Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1589 (2d9a3f8a61*) started at 2026-01-21T07:52:28.794 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 10.56s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.14.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.18.0+0 [e37daf67] + LibGit2_jll v1.9.2+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.12.2 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.07s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling packages... 1281.8 ms ✓ Measurements 4326.1 ms ✓ StatsBase 1273.4 ms ✓ EarCut_jll 21477.2 ms ✓ GeometryBasics 6183.2 ms ✓ RayTraceHeatTransfer 5 dependencies successfully precompiled in 35 seconds. 56 already precompiled. Precompilation completed after 52.66s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_n8K1bB/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.16 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_n8K1bB/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.16 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.18.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:04:18 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:06 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001073345518572804 Iteration 10: d = 1.0028512648630104e-5 Iteration 20: d = 1.5461353409645541e-7 Iteration 30: d = 2.6356682738102125e-9 Iteration 40: d = 4.526448256071761e-11 Iteration 50: d = 7.769948736148491e-13 Iteration 60: d = 1.3300501474813519e-14 Converged after 65 iterations. d = 1.7500070132970023e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:01 Bin 1 progress: 95%|███████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00119156565026302 Iteration 10: d = 8.23093812348773e-6 Iteration 20: d = 1.0163517839354317e-7 Iteration 30: d = 1.541694549476921e-9 Iteration 40: d = 2.4850787945834022e-11 Iteration 50: d = 4.136433454687839e-13 Iteration 60: d = 6.9697178747772955e-15 Converged after 63 iterations. d = 2.057572521577123e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 58%|███████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012603146691205394 Iteration 10: d = 9.735312901858177e-6 Iteration 20: d = 1.081330259086183e-7 Iteration 30: d = 1.4682041814833133e-9 Iteration 40: d = 2.1830284508077444e-11 Iteration 50: d = 3.454395116321479e-13 Iteration 60: d = 5.706394686157747e-15 Converged after 63 iterations. d = 1.6742414065416217e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 55%|██████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012011729648338354 Iteration 10: d = 9.99184052217576e-6 Iteration 20: d = 1.407316060981882e-7 Iteration 30: d = 2.2869789833643312e-9 Iteration 40: d = 3.8631766682969594e-11 Iteration 50: d = 6.634510213586563e-13 Iteration 60: d = 1.1490248740119622e-14 Converged after 65 iterations. d = 1.559139012278053e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 79%|██████████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011535193760730503 Iteration 10: d = 1.1500839749699964e-5 Iteration 20: d = 1.5329059811870626e-7 Iteration 30: d = 2.329722772698227e-9 Iteration 40: d = 3.625134267148036e-11 Iteration 50: d = 5.663310651023461e-13 Iteration 60: d = 8.869942594962052e-15 Converged after 64 iterations. d = 1.671133279129234e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 34%|███████████▏ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001091584119130051 Iteration 10: d = 8.740364793491051e-6 Iteration 20: d = 9.144835678519426e-8 Iteration 30: d = 1.28091323282584e-9 Iteration 40: d = 1.961005625357207e-11 Iteration 50: d = 3.0650636575236637e-13 Iteration 60: d = 4.823604286215559e-15 Converged after 62 iterations. d = 2.090216752315298e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 75%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010232305878371654 Iteration 10: d = 1.0208699479619601e-5 Iteration 20: d = 1.3862366578955373e-7 Iteration 30: d = 2.1494392924417502e-9 Iteration 40: d = 3.3896341167927334e-11 Iteration 50: d = 5.334471431453562e-13 Iteration 60: d = 8.363546321003544e-15 Converged after 64 iterations. d = 1.5809804110947536e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012528582992149542 Iteration 10: d = 1.1176468560092904e-5 Iteration 20: d = 1.4051330540919283e-7 Iteration 30: d = 2.136659874851699e-9 Iteration 40: d = 3.3467817834478564e-11 Iteration 50: d = 5.24112441835959e-13 Iteration 60: d = 8.157468265809953e-15 Converged after 64 iterations. d = 1.550893835318543e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011654884427784173 Iteration 10: d = 1.1836236665861814e-5 Iteration 20: d = 1.3866166582268435e-7 Iteration 30: d = 1.930069785787468e-9 Iteration 40: d = 2.8871210323181646e-11 Iteration 50: d = 4.446832656401813e-13 Iteration 60: d = 6.9165231779132744e-15 Converged after 63 iterations. d = 1.9684262223798744e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 64%|█████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011903656575156785 Iteration 10: d = 1.0043053077672498e-5 Iteration 20: d = 1.0602667415924763e-7 Iteration 30: d = 1.4416755087455949e-9 Iteration 40: d = 2.152686616666471e-11 Iteration 50: d = 3.3060693599827383e-13 Iteration 60: d = 5.0859551992863305e-15 Converged after 63 iterations. d = 1.5153954252085221e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0034520983997863375 Iteration 10: d = 2.80710240225842e-5 Iteration 20: d = 2.787453004476806e-7 Iteration 30: d = 3.612658659622858e-9 Iteration 40: d = 5.0992796830091443e-11 Iteration 50: d = 7.379476969153609e-13 Iteration 60: d = 1.0766663920473049e-14 Converged after 64 iterations. d = 1.9678784472172417e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.003276906349242083 Iteration 10: d = 4.039137127019538e-5 Iteration 20: d = 5.651078664423175e-7 Iteration 30: d = 8.441111439145067e-9 Iteration 40: d = 1.2834227606862036e-10 Iteration 50: d = 1.9682581715606607e-12 Iteration 60: d = 3.035019615666578e-14 Converged after 67 iterations. d = 1.6739317426312034e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002583091461096299 Iteration 10: d = 3.271500094708475e-5 Iteration 20: d = 5.137354523109266e-7 Iteration 30: d = 8.78893888706142e-9 Iteration 40: d = 1.5365331272610925e-10 Iteration 50: d = 2.7084863381316794e-12 Iteration 60: d = 4.78990649442149e-14 Converged after 68 iterations. d = 1.9269287555210207e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0019016670608094223 Iteration 10: d = 1.0677414531873254e-5 Iteration 20: d = 1.57052635257218e-7 Iteration 30: d = 2.844693548658085e-9 Iteration 40: d = 5.1512160854265573e-11 Iteration 50: d = 9.279844025272245e-13 Iteration 60: d = 1.6663883663512782e-14 Converged after 66 iterations. d = 1.493612402927203e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 34%|███████████▏ | ETA: 0:00:02 Bin 1 progress: 70%|███████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011535193760730503 Iteration 10: d = 1.1500839749699964e-5 Iteration 20: d = 1.5329059811870626e-7 Iteration 30: d = 2.329722772698227e-9 Iteration 40: d = 3.625134267148036e-11 Iteration 50: d = 5.663310651023461e-13 Iteration 60: d = 8.869942594962052e-15 Converged after 64 iterations. d = 1.671133279129234e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015691242409827263 Iteration 10: d = 1.1299978648423862e-5 Iteration 20: d = 1.243538261464643e-7 Iteration 30: d = 1.7240907865816672e-9 Iteration 40: d = 2.4458828888052883e-11 Iteration 50: d = 3.483651964608038e-13 Iteration 60: d = 5.001832854256833e-15 Converged after 62 iterations. d = 2.1055829498990566e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 67%|██████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011467122094551072 Iteration 10: d = 1.496792527121289e-5 Iteration 20: d = 1.8676919102399134e-7 Iteration 30: d = 2.4946982130025086e-9 Iteration 40: d = 3.390466681526347e-11 Iteration 50: d = 4.634655816337547e-13 Iteration 60: d = 6.350977382657211e-15 Converged after 63 iterations. d = 1.6717639389148704e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.6651451025 Iteration 2: convergence error = 4827.476802026631 Iteration 3: convergence error = 1096.221193173446 Iteration 4: convergence error = 316.99563307714857 Iteration 5: convergence error = 93.7735860660764 Iteration 6: convergence error = 28.249304441914774 Iteration 7: convergence error = 8.487614949244517 Iteration 8: convergence error = 2.539932935294246 Iteration 9: convergence error = 0.7582677662751394 Iteration 10: convergence error = 0.22606068638174293 Iteration 11: convergence error = 0.06734209238902622 Iteration 12: convergence error = 0.02005184209519939 Iteration 13: convergence error = 0.005969135286704841 Iteration 14: convergence error = 0.001776664059889299 Iteration 15: convergence error = 0.0005287651999879017 Iteration 16: convergence error = 0.00015736184150227928 Iteration 17: convergence error = 4.6829962002448156e-5 Iteration 18: convergence error = 1.3936096365796402e-5 Iteration 19: convergence error = 4.147197842030437e-6 Iteration 20: convergence error = 1.2341392903181259e-6 Iteration 21: convergence error = 3.6725828067574184e-7 Iteration 22: convergence error = 1.0913322512351442e-7 Iteration 23: convergence error = 3.156856109853834e-8 Iteration 24: convergence error = 9.091763786273077e-9 Iteration 25: convergence error = 2.6011548470705748e-9 Iteration 26: convergence error = 7.521521183662117e-10 Iteration 27: convergence error = 2.1373125491663814e-10 Iteration 28: convergence error = 6.139089236967266e-11 Iteration 29: convergence error = 1.8189894035458565e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015691242409827263 Iteration 10: d = 1.1299978648423862e-5 Iteration 20: d = 1.243538261464643e-7 Iteration 30: d = 1.7240907865816672e-9 Iteration 40: d = 2.4458828888052883e-11 Iteration 50: d = 3.483651964608038e-13 Iteration 60: d = 5.001832854256833e-15 Converged after 62 iterations. d = 2.1055829498990566e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.61242887352 Iteration 2: convergence error = 4823.009156578562 Iteration 3: convergence error = 1096.7862630363452 Iteration 4: convergence error = 321.66091001682776 Iteration 5: convergence error = 95.47705002628118 Iteration 6: convergence error = 28.477041459528436 Iteration 7: convergence error = 8.50033614187214 Iteration 8: convergence error = 2.5427414305368075 Iteration 9: convergence error = 0.7602947911923366 Iteration 10: convergence error = 0.22702539229203467 Iteration 11: convergence error = 0.06773813291397346 Iteration 12: convergence error = 0.020202401667120284 Iteration 13: convergence error = 0.006023729848493531 Iteration 14: convergence error = 0.001795836613382562 Iteration 15: convergence error = 0.0005353442725208879 Iteration 16: convergence error = 0.0001595803364580206 Iteration 17: convergence error = 4.7567893716404797e-5 Iteration 18: convergence error = 1.417887028765108e-5 Iteration 19: convergence error = 4.226359351378051e-6 Iteration 20: convergence error = 1.2597624845511746e-6 Iteration 21: convergence error = 3.7549125408986583e-7 Iteration 22: convergence error = 1.1178508430020884e-7 Iteration 23: convergence error = 3.240529622416943e-8 Iteration 24: convergence error = 9.350515028927475e-9 Iteration 25: convergence error = 2.6830093702301383e-9 Iteration 26: convergence error = 7.696598913753405e-10 Iteration 27: convergence error = 2.2077983885537833e-10 Iteration 28: convergence error = 6.230038707144558e-11 Iteration 29: convergence error = 1.7962520360015333e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 13:49:39 Bin 1 ray tracing: 8%|██▍ | ETA: 0:01:09 Bin 1 ray tracing: 16%|████▊ | ETA: 0:00:37 Bin 1 ray tracing: 24%|███████▏ | ETA: 0:00:25 Bin 1 ray tracing: 32%|█████████▋ | ETA: 0:00:19 Bin 1 ray tracing: 40%|████████████ | ETA: 0:00:15 Bin 1 ray tracing: 49%|██████████████▋ | ETA: 0:00:12 Bin 1 ray tracing: 62%|██████████████████▌ | ETA: 0:00:08 Bin 1 ray tracing: 74%|██████████████████████▎ | ETA: 0:00:05 Bin 1 ray tracing: 83%|█████████████████████████ | ETA: 0:00:03 Bin 1 ray tracing: 93%|███████████████████████████▊ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 2 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 2 ray tracing: 25%|███████▌ | ETA: 0:00:09 Bin 2 ray tracing: 33%|██████████ | ETA: 0:00:08 Bin 2 ray tracing: 41%|████████████▍ | ETA: 0:00:07 Bin 2 ray tracing: 50%|██████████████▉ | ETA: 0:00:06 Bin 2 ray tracing: 58%|█████████████████▍ | ETA: 0:00:05 Bin 2 ray tracing: 66%|███████████████████▉ | ETA: 0:00:04 Bin 2 ray tracing: 74%|██████████████████████▎ | ETA: 0:00:03 Bin 2 ray tracing: 83%|████████████████████████▊ | ETA: 0:00:02 Bin 2 ray tracing: 90%|███████████████████████████ | ETA: 0:00:01 Bin 2 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 3 ray tracing: 16%|████▉ | ETA: 0:00:10 Bin 3 ray tracing: 25%|███████▍ | ETA: 0:00:09 Bin 3 ray tracing: 33%|█████████▉ | ETA: 0:00:08 Bin 3 ray tracing: 42%|████████████▌ | ETA: 0:00:07 Bin 3 ray tracing: 50%|███████████████ | ETA: 0:00:06 Bin 3 ray tracing: 59%|█████████████████▋ | ETA: 0:00:05 Bin 3 ray tracing: 67%|████████████████████▏ | ETA: 0:00:04 Bin 3 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:03 Bin 3 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 3 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 4 ray tracing: 22%|██████▋ | ETA: 0:00:07 Bin 4 ray tracing: 35%|██████████▌ | ETA: 0:00:06 Bin 4 ray tracing: 47%|██████████████▏ | ETA: 0:00:05 Bin 4 ray tracing: 58%|█████████████████▍ | ETA: 0:00:04 Bin 4 ray tracing: 68%|████████████████████▌ | ETA: 0:00:03 Bin 4 ray tracing: 77%|███████████████████████ | ETA: 0:00:02 Bin 4 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:01 Bin 4 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 5 ray tracing: 18%|█████▍ | ETA: 0:00:09 Bin 5 ray tracing: 27%|████████ | ETA: 0:00:08 Bin 5 ray tracing: 36%|██████████▊ | ETA: 0:00:07 Bin 5 ray tracing: 44%|█████████████▎ | ETA: 0:00:06 Bin 5 ray tracing: 53%|███████████████▊ | ETA: 0:00:05 Bin 5 ray tracing: 61%|██████████████████▍ | ETA: 0:00:04 Bin 5 ray tracing: 70%|█████████████████████ | ETA: 0:00:03 Bin 5 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:02 Bin 5 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:01 Bin 5 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 6 ray tracing: 18%|█████▍ | ETA: 0:00:09 Bin 6 ray tracing: 27%|████████ | ETA: 0:00:08 Bin 6 ray tracing: 36%|██████████▋ | ETA: 0:00:07 Bin 6 ray tracing: 45%|█████████████▌ | ETA: 0:00:06 Bin 6 ray tracing: 54%|████████████████▎ | ETA: 0:00:05 Bin 6 ray tracing: 64%|███████████████████ | ETA: 0:00:04 Bin 6 ray tracing: 73%|█████████████████████▊ | ETA: 0:00:03 Bin 6 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:02 Bin 6 ray tracing: 90%|███████████████████████████▏ | ETA: 0:00:01 Bin 6 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 7 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 7 ray tracing: 27%|████████▏ | ETA: 0:00:08 Bin 7 ray tracing: 36%|██████████▊ | ETA: 0:00:07 Bin 7 ray tracing: 44%|█████████████▎ | ETA: 0:00:06 Bin 7 ray tracing: 53%|███████████████▉ | ETA: 0:00:05 Bin 7 ray tracing: 65%|███████████████████▌ | ETA: 0:00:04 Bin 7 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:02 Bin 7 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 14%|████▎ | ETA: 0:00:06 Bin 8 ray tracing: 28%|████████▌ | ETA: 0:00:05 Bin 8 ray tracing: 43%|████████████▊ | ETA: 0:00:04 Bin 8 ray tracing: 56%|████████████████▋ | ETA: 0:00:03 Bin 8 ray tracing: 66%|███████████████████▉ | ETA: 0:00:03 Bin 8 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:02 Bin 8 ray tracing: 86%|█████████████████████████▋ | ETA: 0:00:01 Bin 8 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 9%|██▉ | ETA: 0:00:10 Bin 9 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 9 ray tracing: 27%|████████▏ | ETA: 0:00:08 Bin 9 ray tracing: 36%|██████████▊ | ETA: 0:00:07 Bin 9 ray tracing: 44%|█████████████▎ | ETA: 0:00:06 Bin 9 ray tracing: 53%|████████████████ | ETA: 0:00:05 Bin 9 ray tracing: 65%|███████████████████▍ | ETA: 0:00:04 Bin 9 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:03 Bin 9 ray tracing: 87%|██████████████████████████ | ETA: 0:00:01 Bin 9 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 10 ray tracing: 18%|█████▏ | ETA: 0:00:09 Bin 10 ray tracing: 27%|███████▊ | ETA: 0:00:08 Bin 10 ray tracing: 36%|██████████▍ | ETA: 0:00:07 Bin 10 ray tracing: 45%|█████████████ | ETA: 0:00:06 Bin 10 ray tracing: 55%|███████████████▉ | ETA: 0:00:05 Bin 10 ray tracing: 65%|██████████████████▉ | ETA: 0:00:04 Bin 10 ray tracing: 75%|█████████████████████▉ | ETA: 0:00:03 Bin 10 ray tracing: 84%|████████████████████████▍ | ETA: 0:00:02 Bin 10 ray tracing: 93%|███████████████████████████ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 24%|████████▏ | ETA: 0:00:03 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 1 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 1 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 31%|██████████▎ | ETA: 0:00:02 Bin 2 progress: 60%|███████████████████▊ | ETA: 0:00:01 Bin 2 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 24%|████████▏ | ETA: 0:00:03 Bin 3 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 3 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 27%|████████▊ | ETA: 0:00:03 Bin 4 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 4 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 24%|████████▏ | ETA: 0:00:03 Bin 5 progress: 56%|██████████████████▍ | ETA: 0:00:02 Bin 5 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 6 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 6 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 22%|███████▍ | ETA: 0:00:04 Bin 7 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 7 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 7 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 22%|███████▍ | ETA: 0:00:04 Bin 8 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 8 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 31%|██████████▎ | ETA: 0:00:02 Bin 9 progress: 58%|███████████████████▏ | ETA: 0:00:02 Bin 9 progress: 87%|████████████████████████████▋ | ETA: 0:00:00 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 27%|████████▌ | ETA: 0:00:03 Bin 10 progress: 49%|███████████████▋ | ETA: 0:00:02 Bin 10 progress: 76%|████████████████████████▏ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:04 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015691242409827263 Iteration 10: d = 1.1299978648423862e-5 Iteration 20: d = 1.243538261464643e-7 Iteration 30: d = 1.7240907865816672e-9 Iteration 40: d = 2.4458828888052883e-11 Iteration 50: d = 3.483651964608038e-13 Iteration 60: d = 5.001832854256833e-15 Converged after 62 iterations. d = 2.1055829498990566e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011471044022608916 Iteration 10: d = 1.4706168645731153e-5 Iteration 20: d = 1.815698286008639e-7 Iteration 30: d = 2.4101038880178456e-9 Iteration 40: d = 3.261074575764214e-11 Iteration 50: d = 4.4408486552244247e-13 Iteration 60: d = 6.089241720187184e-15 Converged after 63 iterations. d = 1.69423699031856e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016879806785655117 Iteration 10: d = 1.843759696976208e-5 Iteration 20: d = 2.2533651908327464e-7 Iteration 30: d = 2.995598571642647e-9 Iteration 40: d = 4.029646227734108e-11 Iteration 50: d = 5.444153839147345e-13 Iteration 60: d = 7.363490143911233e-15 Converged after 63 iterations. d = 2.0309076537784384e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014055708023196735 Iteration 10: d = 1.7085257670839973e-5 Iteration 20: d = 2.0825264101963563e-7 Iteration 30: d = 2.7282263759785678e-9 Iteration 40: d = 3.659086656826794e-11 Iteration 50: d = 4.965275682573289e-13 Iteration 60: d = 6.80827544490498e-15 Converged after 63 iterations. d = 1.861826112434954e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015727038033080721 Iteration 10: d = 1.642273476921742e-5 Iteration 20: d = 1.9341493171862188e-7 Iteration 30: d = 2.4737441881536183e-9 Iteration 40: d = 3.205111887176017e-11 Iteration 50: d = 4.1678930476219156e-13 Iteration 60: d = 5.44992377230629e-15 Converged after 63 iterations. d = 1.490371457937002e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013720482442686785 Iteration 10: d = 1.304244257729221e-5 Iteration 20: d = 1.6282942850821037e-7 Iteration 30: d = 2.2612723410166956e-9 Iteration 40: d = 3.184771084054929e-11 Iteration 50: d = 4.505752399701236e-13 Iteration 60: d = 6.404148291836332e-15 Converged after 63 iterations. d = 1.788111485035539e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001553594690406405 Iteration 10: d = 1.6014048679531607e-5 Iteration 20: d = 1.620644463662344e-7 Iteration 30: d = 1.931932576993055e-9 Iteration 40: d = 2.499110298265965e-11 Iteration 50: d = 3.372834600138787e-13 Iteration 60: d = 4.660298144101926e-15 Converged after 62 iterations. d = 1.9689344788008275e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012599270047120995 Iteration 10: d = 7.756669579909674e-6 Iteration 20: d = 5.224225866602811e-8 Iteration 30: d = 5.194701971475572e-10 Iteration 40: d = 6.460248069949239e-12 Iteration 50: d = 8.643919279347915e-14 Converged after 59 iterations. d = 1.8242106927212494e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014210395671291948 Iteration 10: d = 1.1464392198260031e-5 Iteration 20: d = 1.1540603826887432e-7 Iteration 30: d = 1.452825979475639e-9 Iteration 40: d = 1.9379877429622248e-11 Iteration 50: d = 2.642116820996117e-13 Iteration 60: d = 3.628252862872502e-15 Converged after 62 iterations. d = 1.543149406439273e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013796118090235964 Iteration 10: d = 1.7157175821776936e-5 Iteration 20: d = 2.2090333927970297e-7 Iteration 30: d = 3.0060989785402175e-9 Iteration 40: d = 4.113382916731823e-11 Iteration 50: d = 5.629430191388362e-13 Iteration 60: d = 7.695534577864095e-15 Converged after 63 iterations. d = 2.0946670323167483e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8652.526043378579 Iteration 2: convergence error = 4819.761290119201 Iteration 3: convergence error = 1100.0749073705642 Iteration 4: convergence error = 321.30826322234293 Iteration 5: convergence error = 95.77957994249027 Iteration 6: convergence error = 28.69891290335204 Iteration 7: convergence error = 8.622315911356509 Iteration 8: convergence error = 2.597912532074588 Iteration 9: convergence error = 0.780809744803264 Iteration 10: convergence error = 0.23433946983846 Iteration 11: convergence error = 0.07027376418272979 Iteration 12: convergence error = 0.021064008191615358 Iteration 13: convergence error = 0.006312115417813402 Iteration 14: convergence error = 0.0018912269194970577 Iteration 15: convergence error = 0.0005665976907494041 Iteration 16: convergence error = 0.00016974000868685835 Iteration 17: convergence error = 5.084883628114767e-5 Iteration 18: convergence error = 1.5232471014314797e-5 Iteration 19: convergence error = 4.563052470984985e-6 Iteration 20: convergence error = 1.3669045983988326e-6 Iteration 21: convergence error = 4.0946997614810243e-7 Iteration 22: convergence error = 1.2253008208062965e-7 Iteration 23: convergence error = 3.580316842999309e-8 Iteration 24: convergence error = 1.036528374243062e-8 Iteration 25: convergence error = 2.9970124160172418e-9 Iteration 26: convergence error = 8.683400665177032e-10 Iteration 27: convergence error = 2.476099325576797e-10 Iteration 28: convergence error = 7.344169716816396e-11 Iteration 29: convergence error = 2.114575181622058e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.2508971911827 K, F = -7461.914227428137, relative_change = 0.03274910280881729 Iter 2: T = 936.5739556656746 K, F = -6325.379059999876, relative_change = 0.03171559893569645 Iter 3: T = 907.9379987427941 K, F = -5360.448967637829, relative_change = 0.030575222329909214 Iter 5: T = 856.6519848992093 K, F = -3846.0415743217563, relative_change = 0.0279784962483978 Iter 10: T = 761.1722514077248 K, F = -1665.5859245248832, relative_change = 0.020077012607345714 Iter 15: T = 705.1748821188592 K, F = -713.2174448156543, relative_change = 0.01205691085625348 Iter 20: T = 676.3337846820417 K, F = -302.31418765025563, relative_change = 0.00618439604215023 Iter 25: T = 662.8716606406302 K, F = -127.27551937413114, relative_change = 0.0028595981243562637 Iter 30: T = 656.9421968157761 K, F = -53.38903316674958, relative_change = 0.001251461284116647 Iter 35: T = 654.4049077279067 K, F = -22.35717545923899, relative_change = 0.0005337663232888411 Iter 40: T = 653.3332999966867 K, F = -9.3552381969861, relative_change = 0.00022509813374813853 Iter 45: T = 652.8832747115875 K, F = -3.913388315260174, relative_change = 9.446995186229505e-5 Iter 50: T = 652.6947399341664 K, F = -1.6367864085979786, relative_change = 3.956669323543728e-5 Iter 55: T = 652.6158347460018 K, F = -0.6845517611971715, relative_change = 1.6557470384831354e-5 Iter 60: T = 652.5828255502445 K, F = -0.2862926456420541, relative_change = 6.926318641274025e-6 Iter 65: T = 652.5690189422426 K, F = -0.1197318648157118, relative_change = 2.896981802888182e-6 Iter 70: T = 652.5632445445734 K, F = -0.05007344642341366, relative_change = 1.2116070749682993e-6 Iter 75: T = 652.5608295684026 K, F = -0.020941339645015544, relative_change = 5.067181138941292e-7 Iter 80: T = 652.5598195870639 K, F = -0.008757922939213902, relative_change = 2.119172397616851e-7 Iter 85: T = 652.5593971991512 K, F = -0.0036626687703857908, relative_change = 8.862661310729781e-8 Iter 90: T = 652.5592205511924 K, F = -0.001531771961974071, relative_change = 3.7064759200705946e-8 Iter 95: T = 652.5591466748557 K, F = -0.0006406053520519595, relative_change = 1.550093388821475e-8 Iter 100: T = 652.5591157788806 K, F = -0.0002679088131411489, relative_change = 6.4826772417393366e-9 Iter 105: T = 652.5591028578134 K, F = -0.0001120426659866891, relative_change = 2.7111333175357452e-9 Iter 110: T = 652.5590974540684 K, F = -4.6857581455950204e-5, relative_change = 1.1338283871963132e-9 Iter 115: T = 652.5590951941576 K, F = -1.959640015092301e-5, relative_change = 4.741805798323633e-10 Iter 120: T = 652.559094249036 K, F = -8.195448347569911e-6, relative_change = 1.983079772970856e-10 Iter 125: T = 652.5590938537748 K, F = -3.427433891478593e-6, relative_change = 8.293475298398063e-11 Iter 130: T = 652.5590936884719 K, F = -1.4333941674160577e-6, relative_change = 3.468431342826491e-11 Iter 135: T = 652.5590936193403 K, F = -5.99462064487799e-7, relative_change = 1.450538213157215e-11 Iter 140: T = 652.5590935904286 K, F = -2.507016751973623e-7, relative_change = 6.06631147483415e-12 Iter 145: T = 652.5590935783374 K, F = -1.048482818344354e-7, relative_change = 2.537048604738168e-12 Iter 150: T = 652.5590935732807 K, F = -4.384892332565116e-8, relative_change = 1.0610269219517302e-12 Iter 155: T = 