90: T = 582.6348247548648 K, F = -0.0017074859629287453, relative_change = 6.500990684795778e-8 Iter 95: T = 582.6347090636659 K, F = -0.0007140910685158874, relative_change = 2.7187946922679174e-8 Iter 100: T = 582.6346606802007 K, F = -0.0002986414216541444, relative_change = 1.1370328924310556e-8 Iter 105: T = 582.6346404456534 K, F = -0.00012489541031995843, relative_change = 4.755208180478374e-9 Iter 110: T = 582.6346319833234 K, F = -5.223275295168639e-5, relative_change = 1.988685017835767e-9 Iter 115: T = 582.6346284442758 K, F = -2.1844360821587916e-5, relative_change = 8.3169183876926e-10 Iter 120: T = 582.6346269642038 K, F = -9.135573421970022e-6, relative_change = 3.478234960261454e-10 Iter 125: T = 582.63462634522 K, F = -3.820605941950994e-6, relative_change = 1.4546394199988442e-10 Iter 130: T = 582.6346260863536 K, F = -1.597822689658468e-6, relative_change = 6.083474482258115e-11 Iter 135: T = 582.6346259780925 K, F = -6.682282380765514e-7, relative_change = 2.544180568075493e-11 Iter 140: T = 582.6346259328164 K, F = -2.7946080216612046e-7, relative_change = 1.0640058323776314e-11 Iter 145: T = 582.6346259138813 K, F = -1.1687309559027526e-7, relative_change = 4.4497709307154336e-12 Iter 150: T = 582.6346259059626 K, F = -4.8877540181901935e-8, relative_change = 1.8609403334609148e-12 Iter 155: T = 582.6346259026509 K, F = -2.0441918269220594e-8, relative_change = 7.782959220116237e-13 Iter 160: T = 582.634625901266 K, F = -8.5494383794682e-9, relative_change = 3.255072708280997e-13 Converged in 163 iterations to T = 582.6346259008604 K Iter 1: T = 964.3170559416816 K, F = -8130.392746930481, relative_change = 0.03568294405831845 Iter 2: T = 930.5591928080889 K, F = -6897.506864268777, relative_change = 0.0350070165466763 Iter 3: T = 898.6954296481224 K, F = -5850.507814775054, relative_change = 0.0342415220936277 Iter 5: T = 840.5372041847203 K, F = -4206.448684205697, relative_change = 0.03241631031335375 Iter 10: T = 726.3078390314865 K, F = -1834.481733472651, relative_change = 0.02603131334742131 Iter 15: T = 652.5854382111643 K, F = -792.1380527491141, relative_change = 0.017833797359610586 Iter 20: T = 610.8803402619217 K, F = -338.19650970996025, relative_change = 0.010226257957290647 Iter 25: T = 590.0405044573392 K, F = -143.04157613603255, relative_change = 0.005073567964580338 Iter 30: T = 580.497741438097 K, F = -60.14701056547818, relative_change = 0.0023025818618886266 Iter 35: T = 576.3361560187936 K, F = -25.215206859969985, relative_change = 0.0009986837903290936 Iter 40: T = 574.5635343041016 K, F = -10.556305217142784, relative_change = 0.00042425394595186207 Iter 45: T = 573.8163828958069 K, F = -4.416723217764053, relative_change = 0.00017860799341401897 Iter 50: T = 573.5028829826159 K, F = -1.8474694167930787, relative_change = 7.490438683241778e-5 Iter 55: T = 573.371591959283 K, F = -0.7726939089361944, relative_change = 3.136250639619919e-5 Iter 60: T = 573.3166526417265 K, F = -0.323160348668392, relative_change = 1.3122586611496097e-5 Iter 65: T = 573.293670787734 K, F = -0.13515135926318028, relative_change = 5.489144688989454e-6 Iter 70: T = 573.2840585263881 K, F = -0.05652223472340831, relative_change = 2.295822204831379e-6 Iter 75: T = 573.2800383932444 K, F = -0.023638329938158592, relative_change = 9.60174608517891e-7 Iter 80: T = 573.2783570957035 K, F = -0.009885841737805545, relative_change = 4.0156249536223946e-7 Iter 85: T = 573.2776539517721 K, F = -0.004134378799107552, relative_change = 1.6793928185598007e-7 Iter 90: T = 573.2773598876696 K, F = -0.0017290468896324906, relative_change = 7.02343970349545e-8 Iter 95: T = 573.2772369063904 K, F = -0.0007231081107345605, relative_change = 2.9372895739882992e-8 Iter 100: T = 573.2771854741228 K, F = -0.0003024124565556563, relative_change = 1.2284101393783359e-8 Iter 105: T = 573.2771639645294 K, F = -0.00012647250239827823, relative_change = 5.137358884623598e-9 Iter 110: T = 573.2771549689597 K, F = -5.2892311303898154e-5, relative_change = 2.1485050153365247e-9 Iter 115: T = 573.2771512069049 K, F = -2.2120196001007564e-5, relative_change = 8.985304737422638e-10 Iter 120: T = 573.2771496335686 K, F = -9.250929958570797e-6, relative_change = 3.7577617243812227e-10 Iter 125: T = 573.2771489755806 K, F = -3.8688493275707e-6, relative_change = 1.5715408142849922e-10 Iter 130: T = 573.2771487004022 K, F = -1.6179989295039832e-6, relative_change = 6.572371125635048e-11 Iter 135: T = 573.2771485853193 K, F = -6.766665728852317e-7, relative_change = 2.748644494423192e-11 Iter 140: T = 573.2771485371902 K, F = -2.82990305466857e-7, relative_change = 1.1495170244495623e-11 Iter 145: T = 573.2771485170622 K, F = -1.1835063801202139e-7, relative_change = 4.807446426392177e-12 Iter 150: T = 573.2771485086444 K, F = -4.949575110879678e-8, relative_change = 2.010535606762397e-12 Iter 155: T = 573.2771485051238 K, F = -2.0699496172671417e-8, relative_change = 8.408211445652364e-13 Iter 160: T = 573.2771485036515 K, F = -8.656109384830302e-9, relative_change = 3.5161434557682696e-13 Converged in 163 iterations to T = 573.2771485032205 K Iter 1: T = 979.9092966674536 K, F = -4577.685865513308, relative_change = 0.020090703332546297 Iter 2: T = 961.8722493839643 K, F = -3867.031471356714, relative_change = 0.018406853924981627 Iter 3: T = 945.7696265889953 K, F = -3265.1785502700122, relative_change = 0.016740916275817384 Iter 5: T = 918.8496828016399 K, F = -2324.701228438093, relative_change = 0.013552543198514398 Iter 10: T = 876.0168369332982 K, F = -987.169386352389, relative_change = 0.007148323563626816 Iter 15: T = 855.691768277936 K, F = -416.0522716890453, relative_change = 0.0033600882699114133 Iter 20: T = 846.6596619047211 K, F = -174.61799838623583, relative_change = 0.0014824930725908239 Iter 25: T = 842.7784844015141 K, F = -73.14080699083418, relative_change = 0.0006346267826060398 Iter 30: T = 841.1362590579982 K, F = -30.608600667950654, relative_change = 0.00026805693041918535 Iter 35: T = 840.446054691536 K, F = -12.804452385938914, relative_change = 0.00011257463773307812 Iter 40: T = 840.1568019431032 K, F = -5.355601512497509, relative_change = 4.716277330604838e-5 Iter 45: T = 840.0357274743066 K, F = -2.2398862679263827, relative_change = 1.9738539397129972e-5 Iter 50: T = 839.9850742019868 K, F = -0.93676639531742, relative_change = 8.257432471819572e-6 Iter 55: T = 839.9638871636718 K, F = -0.39177025421333966, relative_change = 3.4538012478907016e-6 Iter 60: T = 839.9550259252799 K, F = -0.16384358679710598, relative_change = 1.444498664866439e-6 Iter 65: T = 839.9513199505643 K, F = -0.06852144749547828, relative_change = 6.041201896653403e-7 Iter 70: T = 839.9497700503648 K, F = -0.028656505633951168, relative_change = 2.526526562031776e-7 Iter 75: T = 839.9491218605632 K, F = -0.011984496027307223, relative_change = 1.0566277405595089e-7 Iter 80: T = 839.9488507793177 K, F = -0.0050120599138880895, relative_change = 4.4189506744044145e-8 Iter 85: T = 839.9487374098107 K, F = -0.0020961034082729313, relative_change = 1.8480592174215196e-8 Iter 90: T = 839.9486899973128 K, F = -0.000876615495289057, relative_change = 7.728806580876324e-9 Iter 95: T = 839.9486701688371 K, F = -0.00036661107150171013, relative_change = 3.2322795977827666e-9 Iter 100: T = 839.9486618763314 K, F = -0.00015332112900168227, relative_change = 1.351777998538187e-9 Iter 105: T = 839.9486584083062 K, F = -6.412072639405686e-5, relative_change = 5.653297067280245e-10 Iter 110: T = 839.9486569579368 K, F = -2.6816053713574206e-5, relative_change = 2.364276382798482e-10 Iter 115: T = 839.9486563513749 K, F = -1.1214794791047922e-5, relative_change = 9.88768699406029e-11 Iter 120: T = 839.9486560977035 K, F = -4.690160666731558e-6, relative_change = 4.1351483959561804e-11 Iter 125: T = 839.9486559916152 K, F = -1.961481981505031e-6, relative_change = 1.7293691305563598e-11 Iter 130: T = 839.9486559472477 K, F = -8.203163766040689e-7, relative_change = 7.2324387005441785e-12 Iter 135: T = 839.9486559286927 K, F = -3.4306586660370897e-7, relative_change = 3.0246901335713976e-12 Iter 140: T = 839.9486559209328 K, F = -1.4347400334457916e-7, relative_change = 1.2649594279244322e-12 Iter 145: T = 839.9486559176875 K, F = -6.00044072207595e-8, relative_change = 5.290375877364875e-13 Converged in 150 iterations to T = 839.9486559163302 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 7%|██ | ETA: 0:00:15 Bin 1 ray tracing: 13%|███▉ | ETA: 0:00:13 Bin 1 ray tracing: 20%|█████▉ | ETA: 0:00:12 Bin 1 ray tracing: 26%|███████▉ | ETA: 0:00:11 Bin 1 ray tracing: 32%|█████████▊ | ETA: 0:00:10 Bin 1 ray tracing: 39%|███████████▊ | ETA: 0:00:09 Bin 1 ray tracing: 46%|█████████████▊ | ETA: 0:00:08 Bin 1 ray tracing: 53%|███████████████▊ | ETA: 0:00:07 Bin 1 ray tracing: 60%|█████████████████▉ | ETA: 0:00:06 Bin 1 ray tracing: 67%|████████████████████▏ | ETA: 0:00:05 Bin 1 ray tracing: 77%|███████████████████████ | ETA: 0:00:03 Bin 1 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 1 ray tracing: 92%|███████████████████████████▊ | ETA: 0:00:01 Bin 1 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 7%|██ | ETA: 0:00:14 Bin 2 ray tracing: 14%|████ | ETA: 0:00:13 Bin 2 ray tracing: 20%|██████▏ | ETA: 0:00:12 Bin 2 ray tracing: 27%|████████▏ | ETA: 0:00:11 Bin 2 ray tracing: 34%|██████████▏ | ETA: 0:00:10 Bin 2 ray tracing: 41%|████████████▏ | ETA: 0:00:09 Bin 2 ray tracing: 47%|██████████████▎ | ETA: 0:00:08 Bin 2 ray tracing: 54%|████████████████▏ | ETA: 0:00:07 Bin 2 ray tracing: 61%|██████████████████▎ | ETA: 0:00:06 Bin 2 ray tracing: 67%|████████████████████▎ | ETA: 0:00:05 Bin 2 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:03 Bin 2 ray tracing: 86%|██████████████████████████ | ETA: 0:00:02 Bin 2 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 3 ray tracing: 14%|████▎ | ETA: 0:00:12 Bin 3 ray tracing: 21%|██████▎ | ETA: 0:00:11 Bin 3 ray tracing: 28%|████████▍ | ETA: 0:00:10 Bin 3 ray tracing: 35%|██████████▌ | ETA: 0:00:09 Bin 3 ray tracing: 46%|█████████████▊ | ETA: 0:00:07 Bin 3 ray tracing: 56%|████████████████▉ | ETA: 0:00:06 Bin 3 ray tracing: 64%|███████████████████▎ | ETA: 0:00:05 Bin 3 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:04 Bin 3 ray tracing: 80%|████████████████████████ | ETA: 0:00:03 Bin 3 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:02 Bin 3 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 7%|██▎ | ETA: 0:00:13 Bin 4 ray tracing: 15%|████▍ | ETA: 0:00:12 Bin 4 ray tracing: 22%|██████▋ | ETA: 0:00:11 Bin 4 ray tracing: 29%|████████▊ | ETA: 0:00:10 Bin 4 ray tracing: 37%|███████████ | ETA: 0:00:09 Bin 4 ray tracing: 44%|█████████████▎ | ETA: 0:00:08 Bin 4 ray tracing: 52%|███████████████▋ | ETA: 0:00:07 Bin 4 ray tracing: 59%|█████████████████▊ | ETA: 0:00:06 Bin 4 ray tracing: 67%|████████████████████ | ETA: 0:00:05 Bin 4 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:04 Bin 4 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:03 Bin 4 ray tracing: 89%|██████████████████████████▌ | ETA: 0:00:02 Bin 4 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 5 ray tracing: 14%|████▎ | ETA: 0:00:12 Bin 5 ray tracing: 21%|██████▍ | ETA: 0:00:11 Bin 5 ray tracing: 28%|████████▌ | ETA: 0:00:10 Bin 5 ray tracing: 35%|██████████▌ | ETA: 0:00:10 Bin 5 ray tracing: 41%|████████████▍ | ETA: 0:00:09 Bin 5 ray tracing: 48%|██████████████▌ | ETA: 0:00:08 Bin 5 ray tracing: 57%|█████████████████ | ETA: 0:00:06 Bin 5 ray tracing: 64%|███████████████████▍ | ETA: 0:00:05 Bin 5 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:04 Bin 5 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:03 Bin 5 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 5 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 8%|██▎ | ETA: 0:00:13 Bin 6 ray tracing: 15%|████▌ | ETA: 0:00:12 Bin 6 ray tracing: 22%|██████▋ | ETA: 0:00:11 Bin 6 ray tracing: 29%|████████▊ | ETA: 0:00:10 Bin 6 ray tracing: 37%|███████████ | ETA: 0:00:09 Bin 6 ray tracing: 44%|█████████████▏ | ETA: 0:00:08 Bin 6 ray tracing: 51%|███████████████▎ | ETA: 0:00:07 Bin 6 ray tracing: 58%|█████████████████▍ | ETA: 0:00:06 Bin 6 ray tracing: 66%|███████████████████▉ | ETA: 0:00:05 Bin 6 ray tracing: 74%|██████████████████████▎ | ETA: 0:00:04 Bin 6 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:03 Bin 6 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:02 Bin 6 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 7 ray tracing: 15%|████▋ | ETA: 0:00:12 Bin 7 ray tracing: 22%|██████▋ | ETA: 0:00:11 Bin 7 ray tracing: 29%|████████▊ | ETA: 0:00:10 Bin 7 ray tracing: 36%|██████████▊ | ETA: 0:00:09 Bin 7 ray tracing: 44%|█████████████▏ | ETA: 0:00:08 Bin 7 ray tracing: 51%|███████████████▍ | ETA: 0:00:07 Bin 7 ray tracing: 58%|█████████████████▌ | ETA: 0:00:06 Bin 7 ray tracing: 65%|███████████████████▌ | ETA: 0:00:05 Bin 7 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:04 Bin 7 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:03 Bin 7 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 7 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 11%|███▍ | ETA: 0:00:08 Bin 8 ray tracing: 22%|██████▋ | ETA: 0:00:08 Bin 8 ray tracing: 30%|█████████▏ | ETA: 0:00:08 Bin 8 ray tracing: 39%|███████████▋ | ETA: 0:00:07 Bin 8 ray tracing: 46%|█████████████▉ | ETA: 0:00:06 Bin 8 ray tracing: 53%|████████████████ | ETA: 0:00:06 Bin 8 ray tracing: 60%|██████████████████▏ | ETA: 0:00:05 Bin 8 ray tracing: 68%|████████████████████▎ | ETA: 0:00:04 Bin 8 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:03 Bin 8 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:02 Bin 8 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:02 Bin 8 ray tracing: 96%|████████████████████████████▋ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 9 ray tracing: 15%|████▍ | ETA: 0:00:12 Bin 9 ray tracing: 22%|██████▋ | ETA: 0:00:11 Bin 9 ray tracing: 29%|████████▊ | ETA: 0:00:10 Bin 9 ray tracing: 36%|██████████▉ | ETA: 0:00:09 Bin 9 ray tracing: 43%|█████████████ | ETA: 0:00:08 Bin 9 ray tracing: 50%|███████████████▏ | ETA: 0:00:07 Bin 9 ray tracing: 58%|█████████████████▌ | ETA: 0:00:06 Bin 9 ray tracing: 69%|████████████████████▊ | ETA: 0:00:04 Bin 9 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:02 Bin 9 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 12%|███▍ | ETA: 0:00:08 Bin 10 ray tracing: 23%|██████▊ | ETA: 0:00:07 Bin 10 ray tracing: 34%|██████████ | ETA: 0:00:06 Bin 10 ray tracing: 45%|█████████████ | ETA: 0:00:05 Bin 10 ray tracing: 56%|████████████████▏ | ETA: 0:00:04 Bin 10 ray tracing: 67%|███████████████████▍ | ETA: 0:00:03 Bin 10 ray tracing: 78%|██████████████████████▋ | ETA: 0:00:02 Bin 10 ray tracing: 89%|█████████████████████████▉ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.321416932157 K, F = -7445.846237365536, relative_change = 0.03267858306784292 Iter 2: T = 936.717811057584 K, F = -6311.637835764873, relative_change = 0.031637473686493923 Iter 3: T = 908.157828773992 K, F = -5348.690564413661, relative_change = 0.030489419488401486 Iter 5: T = 857.0303671401707 K, F = -3837.418015296127, relative_change = 0.027878023966940613 Iter 10: T = 761.9578749719539 K, F = -1661.5977988243724, relative_change = 0.019956303574879708 Iter 15: T = 706.3073066087929 K, F = -711.3945576149922, relative_change = 0.011954138897101693 Iter 20: T = 677.6932122508051 