652.5590935711659 K, F = -1.8338529084171995e-8, relative_change = 4.437434625953285e-13 Converged in 159 iterations to T = 652.5590935704025 K Iter 1: T = 970.3408026190195 K, F = -6757.876336436648, relative_change = 0.029659197380980443 Iter 2: T = 942.8458625143828 K, F = -5723.769443409886, relative_change = 0.028335343654956994 Iter 3: T = 917.470440295195 K, F = -4846.155239818693, relative_change = 0.026913648590997267 Iter 5: T = 872.8622375851407 K, F = -3469.8516082542756, relative_change = 0.023821675164994085 Iter 10: T = 793.6763189493337 K, F = -1493.5217529767456, relative_change = 0.015515924465719125 Iter 15: T = 750.5252062914387 K, F = -635.7609975054914, relative_change = 0.008497620411155296 Iter 20: T = 729.5766401685022 K, F = -268.35932444129236, relative_change = 0.004088804584036045 Iter 25: T = 720.1473191475329 K, F = -112.7199015422533, relative_change = 0.0018256500657551724 Iter 30: T = 716.0702711911531 K, F = -47.23120125042181, relative_change = 0.0007858065290496782 Iter 35: T = 714.3403900706832 K, F = -19.768851587293955, relative_change = 0.00033270290170462176 Iter 40: T = 713.6124796339956 K, F = -8.270432622196843, relative_change = 0.00013986504478542984 Iter 45: T = 713.3072712580635 K, F = -3.459296593817582, relative_change = 5.862095743523543e-5 Iter 50: T = 713.1794910898437 K, F = -1.446807267697349, relative_change = 2.453839547420042e-5 Iter 55: T = 713.1260276475577 K, F = -0.6050875018280889, relative_change = 1.0266175008039171e-5 Iter 60: T = 713.103664352721 K, F = -0.25305751802743937, relative_change = 4.294123859273524e-6 Iter 65: T = 713.0943110130773 K, F = -0.1058321481993133, relative_change = 1.7959740423918649e-6 Iter 70: T = 713.0903992048244 K, F = -0.04426035083168711, relative_change = 7.511188113462471e-7 Iter 75: T = 713.0887632171734 K, F = -0.018510221734829524, relative_change = 3.1413053341210424e-7 Iter 80: T = 713.0880790236257 K, F = -0.007741198311015163, relative_change = 1.3137378353780422e-7 Iter 85: T = 713.0877928850181 K, F = -0.0032374620239689067, relative_change = 5.494219765783104e-8 Iter 90: T = 713.0876732183136 K, F = -0.0013539453590981632, relative_change = 2.29775028780281e-8 Iter 95: T = 713.0876231722474 K, F = -0.0005662361327911647, relative_change = 9.609469563085463e-9 Iter 100: T = 713.0876022423812 K, F = -0.00023680671578207857, relative_change = 4.018795541049543e-9 Iter 105: T = 713.0875934892604 K, F = -9.9035395849989e-5, relative_change = 1.680708375157105e-9 Iter 110: T = 713.0875898286007 K, F = -4.1417785290653875e-5, relative_change = 7.028923318012564e-10 Iter 115: T = 713.0875882976691 K, F = -1.7321412800530567e-5, relative_change = 2.939579765665199e-10 Iter 120: T = 713.0875876574152 K, F = -7.244020478358593e-6, relative_change = 1.229367162857814e-10 Iter 125: T = 713.0875873896533 K, F = -3.029536115861653e-6, relative_change = 5.141360708900821e-11 Iter 130: T = 713.0875872776721 K, F = -1.2669871108927921e-6, relative_change = 2.1501766298123976e-11 Iter 135: T = 713.0875872308403 K, F = -5.298702102640718e-7, relative_change = 8.99231360370359e-12 Iter 140: T = 713.0875872112547 K, F = -2.2159770562968362e-7, relative_change = 3.760687097602254e-12 Iter 145: T = 713.0875872030638 K, F = -9.267633016563082e-8, relative_change = 1.5727901068998651e-12 Iter 150: T = 713.087587199638 K, F = -3.875681975351597e-8, relative_change = 6.577336691654105e-13 Iter 155: T = 713.0875871982056 K, F = -1.6209087516649845e-8, relative_change = 2.750809450841011e-13 Converged in 157 iterations to T = 713.0875871979024 K Iter 1: T = 974.3899798351579 K, F = -5835.2674559776315, relative_change = 0.025610020164842158 Iter 2: T = 950.9693693423011 K, F = -4936.877237006041, relative_change = 0.024036177482879 Iter 3: T = 929.6636380088934 K, F = -4174.998576507706, relative_change = 0.022404224594681704 Iter 5: T = 893.0442562662005 K, F = -2981.771354340492, relative_change = 0.019050248812368633 Iter 10: T = 831.3417718839345 K, F = -1275.0751067291878, relative_change = 0.011198710117925245 Iter 15: T = 800.0081799533767 K, F = -539.9178439924743, relative_change = 0.005654621575938419 Iter 20: T = 785.515210918975 K, F = -227.17387016612855, relative_change = 0.0025913846354631803 Iter 25: T = 779.1621128264314 K, F = -95.26664447370266, relative_change = 0.001129182036242891 Iter 30: T = 776.4495773846554 K, F = -39.888699930484066, relative_change = 0.0004806818180564568 Iter 35: T = 775.3050704882656 K, F = -16.6902840383699, relative_change = 0.00020254288077220221 Iter 40: T = 774.8246306368785 K, F = -6.981546395267374, relative_change = 8.497394732864954e-5 Iter 45: T = 774.6233891765775 K, F = -2.92002391907185, relative_change = 3.558422799292053e-5 Iter 50: T = 774.5391722092365 K, F = -1.2212340219079896, relative_change = 1.4890004471876841e-5 Iter 55: T = 774.503941969358 K, F = -0.5107425523547002, relative_change = 6.228622741935141e-6 Iter 60: T = 774.4892065652114 K, F = -0.21360001686249785, relative_change = 2.605137242391697e-6 Iter 65: T = 774.4830437463359 K, F = -0.08933031967879901, relative_change = 1.0895437324272673e-6 Iter 70: T = 774.4804663299532 K, F = -0.03735904878930585, relative_change = 4.5566793633364107e-7 Iter 75: T = 774.4793884145583 K, F = -0.0156240077544747, relative_change = 1.905671257416724e-7 Iter 80: T = 774.4789376158787 K, F = -0.006534147925491562, relative_change = 7.969768447189063e-8 Iter 85: T = 774.4787490862095 K, F = -0.0027326589236761345, relative_change = 3.333056483716225e-8 Iter 90: T = 774.4786702408016 K, F = -0.0011428306361555007, relative_change = 1.3939247503440249e-8 Iter 95: T = 774.478637266702 K, F = -0.00047794542713985866, relative_change = 5.829561040617078e-9 Iter 100: T = 774.4786234765382 K, F = -0.0001998824858114867, relative_change = 2.4379922572874224e-9 Iter 105: T = 774.4786177093268 K, F = -8.359324420859071e-5, relative_change = 1.0195975327221203e-9 Iter 110: T = 774.4786152974101 K, F = -3.495969266387178e-5, relative_change = 4.264078664585656e-10 Iter 115: T = 774.4786142887177 K, F = -1.4620561701761403e-5, relative_change = 1.7832887206059947e-10 Iter 120: T = 774.4786138668704 K, F = -6.114493350750649e-6, relative_change = 7.457926224255941e-11 Iter 125: T = 774.4786136904488 K, F = -2.557152203319646e-6, relative_change = 3.1189914524797424e-11 Iter 130: T = 774.4786136166673 K, F = -1.0694320922155498e-6, relative_change = 1.3044000868664096e-11 Iter 135: T = 774.478613585811 K, F = -4.4725038594872757e-7, relative_change = 5.455170521249285e-12 Iter 140: T = 774.4786135729065 K, F = -1.870457777553014e-7, relative_change = 2.2814214253865112e-12 Iter 145: T = 774.4786135675097 K, F = -7.822504355381454e-8, relative_change = 9.541209243699615e-13 Iter 150: T = 774.4786135652528 K, F = -3.271559745332553e-8, relative_change = 3.990363528841202e-13 Converged in 154 iterations to T = 774.4786135644381 K Iter 1: T = 970.4259585702033 K, F = -6738.4734719552025, relative_change = 0.02957404142979667 Iter 2: T = 943.0178116455802 K, F = -5707.203331791946, relative_change = 0.028243418967280564 Iter 3: T = 917.730302968958 K, F = -4832.007981328153, relative_change = 0.02681551542753489 Iter 5: T = 873.2986438685832 K, F = -3459.5311294578655, relative_change = 0.023713859905680392 Iter 10: T = 794.5211841304915 K, F = -1488.8516431892574, relative_change = 0.015408456614459613 Iter 15: T = 751.6673260821774 K, F = -633.6874534207334, relative_change = 0.00842114885173349 Iter 20: T = 730.8898154384283 K, F = -267.46061242869393, relative_change = 0.00404659406554391 Iter 25: T = 721.5444076176528 K, F = -112.33725476090511, relative_change = 0.0018055494530471324 Iter 30: T = 717.5051053632967 K, F = -47.069864125981894, relative_change = 0.0007769055238748378 Iter 35: T = 715.7915184732317 K, F = -19.701139420979924, relative_change = 0.00032888822336429115 Iter 40: T = 715.0705150346213 K, F = -8.242072004951876, relative_change = 0.00013825313888256503 Iter 45: T = 714.7682117122024 K, F = -3.4474283400160473, relative_change = 5.794390929194196e-5 Iter 50: T = 714.6416493722877 K, F = -1.4418425053403183, relative_change = 2.4254730968158085e-5 Iter 55: T = 714.5886957491144 K, F = -0.6030109482817759, relative_change = 1.0147452889262237e-5 Iter 60: T = 714.5665457558154 K, F = -0.2521890381753882, relative_change = 4.244457056021878e-6 Iter 65: T = 714.5572816370133 K, F = -0.10546893249257538, relative_change = 1.7752000285336929e-6 Iter 70: T = 714.5534071447092 K, F = -0.04410844845134221, relative_change = 7.42430387248073e-7 Iter 75: T = 714.5517867635108 K, F = -0.018446694127302488, relative_change = 3.104968461032264e-7 Iter 80: T = 714.5511090968514 K, F = -0.007714630270431622, relative_change = 1.2985411734340849e-7 Iter 85: T = 714.550825687881 K, F = -0.003226350946594181, relative_change = 5.4306652538510275e-8 Iter 90: T = 714.5507071627459 K, F = -0.0013492985721471618, relative_change = 2.2711709857562508e-8 Iter 95: T = 714.5506575940982 K, F = -0.0005642927902769213, relative_change = 9.498311659811869e-9 Iter 100: T = 714.550636863894 K, F = -0.00023599398678109118, relative_change = 3.972307965884029e-9 Iter 105: T = 714.5506281942745 K, F = -9.869550469643329e-5, relative_change = 1.661266744536278e-9 Iter 110: T = 714.5506245685359 K, F = -4.1275638721027796e-5, relative_change = 6.947616087906334e-10 Iter 115: T = 714.5506230522087 K, F = -1.7261964658454865e-5, relative_change = 2.905575983747469e-10 Iter 120: T = 714.5506224180625 K, F = -7.219158216553723e-6, relative_change = 1.215146319700569e-10 Iter 125: T = 714.550622152855 K, F = -3.019138456461512e-6, relative_change = 5.08188750054851e-11 Iter 130: T = 714.5506220419421 K, F = -1.2626398145920703e-6, relative_change = 2.125306139067478e-11 Iter 135: T = 714.550621995557 K, F = -5.280503969640193e-7, relative_change = 8.888273106721947e-12 Iter 140: T = 714.5506219761583 K, F = -2.2083736006539567e-7, relative_change = 3.717188321356733e-12 Iter 145: T = 714.5506219680454 K, F = -9.235785303207678e-8, relative_change = 1.5545899144660672e-12 Iter 150: T = 714.5506219646526 K, F = -3.862490771666671e-8, relative_change = 6.50143869888526e-13 Iter 155: T = 714.5506219632337 K, F = -1.6154253934530516e-8, relative_change = 2.719123433329272e-13 Converged in 157 iterations to T = 714.5506219629333 K Iter 1: T = 969.3189388346374 K, F = -6990.708971751537, relative_change = 0.030681061165362657 Iter 2: T = 940.7787352812225 K, F = -5922.619498450485, relative_change = 0.02944356332057992 Iter 3: T = 914.3403231411969 K, F = -5016.031031843118, relative_change = 0.028102688919857944 Iter 5: T = 867.5831120569146 K, F = -3593.8905661765116, relative_change = 0.025142667653046017 Iter 10: T = 783.3371510945583 K, F = -1549.848165475917, relative_change = 0.016874551856961493 Iter 15: T = 736.4092757715508 K, F = -660.8767277164785, relative_change = 0.00949205296144848 Iter 20: T = 713.2444140646678 K, F = -279.28126594522394, relative_change = 0.004648039486724359 Iter 25: T = 702.7151130612532 K, F = -117.37910934018083, relative_change = 0.002094599553712061 Iter 30: T = 698.1403808155513 K, F = -49.197519030840574, relative_change = 0.0009054535509325165 Iter 35: T = 696.1950876931785 K, F = -20.594446754142865, relative_change = 0.0003840835030393506 Iter 40: T = 695.3757609318704 K, F = -8.616287559013715, relative_change = 0.00016159485691184458 Iter 45: T = 695.0320845030674 K, F = -3.604039763409112, relative_change = 6.775144670075894e-5 Iter 50: T = 694.8881748232191 K, F = -1.5073585812352506, relative_change = 2.8364403751138488e-5 Iter 55: T = 694.8279585072638 K, F = -0.6304139356472663, relative_change = 1.1867576991218184e-5 Iter 60: T = 694.8027697981213 K, F = -0.2636498866292172, relative_change = 4.964080308123864e-6 Iter 65: T = 694.7922346121406 K, F = -0.11026209973300305, relative_change = 2.0761982503447944e-6 Iter 70: T = 694.7878285023903 K, F = -0.04611302634695791, relative_change = 8.683189923618844e-7 Iter 75: T = 694.7859857850851 K, F = -0.019285035710616016, relative_change = 3.6314628547594055e-7 Iter 80: T = 694.7852151335267 K, F = -0.008065235286590311, relative_change = 1.5187297275735728e-7 Iter 85: T = 694.7848928369363 K, F = -0.0033729782483146176, relative_change = 6.35152412535014e-8 Iter 90: T = 694.7847580484948 K, F = -0.0014106198767915856, relative_change = 2.6562858681906116e-8 Iter 95: T = 694.7847016783312 K, F = -0.0005899380955124434, relative_change = 1.1108909333571131e-8 Iter 100: T = 694.7846781036508 K, F = -0.0002467191599243579, relative_change = 4.6458793593302634e-9 Iter 105: T = 694.784668244437 K, F = -0.00010318089835825717, relative_change = 1.9429623483375547e-9 Iter 110: T = 694.7846641211959 K, F = -4.315148315603423e-5, relative_change = 8.125700662630373e-10 Iter 115: T = 694.7846623968072 K, F = -1.8046466207843892e-5, relative_change = 3.398265214332414e-10 Iter 120: T = 694.7846616756473 K, F = -7.547247358741238e-6, relative_change = 1.4211950414298297e-10 Iter 125: T = 694.7846613740496 K, F = -3.156348804655984e-6, relative_change = 5.943607074538977e-11 Iter 130: T = 694.7846612479179 K, F = -1.3200235552401907e-6, relative_change = 2.4856889506925424e-11 Iter 135: T = 694.7846611951679 K, F = -5.520488939314561e-7, relative_change = 1.0395434467332641e-11 Iter 140: T = 694.7846611731073 K, F = -2.308720363775052e-7, relative_change = 4.347468405874216e-12 Iter 145: T = 694.7846611638814 K, F = -9.655311261624888e-8, relative_change = 1.818156989476767e-12 Iter 150: T = 694.784661160023 K, F = -4.0379992682915145e-8, relative_change = 7.603811409498639e-13 Iter 155: T = 694.7846611584093 K, F = -1.6886683940064984e-8, relative_change = 3.1798708093330355e-13 Converged in 158 iterations to T = 694.784661157937 K Iter 1: T = 963.5534508234393 K, F = -8304.380899497948, relative_change = 0.036446549176560615 Iter 2: T = 928.9840389324079 K, F = -7046.561117819968, relative_change = 0.035877004914972664 Iter 3: T = 896.2581865472997 K, F = -5978.339051279015, relative_change = 0.03522757228715879 Iter 5: T = 836.2181867879145 K, F = -4300.793960585075, relative_change = 0.03365977519685889 Iter 10: T = 716.4411212478705 K, F = -1879.5060460981342, relative_change = 0.027948663210103968 Iter 15: T = 636.7015873062193 K, F = -813.9096661825064, relative_change = 0.020040580922812055 Iter 20: T = 589.9637712258259 K, F = -348.50520503345547, relative_change = 0.012025625546048153 Iter 25: T = 565.9043875848836 K, F = -147.71656568815825, relative_change = 0.006164735555792011 Iter 30: T = 554.6780684267461 K, F = -62.18789776698708, relative_change = 0.0028495470064808007 Iter 35: T = 549.734273236602 K, F = -26.086048999649293, relative_change = 0.0012468575920347585 Iter 40: T = 547.6189428955622 K, F = -10.923732350238577, relative_change = 0.0005317636122330225 Iter 45: T = 546.7255799835522 K, F = -4.570966564288509, relative_change = 0.00022424644036862784 Iter 50: T = 546.3504151773576 K, F = -1.9120786340417664, relative_change = 9.411124531273514e-5 Iter 55: T = 546.1932437005179 K, F = -0.7997323255228344, relative_change = 3.9416234017347306e-5 Iter 60: T = 546.1274648018178 K, F = -0.334471304473245, relative_change = 1.6494468660209577e-5 Iter 65: T = 546.0999468903492 K, F = -0.13988229046947986, relative_change = 6.899956927368938e-6 Iter 70: T = 546.0884371028371 K, F = -0.05850086365477056, relative_change = 2.885954632252204e-6 Iter 75: T = 546.0836233153778 K, F = -0.024465833154659028, relative_change = 1.2069949628865144e-6 Iter 80: T = 546.0816100870436 K, F = -0.010231916433173088, relative_change = 5.047892005171338e-7 Iter 85: T = 546.0807681230526 K, F = -0.004279111889327308, relative_change = 2.1111053235887654e-7 Iter 90: T = 546.080416002282 K, F = -0.0017895760873680167, relative_change = 8.828923619320169e-8 Iter 95: T = 546.0802687409301 K, F = -0.0007484221598041962, relative_change = 3.6923663732425315e-8 Iter 100: T = 546.0802071544321 K, F = -0.0003129990971125207, relative_change = 1.5441926009579393e-8 Iter 105: T = 546.0801813982158 K, F = -0.00013089996243559332, relative_change = 6.457999422764223e-9 Iter 110: T = 546.0801706266574 K, F = -5.4743928508349526e-5, relative_change = 2.7008127835098414e-9 Iter 115: T = 546.0801661218627 K, F = -2.2894564911724036e-5, relative_change = 1.129512216236131e-9 Iter 120: T = 546.0801642379037 K, F = -9.574780204524291e-6, relative_change = 4.723754929659922e-10 Iter 125: T = 546.0801634500094 K, F = -4.004287101927462e-6, relative_change = 1.9755305775578578e-10 Iter 130: T = 546.0801631205028 K, F = -1.674640948301498e-6, relative_change = 8.261906114852431e-11 Iter 135: T = 546.0801629826991 K, F = -7.003551154294296e-7, relative_change = 3.45522914840638e-11 Iter 140: T = 546.080162925068 K, F = -2.9289689715272793e-7, relative_change = 1.4450182125218599e-11 Iter 145: T = 546.080162900966 K, F = -1.2249331013403086e-7, relative_change = 6.043255009309958e-12 Iter 150: T = 546.0801628908862 K, F = -5.122798699130904e-8, relative_change = 2.5273526259561118e-12 Iter 155: T = 546.0801628866708 K, F = -2.1424565233019166e-8, relative_change = 1.0569892432590654e-12 Iter 160: T = 546.0801628849078 K, F = -8.960144182168506e-9, relative_change = 4.4205219175938175e-13 Converged in 164 iterations to T = 546.0801628842714 K Iter 1: T = 966.853412214466 K, F = -7552.481557478887, relative_change = 0.0331465877855341 Iter 2: T = 935.7624854750086 K, F = -6402.8410732538405, relative_change = 0.03215681544552575 Iter 3: T = 906.6969043779126 K, F = -5426.743622900267, relative_change = 0.031060853099215517 Iter 5: T = 854.5115861410735 K, F = -3894.682289971613, relative_change = 0.028550007050274988 Iter 10: T = 756.7017400234562 K, F = -1688.1234553747408, relative_change = 0.020774514175097496 Iter 15: T = 698.6919184198185 K, F = -723.5486246484536, relative_change = 0.01266081373959566 Iter 20: T = 668.5167684710091 K, F = -306.91659242804513, relative_change = 0.0065672195135686885 Iter 25: T = 654.3393234708906 K, F = -129.2684550027592, relative_change = 0.003056409251048345 Iter 30: T = 648.0729288751863 K, F = -54.23648231001911, relative_change = 0.0013418638414190553 Iter 35: T = 645.3870606021392 K, F = -22.714216563352416, relative_change = 0.0005731447318039046 Iter 40: T = 644.2518819380844 K, F = -9.50503121853454, relative_change = 0.00024185406596459588 Iter 45: T = 643.7750126209218 K, F = -3.9761175846473082, relative_change = 0.00010152871999479018 Iter 50: T = 643.5752056956795 K, F = -1.6630353189124079, relative_change = 4.2527788053437876e-5 Iter 55: T = 643.4915783355551 K, F = -0.6955319601860587, relative_change = 1.7797420930901848e-5 Iter 60: T = 643.4565928645179 K, F = -0.29088514964036527, relative_change = 7.445158434930733e-6 Iter 65: T = 643.4419595083635 K, F = -0.12165258420994979, relative_change = 3.1140153937845863e-6 Iter 70: T = 643.4358393116621 K, F = -0.050876728097357604, relative_change = 1.3023816156504996e-6 Iter 75: T = 643.4332797106701 K, F = -0.021277284063036972, relative_change = 5.446825978773771e-7 Iter 80: T = 643.4322092441859 K, F = -0.008898419330894525, relative_change = 2.2779470042221647e-7 Iter 85: T = 643.4317615604324 K, F = -0.0037214261124789427, relative_change = 9.526680223445115e-8 Iter 90: T = 643.4315743334105 K, F = -0.0015563449960640519, relative_change = 3.984177352268029e-8 Iter 95: T = 643.4314960327764 K, F = -0.000650882091597027, relative_change = 1.666231585772272e-8 Iter 100: T = 643.431463286506 K, F = -0.00027220666914512526, relative_change = 6.968381305030591e-9 Iter 105: T = 643.4314495916228 K, F = -0.00011384008064846407, relative_change = 2.9142605970372392e-9 Iter 110: T = 643.4314438642589 K, F = -4.7609281965899086e-5, relative_change = 1.21877865489951e-9 Iter 115: T = 643.4314414690068 K, F = -1.991077025353949e-5, relative_change = 5.097077967925619e-10 Iter 120: T = 643.4314404672838 K, F = -8.326921784929109e-6, relative_change = 2.1316588632552462e-10 Iter 125: T = 643.4314400483512 K, F = -3.482417844646868e-6, relative_change = 8.914851224550289e-11 Iter 130: T = 643.4314398731486 K, F = -1.4563892821173319e-6, relative_change = 3.7282986623490473e-11 Iter 135: T = 643.4314397998768 K, F = -6.090792462609684e-7, relative_change = 1.5592186568615255e-11 Iter 140: T = 643.4314397692336 K, F = -2.547242339834277e-7, relative_change = 6.5208391274196004e-12 Iter 145: T = 643.4314397564183 K, F = -1.0652910087394218e-7, relative_change = 2.727102633268485e-12 Iter 150: T = 643.4314397510587 K, F = -4.4551357047950546e-8, relative_change = 1.1404970297246496e-12 Iter 155: T = 643.4314397488173 K, F = -1.8630570142175173e-8, relative_change = 4.769351893526082e-13 Converged in 160 iterations to T = 643.43143974788 K Iter 1: T = 965.1757124912166 K, F = -7934.7470353256695, relative_change = 0.034824287508783365 Iter 2: T = 932.3256298413149 K, F = -6729.969583303511, relative_change = 0.03403533908360814 Iter 3: T = 901.4202874813651 K, F = -5706.90372981469, relative_change = 0.03314865683270983 Iter 5: T = 845.330815908043 K, F = -4100.6303235218775, relative_change = 0.03106332173170189 Iter 10: T = 736.9840914320932 K, F = -1784.4108413582424, relative_change = 0.024077563247105152 Iter 15: T = 669.2247676916469 K, F = -768.3393013602318, relative_change = 0.015772706704175046 Iter 20: T = 632.1470454586438 K, F = -327.17146594407785, relative_change = 0.008681508791932285 Iter 25: T = 614.0913509371442 K, F = -138.13054547674335, relative_change = 0.004190739506587795 Iter 30: T = 605.9496694462626 K, F = -58.02587870741945, relative_change = 0.001874300838327525 Iter 35: T = 602.426290950246 K, F = -24.31489926267882, relative_change = 0.0008073728175754985 Iter 40: T = 600.9307422163723 K, F = -10.177350216218723, relative_change = 0.0003419497600667667 Iter 45: T = 600.3013287980796 K, F = -4.257804188101662, relative_change = 0.00014377310535414395 Iter 50: T = 600.0374006224126 K, F = -1.7809306915939913, relative_change = 6.026259445970132e-5 Iter 55: T = 599.9268996983706 K, F = -0.7448531184924907, relative_change = 2.5226220048856465e-5 Iter 60: T = 599.8806653348929 K, F = -0.3115146323994491, relative_change = 1.0554054452240156e-5 Iter 65: T = 599.8613257983716 K, F = -0.1302805676783845, relative_change = 4.41455751588005e-6 Iter 70: T = 599.8532371130059 K, F = -0.05448513909077318, relative_change = 1.8463476655911164e-6 Iter 75: T = 599.8498542126954 K, F = -0.02278637954881746, relative_change = 7.721868568958377e-7 Iter 80: T = 599.8484394231846 K, F = -0.00952954369438469, relative_change = 3.229416506210618e-7 Iter 85: T = 599.8478477377819 K, F = -0.003985370315294889, relative_change = 1.3505873454079854e-7 Iter 90: T = 599.8476002872623 K, F = -0.0016667296943466692, relative_change = 5.648329455963239e-8 Iter 95: T = 599.8474968003918 K, F = -0.0006970463038498687, relative_change = 2.3622009120036398e-8 Iter 100: T = 599.8474535209277 K, F = -0.0002915130953262679, relative_change = 9.879009936352442e-9 Iter 105: T = 599.8474354209358 K, F = -0.00012191425934393596, relative_change = 4.1315205792544405e-9 Iter 110: T = 599.8474278513023 K, F = -5.098599914282742e-5, relative_change = 1.727851348166901e-9 Iter 115: T = 599.8474246855911 K, F = -2.1322953731806038e-5, relative_change = 7.226080864848396e-10 Iter 120: T = 599.8474233616529 K, F = -8.917513242334696e-6, relative_change = 3.022033124025837e-10 Iter 125: T = 599.8474228079662 K, F = -3.729410881170292e-6, relative_change = 1.26385046584768e-10 Iter 130: T = 599.8474225764078 K, F = -1.5596843918608272e-6, relative_change = 5.285574348495765e-11 Iter 135: T = 599.8474224795673 K, F = -6.522798086106008e-7, relative_change = 2.2104942801732488e-11 Iter 140: T = 599.8474224390674 K, F = -2.727908174349203e-7, relative_change = 9.244537909305269e-12 Iter 145: T = 599.8474224221299 K, F = -1.1408475431018417e-7, relative_change = 3.866188921434885e-12 Iter 150: T = 599.8474224150464 K, F = -4.7711464890021205e-8, relative_change = 1.6168815729056053e-12 Iter 155: T = 599.847422412084 K, F = -1.9954235763730566e-8, relative_change = 6.76223968031978e-13 Iter 160: T = 599.8474224108451 K, F = -8.344706259322265e-9, relative_change = 2.827916060334602e-13 Converged in 162 iterations to T = 599.8474224105829 K Iter 1: T = 980.111773818629 K, F = -4531.5512540125155, relative_change = 0.01988822618137097 Iter 2: T = 962.268567880496 K, F = -3827.844588562776, relative_change = 0.018205276596784295 Iter 3: T = 946.3496956607746 K, F = -3231.909922670157, relative_change = 0.01654306578337532 Iter 5: T = 919.7623961482428 K, F = -2300.7656279382068, relative_change = 0.013369751855013028 Iter 10: T = 877.5374913949764 K, F = -976.7868992669727, relative_change = 0.0070276622681527 Iter 15: T = 857.5419968154106 K, F = -411.62046222127776, relative_change = 0.003296543224159412 Iter 20: T = 848.6663258028101 K, F = -172.74611996042418, relative_change = 0.0014529526579751789 Iter 25: T = 844.8544093190221 K, F = -72.35449190153507, relative_change = 0.0006216893543519226 Iter 30: T = 843.2418723356284 K, F = -30.279126955112556, relative_change = 0.0002625389916231523 Iter 35: T = 842.564214448423 K, F = -12.666551304577254, relative_change = 0.00011024778262071542 Iter 40: T = 842.280231912338 K, F = -5.297910064624533, relative_change = 4.6186268088088995e-5 Iter 45: T = 842.1613655767649 K, F = -2.2157555845377055, relative_change = 1.932955865817127e-5 Iter 50: T = 842.1116364852231 K, F = -0.9266740546654209, relative_change = 8.086287680440434e-6 Iter 55: T = 842.0908360751911 K, F = -0.3875494117201759, relative_change = 3.382208221943081e-6 Iter 60: T = 842.082136551209 K, F = -0.1620783616777013, relative_change = 1.4145544170647331e-6 Iter 65: T = 842.0784982112123 K, F = -0.0677832060569632, relative_change = 5.915965897639784e-7 Iter 70: T = 842.0769765973281 K, F = -0.0283477636891718, relative_change = 2.474150396136138e-7 Iter 75: T = 842.0763402373184 K, F = -0.01185537636108247, relative_change = 1.0347232318628472e-7 Iter 80: T = 842.0760741034535 K, F = -0.00495806050800951, relative_change = 4.327343102613247e-8 Iter 85: T = 842.0759628030038 K, F = -0.0020735202103501216, relative_change = 1.80974778598903e-8 Iter 90: T = 842.075916255811 K, F = -0.0008671709323200272, relative_change = 7.568583513415269e-9 Iter 95: T = 842.0758967892164 K, F = -0.0003626612446239186, relative_change = 3.165272401131192e-9 Iter 100: T = 842.0758886480535 K, F = -0.00015166926209531084, relative_change = 1.3237547673639816e-9 Iter 105: T = 842.0758852433219 K, F = -6.342989629937179e-5, relative_change = 5.536100596531474e-10 Iter 110: T = 842.0758838194224 K, F = -2.6527140001952887e-5, relative_change = 2.315263390599233e-10 Iter 115: T = 842.0758832239306 K, F = -1.1093966835629132e-5, relative_change = 9.682708107865215e-11 Iter 120: T = 842.0758829748889 K, F = -4.639629878733231e-6, relative_change = 4.049424572217587e-11 Iter 125: T = 842.0758828707367 K, F = -1.940348422158067e-6, relative_change = 1.6935175411282972e-11 Iter 130: T = 842.075882827179 K, F = -8.114794356472999e-7, relative_change = 7.0825148884528574e-12 Iter 135: T = 842.0758828089628 K, F = -3.393716330180041e-7, relative_change = 2.9620031490987075e-12 Iter 140: T = 842.0758828013444 K, F = -1.419294273219407e-7, relative_change = 1.2387464649208646e-12 Iter 145: T = 842.0758827981584 K, F = -5.936033398157292e-8, relative_change = 5.180913166846313e-13 Converged in 150 iterations to T = 842.0758827968258 K Iter 1: T = 976.4010818272844 K, F = -5377.035954019727, relative_change = 0.023598918172715606 Iter 2: T = 954.964541252129 K, F = -4546.683857323946, relative_change = 0.021954646480970723 Iter 3: T = 935.5990403764135 K, F = -3842.8193776634894, relative_change = 0.020278764330164414 Iter 5: T = 902.6613308118946 K, F = -2741.296784073347, relative_change = 0.01692527437857318 Iter 10: T = 848.3955224748158 K, F = -1169.0037868946079, relative_change = 0.00953028421151636 Iter 15: T = 821.5911955854137 K, F = -494.0338904194242, relative_change = 0.004669953330845944 Iter 20: T = 809.4029287803098 K, F = -207.64250646945865, relative_change = 0.002105244631211587 Iter 25: T = 804.1063946087623 K, F = -87.03092753139602, relative_change = 0.0009102113548522315 Iter 30: T = 801.8539757368552 K, F = -36.4319757960447, relative_change = 0.00038613085394999323 Iter 35: T = 800.9052564607408 K, F = -15.242412641532415, relative_change = 0.0001624614759262639 Iter 40: T = 800.507298378479 K, F = -6.375635771838574, relative_change = 6.811571905304547e-5 Iter 45: T = 800.3406578880171 K, F = -2.6665557513891622, relative_change = 2.8517070755760647e-5 Iter 50: T = 800.2709300908574 K, F = -1.1152184991324514, relative_change = 1.1931480948612965e-5 Iter 55: T = 800.2417626589822 K, F = -0.4664034754153046, relative_change = 4.9908156491153126e-6 Iter 60: T = 800.2295633648162 K, F = -0.19505651460481055, relative_change = 2.0873810289716555e-6 Iter 65: T = 800.224461277366 K, F = -0.0815751407245564, relative_change = 8.729960682540211e-7 Iter 70: T = 800.2223274890156 K, F = -0.03411572899155668, relative_change = 3.6510234773818757e-7 Iter 75: T = 800.2214351072197 K, F = -0.014267610698967093, relative_change = 1.526910306555477e-7 Iter 80: T = 800.2210619014418 K, F = -0.005966886130423954, relative_change = 6.385736444597347e-8 Iter 85: T = 800.2209058221441 K, F = -0.0024954232038258972, relative_change = 2.6705938989562127e-8 Iter 90: T = 800.2208405478856 K, F = -0.0010436158131664763, relative_change = 1.1168747255612972e-8 Iter 95: T = 800.2208132494055 K, F = -0.0004364526031063187, relative_change = 4.670904314984557e-9 Iter 100: T = 800.2208018328541 K, F = -0.00018252969050436274, relative_change = 1.9534280946781484e-9 Iter 105: T = 800.2207970583157 K, F = -7.633609375146122e-5, relative_change = 8.169469525543644e-10 Iter 110: T = 800.2207950615468 K, F = -3.1924666396898616e-5, relative_change = 3.416569797117455e-10 Iter 115: T = 800.2207942264743 K, F = -1.3351275968020992e-5, relative_change = 1.4288502152178646e-10 Iter 120: T = 800.2207938772369 K, F = -5.583663498232028e-6, relative_change = 5.97562272462995e-11 Iter 125: T = 800.2207937311817 K, F = -2.335154527299821e-6, relative_change = 2.4990765427393496e-11 Iter 130: T = 800.2207936700996 K, F = -9.76589327628119e-7, relative_change = 1.0451434596382306e-11 Iter 135: T = 800.2207936445544 K, F = -4.0842129644946823e-7, relative_change = 4.370914515958686e-12 Iter 140: T = 800.220793633871 K, F = -1.7080651004697245e-7, relative_change = 1.8279670054482136e-12 Iter 145: T = 800.2207936294031 K, F = -7.143223568206736e-8, relative_change = 7.644660026118563e-13 Iter 150: T = 800.2207936275347 K, F = -2.987346481297948e-8, relative_change = 3.1970507449385926e-13 Converged in 153 iterations to T = 800.2207936269876 K Iter 1: T = 980.6463893488096 K, F = -4409.738596910202, relative_change = 0.01935361065119034 Iter 2: T = 963.3137696870325 K, F = -3724.3972401672117, relative_change = 0.017674688705361676 Iter 3: T = 947.87773106717 K, F = -3144.10474976189, relative_change = 0.016023894919385894 Iter 5: T = 922.1614135459773 K, F = -2237.6219761933003, relative_change = 0.012892947893367828 Iter 10: T = 881.5170726942443 K, F = -949.4279708846994, relative_change = 0.006716726160590958 Iter 15: T = 862.3718009054749 K, F = -399.95145552423094, relative_change = 0.0031339853939116157 Iter 20: T = 853.8979546578356 K, F = -167.8195642534131, relative_change = 0.001377659950396355 Iter 25: T = 850.2635749669322 K, F = -70.28542596386036, relative_change = 0.0005887691167073106 Iter 30: T = 848.7270678245629 K, F = -29.41224545693196, relative_change = 0.0002485082906549682 Iter 35: T = 848.0815278416809 K, F = -12.30373226504702, relative_change = 0.00010433299500456965 Iter 40: T = 847.8110343272464 K, F = -5.146125767499775, relative_change = 4.370434372248496e-5 Iter 45: T = 847.6978192731312 K, F = -2.1522689813192075, relative_change = 1.8290133043198358e-5 Iter 50: T = 847.6504553700066 K, F = -0.9001216938366228, relative_change = 7.651332564818966e-6 Iter 55: T = 847.6306444172651 K, F = -0.3764446339579941, relative_change = 3.2002601852868854e-6 Iter 60: T = 847.622358749898 K, F = -0.15743416492867524, relative_change = 1.3384537702763807e-6 Iter 65: T = 847.6188934990842 K, F = -0.0658409394555115, relative_change = 5.597690252035697e-7 Iter 70: T = 847.6174442748085 K, F = -0.02753548318887944, relative_change = 2.3410413319756392e-7 Iter 75: T = 847.6168381892852 K, F = -0.011515670709525416, relative_change = 9.790550139919339e-8 Iter 80: T = 847.6165847166222 K, F = -0.004815991505609407, relative_change = 4.0945312378006605e-8 Iter 85: T = 847.6164787112473 K, F = -0.002014105245379927, relative_change = 1.7123829526059162e-8 Iter 90: T = 847.6164343785194 K, F = -0.0008423228800515936, relative_change = 7.1613919029024606e-9 Iter 95: T = 847.6164158380408 K, F = -0.00035226949060218615, relative_change = 2.9949799537915646e-9 Iter 100: T = 847.6164080841908 K, F = -0.00014732330742672772, relative_change = 1.2525364343449843e-9 Iter 105: T = 847.616404841438 K, F = -6.161236563873018e-5, relative_change = 5.238256968456733e-10 Iter 110: T = 847.6164034852801 K, F = -2.5767026294198914e-5, relative_change = 2.1907015689294402e-10 Iter 115: T = 847.6164029181186 K, F = -1.0776078468222039e-5, relative_change = 9.161775911939804e-11 Iter 120: T = 847.616402680925 K, F = -4.5066847245145425e-6, relative_change = 3.831564119409198e-11 Iter 125: T = 847.6164025817278 K, F = -1.884750529868029e-6, relative_change = 1.602406857755442e-11 Iter 130: T = 847.6164025402422 K, F = -7.882226011890481e-7, relative_change = 6.701434921288712e-12 Iter 135: T = 847.6164025228925 K, F = -3.296420032494751e-7, relative_change = 2.802602245840785e-12 Iter 140: T = 847.6164025156367 K, F = -1.378602532131623e-7, relative_change = 1.1720819903849763e-12 Iter 145: T = 847.6164025126021 K, F = -5.765427224524444e-8, relative_change = 4.901741625562562e-13 Converged in 150 iterations to T = 847.6164025113331 K Iter 1: T = 967.3990974665529 K, F = -7428.146653710181, relative_change = 0.03260090253344709 Iter 2: T = 936.8762351311279 K, F = -6296.501873955759, relative_change = 0.03155146869100757 Iter 3: T = 908.3998562904465 K, F = -5335.739310352912, relative_change = 0.030395027403695235 Iter 5: T = 857.4467012662958 K, F = -3827.9208871682295, relative_change = 0.027767668027944118 Iter 10: T = 762.8206965358793 K, F = -1657.2082698842978, relative_change = 0.019824368211893373 Iter 15: T = 707.5486987820576 K, F = -709.3899692534163, relative_change = 0.01184238526811488 Iter 20: T = 679.1814497798105 K, F = -300.6145076669375, relative_change = 0.006050415044937927 Iter 25: T = 665.9709176423842 K, F = -126.5410533051762, relative_change = 0.0027913140581282848 Iter 30: T = 660.1593320073529 K, F = -53.07705638611305, relative_change = 0.0012202297332615853 Iter 35: T = 657.673894587088 K, F = -22.2258012304703, relative_change = 0.0005201883309681046 Iter 40: T = 656.6244475230586 K, F = -9.300133448437164, relative_change = 0.00021932534861161392 Iter 45: T = 656.1837755682074 K, F = -3.890314073959325, relative_change = 9.203890755966143e-5 Iter 50: T = 655.9991675864053 K, F = -1.6271314254000446, relative_change = 3.854704120172826e-5 Iter 55: T = 655.9219072884921 K, F = -0.6805130449669943, relative_change = 1.6130520311229367e-5 Iter 60: T = 655.8895864712038 K, F = -0.2846034510084208, relative_change = 6.74767205331169e-6 Iter 65: T = 655.8760678328222 K, F = -0.11902539627750536, relative_change = 2.822253746899507e-6 Iter 70: T = 655.8704138817511 K, F = -0.04977798809121459, relative_change = 1.18035212454288e-6 Iter 75: T = 655.8680492802811 K, F = -0.02081777461071821, relative_change = 4.936464332231558e-7 Iter 80: T = 655.8670603666802 K, F = -0.00870624641989659, relative_change = 2.0645042157039433e-7 Iter 85: T = 655.8666467896235 K, F = -0.00364105700692241, relative_change = 8.634030953760488e-8 Iter 90: T = 655.8664738264831 K, F = -0.0015227336598323538, relative_change = 3.6108597134523645e-8 Iter 95: T = 655.866401491184 K, F = -0.000636825425517018, relative_change = 1.5101055040712187e-8 Iter 100: T = 655.8663712396897 K, F = -0.000266328003251437, relative_change = 6.315443068112661e-9 Iter 105: T = 655.8663585881518 K, F = -0.00011138155227741198, relative_change = 2.6411939723215376e-9 Iter 110: T = 655.8663532971274 K, F = -4.6581094332753814e-5, relative_change = 1.1045788803047024e-9 Iter 115: T = 655.8663510843578 K, F = -1.948077094793277e-5, relative_change = 4.619481103871471e-10 Iter 120: T = 655.866350158951 K, F = -8.14709104973721e-6, relative_change = 1.9319221764473912e-10 Iter 125: T = 655.8663497719349 K, F = -3.407210439565489e-6, relative_change = 8.079528492227677e-11 Iter 130: T = 655.8663496100802 K, F = -1.424936766913909e-6, relative_change = 3.378956899092694e-11 Iter 135: T = 655.8663495423906 K, F = -5.959259192778177e-7, relative_change = 1.4131209496701974e-11 Iter 140: T = 655.866349514082 K, F = -2.492228189932e-7, relative_change = 5.909828308094472e-12 Iter 145: T = 655.8663495022429 K, F = -1.0422787088959495e-7, relative_change = 2.4715586815727655e-12 Iter 150: T = 655.8663494972917 K, F = -4.358860777875506e-8, relative_change = 1.0336179858383652e-12 Iter 155: T = 655.866349495221 K, F = -1.822870737688831e-8, relative_change = 4.3225789406384175e-13 Converged in 159 iterations to T = 655.8663494944736 K Iter 1: T = 973.6219472379987 K, F = -6010.264413827962, relative_change = 0.026378052762001346 Iter 2: T = 949.4367525195277 K, F = -5086.001580580924, relative_change = 0.024840437078355034 Iter 3: T = 927.3761347357619 K, F = -4302.059336681171, relative_change = 0.023235479061899992 Iter 5: T = 889.3026609857459 K, F = -3073.9399894193216, relative_change = 0.019902374580906563 Iter 10: T = 824.5614557979584 K, F = -1315.979430376986, relative_change = 0.01190853841961399 Iter 15: T = 791.297859140667 K, F = -557.7103118891747, relative_change = 0.006091666086542559 Iter 20: T = 775.7960620321938 K, F = -234.77414831031663, relative_change = 0.002812315628191996 Iter 25: T = 768.97393656196 K, F = -98.47715562756925, relative_change = 0.0012298300974201365 Iter 30: T = 766.0558102091293 K, F = -41.237327285313356, relative_change = 0.0005243610610382268 Iter 35: T = 764.823570369163 K, F = -17.25536571733262, relative_change = 0.00022109922150580054 Iter 40: T = 764.3061251200094 K, F = -7.218059524762596, relative_change = 9.278588884277693e-5 Iter 45: T = 764.0893519682031 K, F = -3.0189697888970946, relative_change = 3.886034113633494e-5 Iter 50: T = 763.9986296946116 K, F = -1.2626201942945583, relative_change = 1.62617046010195e-5 Iter 55: T = 763.9606771463925 K, F = -0.528051764075405, relative_change = 6.802562651434498e-6 Iter 60: T = 763.9448029407915 K, F = -0.2208391144109184, relative_change = 2.8452145087796824e-6 Iter 65: T = 763.9381638091307 K, F = -0.09235782794795588, relative_change = 1.1899554392617767e-6 Iter 70: T = 763.9353871838837 K, F = -0.038625194361678106, relative_change = 4.976628027656355e-7 Iter 75: T = 763.9342259553592 K, F = -0.016153525909968103, relative_change = 2.081301412941318e-7 Iter 80: T = 763.9337403138533 K, F = -0.006755598908414373, relative_change = 8.704279294340709e-8 Iter 85: T = 763.9335372124488 K, F = -0.0028252723961436077, relative_change = 3.6402384868027957e-8 Iter 90: T = 763.9334522729588 K, F = -0.001181562702676775, relative_change = 1.5223920736631056e-8 Iter 95: T = 763.9334167502396 K, F = -0.0004941436405146993, relative_change = 6.366826969212071e-9 Iter 100: T = 763.9334018942126 K, F = -0.00020665677397802007, relative_change = 2.662683349295614e-9 Iter 105: T = 763.9333956812443 K, F = -8.64263314420688e-5, relative_change = 1.1135660261829918e-9 Iter 110: T = 763.9333930829067 K, F = -3.614452378308819e-5, relative_change = 4.657066162317812e-10 Iter 115: T = 763.9333919962509 K, F = -1.5116070018028616e-5, relative_change = 1.947640508073087e-10 Iter 120: T = 763.9333915417984 K, F = -6.321721313651274e-6, relative_change = 8.145265622218497e-11 Iter 125: T = 763.933391351741 K, F = -2.6438174873799625e-6, relative_change = 3.406444961498414e-11 Iter 130: T = 763.9333912722567 K, F = -1.1056765464312335e-6, relative_change = 1.424616608552665e-11 Iter 135: T = 763.9333912390155 K, F = -4.624080530701846e-7, relative_change = 5.957928605748317e-12 Iter 140: T = 763.9333912251136 K, F = -1.9338509371635837e-7, relative_change = 2.4916836422460855e-12 Iter 145: T = 763.9333912192997 K, F = -8.087599479011942e-8, relative_change = 1.0420523598979747e-12 Iter 150: T = 763.9333912168682 K, F = -3.382419133668435e-8, relative_change = 4.3581013743366956e-13 Converged in 154 iterations to T = 763.9333912159906 K Iter 1: T = 970.0305119618855 K, F = -6828.576357827266, relative_change = 0.029969488038114542 Iter 2: T = 942.2189089828629 K, F = -5784.1392406411405, relative_change = 0.028670853788685165 Iter 3: T = 916.5222801692092 K, F = -4897.716834260848, relative_change = 0.02727246138733671 Iter 5: T = 871.2675111992836 K, F = -3507.4782490393013, relative_change = 0.024217448492184605 Iter 10: T = 790.5764339496458 K, F = -1510.5691134189983, relative_change = 0.015914763732111196 Iter 15: T = 746.3203148849724 K, F = -643.3411578180879, relative_change = 0.008784182159771281 Iter 20: T = 724.7316191205751 K, F = -271.6484131698204, relative_change = 0.004247977840879412 Iter 25: T = 714.9870407810994 K, F = -114.12120798119179, relative_change = 0.0019016985396947228 Iter 30: T = 710.7679077986545 K, F = -47.82222466482039, relative_change = 0.0008195341073296257 Iter 35: T = 708.976636715682 K, F = -20.01693480103982, relative_change = 0.0003471671265447438 Iter 40: T = 708.2226936223276 K, F = -8.374346190400841, relative_change = 0.00014597870212493437 Iter 45: T = 707.9065342512821 K, F = -3.502783084707706, relative_change = 6.118918391183913e-5 Iter 50: T = 707.7741630006238 K, F = -1.4649988556126095, relative_change = 2.561446600615118e-5 Iter 55: T = 707.7187775399319 K, F = -0.6126963200383903, relative_change = 1.071655240090918e-5 Iter 60: T = 707.6956100885376 K, F = -0.256239770481362, relative_change = 4.48253865479013e-6 Iter 65: T = 707.6859203805558 K, F = -0.10716303108876035, relative_change = 1.8747821362841747e-6 Iter 70: T = 707.6818678884695 K, F = -0.044816946657934786, relative_change = 7.840791824548743e-7 Iter 75: T = 707.6801730633091 K, F = -0.01874299757873521, relative_change = 3.2791528394006843e-7 Iter 80: T = 707.6794642628888 K, F = -0.007838548094848963, relative_change = 1.3713878853664598e-7 Iter 85: T = 707.6791678333365 K, F = -0.0032781748910555297, relative_change = 5.7353201678029696e-8 Iter 90: T = 707.6790438628261 K, F = -0.0013709719709932289, relative_change = 2.3985815321452442e-8 Iter 95: T = 707.6789920168551 K, F = -0.0005733568653228938, relative_change = 1.0031158165791793e-8 Iter 100: T = 707.6789703342469 K, F = -0.00023978468964724886, relative_change = 4.1951507759677965e-9 Iter 105: T = 707.6789612663205 K, F = -0.00010028082110757897, relative_change = 1.7544622668292853e-9 Iter 110: T = 707.6789574740052 K, F = -4.193863666523967e-5, relative_change = 7.33737085676649e-10 Iter 115: T = 707.6789558880137 K, F = -1.7539237789354623e-5, relative_change = 3.068575991296971e-10 Iter 120: T = 707.6789552247332 K, F = -7.335119806217705e-6, relative_change = 1.2833153242696632e-10 Iter 125: T = 707.6789549473414 K, F = -3.067636120013262e-6, relative_change = 5.3669804358287664e-11 Iter 130: T = 707.6789548313327 K, F = -1.282922317380475e-6, relative_change = 2.244535764370025e-11 Iter 135: T = 707.6789547828164 K, F = -5.3653282994226e-7, relative_change = 9.386906047562328e-12 Iter 140: T = 707.6789547625264 K, F = -2.243839619664456e-7, relative_change = 3.925707901365542e-12 Iter 145: T = 707.6789547540408 K, F = -9.383956911523939e-8, relative_change = 1.6417694684103705e-12 Iter 150: T = 707.6789547504922 K, F = -3.92454377884377e-8, relative_change = 6.866182586353146e-13 Iter 155: T = 707.678954749008 K, F = -1.6413327030839753e-8, relative_change = 2.8715923836018153e-13 Converged in 157 iterations to T = 707.6789547486939 K Iter 1: T = 973.5870847424324 K, F = -6018.207866605527, relative_change = 0.026412915257567598 Iter 2: T = 949.3670933741093 K, F = -5092.772076512656, relative_change = 0.024877067237113717 Iter 3: T = 927.2720242313811 K, F = -4307.829542593009, relative_change = 0.023273472713490628 Iter 5: T = 889.1318940035351 K, F = -3078.128142305549, relative_change = 0.019941611030363984 Iter 10: T = 824.2499493407277 K, F = -1317.841645916325, relative_change = 0.011941816864057112 Iter 15: T = 790.895790014602 K, F = -558.5217903076106, relative_change = 0.006112431886816616 Iter 20: T = 775.3462457373264 K, F = -235.1211888479125, relative_change = 0.0028228936490021176 Iter 25: T = 768.5018194670013 K, F = -98.62384191592939, relative_change = 0.0012346670330340482 Iter 30: T = 765.5738968467557 K, F = -41.29896254169032, relative_change = 0.0005264636947719543 Iter 35: T = 764.3374726305607 K, F = -17.28119436242794, relative_change = 0.0002219931287440423 Iter 40: T = 763.8182617138547 K, F = -7.228870584813391, relative_change = 9.316232473932452e-5 Iter 45: T = 763.6007473596123 K, F = -3.0234927226786787, relative_change = 3.901822814721257e-5 Iter 50: T = 763.5097146179155 K, F = -1.2645120230403561, relative_change = 1.632781502402129e-5 Iter 55: T = 763.4716321426362 K, F = -0.528842999135593, relative_change = 6.8302248638588435e-6 Iter 60: T = 763.4557035850046 K, F = -0.22117002705523603, relative_change = 2.856785634051501e-6 Iter 65: T = 763.4490417200541 K, F = -0.0924962210876239, relative_change = 1.1947950519805486e-6 Iter 70: T = 763.4462555870155 K, F = -0.038683072294873444, relative_change = 4.996868618524149e-7 Iter 75: T = 763.4450903821386 K, F = -0.016177731199249368, relative_change = 2.0897664012926967e-7 Iter 80: T = 763.4446030776605 K, F = -0.006765721856339613, relative_change = 8.739681114998963e-8 Iter 85: T = 763.444399280779 K, F = -0.0028295059380588627, relative_change = 3.655043994810229e-8 Iter 90: T = 763.4443140504317 K, F = -0.0011833332200762436, relative_change = 1.5285839201449456e-8 Iter 95: T = 763.4442784060724 K, F = -0.0004948840915562913, relative_change = 6.392722016204516e-9 Iter 100: T = 763.4442634991739 K, F = -0.00020696643769868572, relative_change = 2.6735129467048234e-9 Iter 105: T = 763.4442572649307 K, F = -8.655583779526577e-5, relative_change = 1.1180951101478424e-9 Iter 110: T = 763.4442546576956 K, F = -3.619868605309051e-5, relative_change = 4.676007483581957e-10 Iter 115: T = 763.4442535673187 K, F = -1.5138721041085823e-5, relative_change = 1.9555619576226382e-10 Iter 120: T = 763.4442531113101 K, F = -6.331194418618402e-6, relative_change = 8.178394299605393e-11 Iter 125: T = 763.4442529206019 K, F = -2.6477811221337078e-6, relative_change = 3.4203021783591743e-11 Iter 130: T = 763.4442528408455 K, F = -1.1073350625334655e-6, relative_change = 1.4304129962934708e-11 Iter 135: T = 763.4442528074903 K, F = -4.6310077939093475e-7, relative_change = 5.982158390764458e-12 Iter 140: T = 763.4442527935408 K, F = -1.9367352965815599e-7, relative_change = 2.501800433456533e-12 Iter 145: T = 763.444252787707 K, F = -8.099701476194099e-8, relative_change = 1.0462883957614087e-12 Iter 150: T = 763.4442527852672 K, F = -3.387543079380606e-8, relative_change = 4.3758983273259484e-13 Converged in 154 iterations to T = 763.4442527843865 K Iter 1: T = 964.338861969159 K, F = -8125.424222826872, relative_change = 0.03566113803084107 Iter 2: T = 930.6041150078104 K, F = -6893.251239910837, relative_change = 0.03498225394801881 Iter 3: T = 898.7648345699097 K, F = -5846.859093146891, relative_change = 0.03421356076599068 Iter 5: T = 840.6597584677088 K, F = -4203.757846347518, relative_change = 0.032381366091484357 Iter 10: T = 726.5842987303655 K, F = -1833.2030263117565, relative_change = 0.025979167854933014 Iter 15: T = 653.0231699976445 K, F = -791.525181436759, relative_change = 0.01777642792825018 Iter 20: T = 611.4477260792635 K, F = -337.90968014057, relative_change = 0.010181558591590508 Iter 25: T = 590.6881011048481 K, F = -142.91277347838164, relative_change = 0.005047343071947317 Iter 30: T = 581.1863901051148 K, F = -60.09111678820207, relative_change = 0.002289678958378958 Iter 35: T = 577.043664650724 K, F = -25.191428345340324, relative_change = 0.000992881790556164 Iter 40: T = 575.279262862479 K, F = -10.546286125029901, relative_change = 0.0004217505590108327 Iter 45: T = 574.5356103183918 K, F = -4.412519736740634, relative_change = 0.00017754712191123776 Iter 50: T = 574.2235846101992 K, F = -1.8457091068054947, relative_change = 7.445824643916035e-5 Iter 55: T = 574.092912047749 K, F = -0.7719573110018514, relative_change = 3.117549027643175e-5 Iter 60: T = 574.0382317169132 K, F = -0.3228522218501725, relative_change = 1.3044297980591911e-5 Iter 65: T = 574.0153582336463 K, F = -0.13502248421194046, relative_change = 5.456390096985379e-6 Iter 70: T = 574.0057913046259 K, F = -0.05646833540899421, relative_change = 2.2821215070002303e-6 Iter 75: T = 574.0017901318203 K, F = -0.023615788211635402, relative_change = 9.544444043834027e-7 Iter 80: T = 574.0001167640374 K, F = -0.00987641445006715, relative_change = 3.9916598406117985e-7 Iter 85: T = 573.9994169364812 K, F = -0.004130436183838404, relative_change = 1.6693701974574504e-7 Iter 90: T = 573.9991242593362 K, F = -0.0017273980390587473, relative_change = 6.981523687636538e-8 Iter 95: T = 573.9990018581009 K, F = -0.000722418541893699, relative_change = 2.9197597594558007e-8 Iter 100: T = 573.9989506684149 K, F = -0.00030212407101032346, relative_change = 1.2210789566972475e-8 Iter 105: T = 573.9989292602719 K, F = -0.0001263518963318111, relative_change = 5.1066990004910374e-9 Iter 110: T = 573.99892030713 K, F = -5.284187201709534e-5, relative_change = 2.1356826679034594e-9 Iter 115: T = 573.9989165628191 K, F = -2.2099102328698716e-5, relative_change = 8.931680404909245e-10 Iter 120: T = 573.9989149969035 K, F = -9.242108384710512e-6, relative_change = 3.7353354088371546e-10 Iter 125: T = 573.9989143420189 K, F = -3.865160983773652e-6, relative_change = 1.5621622427467512e-10 Iter 130: T = 573.9989140681383 K, F = -1.6164563106935148e-6, relative_change = 6.533148378430555e-11 Iter 135: T = 573.9989139535983 K, F = -6.76021645829028e-7, relative_change = 2.732241938251245e-11 Iter 140: T = 573.9989139056962 K, F = -2.827208109290602e-7, relative_change = 1.1426581700596168e-11 Iter 145: T = 573.998913885663 K, F = -1.1823789325404732e-7, relative_change = 4.778760159743728e-12 Iter 150: T = 573.9989138772848 K, F = -4.944817189045381e-8, relative_change = 1.9985213480670047e-12 Iter 155: T = 573.9989138737809 K, F = -2.067950033435295e-8, relative_change = 8.357927362476035e-13 Iter 160: T = 573.9989138723156 K, F = -8.648723570647832e-9, relative_change = 3.4955101532316217e-13 Converged in 163 iterations to T = 573.9989138718867 K Iter 1: T = 963.5494502830672 K, F = -8305.292426427231, relative_change = 0.036450549716932734 Iter 2: T = 928.9757760840082 K, F = -7047.342171593205, relative_change = 0.03588157742075626 Iter 3: T = 896.245382751064 K, F = -5979.00906908101, relative_change = 0.035232773744559236 Iter 5: T = 836.1954177586723 K, F = -4301.288841412196, relative_change = 0.033666392522745676 Iter 10: T = 716.3884510721929 K, F = -1879.7432230702843, relative_change = 0.02795919818397131 Iter 15: T = 636.6153674127141 K, F = -814.0254028609819, relative_change = 0.020053252156048654 Iter 20: T = 589.8483740058728 K, F = -348.56068560327947, relative_change = 0.012036426768334397 Iter 25: T = 565.7696962353273 K, F = -147.74199632854746, relative_change = 0.006171501196397288 Iter 30: T = 554.5330701835303 K, F = -62.19907312101904, relative_change = 0.00285300099152921 Iter 35: T = 549.5844321692663 K, F = -26.09083338300952, relative_change = 0.0012484386741151135 Iter 40: T = 547.4669689115677 K, F = -10.925754038540774, relative_change = 0.0005324512470797082 Iter 45: T = 546.5726939293274 K, F = -4.571815811174452, relative_change = 0.00022453884033509414 Iter 50: T = 546.197144078731 K, F = -1.912434464259003, relative_change = 9.423438960494854e-5 Iter 55: T = 546.0398109337349 K, F = -0.7998812549276454, relative_change = 3.946788585802775e-5 Iter 60: T = 545.9739643113523 K, F = -0.3345336090326563, relative_change = 1.6516096647381242e-5 Iter 65: T = 545.9464180573796 K, F = -0.13990835056991238, relative_change = 6.9090066634115474e-6 Iter 70: T = 545.9348964132537 K, F = -0.05851176292797766, relative_change = 2.8897401543029314e-6 Iter 75: T = 545.930077666615 K, F = -0.024470391471138914, relative_change = 1.2085782559031052e-6 Iter 80: T = 545.9280623641874 K, F = -0.010233822794533276, relative_change = 5.054513774730337e-7 Iter 85: T = 545.9272195327675 K, F = -0.00427990915550111, relative_change = 2.1138746701498913e-7 Iter 90: T = 545.9268670492245 K, F = -0.00178990951472352, relative_change = 8.840505436231511e-8 Iter 95: T = 545.9267196361563 K, F = -0.0007485616038129528, relative_change = 3.697210043704195e-8 Iter 100: T = 545.9266579862086 K, F = -0.0003130574141901876, relative_change = 1.5462182836768673e-8 Iter 105: T = 545.9266322034568 K, F = -0.00013092435132894265, relative_change = 6.4664710734856406e-9 Iter 110: T = 545.9266214208009 K, F = -5.475412772168453e-5, relative_change = 2.7043557043886872e-9 Iter 115: T = 545.926616911365 K, F = -2.2898829591500025e-5, relative_change = 1.1309938709946707e-9 Iter 120: T = 545.9266150254651 K, F = -9.576563783364467e-6, relative_change = 