K, F = -301.5043410842577, relative_change = 0.006120080329532288 Iter 25: T = 664.3517770807011 K, F = -126.92546993320961, relative_change = 0.0028267810001359936 Iter 30: T = 658.4788998317209 K, F = -53.24032219039261, relative_change = 0.001236442915932252 Iter 35: T = 655.9665101074065 K, F = -22.29454869785055, relative_change = 0.0005272353781188481 Iter 40: T = 654.9055455831318 K, F = -9.32896871889991, relative_change = 0.00022232114676496738 Iter 45: T = 654.4600127494389 K, F = -3.9023882507868697, relative_change = 9.330044803900744e-5 Iter 50: T = 654.2733640819633 K, F = -1.6321836140495807, relative_change = 3.907615901792944e-5 Iter 55: T = 654.1952489727647 K, F = -0.6826263904981115, relative_change = 1.635207154231311e-5 Iter 60: T = 654.1625704227152 K, F = -0.2854873578603709, relative_change = 6.840374332248895e-6 Iter 65: T = 654.1489021341267 K, F = -0.11939507076799155, relative_change = 2.8610311559663526e-6 Iter 70: T = 654.1431855901869 K, F = -0.049932592842683754, relative_change = 1.1965707362001647e-6 Iter 75: T = 654.1407948103433 K, F = -0.020882432594739764, relative_change = 5.004295014935519e-7 Iter 80: T = 654.1397949484087 K, F = -0.008733287236675602, relative_change = 2.0928722567060221e-7 Iter 85: T = 654.1393767925887 K, F = -0.003652365813084535, relative_change = 8.752670258637462e-8 Iter 90: T = 654.1392019145479 K, F = -0.0015274631400524208, relative_change = 3.660476222290614e-8 Iter 95: T = 654.1391287784132 K, F = -0.0006388033511334212, relative_change = 1.530855744363832e-8 Iter 100: T = 654.1390981919996 K, F = -0.00026715519320091863, relative_change = 6.402223038873635e-9 Iter 105: T = 654.1390854003946 K, F = -0.00011172749210008881, relative_change = 2.6774863779520915e-9 Iter 110: T = 654.1390800507925 K, F = -4.6725771386701975e-5, relative_change = 1.1197568199806169e-9 Iter 115: T = 654.1390778135249 K, F = -1.954127581871301e-5, relative_change = 4.682956872845092e-10 Iter 120: T = 654.1390768778729 K, F = -8.172394907024483e-6, relative_change = 1.9584685008862196e-10 Iter 125: T = 654.1390764865721 K, F = -3.4177930284262636e-6, relative_change = 8.190548895320146e-11 Iter 130: T = 654.1390763229253 K, F = -1.4293618157412702e-6, relative_change = 3.42538525812001e-11 Iter 135: T = 654.1390762544864 K, F = -5.977768785525583e-7, relative_change = 1.432538693778517e-11 Iter 140: T = 654.1390762258643 K, F = -2.4999713488238484e-7, relative_change = 5.991040837754674e-12 Iter 145: T = 654.1390762138943 K, F = -1.0455207016812906e-7, relative_change = 2.5055316029854215e-12 Iter 150: T = 654.1390762088882 K, F = -4.372439710298437e-8, relative_change = 1.0478306033618693e-12 Iter 155: T = 654.1390762067947 K, F = -1.8285976843834817e-8, relative_change = 4.382131583083803e-13 Converged in 159 iterations to T = 654.139076206039 K Iter 1: T = 970.3134162227434 K, F = -6764.116352879356, relative_change = 0.02968658377725659 Iter 2: T = 942.7905529798112 K, F = -5729.097310737343, relative_change = 0.02836492084183868 Iter 3: T = 917.386835753247 K, F = -4850.705337522127, relative_change = 0.02694523947686197 Iter 5: T = 872.7217740808327 K, F = -3473.1712288649956, relative_change = 0.023856421776222235 Iter 10: T = 793.4040751183744 K, F = -1495.0244332955426, relative_change = 0.01555066623153966 Iter 15: T = 750.1568234229976 K, F = -636.428466114834, relative_change = 0.008522408851617317 Iter 20: T = 729.1528308543805 K, F = -268.6487085810433, relative_change = 0.004102511201513962 Iter 25: T = 719.6962900707748 K, F = -112.84313540139394, relative_change = 0.0018321831170151886 Iter 30: T = 715.6069915453078 K, F = -47.283165400839614, relative_change = 0.0007887007382394606 Iter 35: T = 713.8718207538548 K, F = -19.79066145034789, relative_change = 0.00033394349471018846 Iter 40: T = 713.1416678297527 K, F = -8.279567633455095, relative_change = 0.0001403893032216501 Iter 45: T = 712.8355162310471 K, F = -3.4631194087112296, relative_change = 5.8841168821432035e-5 Iter 50: T = 712.7073406466858 K, F = -1.4484064434076869, relative_change = 2.463065926446243e-5 Iter 55: T = 712.653711670146 K, F = -0.6057563713195238, relative_change = 1.0304790402633414e-5 Iter 60: T = 712.6312791177494 K, F = -0.25333726038229815, relative_change = 4.310278455655472e-6 Iter 65: T = 712.6218968086646 K, F = -0.1059491420926365, relative_change = 1.8027309933418964e-6 Iter 70: T = 712.6179728841527 K, F = -0.044309279477479646, relative_change = 7.539448073824358e-7 Iter 75: T = 712.6163318291814 K, F = -0.018530684347391246, relative_change = 3.153124263883201e-7 Iter 80: T = 712.6156455163925 K, F = -0.007749756032713995, relative_change = 1.3186807015020585e-7 Iter 85: T = 712.6153584914881 K, F = -0.003241040966931008, relative_change = 5.514891505967312e-8 Iter 90: T = 712.615238454123 K, F = -0.0013554421156106722, relative_change = 2.3063954703096095e-8 Iter 95: T = 712.6151882530419 K, F = -0.0005668620942809177, relative_change = 9.645624774324385e-9 Iter 100: T = 712.6151672583466 K, F = -0.00023706850077220842, relative_change = 4.0339160936714145e-9 Iter 105: T = 712.6151584781136 K, F = -9.914487905715585e-5, relative_change = 1.6870319987373615e-9 Iter 110: T = 712.6151548061151 K, F = -4.146357196788131e-5, relative_change = 7.055369381968781e-10 Iter 115: T = 712.6151532704414 K, F = -1.734056043867227e-5, relative_change = 2.9506396731865705e-10 Iter 120: T = 712.6151526282044 K, F = -7.252029464055454e-6, relative_change = 1.2339927544588655e-10 Iter 125: T = 712.6151523596131 K, F = -3.0328843653171234e-6, relative_change = 5.160703437815434e-11 Iter 130: T = 712.6151522472851 K, F = -1.2683875015850887e-6, relative_change = 2.1582661771347746e-11 Iter 135: T = 712.6151522003082 K, F = -5.304550387830176e-7, relative_change = 9.02613095465471e-12 Iter 140: T = 712.6151521806619 K, F = -2.21842529457561e-7, relative_change = 3.774834012421734e-12 Iter 145: T = 712.6151521724456 K, F = -9.277669077434325e-8, relative_change = 1.5786720822670171e-12 Iter 150: T = 712.6151521690095 K, F = -3.880109078480132e-8, relative_change = 6.602326325032011e-13 Iter 155: T = 712.6151521675724 K, F = -1.6227470478469286e-8, relative_change = 2.7612382374485553e-13 Converged in 157 iterations to T = 712.6151521672683 K Iter 1: T = 974.3883190772198 K, F = -5835.6458612536235, relative_change = 0.025611680922780287 Iter 2: T = 950.9660593995839 K, F = -4937.199630508267, relative_change = 0.024037910983803326 Iter 3: T = 929.6587041338167 K, F = -4175.273205508443, relative_change = 0.022406010241017425 Iter 5: T = 893.0362075040849 K, F = -2981.970454739506, relative_change = 0.019052066415824725 Iter 10: T = 831.3272771809596 K, F = -1275.1633107673795, relative_change = 0.01120019837410286 Iter 15: T = 799.9896416656749 K, F = -539.9561471202964, relative_change = 0.005655526275442636 Iter 20: T = 785.4945762187822 K, F = -227.19021424201566, relative_change = 0.0025918386465444056 Iter 25: T = 779.1405076812988 K, F = -95.27354470837298, relative_change = 0.0011293881347297205 Iter 30: T = 776.4275477252802 K, F = -39.89159774635684, relative_change = 0.0004807711188633416 Iter 35: T = 775.2828598357953 K, F = -16.69149810287903, relative_change = 0.0002025807927055646 Iter 40: T = 774.8023436714828 K, F = -6.982054514047451, relative_change = 8.498990306909837e-5 Iter 45: T = 774.6010701867381 K, F = -2.9202364876231446, relative_change = 3.559091857753964e-5 Iter 50: T = 774.5168398071629 K, F = -1.2213229323888086, relative_change = 1.4892805659620082e-5 Iter 55: T = 774.4816039547587 K, F = -0.5107797378382931, relative_change = 6.229794775868817e-6 Iter 60: T = 774.4668662027971 K, F = -0.21361556863696274, relative_change = 2.6056274961452944e-6 Iter 65: T = 774.4607024019341 K, F = -0.08933682367959517, relative_change = 1.0897487790477334e-6 Iter 70: T = 774.4581245748544 K, F = -0.03736176884906173, relative_change = 4.557536921654935e-7 Iter 75: T = 774.4570464876981 K, F = -0.015625145319321132, relative_change = 1.906029903815844e-7 Iter 80: T = 774.4565956171853 K, F = -0.0065346236678662795, relative_change = 7.971268356745865e-8 Iter 85: T = 774.4564070574743 K, F = -0.002732857884029105, relative_change = 3.3336837643283844e-8 Iter 90: T = 774.4563281995028 K, F = -0.0011429138426460872, relative_change = 1.3941870854991512e-8 Iter 95: T = 774.4562952201488 K, F = -0.0004779802253788157, relative_change = 5.830658161568217e-9 Iter 100: T = 774.4562814277876 K, F = -0.0001998970403174205, relative_change = 2.438451104342909e-9 Iter 105: T = 774.4562756596572 K, F = -8.359932993928787e-5, relative_change = 1.019789414180437e-9 Iter 110: T = 774.4562732473561 K, F = -3.496223744836602e-5, relative_change = 4.264881094210286e-10 Iter 115: T = 774.456272238503 K, F = -1.4621625709754227e-5, relative_change = 1.783624275620658e-10 Iter 120: T = 774.4562718165886 K, F = -6.114939334112002e-6, relative_change = 7.459330778303495e-11 Iter 125: T = 774.4562716401389 K, F = -2.55733982679196e-6, relative_change = 3.1195802049660285e-11 Iter 130: T = 774.4562715663455 K, F = -1.0695096521740055e-6, relative_change = 1.30464520456052e-11 Iter 135: T = 774.4562715354842 K, F = -4.4728144965588967e-7, relative_change = 5.4561788882126796e-12 Iter 140: T = 774.4562715225778 K, F = -1.8705865933998922e-7, relative_change = 2.281841799641827e-12 Iter 145: T = 774.4562715171802 K, F = -7.823195447009823e-8, relative_change = 9.543153169884167e-13 Iter 150: T = 774.4562715149227 K, F = -3.271781290337117e-8, relative_change = 3.9910942023589327e-13 Converged in 154 iterations to T = 774.4562715141079 K Iter 1: T = 970.3056165222466 K, F = -6765.893522056974, relative_change = 0.029694383477753352 Iter 2: T = 942.7747998047477 K, F = -5730.614712148591, relative_change = 0.028373345726034664 Iter 3: T = 917.3630221642873 K, F = -4852.001241097402, relative_change = 0.026954239385400716 Iter 5: T = 872.681759629569 K, F = -3474.1167102715344, relative_change = 0.02386632418658855 Iter 10: T = 793.3264919383706 K, F = -1495.4524674971672, relative_change = 0.015560576851006851 Iter 15: T = 750.0518111616527 K, F = -636.6186171665526, relative_change = 0.008529486152777405 Iter 20: T = 729.0319958068792 K, F = -268.7311576351206, relative_change = 0.004106426710063557 Iter 25: T = 719.5676818278221 K, F = -112.87824820956479, relative_change = 0.0018340499228590786 Iter 30: T = 715.4748842896369 K, F = -47.2979718596875, relative_change = 0.0007895278630967715 Iter 35: T = 713.7382025437443 K, F = -19.79687594175918, relative_change = 0.0003342980597357453 Iter 40: T = 713.0074090487558 K, F = -8.282170572565516, relative_change = 0.0001405391415188385 Iter 45: T = 712.7009880128227 K, F = -3.4642086877601272, relative_change = 5.890410809707051e-5 Iter 50: T = 712.5726994748036 K, F = -1.448862115541501, relative_change = 2.4657029571046337e-5 Iter 55: T = 712.5190232120145 K, F = -0.6059469603242301, relative_change = 1.0315827253320855e-5 Iter 60: T = 712.496570875594 K, F = -0.25341697073861474, relative_change = 4.314895681708059e-6 Iter 65: T = 712.487180291133 K, F = -0.10598247857398713, relative_change = 1.8046622319537885e-6 Iter 70: T = 712.4832529055043 K, F = -0.044323221308714245, relative_change = 7.547525198580787e-7 Iter 75: T = 712.4816104030078 K, F = -0.01853651500898168, relative_change = 3.156502293517976e-7 Iter 80: T = 712.4809234848389 K, F = -0.007752194488681474, relative_change = 1.3200934477492948e-7 Iter 85: T = 712.4806362067559 K, F = -0.0032420607594073614, relative_change = 5.520799804553328e-8 Iter 90: T = 712.4805160635082 K, F = -0.0013558686055684666, relative_change = 2.308866396365414e-8 Iter 95: T = 712.4804658181457 K, F = -0.0005670404575535137, relative_change = 9.655958490641327e-9 Iter 100: T = 712.4804448049313 K, F = -0.00023714309311118065, relative_change = 4.038237756162637e-9 Iter 105: T = 712.4804360169533 K, F = -9.917607173048903e-5, relative_change = 1.6888393232752682e-9 Iter 110: T = 712.480432341716 K, F = -4.147661788433954e-5, relative_change = 7.062927960106021e-10 Iter 115: T = 712.4804308046879 K, F = -1.7346017658126378e-5, relative_change = 2.953800975626025e-10 Iter 120: T = 712.4804301618842 K, F = -7.254310468884917e-6, relative_change = 1.2353146327215455e-10 Iter 125: T = 712.4804298930561 K, F = -3.033838921528975e-6, relative_change = 5.1662327327900565e-11 Iter 130: T = 712.480429780629 K, F = -1.2687868662375479e-6, relative_change = 2.160578861883566e-11 Iter 135: T = 712.4804297336107 K, F = -5.306223376244645e-7, relative_change = 9.035807645728204e-12 Iter 140: T = 712.480429713947 K, F = -2.2191344695166038e-7, relative_change = 3.778897115217764e-12 Iter 145: T = 712.4804297057235 K, F = -9.280695301150388e-8, relative_change = 1.580381594013951e-12 Iter 150: T = 712.4804297022844 K, F = -3.88140204421461e-8, relative_change = 6.609522401867364e-13 Iter 155: T = 712.480429700846 K, F = -1.6232529764792503e-8, relative_change = 2.7641885045205546e-13 Converged in 157 iterations to T = 712.4804297005417 K Iter 1: T = 969.2677349992767 K, F = -7002.375814345861, relative_change = 0.03073226500072321 Iter 2: T = 940.6749723643569 K, F = -5932.586357045557, relative_change = 0.029499344301336123 Iter 3: T = 914.1829026062188 K, F = -5024.548566266759, relative_change = 0.028162830453063992 Iter 5: T = 867.3165044674291 K, F = -3600.1154516935594, relative_change = 0.02521020864803778 Iter 10: T = 782.809006336632 K, F = -1552.6848420780705, relative_change = 0.016946162480969848 Iter 15: T = 735.6810288247268 K, F = -662.1471146643506, relative_change = 0.009545929397581983 Iter 20: T = 712.3964598594509 K, F = -279.835638979007, relative_change = 0.004678895616053904 Iter 25: T = 701.8070579228653 K, F = -117.61608162095601, relative_change = 0.002109583412201904 Iter 30: T = 697.2049755090377 K, F = -49.29762750260547, relative_change = 0.0009121496297525667 Iter 35: T = 695.2478132977285 K, F = -20.636497877742734, relative_change = 0.0003869647543905649 Iter 40: T = 694.4234437977905 K, F = -8.633906820644661, relative_change = 0.0001628144265646963 Iter 45: T = 694.0776443529104 K, F = -3.611414169663114, relative_change = 6.826407224032033e-5 Iter 50: T = 693.9328443187586 K, F = -1.5104436679122077, relative_change = 2.8579244862175866e-5 Iter 55: T = 693.8722552100932 K, F = -0.6317043347576985, relative_change = 1.1957505873596499e-5 Iter 60: T = 693.8469105182348 K, F = -0.26418957827829104, relative_change = 5.001703605147826e-6 Iter 65: T = 693.8363100850574 K, F = -0.11048781070801394, relative_change = 2.0919352058863157e-6 Iter 70: T = 693.8318766858124 K, F = -0.04620742232846475, relative_change = 8.749008024840724e-7 Iter 75: T = 693.830022555306 K, F = -0.019324513407434907, relative_change = 3.6589895187846906e-7 Iter 80: T = 693.8292471305388 K, F = -0.008081745360291714, relative_change = 1.5302418379880753e-7 Iter 85: T = 693.8289228377229 K, F = -0.0033798829611739745, relative_change = 6.399669370365294e-8 Iter 90: T = 693.828787214434 K, F = -0.0014135075123572483, relative_change = 2.6764208270616714e-8 Iter 95: T = 693.8287304951269 K, F = -0.0005911457392095976, relative_change = 1.1193116203566444e-8 Iter 100: T = 693.8287067744303 K, F = -0.00024722420946654555, relative_change = 4.681095661826369e-9 Iter 