4.729951406043116e-10 Iter 125: T = 545.9266142367593 K, F = -4.00503345893144e-6, relative_change = 1.9781222366549569e-10 Iter 130: T = 545.9266139069131 K, F = -1.6749525128256781e-6, relative_change = 8.272741924548404e-11 Iter 135: T = 545.9266137689675 K, F = -7.004851209080343e-7, relative_change = 3.459759360253909e-11 Iter 140: T = 545.926613711277 K, F = -2.929513350513613e-7, relative_change = 1.4469131374823397e-11 Iter 145: T = 545.92661368715 K, F = -1.2251528630491393e-7, relative_change = 6.051140791121796e-12 Iter 150: T = 545.92661367706 K, F = -5.123728968881025e-8, relative_change = 2.530656075994739e-12 Iter 155: T = 545.9266136728402 K, F = -2.1427955965158674e-8, relative_change = 1.0583461242918688e-12 Iter 160: T = 545.9266136710754 K, F = -8.961932279616391e-9, relative_change = 4.426379403554056e-13 Converged in 164 iterations to T = 545.9266136704384 K Iter 1: T = 969.3343244074879 K, F = -6987.203354342092, relative_change = 0.030665675592512154 Iter 2: T = 940.8099102328691 K, F = -5919.62473969881, relative_change = 0.029426807094708466 Iter 3: T = 914.3876135978928 K, F = -5013.4718089195985, relative_change = 0.028084628305452535 Iter 5: T = 867.6631822958469 K, F = -3592.0203100230833, relative_change = 0.025122398714518872 Iter 10: T = 783.4956535083753 K, F = -1548.9960818568175, relative_change = 0.01685310342828237 Iter 15: T = 736.6276903681371 K, F = -660.4952365489747, relative_change = 0.009475945351419336 Iter 20: T = 713.4986242239468 K, F = -279.114829092785, relative_change = 0.004638825641122417 Iter 25: T = 702.9872809937607 K, F = -117.30797404398184, relative_change = 0.002090128226222406 Iter 30: T = 698.4207175874132 K, F = -49.16747010136957, relative_change = 0.0009034559973106257 Iter 35: T = 696.4789688397027 K, F = -20.581824917411527, relative_change = 0.00038322409465441564 Iter 40: T = 695.6611478348403 K, F = -8.610999126611675, relative_change = 0.00016123110973969312 Iter 45: T = 695.3181053153196 K, F = -3.6018263430674238, relative_change = 6.759855548896404e-5 Iter 50: T = 695.1744614817633 K, F = -1.506432597854213, relative_change = 2.8300327784522737e-5 Iter 55: T = 695.1143564754035 K, F = -0.6300266249830275, relative_change = 1.184075598381185e-5 Iter 60: T = 695.0892143399461 K, F = -0.2634878993458614, relative_change = 4.9528592980651e-6 Iter 65: T = 695.0786986356067 K, F = -0.11019435308377029, relative_change = 2.071504764784166e-6 Iter 70: T = 695.0743006740057 K, F = -0.046084693603296256, relative_change = 8.663559937927478e-7 Iter 75: T = 695.0724613644754 K, F = -0.019273186570083367, relative_change = 3.62325313865758e-7 Iter 80: T = 695.0716921381102 K, F = -0.008060279824153582, relative_change = 1.5152962871429455e-7 Iter 85: T = 695.0713704375565 K, F = -0.0033709058129887115, relative_change = 6.337164999127959e-8 Iter 90: T = 695.0712358983853 K, F = -0.0014097531604277957, relative_change = 2.6502807003343527e-8 Iter 95: T = 695.0711796324697 K, F = -0.0005895756236425909, relative_change = 1.1083794970698625e-8 Iter 100: T = 695.0711561013869 K, F = -0.00024656756926499934, relative_change = 4.635376218187004e-9 Iter 105: T = 695.0711462604064 K, F = -0.00010311750303149125, relative_change = 1.9385698406181016e-9 Iter 110: T = 695.0711421447905 K, F = -4.312497195213538e-5, relative_change = 8.107330947994788e-10 Iter 115: T = 695.0711404235908 K, F = -1.803537756139839e-5, relative_change = 3.390582527183739e-10 Iter 120: T = 695.0711397037645 K, F = -7.542610045985221e-6, relative_change = 1.4179820672072118e-10 Iter 125: T = 695.0711394027246 K, F = -3.1544090338675446e-6, relative_change = 5.930169297648954e-11 Iter 130: T = 695.0711392768261 K, F = -1.3192112117144106e-6, relative_change = 2.4800670260501467e-11 Iter 135: T = 695.0711392241739 K, F = -5.517098399243636e-7, relative_change = 1.0371935671006946e-11 Iter 140: T = 695.0711392021541 K, F = -2.307317144012444e-7, relative_change = 4.337668691426453e-12 Iter 145: T = 695.071139192945 K, F = -9.649336596417868e-8, relative_change = 1.8140386707815237e-12 Iter 150: T = 695.0711391890937 K, F = -4.035349232545116e-8, relative_change = 7.58630345723043e-13 Iter 155: T = 695.0711391874831 K, F = -1.6876521957698287e-8, relative_change = 3.172722099057948e-13 Converged in 158 iterations to T = 695.0711391870116 K Iter 1: T = 966.532458535602 K, F = -7625.611158513778, relative_change = 0.03346754146439793 Iter 2: T = 935.1064746849204 K, F = -6465.400426449076, relative_change = 0.03251415260103655 Iter 3: T = 905.6922541940853 K, F = -5480.296743630047, relative_change = 0.03145547730352959 Iter 5: T = 852.7737368554223 K, F = -3934.0001289815636, relative_change = 0.029018013639651632 Iter 10: T = 753.0381945146295 K, F = -1706.3956415150342, relative_change = 0.021359820085467454 Iter 15: T = 693.3280050491647 K, F = -731.963502682198, relative_change = 0.013181153673234748 Iter 20: T = 662.0027724618734 K, F = -310.68224457317723, relative_change = 0.006903920866870807 Iter 25: T = 647.2001598704304 K, F = -130.90396069235078, relative_change = 0.003231622217607311 Iter 30: T = 640.6370987203585 K, F = -54.9330387126533, relative_change = 0.0014228306021810786 Iter 35: T = 637.8199436923516 K, F = -23.007898778714498, relative_change = 0.0006085087797220579 Iter 40: T = 636.6285048473642 K, F = -9.628281945302932, relative_change = 0.0002569194944786582 Iter 45: T = 636.127862662325 K, F = -4.027738671871815, relative_change = 0.00010787848597998049 Iter 50: T = 635.9180703800331 K, F = -1.6846372746370601, relative_change = 4.519201948745414e-5 Iter 55: T = 635.8302594172781 K, F = -0.7045685057074222, relative_change = 1.8913158554851408e-5 Iter 60: T = 635.7935229801666 K, F = -0.29466475228584266, relative_change = 7.912040223695956e-6 Iter 65: T = 635.7781571156393 K, F = -0.12323333115906193, relative_change = 3.3093176598422074e-6 Iter 70: T = 635.7717305343416 K, F = -0.05153782794190476, relative_change = 1.3840675303334567e-6 Iter 75: T = 635.7690427925071 K, F = -0.021553766116121198, relative_change = 5.788460528456079e-7 Iter 80: T = 635.7679187347424 K, F = -0.009014047813509951, relative_change = 2.4208251541243524e-7 Iter 85: T = 635.7674486382568 K, F = -0.003769783392654713, relative_change = 1.0124218085077448e-7 Iter 90: T = 635.7672520379244 K, F = -0.001576568601353967, relative_change = 4.2340755908734235e-8 Iter 95: T = 635.7671698172533 K, F = -0.0006593398468445755, relative_change = 1.7707421472891536e-8 Iter 100: T = 635.7671354315753 K, F = -0.00027574380337858084, relative_change = 7.405457179071967e-9 Iter 105: T = 635.7671210510722 K, F = -0.00011531935240977065, relative_change = 3.0970509860657316e-9 Iter 110: T = 635.7671150369737 K, F = -4.822793101272316e-5, relative_change = 1.2952237842531976e-9 Iter 115: T = 635.7671125218059 K, F = -2.016949723399053e-5, relative_change = 5.416780790171077e-10 Iter 120: T = 635.7671114699326 K, F = -8.435124965344709e-6, relative_change = 2.2653625276233013e-10 Iter 125: T = 635.7671110300266 K, F = -3.5276699875685935e-6, relative_change = 9.474016637356055e-11 Iter 130: T = 635.7671108460527 K, F = -1.4753138949941125e-6, relative_change = 3.9621473819853484e-11 Iter 135: T = 635.7671107691125 K, F = -6.169930371058285e-7, relative_change = 1.6570150639639497e-11 Iter 140: T = 635.7671107369353 K, F = -2.580340305313733e-7, relative_change = 6.929839560499109e-12 Iter 145: T = 635.7671107234785 K, F = -1.079139184123612e-7, relative_change = 2.8981686620086705e-12 Iter 150: T = 635.7671107178506 K, F = -4.5131407777621035e-8, relative_change = 1.2120626664592092e-12 Iter 155: T = 635.7671107154969 K, F = -1.88742237949846e-8, relative_change = 5.068918331425024e-13 Converged in 160 iterations to T = 635.7671107145126 K Iter 1: T = 966.4882264917543 K, F = -7635.689471780036, relative_change = 0.03351177350824574 Iter 2: T = 935.0160122048978 K, F = -6474.022832405629, relative_change = 0.032563474053995546 Iter 3: T = 905.5536221030881 K, F = -5487.678732184616, relative_change = 0.03151003802847538 Iter 5: T = 852.5335606723162 K, F = -3939.421677384228, relative_change = 0.02908297561470232 Iter 10: T = 752.5294469437483 K, F = -1708.919105846119, relative_change = 0.021442093566126447 Iter 15: T = 692.5793641519954 K, F = -733.1285012486852, relative_change = 0.013255314486366252 Iter 20: T = 661.0901405469627 K, F = -311.2048583578681, relative_change = 0.006952435568855036 Iter 25: T = 646.1977307012328 K, F = -131.13131918440743, relative_change = 0.003257033324391366 Iter 30: T = 639.591885882341 K, F = -55.029954725179685, relative_change = 0.0014346113561482996 Iter 35: T = 636.7557610926518 K, F = -23.048777161354288, relative_change = 0.000613661850061395 Iter 40: T = 635.5561862455603 K, F = -9.645440589742405, relative_change = 0.0002591161483237306 Iter 45: T = 635.0521049208935 K, F = -4.034925771330239, relative_change = 0.00010880457981237428 Iter 50: T = 634.8408678684619 K, F = -1.6876449676257015, relative_change = 4.558063354717345e-5 Iter 55: T = 634.7524515457314 K, F = -0.7058267029121784, relative_change = 1.907591166838548e-5 Iter 60: T = 634.7154617400213 K, F = -0.29519100562656503, relative_change = 7.980145822143726e-6 Iter 65: T = 634.699989878736 K, F = -0.12345342713053942, relative_change = 3.3378072879959345e-6 Iter 70: T = 634.6935189622069 K, F = -0.05162987654798806, relative_change = 1.3959834670326293e-6 Iter 75: T = 634.6908126777786 K, F = -0.02159226226444183, relative_change = 5.838296557182784e-7 Iter 80: T = 634.6896808650923 K, F = -0.009030147418034262, relative_change = 2.441667553821536e-7 Iter 85: T = 634.6892075253733 K, F = -0.0037765164505547677, relative_change = 1.021138415316361e-7 Iter 90: T = 634.689009568676 K, F = -0.0015793844471504448, relative_change = 4.270529593911421e-8 Iter 95: T = 634.6889267807559 K, F = -0.000660517466879007, relative_change = 1.785987665279946e-8 Iter 100: T = 634.6888921578476 K, F = -0.0002762362979829014, relative_change = 7.469215785677412e-9 Iter 105: T = 634.6888776781319 K, F = -0.00011552532088043854, relative_change = 3.123715639075041e-9 Iter 110: T = 634.6888716225415 K, F = -4.831406902539026e-5, relative_change = 1.306375249229162e-9 Iter 115: T = 634.6888690900212 K, F = -2.0205520473381977e-5, relative_change = 5.463417360230713e-10 Iter 120: T = 634.688868030891 K, F = -8.450189898812077e-6, relative_change = 2.2848663867889436e-10 Iter 125: T = 634.6888675879501 K, F = -3.5339703055581317e-6, relative_change = 9.555584059766884e-11 Iter 130: T = 634.6888674027068 K, F = -1.4779491627758823e-6, relative_change = 3.996260935860068e-11 Iter 135: T = 634.688867325236 K, F = -6.180959064572278e-7, relative_change = 1.671283823041785e-11 Iter 140: T = 634.6888672928367 K, F = -2.584950891115767e-7, relative_change = 6.9895085270689295e-12 Iter 145: T = 634.6888672792869 K, F = -1.0810546946515842e-7, relative_change = 2.923088803440155e-12 Iter 150: T = 634.6888672736202 K, F = -4.521065966045512e-8, relative_change = 1.2224614879252703e-12 Iter 155: T = 634.6888672712504 K, F = -1.8907871379703067e-8, relative_change = 5.112543093672185e-13 Converged in 160 iterations to T = 634.6888672702592 K Iter 1: T = 976.3795887919156 K, F = -5381.933162573675, relative_change = 0.02362041120808446 Iter 2: T = 954.9219810353138 K, F = -4550.85170333572, relative_change = 0.021976706603577683 Iter 3: T = 935.5360189034157 K, F = -3846.365397459184, relative_change = 0.020301095290402874 Iter 5: T = 902.5598939582952 K, F = -2743.8602451803645, relative_change = 0.016947205771133404 Iter 10: T = 848.2183108505671 K, F = -1170.129869127114, relative_change = 0.00954680135351995 Iter 15: T = 821.369154219905 K, F = -494.5192789108267, relative_change = 0.00467941964295458 Iter 20: T = 809.1584898016632 K, F = -207.84867074014244, relative_change = 0.002109843237477001 Iter 25: T = 803.8517844580999 K, F = -87.11776491973521, relative_change = 0.0009122667717539582 Iter 30: T = 801.594955528773 K, F = -36.468405402991685, relative_change = 0.0003870153468479372 Iter 35: T = 800.6443632775689 K, F = -15.257668140430411, relative_change = 0.00016283587458408049 Iter 40: T = 800.2456167869057 K, F = -6.382019367664141, relative_change = 6.827309342955793e-5 Iter 45: T = 800.0786456738421 K, F = -2.669226073007259, relative_change = 2.8583026668930685e-5 Iter 50: T = 800.0087794482644 K, F = -1.1163353691084488, relative_change = 1.1959089054908625e-5 Iter 55: T = 799.9795540962798 K, F = -0.46687058295555406, relative_change = 5.002365987907143e-6 Iter 60: T = 799.967330574386 K, F = -0.19525186791017024, relative_change = 2.0922122707909283e-6 Iter 65: T = 799.962218353763 K, F = -0.0816568403941178, relative_change = 8.750166828371718e-7 Iter 70: T = 799.9600803274504 K, F = -0.03414989687182646, relative_change = 3.659474159052753e-7 Iter 75: T = 799.9591861732623 K, F = -0.01428190013356434, relative_change = 1.5304445229228301e-7 Iter 80: T = 799.9588122262442 K, F = -0.005972862146866098, relative_change = 6.400517031108784e-8 Iter 85: T = 799.9586558369501 K, F = -0.002497922444823275, relative_change = 2.6767753279981218e-8 Iter 90: T = 799.9585904330473 K, F = -0.0010446610254631894, relative_change = 1.1194598749123121e-8 Iter 95: T = 799.9585630803485 K, F = -0.00043688972188937747, relative_change = 4.681715706031729e-9 Iter 100: T = 799.9585516411222 K, F = -0.0001827124989399742, relative_change = 1.9579495496406307e-9 Iter 105: T = 799.958546857101 K, F = -7.641255109447354e-5, relative_change = 8.188379291528577e-10 Iter 110: T = 799.9585448563662 K, F = -3.195664127286779e-5, relative_change = 3.4244780339563914e-10 Iter 115: T = 799.958544019635 K, F = -1.3364650293112845e-5, relative_change = 1.432157753920665e-10 Iter 120: T = 799.9585436697039 K, F = -5.589255790194869e-6, relative_change = 5.989454164296645e-11 Iter 125: T = 799.9585435233586 K, F = -2.337492420068088e-6, relative_change = 2.504860082829598e-11 Iter 130: T = 799.9585434621553 K, F = -9.775687264124144e-7, relative_change = 1.047563988179131e-11 Iter 135: T = 799.9585434365594 K, F = -4.0883118579415623e-7, relative_change = 4.381040595677715e-12 Iter 140: T = 799.9585434258548 K, F = -1.709793095994172e-7, relative_change = 1.8322166274293722e-12 Iter 145: T = 799.958543421378 K, F = -7.150506076136764e-8, relative_change = 7.662492121576725e-13 Iter 150: T = 799.9585434195058 K, F = -2.99052959062962e-8, relative_change = 3.2046556123167747e-13 Converged in 153 iterations to T = 799.9585434189576 K Iter 1: T = 965.2172315010628 K, F = -7925.28688943744, relative_change = 0.034782768498937175 Iter 2: T = 932.4109151610139 K, F = -6721.870479719446, relative_change = 0.03398853156509637 Iter 3: T = 901.5516241969275 K, F = -5699.963701679916, relative_change = 0.033096235213803206 Iter 5: T = 845.56094525618 K, F = -4095.520813827129, relative_change = 0.030999077918105914 Iter 10: T = 737.4897361158211 K, F = -1782.0039616245945, relative_change = 0.023988020488651157 Iter 15: T = 669.9999601611894 K, F = -767.2050125633075, relative_change = 0.015682423942778974 Iter 20: T = 633.1236577708238 K, F = -326.65127635075237, relative_change = 0.008616613876400258 Iter 25: T = 615.1856131004777 K, F = -137.90063792455496, relative_change = 0.004154683521341912 Iter 30: T = 607.102087245201 K, F = -57.927024731745085, relative_change = 0.001857071997167465 Iter 35: T = 603.6049611684554 K, F = -24.273032468133046, relative_change = 0.0007997313399315497 Iter 40: T = 602.1207628984482 K, F = -10.159744916468457, relative_change = 0.0003386725904500564 Iter 45: T = 601.4961640678097 K, F = -4.250424300010407, relative_change = 0.00014238791401950397 Iter 50: T = 601.234261457986 K, F = -1.777841311311067, relative_change = 5.968070021497337e-5 Iter 55: T = 601.1246097725304 K, F = -0.7435605722079753, relative_change = 2.4982409579980204e-5 Iter 60: T = 601.0787309431946 K, F = -0.3109739811777811, relative_change = 1.0452010197714785e-5 Iter 65: T = 601.0595401605187 K, F = -0.13005444461539695, relative_change = 4.371867419935195e-6 Iter 70: T = 601.0515136972014 K, F = -0.0543905688800716, relative_change = 1.8284917133938337e-6 Iter 75: T = 601.0481568208911 K, F = -0.02274682865861538, relative_change = 7.647188568436432e-7 Iter 80: T = 601.0467529152774 K, F = -0.00951300295330948, relative_change = 3.1981836904656953e-7 Iter 85: T = 601.0461657817115 K, F = -0.003978452764327456, relative_change = 1.3375252779658533e-7 Iter 90: T = 601.0459202348351 K, F = -0.0016638366893166334, relative_change = 5.5937021014177654e-8 Iter 95: T = 601.0458175440929 K, F = -0.0006958364146500973, relative_change = 2.339355061680162e-8 Iter 100: T = 601.0457745975795 K, F = -0.0002910071055204355, relative_change = 9.783465805148232e-9 Iter 105: T = 601.0457566368314 K, F = -0.00012170264766503402, relative_change = 4.091562847214041e-9 Iter 110: T = 601.0457491254315 K, F = -5.089750105485846e-5, relative_change = 1.7111405603587577e-9 Iter 115: T = 601.0457459840742 K, F = -2.1285942459148277e-5, relative_change = 7.156194245052091e-10 Iter 120: T = 601.045744670321 K, F = -8.902034823732308e-6, relative_change = 2.9928057524369625e-10 Iter 125: T = 601.0457441208939 K, F = -3.7229377154446297e-6, relative_change = 1.2516272604926325e-10 Iter 130: T = 601.0457438911169 K, F = -1.5569772296442075e-6, relative_change = 5.2344554142054786e-11 Iter 135: T = 601.0457437950214 K, F = -6.511465359126944e-7, relative_change = 2.1891119844589043e-11 Iter 140: T = 601.045743754833 K, F = -2.7231671517746747e-7, relative_change = 9.155109519513368e-12 Iter 145: T = 601.0457437380259 K, F = -1.1388650972277148e-7, relative_change = 3.828789829395599e-12 Iter 150: T = 601.0457437309968 K, F = -4.762873823116465e-8, relative_change = 1.6012469692898054e-12 Iter 155: T = 601.0457437280572 K, F = -1.991818959767855e-8, relative_change = 6.696364823474622e-13 Iter 160: T = 601.0457437268278 K, F = -8.330130418787718e-9, relative_change = 2.8005352614160514e-13 Converged in 162 iterations to T = 601.0457437265676 K Iter 1: T = 964.590257404028 K, F = -8068.143533853171, relative_change = 0.03540974259597205 Iter 2: T = 931.1217742019362 K, F = -6844.1928603875685, relative_change = 0.03469709852986125 Iter 3: T = 899.5642073979637 K, F = -5804.800890720472, relative_change = 0.03389198671787092 Iter 5: T = 842.0695517199765 K, F = -4172.749277557188, relative_change = 0.031980727130695975 Iter 10: T = 729.7510468996039 K, F = -1818.488497977037, relative_change = 0.025387835074620002 Iter 15: T = 658.010404079459 K, F = -784.4927010297218, relative_change = 0.017135151218197357 Iter 20: T = 617.8806639733592 K, F = -334.63010619020446, relative_change = 0.009688704232609863 Iter 25: T = 598.0066170246614 K, F = -141.4442911334821, relative_change = 0.004760914733256494 Iter 30: T = 588.9553859470442 K, F = -59.45495123095797, relative_change = 0.002149479517713036 Iter 35: T = 585.0189729045047 K, F = -24.921014466096594, relative_change = 0.0009299929980877397 Iter 40: T = 583.3443613954834 K, F = -10.43238977177593, relative_change = 0.00039464530205284807 Iter 45: T = 582.6389047652343 K, F = -4.36474257627528, relative_change = 0.00016606592819698142 Iter 50: T = 582.3429681698296 K, F = -1.8257026282389677, relative_change = 6.963087432518434e-5 Iter 55: T = 582.2190445812255 K, F = -0.7635858841008664, relative_change = 2.915208646930197e-5 Iter 60: T = 582.1671903181552 K, F = -0.31935040644824964, relative_change = 1.2197290476681407e-5 Iter 65: T = 582.1454993549006 K, F = -0.13355784584549396, relative_change = 5.102022101146678e-6 Iter 70: T = 582.1364270792075 K, F = -0.05585578212447245, relative_change = 2.1338961974543863e-6 Iter 75: T = 582.1326327954589 K, F = -0.023359606909358288, relative_change = 8.924505445980028e-7 Iter 80: T = 582.1310459544962 K, F = -0.0097692756343557, relative_change = 3.7323866548547783e-7 Iter 85: T = 582.130382314075 K, F = -0.004085629322686801, relative_change = 1.5609377498210585e-7 Iter 90: T = 582.1301047709242 K, F = -0.0017086592518184007, relative_change = 6.52804395867982e-8 Iter 95: T = 582.129988698924 K, F = -0.0007145817540309407, relative_change = 2.7301087245316622e-8 Iter 100: T = 582.1299401562027 K, F = -0.0002988466315457794, relative_change = 1.1417645572202812e-8 Iter 105: T = 582.1299198550527 K, F = -0.00012498123209681022, relative_change = 4.774996595421815e-9 Iter 110: T = 582.1299113648685 K, F = -5.226864339880066e-5, relative_change = 1.9969607229779106e-9 Iter 115: T = 582.1299078141719 K, F = -2.1859370545385115e-5, relative_change = 8.351528342283638e-10 Iter 120: T = 582.1299063292282 K, F = -9.14184984696087e-6, relative_change = 3.492708944500154e-10 Iter 125: T = 582.129905708207 K, F = -3.823230502075781e-6, relative_change = 1.4606924925316924e-10 Iter 130: T = 582.1299054484886 K, F = -1.5989206724187355e-6, relative_change = 6.108790526881919e-11 Iter 135: T = 582.1299053398712 K, F = -6.686880843487231e-7, relative_change = 2.5547705456566893e-11 Iter 140: T = 582.1299052944461 K, F = -2.796528157933409e-7, relative_change = 1.0684335399217586e-11 Iter 145: T = 582.1299052754488 K, F = -1.1695412222012536e-7, relative_change = 4.46831570342016e-12 Iter 150: T = 582.1299052675039 K, F = -4.891176808019537e-8, relative_change = 1.8687090053793266e-12 Iter 155: T = 582.1299052641812 K, F = -2.045490349322776e-8, relative_change = 7.814941856186078e-13 Iter 160: T = 582.1299052627917 K, F = -8.554222774570519e-9, relative_change = 3.268201858347761e-13 Converged in 163 iterations to T = 582.1299052623848 K Iter 1: T = 964.363850111048 K, F = -8119.730650927585, relative_change = 0.03563614988895198 Iter 2: T = 930.655588604357 K, F = -6888.37465939173, relative_change = 0.03495388333232251 Iter 3: T = 898.8443543908527 K, F = -5842.678037003173, relative_change = 0.03418153246273372 Iter 5: T = 840.8001439608817 K, F = -4200.6745666684255, relative_change = 0.03234136052469859 Iter 10: T = 726.9007502778103 K, F = -1831.7381880868768, relative_change = 0.02591958254777693 Iter 15: T = 653.5237553302699 K, F = -790.8234473409169, relative_change = 0.017711037795843015 Iter 20: T = 612.0960262908967 K, F = -337.58146756227126, relative_change = 0.010130732937291555 Iter 25: T = 591.4276253873222 K, F = -142.76546276297265, relative_change = 0.005017574246403129 Iter 30: T = 581.9725521165227 K, F = -60.02721082376869, relative_change = 0.002275045972970486 Iter 35: T = 577.8512407955438 K, F = -25.164245321065174, relative_change = 0.0009863047305628233 Iter 40: T = 576.0961697359415 K, F = -10.534833310328844, relative_change = 0.0004189133107008179 Iter 45: T = 575.3564884292525 K, F = -4.4077148808963935, relative_change = 0.00017634486900737652 Iter 50: T = 575.0461358747323 K, F = -1.8436969812005113, relative_change = 7.395266717555318e-5 Iter 55: T = 574.9161652222623 K, F = -0.7711153457149678, relative_change = 3.0963561317760144e-5 Iter 60: T = 574.8617788208064 K, F = -0.3225000195028547, relative_change = 1.2955580896362698e-5 Iter 65: T = 574.8390283292784 K, F = -0.13487517456000636, relative_change = 5.419272519352635e-6 Iter 70: T = 574.8295128485918 K, F = -0.056406726230087634, relative_change = 2.266595862223063e-6 Iter 75: T = 574.8255331941441 K, F = -0.023590022075083122, relative_change = 9.479509341218323e-7 Iter 80: T = 574.823868825954 K, F = -0.00986563866683482, relative_change = 3.964502567588872e-7 Iter 85: T = 574.8231727621978 K, F = -0.004125929608788326, relative_change = 1.6580125606469674e-7 Iter 90: T = 574.8228816591298 K, F = -0.001725513333138473, relative_change = 6.934024447667161e-8 Iter 95: T = 574.8227599161942 K, F = -0.000721630334157064, relative_change = 2.899894963757615e-8 Iter 100: T = 574.8227090018173 K, F = -0.0003017944324923971, relative_change = 1.212771252126552e-8 Iter 105: T = 574.822687708812 K, F = -0.0001262140376081522, relative_change = 5.071955176792695e-9 Iter 110: T = 574.8226788038222 K, F = -5.27842185568117e-5, relative_change = 2.121152412054587e-9 Iter 115: T = 574.822675079649 K, F = -2.2074991153864243e-5, relative_change = 8.870913211683917e-10 Iter 120: T = 574.8226735221552 K, F = -9.23202484370833e-6, relative_change = 3.7099218587344854e-10 Iter 125: T = 574.8226728707928 K, F = -3.860943899647307e-6, relative_change = 1.5515339796431927e-10 Iter 130: T = 574.8226725983851 K, F = -1.6146923194626517e-6, relative_change = 6.488698284884026e-11 Iter 135: T = 574.822672484461 K, F = -6.752840213675171e-7, relative_change = 2.7136527637968777e-11 Iter 140: T = 574.8226724368166 K, F = -2.8241145871854556e-7, relative_change = 1.1348804525685896e-11 Iter 145: T = 574.822672416891 K, F = -1.1810736066930616e-7, relative_change = 4.746186134174098e-12 Iter 150: T = 574.822672408558 K, F = -4.9393605927594564e-8, relative_change = 1.9848995545923915e-12 Iter 155: T = 574.8226724050731 K, F = -2.0657541122126588e-8, relative_change = 8.301306090827327e-13 Iter 160: T = 574.8226724036156 K, F = -8.638684545481112e-9, relative_change = 3.4714859920182775e-13 Converged in 163 iterations to T = 574.8226724031889 K Iter 1: T = 979.9931367090201 K, F = -4558.582832289935, relative_change = 0.020006863290979893 Iter 2: T = 962.0363846498526 K, F = -3850.8047730852727, relative_change = 0.018323344711850927 Iter 3: T = 946.0099069580762 K, F = -3251.4020343975667, relative_change = 0.01665891014881884 Iter 5: T = 919.2278879613327 K, F = -2314.7887741588816, relative_change = 0.013476705805232574 Iter 10: T = 876.6474041375074 K, F = -982.868897105256, relative_change = 0.007098163912053029 Iter 15: T = 856.45931818142 K, F = -414.2163493103844, relative_change = 0.0033336405610811365 Iter 20: T = 847.492278031438 K, F = -173.84249836487044, relative_change = 0.0014701908376840058 Iter 25: T = 843.6399181364612 K, F = -72.81503376905636, relative_change = 0.0006292374617832638 Iter 30: T = 842.010047185487 K, F = -30.472096479745076, relative_change = 0.0002657580604313298 Iter 35: T = 841.3250642012814 K, F = -12.747318254507546, relative_change = 0.00011160518035010604 Iter 40: T = 841.0380047817397 K, F = -5.331699164906201, relative_change = 4.67559150381028e-5 Iter 45: T = 840.9178492927588 K, F = -2.2298885880136075, relative_change = 1.956813716098672e-5 Iter 50: T = 840.867580647424 K, F = -0.9325849953434103, relative_change = 8.186124557255085e-6 Iter 55: T = 840.846554516994 K, F = -0.3900214989176676, relative_change = 3.4239717843238765e-6 Iter 60: T = 840.8377605813503 K, F = -0.1631122287730169, relative_change = 1.4320222900007316e-6 Iter 65: T = 840.8340827550481 K, F = -0.06821558349434698, relative_change = 5.989021868445206e-7 Iter 70: T = 840.832544627131 K, F = -0.028528589422715855, relative_change = 2.504703842168798e-7 Iter 75: T = 840.8319013606877 K, F = -0.011930999900284345, relative_change = 1.0475011470587971e-7 Iter 80: T = 840.8316323384578 