105: T = 693.828696854151 K, F = -0.00010339211774890167, relative_change = 1.957690259593219e-9 Iter 110: T = 693.8286927053715 K, F = -4.3239818703577626e-5, relative_change = 8.187294752785387e-10 Iter 115: T = 693.8286909703024 K, F = -1.8083409784708238e-5, relative_change = 3.4240247125115273e-10 Iter 120: T = 693.8286902446757 K, F = -7.5626989265442646e-6, relative_change = 1.4319682214251238e-10 Iter 125: T = 693.82868994121 K, F = -3.162811135437593e-6, relative_change = 5.988662367413548e-11 Iter 130: T = 693.828689814297 K, F = -1.3227260775572347e-6, relative_change = 2.5045314281360593e-11 Iter 135: T = 693.8286897612205 K, F = -5.531799716074204e-7, relative_change = 1.0474251988510089e-11 Iter 140: T = 693.8286897390233 K, F = -2.3134726012674633e-7, relative_change = 4.380472222714012e-12 Iter 145: T = 693.8286897297401 K, F = -9.67528934747719e-8, relative_change = 1.8319791733355635e-12 Iter 150: T = 693.8286897258577 K, F = -4.046234947097105e-8, relative_change = 7.661391703633888e-13 Iter 155: T = 693.8286897242341 K, F = -1.692134010689017e-8, relative_change = 3.203991275982344e-13 Converged in 158 iterations to T = 693.8286897237587 K Iter 1: T = 963.5457926375523 K, F = -8306.125824437138, relative_change = 0.03645420736244771 Iter 2: T = 928.968221365234 K, F = -7048.056281001795, relative_change = 0.03588575814094703 Iter 3: T = 896.2336760747216 K, F = -5979.621661037336, relative_change = 0.03523752969978333 Iter 5: T = 836.1745990078626 K, F = -4301.741310491695, relative_change = 0.03367244361454959 Iter 10: T = 716.3402861902447 K, F = -1879.9600831926211, relative_change = 0.027968834860679796 Iter 15: T = 636.5365086804895 K, F = -814.1312356068004, relative_change = 0.02006484838043087 Iter 20: T = 589.7428102773218 K, F = -348.6114254204835, relative_change = 0.01204631652457466 Iter 25: T = 565.6464666393845 K, F = -147.7652567780626, relative_change = 0.006177698240289575 Iter 30: T = 554.4004011599683 K, F = -62.209295582754834, relative_change = 0.0028561653858937557 Iter 35: T = 549.4473273195564 K, F = -26.095209986707843, relative_change = 0.0012498873488320514 Iter 40: T = 547.3279102757991 K, F = -10.927603448731043, relative_change = 0.0005330813262778021 Iter 45: T = 546.4327997993557 K, F = -4.5725926955722835, relative_change = 0.0002248067716986621 Iter 50: T = 546.0568972279149 K, F = -1.9127599760343164, relative_change = 9.434722992882581e-5 Iter 55: T = 545.899415985676 K, F = -0.8000174950234048, relative_change = 3.9515215959826015e-5 Iter 60: T = 545.8335073244108 K, F = -0.33459060505716204, relative_change = 1.6535915039107328e-5 Iter 65: T = 545.8059351070116 K, F = -0.13993219027705076, relative_change = 6.917299220997934e-6 Iter 70: T = 545.7944026015156 K, F = -0.05852173355355331, relative_change = 2.893208948073786e-6 Iter 75: T = 545.7895793119701 K, F = -0.024474561406396617, relative_change = 1.2100290775893344e-6 Iter 80: T = 545.7875621095482 K, F = -0.010235566729462658, relative_change = 5.060581513217371e-7 Iter 85: T = 545.7867184835109 K, F = -0.004280638492888428, relative_change = 2.1164123107861072e-7 Iter 90: T = 545.7863656676466 K, F = -0.0017902145322699348, relative_change = 8.851118219420258e-8 Iter 95: T = 545.7862181155971 K, F = -0.0007486891658892991, relative_change = 3.701648448618286e-8 Iter 100: T = 545.7861564075256 K, F = -0.0003131107618392359, relative_change = 1.548074478019795e-8 Iter 105: T = 545.7861306004659 K, F = -0.00013094666235519137, relative_change = 6.474233923390762e-9 Iter 110: T = 545.786119807644 K, F = -5.4763458306517077e-5, relative_change = 2.707602214005311e-9 Iter 115: T = 545.7861152939568 K, F = -2.2902732410901017e-5, relative_change = 1.1323516326707333e-9 Iter 120: T = 545.7861134062788 K, F = -9.578195974996317e-6, relative_change = 4.73562972065043e-10 Iter 125: T = 545.7861126168293 K, F = -4.0057161454776224e-6, relative_change = 1.980497017513884e-10 Iter 130: T = 545.7861122866722 K, F = -1.6752390029628472e-6, relative_change = 8.282678397698421e-11 Iter 135: T = 545.7861121485965 K, F = -7.006053231173315e-7, relative_change = 3.4639168332533644e-11 Iter 140: T = 545.7861120908515 K, F = -2.9300120557573806e-7, relative_change = 1.4486498677352801e-11 Iter 145: T = 545.786112066702 K, F = -1.2253698514208544e-7, relative_change = 6.058445630192832e-12 Iter 150: T = 545.7861120566022 K, F = -5.124601784589622e-8, relative_change = 2.53369390923569e-12 Iter 155: T = 545.7861120523785 K, F = -2.1431825536488702e-8, relative_change = 1.0596274229716073e-12 Iter 160: T = 545.786112050612 K, F = -8.963278980145262e-9, relative_change = 4.431603920572653e-13 Converged in 164 iterations to T = 545.7861120499745 K Iter 1: T = 966.9065066717292 K, F = -7540.383934885588, relative_change = 0.03309349332827085 Iter 2: T = 935.8709402411715 K, F = -6392.493071696196, relative_change = 0.03209779458138903 Iter 3: T = 906.8628838619486 K, F = -5417.886443478601, relative_change = 0.030995787059856394 Iter 5: T = 854.798247012032 K, F = -3888.1817080991186, relative_change = 0.02847315221822906 Iter 10: T = 757.3031082912081 K, F = -1685.1071733099918, relative_change = 0.02067962569594648 Iter 15: T = 699.5679311672457 K, F = -722.1629600501689, relative_change = 0.012577637846964137 Iter 20: T = 669.5765522963361 K, F = -306.2980084268232, relative_change = 0.006513991011195501 Iter 25: T = 655.4982672013819 K, F = -129.00022636638272, relative_change = 0.0030288921365661564 Iter 30: T = 649.2787379749116 K, F = -54.12234233778034, relative_change = 0.00132918966330589 Iter 35: T = 646.6135695800857 K, F = -22.6661119598852, relative_change = 0.0005676172016297442 Iter 40: T = 645.4872538411754 K, F = -9.484846485183905, relative_change = 0.00023950079433079406 Iter 45: T = 645.0141282016708 K, F = -3.967664241384018, relative_change = 0.0001005371346642803 Iter 50: T = 644.8158934960886 K, F = -1.6594979458368748, relative_change = 4.211178684850724e-5 Iter 55: T = 644.732924811906 K, F = -0.6940522231509338, relative_change = 1.7623214626816056e-5 Iter 60: T = 644.6982150094481 K, F = -0.2902662419725498, relative_change = 7.372263056809475e-6 Iter 65: T = 644.683696976624 K, F = -0.12139373843783824, relative_change = 3.083522637041069e-6 Iter 70: T = 644.6776250157172 K, F = -0.050768473746133025, relative_change = 1.289627949172551e-6 Iter 75: T = 644.6750855885954 K, F = -0.02123201045933215, relative_change = 5.393486468744845e-7 Iter 80: T = 644.6740235592542 K, F = -0.008879485310443191, relative_change = 2.2556394076681796e-7 Iter 85: T = 644.6735794040479 K, F = -0.0037135076697361047, relative_change = 9.433386534693026e-8 Iter 90: T = 644.6733936527124 K, F = -0.0015530334082988762, relative_change = 3.9451607057681903e-8 Iter 95: T = 644.6733159692288 K, F = -0.0006494971459872212, relative_change = 1.6499143387456693e-8 Iter 100: T = 644.6732834810583 K, F = -0.000271627466712443, relative_change = 6.9001405536985204e-9 Iter 105: T = 644.6732698941157 K, F = -0.000113597851395697, relative_change = 2.8857214970470276e-9 Iter 110: T = 644.6732642118938 K, F = -4.750797760094683e-5, relative_change = 1.2068432308618567e-9 Iter 115: T = 644.6732618355206 K, F = -1.986840368861653e-5, relative_change = 5.047162630634129e-10 Iter 120: T = 644.673260841693 K, F = -8.309203740564097e-6, relative_change = 2.1107837134160492e-10 Iter 125: T = 644.6732604260624 K, F = -3.4750081592815896e-6, relative_change = 8.827549399596579e-11 Iter 130: T = 644.6732602522408 K, F = -1.4532907812170315e-6, relative_change = 3.691788793466451e-11 Iter 135: T = 644.6732601795464 K, F = -6.077830725370603e-7, relative_change = 1.5439489235433677e-11 Iter 140: T = 644.6732601491449 K, F = -2.541828134083879e-7, relative_change = 6.4569959080143265e-12 Iter 145: T = 644.6732601364304 K, F = -1.0630093383312555e-7, relative_change = 2.7003583981118745e-12 Iter 150: T = 644.673260131113 K, F = -4.4454936676263657e-8, relative_change = 1.1292869899378624e-12 Iter 155: T = 644.6732601288894 K, F = -1.8591742256823807e-8, relative_change = 4.722852898014413e-13 Converged in 160 iterations to T = 644.6732601279595 K Iter 1: T = 965.2425753013931 K, F = -7919.512280423998, relative_change = 0.03475742469860685 Iter 2: T = 932.4629687529756 K, F = -6716.9267568088435, relative_change = 0.03395996756378281 Iter 3: T = 901.6317750786776 K, F = -5695.7275774143545, relative_change = 0.03306425531893231 Iter 5: T = 845.7013451347241 K, F = -4092.4022186628845, relative_change = 0.030959915081394333 Iter 10: T = 737.7979239453308 K, F = -1780.535394650908, relative_change = 0.02393357428485013 Iter 15: T = 670.4718922820645 K, F = -766.5133314095613, relative_change = 0.015627699360609905 Iter 20: T = 633.717635147316 K, F = -326.33428251248023, relative_change = 0.008577386853643764 Iter 25: T = 615.8507394280718 K, F = -137.76060746884215, relative_change = 0.004132928045503595 Iter 30: T = 607.8023432610377 K, F = -57.86683261099279, relative_change = 0.0018466862862132228 Iter 35: T = 604.3210663473301 K, F = -24.247543289251947, relative_change = 0.0007951270088335996 Iter 40: T = 602.8437188498933 K, F = -10.149027177146133, relative_change = 0.000336698329814002 Iter 45: T = 602.2220256268951 K, F = -4.2459316950916035, relative_change = 0.00014155350371085836 Iter 50: T = 601.9613453903199 K, F = -1.7759606307358946, relative_change = 5.933019142487992e-5 Iter 55: T = 601.8522061868534 K, F = -0.7427737297933421, relative_change = 2.4835550471146522e-5 Iter 60: T = 601.80654190657 K, F = -0.31064485834978506, relative_change = 1.0390544268398971e-5 Iter 65: T = 601.7874408899171 K, F = -0.12991679173133855, relative_change = 4.346153285057979e-6 Iter 70: T = 601.7794519746554 K, F = -0.05433299908778538, relative_change = 1.8177362942910313e-6 Iter 75: T = 601.7761108025859 K, F = -0.02272275198483753, relative_change = 7.602205566069178e-7 Iter 80: T = 601.7747134648822 K, F = -0.00950293374804767, relative_change = 3.179370814583902e-7 Iter 85: T = 601.7741290781313 K, F = -0.0039742416938826075, relative_change = 1.329657430629138e-7 Iter 90: T = 601.7738846800122 K, F = -0.0016620755679230825, relative_change = 5.560797688048326e-8 Iter 95: T = 601.7737824696951 K, F = -0.000695099892663531, relative_change = 2.3255940201063467e-8 Iter 100: T = 601.7737397241013 K, F = -0.00029069908293183344, relative_change = 9.725915435749585e-9 Iter 105: T = 601.7737218473803 K, F = -0.00012157382944100181, relative_change = 4.067494605245577e-9 Iter 110: T = 601.7737143711215 K, F = -5.084362715385149e-5, relative_change = 1.7010749134299569e-9 Iter 115: T = 601.7737112444607 K, F = -2.1263412144423288e-5, relative_change = 7.114098637787882e-10 Iter 120: T = 601.7737099368538 K, F = -8.8926121109556e-6, relative_change = 2.9752007782054e-10 Iter 125: T = 601.7737093899971 K, F = -3.7189969593898198e-6, relative_change = 1.244264627483278e-10 Iter 130: T = 601.773709161295 K, F = -1.5553283623792602e-6, relative_change = 5.203661336816774e-11 Iter 135: T = 601.7737090656491 K, F = -6.504577425570091e-7, relative_change = 2.176236150905432e-11 Iter 140: T = 601.7737090256487 K, F = -2.72028163661453e-7, relative_change = 9.101244943055374e-12 Iter 145: T = 601.7737090089202 K, F = -1.1376490577363896e-7, relative_change = 3.8062318973528244e-12 Iter 150: T = 601.7737090019241 K, F = -4.7578307016404864e-8, relative_change = 1.5918271857776327e-12 Iter 155: T = 601.7737089989982 K, F = -1.989799836010775e-8, relative_change = 6.65727234094107e-13 Iter 160: T = 601.7737089977746 K, F = -8.321864974902837e-9, relative_change = 2.7842459588333804e-13 Converged in 162 iterations to T = 601.7737089975157 K Iter 1: T = 980.087600450792 K, F = -4537.059178868988, relative_change = 0.01991239954920798 Iter 2: T = 962.2212655991035 K, F = -3832.5228107495664, relative_change = 0.018229324443520052 Iter 3: T = 946.2804813841633 K, F = -3235.8814025820893, relative_change = 0.016566651335662447 Iter 5: T = 919.6535487110262 K, F = -2303.622647501268, relative_change = 0.013391510630850359 Iter 10: T = 877.3563358054062 K, F = -978.0258409343252, relative_change = 0.0070419825815312125 Iter 15: T = 857.3217166325727 K, F = -412.1492062214821, relative_change = 0.0033040712596501837 Iter 20: T = 848.4274946206667 K, F = -172.96942352781372, relative_change = 0.0014564490667894879 Iter 25: T = 844.6073690010809 K, F = -72.44828972709641, relative_change = 0.0006232199986623768 Iter 30: T = 842.9913140244745 K, F = -30.31842828961119, relative_change = 0.000263191709416992 Iter 35: T = 842.3121695590421 K, F = -12.683000705268237, relative_change = 0.00011052300572659689 Iter 40: T = 842.0275626043166 K, F = -5.3047917071266335, relative_change = 4.630176655441265e-5 Iter 45: T = 841.9084346520877 K, F = -2.2186339740278, relative_change = 1.9377931173958153e-5 Iter 50: T = 841.8585960656559 K, F = -0.927877902327737, relative_change = 8.106529850318909e-6 Iter 55: T = 841.837749848903 K, F = -0.3880528875790291, relative_change = 3.3906758754135535e-6 Iter 60: T = 841.8290311654398 K, F = -0.16228892345806667, relative_change = 1.4180960645795306e-6 Iter 65: T = 841.8253848122708 K, F = -0.06787126588723069, relative_change = 5.930778144262248e-7 Iter 70: T = 841.8238598471039 K, F = -0.028384591426289685, relative_change = 2.480345168754229e-7 Iter 75: T = 841.823222085534 K, F = -0.01187077817189075, relative_change = 1.0373139797291826e-7 Iter 80: T = 841.8229553655175 K, F = -0.0049645017307322625, relative_change = 4.338177954113061e-8 Iter 85: T = 841.8228438199319 K, F = -0.0020762140087300374, relative_change = 1.814279057937145e-8 Iter 90: T = 841.8227971702202 K, F = -0.0008682975099836288, relative_change = 7.587533835371674e-9 Iter 95: T = 841.8227776607508 K, F = -0.00036313239073049175, relative_change = 3.1731976352998456e-9 Iter 100: T = 841.8227695016573 K, F = -0.00015186630364838472, relative_change = 1.3270692181655019e-9 Iter 105: T = 841.8227660894269 K, F = -6.351230204826308e-5, relative_change = 5.549962080125258e-10 Iter 110: T = 841.8227646623913 K, F = -2.656160316072409e-5, relative_change = 2.321060436561727e-10 Iter 115: T = 841.822764065588 K, F = -1.1108379943447488e-5, relative_change = 9.706952224249623e-11 Iter 120: T = 841.8227638159977 K, F = -4.645655518720204e-6, relative_change = 4.0595619220603245e-11 Iter 125: T = 841.8227637116162 K, F = -1.94287115529157e-6, relative_change = 1.697759494729004e-11 Iter 130: T = 841.8227636679626 K, F = -8.12532372496122e-7, relative_change = 7.100236918765474e-12 Iter 135: T = 841.822763649706 K, F = -3.398097188078708e-7, relative_change = 2.9693949345945707e-12 Iter 140: T = 841.8227636420709 K, F = -1.421128414946793e-7, relative_change = 1.2418395600155225e-12 Iter 145: T = 841.8227636388779 K, F = -5.9434565491400804e-8, relative_change = 5.193633023209323e-13 Converged in 150 iterations to T = 841.8227636375425 K Iter 1: T = 976.4758990749767 K, F = -5359.98877296345, relative_change = 0.023524100925023262 Iter 2: T = 955.1126703715354 K, F = -4532.175962612709, relative_change = 0.02187788630900039 Iter 3: T = 935.8183494551537 K, F = -3830.476363202922, relative_change = 0.020201094085450955 Iter 5: T = 903.0142107905666 K, F = -2732.37446358754, relative_change = 0.016849058149935803 Iter 10: T = 