K, F = -0.004989687186673697, relative_change = 4.38078204457398e-8 Iter 85: T = 840.8315198300573 K, F = -0.0020867468666825317, relative_change = 1.8320966199186698e-8 Iter 90: T = 840.8314727776847 K, F = -0.0008727024757786417, relative_change = 7.662049037187207e-9 Iter 95: T = 840.8314530998177 K, F = -0.0003649746011582522, relative_change = 3.204360799493293e-9 Iter 100: T = 840.8314448702982 K, F = -0.00015263673618348683, relative_change = 1.340102010466677e-9 Iter 105: T = 840.8314414286149 K, F = -6.383450570335292e-5, relative_change = 5.604466738239826e-10 Iter 110: T = 840.8314399892618 K, F = -2.6696353585542454e-5, relative_change = 2.343855024384891e-10 Iter 115: T = 840.8314393873071 K, F = -1.1164734333268811e-5, relative_change = 9.802282048858241e-11 Iter 120: T = 840.8314391355625 K, F = -4.669224598297106e-6, relative_change = 4.099430865169546e-11 Iter 125: T = 840.8314390302799 K, F = -1.9527257504314832e-6, relative_change = 1.7144311756222e-11 Iter 130: T = 840.8314389862494 K, F = -8.166522913466423e-7, relative_change = 7.169947689621535e-12 Iter 135: T = 840.8314389678354 K, F = -3.4153453487562047e-7, relative_change = 2.9985647202125218e-12 Iter 140: T = 840.8314389601344 K, F = -1.4283452243191164e-7, relative_change = 1.2540417324631272e-12 Iter 145: T = 840.8314389569138 K, F = -5.973504646483718e-8, relative_change = 5.244547318356122e-13 Converged in 150 iterations to T = 840.8314389555669 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 1 ray tracing: 12%|███▊ | ETA: 0:00:14 Bin 1 ray tracing: 19%|█████▋ | ETA: 0:00:13 Bin 1 ray tracing: 25%|███████▋ | ETA: 0:00:12 Bin 1 ray tracing: 32%|█████████▋ | ETA: 0:00:11 Bin 1 ray tracing: 38%|███████████▌ | ETA: 0:00:10 Bin 1 ray tracing: 45%|█████████████▌ | ETA: 0:00:09 Bin 1 ray tracing: 51%|███████████████▎ | ETA: 0:00:08 Bin 1 ray tracing: 58%|█████████████████▎ | ETA: 0:00:07 Bin 1 ray tracing: 64%|███████████████████▎ | ETA: 0:00:06 Bin 1 ray tracing: 70%|█████████████████████ | ETA: 0:00:05 Bin 1 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:04 Bin 1 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:03 Bin 1 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:02 Bin 1 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 2 ray tracing: 12%|███▌ | ETA: 0:00:15 Bin 2 ray tracing: 17%|█████▎ | ETA: 0:00:14 Bin 2 ray tracing: 23%|███████ | ETA: 0:00:13 Bin 2 ray tracing: 29%|████████▋ | ETA: 0:00:12 Bin 2 ray tracing: 35%|██████████▍ | ETA: 0:00:11 Bin 2 ray tracing: 41%|████████████▎ | ETA: 0:00:10 Bin 2 ray tracing: 47%|██████████████ | ETA: 0:00:09 Bin 2 ray tracing: 52%|███████████████▊ | ETA: 0:00:08 Bin 2 ray tracing: 58%|█████████████████▌ | ETA: 0:00:07 Bin 2 ray tracing: 64%|███████████████████▍ | ETA: 0:00:06 Bin 2 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:05 Bin 2 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:04 Bin 2 ray tracing: 83%|█████████████████████████ | ETA: 0:00:03 Bin 2 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:02 Bin 2 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 6%|█▉ | ETA: 0:00:16 Bin 3 ray tracing: 12%|███▋ | ETA: 0:00:15 Bin 3 ray tracing: 18%|█████▌ | ETA: 0:00:14 Bin 3 ray tracing: 24%|███████▎ | ETA: 0:00:13 Bin 3 ray tracing: 30%|█████████▏ | ETA: 0:00:12 Bin 3 ray tracing: 37%|███████████ | ETA: 0:00:10 Bin 3 ray tracing: 43%|████████████▉ | ETA: 0:00:09 Bin 3 ray tracing: 49%|██████████████▊ | ETA: 0:00:08 Bin 3 ray tracing: 56%|████████████████▊ | ETA: 0:00:07 Bin 3 ray tracing: 62%|██████████████████▋ | ETA: 0:00:06 Bin 3 ray tracing: 68%|████████████████████▍ | ETA: 0:00:05 Bin 3 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:04 Bin 3 ray tracing: 80%|████████████████████████ | ETA: 0:00:03 Bin 3 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 3 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 3 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 4 ray tracing: 15%|████▍ | ETA: 0:00:12 Bin 4 ray tracing: 22%|██████▋ | ETA: 0:00:11 Bin 4 ray tracing: 29%|████████▉ | ETA: 0:00:10 Bin 4 ray tracing: 36%|██████████▉ | ETA: 0:00:09 Bin 4 ray tracing: 43%|█████████████ | ETA: 0:00:08 Bin 4 ray tracing: 50%|███████████████ | ETA: 0:00:07 Bin 4 ray tracing: 57%|█████████████████▏ | ETA: 0:00:06 Bin 4 ray tracing: 64%|███████████████████▎ | ETA: 0:00:05 Bin 4 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:04 Bin 4 ray tracing: 80%|████████████████████████ | ETA: 0:00:03 Bin 4 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 4 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 7%|██ | ETA: 0:00:14 Bin 5 ray tracing: 14%|████▏ | ETA: 0:00:13 Bin 5 ray tracing: 20%|██████▏ | ETA: 0:00:12 Bin 5 ray tracing: 27%|████████▏ | ETA: 0:00:11 Bin 5 ray tracing: 34%|██████████▏ | ETA: 0:00:10 Bin 5 ray tracing: 40%|████████████▏ | ETA: 0:00:09 Bin 5 ray tracing: 47%|██████████████▏ | ETA: 0:00:08 Bin 5 ray tracing: 54%|████████████████▏ | ETA: 0:00:07 Bin 5 ray tracing: 60%|██████████████████▏ | ETA: 0:00:06 Bin 5 ray tracing: 67%|████████████████████▏ | ETA: 0:00:05 Bin 5 ray tracing: 74%|██████████████████████▎ | ETA: 0:00:04 Bin 5 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:03 Bin 5 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 5 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 6 ray tracing: 14%|████▎ | ETA: 0:00:13 Bin 6 ray tracing: 21%|██████▍ | ETA: 0:00:12 Bin 6 ray tracing: 28%|████████▍ | ETA: 0:00:11 Bin 6 ray tracing: 35%|██████████▌ | ETA: 0:00:09 Bin 6 ray tracing: 42%|████████████▊ | ETA: 0:00:08 Bin 6 ray tracing: 49%|██████████████▊ | ETA: 0:00:07 Bin 6 ray tracing: 56%|████████████████▉ | ETA: 0:00:06 Bin 6 ray tracing: 63%|███████████████████ | ETA: 0:00:05 Bin 6 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:04 Bin 6 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:03 Bin 6 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 6 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 7%|██▏ | ETA: 0:00:14 Bin 7 ray tracing: 14%|████▎ | ETA: 0:00:12 Bin 7 ray tracing: 22%|██████▌ | ETA: 0:00:11 Bin 7 ray tracing: 29%|████████▊ | ETA: 0:00:10 Bin 7 ray tracing: 37%|███████████ | ETA: 0:00:09 Bin 7 ray tracing: 44%|█████████████▎ | ETA: 0:00:08 Bin 7 ray tracing: 51%|███████████████▎ | ETA: 0:00:07 Bin 7 ray tracing: 60%|██████████████████▏ | ETA: 0:00:05 Bin 7 ray tracing: 70%|█████████████████████ | ETA: 0:00:04 Bin 7 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 7 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:02 Bin 7 ray tracing: 93%|███████████████████████████▊ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 7%|██▎ | ETA: 0:00:12 Bin 8 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 8 ray tracing: 27%|████████ | ETA: 0:00:08 Bin 8 ray tracing: 37%|███████████▏ | ETA: 0:00:07 Bin 8 ray tracing: 48%|██████████████▌ | ETA: 0:00:05 Bin 8 ray tracing: 59%|█████████████████▉ | ETA: 0:00:04 Bin 8 ray tracing: 71%|█████████████████████▏ | ETA: 0:00:03 Bin 8 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:02 Bin 8 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 11%|███▍ | ETA: 0:00:08 Bin 9 ray tracing: 23%|██████▊ | ETA: 0:00:07 Bin 9 ray tracing: 34%|██████████▏ | ETA: 0:00:06 Bin 9 ray tracing: 45%|█████████████▌ | ETA: 0:00:05 Bin 9 ray tracing: 56%|████████████████▊ | ETA: 0:00:04 Bin 9 ray tracing: 67%|████████████████████▏ | ETA: 0:00:03 Bin 9 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:02 Bin 9 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 11%|███▏ | ETA: 0:00:08 Bin 10 ray tracing: 22%|██████▍ | ETA: 0:00:07 Bin 10 ray tracing: 33%|█████████▋ | ETA: 0:00:06 Bin 10 ray tracing: 44%|████████████▋ | ETA: 0:00:05 Bin 10 ray tracing: 55%|███████████████▉ | ETA: 0:00:04 Bin 10 ray tracing: 66%|███████████████████ | ETA: 0:00:03 Bin 10 ray tracing: 76%|██████████████████████▏ | ETA: 0:00:02 Bin 10 ray tracing: 84%|████████████████████████▍ | ETA: 0:00:02 Bin 10 ray tracing: 92%|██████████████████████████▋ | ETA: 0:00:01 Bin 10 ray tracing: 99%|████████████████████████████▉| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2683402151084 K, F = -7457.9398178340525, relative_change = 0.03273165978489152 Iter 2: T = 936.6095413519768 K, F = -6321.980127448665, relative_change = 0.03169627040239274 Iter 3: T = 907.9923836328544 K, F = -5357.540441059917, relative_change = 0.030553989101813003 Iter 5: T = 856.7456154346231 K, F = -3843.9083726065815, relative_change = 0.027953618796440562 Iter 10: T = 761.3667830589388 K, F = -1664.5991759802448, relative_change = 0.020047071840384043 Iter 15: T = 705.4554742582703 K, F = -712.7662793145716, relative_change = 0.012031372019507523 Iter 20: T = 676.6707870379141 K, F = -302.1136901550326, relative_change = 0.00616839119758164 Iter 25: T = 663.2386818275331 K, F = -127.1888391149, relative_change = 0.002851425021570021 Iter 30: T = 657.3232996902989 K, F = -53.35220520881785, relative_change = 0.001247719475136415 Iter 35: T = 654.7922083042531 K, F = -22.341665354677662, relative_change = 0.0005321388558200798 Iter 40: T = 653.723250046289 K, F = -9.348732182848275, relative_change = 0.0002244060741361814 Iter 45: T = 653.2743431414812 K, F = -3.9106639675981647, relative_change = 9.417848750697411e-5 Iter 50: T = 653.0862779133417 K, F = -1.6356464463647478, relative_change = 3.9444440366675854e-5 Iter 55: T = 653.0075694177945 K, F = -0.6840749088868507, relative_change = 1.6506279782903382e-5 Iter 60: T = 652.9746425375838 K, F = -0.28609320166893826, relative_change = 6.904899087861419e-6 Iter 65: T = 652.9608703647895 K, F = -0.1196484517013443, relative_change = 2.888021959156425e-6 Iter 70: T = 652.9551103700613 K, F = -0.05003856149238062, relative_change = 1.2078596235649835e-6 Iter 75: T = 652.9527014176742 K, F = -0.020926750249856185, relative_change = 5.051508258697123e-7 Iter 80: T = 652.9516939556066 K, F = -0.00875182146129544, relative_change = 2.1126177083076633e-7 Iter 85: T = 652.9512726212924 K, F = -0.0036601170561154084, relative_change = 8.835248635821873e-8 Iter 90: T = 652.9510964139627 K, F = -0.0015307048040235083, relative_change = 3.6950115803538716e-8 Iter 95: T = 652.9510227219026 K, F = -0.0006401590531621704, relative_change = 1.545298858070898e-8 Iter 100: T = 652.9509919029944 K, F = -0.0002677221660207785, relative_change = 6.462625942050653e-9 Iter 105: T = 652.9509790141573 K, F = -0.00011196460759982374, relative_change = 2.7027476149000483e-9 Iter 110: T = 652.9509736238914 K, F = -4.682493674684762e-5, relative_change = 1.130321391709822e-9 Iter 115: T = 652.9509713696178 K, F = -1.9582747591340155e-5, relative_change = 4.727139087116779e-10 Iter 120: T = 652.9509704268536 K, F = -8.189738836428262e-6, relative_change = 1.9769460160027474e-10 Iter 125: T = 652.9509700325784 K, F = -3.4250469089225355e-6, relative_change = 8.267825135723367e-11 Iter 130: T = 652.9509698676878 K, F = -1.4323952061134904e-6, relative_change = 3.4577024544633286e-11 Iter 135: T = 652.9509697987286 K, F = -5.990450356319066e-7, relative_change = 1.446053074067538e-11 Iter 140: T = 652.950969769889 K, F = -2.505275514264049e-7, relative_change = 6.0475609412704345e-12 Iter 145: T = 652.9509697578279 K, F = -1.0477318479473752e-7, relative_change = 2.529151849787749e-12 Iter 150: T = 652.9509697527839 K, F = -4.381746143700127e-8, relative_change = 1.0577230602236812e-12 Iter 155: T = 652.9509697506743 K, F = -1.832428470072145e-8, relative_change = 4.4233549490816073e-13 Converged in 159 iterations to T = 652.9509697499128 K Iter 1: T = 970.3133661540115 K, F = -6764.127761087545, relative_change = 0.02968663384598848 Iter 2: T = 942.7904518565084 K, F = -5729.107051394522, relative_change = 0.028364974922065155 Iter 3: T = 917.3866828903531 K, F = -4850.713656297308, relative_change = 0.026945297246202628 Iter 5: T = 872.7215172298528 K, F = -3473.177298141477, relative_change = 0.023856485333707916 Iter 10: T = 793.4035771548643 K, F = -1495.0271808858067, relative_change = 0.015550729828141444 Iter 15: T = 750.1561494522413 K, F = -636.4296866769162, relative_change = 0.008522454258246766 Iter 20: T = 729.1520553649104 K, F = -268.6492378023445, relative_change = 0.004102536319622016 Iter 25: T = 719.6954647124062 K, F = -112.84336077952705, relative_change = 0.001832195091869971 Iter 30: T = 715.6061437398843 K, F = -47.28326043829549, relative_change = 0.0007887060437765408 Iter 35: T = 713.8709632554398 K, F = -19.790701338877177, relative_change = 0.0003339457690144428 Iter 40: T = 713.140806222013 K, F = -8.27958434074099, relative_change = 0.00014039026433164785 Iter 45: T = 712.8346528948466 K, F = -3.463126400379299, relative_change = 5.884157253280857e-5 Iter 50: T = 712.70647658588 K, F = -1.4484093681942953, relative_change = 2.463082841136447e-5 Iter 55: T = 712.6528473059956 K, F = -0.605757594637159, relative_change = 1.0304861196197227e-5 Iter 60: T = 712.6304146266832 K, F = -0.25333777201135815, relative_change = 4.3103080718599386e-6 Iter 65: T = 712.6210322645114 K, F = -0.10594935606679312, relative_change = 1.8027433808655173e-6 Iter 70: T = 712.6171083177964 K, F = -0.044309368965776974, relative_change = 7.539499883010069e-7 Iter 75: T = 712.615467253539 K, F = -0.01853072177304127, relative_change = 3.1531459316883995e-7 Iter 80: T = 712.6147809368667 K, F = -0.007749771685598206, relative_change = 1.3186897634974892e-7 Iter 85: T = 712.6144939103381 K, F = -0.003241047513104278, relative_change = 5.514929404378626e-8 Iter 90: T = 712.6143738722935 K, F = -0.0013554448534072172, relative_change = 2.3064113200888548e-8 Iter 95: T = 712.6143236709285 K, F = -0.0005668632385665839, relative_change = 9.645691048238387e-9 Iter 100: T = 712.6143026761142 K, F = -0.0002370689774636725, relative_change = 4.0339437785302e-9 Iter 105: T = 712.6142938958316 K, F = -9.914507745645285e-5, relative_change = 1.6870435605630827e-9 Iter 110: T = 712.6142902238124 K, F = -4.146365551804809e-5, relative_change = 7.055417833124453e-10 Iter 115: T = 712.6142886881302 K, F = -1.7340596529802355e-5, relative_change = 2.950660131628268e-10 Iter 120: T = 712.6142880458895 K, F = -7.252044060046536e-6, relative_change = 1.234001225726803e-10 Iter 125: T = 712.6142877772968 K, F = -3.032893106436063e-6, relative_change = 5.1607433525888386e-11 Iter 130: T = 712.6142876649681 K, F = -1.2683920310729846e-6, relative_change = 2.158284356892869e-11 Iter 135: T = 712.6142876179908 K, F = -5.304562953334369e-7, relative_change = 9.026196132944326e-12 Iter 140: T = 712.6142875983443 K, F = -2.2184192272067804e-7, relative_change = 3.774842004637696e-12 Iter 145: T = 712.614287590128 K, F = -9.277737900159622e-8, relative_change = 1.5786914531731905e-12 Iter 150: T = 712.6142875866918 K, F = -3.880127064093131e-8, relative_change = 6.602388965250951e-13 Iter 155: T = 712.6142875852548 K, F = -1.622756040653428e-8, relative_change = 2.761266937713414e-13 Converged in 157 iterations to T = 712.6142875849507 K Iter 1: T = 974.3629892428258 K, F = -5841.417288115156, relative_change = 0.025637010757174145 Iter 2: T = 950.9155740364492 K, F = -4942.116802826912, relative_change = 0.02406435329055088 Iter 3: T = 929.5834461072556 K, F = -4179.461904538447, relative_change = 0.02243325118616258 Iter 5: T = 892.9134256712227 K, F = -2985.0072358607604, relative_change = 0.019079801719959034 Iter 10: T = 831.1061163061007 K, F = -1276.508726288839, relative_change = 0.011222921565689593 Iter 15: T = 799.7067406699316 K, F = -540.540434872088, relative_change = 0.005669345528269148 Iter 20: T = 785.1796569497457 K, F = -227.43954087833148, relative_change = 0.0025987753531818607 Iter 25: T = 778.8107647492837 K, F = -95.37880880422264, relative_change = 0.0011325374289890893 Iter 30: T = 776.0913198448369 K, F = -39.935804731898806, relative_change = 0.0004821357548732588 Iter 35: T = 774.9438669926418 K, F = -16.71001906283755, relative_change = 0.0002031601510545089 Iter 40: T = 774.4621850098652 K, F = -6.989806048155692, relative_change = 8.52337360718842e-5 Iter 45: T = 774.2604222909649 K, F = -2.9234792991858054, relative_change = 3.5693163405743125e-5 Iter 50: T = 774.1759870135976 K, F = -1.2226792949575396, relative_change = 1.4935613196811324e-5 Iter 55: T = 774.1406654189356 K, F = -0.5113470163811472, relative_change = 6.24770572223324e-6 Iter 60: T = 774.125891799514 K, F = -0.2138528168122571, relative_change = 2.6131195242722145e-6 Iter 65: T = 774.1197129968721 K, F = -0.08943604466426158, relative_change = 1.0928822894728131e-6 Iter 70: T = 774.1171288955932 K, F = -0.03740326442163333, relative_change = 4.570642082524261e-7 Iter 75: T = 774.1160481844436 K, F = -0.015642499292750633, relative_change = 1.9115107165397305e-7 Iter 80: T = 774.1155962165368 K, F = -0.006541881313633313, relative_change = 7.99418990847803e-8 Iter 85: T = 774.1154071978813 K, F = -0.002735893118997579, relative_change = 3.343269854766276e-8 Iter 90: T = 774.1153281479733 K, F = -0.001144183216930439, relative_change = 1.3981961103651188e-8 Iter 95: T = 774.1152950883491 K, F = -0.0004785110919954816, relative_change = 5.8474243786836075e-9 Iter 100: T = 774.115281262418 K, F = -0.00020011905499806026, relative_change = 2.4454629368431734e-9 Iter 105: T = 774.1152754802482 K, F = -8.369217877535196e-5, relative_change = 1.022721842152361e-9 Iter 110: T = 774.1152730620757 K, F = -3.5001069303541854e-5, relative_change = 4.2771450249738514e-10 Iter 115: T = 774.1152720507671 K, F = -1.4637865865751998e-5, relative_change = 1.7887532238059144e-10 Iter 120: T = 774.1152716278258 K, F = -6.1217301674521e-6, relative_change = 7.480779439580142e-11 Iter 125: T = 774.1152714509466 K, F = -2.5601799128471825e-6, relative_change = 3.1285503853659974e-11 Iter 130: T = 774.1152713769737 K, F = -1.0706988795572414e-6, relative_change = 1.308398435971064e-11 Iter 135: T = 774.1152713460373 K, F = -4.47778851331293e-7, relative_change = 5.4718759871732814e-12 Iter 140: T = 774.1152713330993 K, F = -1.8726539463553848e-7, relative_change = 2.2883908276814616e-12 Iter 145: T = 774.1152713276884 K, F = -7.831499326815816e-8, relative_change = 9.570124401229976e-13 Iter 150: T = 774.1152713254256 K, F = -3.275301851957124e-8, relative_change = 4.00243233986069e-13 Converged in 154 iterations to T = 774.1152713246089 K Iter 1: T = 970.4728282665311 K, F = -6727.794167062327, relative_change = 0.02952717173346889 Iter 2: T = 943.1124316853143 K, F = -5698.085689654758, relative_change = 0.028192851756692915 Iter 3: T = 917.8732668293492 K, F = -4824.221953742354, relative_change = 0.026761565225965157 Iter 5: T = 873.5386126796506 K, F = -3453.851808179689, relative_change = 0.02365466456586295 Iter 10: T = 794.9851313689785 K, F = -1486.2827420224014, relative_change = 0.01534966494088064 Iter 15: T = 752.2938045361753 K, F = -632.5473971120595, relative_change = 0.00837944624473676 Iter 20: T = 731.6096195819841 K, F = -266.9666715138021, relative_change = 0.00402362216529088 Iter 25: T = 722.3099355331153 K, F = -112.12699200408201, relative_change = 0.0017946219069625913 Iter 30: T = 718.2911877326569 K, F = -46.98121894275842, relative_change = 0.0007720689485774031 Iter 35: T = 716.586471357641 K, F = -19.663937257494474, relative_change = 0.000326815873753771 Iter 40: T = 715.8692275994388 K, F = -8.226490519414224, relative_change = 0.00013737754080382205 Iter 45: T = 715.5685054998698 K, F = -3.4409079061519057, relative_change = 5.757614648337108e-5 Iter 50: T = 715.4426060102886 K, F = -1.4391148678041745, relative_change = 2.4100651000330414e-5 Iter 55: T = 715.3899298734068 K, F = -0.6018700926039742, relative_change = 1.0082966233185411e-5 Iter 60: T = 715.3678959762352 K, F = -0.25171189681690814, relative_change = 4.2174794637256984e-6 Iter 65: T = 715.3586804186276 K, F = -0.105269382448822, relative_change = 1.7639161896264388e-6 Iter 70: T = 715.354826236666 K, F = -0.044024993570674575, relative_change = 7.377110908441649e-7 Iter 75: T = 715.3532143497525 K, F = -0.018411792183750997, relative_change = 3.085231344934938e-7 Iter 80: T = 715.3525402355496 K, F = -0.007700033839454501, relative_change = 1.290286796014658e-7 Iter 85: T = 715.3522583122666 K, F = -0.003220246539415328, relative_change = 5.3961443193715795e-8 Iter 90: T = 715.3521404084652 K, F = -0.0013467456349409712, relative_change = 2.2567338933433793e-8 Iter 95: T = 715.3520910996668 K, F = -0.0005632251206247885, relative_change = 9.437933960617773e-9 Iter 100: T = 715.3520704781349 K, F = -0.00023554747373144558, relative_change = 3.947057269603257e-9 Iter 105: T = 715.3520618539635 K, F = -9.850876690131738e-5, relative_change = 1.6507065886805724e-9 Iter 110: T = 715.3520582472318 K, F = -4.1197543822923954e-5, relative_change = 6.903452433482869e-10 Iter 115: T = 715.3520567388534 K, F = -1.7229303425625453e-5, relative_change = 2.8871060460830117e-10 Iter 120: T = 715.3520561080317 K, F = -7.205500986651181e-6, relative_change = 1.2074223221363225e-10 Iter 125: T = 715.3520558442145 K, F = -3.013426636999661e-6, relative_change = 5.049584478251959e-11 Iter 130: T = 715.3520557338829 K, F = -1.2602504365633038e-6, relative_change = 2.1117955784015684e-11 Iter 135: T = 715.3520556877411 K, F = -5.270522472899941e-7, relative_change = 8.831789090989351e-12 Iter 140: T = 715.3520556684439 K, F = -2.2041885094914448e-7, relative_change = 3.693548056232798e-12 Iter 145: T = 715.3520556603736 K, F = -9.218220053952564e-8, relative_change = 1.5446926892785188e-12 Iter 150: T = 715.3520556569986 K, F = -3.855280561460006e-8, relative_change = 6.460275046249481e-13 Iter 155: T = 715.352055655587 K, F = -1.6122927437578483e-8, relative_change = 2.7017111760865664e-13 Converged in 157 iterations to T = 715.3520556552884 K Iter 1: T = 969.3124555934203 K, F = -6992.186184430001, relative_change = 0.030687544406579725 Iter 2: T = 940.765598168786 K, F = -5923.881450516116, relative_change = 0.029450624780383846 Iter 3: T = 914.3203941854051 K, F = -5017.109462426809, relative_change = 0.028110300838866703 Iter 5: T = 867.549366280885 K, F = -3594.678687743446, relative_change = 0.025151212205127123 Iter 10: T = 783.2703339769636 K, F = -1550.2072579148655, relative_change = 0.016883599408605784 Iter 15: T = 736.3171830632551 K, F = -661.0375140494766, relative_change = 0.00949885163311301 Iter 20: T = 713.1372137054498 K, F = -279.35141910145086, relative_change = 0.0046519300117064954 Iter 25: T = 702.6003316300153 K, F = -117.40909422776289, relative_change = 0.0020964879689284142 Iter 30: T = 698.0221503748892 K, F = -49.21018550978569, relative_change = 0.0009062972810673032 Iter 35: T = 696.0753606751063 K, F = -20.599767270479372, relative_change = 0.0003844465176706801 Iter 40: T = 695.2553981066649 K, F = -8.618516815523675, relative_change = 0.00016174850688077428 Iter 45: T = 694.9114540061371 K, F = -3.6049727980599533, relative_change = 6.781602979986306e-5 Iter 50: T = 694.7674320706975 K, F = -1.5077489161510553, relative_change = 2.8391470307076632e-5 Iter 55: T = 694.7071687533402 K, F = -0.6305772009135002, relative_change = 1.1878906564002802e-5 Iter 60: T = 694.6819603780561 K, F = -0.26371817005837256, relative_change = 4.9688202242492905e-6 Iter 65: T = 694.6714169657813 K, F = -0.11029065737016452, relative_change = 2.0781808467130718e-6 Iter 70: T = 694.6670074154026 K, F = -0.0461249696124717, relative_change = 8.691481915086404e-7 Iter 75: T = 694.6651632591343 K, F = -0.01929003054876044, relative_change = 3.6349307586379453e-7 Iter 80: T = 694.6643920057751 K, F = -0.008067324189726555, relative_change = 1.5201800625242492e-7 Iter 85: T = 694.6640694575029 K, F = -0.0033738518519945693, relative_change = 6.35758962576993e-8 Iter 90: T = 694.663934563805 K, F = -0.0014109852301262826, relative_change = 2.658822541183896e-8 Iter 95: T = 694.6638781496218 K, F = -0.0005900908904445945, relative_change = 1.1119518007703012e-8 Iter 100: T = 694.6638545565318 K, F = -0.000246783059690614, relative_change = 4.650316018077501e-9 Iter 105: T = 694.6638446896189 K, F = -0.00010320762369930847, relative_change = 1.9448178442042007e-9 Iter 110: T = 694.6638405631579 K, F = -4.316265914328099e-5, relative_change = 8.133460404418978e-10 Iter 115: T = 694.6638388374228 K, F = -1.8051139382246895e-5, relative_change = 3.4015102885420125e-10 Iter 120: T = 694.6638381156997 K, F = -7.549202656109699e-6, relative_change = 1.4225523435557644e-10 Iter 125: T = 694.6638378138664 K, F = -3.157166449607729e-6, relative_change = 5.94928331608815e-11 Iter 130: T = 694.6638376876361 K, F = -1.320364744428204e-6, relative_change = 2.4880613921859354e-11 Iter 135: T = 694.6638376348452 K, F = -5.521923176488031e-7, relative_change = 1.0405370128961864e-11 Iter 140: T = 694.6638376127675 K, F = -2.309344970807814e-7, relative_change = 4.351670317085244e-12 Iter 145: T = 694.6638376035343 K, F = -9.657979882504719e-8, relative_change = 1.819924909947961e-12 Iter 150: T = 694.6638375996727 K, F = -4.0390125133349386e-8, relative_change = 7.611011385641836e-13 Iter 155: T = 694.6638375980579 K, F = -1.6892649612465505e-8, relative_change = 3.183207482301116e-13 Converged in 158 iterations to T = 694.663837597585 K Iter 1: T = 963.5236873688044 K, F = -8311.162530948874, relative_change = 0.03647631263119556 Iter 2: T = 928.9225618600711 K, F = -7052.372086365416, relative_change = 0.035911027369988344 Iter 3: T = 896.1629193305948 K, F = -5983.323965922134, relative_change = 0.035266279315983556 Iter 5: T = 836.0487527328586 K, F = -4304.475955767057, relative_change = 0.03370903321109037 Iter 10: T = 716.0490110948156 K, F = -1881.2709405624412, relative_change = 0.02802717015520464 Iter 15: T = 636.0593302630004 K, F = -814.7711722707811, relative_change = 0.02013515694661185 Iter 20: T = 589.1036557189373 K, F = -348.91837345992025, relative_change = 0.01210637899987692 Iter 25: T = 564.9000259658629 K, F = -147.906027621453, relative_change = 0.0062153819328920525 Iter 30: T = 553.5965858473926 K, F = -62.271177415185306, relative_change = 0.002875421980190803 Iter 35: T = 548.6165380238377 K, F = -26.12170734904927, relative_change = 0.0012587062948207493 Iter 40: T = 546.4852375979755 K, F = -10.938801052216196, relative_change = 0.0005369176163725511 Iter 45: T = 545.5850449736795 K, F = -4.577296613347869, relative_change = 0.00022643820852472557 Iter 50: T = 545.206996784064 K, F = -1.9147309228551397, relative_change = 9.503433620542708e-5 Iter 55: T = 545.0486146437491 K, F = -0.8008424214136861, relative_change = 3.9803421581988054e-5 Iter 60: T = 544.9823285878258 K, F = -0.33493571358332597, relative_change = 1.665659514715637e-5 Iter 65: T = 544.9545984293535 K, F = -0.1400765388228456, relative_change = 6.96779519232063e-6 Iter 70: T = 544.9429998517378 K, F = -0.05858210534550548, relative_change = 2.9143315354086107e-6 Iter 75: T = 544.9381489266702 K, F = -0.02449981022403988, relative_change = 1.2188635951917802e-6 Iter 80: T = 544.9361201661528 K, F = -0.0102461261928036, relative_change = 5.097529918558467e-7 Iter 85: T = 544.935271706279 K, F = -0.00428505460638412, relative_change = 2.1318648202293497e-7 Iter 90: T = 544.9349168688283 K, F = -0.001792061407059814, relative_change = 8.915742887566144e-8 Iter 95: T = 544.9347684713242 K, F = -0.000749461551827757, relative_change = 3.728675332777864e-8 Iter 100: T = 544.934706409673 K, F = -0.0003134337840561552, relative_change = 1.5593774622472226e-8 Iter 105: T = 544.9346804547417 K, F = -0.0001310817538656972, relative_change = 6.521504363544681e-9 Iter 110: T = 544.9346696000782 K, F = -5.481995534220574e-5, relative_change = 2.7273712880224606e-9 Iter 115: T = 544.934665060528 K, F = -2.292635993414449e-5, relative_change = 1.1406192856747066e-9 Iter 120: T = 544.9346631620339 K, F = -9.5880773388346e-6, relative_change = 4.77020605888743e-10 Iter 125: T = 544.934662368061 K, F = -4.009848588670817e-6, relative_change = 1.9949572254811886e-10 Iter 130: T = 544.934662036012 K, F = -1.676966400770974e-6, relative_change = 8.343148559934299e-11 Iter 135: T = 544.9346618971451 K, F = -7.013270169053953e-7, relative_change = 3.489202583633197e-11 Iter 140: T = 544.9346618390695 K, F = -2.933035987418009e-7, relative_change = 1.459227507809112e-11 Iter 145: T = 544.9346618147814 K, F = -1.2266273391459137e-7, relative_change = 6.1026470973099925e-12 Iter 150: T = 544.9346618046239 K, F = -5.129889604771343e-8, relative_change = 2.5521937192965727e-12 Iter 155: T = 544.9346618003759 K, F = -2.1453764625922744e-8, relative_change = 1.0673555876261332e-12 Iter 160: T = 544.9346617985993 K, F = -8.972312504074154e-9, relative_change = 4.463854270932231e-13 Converged in 165 iterations to T = 544.9346617978564 K Iter 1: T = 966.9499830966921 K, F = -7530.477790101025, relative_change = 0.03305001690330791 Iter 2: T = 935.959734282266 K, F = -6384.01981966088, relative_change = 0.032049484829793015 Iter 3: T = 906.9987504802351 K, F = -5410.634151734181, relative_change = 0.030942553126219085 Iter 5: T = 855.0328054884682 K, F = -3882.8594738357388, relative_change = 0.028410338408615243 Iter 10: T = 757.7945621245688 K, F = -1682.6386337824224, relative_change = 0.02060232698971102 Iter 15: T = 700.2829125384615 K, F = -721.0296288902281, relative_change = 0.012510120463999169 Iter 20: T = 670.4406983667827 K, F = -305.7923745779046, relative_change = 0.00647090201246155 Iter 25: T = 656.4427529288809 K, F = -128.78106249119182, relative_change = 0.0030066529061947627 Iter 30: T = 650.2611563952386 K, F = -54.02910054886625, relative_change = 0.0013189546662666551 Iter 35: T = 647.6127345091415 K, F = -22.626818764723687, relative_change = 0.0005631550779695583 Iter 40: T = 646.4935875093593 K, F = -9.468359725334263, relative_change = 0.00023760140278527957 Iter 45: T = 646.0234896562425 K, F = -3.960759729913334, relative_change = 9.973685150162019e-5 Iter 50: T = 645.8265264717413 K, F = -1.656608716537582, relative_change = 4.1776052297879665e-5 Iter 55: T = 645.7440904784085 K, F = -0.6928436183914909, relative_change = 1.7482622750639278e-5 Iter 60: T = 645.709603615855 K, F = -0.2897607374572657, relative_change = 7.313433683459011e-6 Iter 65: T = 645.6951788475611 K, F = -0.12118232138924745, relative_change = 3.0589138602846047e-6 Iter 70: T = 645.6891458959636 K, F = -0.050680055033057336, relative_change = 1.2793352798566696e-6 Iter 75: T = 645.6866227838699 K, F = -0.021195032419466686, relative_change = 5.350439573023779e-7 Iter 80: T = 645.6855675778205 K, F = -0.008864020604308742, relative_change = 2.2376363804448307e-7 Iter 85: T = 645.685126276223 K, F = -0.0037070401358949567, relative_change = 9.358095196232296e-8 Iter 90: T = 645.6849417183051 K, F = -0.0015503286057641508, relative_change = 3.913672873722086e-8 Iter 95: T = 645.6848645339242 K, F = -0.0006483659643891637, relative_change = 1.636745733642977e-8 Iter 100: T = 645.6848322544845 K, F = -0.0002711543950305595, relative_change = 6.845067897369492e-9 Iter 105: T = 645.6848187548356 K, F = -0.00011340000729598287, relative_change = 2.862689452931427e-9 Iter 110: T = 645.684813109121 K, F = -4.7425238812459636e-5, relative_change = 1.1972110041277946e-9 Iter 115: T = 645.6848107480156 K, F = -1.983380177605909e-5, relative_change = 5.006879616840222e-10 Iter 120: T = 645.6848097605731 K, F = -8.294732782743175e-6, relative_change = 2.0939368694089386e-10 Iter 125: T = 645.6848093476128 K, F = -3.4689560316492063e-6, relative_change = 8.757093381306965e-11 Iter 130: T = 645.6848091749079 K, F = -1.4507591374335327e-6, relative_change = 3.662321788041923e-11 Iter 135: T = 645.6848091026807 K, F = -6.067252923402933e-7, relative_change = 1.5316279603850903e-11 Iter 140: T = 645.6848090724743 K, F = -2.5373961942687373e-7, relative_change = 6.4054474201853275e-12 Iter 145: T = 645.6848090598418 K, F = -1.0611710499208726e-7, relative_change = 2.678838795485423e-12 Iter 150: T = 645.6848090545586 K, F = -4.437988754268929e-8, relative_change = 1.120333658764367e-12 Iter 155: T = 645.6848090523491 K, F = -1.8560142145407355e-8, relative_change = 4.685354810168969e-13 Converged in 160 iterations to T = 645.6848090514251 K Iter 1: T = 965.1383269674832 K, F = -7943.26536247116, relative_change = 0.03486167303251686 Iter 2: T = 932.2488251405953 K, F = -6737.262518967626, relative_change = 0.03407750050734018 Iter 3: T = 901.3019932032964 K, F = -5713.153126876439, relative_change = 0.03319589266592168 Iter 5: T = 845.1234677833694 K, F = -4105.231711159556, relative_change = 0.031121261240882978 Iter 10: T = 736.527974683765 K, F = -1786.5791955179623, relative_change = 0.02415856260845839 Iter 15: T = 668.5245494038688 K, F = -769.3618993382785, relative_change = 0.015854679159767824 Iter 20: T = 631.2638666254107 K, F = -327.6408113532585, relative_change = 0.008740624669955408 Iter 25: T = 613.1010575483108 K, F = -138.33810716520628, relative_change = 0.004223655315210094 Iter 30: T = 604.9063561586491 K, F = -58.11515505367122, relative_change = 0.0018900469669537153 Iter 35: T = 601.3590274402416 K, F = -24.3527159247491, relative_change = 0.000814360338848136 Iter 40: T = 599.853120453266 K, F = -10.19325356363292, relative_change = 0.0003449471595716339 Iter 45: T = 599.2193127375315 K, F = -4.264470850728812, relative_change = 0.00014504016803703912 Iter 50: T = 598.9535357143336 K, F = -1.7837215372121136, relative_change = 6.079488698955642e-5 Iter 55: T = 598.8422596242995 K, F = -0.7460207692310379, relative_change = 2.5449251547788956e-5 Iter 60: T = 598.7957007339928 K, F = -0.3120030429696471, relative_change = 1.0647402571091043e-5 Iter 65: T = 598.7762254163794 K, F = -0.1304848417017861, relative_change = 4.4536097123212395e-6 Iter 70: T = 598.7680799352227 K, F = -0.054570571531465384, relative_change = 1.862682017262251e-6 Iter 75: T = 598.7646732803943 K, F = -0.02282210887060332, relative_change = 7.790184725768595e-7 Iter 80: T = 598.7632485561387 K, F = -0.009544486203092062, relative_change = 3.2579878293289334e-7 Iter 85: T = 598.7626527158508 K, F = -0.003991619465125662, relative_change = 1.3625363348210793e-7 Iter 90: T = 598.7624035276987 K, F = -0.0016693431653473367, relative_change = 5.698301766117866e-8 Iter 95: T = 598.7622993141279 K, F = -0.0006981392887761562, relative_change = 2.3830999648772498e-8 Iter 100: T = 598.7622557307488 K, F = -0.0002919701956163867, relative_change = 9.966412365390947e-9 Iter 105: T = 598.7622375036558 K, F = -0.00012210542417756542, relative_change = 4.168073330935112e-9 Iter 110: T = 598.7622298808672 K, F = -5.106594649229024e-5, relative_change = 1.7431381449920067e-9 Iter 115: T = 598.7622266929259 K, F = -2.1356389271531828e-5, relative_change = 7.290012283972817e-10 Iter 120: T = 598.7622253596908 K, F = -8.93149727720921e-6, relative_change = 3.048770310726349e-10 Iter 125: T = 598.7622248021158 K, F = -3.735258172266054e-6, relative_change = 1.2750319364760438e-10 Iter 130: T = 598.7622245689314 K, F = -1.562129746168761e-6, relative_change = 5.3323364199187935e-11 Iter 135: T = 598.762224471411 K, F = -6.533012463227905e-7, relative_change = 2.2300465375494255e-11 Iter 140: T = 598.7622244306266 K, F = -2.732182670661665e-7, relative_change = 9.326316980003119e-12 Iter 145: T = 598.7622244135703 K, F = -1.1426335411179878e-7, relative_change = 3.900384374853781e-12 Iter 150: T = 598.762224406437 K, F = -4.778627721302442e-8, relative_change = 1.6311865727512124e-12 Iter 155: T = 598.7622244034538 K, F = -1.9985495869345726e-8, relative_change = 6.822057380050417e-13 Iter 160: T = 598.7622244022061 K, F = -8.357823211291304e-9, relative_change = 2.852946451419662e-13 Converged in 162 iterations to T = 598.7622244019421 K Iter 1: T = 980.1382357039969 K, F = -4525.521888259687, relative_change = 0.019861764296003063 Iter 2: T = 962.320344140794 K, F = -3822.7235446592267, relative_change = 0.018178957736920603 Iter 3: T = 946.425450386692 K, F = -3227.5625827420517, relative_change = 0.016517258365034045 Iter 5: T = 919.8815111513569 K, F = -2297.6383198172807, relative_change = 0.013345953086605786 Iter 10: T = 877.7356756732821 K, F = -975.4308527936935, relative_change = 0.007012012533932199 Iter 15: T = 857.7829409778332 K, F = -411.0417732573911, relative_change = 0.0032883205098984906 Iter 20: T = 848.9275385446693 K, F = -172.50173055346522, relative_change = 0.0014491345788814843 Iter 25: T = 845.124589956452 K, F = -72.25183849972301, relative_change = 0.000620018084217464 Iter 30: T = 843.5158958818616 K, F = -30.236115397759004, relative_change = 0.0002618263420990894 Iter 35: T = 842.8398618255713 K, F = -12.648549054371067, relative_change = 0.00010994729528607773 Iter 40: T = 842.5565613514042 K, F = -5.290378792623938, relative_change = 4.6060168520719734e-5 Iter 45: T = 842.4379807822487 K, F = -2.212605475543411, relative_change = 1.9276746438810267e-5 Iter 50: T = 842.3883712927934 K, F = -0.9253565642381083, relative_change = 8.064187688061894e-6 Iter 55: T = 842.3676209177414 K, F = -0.3869984079767056, relative_change = 3.3729634149553708e-6 Iter 60: T = 842.3589423217779 K, F = -0.16184792296322992, relative_change = 1.4106877213587806e-6 Iter 65: T = 842.355312734617 K, F = -0.06768683342124371, relative_change = 5.899794202543047e-7 Iter 70: T = 842.3537947813588 K, F = -0.028307459428873916, relative_change = 2.46738707553139e-7 Iter 75: T = 842.3531599522815 K, F = -0.011838520625899962, relative_change = 1.0318947086766825e-7 Iter 80: T = 842.3528944586734 K, F = -0.00495101123802022, relative_change = 4.3155138444856366e-8 Iter 85: T = 842.3527834259872 K, F = -0.002070572121125158, relative_change = 1.8048006423557428e-8 Iter 90: T = 842.3527369907764 K, F = -0.0008659380042568277, relative_change = 7.547893939928665e-9 Iter 95: T = 842.3527175710141 K, F = -0.0003621456211966301, relative_change = 3.1566197882624437e-9 Iter 100: T = 842.3527094494369 K, F = -0.00015145362462587464, relative_change = 1.3201361619818555e-9 Iter 105: T = 842.3527060528963 K, F = -6.333971356498047e-5, relative_change = 5.520967106504283e-10 Iter 110: T = 842.3527046324224 K, F = -2.6489423551767644e-5, relative_change = 2.308934301127871e-10 Iter 115: T = 842.3527040383632 K, F = -1.1078192013957988e-5, relative_change = 9.656237921301021e-11 Iter 120: T = 842.3527037899207 K, F = -4.6330329301902395e-6, relative_change = 4.038354659099326e-11 Iter 125: T = 842.352703686019 K, F = -1.9375904773966113e-6, relative_change = 1.688888823869243e-11 Iter 130: T = 842.3527036425661 K, F = -8.103239561574327e-7, relative_change = 7.06313893244738e-12 Iter 135: T = 842.3527036243936 K, F = -3.388883498267603e-7, relative_change = 2.953899461408821e-12 Iter 140: T = 842.3527036167936 K, F = -1.4172736717554812e-7, relative_change = 1.2353578805489744e-12 Iter 145: T = 842.3527036136152 K, F = -5.927155322105193e-8, relative_change = 5.166368487931149e-13 Converged in 150 iterations to T = 842.352703612286 K Iter 1: T = 976.4522745083043 K, F = -5365.371652952535, relative_change = 0.023547725491695724 Iter 2: T = 955.0659004373674 K, F = -4536.756965247733, relative_change = 0.021902119160617496 Iter 3: T = 935.7491111389816 K, F = -3834.373724451295, relative_change = 0.020225608818762994 Iter 5: T = 902.9028213019546 K, F = -2735.1916257121175, relative_change = 0.016873103182336046 Iter 10: T = 848.8171898977753 K, F = -1166.3222838674035, relative_change = 0.009491049209824451 Iter 15: T = 822.1193537812078 K, F = -492.87818817421373, relative_change = 0.004647488915544654 Iter 20: T = 809.9842591865279 K, F = -207.15166766720932, relative_change = 0.0020943374615490905 Iter 25: T = 804.7118640828028 K, F = -86.82419116062553, relative_change = 0.00090533743682375 Iter 30: T = 802.469910052485 K, F = -36.34524812135545, relative_change = 0.00038403372439696406 Iter 35: T = 801.5256349789028 K, F = -15.206094246783929, relative_change = 0.00016157381944660183 Iter 40: T = 801.1295475864594 K, F = -6.360438545009449, relative_change = 6.774260972133957e-5 Iter 45: T = 800.9636915695692 K, F = -2.6601986080588755, relative_change = 2.8360701188572452e-5 Iter 50: T = 800.8942922222365 K, F = -1.1125596063494738, relative_change = 1.1866027337733161e-5 Iter 55: T = 800.865262217441 K, F = -0.46529144927789856, relative_change = 4.963432014841165e-6 Iter 60: T = 800.8531204083732 K, F = -0.19459144404735373, relative_change = 2.075927089675902e-6 Iter 65: T = 800.8480423638814 K, F = -0.08138064127385825, relative_change = 8.682055833079372e-7 Iter 70: T = 800.8459186309337 K, F = -0.034034386753690304, relative_change = 3.630988553514971e-7 Iter 75: T = 800.8450304544887 K, F = -0.014233592361939773, relative_change = 1.5185313671443502e-7 Iter 80: T = 800.8446590074494 K, F = -0.0059526592490071195, relative_change = 6.350694553934252e-8 Iter 85: T = 800.8445036636791 K, F = -0.002489473351414806, relative_change = 2.6559389333567793e-8 Iter 90: T = 800.8444386970273 K, F = -0.0010411275139825538, relative_change = 1.1107458392514244e-8 Iter 95: T = 800.8444115271919 K, F = -0.00043541196441299057, relative_change = 4.645272547878381e-9 Iter 100: T = 800.8444001644415 K, F = -0.0001820944850531303, relative_change = 1.9427086043007297e-9 Iter 105: T = 800.8443954124034 K, F = -7.615408878780539e-5, relative_change = 8.124639671397657e-10 Iter 110: T = 800.8443934250442 K, F = -3.184855065097025e-5, relative_change = 3.397821512561574e-10 Iter 115: T = 800.844392593907 K, F = -1.3319444577608586e-5, relative_change = 1.4210095787647014e-10 Iter 120: T = 800.8443922463154 K, F = -5.570351753192426e-6, relative_change = 5.942832802532721e-11 Iter 125: T = 800.8443921009484 K, F = -2.3295896220965062e-6, relative_change = 2.485365780835215e-11 Iter 130: T = 800.8443920401542 K, F = -9.742605314722041e-7, relative_change = 1.0394078701447039e-11 Iter 135: T = 800.8443920147294 K, F = -4.074480796090185e-7, relative_change = 4.34693520885033e-12 Iter 140: T = 800.8443920040964 K, F = -1.704005494485017e-7, relative_change = 1.8179497833509081e-12 Iter 145: T = 800.8443919996496 K, F = -7.126486223363315e-8, relative_change = 7.603023656959812e-13 Iter 150: T = 800.8443919977898 K, F = -2.980329372181956e-8, relative_change = 3.1796195224787907e-13 Converged in 153 iterations to T = 800.8443919972453 K Iter 1: T = 980.9134548519484 K, F = -4348.887467975163, relative_change = 0.019086545148051602 Iter 2: T = 963.8352314090437 K, F = -3672.7316989129067, relative_change = 0.01741053031582927 Iter 3: T = 948.6391285271874 K, F = -3100.2617340802576, relative_change = 0.01576628700285305 Iter 5: T = 923.3539736241696 K, F = -2206.1086251774673, relative_change = 0.012657884559922849 Iter 10: T = 883.4861164666244 K, F = -935.790162813833, relative_change = 0.006565428922922254 Iter 15: T = 864.7550765798459 K, F = -394.1395744210604, relative_change = 0.003055503349390347 Iter 20: T = 856.4761017132813 K, F = -165.36694027714725, relative_change = 0.0013414505217271297 Iter 25: T = 852.9276317128723 K, F = -69.25558460372793, relative_change = 0.000572965198862157 Iter 30: T = 851.4278792211352 K, F = -28.980810347734334, relative_change = 0.00024177776219742615 Iter 35: T = 850.7978592737055 K, F = -12.123169320775338, relative_change = 0.00010149659124057959 Iter 40: T = 850.533882773898 K, F = -5.070589043047308, relative_change = 4.251431306186219e-5 Iter 45: T = 850.4233978459464 K, F = -2.120674563973594, relative_change = 1.7791778796420538e-5 Iter 50: T = 850.3771765262458 K, F = -0.8869078209396405, relative_change = 7.442797647853066e-6 Iter 55: T = 850.357843557697 K, F = -0.3709183102359149, relative_change = 3.113027878094825e-6 Iter 60: T = 850.3497578139011 K, F = -0.15512296861023045, relative_change = 1.3019685886900608e-6 Iter 65: T = 850.3463761778634 K, F = -0.0648743657513906, relative_change = 5.445098587639304e-7 Iter 70: T = 850.3449619230466 K, F = -0.027131249857265116, relative_change = 2.2772245775499702e-7 Iter 75: T = 850.344370462302 K, F = -0.011346615389292936, relative_change = 9.523658933557775e-8 Iter 80: T = 850.3441231059193 K, F = -0.004745290530886681, relative_change = 3.982913811624741e-8 Iter 85: T = 850.3440196584498 K, F = -0.0019845372511912984, relative_change = 1.665703154398267e-8 Iter 90: T = 850.3439763954694 K, F = -0.0008299571942009809, relative_change = 6.966171335185435e-9 Iter 95: T = 850.3439583023721 K, F = -0.00034709801421439757, relative_change = 2.9133363732157394e-9 Iter 100: T = 850.3439507356223 K, F = -0.0001451605387550181, relative_change = 1.2183921489305637e-9 Iter 105: T = 850.343947571117 K, F = -6.070787173140246e-5, relative_change = 5.095461634463405e-10 Iter 110: T = 850.3439462476831 K, F = -2.5388755972244326e-5, relative_change = 2.130982840814272e-10 Iter 115: T = 850.3439456942073 K, F = -1.0617881858188127e-5, relative_change = 8.912025520450474e-11 Iter 120: T = 850.343945462737 K, F = -4.440523649229533e-6, relative_change = 3.727114377983965e-11 Iter 125: T = 850.3439453659335 K, F = -1.8570822108987528e-6, relative_change = 1.5587255828018453e-11 Iter 130: T = 850.343945325449 K, F = -7.766518277385615e-7, relative_change = 6.518758652663272e-12 Iter 135: T = 850.343945308518 K, F = -3.248060282956544e-7, relative_change = 2.7262307664367676e-12 Iter 140: T = 850.3439453014372 K, F = -1.3583964930674597e-7, relative_change = 1.1401581220642292e-12 Iter 145: T = 850.3439452984759 K, F = -5.680853520928508e-8, relative_change = 4.768174325616101e-13 Converged in 150 iterations to T = 850.3439452972374 K Iter 1: T = 967.2762949110656 K, F = -7456.1273327933495, relative_change = 0.032723705088934386 Iter 2: T = 936.6257691242964 K, F = -6320.430092611626, relative_change = 0.03168745677737025 Iter 3: T = 908.0171830627321 K, F = -5356.214059951871, relative_change = 0.030544308094696236 Iter 5: T = 856.7883063247774 K, F = -3842.935586617296, relative_change = 0.027942279321392826 Iter 10: T = 761.4554515815028 K, F = -1664.1492431738877, relative_change = 0.020033435939348976 Iter 15: T = 705.5833285446186 K, F = -712.5605905286913, relative_change = 0.012019751220429122 Iter 20: T = 676.824309356215 K, F = -302.02229542573195, relative_change = 0.006161113506019762 Iter 25: T = 663.4058573848167 K, F = -127.14933050940373, relative_change = 0.002847710016568611 Iter 30: T = 657.4968783892136 K, F = -53.335419949458284, relative_change = 0.0012460189977507195 Iter 35: T = 654.9686048689393 K, F = -22.334596396079238, relative_change = 0.0005313993115106263 Iter 40: T = 653.900851168785 K, F = -9.345766999963745, relative_change = 0.00022409160409803515 Iter 45: T = 653.4524527141581 K, F = -3.909422323267514, relative_change = 9.404604896508398e-5 Iter 50: T = 653.2646009556961 K, F = -1.6351268999105264, relative_change = 3.938889023050967e-5 Iter 55: T = 653.1859818815434 K, F = -0.6838575799779374, relative_change = 1.6483019494101657e-5 Iter 60: T = 653.1530924239848 K, F = -0.2860023036529686, relative_change = 6.89516635559039e-6 Iter 65: T = 653.1393359062644 K, F = -0.11961043558373252, relative_change = 2.8839507389963484e-6 Iter 70: T = 653.1335824594578 K, F = -0.05002266243760367, relative_change = 1.206156837519558e-6 Iter 75: T = 653.1311762456266 K, F = -0.0209201010297142, relative_change = 5.044386736202578e-7 Iter 80: T = 653.1301699288798 K, F = -0.008749040670809782, relative_change = 2.109639355876611e-7 Iter 85: T = 653.1297490735567 K, F = -0.003658954094854394, relative_change = 8.822792728126603e-8 Iter 90: T = 653.1295730665474 K, F = -0.0015302184398913732, relative_change = 3.6898023576310565e-8 Iter 95: T = 653.1294994582639 K, F = -0.0006399556508809856, relative_change = 1.5431202989439676e-8 Iter 100: T = 653.1294686743919 K, F = -0.0002676370995677857, relative_change = 6.453514914695424e-9 Iter 105: T = 653.1294558002074 K, F = -0.00011192903184920056, relative_change = 2.6989372750713494e-9 Iter 110: T = 653.1294504160695 K, F = -4.6810057428292584e-5, relative_change = 1.1287278350639087e-9 Iter 115: T = 653.1294481643588 K, F = -1.9576526514741843e-5, relative_change = 4.720475036288582e-10 Iter 120: T = 653.1294472226663 K, F = -8.187136290138675e-6, relative_change = 1.9741588331558234e-10 Iter 125: T = 653.1294468288393 K, F = -3.4239579608241755e-6, relative_change = 8.256167520091384e-11 Iter 130: T = 653.1294466641361 K, F = -1.4319404715856798e-6, relative_change = 3.452828732616324e-11 Iter 135: T = 653.1294465952554 K, F = -5.988550121349689e-7, relative_change = 1.4440151910221595e-11 Iter 140: T = 653.1294465664486 K, F = -2.504479660880854e-7, relative_change = 6.039035498399277e-12 Iter 145: T = 653.1294465544013 K, F = -1.0474157252637895e-7, relative_change = 2.52562671831818e-12 Iter 150: T = 653.1294465493629 K, F = -4.380390172809001e-8, relative_change = 1.0562406302163242e-12 Iter 155: T = 653.1294465472557 K, F = -1.831903506666066e-8, relative_change = 4.4172569978289686e-13 Converged in 159 iterations to T = 653.1294465464953 K Iter 1: T = 973.5457684035179 K, F = -6027.6218337292, relative_change = 0.026454231596482185 Iter 2: T = 949.2845285169925 K, F = -5100.796108836671, relative_change = 0.024920492362994356 Iter 3: T = 927.1486093091041 K, F = -4314.668245966007, relative_change = 0.023318529421805585 Iter 5: T = 888.9294088412047 K, F = -3083.092119815049, relative_change = 0.019988174507099346 Iter 10: T = 823.8803477725706 K, F = -1320.049227853536, relative_change = 0.011981378801855068 Iter 15: T = 790.4185156116639 K, F = -559.4839356478748, relative_change = 0.006137151191476778 Iter 20: T = 774.8121548064439 K, F = -235.53271239691415, relative_change = 0.002835495181949327 Iter 25: T = 767.9411796533526 K, F = -98.79779435243577, relative_change = 0.0012404313974856722 Iter 30: T = 765.0015921583606 K, F = -41.3720566635647, relative_change = 0.0005289699051739008 Iter 35: T = 763.760184935429 K, F = -17.311825294999647, relative_change = 0.0002230586883075495 Iter 40: T = 763.2388712701072 K, F = -7.241691798901424, relative_change = 9.36110593841278e-5 Iter 45: T = 763.0204741963661 K, F = -3.028856639835478, relative_change = 3.920644155684158e-5 Iter 50: T = 762.9290717065218 K, F = -1.2667556159342905, relative_change = 1.6406624136872815e-5 Iter 55: T = 762.8908344957504 K, F = -0.5297813557657067, relative_change = 6.8632005921073955e-6 Iter 60: T = 762.874841207963 K, F = -0.2215624693789925, relative_change = 2.870579420238745e-6 Iter 65: T = 762.868152268952 K, F = -0.09266034696880365, relative_change = 1.200564292917286e-6 Iter 70: T = 762.8653548126694 K, F = -0.038751712013895934, relative_change = 5.020997173373941e-7 Iter 75: T = 762.8641848721807 K, F = -0.016206437204300927, relative_change = 2.0998574085035636e-7 Iter 80: T = 762.8636955871965 K, F = -0.006777727060858774, relative_change = 8.781883188627553e-8 Iter 85: T = 762.8634909620405 K, F = -0.0028345266580583894, relative_change = 3.672693452114312e-8 Iter 90: T = 762.8634053852985 K, F = -0.001185432945007725, relative_change = 1.535965141841203e-8 Iter 95: T = 762.8633695960727 K, F = -0.0004957622213267454, relative_change = 6.423591177349522e-9 Iter 100: T = 762.8633546285895 K, F = -0.00020733368371905758, relative_change = 2.686422822526147e-9 Iter 105: T = 762.8633483690088 K, F = -8.670942325306186e-5, relative_change = 1.1234941591596506e-9 Iter 110: T = 762.8633457511775 K, F = -3.626291735581155e-5, relative_change = 4.698586956355309e-10 Iter 115: T = 762.863344656369 K, F = -1.516558404301982e-5, relative_change = 1.96500505344802e-10 Iter 120: T = 762.8633441985071 K, F = -6.342428499284125e-6, relative_change = 8.21788600589804e-11 Iter 125: T = 762.8633440070238 K, F = -2.652479470510727e-6, relative_change = 3.436818239283678e-11 Iter 130: T = 762.8633439269432 K, F = -1.1092999211426147e-6, relative_change = 1.4373201550134074e-11 Iter 135: T = 762.8633438934526 K, F = -4.6392257002647597e-7, relative_change = 6.0110457748632994e-12 Iter 140: T = 762.8633438794462 K, F = -1.940169200853603e-7, relative_change = 2.5138776666254604e-12 Iter 145: T = 762.8633438735886 K, F = -8.113929628184025e-8, relative_change = 1.0513220430792338e-12 Iter 150: T = 762.863343871139 K, F = -3.393308611876478e-8, relative_change = 4.396710726081701e-13 Converged in 154 iterations to T = 762.8633438702548 K Iter 1: T = 969.95547817111 K, F = -6845.672878431012, relative_change = 0.030044521828889982 Iter 2: T = 942.0672046113199 K, F = -5798.739217355758, relative_change = 0.02875211717178464 Iter 3: T = 916.2926972702642 K, F = -4910.188152632081, relative_change = 0.027359520865276134 Iter 5: T = 870.8808000177771 K, F = -3516.5819922693386, relative_change = 0.02431384628920979 Iter 10: T = 789.821727511545 K, F = -1514.698721994043, relative_change = 0.016012954214452053 Iter 15: T = 745.2931127187235 K, F = -645.1800792644572, relative_change = 0.008855404463016513 Iter 20: T = 723.545519190635 K, F = -272.44724023041334, relative_change = 0.004287785014153923 Iter 25: T = 713.7223809510967 K, F = -114.46176758447837, relative_change = 0.001920779354960095 Iter 30: T = 709.4677729465135 K, F = -47.965906457091116, relative_change = 0.0008280092990267384 Iter 35: T = 707.661160939058 K, F = -20.07725399948254, relative_change = 0.0003508041640684246 Iter 40: T = 706.900710002019 K, F = -8.399613367333016, relative_change = 0.000147516420043669 Iter 45: T = 706.581812576951 K, F = -3.513357343798527, relative_change = 6.183522591922352e-5 Iter 50: T = 706.4482933500644 K, F = -1.469422404853982, relative_change = 2.5885167056685763e-5 Iter 55: T = 706.3924272850595 K, F = -0.6145465232179705, relative_change = 1.0829853702905632e-5 Iter 60: T = 706.3690587504194 K, F = -0.2570135864091322, relative_change = 4.529938523181478e-6 Iter 65: T = 706.359284931486 K, F = -0.1074866569476029, relative_change = 1.8946081111249021e-6 Iter 70: T = 706.3551972604772 K, F = -0.04495229204609741, relative_change = 7.923711288748605e-7 Iter 75: T = 706.353487722596 K, F = -0.018799600844434217, relative_change = 3.313831601366963e-7 Iter 80: T = 706.352772769057 K, F = -0.007862220292709554, relative_change = 1.3858911067132216e-7 Iter 85: T = 706.3524737661822 K, F = -0.0032880748931248815, relative_change = 5.7959746318270125e-8 Iter 90: T = 706.3523487194753 K, F = -0.0013751122718084208, relative_change = 2.4239480000127624e-8 Iter 95: T = 706.3522964234257 K, F = -0.0005750883897363002, relative_change = 1.0137243860645602e-8 Iter 100: T = 706.352274552589 K, F = -0.0002405088352328555, relative_change = 4.2395171182902605e-9 Iter 105: T = 706.3522654059433 K, F = -0.00010058366845855371, relative_change = 1.7730168213063968e-9 Iter 110: T = 706.3522615807066 K, F = -4.2065290810300304e-5, relative_change = 7.414968181793539e-10 Iter 115: T = 706.352259980947 K, F = -1.7592207449790287e-5, relative_change = 3.101028362850885e-10 Iter 120: T = 706.3522593119085 K, F = -7.3572724220705155e-6, relative_change = 1.2968873077506004e-10 Iter 125: T = 706.3522590321085 K, F = -3.0769002564712267e-6, relative_change = 5.423739489905803e-11 Iter 130: T = 706.3522589150928 K, F = -1.2867958668616453e-6, relative_change = 2.2682716312858588e-11 Iter 135: T = 706.3522588661555 K, F = -5.38153940632391e-7, relative_change = 9.486192399583179e-12 Iter 140: T = 706.3522588456892 K, F = -2.250624988597849e-7, relative_change = 3.9672406075863096e-12 Iter 145: T = 706.35225883713 K, F = -9.412387391716237e-8, relative_change = 1.6591482661964093e-12 Iter 150: T = 706.3522588335504 K, F = -3.9363238224510155e-8, relative_change = 6.938669833237669e-13 Iter 155: T = 706.3522588320535 K, F = -1.646325942239457e-8, relative_change = 2.902025510720268e-13 Converged in 157 iterations to T = 706.3522588317367 K Iter 1: T = 973.4400375734147 K, F = -6051.7127039442, relative_change = 0.026559962426585395 Iter 2: T = 949.0731899378712 K, F = -5121.330863559568, relative_change = 0.02503168833725494 Iter 3: T = 926.8326294048002 K, F = -4332.170357491981, relative_change = 0.023433978294684556 Iter 5: T = 888.4107167602097 K, F = -3095.797699466224, relative_change = 0.02010764748229633 Iter 10: T = 822.932392670456 K, F = -1325.7016667539688, relative_change = 0.012083231421459282 Iter 15: T = 789.1933017696247 K, F = -561.9483243336134, relative_change = 0.006200954690043675 Iter 20: T = 773.4403950286934 K, F = -236.5870076786974, relative_change = 0.0028680696191311903 Iter 25: T = 766.5008817017243 K, F = -99.24350177772835, relative_change = 0.0012553428897257672 Iter 30: T = 763.5311676880148 K, F = -41.559351475622854, relative_change = 0.0005354551915169607 Iter 35: T = 762.2768886170138 K, F = -17.390315230179215, relative_change = 0.00022581641089611365 Iter 40: T = 761.7501428078273 K, F = -7.274545731155592, relative_change = 9.477247693128339e-5 Iter 45: T = 761.5294652807628 K, F = -3.042601557548417, relative_change = 3.969358880284333e-5 Iter 50: T = 761.4371075551229 K, F = -1.272504782957708, relative_change = 1.6610605598746804e-5 Iter 55: T = 761.3984705864252 K, F = -0.5321858798246631, relative_change = 6.9485519766561466e-6 Iter 60: T = 761.3823100683769 K, F = -0.22256809695430424, relative_change = 2.9062820712336616e-6 Iter 65: T = 761.3755511834993 K, F = -0.093080917138187, relative_change = 1.215496911999694e-6 Iter 70: T = 761.3727244735898 K, F = -0.038927600304511034, relative_change = 5.083449520664002e-7 Iter 75: T = 761.3715422986348 K, F = -0.01627999593245988, relative_change = 2.125976137243821e-7 Iter 80: T = 761.3710478970071 K, F = -0.006808490224598951, relative_change = 8.891115550604308e-8 Iter 85: T = 761.370841132002 K, F = -0.0028473921852614215, relative_change = 3.7183758566249055e-8 Iter 90: T = 761.3707546603482 K, F = -0.0011908134635780776, relative_change = 1.5550700918558092e-8 Iter 95: T = 761.3707184968595 K, F = -0.0004980124205965497, relative_change = 6.5034904245517525e-9 Iter 100: T = 761.3707033728547 K, F = -0.00020827474203044538, relative_change = 2.7198376236376067e-9 Iter 105: T = 761.370697047815 K, F = -8.710298550762552e-5, relative_change = 1.1374686348218383e-9 Iter 110: T = 761.3706944026079 K, F = -3.642750897026037e-5, relative_change = 4.757029778289642e-10 Iter 115: T = 761.3706932963505 K, F = -1.5234417429232927e-5, relative_change = 1.989446435282423e-10 Iter 120: T = 761.3706928337006 K, F = -6.371214255840307e-6, relative_change = 8.320101234755052e-11 Iter 125: T = 761.3706926402149 K, F = -2.6645193612617746e-6, relative_change = 3.479567624674477e-11 Iter 130: T = 761.3706925592967 K, F = -1.1143322738993433e-6, relative_change = 1.4551947198146663e-11 Iter 135: T = 761.3706925254559 K, F = -4.6602659597994034e-7, relative_change = 6.085791983154779e-12 Iter 140: T = 761.3706925113032 K, F = -1.9489775127112807e-7, relative_change = 2.5451491021271117e-12 Iter 145: T = 761.3706925053845 K, F = -8.150813968210713e-8, relative_change = 1.0644061677605204e-12 Iter 150: T = 761.3706925029092 K, F = -3.408850524078133e-8, relative_change = 4.451581813803963e-13 Converged in 154 iterations to T = 761.3706925020157 K Iter 1: T = 964.2781565666061 K, F = -8139.256006544295, relative_change = 0.03572184343339396 Iter 2: T = 930.4790487965975 K, F = -6905.098515079806, relative_change = 0.03505120129481432 Iter 3: T = 898.5715927306146 K, F = -5857.016938866681, relative_change = 0.0342914288153497 Iter 5: T = 840.3184748605179 K, F = -4211.24928018749, relative_change = 0.03247872354103108 Iter 10: T = 725.8139557465756 K, F = -1836.763744279592, relative_change = 0.026124679127141583 Iter 15: T = 651.8024969004831 K, F = -793.2325051998313, relative_change = 0.017936853517277376 Iter 20: T = 609.8643566194678 K, F = -338.7091442553301, relative_change = 0.010306808560824148 Iter 25: T = 588.8800167707711 K, F = -143.2719325254784, relative_change = 0.005120931483045546 Iter 30: T = 579.2631903773794 K, F = -60.24701337269824, relative_change = 0.0023259135904956877 Iter 35: T = 575.0675539650991 K, F = -25.257758763981677, relative_change = 0.0010091813678357495 Iter 40: T = 573.2800864284291 K, F = -10.574236078193408, relative_change = 0.000428784496119656 Iter 45: T = 572.5266148648667 K, F = -4.424246346317468, relative_change = 0.00018052813641077268 Iter 50: T = 572.210451861053 K, F = -1.850619961068058, relative_change = 7.571192404894399e-5 Iter 55: T = 572.0780435838892 K, F = -0.7740122564106207, relative_change = 3.1701021875503125e-5 Iter 60: T = 572.0226363998231 K, F = -0.323711829135487, relative_change = 1.3264297018607135e-5 Iter 65: T = 571.9994587702714 K, F = -0.13538201805221017, relative_change = 5.548434044649831e-6 Iter 70: T = 571.9897646143119 K, F = -0.056618703019874844, relative_change = 2.3206219858693106e-6 Iter 75: T = 571.9857102285497 K, F = -0.02367867483829067, relative_change = 9.705469191326658e-7 Iter 80: T = 571.9840146055751 K, F = -0.009902714580126981, relative_change = 4.0590045000889654e-7 Iter 85: T = 571.983305470475 K, F = -0.004141435245598235, relative_change = 1.6975348914743334e-7 Iter 90: T = 571.9830089007764 K, F = -0.0017319979835227484, relative_change = 7.099312417867613e-8 Iter 95: T = 571.9828848716239 K, F = -0.0007243422939277044, relative_change = 2.9690205183304176e-8 Iter 100: T = 571.9828330011227 K, F = -0.0003029286071277171, relative_change = 1.2416804127030817e-8 Iter 105: T = 571.9828113082547 K, F = -0.0001266883632168314, relative_change = 5.192856792847023e-9 Iter 110: T = 571.9828022360373 K, F = -5.298258664393485e-5, relative_change = 2.1717148974567832e-9 Iter 115: T = 571.9827984419276 K, F = -2.2157950899492906e-5, relative_change = 9.08237151738211e-10 Iter 120: T = 571.9827968551855 K, F = -9.26671958728642e-6, relative_change = 3.7983562438814986e-10 Iter 125: T = 571.982796191591 K, F = -3.875452871504592e-6, relative_change = 1.5885179814710773e-10 Iter 130: T = 571.9827959140679 K, F = -1.6207609393470435e-6, relative_change = 6.64337301247176e-11 Iter 135: T = 571.9827957980043 K, F = -6.778213398894728e-7, relative_change = 2.7783369476213232e-11 Iter 140: T = 571.9827957494653 K, F = -2.834734820211793e-7, relative_change = 1.1619357531837707e-11 Iter 145: T = 571.9827957291656 K, F = -1.1855255727111214e-7, relative_change = 4.859377108778551e-12 Iter 150: T = 571.9827957206759 K, F = -4.9579647998232446e-8, relative_change = 2.0322312070415418e-12 Iter 155: T = 571.9827957171256 K, F = -2.073512833655755e-8, relative_change = 8.499167821907728e-13 Iter 160: T = 571.9827957156407 K, F = -8.671427631501416e-9, relative_change = 3.554350737566011e-13 Converged in 163 iterations to T = 571.982795715206 K Iter 1: T = 963.5815344389549 K, F = -8297.982020988324, relative_change = 0.0364184655610451 Iter 2: T = 929.0420406486626 K, F = -7041.078200805182, relative_change = 0.035844910426187135 Iter 3: T = 896.3480583093825 K, F = -5973.6356465126, relative_change = 0.03519106876633151 Iter 5: T = 836.377982442541 K, F = -4297.320097495771, relative_change = 0.03361335243588227 Iter 10: T = 716.8105686523966 K, F = -1877.8414629124268, relative_change = 0.027874858314585884 Iter 15: T = 637.3059189426461 K, F = -813.0977166001195, relative_change = 0.019951983976444838 Iter 20: T = 590.7720137195912 K, F = -348.1162018148457, relative_change = 0.011950259365789015 Iter 25: T = 566.8472601294415 K, F = -147.5383484588002, relative_change = 0.006117601556625964 Iter 30: T = 555.692785704629 K, F = -62.10960622948395, relative_change = 0.0028255059792263713 Iter 35: T = 550.7827289521418 K, F = -26.052536357846176, relative_change = 0.0012358575432855608 Iter 40: T = 548.6822540931688 K, F = -10.9095723093663, relative_change = 0.0005269804875494567 Iter 45: T = 547.795242898161 K, F = -4.565018574730252, relative_change = 0.0002222127075387572 Iter 50: T = 547.4227594343879 K, F = -1.9095864903611002, relative_change = 9.32547695289016e-5 Iter 55: T = 547.2667137463314 K, F = -0.7986892681764328, relative_change = 3.905699792087313e-5 Iter 60: T = 547.201406442644 K, F = -0.33403494289411584, relative_change = 1.634404800095588e-5 Iter 65: T = 547.1740858939629 K, F = -0.13969977389148158, relative_change = 6.837017015251164e-6 Iter 70: T = 547.1626586697536 K, F = -0.058424528676577325, relative_change = 2.859626775087308e-6 Iter 75: T = 547.1578794154225 K, F = -0.024433908192367487, relative_change = 1.195983352974099e-6 Iter 80: T = 547.1558806299839 K, F = -0.010218564898597515, relative_change = 5.001838413094961e-7 Iter 85: T = 547.1550447063121 K, F = -0.004273528094833834, relative_change = 2.0918448598675242e-7 Iter 90: T = 547.1546951116974 K, F = -0.0017872408733857759, relative_change = 8.748373530692114e-8 Iter 95: T = 547.154548906818 K, F = -0.0007474455456471796, relative_change = 3.658679276547874e-8 Iter 100: T = 547.1544877621501 K, F = -0.00031259066558605997, relative_change = 1.5301042401623113e-8 Iter 105: T = 547.1544621907125 K, F = -0.00013072915131215335, relative_change = 6.399080179412078e-9 Iter 110: T = 547.1544514964306 K, F = -5.467249283669373e-5, relative_change = 2.676172026770351e-9 Iter 115: T = 547.1544470239539 K, F = -2.2864689142781947e-5, relative_change = 1.1192071312483243e-9 Iter 120: T = 547.1544451535109 K, F = -9.562286593073344e-6, relative_change = 4.680658220784933e-10 Iter 125: T = 547.1544443712692 K, F = -3.999062281850874e-6, relative_change = 1.9575070973023064e-10 Iter 130: T = 547.1544440441264 K, F = -1.6724561571757057e-6, relative_change = 8.186531182010475e-11 Iter 135: T = 547.1544439073112 K, F = -6.994407496241362e-7, relative_change = 3.423703209806588e-11 Iter 140: T = 547.1544438500936 K, F = -2.92513915811643e-7, relative_change = 1.4318308355842662e-11 Iter 145: T = 547.1544438261644 K, F = -1.223329746946611e-7, relative_change = 5.988095469817767e-12 Iter 150: T = 547.154443816157 K, F = -5.116118398373892e-8, relative_change = 2.5042966120530945e-12 Iter 155: T = 547.1544438119718 K, F = -2.13961203754387e-8, relative_change = 1.0473219655407736e-12 Iter 160: T = 547.1544438102214 K, F = -8.947733609598885e-9, relative_change = 4.3798397965831825e-13 Converged in 164 iterations to T = 547.1544438095897 K Iter 1: T = 969.3261128487297 K, F = -6989.074365816325, relative_change = 0.030673887151270212 Iter 2: T = 940.7932717931085 K, F = -5921.223093632777, relative_change = 0.029435749927098107 Iter 3: T = 914.3623744451437 K, F = -5014.837706778102, relative_change = 0.02809426697704662 Iter 5: T = 867.6204496123522 K, F = -3593.018489328468, relative_change = 0.025133215144879168 Iter 10: T = 783.411068975605 K, F = -1549.450838672156, relative_change = 0.01686454689103409 Iter 15: T = 736.5111418783166 K, F = -660.6988320504288, relative_change = 0.009484537635835318 Iter 20: T = 713.3629809381572 K, F = -279.2036514599115, relative_change = 0.004643739936702346 Iter 25: T = 702.8420591066666 K, F = -117.3459362623606, relative_change = 0.0020925128840375627 Iter 30: T = 698.27113865943 K, F = -49.1835059626545, relative_change = 0.0009045213013285803 Iter 35: T = 696.3274994733382 K, F = -20.588560643662234, relative_change = 0.0003836824141494183 Iter 40: T = 695.508875360403 K, F = -8.613821329404578, relative_change = 0.000161425093620648 Iter 45: T = 695.1654947411529 K, F = -3.6030075470385485, relative_change = 6.768009111127306e-5 Iter 50: T = 695.0217091169226 K, F = -1.5069267538676212, relative_change = 2.833449893103902e-5 Iter 55: T = 694.9615447429769 K, F = -0.6302333153835579, relative_change = 1.1855059383322367e-5 Iter 60: T = 694.9363777671944 K, F = -0.2635743447182455, relative_change = 4.958843359570112e-6 Iter 65: T = 694.9258516722181 K, F = -0.11023050644181054, relative_change = 2.074007757284947e-6 Iter 70: T = 694.9214493647586 K, F = -0.046099813521680355, relative_change = 8.674028427608281e-7 Iter 75: T = 694.9196082376736 K, F = -0.01927950992721128, relative_change = 3.6276313043346427e-7 Iter 80: T = 694.918838251174 K, F = -0.008062924332505772, relative_change = 1.5171273090423473e-7 Iter 85: T = 694.9185162327209 K, F = -0.003372011777177053, relative_change = 6.344822584546707e-8 Iter 90: T = 694.9183815606001 K, F = -0.001410215687963956, relative_change = 2.653483200262958e-8 Iter 95: T = 694.9183252390833 K, F = -0.0005897690583746007, relative_change = 1.1097188222077674e-8 Iter 100: T = 694.9183016847476 K, F = -0.0002466484662830837, relative_change = 4.64097744341236e-9 Iter 105: T = 694.9182918340422 K, F = -0.00010315133508487229, relative_change = 1.9409123393715902e-9 Iter 110: T = 694.9182877143594 K, F = -4.313911999809239e-5, relative_change = 8.117127384567136e-10 Iter 115: T = 694.9182859914589 K, F = -1.8041295124393564e-5, relative_change = 3.3946796421064434e-10 Iter 120: T = 694.9182852709214 K, F = -7.545085898397197e-6, relative_change = 1.419695728442719e-10 Iter 125: T = 694.9182849695839 K, F = -3.1554449108073257e-6, relative_change = 5.937336871684739e-11 Iter 130: T = 694.918284843561 K, F = -1.31964522265271e-6, relative_change = 2.4830660861573964e-11 Iter 135: T = 694.9182847908567 K, F = -5.518912137292276e-7, relative_change = 1.0384475562298663e-11 Iter 140: T = 694.9182847688152 K, F = -2.3080825695132035e-7, relative_change = 4.342926005387783e-12 Iter 145: T = 694.9182847595971 K, F = -9.652732002596309e-8, relative_change = 1.8162738800372954e-12 Iter 150: T = 694.918284755742 K, F = -4.036910050686515e-8, relative_change = 7.595916139952376e-13 Iter 155: T = 694.9182847541297 K, F = -1.6882267028783815e-8, relative_change = 3.1765950440865915e-13 Converged in 158 iterations to T = 694.9182847536576 K Iter 1: T = 966.4460747955372 K, F = -7645.2937758597045, relative_change = 0.033553925204462785 Iter 2: T = 934.9297920605763 K, F = -6482.239890240185, relative_change = 0.032610492770254684 Iter 3: T = 905.4214703020443 K, F = -5494.713886814429, relative_change = 0.03156207237069212 Iter 5: T = 852.3045276229095 K, F = -3944.588910855716, relative_change = 0.02914498759599236 Iter 10: T = 752.043746125394 K, F = -1711.3250919479697, relative_change = 0.021520868151112687 Iter 15: T = 691.8637646490698 K, F = -734.2399289821915, relative_change = 0.0133265602341249 Iter 20: T = 660.2169742543308 K, F = -311.7037404688514, relative_change = 0.006999168458925069 Iter 25: T = 645.2381292637864 K, F = -131.3484424661154, relative_change = 0.0032815507097263543 Iter 30: T = 638.5910616149674 K, F = -55.1225279715586, relative_change = 0.0014459869679937511 Iter 35: T = 635.7366504023094 K, F = -23.08782777295827, relative_change = 0.0006186395312595135 Iter 40: T = 634.5292309697207 K, F = -9.66183276089086, relative_change = 0.00026123837451049803 Iter 45: T = 634.0218333872322 K, F = -4.041791955121126, relative_change = 0.00010969935585189733 Iter 50: T = 633.809203133234 K, F = -1.6905183852966497, relative_change = 4.595611647767137e-5 Iter 55: T = 633.7202030483638 K, F = -0.707028733262104, relative_change = 1.9233167285737085e-5 Iter 60: T = 633.6829689120015 K, F = -0.2956937673401653, relative_change = 8.045951268898656e-6 Iter 65: T = 633.6673948346931 K, F = -0.12366369827891877, relative_change = 3.365334784517236e-6 Iter 70: T = 633.660881164249 K, F = -0.051717816238937564, relative_change = 1.407496997270298e-6 Iter 75: T = 633.658156998581 K, F = -0.02162904000586119, relative_change = 5.886449619003246e-7 Iter 80: T = 633.6570177075647 K, F = -0.009045528362434219, relative_change = 2.4618061069860116e-7 Iter 85: T = 633.6565412402869 K, F = -0.0037829489535642358, relative_change = 1.0295606627798228e-7 Iter 90: T = 633.6563419756018 K, F = -0.0015820745998930685, relative_change = 4.305752555218781e-8 Iter 95: T = 633.6562586406644 K, F = -0.000661642521066208, relative_change = 1.8007183477355425e-8 Iter 100: T = 633.6562237889867 K, F = -0.0002767068090221425, relative_change = 7.530821290378213e-9 Iter 105: T = 633.6562092135969 K, F = -0.00011572209240212628, relative_change = 3.149479753487914e-9 Iter 110: T = 633.6562031179943 K, F = -4.83963601295434e-5, relative_change = 1.3171500807448787e-9 Iter 115: T = 633.6562005687407 K, F = -2.0239936068255915e-5, relative_change = 5.508479122363878e-10 Iter 120: T = 633.6561995026121 K, F = -8.46458273523476e-6, relative_change = 2.3037117060459607e-10 Iter 125: T = 633.6561990567446 K, F = -3.5399897092003307e-6, relative_change = 9.634397837167401e-11 Iter 130: T = 633.6561988702774 K, F = -1.4804661229161908e-6, relative_change = 4.029220648731441e-11 Iter 135: T = 633.6561987922947 K, F = -6.191497498586607e-7, relative_change = 1.685071289125574e-11 Iter 140: T = 633.6561987596814 K, F = -2.5893632155105095e-7, relative_change = 7.0471830338942426e-12 Iter 145: T = 633.656198746042 K, F = -1.0828997554224173e-7, relative_change = 2.947208309321167e-12 Iter 150: T = 633.6561987403379 K, F = -4.528800445768866e-8, relative_change = 1.2325534509325775e-12 Iter 155: T = 633.6561987379524 K, F = -1.8940294554958825e-8, relative_change = 5.154770163835096e-13 Converged in 160 iterations to T = 633.6561987369547 K Iter 1: T = 966.4400431435442 K, F = -7646.668093503874, relative_change = 0.03355995685645571 Iter 2: T = 934.9174534951859 K, F = -6483.415716205569, relative_change = 0.032617222218798696 Iter 3: T = 905.4025569921062 K, F = -5495.7206035072195, relative_change = 0.03156952134409134 Iter 5: T = 852.271742160599 K, F = -3945.32836449085, relative_change = 0.029153869555560815 Iter 10: T = 751.9741747639442 K, F = -1711.6694705342948, relative_change = 0.021532170042008903 Iter 15: T = 691.7611927086263 K, F = -734.3990655655525, relative_change = 0.013336801180729708 Iter 20: T = 660.0917516527717 K, F = -311.775195637622, relative_change = 0.007005896008620108 Iter 25: T = 645.1004687982495 K, F = -131.37954834632913, relative_change = 0.003285083372489857 Iter 30: T = 638.4474659378051 K, F = -55.13579198765525, relative_change = 0.0014476268027156275 Iter 35: T = 635.5904211628684 K, F = -23.093423317047648, relative_change = 0.0006193572296157361 Iter 40: T = 634.3818718391443 K, F = -9.664181646660289, relative_change = 0.00026154439137085017 Iter 45: T = 633.873996576588 K, F = -4.042775842767196, relative_change = 0.00010982838401405564 Iter 50: T = 633.6611656388483 K, F = -1.6909301326439734, relative_change = 4.6010262592516635e-5 Iter 55: T = 633.5720814651866 K, F = -0.7072009789315051, relative_change = 1.9255844315907907e-5 Iter 60: T = 633.5348121337571 K, F = -0.29576581094235965, relative_change = 8.055440763193616e-6 Iter 65: T = 633.5192233325266 K, F = -0.12369382924505867, relative_change = 3.3693044001201143e-6 Iter 70: T = 633.5127035035006 K, F = -0.05173041762502062, relative_change = 1.4091573120980478e-6 Iter 75: T = 633.5099767620895 K, F = -0.021634310100811183, relative_change = 5.893393558561201e-7 Iter 80: T = 633.5088363938403 K, F = -0.009047732387680307, relative_change = 2.4647101989336623e-7 Iter 85: T = 633.508359476046 K, F = -0.0037838707048779008, relative_change = 1.0307751981065274e-7 Iter 90: T = 633.5081600229488 K, F = -0.001582460085655657, relative_change = 4.3108318981703516e-8 Iter 95: T = 633.5080766092151 K, F = -0.0006618037357637996, relative_change = 1.8028425922130218e-8 Iter 100: T = 633.5080417245839 K, F = -0.00027677422980432187, relative_change = 7.539705108481263e-9 Iter 105: T = 633.5080271354126 K, F = -0.00011575029002824921, relative_change = 3.1531951126310934e-9 Iter 110: T = 633.5080210340465 K, F = -4.840815408924115e-5, relative_change = 1.3187039259041237e-9 Iter 115: T = 633.5080184823822 K, F = -2.024486830098926e-5, relative_change = 5.51497745001085e-10 Iter 120: T = 633.5080174152458 K, F = -8.46664649717388e-6, relative_change = 2.3064296684666122e-10 Iter 125: T = 633.5080169689567 K, F = -3.540853294625723e-6, relative_change = 9.64576603089511e-11 Iter 130: T = 633.5080167823131 K, F = -1.4808271304733722e-6, relative_change = 4.033974543498632e-11 Iter 135: T = 633.5080167042566 K, F = -6.192998086573809e-7, relative_change = 1.6870569244529945e-11 Iter 140: T = 633.5080166716124 K, F = -2.5899840444543187e-7, relative_change = 7.055468864045347e-12 Iter 145: T = 633.5080166579603 K, F = -1.0831673791233953e-7, relative_change = 2.950695289070381e-12 Iter 150: T = 633.5080166522507 K, F = -4.5299094364459336e-8, relative_change = 1.2340089530232532e-12 Iter 155: T = 633.5080166498628 K, F = -1.8944244561946988e-8, relative_change = 5.160669926431362e-13 Converged in 160 iterations to T = 633.5080166488642 K Iter 1: T = 976.483413323391 K, F = -5358.276644314371, relative_change = 0.023516586676609025 Iter 2: T = 955.1275457039054 K, F = -4530.718898697992, relative_change = 0.021870179593529795 Iter 3: T = 935.8403698076244 K, F = -3829.236754443951, relative_change = 0.020193298772539177 Iter 5: T = 903.049633175349 K, F = -2731.478446168097, relative_change = 0.01684141427638503 Iter 10: T = 849.0733875576293 K, F = -1164.6916471095965, relative_change = 0.009467256595603463 Iter 15: T = 822.4401300817948 K, F = -492.1754936626422, relative_change = 0.004633881242798305 Iter 20: T = 810.3372584000939 K, F = -206.85324998150773, relative_change = 0.0020877344394650524 Iter 25: T = 805.0794867471288 K, F = -86.69850563480476, relative_change = 0.0009023876715251494 Iter 30: T = 802.8438713129467 K, F = -36.29252291472056, relative_change = 0.00038276466777336873 Iter 35: T = 801.9022879246008 K, F = -15.18401501954735, relative_change = 0.00016103669145208074 Iter 40: T = 801.5073335048868 K, F = -6.351199647604421, relative_change = 6.751684331899173e-5 Iter 45: T = 801.3419525941099 K, F = -2.656333895467834, relative_change = 2.8266083707999642e-5 Iter 50: T = 801.2727521670678 K, F = -1.1109431805549246, relative_change = 1.1826422242966233e-5 Iter 55: T = 801.243805392565 K, F = -0.46461541326039535, relative_change = 4.946862575233267e-6 Iter 60: T = 801.2316983983039 K, F = -0.1943087129072847, relative_change = 2.068996481997093e-6 Iter 65: T = 801.2266349149879 K, F = -0.08126239889417619, relative_change = 8.653069332041946e-7 Iter 70: T = 801.2245172719091 K, F = -0.03398493623319765, relative_change = 3.618865725356851e-7 Iter 75: T = 801.2236316423571 K, F = -0.014212911538050044, relative_change = 1.5134613983655304e-7 Iter 80: T = 801.2232612604652 K, F = -0.0059440102765593306, relative_change = 6.329491238402793e-8 Iter 85: T = 801.2231063621534 K, F = -0.002485856247936624, relative_change = 2.6470714369946577e-8 Iter 90: T = 801.2230415817978 K, F = -0.001039614799419164, relative_change = 1.1070373448498694e-8 Iter 95: T = 801.2230144898739 K, F = -0.0004347793280599088, relative_change = 4.629763165057036e-9 Iter 100: T = 801.2230031597069 K, F = -0.00018182990852388947, relative_change = 1.936222389472566e-9 Iter 105: T = 801.2229984212955 K, F = -7.604343796763224e-5, relative_change = 8.097513357762307e-10 Iter 110: T = 801.2229964396353 K, F = -3.180227391941237e-5, relative_change = 3.3864768319893053e-10 Iter 115: T = 801.2229956108813 K, F = -1.3300090625500971e-5, relative_change = 1.416265047668242e-10 Iter 120: T = 801.2229952642865 K, F = -5.562255709135044e-6, relative_change = 5.922988485628766e-11 Iter 125: T = 801.2229951193364 K, F = -2.326200747804208e-6, relative_change = 2.477063439162854e-11 Iter 130: T = 801.2229950587165 K, F = -9.728443441936463e-7, relative_change = 1.0359368855595264e-11 Iter 135: T = 801.2229950333646 K, F = -4.0685477276092286e-7, relative_change = 4.332408043979755e-12 Iter 140: T = 801.2229950227621 K, F = -1.7015131881237266e-7, relative_change = 1.81186259008471e-12 Iter 145: T = 801.2229950183281 K, F = -7.116137035190206e-8, relative_change = 7.577644751925152e-13 Iter 150: T = 801.2229950164736 K, F = -2.9762637909769296e-8, relative_change = 3.169285468332313e-13 Converged in 153 iterations to T = 801.2229950159307 K Iter 1: T = 965.1697268258081 K, F = -7936.110874882858, relative_change = 0.034830273174191975 Iter 2: T = 932.3133335521052 K, F = -6731.137220144807, relative_change = 0.03404208851614013 Iter 3: T = 901.4013499002997 K, F = -5707.904280203857, relative_change = 0.03315621748541458 Iter 5: T = 845.2976263898016 K, F = -4101.366999733689, relative_change = 0.03107259238367322 Iter 10: T = 736.9111160116291 K, F = -1784.7579390989997, relative_change = 0.024090508060643178 Iter 15: T = 669.1127988477451 K, F = -768.5029470365789, relative_change = 0.01578578762398543 Iter 20: T = 632.0058855207693 K, F = -327.24655079411303, relative_change = 0.008690929899224334 Iter 25: T = 613.9331168078345 K, F = -138.1637426843328, relative_change = 0.004195980673322842 Iter 30: T = 605.7829884828919 K, F = -58.040155521154695, relative_change = 0.001876806949594264 Iter 35: T = 602.2557954046318 K, F = -24.320946395492093, relative_change = 0.0008084846980708203 Iter 40: T = 600.7585971010145 K, F = -10.179893191644862, relative_change = 0.00034242667340341393 