849.0115832994618 K, F = -1165.0851135145017, relative_change = 0.009472993075588057 Iter 15: T = 822.3627556036228 K, F = -492.34504464135733, relative_change = 0.004637161060959796 Iter 20: T = 810.2521163432892 K, F = -206.92525260320113, relative_change = 0.0020893256761545164 Iter 25: T = 804.990819946223 K, F = -86.7288308629206, relative_change = 0.0009030984671395423 Iter 30: T = 802.7536767663163 K, F = -36.30524431372738, relative_change = 0.0003830704575535815 Iter 35: T = 801.8114446334744 K, F = -15.1893422255603, relative_change = 0.00016116611497207328 Iter 40: T = 801.4162171492744 K, F = -6.353428777417495, relative_change = 6.757124245074035e-5 Iter 45: T = 801.2507217307569 K, F = -2.657266359839506, relative_change = 2.828888202956556e-5 Iter 50: T = 801.1814733609951 K, F = -1.1113331860662363, relative_change = 1.1835965180160031e-5 Iter 55: T = 801.1525065267784 K, F = -0.46477852483525905, relative_change = 4.9508550173432145e-6 Iter 60: T = 801.1403911416437 K, F = -0.19437692927371142, relative_change = 2.0706664265038617e-6 Iter 65: T = 801.1353241488732 K, F = -0.08129092799522086, relative_change = 8.66005368984898e-7 Iter 70: T = 801.1332050380479 K, F = -0.03399686747803787, relative_change = 3.6217867458589003e-7 Iter 75: T = 801.1323187946576 K, F = -0.01421790133273626, relative_change = 1.5146830177434524e-7 Iter 80: T = 801.1319481560498 K, F = -0.005946097069359002, relative_change = 6.334600220626013e-8 Iter 85: T = 801.1317931503761 K, F = -0.0024867289692650507, relative_change = 2.6492080780247638e-8 Iter 90: T = 801.1317283251205 K, F = -0.0010399797817034484, relative_change = 1.1079309141372491e-8 Iter 95: T = 801.1317012144189 K, F = -0.00043493197020683105, relative_change = 4.633500203155061e-9 Iter 100: T = 801.1316898763987 K, F = -0.0001818937443042179, relative_change = 1.937785253120716e-9 Iter 105: T = 801.131685134703 K, F = -7.607013619592706e-5, relative_change = 8.104049583522633e-10 Iter 110: T = 801.1316831516693 K, F = -3.181344063374336e-5, relative_change = 3.3892104871848876e-10 Iter 115: T = 801.1316823223409 K, F = -1.3304759390320164e-5, relative_change = 1.417408157656822e-10 Iter 120: T = 801.1316819755058 K, F = -5.5642082396056836e-6, relative_change = 5.927769104726036e-11 Iter 125: T = 801.1316818304552 K, F = -2.3270165503408435e-6, relative_change = 2.479061931399858e-11 Iter 130: T = 801.1316817697933 K, F = -9.73185727670689e-7, relative_change = 1.0367728971100319e-11 Iter 135: T = 801.1316817444239 K, F = -4.069971270004302e-7, relative_change = 4.3358999062726015e-12 Iter 140: T = 801.131681733814 K, F = -1.7021081821777528e-7, relative_change = 1.8133225564582198e-12 Iter 145: T = 801.1316817293769 K, F = -7.11828592736552e-8, relative_change = 7.583388982500895e-13 Iter 150: T = 801.1316817275211 K, F = -2.976812896182679e-8, relative_change = 3.1713154473526527e-13 Converged in 153 iterations to T = 801.1316817269778 K Iter 1: T = 980.9014915067627 K, F = -4351.613327555798, relative_change = 0.019098508493237274 Iter 2: T = 963.8118817177323 K, F = -3675.0459245453653, relative_change = 0.017422350701882437 Iter 3: T = 948.6050486942596 K, F = -3102.225424308421, relative_change = 0.01577780198805038 Iter 5: T = 923.3006351959966 K, F = -2207.519859361231, relative_change = 0.012668370359179615 Iter 10: T = 883.3981782269674 K, F = -936.4006640500737, relative_change = 0.006572150325885423 Iter 15: T = 864.6487282912083 K, F = -394.39967802096777, relative_change = 0.0030589814221650188 Iter 20: T = 856.3611049978798 K, F = -165.4766892548737, relative_change = 0.001343053263380402 Iter 25: T = 852.8088249174674 K, F = -69.30166452476963, relative_change = 0.000573664346154188 Iter 30: T = 851.3074428580535 K, F = -29.000114224570748, relative_change = 0.00024207544255375662 Iter 35: T = 850.6767348982502 K, F = -12.131248224127269, relative_change = 0.00010162202816914337 Iter 40: T = 850.4124695112271 K, F = -5.0739687551751, relative_change = 4.256693867184142e-5 Iter 45: T = 850.3018635646273 K, F = -2.1220881784376986, relative_change = 1.7813816658221595e-5 Iter 50: T = 850.2555915979772 K, F = -0.8874990426364122, relative_change = 7.452019259978976e-6 Iter 55: T = 850.236237442054 K, F = -0.3711655716723128, relative_change = 3.1168853615635275e-6 Iter 60: T = 850.2281428363575 K, F = -0.1552263772554181, relative_change = 1.303581990981392e-6 Iter 65: T = 850.2247574939769 K, F = -0.0649176126485187, relative_change = 5.451846302599345e-7 Iter 70: T = 850.22334168909 K, F = -0.027149336256220513, relative_change = 2.2800466005161437e-7 Iter 75: T = 850.2227495800815 K, F = -0.011354179338452619, relative_change = 9.535461051070526e-8 Iter 80: T = 850.2225019525864 K, F = -0.004748453866552538, relative_change = 3.987849613528166e-8 Iter 85: T = 850.2223983917343 K, F = -0.0019858601963420597, relative_change = 1.667767368465093e-8 Iter 90: T = 850.2223550813358 K, F = -0.0008305104641104233, relative_change = 6.9748041161576945e-9 Iter 95: T = 850.2223369684075 K, F = -0.00034732939527892803, relative_change = 2.916946680711297e-9 Iter 100: T = 850.2223293933642 K, F = -0.00014525730093328804, relative_change = 1.2199019879679482e-9 Iter 105: T = 850.2223262253906 K, F = -6.074833833702442e-5, relative_change = 5.101775920498851e-10 Iter 110: T = 850.2223249005061 K, F = -2.5405678935941367e-5, relative_change = 2.133623495706056e-10 Iter 115: T = 850.2223243464236 K, F = -1.0624959634553122e-5, relative_change = 8.923069383311004e-11 Iter 120: T = 850.2223241146997 K, F = -4.443484601379666e-6, relative_change = 3.7317338434203364e-11 Iter 125: T = 850.2223240177901 K, F = -1.8583205461109031e-6, relative_change = 1.560657524379793e-11 Iter 130: T = 850.2223239772613 K, F = -7.771730405892185e-7, relative_change = 6.526866187614041e-12 Iter 135: T = 850.2223239603117 K, F = -3.250226869866424e-7, relative_change = 2.7296103638561646e-12 Iter 140: T = 850.2223239532232 K, F = -1.3592856107358386e-7, relative_change = 1.1415572632949382e-12 Iter 145: T = 850.2223239502587 K, F = -5.684829607055519e-8, relative_change = 4.774242055812688e-13 Converged in 150 iterations to T = 850.2223239490189 K Iter 1: T = 967.3669412729967 K, F = -7435.4734730003975, relative_change = 0.03263305872700329 Iter 2: T = 936.8106597377877 K, F = -6302.767395980914, relative_change = 0.03158706405141241 Iter 3: T = 908.2996838047868 K, F = -5341.100393885997, relative_change = 0.030434085731882103 Iter 5: T = 857.2744176676915 K, F = -3831.8519984506743, relative_change = 0.027813309915196975 Iter 10: T = 762.4638543028271 K, F = -1659.0248826788265, relative_change = 0.019878853108344304 Iter 15: T = 707.0355804579342 K, F = -710.2193473486611, relative_change = 0.01188846307540857 Iter 20: T = 678.5665524071121 K, F = -300.9825744958456, relative_change = 0.0060791050122105264 Iter 25: T = 665.3020886400036 K, F = -126.70003579924563, relative_change = 0.00280591022789232 Iter 30: T = 659.4652616201614 K, F = -53.14457224422823, relative_change = 0.0012268999115425429 Iter 35: T = 656.9687267671076 K, F = -22.254229501433517, relative_change = 0.0005230870814746836 Iter 40: T = 655.9145378765079 K, F = -9.312057132102412, relative_change = 0.00022055756780446466 Iter 45: T = 655.4718647348957 K, F = -3.8953068355762936, relative_change = 9.2557784830822e-5 Iter 50: T = 655.2864166315258 K, F = -1.6292205365383832, relative_change = 3.876466721774968e-5 Iter 55: T = 655.2088044221539 K, F = -0.6813869252575493, relative_change = 1.622164383077875e-5 Iter 60: T = 655.1763363326983 K, F = -0.2849689512805929, relative_change = 6.7858002131896915e-6 Iter 65: T = 655.1627560860792 K, F = -0.11917825864842774, relative_change = 2.8382027614526577e-6 Iter 70: T = 655.1570763666878 K, F = -0.04984191797272236, relative_change = 1.1870227811659138e-6 Iter 75: T = 655.1547009880703 K, F = -0.020844511027418466, relative_change = 4.964362843777993e-7 Iter 80: T = 655.1537075672453 K, F = -0.008717427939430367, relative_change = 2.0761718863377863e-7 Iter 85: T = 655.1532921051975 K, F = -0.0036457332569403422, relative_change = 8.682826859580486e-8 Iter 90: T = 655.1531183537285 K, F = -0.0015246893245594029, relative_change = 3.631266799484307e-8 Iter 95: T = 655.1530456887403 K, F = -0.0006376433078619237, relative_change = 1.5186400003960084e-8 Iter 100: T = 655.153015299366 K, F = -0.00026667005012864786, relative_change = 6.351135336562115e-9 Iter 105: T = 655.1530025901652 K, F = -0.00011152459947788573, relative_change = 2.6561208869031774e-9 Iter 110: T = 655.1529972750254 K, F = -4.664092022460542e-5, relative_change = 1.11082153854851e-9 Iter 115: T = 655.1529950521705 K, F = -1.9505790089968666e-5, relative_change = 4.645588466953205e-10 Iter 120: T = 655.1529941225459 K, F = -8.15755421840203e-6, relative_change = 1.94284055538254e-10 Iter 125: T = 655.1529937337659 K, F = -3.411586651513865e-6, relative_change = 8.125191382163719e-11 Iter 130: T = 655.1529935711734 K, F = -1.4267666607614693e-6, relative_change = 3.398052980694787e-11 Iter 135: T = 655.1529935031754 K, F = -5.96691070164912e-7, relative_change = 1.4211068468950893e-11 Iter 140: T = 655.1529934747377 K, F = -2.495442515959567e-7, relative_change = 5.943260463435464e-12 Iter 145: T = 655.1529934628446 K, F = -1.0436141828495948e-7, relative_change = 2.485519451110877e-12 Iter 150: T = 655.1529934578709 K, F = -4.3644946878806934e-8, relative_change = 1.0394680926785637e-12 Iter 155: T = 655.1529934557909 K, F = -1.8253384082012047e-8, relative_change = 4.3473097560713034e-13 Converged in 159 iterations to T = 655.1529934550401 K Iter 1: T = 973.5531313173931 K, F = -6025.944186798778, relative_change = 0.026446868682606903 Iter 2: T = 949.299243069973 K, F = -5099.366146846488, relative_change = 0.024912752542432023 Iter 3: T = 927.1706053487011 K, F = -4313.449508484041, relative_change = 0.023310497593687463 Iter 5: T = 888.9655017454833 K, F = -3082.207458010311, relative_change = 0.019979871463221548 Iter 10: T = 823.9462478963424 K, F = -1319.6557685270952, relative_change = 0.01197431874921073 Iter 15: T = 790.5036314099506 K, F = -559.3124380536052, relative_change = 0.006132737292753469 Iter 20: T = 774.907414141882 K, F = -235.45935654567893, relative_change = 0.0028332442755214463 Iter 25: T = 768.041179768154 K, F = -98.76678573152961, relative_change = 0.0012394015855797407 Iter 30: T = 765.1036754464806 K, F = -41.359026799867564, relative_change = 0.0005285221336123402 Iter 35: T = 763.8631581523241 K, F = -17.306364950625813, relative_change = 0.000222868304185903 Iter 40: T = 763.3422200294443 K, F = -7.239406252796258, relative_change = 9.353088261874276e-5 Iter 45: T = 763.1239806070643 K, F = -3.0279004517534807, relative_change = 3.917281270890126e-5 Iter 50: T = 763.0326441534711 K, F = -1.2663556661191129, relative_change = 1.639254296134484e-5 Iter 55: T = 762.9944345781745 K, F = -0.5296140813772544, relative_change = 6.857308665772291e-6 Iter 60: T = 762.9784528510806 K, F = -0.22149251137766313, relative_change = 2.8681148194350177e-6 Iter 65: T = 762.9717687474512 K, F = -0.09263108937343734, relative_change = 1.199533475268485e-6 Iter 70: T = 762.968973313481 K, F = -0.0387394760834503, relative_change = 5.016686009913476e-7 Iter 75: T = 762.9678042187646 K, F = -0.016201319983358387, relative_change = 2.098054400418361e-7 Iter 80: T = 762.9673152874955 K, F = -0.006775586976186521, relative_change = 8.774342744138296e-8 Iter 85: T = 762.967110810268 K, F = -0.0028336316489364632, relative_change = 3.6695399397448323e-8 Iter 90: T = 762.9670252953914 K, F = -0.0011850586415267372, relative_change = 1.534646303896516e-8 Iter 95: T = 762.9669895320386 K, F = -0.0004956056823161026, relative_change = 6.41807562637184e-9 Iter 100: T = 762.9669745753757 K, F = -0.00020726821805872042, relative_change = 2.6841161634548843e-9 Iter 105: T = 762.9669683203202 K, F = -8.668204420236858e-5, relative_change = 1.1225294798491214e-9 Iter 110: T = 762.9669657043813 K, F = -3.62514648380996e-5, relative_change = 4.694552257878764e-10 Iter 115: T = 762.9669646103645 K, F = -1.5160797243063406e-5, relative_change = 1.9633180543857373e-10 Iter 120: T = 762.9669641528336 K, F = -6.34042743374863e-6, relative_change = 8.210831850837368e-11 Iter 125: T = 762.9669639614887 K, F = -2.6516424419531504e-6, relative_change = 3.433867901323213e-11 Iter 130: T = 762.9669638814659 K, F = -1.1089492089055852e-6, relative_change = 1.4360854368266078e-11 Iter 135: T = 762.9669638479994 K, F = -4.637755912639818e-7, relative_change = 6.0058780633086025e-12 Iter 140: T = 762.9669638340033 K, F = -1.939567992881308e-7, relative_change = 2.5117339250241475e-12 Iter 145: T = 762.96696382815 K, F = -8.111659111076364e-8, relative_change = 1.050457083899339e-12 Iter 150: T = 762.9669638257021 K, F = -3.3923974851468586e-8, relative_change = 4.3931431547255894e-13 Converged in 154 iterations to T = 762.9669638248185 K Iter 1: T = 969.9793005142672 K, F = -6840.2449348817545, relative_change = 0.030020699485732823 Iter 2: T = 942.1153730076675 K, F = -5794.103834270609, relative_change = 0.02872631147059185 Iter 3: T = 916.3655998519812 K, F = -4906.228537605464, relative_change = 0.027331868148463744 Iter 5: T = 871.0036219182701 K, F = -3513.6914516785737, relative_change = 0.02428321171465252 Iter 10: T = 790.0615551532668 K, F = -1513.3873112861431, relative_change = 0.015981705110368605 Iter 15: T = 745.6196819481552 K, F = -644.5959906746723, relative_change = 0.008832708872017932 Iter 20: T = 723.9227142485861 K, F = -272.19347305999514, relative_change = 0.004275089426776353 Iter 25: T = 714.124618913264 K, F = -114.35357075852195, relative_change = 0.0019146912603717095 Iter 30: T = 709.8813224262847 K, F = -47.9202563366956, relative_change = 0.0008253045691643051 Iter 35: T = 708.0796025898204 K, F = -20.058089205810994, relative_change = 0.0003496433529275436 Iter 40: T = 707.3212270904473 K, F = -8.391585338592334, relative_change = 0.00014702561695894903 Iter 45: T = 707.0032028863175 K, F = -3.509997619249729, relative_change = 6.162902126562253e-5 Iter 50: T = 706.8700497757111 K, F = -1.4680169230297127, relative_change = 2.579876369823217e-5 Iter 55: T = 706.814336987178 K, F = -0.6139586630177537, relative_change = 1.079368967214804e-5 Iter 60: T = 706.7910325830077 K, F = -0.2567677238406788, relative_change = 4.514809196948507e-6 Iter 65: T = 706.781285589176 K, F = -0.10738383211342922, relative_change = 1.8882799544597878e-6 Iter 70: T = 706.7772091376153 K, F = -0.044909289093082116, relative_change = 7.89724462200058e-7 Iter 75: T = 706.7755042919933 K, F = -0.018781616429135006, relative_change = 3.3027626523458024e-7 Iter 80: T = 706.7747913008396 K, F = -0.007854698982425745, relative_change = 1.3812618920716202e-7 Iter 85: T = 706.7744931186627 K, F = -0.003284929388524649, relative_change = 5.776614618509178e-8 Iter 90: T = 706.7743684151822 K, F = -0.00137379678229399, relative_change = 2.4158513938728428e-8 Iter 95: T = 706.774316262674 K, F = -0.0005745382347288608, relative_change = 1.0103382834528033e-8 Iter 100: T = 706.7742944518682 K, F = -0.00024027875240495433, relative_change = 4.2253560032933476e-9 Iter 105: T = 706.7742853303281 K, F = -0.00010048744419854927, relative_change = 1.767094457749744e-9 Iter 110: T = 706.7742815155909 K, F = -4.202505049588634e-5, relative_change = 7.390200469181636e-10 Iter 115: T = 706.7742799202223 K, F = -1.7575377369571932e-5, relative_change = 3.0906700157625493e-10 Iter 120: T = 706.77427925302 K, F = -7.350231957747866e-6, relative_change = 1.2925549844604913e-10 Iter 125: T = 706.7742789739881 K, F = -3.0739541558855166e-6, relative_change = 5.4056182124607526e-11 Iter 130: T = 706.7742788572936 K, F = -1.285564018349561e-6, relative_change = 2.2606935314998437e-11 Iter 135: T = 706.7742788084905 K, F = -5.37637392827861e-7, relative_change = 9.454475695565686e-12 Iter 140: T = 706.7742787880807 K, F = -2.248473481847313e-7, relative_change = 3.953991700123155e-12 Iter 145: T = 706.7742787795449 K, F = -9.403374079397508e-8, relative_change = 1.6536046951588514e-12 Iter 150: T = 706.7742787759753 K, F = -3.932715531007602e-8, relative_change = 6.915769607850543e-13 Iter 155: T = 706.7742787744822 K, F = -1.6446891848431733e-8, relative_change = 2.8922232969388166e-13 Converged in 157 iterations to T = 706.7742787741663 K Iter 1: T = 973.5308592184579 K, F = -6031.0189057274065, relative_change = 0.02646914078154214 Iter 2: T = 949.2547318992574 K, F = -5103.69166010921, relative_change = 0.024936166213250906 Iter 3: T = 927.1040661742018 K, F = -4317.13610265864, relative_change = 0.023334796215065335 Iter 5: T = 888.8563130925996 K, F = -3084.8835269998904, relative_change = 0.020004994073292412 Iter 10: T = 823.7468611234666 K, F = -1320.8460111580412, relative_change = 0.011995687751384891 Iter 15: T = 790.2460824920944 K, F = -559.8312486131114, relative_change = 0.006146100518541546 Iter 20: T = 774.619157543836 K, F = -235.68127608625417, relative_change = 0.002840059993433553 Iter 25: T = 767.7385700453614 K, F = -98.86059558675213, relative_change = 0.0012425200731355376 Iter 30: T = 764.7947584660966 K, F = -41.3984460451118, relative_change = 0.0005298781250707746 Iter 35: T = 763.551546669684 K, F = -17.322884170035604, relative_change = 0.0002234448546874455 Iter 40: T = 763.0294714804451 K, F = -7.246320739153486, relative_change = 9.37736877053131e-5 Iter 45: T = 762.8107547200972 K, F = -3.0307932187432396, relative_change = 3.9274653635067984e-5 Iter 50: T = 762.7192183211654 K, F = -1.267565639196548, relative_change = 1.6435186155224493e-5 Iter 55: T = 762.6809250708029 K, F = -0.5301201386698556, relative_change = 6.875151683757642e-6 Iter 60: T = 762.6649083400755 K, F = -0.22170415619740902, relative_change = 2.875578579521835e-6 Iter 65: T = 762.6582095958075 K, F = -0.0927196027488375, relative_change = 1.2026551882563556e-6 Iter 70: T = 762.6554080386497 K, F = -0.038776493602948214, relative_change = 5.029741874701851e-7 Iter 75: T = 762.6542363830912 K, F = -0.01621680118017954, relative_change = 2.1035146042059435e-7 Iter 80: T = 762.6537463808382 K, F = -0.006782061403082573, relative_change = 8.797178118266313e-8 Iter 85: T = 762.653541455711 K, F = -0.002836339331511728, relative_change = 3.6790899907744007e-8 Iter 90: T = 762.6534557535172 K, F = -0.001186191027410799, relative_change = 1.5386402545542246e-8 Iter 95: T = 762.653419911826 K, F = -0.0004960792608152964, relative_change = 6.434778828142091e-9 Iter 100: T = 762.6534049224009 K, F = -0.0002074662736880617, relative_change = 2.6911016360859735e-9 Iter 105: T = 762.6533986536441 K, F = -8.676487448244785e-5, relative_change = 1.1254509017858856e-9 Iter 110: T = 762.6533960319749 K, F = -3.628610602257609e-5, relative_change = 4.706770067657403e-10 Iter 115: T = 762.6533949355616 K, F = -1.5175281959378673e-5, relative_change = 1.9684273462445904e-10 Iter 120: T = 762.6533944770285 K, F = -6.346485144193004e-6, relative_change = 8.23219955949822e-11 Iter 125: T = 762.6533942852644 K, F = -2.6541752047304357e-6, relative_change = 3.442803296776518e-11 Iter 130: T = 762.6533942050664 K, F = -1.1100092144333829e-6, relative_change = 1.4398233311824744e-11 Iter 135: T = 762.6533941715267 K, F = -4.6421932620166473e-7, relative_change = 6.021515930677271e-12 Iter 140: T = 762.6533941575 K, F = -1.9414313867649469e-7, relative_change = 2.5182837863297408e-12 Iter 145: T = 762.6533941516337 K, F = -8.119152727914525e-8, relative_change = 1.053157521485271e-12 Iter 150: T = 762.6533941491805 K, F = -3.395602277134202e-8, relative_change = 4.40452864730101e-13 Converged in 154 iterations to T = 762.653394148295 K Iter 1: T = 964.3340427134797 K, F = -8126.522294817696, relative_change = 0.03566595728652037 Iter 2: T = 930.5941872284276 K, F = -6894.191752854378, relative_change = 0.0349877262344836 Iter 3: T = 898.7494966156012 K, F = -5847.665473126386, relative_change = 0.034219739441602226 Iter 5: T = 840.6326769824727 K, F = -4204.352520849126, relative_change = 0.032389086300550846 Iter 10: T = 726.5232241990793 K, F = -1833.4855950210228, relative_change = 0.02599068040413326 Iter 15: T = 652.9265006156186 K, F = -791.660589317145, relative_change = 0.017789082234377473 Iter 20: T = 611.3224628167457 K, F = -337.97303785141787, relative_change = 0.010191409503201493 Iter 25: T = 590.5451594694463 K, F = -142.94121936562735, relative_change = 0.005053118990001057 Iter 30: T = 581.034404253554 K, F = -60.103459485793074, relative_change = 0.0022925198046108634 Iter 35: T = 576.8875245892509 K, F = -25.196678929891625, relative_change = 0.0009941590174020755 Iter 40: T = 575.1213124008981 K, F = -10.548498407831632, relative_change = 0.0004223016043589647 Iter 45: T = 574.3768892801248 K, F = -4.413447883738116, relative_change = 0.00017778063373014095 Iter 50: T = 574.064538904257 K, F = -1.8460977892064703, relative_change = 7.455644655938132e-5 Iter 55: T = 573.9337301377 K, F = -0.7721199540110242, relative_change = 3.121665423756906e-5 Iter 60: T = 573.8789927701998 K, F = -0.3229202571121359, relative_change = 1.3061529986261768e-5 Iter 65: T = 573.8560954204711 K, F = -0.1350509401736782, relative_change = 5.463599659490829e-6 Iter 70: T = 573.8465185079278 K, F = -0.05648023652317899, relative_change = 2.2851371452021413e-6 Iter 75: T = 573.8425131594942 K, F = -0.023620765484968997, relative_change = 9.55705670018768e-7 Iter 80: T = 573.8408380453438 K, F = -0.009878496019872729, relative_change = 3.9969347609642894e-7 Iter 85: T = 573.8401374874238 K, F = -0.00413130672385853, relative_change = 1.6715762596190637e-7 Iter 90: T = 573.8398445048297 K, F = -0.001727762109376474, relative_change = 6.990749749563734e-8 Iter 95: T = 573.8397219758516 K, F = -0.0007225708015659582, relative_change = 2.9236182213325595e-8 Iter 100: T = 573.8396707327419 K, F = -0.00030218774713652863, relative_change = 1.2226926101666154e-8 Iter 105: T = 573.8396493022566 K, F = -0.00012637852653812898, relative_change = 5.113447498122698e-9 Iter 110: T = 573.8396403397709 K, F = -5.285300955726324e-5, relative_change = 2.1385049896379543e-9 Iter 115: T = 573.8396365915521 K, F = -2.2103759490688102e-5, relative_change = 8.94348341305355e-10 Iter 120: T = 573.8396350240023 K, F = -9.244056692891967e-6, relative_change = 3.740271821733972e-10 Iter 125: T = 573.8396343684342 K, F = -3.865974489314361e-6, relative_change = 1.5642261839101214e-10 Iter 130: T = 573.8396340942678 K, F = -1.6167967779590064e-6, relative_change = 6.541781035772361e-11 Iter 135: T = 573.8396339796082 K, F = -6.761638073893295e-7, relative_change = 2.735851305967361e-11 Iter 140: T = 573.8396339316561 K, F = -2.827794379767212e-7, relative_change = 1.1441643083266307e-11 Iter 145: T = 573.8396339116019 K, F = -1.1826190837727069e-7, relative_change = 4.7850386715005535e-12 Iter 150: T = 573.8396339032151 K, F = -4.945915482723606e-8, relative_change = 2.0011850964685675e-12 Iter 155: T = 573.8396338997077 K, F = -2.0684537471726827e-8, relative_change = 8.369246959750994e-13 Iter 160: T = 573.8396338982407 K, F = -8.65040244990567e-9, relative_change = 3.500071224910628e-13 Converged in 163 iterations to T = 573.8396338978113 K Iter 1: T = 963.5728868820413 K, F = -8299.952375057028, relative_change = 0.03642711311795866 Iter 2: T = 929.0241812373578 K, F = -7042.766501846392, relative_change = 0.035854792216577766 Iter 3: T = 896.3203867607764 K, F = -5975.083910422506, relative_change = 0.035202307041161715 Iter 5: T = 836.3287856969113 K, F = -4298.389742351042, relative_change = 0.03362764131480216 Iter 10: T = 716.6968627077798 K, F = -1878.3539518975454, relative_change = 0.02789755648059026 Iter 15: T = 637.1200049111441 K, F = -813.347637329248, relative_change = 0.019979198957723397 Iter 20: T = 590.5234807585499 K, F = -348.2358973292029, relative_change = 0.011973381205664487 Iter 25: T = 566.5574227655329 K, F = -147.59316877861133, relative_change = 0.006132048263748117 Iter 30: T = 555.3809202573319 K, F = -62.1336843660597, relative_change = 0.0028328705825510633 Iter 35: T = 550.4605225476128 K, F = -26.062841974035333, relative_change = 0.0012392263357892572 Iter 40: T = 548.3554951484934 K, F = -10.913926528320234, relative_change = 0.0005284451547792684 Iter 45: T = 547.4665375724406 K, F = -4.566847548435931, relative_change = 0.00022283543579241802 Iter 50: T = 547.0932324791397 K, F = -1.9103528043116984, relative_change = 9.351701632282881e-5 Iter 55: T = 546.9368418259505 K, F = -0.7990099987200178, relative_change = 3.916699243936578e-5 Iter 60: T = 546.8713900164933 K, F = -0.3341691198710975, relative_change = 1.639010513129823e-5 Iter 65: T = 546.8440089921974 K, F = -0.1397558959442134, relative_change = 6.856288483911241e-6 Iter 70: T = 546.8325564690857 K, F = -0.058448000924719135, relative_change = 2.8676880530464943e-6 Iter 75: T = 546.8277666331783 K, F = -0.024443724799902172, relative_change = 1.1993549764938791e-6 Iter 80: T = 546.8257634221756 K, F = -0.010222670362492386, relative_change = 5.015939471780413e-7 Iter 85: T = 546.8249256476408 K, F = -0.004275245055931853, relative_change = 2.097742183010758e-7 Iter 90: T = 546.8245752789663 K, F = -0.0017879589287631004, relative_change = 8.773037003746873e-8 Iter 95: T = 546.8244287503647 K, F = -0.0007477458446517871, relative_change = 3.6689938609931756e-8 Iter 100: T = 546.8243674703122 K, F = -0.0003127162541345929, relative_change = 1.5344179268979454e-8 Iter 105: T = 546.8243418422551 K, F = -0.00013078167442409638, relative_change = 6.417120564367103e-9 Iter 110: T = 546.8243311242942 K, F = -5.469445873876322e-5, relative_change = 2.6837167380418657e-9 Iter 115: T = 546.8243266419147 K, F = -2.2873875559381585e-5, relative_change = 1.122362420504908e-9 Iter 120: T = 546.8243247673302 K, F = -9.566128296001342e-6, relative_change = 4.693853936784363e-10 Iter 125: T = 546.8243239833564 K, F = -4.000668899495352e-6, relative_change = 1.9630256892635281e-10 Iter 130: T = 546.8243236554893 K, F = -1.6731274929404627e-6, relative_change = 8.209607797948282e-11 Iter 135: T = 546.8243235183713 K, F = -6.997226182081651e-7, relative_change = 3.4333595580361886e-11 Iter 140: T = 546.824323461027 K, F = -2.9263255946210265e-7, relative_change = 1.4358729722018497e-11 Iter 145: T = 546.8243234370448 K, F = -1.223823602736207e-7, relative_change = 6.004988773322392e-12 Iter 150: T = 546.8243234270152 K, F = -5.1182256738391274e-8, relative_change = 2.511382166899019e-12 Iter 155: T = 546.8243234228206 K, F = -2.140446975218424e-8, relative_change = 1.0502624748315793e-12 Iter 160: T = 546.8243234210664 K, F = -8.951340502161287e-9, relative_change = 4.3921933772941437e-13 Converged in 164 iterations to T = 546.8243234204332 K Iter 1: T = 969.3849198024606 K, F = -6975.675145468905, relative_change = 0.030615080197539397 Iter 2: T = 940.9124178144436 K, F = -5909.776658995945, relative_change = 0.02937171953718752 Iter 3: T = 914.5430929460905 K, F = -5005.056140117087, relative_change = 0.028025270332390755 Iter 5: T = 867.9263653897342 K, F = -3585.8705613684338, relative_change = 0.025055827556994575 Iter 10: T = 784.01626148744 K, F = -1546.194893161108, relative_change = 0.016782793700876777 Iter 15: T = 737.3446268983718 K, F = -659.241452853975, relative_change = 0.009423237280516422 Iter 20: T = 714.3327133348221 K, F = -278.5679537275545, relative_change = 0.00460871198585231 Iter 25: T = 703.8800979079954 K, F = -117.07427046181803, relative_change = 0.0020755240258757694 Iter 30: T = 699.3402389719199 K, F = -49.06875572611457, relative_change = 0.0008969335965623863 Iter 35: T = 697.4100749737371 K, F = -20.54036189007569, relative_change = 0.0003804183356645718 Iter 40: T = 696.5971751399468 K, F = -8.593626726432804, relative_change = 0.00016004363195798815 Iter 45: T = 696.2562043195713 K, F = -3.5945553388037568, relative_change = 6.709944364701449e-5 Iter 50: T = 696.1134292948351 K, F = -1.5033907835297402, relative_change = 2.8091154554513928e-5 Iter 55: T = 696.0536880558273 K, F = -0.6287543278684634, relative_change = 1.1753200334781618e-5 Iter 60: T = 696.028698125983 K, F = -0.2629557790379308, relative_change = 4.916229015988171e-6 Iter 65: T = 696.0182460887576 K, F = -0.10997180868643708, relative_change = 2.0561831875237954e-6 Iter 70: T = 696.0138747557623 K, F = -0.04599162194606243, relative_change = 8.599479150915408e-7 Iter 75: T = 696.0120465830281 K, F = -0.01923426272869233, relative_change = 3.5964530674580503e-7 Iter 80: T = 696.0112820142731 K, F = -0.008044001381266042, relative_change = 1.5040880514094828e-7 Iter 85: T = 696.0109622615996 K, F = -0.0033640979680257255, relative_change = 6.290290596820862e-8 Iter 90: T = 696.0108285370574 K, F = -0.0014069060370702768, relative_change = 2.630677226144169e-8 Iter 95: T = 696.0107726118297 K, F = -0.0005883849237614536, relative_change = 1.1001810856643964e-8 Iter 100: T = 696.0107492232268 K, F = -0.0002460696030284204, relative_change = 4.601089446533425e-9 Iter 105: T = 696.0107394418328 K, F = -0.00010290924748990182, relative_change = 1.9242306990816764e-9 Iter 110: T = 696.010735351137 K, F = -4.303787681136928e-5, relative_change = 8.047362906743389e-10 Iter 115: T = 696.0107336403591 K, F = -1.7998954354725427e-5, relative_change = 3.365503367284758e-10 Iter 120: T = 696.0107329248915 K, F = -7.527378866112322e-6, relative_change = 1.4074939324497485e-10 Iter 125: T = 696.0107326256742 K, F = -3.148039108391565e-6, relative_change = 5.886306551131749e-11 Iter 130: T = 696.010732500538 K, F = -1.3165469155973497e-6, relative_change = 2.461722511683209e-11 Iter 135: T = 696.0107324482045 K, F = -5.505951882200932e-7, relative_change = 1.0295209035798758e-11 Iter 140: T = 696.0107324263181 K, F = -2.3026654927260637e-7, relative_change = 4.305599303786187e-12 Iter 145: T = 696.010732417165 K, F = -9.630025377127538e-8, relative_change = 1.8006536638855343e-12 Iter 150: T = 696.010732413337 K, F = -4.027432887188098e-8, relative_change = 7.530625829691622e-13 Iter 155: T = 696.0107324117361 K, F = -1.6842794159366292e-8, relative_change = 3.1493207781457977e-13 Converged in 158 iterations to T = 696.0107324112673 K Iter 1: T = 966.460741076801 K, F = -7641.952049722514, relative_change = 0.033539258923198985 Iter 2: T = 934.9597929060078 K, F = -6479.380822635103, relative_change = 0.032594131175670775 Iter 3: T = 905.4674556854548 K, F = -5492.26603188785, relative_change = 0.031543963114056515 Iter 5: T = 852.384234440349 K, F = -3942.790946464278, relative_change = 0.02912339944133312 Iter 10: T = 752.2128388507622 K, F = -1710.4878181250083, relative_change = 0.0214934180983158 Iter 15: T = 692.1129917470414 K, F = -733.8530824816568, relative_change = 0.013301707115507754 Iter 20: T = 660.5211689062156 K, F = -311.530064786807, relative_change = 0.0069828523602715655 Iter 25: T = 645.5724943840568 K, F = -131.272845460239, relative_change = 0.0032729864105827612 Iter 30: T = 638.9398202780362 K, F = -55.090293979335, relative_change = 0.0014420122654329388 Iter 35: T = 636.0917950060053 K, F = -23.074229911077428, relative_change = 0.0006169000975897783 Iter 40: T = 634.8871152263915 K, F = -9.656124740912892, relative_change = 0.00026049673214439327 Iter 45: T = 634.3808758516988 K, F = -4.039401023902078, relative_change = 0.00010938665679097862 Iter 50: T = 634.1687321813342 K, F = -1.6895178059452653, relative_change = 4.582489456214086e-5 Iter 55: T = 634.0799359797926 K, F = -0.7066101627002416, relative_change = 1.9178210161910066e-5 Iter 60: T = 634.0427871779376 K, F = -0.2955186957650321, relative_change = 8.02295378298221e-6 Iter 65: T = 634.0272488004557 K, F = -0.1235904776916365, relative_change = 3.3557145529661416e-6 Iter 70: T = 634.0207500621902 K, F = -0.0516871938902696, relative_change = 1.4034732801841878e-6 Iter 75: T = 634.0180321417025 K, F = -0.02161623326393397, relative_change = 5.869621216362853e-7 Iter 80: T = 634.016895462559 K, F = -0.009040172411481862, relative_change = 2.454768139269251e-7 Iter 85: T = 634.0164200876087 K, F = -0.0037807090279439737, relative_change = 1.0266172781836171e-7 Iter 90: T = 634.01622127975 K, F = -0.0015811378340508386, relative_change = 4.2934429255034606e-8 Iter 95: T = 634.0161381358632 K, F = -0.0006612507542944068, relative_change = 1.7955703066648645e-8 Iter 100: T = 634.0161033640853 K, F = -0.00027654296840329273, relative_change = 7.509291581329966e-9 Iter 105: T = 634.0160888221105 K, F = -0.0001156535731954289, relative_change = 3.1404757944088486e-9 Iter 110: T = 634.0160827404826 K, F = -4.8367706169116786e-5, relative_change = 1.3133845604188199e-9 Iter 115: T = 634.0160801970732 K, F = -2.0227953244023045e-5, relative_change = 5.492731429952722e-10 Iter 120: T = 634.016079133389 K, F = -8.459571892660556e-6, relative_change = 2.2971259736147236e-10 Iter 125: T = 634.0160786885435 K, F = -3.537894201488534e-6, relative_change = 9.606855751576589e-11 Iter 130: T = 634.0160785025038 K, F = -1.479589768760281e-6, relative_change = 4.0177022517704664e-11 Iter 135: T = 634.0160784246998 K, F = -6.187818806790979e-7, relative_change = 1.6802504378593475e-11 Iter 140: T = 634.0160783921611 K, F = -2.5878228487874466e-7, relative_change = 7.027016484496832e-12 Iter 145: T = 634.0160783785532 K, F = -1.082257438667078e-7, relative_change = 2.9387795483463774e-12 Iter 150: T = 634.0160783728621 K, F = -4.5261444869826306e-8, relative_change = 1.2290366761678995e-12 Iter 155: T = 634.0160783704821 K, F = -1.8928625722391956e-8, relative_change = 5.139909985109559e-13 Converged in 160 iterations to T = 634.0160783694866 K Iter 1: T = 966.4966682566038 K, F = -7633.766007628877, relative_change = 0.033503331743396196 Iter 2: T = 935.0332781559255 K, F = -6472.377215342422, relative_change = 0.03255405955763198 Iter 3: T = 905.5800835990829 K, F = -5486.269836558445, relative_change = 0.031499621719272085 Iter 5: T = 852.5794114132585 K, F = -3938.3869092046157, relative_change = 0.029070568772834017 Iter 10: T = 752.6266153107895 K, F = -1708.4373981583446, relative_change = 0.021426360851961083 Iter 15: T = 692.7224231042865 K, F = -732.9060580531951, relative_change = 0.01324111344284498 Iter 20: T = 661.2646038706757 K, F = -311.1050464633931, relative_change = 0.006943135222035287 Iter 25: T = 646.3894030198115 K, F = -131.0878895695839, relative_change = 0.003252158735719794 Iter 30: T = 639.7917607425528 K, F = -55.011440338812484, relative_change = 0.0014323507137523198 Iter 35: T = 636.9592735741131 K, F = -23.040967617577127, relative_change = 0.0006126728635908169 Iter 40: T = 635.7612590140981 K, F = -9.642162484436051, relative_change = 0.0002586945350454827 Iter 45: T = 635.2578372573453 K, F = -4.0335526877300465, relative_change = 0.0001086268256852305 Iter 50: T = 635.0468772913981 K, F = -1.687070350901009, relative_change = 4.5506042229373814e-5 Iter 55: T = 634.9585770689234 K, F = -0.7055863252654947, relative_change = 1.9044672374928645e-5 Iter 60: T = 634.9216358561865 K, F = -0.29509046525535326, relative_change = 7.967073413920452e-6 Iter 65: T = 634.9061843237964 K, F = -0.1234113779236285, relative_change = 3.332338892215484e-6 Iter 70: T = 634.8997219102322 K, F = -0.05161229071538276, relative_change = 1.3936962809833438e-6 Iter 75: T = 634.8970191820512 K, F = -0.02158490759698939, relative_change = 5.828730856141826e-7 Iter 80: T = 634.8958888566661 K, F = -0.00902707159684979, relative_change = 2.4376669905297133e-7 Iter 85: T = 634.8954161389605 K, F = -0.0037752301033724955, relative_change = 1.0194653192154448e-7 Iter 90: T = 634.895218442398 K, F = -0.0015788464826829718, relative_change = 4.2635324883341704e-8 Iter 95: T = 634.8951357632693 K, F = -0.000660292482718039, relative_change = 1.783061385740642e-8 Iter 100: T = 634.895101185859 K, F = -0.0002761422067317221, relative_change = 7.45697772356053e-9 Iter 105: T = 634.8950867251709 K, F = -0.00011548596889815466, relative_change = 3.1185974829232405e-9 Iter 110: T = 634.8950806775382 K, F = -4.829761051511339e-5, relative_change = 1.3042347468824994e-9 Iter 115: T = 634.895078148346 K, F = -2.0198638429502758e-5, relative_change = 5.454465821009693e-10 Iter 120: T = 634.8950770906076 K, F = -8.447312836168397e-6, relative_change = 2.2811230405719978e-10 Iter 125: T = 634.8950766482487 K, F = -3.5327667141094032e-6, relative_change = 9.539927941047251e-11 Iter 130: T = 634.895076463249 K, F = -1.4774452214982858e-6, relative_change = 3.9897117783631934e-11 Iter 135: T = 634.8950763858799 K, F = -6.178860758043747e-7, relative_change = 1.6685473815764357e-11 Iter 140: T = 634.8950763535231 K, F = -2.5840707684743336e-7, relative_change = 6.9780574193701655e-12 Iter 145: T = 634.8950763399912 K, F = -1.080694230770618e-7, relative_change = 2.9183203834301565e-12 Iter 150: T = 634.8950763343319 K, F = -4.5194636200118765e-8, relative_change = 1.2204416780874728e-12 Iter 155: T = 634.8950763319652 K, F = -1.890096545942299e-8, relative_change = 5.104040643460326e-13 Converged in 160 iterations to T = 634.8950763309755 K Iter 1: T = 976.5167663996706 K, F = -5350.677114157083, relative_change = 0.02348323360032936 Iter 2: T = 955.1935676691472 K, F = -4524.251581247762, relative_change = 0.021835978105260855 Iter 3: T = 935.9380973488635 K, F = -3823.7347004357894, relative_change = 0.020158710204959535 Iter 5: T = 903.2068187007258 K, F = -2727.501548768653, relative_change = 0.016807509770624077 Iter 10: T = 849.3475616367255 K, F = -1162.9454192270405, relative_change = 0.009441832884460868 Iter 15: T = 822.7833110972432 K, F = -491.423065978251, relative_change = 0.004619353231075005 Iter 20: T = 810.7148535675768 K, F = -206.53373181581762, relative_change = 0.002080688095444168 Iter 25: T = 805.4726955721267 K, F = -86.56393732329576, relative_change = 0.0008992405471824742 Iter 30: T = 803.243847106067 K, F = -36.23607215836775, relative_change = 0.000381410832737558 Iter 35: T = 802.3051371565205 K, F = -15.160375822161281, relative_change = 0.000160463704529945 Iter 40: T = 801.9113921847968 K, F = -6.341308016922548, relative_change = 6.727600881456308e-5 Iter 45: T = 801.7465184447406 K, F = -2.652196143208744, relative_change = 2.8165152001486243e-5 Iter 50: T = 801.6775303621339 K, F = -1.1092125560109474, relative_change = 1.1784174260959384e-5 Iter 55: T = 801.6486724345735 K, F = -0.46389161615900554, relative_change = 4.929187463032298e-6 Iter 60: T = 801.6366026045087 K, F = -0.19400600720041628, relative_change = 2.0616034014158384e-6 Iter 65: T = 801.631554664988 K, F = -0.08113580285613609, relative_change = 8.622148595994295e-7 Iter 70: T = 801.6294435227348 K, F = -0.03393199210107822, relative_change = 3.605933956131523e-7 Iter 75: T = 801.628560611945 K, F = -0.01419076964164534, relative_change = 1.508053117084362e-7 Iter 80: T = 801.6281913670788 K, F = -0.00593475026565804, relative_change = 6.306873053075293e-8 Iter 85: T = 801.628036944286 K, F = -0.002481983599683657, relative_change = 2.637612222862206e-8 Iter 90: T = 801.6279723627983 K, F = -0.0010379952122900882, relative_change = 1.1030813860882569e-8 Iter 95: T = 801.6279453540435 K, F = -0.00043410200009286193, relative_change = 4.613218896509487e-9 Iter 100: T = 801.6279340586586 K, F = -0.00018154664172009838, relative_change = 1.9293033761412046e-9 Iter 105: T = 801.6279293347937 K, F = -7.592497548758459e-5, relative_change = 8.068577543691387e-10 Iter 110: T = 801.6279273592169 K, F = -3.175273343192231e-5, relative_change = 3.374375734474116e-10 Iter 115: T = 801.627926533007 K, F = -1.3279370484786668e-5, relative_change = 1.411204041658958e-10 Iter 120: T = 801.6279261874762 K, F = -5.553591318152584e-6, relative_change = 5.901823839437163e-11 Iter 125: T = 801.6279260429711 K, F = -2.3225776799584708e-6, relative_change = 2.4682126478201647e-11 Iter 130: T = 801.6279259825374 K, F = -9.71330736065923e-7, relative_change = 1.032237082756174e-11 Iter 135: T = 801.6279259572632 K, F = -4.06222301130299e-7, relative_change = 4.316940744925912e-12 Iter 140: T = 801.6279259466933 K, F = -1.698863969501474e-7, relative_change = 1.8053895785833533e-12 Iter 145: T = 801.6279259422728 K, F = -7.104868893215155e-8, relative_change = 7.550372771230483e-13 Iter 150: T = 801.6279259404241 K, F = -2.971255286254859e-8, relative_change = 3.15756495258952e-13 Converged in 153 iterations to T = 801.6279259398829 K Iter 1: T = 965.1660465017507 K, F = -7936.94944022023, relative_change = 0.03483395349824938 Iter 2: T = 932.3057729796343 K, F = -6731.855150819126, relative_change = 0.03404623861481511 Iter 3: T = 901.3897056115773 K, F = -5708.519478450521, relative_change = 0.033160866599860006 Iter 5: T = 845.2772180418045 K, F = -4101.81995652687, relative_change = 0.031078293607232643 Iter 10: T = 736.866236812924 K, F = -1784.9713675413177, relative_change = 0.024098471741672012 Iter 15: T = 669.0439275215683 K, F = -768.6035805214348, relative_change = 0.01579383870171936 Iter 20: T = 631.9190466080029 K, F = -327.2927285913192, relative_change = 0.008696730770104603 Iter 25: T = 613.8357654802162 K, F = -138.1841607575137, relative_change = 0.004199208675719307 Iter 30: T = 605.6804356535647 K, F = -58.04893690006949, relative_change = 0.0018783506622454028 Iter 35: T = 602.1508933873525 K, F = -24.32466593933468, relative_change = 0.0008091696376102907 Iter 40: T = 600.652679167826 K, F = -10.181457369839611, relative_change = 0.00034272046939448034 Iter 45: T = 600.0221350195593 K, F = -4.259525882491969, relative_change = 0.0001440988887591547 Iter 50: T = 599.7577311123978 K, F = -1.7816514361400237, relative_change = 6.039945392840557e-5 Iter 55: T = 599.6470307301638 K, F = -0.7451546673272441, relative_change = 2.5283564051555593e-5 Iter 60: T = 599.6007128628847 K, F = -0.3116407655926527, relative_change = 1.057805528162669e-5 Iter 65: T = 599.5813383886643 K, F = -0.13033332191263747, relative_change = 4.424598254789318e-6 Iter 70: T = 599.5732350892387 K, F = -0.05450720221023686, relative_change = 1.8505474008219334e-6 Iter 75: T = 599.5698460766819 K, F = -0.022795606725501127, relative_change = 7.739433374753282e-7 Iter 80: T = 599.5684287308742 K, F = -0.009533402630730325, relative_change = 3.236762494842148e-7 Iter 85: T = 599.5678359763832 K, F = -0.003986984171751362, relative_change = 1.3536595563998855e-7 Iter 90: T = 599.5675880787555 K, F = -0.001667404628700686, relative_change = 5.66117786228582e-8 Iter 95: T = 599.5674844048988 K, F = -0.0006973285693585018, relative_change = 2.3675742777299842e-8 Iter 100: T = 599.5674410472348 K, F = -0.00029163114263763834, relative_change = 9.90148202654257e-9 Iter 105: T = 599.5674229145385 K, F = -0.00012196362826960572, relative_change = 4.140918682965178e-9 Iter 110: T = 599.5674153312278 K, F = -5.100664539026134e-5, relative_change = 1.7317817333504713e-9 Iter 115: T = 599.5674121597966 K, F = -2.1331588158757242e-5, relative_change = 7.242518178631614e-10 Iter 120: T = 599.5674108334662 K, F = -8.921124724226015e-6, relative_change = 3.028907561343607e-10 Iter 125: T = 599.5674102787789 K, F = -3.7309197097878943e-6, relative_change = 1.2667249162909958e-10 Iter 130: T = 599.5674100468021 K, F = -1.5603146966136627e-6, relative_change = 5.297593250026526e-11 Iter 135: T = 599.5674099497867 K, F = -6.525421596403902e-7, relative_change = 2.2155164919193677e-11 Iter 140: T = 599.5674099092138 K, F = -2.7290172505134436e-7, relative_change = 9.265581752640938e-12 Iter 145: T = 599.5674098922456 K, F = -1.1413040473806646e-7, relative_change = 3.874964863289448e-12 Iter 150: T = 599.5674098851492 K, F = -4.77305920898452e-8, relative_change = 1.6205529778594102e-12 Iter 155: T = 599.5674098821816 K, F = -1.996143245142079e-8, relative_change = 6.777321919946179e-13 Iter 160: T = 599.5674098809403 K, F = -8.347520452645085e-9, relative_change = 2.8341569914458424e-13 Converged in 162 iterations to T = 599.5674098806776 K Iter 1: T = 964.5565403916853 K, F = -8075.825987188594, relative_change = 0.03544345960831465 Iter 2: T = 931.052371248596 K, F = -6850.772168958379, relative_change = 0.03473530865228904 Iter 3: T = 899.4570788618477 K, F = -5810.4409797949575, relative_change = 0.03393503240250302 Iter 5: T = 841.880801387916 K, F = -4176.906707343929, relative_change = 0.03203422408987582 Iter 10: T = 729.3284940849844 K, F = -1820.459104172867, relative_change = 0.025466107455395973 Iter 15: T = 657.3477516465512 K, F = -785.4324063063037, relative_change = 0.017219064799008785 Iter 20: T = 617.0291969873633 K, F = -335.0671215274553, relative_change = 0.009752494546948914 Iter 25: T = 597.0403980375406 K, F = -141.63953656559747, relative_change = 0.004797707704662611 Iter 30: T = 587.9310773527284 K, F = -59.539423472232286, relative_change = 0.0021674145876228877 Iter 35: T = 583.9681261982886 K, F = -24.956897903064604, relative_change = 0.0009380223546430641 Iter 40: T = 582.2819780620596 K, F = -10.447499259942148, relative_change = 0.0003981029885633866 Iter 45: T = 581.5716162999682 K, F = -4.3710799064756625, relative_change = 0.00016752998647277586 Iter 50: T = 581.2736139722465 K, F = -1.828356218163971, relative_change = 7.024635466349237e-5 Iter 55: T = 581.1488239386397 K, F = -0.7646962165708273, relative_change = 2.9410049486186712e-5 Iter 60: T = 581.0966068736334 K, F = -0.31981486051857955, relative_change = 1.2305272184817054e-5 Iter 65: T = 581.0747641044525 K, F = -0.13375210354704392, relative_change = 5.147198585052369e-6 Iter 70: T = 581.0656283280878 K, F = -0.05593702607013651, relative_change = 2.152792559797935e-6 Iter 75: T = 581.0618074852172 K, F = -0.023393584631506426, relative_change = 9.003537567914647e-7 Iter 80: T = 581.0602095364958 K, F = -0.009783485616604248, relative_change = 3.765439755149664e-7 Iter 85: T = 581.0595412506042 K, F = -0.004091572123544718, relative_change = 1.5747611126647676e-7 Iter 90: T = 581.0592617646495 K, F = -0.0017111446044411616, relative_change = 6.585855193332097e-8 Iter 95: T = 581.0591448801432 K, F = -0.0007156211580713889, relative_change = 2.754286120354994e-8 Iter 100: T = 581.059095997622 K, F = -0.0002992813232821634, relative_change = 1.151875843315803e-8 Iter 105: T = 581.0590755543634 K, F = -0.00012516302504206323, relative_change = 4.817283203318882e-9 Iter 110: T = 581.0590670047478 K, F = -5.234467209341842e-5, relative_change = 2.014645517222017e-9 Iter 115: T = 581.0590634291963 K, F = -2.1891167074072904e-5, relative_change = 8.425488429057839e-10 Iter 120: T = 581.0590619338578 K, F = -9.155147096595595e-6, relative_change = 3.5236397681660757e-10 Iter 125: T = 581.0590613084895 K, F = -3.8287918655566244e-6, relative_change = 1.4736282452142917e-10 Iter 130: T = 581.059061046953 K, F = -1.601246519100652e-6, relative_change = 6.162889459678753e-11 Iter 135: T = 581.0590609375753 K, F = -6.696600926003882e-7, relative_change = 2.5773927254318114e-11 Iter 140: T = 581.0590608918322 K, F = -2.8005974334055495e-7, relative_change = 1.0778960153349369e-11 Iter 145: T = 581.0590608727019 K, F = -1.1712411063236061e-7, relative_change = 4.5078814492999184e-12 Iter 150: T = 581.0590608647013 K, F = -4.898235250738736e-8, relative_change = 1.885236413181248e-12 Iter 155: T = 581.0590608613554 K, F = -2.0484359875005964e-8, relative_change = 7.884035609009308e-13 Iter 160: T = 581.0590608599563 K, F = -8.567077269816537e-9, relative_change = 3.2973030484372165e-13 Converged in 163 iterations to T = 581.0590608595465 K Iter 1: T = 964.3523341107816 K, F = -8122.354582542824, relative_change = 0.03564766588921836 Iter 2: T = 930.6318670875672 K, F = -6890.622065608568, relative_change = 0.03496695743916839 Iter 3: T = 898.8077087528584 K, F = -5844.6048972075205, relative_change = 0.03419629120836281 Iter 5: T = 840.7354531161534 K, F = -4202.09549249446, relative_change = 0.03235979239547895 Iter 10: T = 726.7549574267548 K, F = -1832.4132093138985, relative_change = 0.025947020481537908 Iter 15: T = 653.2931918013024 K, F = -791.1467717621816, relative_change = 0.017741126996464754 Iter 20: T = 611.797500585704 K, F = -337.7326645479324, relative_change = 0.010154104055614076 Iter 25: T = 591.0871495275211 K, F = -142.83331414567488, relative_change = 0.005031256176998991 Iter 30: T = 581.6106362220949 K, F = -60.056643386710995, relative_change = 0.002281769590358095 Iter 35: T = 577.4794820992066 K, F = -25.176764212990296, relative_change = 0.0009893263995055597 Iter 40: T = 575.7201225768164 K, F = -10.540107697412083, relative_change = 0.0004202167418268623 Iter 45: T = 574.9786161228799 K, F = -4.409927652164408, relative_change = 0.00017689717041193226 Iter 50: T = 574.667494611607 K, F = -1.844623618381026, relative_change = 7.418492222209862e-5 Iter 55: T = 574.5372013735318 K, F = -0.7715030924758897, relative_change = 3.106091768485602e-5 Iter 60: T = 574.4826798875794 K, F = -0.32266221767982756, relative_change = 1.2996335862792382e-5 Iter 65: T = 574.4598728713848 K, F = -0.13494301439986436, relative_change = 5.436323626402233e-6 Iter 70: T = 574.4503337460313 K, F = -0.056435098820188684, relative_change = 2.2737280450102634e-6 Iter 75: T = 574.4463442021613 K, F = -0.023601888034382484, relative_change = 9.509339091644615e-7 Iter 80: T = 574.4446756979322 K, F = -0.009870601188770645, relative_change = 3.976978094769912e-7 Iter 85: T = 574.4439779044062 K, F = -0.0041280050009675495, relative_change = 1.6632300396716227e-7 Iter 90: T = 574.4436860779227 K, F = -0.0017263812873644646, relative_change = 6.955844678316673e-8 Iter 95: T = 574.4435640324454 K, F = -0.0007219933233928444, relative_change = 2.9090204654432223e-8 Iter 100: T = 574.4435129915418 K, F = -0.0003019462397160222, relative_change = 1.2165876524125388e-8 Iter 105: T = 574.4434916456215 K, F = -0.0001262775249636361, relative_change = 5.087915814782195e-9 Iter 110: T = 574.4434827185019 K, F = -5.281076922020178e-5, relative_change = 2.1278273221114804e-9 Iter 115: T = 574.4434789850736 K, F = -2.2086094340678653e-5, relative_change = 8.898828236151902e-10 Iter 120: T = 574.4434774237094 K, F = -9.236668635836942e-6, relative_change = 3.721596379166678e-10 Iter 125: T = 574.4434767707281 K, F = -3.8628843845311955e-6, relative_change = 1.5564157580184604e-10 Iter 130: T = 574.4434764976437 K, F = -1.6155046848598253e-6, relative_change = 6.5091178095521e-11 Iter 135: T = 574.4434763834365 K, F = -6.756242141303659e-7, relative_change = 2.72219427782394e-11 Iter 140: T = 574.4434763356737 K, F = -2.825540865170062e-7, relative_change = 1.1384540425136756e-11 Iter 145: T = 574.4434763156987 K, F = -1.1816746381398957e-7, relative_change = 4.76114957504956e-12 Iter 150: T = 574.4434763073449 K, F = -4.9419050629495587e-8, relative_change = 1.991169856117453e-12 Iter 155: T = 574.4434763038513 K, F = -2.0668360967146526e-8, relative_change = 8.327601766952107e-13 Iter 160: T = 574.4434763023901 K, F = -8.643333215818672e-9, relative_change = 3.4825324115295056e-13 Converged in 163 iterations to T = 574.4434763019623 K Iter 1: T = 980.1826896075784 K, F = -4515.393024042081, relative_change = 0.01981731039242164 Iter 2: T = 962.4073143952735 K, F = -3814.1207558966435, relative_change = 0.01813475732714825 Iter 3: T = 946.5526838739619 K, F = -3220.2596825671717, relative_change = 0.0164739297843697 Iter 5: T = 920.0815277781593 K, F = -2292.38512911894, relative_change = 0.013306019843208727 Iter 10: T = 878.0683244538465 K, F = -973.1532399410619, relative_change = 0.00698578388787601 Iter 15: T = 858.1872619729457 K, F = -410.0698833415712, relative_change = 0.003274549191817677 Iter 20: T = 849.3658185573892 K, F = -172.09130340902215, relative_change = 0.0014427423768026758 Iter 25: T = 845.577892203978 K, F = -72.079445954584, relative_change = 0.000617220507806316 Iter 30: T = 843.9756348546728 K, F = -30.16388391468629, relative_change = 0.00026063350580083787 Iter 35: T = 843.3023205478144 K, F = -12.618317077574753, relative_change = 0.00010944435307669103 Iter 40: T = 843.0201624383635 K, F = -5.277731213510927, relative_change = 4.584911137188263e-5 Iter 45: T = 842.9020604873776 K, F = -2.2073153696347925, relative_change = 1.9188353289736356e-5 Iter 50: T = 842.8526513138554 K, F = -0.9231440496878889, relative_change = 8.027198452478139e-6 Iter 55: T = 842.8319847399472 K, F = -0.386073085383148, relative_change = 3.3574901956483967e-6 Iter 60: T = 842.8233411952822 K, F = -0.16146093805687678, relative_change = 1.4042159576185443e-6 Iter 65: T = 842.8197262678076 K, F = -0.06752499101903098, relative_change = 5.872727326400906e-7 Iter 70: T = 842.818214445548 K, F = -0.028239774880693513, relative_change = 2.4560671768758846e-7 Iter 75: T = 842.8175821805526 K, F = -0.011810214119342799, relative_change = 1.0271605556371242e-7 Iter 80: T = 842.8173177592784 K, F = -0.004939173112736395, relative_change = 4.295714985408579e-8 Iter 85: T = 842.817207175056 K, F = -0.0020656212737553137, relative_change = 1.796520510753424e-8 Iter 90: T = 842.8171609273979 K, F = -0.0008638675011323205, relative_change = 7.513265425508759e-9 Iter 95: T = 842.8171415860725 K, F = -0.0003612797057142014, relative_change = 3.14213767147023e-9 Iter 100: T = 842.8171334972988 K, F = -0.00015109148882341827, relative_change = 1.3140795706365612e-9 Iter 105: T = 842.8171301144769 K, F = -6.318826616991124e-5, relative_change = 5.495637901993007e-10 Iter 110: T = 842.8171286997404 K, F = -2.6426087708975032e-5, relative_change = 2.2983414354971866e-10 Iter 115: T = 842.8171281080806 K, F = -1.1051706105380532e-5, relative_change = 9.61193894441162e-11 Iter 120: T = 842.8171278606413 K, F = -4.621953437089488e-6, relative_change = 4.019825887488054e-11 Iter 125: T = 842.8171277571595 K, F = -1.9329568574644185e-6, relative_change = 1.6811398308825055e-11 Iter 130: T = 842.8171277138821 K, F = -8.083858269447575e-7, relative_change = 7.030729151982632e-12 Iter 135: T = 842.8171276957829 K, F = -3.380757582771565e-7, relative_change = 2.9403275148010513e-12 Iter 140: T = 842.8171276882136 K, F = -1.4138748816172608e-7, relative_change = 1.229681547789338e-12 Iter 145: T = 842.817127685048 K, F = -5.913023803927331e-8, relative_change = 5.142701350731614e-13 Converged in 150 iterations to T = 842.8171276837243 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 64%|█████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015664614631052257 Iteration 10: d = 1.6472901489915094e-5 Iteration 20: d = 2.0612797125312196e-7 Iteration 30: d = 2.8573807217462935e-9 Iteration 40: d = 3.996120104084438e-11 Iteration 50: d = 5.589207502614618e-13 Iteration 60: d = 7.808117569545419e-15 Converged after 63 iterations. d = 2.1907069276461414e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.334861852642 Iteration 2: convergence error = 4816.98131627459 Iteration 3: convergence error = 1092.7513929812417 Iteration 4: convergence error = 318.95646668848553 Iteration 5: convergence error = 94.55180412132131 Iteration 6: convergence error = 28.38038999601781 Iteration 7: convergence error = 8.542586005190287 Iteration 8: convergence error = 2.561072933591504 Iteration 9: convergence error = 0.7659778223610374 Iteration 10: convergence error = 0.22877549218105742 Iteration 11: convergence error = 0.06827461214925279 Iteration 12: convergence error = 0.020366343787372898 Iteration 13: convergence error = 0.006073722634710066 Iteration 14: convergence error = 0.0018110591429376655 Iteration 15: convergence error = 0.0005399745882641582 Iteration 16: convergence error = 0.00016098767264338676 Iteration 17: convergence error = 4.7995398062994354e-5 Iteration 18: convergence error = 1.430866745977255e-5 Iteration 19: convergence error = 4.265739335096441e-6 Iteration 20: convergence error = 1.271708697458962e-6 Iteration 21: convergence error = 3.791246854234487e-7 Iteration 22: convergence error = 1.1288784662610851e-7 Iteration 23: convergence error = 3.273794391134288e-8 Iteration 24: convergence error = 9.443965609534644e-9 Iteration 25: convergence error = 2.714159563765861e-9 Iteration 26: convergence error = 7.723883754806593e-10 Iteration 27: convergence error = 2.248725650133565e-10 Iteration 28: convergence error = 6.548361852765083e-11 Iteration 29: convergence error = 1.7962520360015333e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 53%|█████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017808002014964718 Iteration 10: d = 1.367050404562511e-5 Iteration 20: d = 1.2108075798212934e-7 Iteration 30: d = 1.3954988673702006e-9 Iteration 40: d = 1.7253962746598265e-11 Iteration 50: d = 2.1825916355315924e-13 Iteration 60: d = 2.7988617869217484e-15 Converged after 61 iterations. d = 1.8257860928453234e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12272.563130485818 Iteration 2: convergence error = 8320.169441412723 Iteration 3: convergence error = 1949.5326433653756 Iteration 4: convergence error = 479.38925008384285 Iteration 5: convergence error = 122.16650565701184 Iteration 6: convergence error = 32.616035964925004 Iteration 7: convergence error = 8.886215281115483 Iteration 8: convergence error = 2.4350286021042393 Iteration 9: convergence error = 0.6680781430095522 Iteration 10: convergence error = 0.1833207313670755 Iteration 11: convergence error = 0.05030053349264563 Iteration 12: convergence error = 0.01380095962440464 Iteration 13: convergence error = 0.003786443178796617 Iteration 14: convergence error = 0.0010388341652287636 Iteration 15: convergence error = 0.00028500833514044643 Iteration 16: convergence error = 7.819290567567805e-5 Iteration 17: convergence error = 2.145243115592166e-5 Iteration 18: convergence error = 5.885526661586482e-6 Iteration 19: convergence error = 1.6147105270647444e-6 Iteration 20: convergence error = 4.4299963519733865e-7 Iteration 21: convergence error = 1.223993422172498e-7 Iteration 22: convergence error = 3.291802386229392e-8 Iteration 23: convergence error = 8.806637197267264e-9 Iteration 24: convergence error = 2.3492248146794736e-9 Iteration 25: convergence error = 6.266418495215476e-10 Iteration 26: convergence error = 1.6848389350343496e-10 Iteration 27: convergence error = 4.4565240386873484e-11 Iteration 28: convergence error = 1.2050804798491299e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 50%|████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017808002014964718 Iteration 10: d = 1.367050404562511e-5 Iteration 20: d = 1.2108075798212934e-7 Iteration 30: d = 1.3954988673702006e-9 Iteration 40: d = 1.7253962746598265e-11 Iteration 50: d = 2.1825916355315924e-13 Iteration 60: d = 2.7988617869217484e-15 Converged after 61 iterations. d = 1.8257860928453234e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10994.693574782146 Iteration 2: convergence error = 5727.848333602891 Iteration 3: convergence error = 2016.2358202463101 Iteration 4: convergence error = 895.5999234186083 Iteration 5: convergence error = 410.02040861380647 Iteration 6: convergence error = 193.41106965056224 Iteration 7: convergence error = 91.32463086215967 Iteration 8: convergence error = 43.145161496878245 Iteration 9: convergence error = 20.38436356469083 Iteration 10: convergence error = 9.628991997644334 Iteration 11: convergence error = 4.547364188769734 Iteration 12: convergence error = 2.1470647427631775 Iteration 13: convergence error = 1.0135799311497067 Iteration 14: convergence error = 0.4784300946635085 Iteration 15: convergence error = 0.22580975815299098 Iteration 16: convergence error = 0.10648277135533135 Iteration 17: convergence error = 0.04977570977189316 Iteration 18: convergence error = 0.02273475574065742 Iteration 19: convergence error = 0.01034582189640787 Iteration 20: convergence error = 0.004698025355992286 Iteration 21: convergence error = 0.0021307372139744984 Iteration 22: convergence error = 0.0009656773900132976 Iteration 23: convergence error = 0.00043747254085246823 Iteration 24: convergence error = 0.00019813487870123936 Iteration 25: convergence error = 8.972350133262808e-5 Iteration 26: convergence error = 4.0626789996167645e-5 Iteration 27: convergence error = 1.8394803646515356e-5 Iteration 28: convergence error = 8.328432613780024e-6 Iteration 29: convergence error = 3.770711373363156e-6 Iteration 30: convergence error = 1.7071683942049276e-6 Iteration 31: convergence error = 7.729049684712663e-7 Iteration 32: convergence error = 3.499258127703797e-7 Iteration 33: convergence error = 1.5842624634387903e-7 Iteration 34: convergence error = 7.17200236977078e-8 Iteration 35: convergence error = 3.2477146305609494e-8 Iteration 36: convergence error = 1.469743438065052e-8 Iteration 37: convergence error = 6.657501216977835e-9 Iteration 38: convergence error = 3.017703420482576e-9 Iteration 39: convergence error = 1.3637873053085059e-9 Iteration 40: convergence error = 6.15273165749386e-10 Iteration 41: convergence error = 2.7921487344428897e-10 Iteration 42: convergence error = 1.2732925824820995e-10 Iteration 43: convergence error = 5.729816621169448e-11 Iteration 44: convergence error = 2.8194335754960775e-11 Iteration 45: convergence error = 1.3642420526593924e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 50%|████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017808002014964718 Iteration 10: d = 1.367050404562511e-5 Iteration 20: d = 1.2108075798212934e-7 Iteration 30: d = 1.3954988673702006e-9 Iteration 40: d = 1.7253962746598265e-11 Iteration 50: d = 2.1825916355315924e-13 Iteration 60: d = 2.7988617869217484e-15 Converged after 61 iterations. d = 1.8257860928453234e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.660133999821 Iteration 2: convergence error = 7345.407322489702 Iteration 3: convergence error = 1733.1649914726331 Iteration 4: convergence error = 504.8878255247155 Iteration 5: convergence error = 156.86948544065217 Iteration 6: convergence error = 48.741506621602184 Iteration 7: convergence error = 15.119727554455494 Iteration 8: convergence error = 4.682468600938137 Iteration 9: convergence error = 1.4484599625607188 Iteration 10: convergence error = 0.44774486703045113 Iteration 11: convergence error = 0.13834871510653102 Iteration 12: convergence error = 0.04273828188797779 Iteration 13: convergence error = 0.013200819135818165 Iteration 14: convergence error = 0.004077104504631279 Iteration 15: convergence error = 0.001259169529475912 Iteration 16: convergence error = 0.0003888714027198148 Iteration 17: convergence error = 0.00012009414103886229 Iteration 18: convergence error = 3.7088066164869815e-5 Iteration 19: convergence error = 1.145367423305288e-5 Iteration 20: convergence error = 3.537152679200517e-6 Iteration 21: convergence error = 1.092346337827621e-6 Iteration 22: convergence error = 3.3718561098794453e-7 Iteration 23: convergence error = 1.0290250429534353e-7 Iteration 24: convergence error = 3.0635419534519315e-8 Iteration 25: convergence error = 9.089490049518645e-9 Iteration 26: convergence error = 2.684828359633684e-9 Iteration 27: convergence error = 7.971721061039716e-10 Iteration 28: convergence error = 2.360138751100749e-10 Iteration 29: convergence error = 7.457856554538012e-11 Iteration 30: convergence error = 2.2737367544323206e-11 Iteration 31: convergence error = 7.275957614183426e-12 Converged after 31 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 53%|█████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017808002014964718 Iteration 10: d = 1.367050404562511e-5 Iteration 20: d = 1.2108075798212934e-7 Iteration 30: d = 1.3954988673702006e-9 Iteration 40: d = 1.7253962746598265e-11 Iteration 50: d = 2.1825916355315924e-13 Iteration 60: d = 2.7988617869217484e-15 Converged after 61 iterations. d = 1.8257860928453234e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.699378148142 Iteration 2: convergence error = 5515.86071519951 Iteration 3: convergence error = 937.2319066124453 Iteration 4: convergence error = 170.62353827114407 Iteration 5: convergence error = 30.96255133286172 Iteration 6: convergence error = 5.633956029577803 Iteration 7: convergence error = 1.0278334022423223 Iteration 8: convergence error = 0.18813419956359212 Iteration 9: convergence error = 0.034395486513858486 Iteration 10: convergence error = 0.006284668798798521 Iteration 11: convergence error = 0.001147984711224126 Iteration 12: convergence error = 0.00020966447391401744 Iteration 13: convergence error = 3.828953367701615e-5 Iteration 14: convergence error = 6.992259386606747e-6 Iteration 15: convergence error = 1.2768737178703304e-6 Iteration 16: convergence error = 2.331644282094203e-7 Iteration 17: convergence error = 4.258799890521914e-8 Iteration 18: convergence error = 7.771632226649672e-9 Iteration 19: convergence error = 1.4242687029764056e-9 Iteration 20: convergence error = 2.5988811103161424e-10 Iteration 21: convergence error = 4.6838977141305804e-11 Iteration 22: convergence error = 8.412825991399586e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 66%|█████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017808002014964718 Iteration 10: d = 1.367050404562511e-5 Iteration 20: d = 1.2108075798212934e-7 Iteration 30: d = 1.3954988673702006e-9 Iteration 40: d = 1.7253962746598265e-11 Iteration 50: d = 2.1825916355315924e-13 Iteration 60: d = 2.7988617869217484e-15 Converged after 61 iterations. d = 1.8257860928453234e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.4806823161575 Iteration 2: convergence error = 2712.8919662391927 Iteration 3: convergence error = 204.81052781559265 Iteration 4: convergence error = 19.297047209734796 Iteration 5: convergence error = 1.5952052132633985 Iteration 6: convergence error = 0.13001283486015092 Iteration 7: convergence error = 0.010633082850169789 Iteration 8: convergence error = 0.0008706583219627091 Iteration 9: convergence error = 7.135143367209006e-5 Iteration 10: convergence error = 5.850076953290111e-6 Iteration 11: convergence error = 4.797633829269773e-7 Iteration 12: convergence error = 3.93500439489382e-8 Iteration 13: convergence error = 3.228825968109602e-9 Iteration 14: convergence error = 2.6389776849905315e-10 Iteration 15: convergence error = 2.3305801732931286e-11 Iteration 16: convergence error = 3.183231456205249e-12 Converged after 16 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346345 Iteration 2: convergence error = 858.4060420534043 Iteration 3: convergence error = 199.12106737711986 Iteration 4: convergence error = 59.265629268140856 Iteration 5: convergence error = 17.98548291103714 Iteration 6: convergence error = 5.463033078096942 Iteration 7: convergence error = 1.660989611064906 Iteration 8: convergence error = 0.5052487627306164 Iteration 9: convergence error = 0.15371874094194027 Iteration 10: convergence error = 0.046771316975991795 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.00433023651169151 Iteration 13: convergence error = 0.0013175920927324114 Iteration 14: convergence error = 0.0004009136252989265 Iteration 15: convergence error = 0.00012198904050819692 Iteration 16: convergence error = 3.711853867116588e-5 Iteration 17: convergence error = 1.1294342129986035e-5 Iteration 18: convergence error = 3.4366162253718358e-6 Iteration 19: convergence error = 1.0456861900820513e-6 Iteration 20: convergence error = 3.181812644470483e-7 Iteration 21: convergence error = 9.681605206424138e-8 Iteration 22: convergence error = 2.9460807127179578e-8 Iteration 23: convergence error = 8.963411346485373e-9 Iteration 24: convergence error = 2.730530468397774e-9 Iteration 25: convergence error = 8.295728548546322e-10 Iteration 26: convergence error = 2.538627086323686e-10 Iteration 27: convergence error = 7.707967597525567e-11 Iteration 28: convergence error = 2.4556356947869062e-11 Iteration 29: convergence error = 8.640199666842818e-12 Converged after 29 iterations Energy conservation errors by band: [4.6852026882886333e-26, 1.7771458472818954e-26, 2.50416005753358e-26, 4.13994203059987e-26, 6.522933053091502e-26, 4.828087799349512e-20, -1.176836406102666e-14, 1.1084466677857563e-12, -1.4779288903810084e-12, -7.389644451905042e-13, -1.1368683772161603e-13, 7.993605777301127e-15, 2.220446049250313e-16, 1.5612511283791264e-16, 6.451002926288751e-18, 2.0328790734103208e-20, 1.3923104070492562e-20, 4.793511649744795e-22, 1.0481929324695398e-23, 1.318298825299594e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:01 Bin 1 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015664614631052257 Iteration 10: d = 1.6472901489915094e-5 Iteration 20: d = 2.0612797125312196e-7 Iteration 30: d = 2.8573807217462935e-9 Iteration 40: d = 3.996120104084438e-11 Iteration 50: d = 5.589207502614618e-13 Iteration 60: d = 7.808117569545419e-15 Converged after 63 iterations. d = 2.1907069276461414e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.228474349841 Iteration 2: convergence error = 3606.4456444338475 Iteration 3: convergence error = 591.2243368941371 Iteration 4: convergence error = 104.39946301847453 Iteration 5: convergence error = 18.56331974708428 Iteration 6: convergence error = 3.271831502445366 Iteration 7: convergence error = 0.5745828085887297 Iteration 8: convergence error = 0.10075362039560787 Iteration 9: convergence error = 0.017656361682611532 Iteration 10: convergence error = 0.003093381600365319 Iteration 11: convergence error = 0.000541903928933607 Iteration 12: convergence error = 9.49278787629737e-5 Iteration 13: convergence error = 1.6628701814624947e-5 Iteration 14: convergence error = 2.9128505047992803e-6 Iteration 15: convergence error = 5.102544946566923e-7 Iteration 16: convergence error = 8.937695383792743e-8 Iteration 17: convergence error = 1.5669229469494894e-8 Iteration 18: convergence error = 2.7255282475380227e-9 Iteration 19: convergence error = 4.836238076677546e-10 Iteration 20: convergence error = 8.185452315956354e-11 Iteration 21: convergence error = 1.5688783605583012e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.4924275130247 Iteration 2: convergence error = 871.3046026617826 Iteration 3: convergence error = 207.75299581225215 Iteration 4: convergence error = 62.495505504907555 Iteration 5: convergence error = 18.979315309184585 Iteration 6: convergence error = 5.766215594047026 Iteration 7: convergence error = 1.7533061530645 Iteration 8: convergence error = 0.5333443699004192 Iteration 9: convergence error = 0.16226812526360845 Iteration 10: convergence error = 0.04937275062957269 Iteration 11: convergence error = 0.015022831427586425 Iteration 12: convergence error = 0.004571091655407145 Iteration 13: convergence error = 0.0013908789693459767 Iteration 14: convergence error = 0.00042321318755966786 Iteration 15: convergence error = 0.00012877429912805383 Iteration 16: convergence error = 3.918314223483321e-5 Iteration 17: convergence error = 1.192255740534165e-5 Iteration 18: convergence error = 3.6277690469432855e-6 Iteration 19: convergence error = 1.1038503089366714e-6 Iteration 20: convergence error = 3.358788944751723e-7 Iteration 21: convergence error = 1.0220196600130294e-7 Iteration 22: convergence error = 3.1098920771910343e-8 Iteration 23: convergence error = 9.464429240324534e-9 Iteration 24: convergence error = 2.8813929020543583e-9 Iteration 25: convergence error = 8.774350135354325e-10 Iteration 26: convergence error = 2.6773250283440575e-10 Iteration 27: convergence error = 8.174083632184193e-11 Iteration 28: convergence error = 2.546585164964199e-11 Iteration 29: convergence error = 8.526512829121202e-12 Converged after 29 iterations Energy conservation errors by band: [3.473512337869159e-26, 2.928251680180396e-26, 6.54312789226516e-26, 3.0090310368750274e-26, 3.4028304007613565e-26, 3.3881317890172014e-20, -1.4654943925052066e-14, 3.552713678800501e-13, -3.268496584496461e-13, 2.0463630789890885e-12, 7.815970093361102e-14, 2.220446049250313e-14, 1.6653345369377348e-15, 1.8735013540549517e-16, 3.7947076036992655e-18, -1.3976043629695956e-19, 2.2658131339052534e-20, 1.5923226791645783e-22, -7.302453845194697e-25, 1.6176561218948528e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729989 Iteration 2: convergence error = 2115.1156110176375 Iteration 3: convergence error = 714.8959934551624 Iteration 4: convergence error = 296.0190747132401 Iteration 5: convergence error = 115.88799395378715 Iteration 6: convergence error = 44.115249236190266 Iteration 7: convergence error = 16.5995810251261 Iteration 8: convergence error = 6.21598340493324 Iteration 9: convergence error = 2.323124567003333 Iteration 10: convergence error = 0.8675636398231745 Iteration 11: convergence error = 0.32389343048794217 Iteration 12: convergence error = 0.12090784413680922 Iteration 13: convergence error = 0.04513241840777482 Iteration 14: convergence error = 0.016846741615609062 Iteration 15: convergence error = 0.0062884074734483875 Iteration 16: convergence error = 0.002347277756598487 Iteration 17: convergence error = 0.0008761691049130604 Iteration 18: convergence error = 0.0003270478227932472 Iteration 19: convergence error = 0.00012207719078105583 Iteration 20: convergence error = 4.556777048492222e-5 Iteration 21: convergence error = 1.7009089560815482e-5 Iteration 22: convergence error = 6.3489862895949045e-6 Iteration 23: convergence error = 2.369887170061702e-6 Iteration 24: convergence error = 8.846072887536138e-7 Iteration 25: convergence error = 3.3019910006260034e-7 Iteration 26: convergence error = 1.2325517673161812e-7 Iteration 27: convergence error = 4.600769898388535e-8 Iteration 28: convergence error = 1.7175352695630863e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.956249075708911e-10 Iteration 32: convergence error = 3.3514879760332406e-10 Iteration 33: convergence error = 1.2505552149377763e-10 Iteration 34: convergence error = 4.8203219193965197e-11 Iteration 35: convergence error = 1.887201506178826e-11 Converged after 35 iterations Energy conservation errors by band: [-2.3022116657970009e-26, -1.308625578453032e-25, -1.0743654440386004e-25, -8.320273739547056e-26, -1.0057029908481635e-25, -6.945670167485263e-20, -9.769962616701378e-15, -1.4068746168049984e-12, -7.837286375433905e-12, -1.0373923942097463e-12, -8.881784197001252e-15, -1.5543122344752192e-15, 9.71445146547012e-16, 2.927345865710862e-18, 1.4365678785432934e-18, 4.1504614415460717e-20, 5.717472393966527e-21, 1.2904017555827232e-22, -3.9291079096268815e-24, 5.551115123125783e-17] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.362166223825 Iteration 2: convergence error = 864.8522700482426 Iteration 3: convergence error = 203.43244494690714 Iteration 4: convergence error = 60.87736397590493 Iteration 5: convergence error = 18.481426659698172 Iteration 6: convergence error = 5.614330618626127 Iteration 7: convergence error = 1.7070587705939033 Iteration 8: convergence error = 0.5192694771479864 Iteration 9: convergence error = 0.15798519284180657 Iteration 10: convergence error = 0.04806952669321163 Iteration 11: convergence error = 0.01462628739034244 Iteration 12: convergence error = 0.00445043197044015 Iteration 13: convergence error = 0.0013541649042281279 Iteration 14: convergence error = 0.00041204191563792847 Iteration 15: convergence error = 0.00012537513089228014 Iteration 16: convergence error = 3.814885076280916e-5 Iteration 17: convergence error = 1.1607843816818786e-5 Iteration 18: convergence error = 3.5320085771672893e-6 Iteration 19: convergence error = 1.074713281923323e-6 Iteration 20: convergence error = 3.270117758802371e-7 Iteration 21: convergence error = 9.950326784746721e-8 Iteration 22: convergence error = 3.0277988116722554e-8 Iteration 23: convergence error = 9.213749763148371e-9 Iteration 24: convergence error = 2.8026079235132784e-9 Iteration 25: convergence error = 8.545839591533877e-10 Iteration 26: convergence error = 2.629576556500979e-10 Iteration 27: convergence error = 8.01492205937393e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.86757334228605e-12 Converged after 29 iterations Energy conservation errors by band: [4.281305904815475e-26, 4.52364397489937e-26, 4.119747191426212e-26, 5.634360129450555e-26, 9.895471195092372e-26, -6.606856988583543e-20, 2.4424906541753444e-15, -8.526512829121202e-14, 3.126388037344441e-12, 5.684341886080801e-13, 2.984279490192421e-13, 3.552713678800501e-14, 8.326672684688674e-16, 1.3010426069826053e-16, 2.0599841277224584e-18, 3.9810548520952116e-19, 2.3002238473874594e-20, 5.438712527536157e-22, -1.2782525403358506e-23, 3.1963148993622903e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 8m38.5s Testing RayTraceHeatTransfer tests passed Testing completed after 528.45s PkgEval succeeded after 605.72s