Iter 45: T = 600.1284839204096 K, F = -4.25887018672765, relative_change = 0.0001439746985243819 Iter 50: T = 599.8642613348452 K, F = -1.7813769451355523, relative_change = 6.0347282262304536e-5 Iter 55: T = 599.7536369747862 K, F = -0.7450398243110821, relative_change = 2.5261704138316323e-5 Iter 60: T = 599.7073509344544 K, F = -0.3115927285338941, relative_change = 1.0568906001585711e-5 Iter 65: T = 599.6879897765219 K, F = -0.13031323078189444, relative_change = 4.420770655662694e-6 Iter 70: T = 599.6798920471555 K, F = -0.054498799604081216, relative_change = 1.848946432532171e-6 Iter 75: T = 599.676505364244 K, F = -0.0227920926105753, relative_change = 7.732737548231576e-7 Iter 80: T = 599.6750889927533 K, F = -0.0095319329779186, relative_change = 3.2339621526640756e-7 Iter 85: T = 599.6744966457388 K, F = -0.003986369544442925, relative_change = 1.3524884081921956e-7 Iter 90: T = 599.6742489185237 K, F = -0.0016671475842728323, relative_change = 5.656279960958099e-8 Iter 95: T = 599.6741453159356 K, F = -0.0006972210697437364, relative_change = 2.3655259115144592e-8 Iter 100: T = 599.6741019880772 K, F = -0.00029158618579150364, relative_change = 9.892915534683596e-9 Iter 105: T = 599.6740838678459 K, F = -0.00012194482635852211, relative_change = 4.137336058406079e-9 Iter 110: T = 599.6740762897482 K, F = -5.099878285746984e-5, relative_change = 1.7302834588920537e-9 Iter 115: T = 599.6740731204973 K, F = -2.1328300702005976e-5, relative_change = 7.236252469524697e-10 Iter 120: T = 599.6740717950785 K, F = -8.91975013361801e-6, relative_change = 3.0262872562118847e-10 Iter 125: T = 599.6740712407726 K, F = -3.730346357644354e-6, relative_change = 1.2656295887177528e-10 Iter 130: T = 599.6740710089553 K, F = -1.5600753345834661e-6, relative_change = 5.293013887746214e-11 Iter 135: T = 599.6740709120065 K, F = -6.524429637666529e-7, relative_change = 2.213604429403595e-11 Iter 140: T = 599.6740708714613 K, F = -2.7285905096485763e-7, relative_change = 9.257544912831933e-12 Iter 145: T = 599.6740708545047 K, F = -1.1411238953762393e-7, relative_change = 3.8715980564390294e-12 Iter 150: T = 599.6740708474134 K, F = -4.772361467120234e-8, relative_change = 1.61916383108212e-12 Iter 155: T = 599.6740708444478 K, F = -1.995903620155559e-8, relative_change = 6.771689391977102e-13 Iter 160: T = 599.6740708432076 K, F = -8.348182589656972e-9, relative_change = 2.8323661981643516e-13 Converged in 162 iterations to T = 599.6740708429451 K Iter 1: T = 964.5306680038954 K, F = -8081.721035357538, relative_change = 0.03546933199610465 Iter 2: T = 930.9991103448232 K, F = -6855.820809251573, relative_change = 0.03476463607784091 Iter 3: T = 899.3748575329863 K, F = -5814.768995588162, relative_change = 0.03396808059260534 Iter 5: T = 841.7358966111325 K, F = -4180.0971647230435, relative_change = 0.032075323914481445 Iter 10: T = 729.0038000484816 K, F = -1821.9718328547485, relative_change = 0.02552638432363851 Iter 15: T = 656.8379795969302 K, F = -786.1542025815838, relative_change = 0.017283885681040684 Iter 20: T = 616.3734983798988 K, F = -335.4030458669601, relative_change = 0.009801914118150417 Iter 25: T = 596.295827375321 K, F = -141.7897062220737, relative_change = 0.0048262687129286075 Iter 30: T = 587.1414605105158 K, F = -59.60441627786329, relative_change = 0.0021813519327351805 Iter 35: T = 583.1579167341803 K, F = -24.984511226197316, relative_change = 0.0009442651476258666 Iter 40: T = 581.4628139252653 K, F = -10.459127320367818, relative_change = 0.0004007919305462942 Iter 45: T = 580.7486443310146 K, F = -4.375957190312401, relative_change = 0.00016866865144509298 Iter 50: T = 580.449038296055 K, F = -1.8303984803834525, relative_change = 7.07250612747337e-5 Iter 55: T = 580.3235755923412 K, F = -0.7655507582636195, relative_change = 2.961069067776883e-5 Iter 60: T = 580.2710768609938 K, F = -0.32017231771626414, relative_change = 1.2389259935062923e-5 Iter 65: T = 580.249116234685 K, F = -0.13390161000894243, relative_change = 5.182336782675783e-6 Iter 70: T = 580.2399311584035 K, F = -0.05599955383467006, relative_change = 2.1674901388443013e-6 Iter 75: T = 580.2360896958544 K, F = -0.023419734905839817, relative_change = 9.065008736450566e-7 Iter 80: T = 580.234483123411 K, F = -0.009794422046610518, relative_change = 3.791148455742559e-7 Iter 85: T = 580.2338112309188 K, F = -0.0040961458819882, relative_change = 1.5855129248905737e-7 Iter 90: T = 580.2335302366307 K, F = -0.0017130574076211214, relative_change = 6.630820779600865e-8 Iter 95: T = 580.2334127213197 K, F = -0.0007164211157000833, relative_change = 2.7730913046711026e-8 Iter 100: T = 580.233363574988 K, F = -0.0002996158748412303, relative_change = 1.1597404014257584e-8 Iter 105: T = 580.2333430214007 K, F = -0.00012530293887419441, relative_change = 4.850173750445465e-9 Iter 110: T = 580.2333344256443 K, F = -5.240318609112116e-5, relative_change = 2.0284007528360644e-9 Iter 115: T = 580.2333308307963 K, F = -2.191563863551682e-5, relative_change = 8.483014590198331e-10 Iter 120: T = 580.2333293273878 K, F = -9.165381872011658e-6, relative_change = 3.547698079768196e-10 Iter 125: T = 580.2333286986443 K, F = -3.833072151349093e-6, relative_change = 1.4836897110238742e-10 Iter 130: T = 580.2333284356963 K, F = -1.6030360209251526e-6, relative_change = 6.204965525998996e-11 Iter 135: T = 580.2333283257284 K, F = -6.704094902554303e-7, relative_change = 2.59499332815379e-11 Iter 140: T = 580.2333282797384 K, F = -2.8037301003092097e-7, relative_change = 1.0852562519990273e-11 Iter 145: T = 580.2333282605049 K, F = -1.1725510246085591e-7, relative_change = 4.538662014238769e-12 Iter 150: T = 580.2333282524611 K, F = -4.903721173565856e-8, relative_change = 1.8981121122452315e-12 Iter 155: T = 580.2333282490972 K, F = -2.05077854142921e-8, relative_change = 7.938068767266869e-13 Iter 160: T = 580.2333282476905 K, F = -8.576909460433768e-9, relative_change = 3.319914643776327e-13 Converged in 163 iterations to T = 580.2333282472786 K Iter 1: T = 964.3293571203294 K, F = -8127.589911674136, relative_change = 0.03567064287967064 Iter 2: T = 930.5845346438974 K, F = -6895.106182843659, relative_change = 0.03499304695773278 Iter 3: T = 898.7345835567739 K, F = -5848.449492529711, relative_change = 0.03422574726036185 Iter 5: T = 840.6063445890206 K, F = -4204.93071065407, relative_change = 0.03239659383675532 Iter 10: T = 726.4638301828514 K, F = -1833.7603445083805, relative_change = 0.02600188012104974 Iter 15: T = 652.8324733263267 K, F = -791.7922634738155, relative_change = 0.017801398971245358 Iter 20: T = 611.2006018969954 K, F = -338.0346563964563, relative_change = 0.010201002347582712 Iter 25: T = 590.4060840625483 K, F = -142.9688872921505, relative_change = 0.00505874552927796 Iter 30: T = 580.8865199978112 K, F = -60.115465366562226, relative_change = 0.0022952877022769788 Iter 35: T = 576.7355937714623 K, F = -25.201786388032033, relative_change = 0.000995403558742495 Iter 40: T = 574.9676180031845 K, F = -10.55065041518607, relative_change = 0.00042283856925019384 Iter 45: T = 574.2224442170092 K, F = -4.414350747952404, relative_change = 0.00017800818266920144 Iter 50: T = 573.9097775596152 K, F = -1.8464758848208334, relative_change = 7.465213976289423e-5 Iter 55: T = 573.7788361065506 K, F = -0.7722781671769033, relative_change = 3.125676745953176e-5 Iter 60: T = 573.7240431753157 K, F = -0.3229864393533859, relative_change = 1.3078322154072825e-5 Iter 65: T = 573.7011225754421 K, F = -0.13507862110939145, relative_change = 5.47062520546306e-6 Iter 70: T = 573.691535937183 K, F = -0.056491813498870946, relative_change = 2.2880758130133395e-6 Iter 75: T = 573.6875265209492 K, F = -0.02362560719909318, relative_change = 9.569347436039699e-7 Iter 80: T = 573.685849705528 K, F = -0.009880520897318223, relative_change = 4.002075046714026e-7 Iter 85: T = 573.6851484361041 K, F = -0.004132153553537743, relative_change = 1.673726014970881e-7 Iter 90: T = 573.6848551559485 K, F = -0.0017281162639480319, relative_change = 6.999740329383639e-8 Iter 95: T = 573.6847325025262 K, F = -0.0007227189113947485, relative_change = 2.927378189603911e-8 Iter 100: T = 573.6846812073725 K, F = -0.00030224968865477653, relative_change = 1.2242650760639344e-8 Iter 105: T = 573.6846597551217 K, F = -0.00012640443052103212, relative_change = 5.120023712372043e-9 Iter 110: T = 573.6846507835335 K, F = -5.286384240271724e-5, relative_change = 2.1412552207643214e-9 Iter 115: T = 573.684647031508 K, F = -2.210829045856677e-5, relative_change = 8.954985428409338e-10 Iter 120: T = 573.6846454623661 K, F = -9.24595108403592e-6, relative_change = 3.7450818941738576e-10 Iter 125: T = 573.6846448061323 K, F = -3.8667671602987674e-6, relative_change = 1.5662379811731244e-10 Iter 130: T = 573.6846445316874 K, F = -1.6171283912513879e-6, relative_change = 6.550195053338182e-11 Iter 135: T = 573.6846444169113 K, F = -6.763028780887304e-7, relative_change = 2.7393717127226203e-11 Iter 140: T = 573.6846443689104 K, F = -2.828371233887239e-7, relative_change = 1.1456346564976398e-11 Iter 145: T = 573.6846443488361 K, F = -1.1828614837616769e-7, relative_change = 4.791192519649911e-12 Iter 150: T = 573.6846443404407 K, F = -4.946914416992243e-8, relative_change = 2.0037527366533364e-12 Iter 155: T = 573.6846443369295 K, F = -2.0688143365088507e-8, relative_change = 8.379753598099402e-13 Iter 160: T = 573.6846443354613 K, F = -8.652053407054439e-9, relative_change = 3.5045230686067377e-13 Converged in 163 iterations to T = 573.6846443350313 K Iter 1: T = 980.1709997087567 K, F = -4518.056578608558, relative_change = 0.01982900029124329 Iter 2: T = 962.3844453030645 K, F = -3816.3829832320152, relative_change = 0.01814637895936239 Iter 3: T = 946.5192291635398 K, F = -3222.180067082561, relative_change = 0.016485320618963805 Iter 5: T = 920.0289406538882 K, F = -2293.766489829397, relative_change = 0.013316515273975663 Iter 10: T = 877.9808835133746 K, F = -973.7521230639884, relative_change = 0.006992673669301804 Iter 15: T = 858.0809931508347 K, F = -410.32542624156656, relative_change = 0.0032781654762325998 Iter 20: T = 849.2506306255437 K, F = -172.1992165766864, relative_change = 0.0014444206633873091 Iter 25: T = 845.458759150407 K, F = -72.12477252923466, relative_change = 0.0006179549627222109 Iter 30: T = 843.8548114660933 K, F = -30.182875412302778, relative_change = 0.00026094665403673186 Iter 35: T = 843.1807829442625 K, F = -12.626265821094968, relative_change = 0.00010957638569557888 Iter 40: T = 842.8983248484197 K, F = -5.281056576274015, relative_change = 4.590451787052403e-5 Iter 45: T = 842.7800972121076 K, F = -2.2087062694822706, relative_change = 1.9211558109074776e-5 Iter 50: T = 842.73063543561 K, F = -0.9237257744812186, relative_change = 8.036908793914725e-6 Iter 55: T = 842.7099468555289 K, F = -0.3863163755652428, relative_change = 3.3615521930547736e-6 Iter 60: T = 842.7012941063981 K, F = -0.16156268595122492, relative_change = 1.405914911289531e-6 Iter 65: T = 842.6976753292925 K, F = -0.06756754338493254, relative_change = 5.87983286467217e-7 Iter 70: T = 842.6961618970337 K, F = -0.028257570817915134, relative_change = 2.4590388520739126e-7 Iter 75: T = 842.695528958711 K, F = -0.011817656598942294, relative_change = 1.0284033552623155e-7 Iter 80: T = 842.6952642558422 K, F = -0.00494228564955157, relative_change = 4.3009125402441654e-8 Iter 85: T = 842.6951535538531 K, F = -0.002066922972301377, relative_change = 1.7986941916972278e-8 Iter 90: T = 842.6951072569439 K, F = -0.0008644118875620332, relative_change = 7.522356028445501e-9 Iter 95: T = 842.6950878950208 K, F = -0.0003615073776943589, relative_change = 3.1459394977643043e-9 Iter 100: T = 842.6950797976328 K, F = -0.0001511867014374335, relative_change = 1.3156695179568703e-9 Iter 105: T = 842.6950764112084 K, F = -6.32280842209898e-5, relative_change = 5.502287164751977e-10 Iter 110: T = 842.6950749949654 K, F = -2.644273858742885e-5, relative_change = 2.3011221055855168e-10 Iter 115: T = 842.6950744026756 K, F = -1.1058669229901952e-5, relative_change = 9.623567628711108e-11 Iter 120: T = 842.695074154973 K, F = -4.624869388791808e-6, relative_change = 4.024692526198185e-11 Iter 125: T = 842.6950740513806 K, F = -1.934173214923618e-6, relative_change = 1.683172395289132e-11 Iter 130: T = 842.6950740080572 K, F = -8.088948924012129e-7, relative_change = 7.039232801944954e-12 Iter 135: T = 842.6950739899388 K, F = -3.3828951595538115e-7, relative_change = 2.943891326154953e-12 Iter 140: T = 842.6950739823615 K, F = -1.4147734628267017e-7, relative_change = 1.2311759984951417e-12 Iter 145: T = 842.6950739791924 K, F = -5.916724155063946e-8, relative_change = 5.148901192285017e-13 Converged in 150 iterations to T = 842.6950739778672 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015691242409827263 Iteration 10: d = 1.1299978648423862e-5 Iteration 20: d = 1.243538261464643e-7 Iteration 30: d = 1.7240907865816672e-9 Iteration 40: d = 2.4458828888052883e-11 Iteration 50: d = 3.483651964608038e-13 Iteration 60: d = 5.001832854256833e-15 Converged after 62 iterations. d = 2.1055829498990566e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.61242887352 Iteration 2: convergence error = 4823.009156578562 Iteration 3: convergence error = 1096.7862630363452 Iteration 4: convergence error = 321.66091001682776 Iteration 5: convergence error = 95.47705002628118 Iteration 6: convergence error = 28.477041459528436 Iteration 7: convergence error = 8.50033614187214 Iteration 8: convergence error = 2.5427414305368075 Iteration 9: convergence error = 0.7602947911923366 Iteration 10: convergence error = 0.22702539229203467 Iteration 11: convergence error = 0.06773813291397346 Iteration 12: convergence error = 0.020202401667120284 Iteration 13: convergence error = 0.006023729848493531 Iteration 14: convergence error = 0.001795836613382562 Iteration 15: convergence error = 0.0005353442725208879 Iteration 16: convergence error = 0.0001595803364580206 Iteration 17: convergence error = 4.7567893716404797e-5 Iteration 18: convergence error = 1.417887028765108e-5 Iteration 19: convergence error = 4.226359351378051e-6 Iteration 20: convergence error = 1.2597624845511746e-6 Iteration 21: convergence error = 3.7549125408986583e-7 Iteration 22: convergence error = 1.1178508430020884e-7 Iteration 23: convergence error = 3.240529622416943e-8 Iteration 24: convergence error = 9.350515028927475e-9 Iteration 25: convergence error = 2.6830093702301383e-9 Iteration 26: convergence error = 7.696598913753405e-10 Iteration 27: convergence error = 2.2077983885537833e-10 Iteration 28: convergence error = 6.230038707144558e-11 Iteration 29: convergence error = 1.7962520360015333e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 88%|████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016868401359148774 Iteration 10: d = 2.1989758570818338e-5 Iteration 20: d = 2.559205203578698e-7 Iteration 30: d = 3.1954102582096765e-9 Iteration 40: d = 4.072896596838719e-11 Iteration 50: d = 5.241540280180675e-13 Iteration 60: d = 6.768085264165378e-15 Converged after 63 iterations. d = 1.8021629709796614e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12272.828421510265 Iteration 2: convergence error = 8299.070946715943 Iteration 3: convergence error = 1951.009256172878 Iteration 4: convergence error = 480.08997470859845 Iteration 5: convergence error = 122.41587097146771 Iteration 6: convergence error = 32.70377936934278 Iteration 7: convergence error = 8.916714037650763 Iteration 8: convergence error = 2.4453362819410813 Iteration 9: convergence error = 0.6714623660129746 Iteration 10: convergence error = 0.1844049615961012 Iteration 11: convergence error = 0.05064114554670596 Iteration 12: convergence error = 0.013906303969633882 Iteration 13: convergence error = 0.003818617292381532 Iteration 14: convergence error = 0.0010485605735084391 Iteration 15: convergence error = 0.0002879238393234118 Iteration 16: convergence error = 7.906062569418282e-5 Iteration 17: convergence error = 2.1709122165702865e-5 Iteration 18: convergence error = 5.961068609394715e-6 Iteration 19: convergence error = 1.6368378510378534e-6 Iteration 20: convergence error = 4.49454773843172e-7 Iteration 21: convergence error = 1.2427130968717393e-7 Iteration 22: convergence error = 3.347167876199819e-8 Iteration 23: convergence error = 8.95965968084056e-9 Iteration 24: convergence error = 2.3958364181453362e-9 Iteration 25: convergence error = 6.405116437235847e-10 Iteration 26: convergence error = 1.7053025658242404e-10 Iteration 27: convergence error = 4.638422979041934e-11 Iteration 28: convergence error = 1.2278178473934531e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▌ | ETA: 0:00:01 Bin 1 progress: 94%|███████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016868401359148774 Iteration 10: d = 2.1989758570818338e-5 Iteration 20: d = 2.559205203578698e-7 Iteration 30: d = 3.1954102582096765e-9 Iteration 40: d = 4.072896596838719e-11 Iteration 50: d = 5.241540280180675e-13 Iteration 60: d = 6.768085264165378e-15 Converged after 63 iterations. d = 1.8021629709796614e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10995.523755241184 Iteration 2: convergence error = 5729.693678669099 Iteration 3: convergence error = 2015.1658338926736 Iteration 4: convergence error = 894.4099300371317 Iteration 5: convergence error = 410.6823632041651 Iteration 6: convergence error = 193.79926739643315 Iteration 7: convergence error = 91.54978979869747 Iteration 8: convergence error = 43.27307745793905 Iteration 9: convergence error = 20.4554338944381 Iteration 10: convergence error = 9.66769624055496 Iteration 11: convergence error = 4.56809093536458 Iteration 12: convergence error = 2.158012268665061 Iteration 13: convergence error = 1.0192973279540638 Iteration 14: convergence error = 0.4813883604556395 Iteration 15: convergence error = 0.22732856797983914 Iteration 16: convergence error = 0.10726048850847292 Iteration 17: convergence error = 0.050176592902971606 Iteration 18: convergence error = 0.02293020517754485 Iteration 19: convergence error = 0.010440410859246185 Iteration 20: convergence error = 0.004743581221191562 Iteration 21: convergence error = 0.0021525929400922905 Iteration 22: convergence error = 0.0009761277774487098 Iteration 23: convergence error = 0.0004424546782502148 Iteration 24: convergence error = 0.000200503831365495 Iteration 25: convergence error = 9.084726889341255e-5 Iteration 26: convergence error = 4.115874116905616e-5 Iteration 27: convergence error = 1.8646123407961568e-5 Iteration 28: convergence error = 8.446961146546528e-6 Iteration 29: convergence error = 3.826526153716259e-6 Iteration 30: convergence error = 1.7334164112980943e-6 Iteration 31: convergence error = 7.852236194594298e-7 Iteration 32: convergence error = 3.557070158421993e-7 Iteration 33: convergence error = 1.6113244782900438e-7 Iteration 34: convergence error = 7.298740456462838e-8 Iteration 35: convergence error = 3.306513463030569e-8 Iteration 36: convergence error = 1.4975739759393036e-8 Iteration 37: convergence error = 6.782556738471612e-9 Iteration 38: convergence error = 3.078639565501362e-9 Iteration 39: convergence error = 1.3910721463616937e-9 Iteration 40: convergence error = 6.298250809777528e-10 Iteration 41: convergence error = 2.892193151637912e-10 Iteration 42: convergence error = 1.3278622645884752e-10 Iteration 43: convergence error = 6.002665031701326e-11 Iteration 44: convergence error = 2.773958840407431e-11 Iteration 45: convergence error = 1.2732925824820995e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016868401359148774 Iteration 10: d = 2.1989758570818338e-5 Iteration 20: d = 2.559205203578698e-7 Iteration 30: d = 3.1954102582096765e-9 Iteration 40: d = 4.072896596838719e-11 Iteration 50: d = 5.241540280180675e-13 Iteration 60: d = 6.768085264165378e-15 Converged after 63 iterations. d = 1.8021629709796614e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.986324144273 Iteration 2: convergence error = 7346.422446390459 Iteration 3: convergence error = 1731.387432091211 Iteration 4: convergence error = 505.68687226076054 Iteration 5: convergence error = 157.19707701614698 Iteration 6: convergence error = 48.87368468976365 Iteration 7: convergence error = 15.170960381678015 Iteration 8: convergence error = 4.701605281501088 Iteration 9: convergence error = 1.4554029603395975 Iteration 10: convergence error = 0.45020865426340606 Iteration 11: convergence error = 0.1392082651286728 Iteration 12: convergence error = 0.04303418562813022 Iteration 13: convergence error = 0.013301602887622721 Iteration 14: convergence error = 0.004111132274829288 Iteration 15: convergence error = 0.0012705749363703944 Iteration 16: convergence error = 0.0003926707418031583 Iteration 17: convergence error = 0.00012135307679272955 Iteration 18: convergence error = 3.750330415641656e-5 Iteration 19: convergence error = 1.1590077065193327e-5 Iteration 20: convergence error = 3.581812052289024e-6 Iteration 21: convergence error = 1.1069228094129357e-6 Iteration 22: convergence error = 3.419272616156377e-7 Iteration 23: convergence error = 1.0445819498272613e-7 Iteration 24: convergence error = 3.112336344202049e-8 Iteration 25: convergence error = 9.243649401469156e-9 Iteration 26: convergence error = 2.7353053155820817e-9 Iteration 27: convergence error = 8.235474524553865e-10 Iteration 28: convergence error = 2.446540747769177e-10 Iteration 29: convergence error = 7.366907084360719e-11 Iteration 30: convergence error = 2.3646862246096134e-11 Iteration 31: convergence error = 8.185452315956354e-12 Converged after 31 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 88%|████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016868401359148774 Iteration 10: d = 2.1989758570818338e-5 Iteration 20: d = 2.559205203578698e-7 Iteration 30: d = 3.1954102582096765e-9 Iteration 40: d = 4.072896596838719e-11 Iteration 50: d = 5.241540280180675e-13 Iteration 60: d = 6.768085264165378e-15 Converged after 63 iterations. d = 1.8021629709796614e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.806811490483 Iteration 2: convergence error = 5516.370187189612 Iteration 3: convergence error = 936.8424953582319 Iteration 4: convergence error = 170.4712299588366 Iteration 5: convergence error = 30.952340262363805 Iteration 6: convergence error = 5.636313466357478 Iteration 7: convergence error = 1.032580912852609 Iteration 8: convergence error = 0.18916045768264667 Iteration 9: convergence error = 0.03461197829574303 Iteration 10: convergence error = 0.006329507838017889 Iteration 11: convergence error = 0.0011571408076633816 Iteration 12: convergence error = 0.00021151321016077418 Iteration 13: convergence error = 3.8659395613649394e-5 Iteration 14: convergence error = 7.065705176501069e-6 Iteration 15: convergence error = 1.2913437785755377e-6 Iteration 16: convergence error = 2.3604070520377718e-7 Iteration 17: convergence error = 4.3114141590194777e-8 Iteration 18: convergence error = 7.878952601458877e-9 Iteration 19: convergence error = 1.4470060705207288e-9 Iteration 20: convergence error = 2.610249794088304e-10 Iteration 21: convergence error = 4.8203219193965197e-11 Iteration 22: convergence error = 8.640199666842818e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016868401359148774 Iteration 10: d = 2.1989758570818338e-5 Iteration 20: d = 2.559205203578698e-7 Iteration 30: d = 3.1954102582096765e-9 Iteration 40: d = 4.072896596838719e-11 Iteration 50: d = 5.241540280180675e-13 Iteration 60: d = 6.768085264165378e-15 Converged after 63 iterations. d = 1.8021629709796614e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.5014300950347 Iteration 2: convergence error = 2714.121492875275 Iteration 3: convergence error = 204.61886522345628 Iteration 4: convergence error = 19.383608996419273 Iteration 5: convergence error = 1.6039992332773503 Iteration 6: convergence error = 0.13079470847503882 Iteration 7: convergence error = 0.01067909728986822 Iteration 8: convergence error = 0.0008752397833215017 Iteration 9: convergence error = 7.192639538684623e-5 Iteration 10: convergence error = 5.908353480081537e-6 Iteration 11: convergence error = 4.852327890036189e-7 Iteration 12: convergence error = 3.984627696142568e-8 Iteration 13: convergence error = 3.273056425820596e-9 Iteration 14: convergence error = 2.6765323470874396e-10 Iteration 15: convergence error = 2.1600499167107046e-11 Converged after 15 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346352 Iteration 2: convergence error = 858.4060420534064 Iteration 3: convergence error = 199.12106737711963 Iteration 4: convergence error = 59.265629268140174 Iteration 5: convergence error = 17.985482911037252 Iteration 6: convergence error = 5.463033078096487 Iteration 7: convergence error = 1.660989611064224 Iteration 8: convergence error = 0.5052487627317532 Iteration 9: convergence error = 0.15371874094239502 Iteration 10: convergence error = 0.04677131697644654 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.004330236512828378 Iteration 13: convergence error = 0.0013175920926187246 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198903971238906 Iteration 16: convergence error = 3.711853855747904e-5 Iteration 17: convergence error = 1.1294342471046548e-5 Iteration 18: convergence error = 3.4366166801191866e-6 Iteration 19: convergence error = 1.045686303768889e-6 Iteration 20: convergence error = 3.1818046863918426e-7 Iteration 21: convergence error = 9.68161657510791e-8 Iteration 22: convergence error = 2.946035237982869e-8 Iteration 23: convergence error = 8.963752406998537e-9 Iteration 24: convergence error = 2.7299620342091657e-9 Iteration 25: convergence error = 8.292317943414673e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.696598913753405e-11 Iteration 28: convergence error = 2.3646862246096134e-11 Iteration 29: convergence error = 9.094947017729282e-12 Converged after 29 iterations Energy conservation errors by band: [1.5428857128674637e-25, 8.401053096241687e-26, 1.1490863489811346e-25, 9.400697635337753e-26, 1.2440020930973268e-25, -3.2610768469290563e-19, 2.7533531010703882e-14, 1.7053025658242404e-12, 5.6701310313655995e-12, 2.6432189770275727e-12, 7.176481631177012e-13, 8.526512829121202e-14, 4.9960036108132044e-15, 2.636779683484747e-16, 2.0166160408230382e-17, 1.0062751413381088e-18, 3.560185356428231e-20, 1.2755125045567687e-21, 4.105530024647957e-23, 5.6284752489113644e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 89%|█████████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015691242409827263 Iteration 10: d = 1.1299978648423862e-5 Iteration 20: d = 1.243538261464643e-7 Iteration 30: d = 1.7240907865816672e-9 Iteration 40: d = 2.4458828888052883e-11 Iteration 50: d = 3.483651964608038e-13 Iteration 60: d = 5.001832854256833e-15 Converged after 62 iterations. d = 2.1055829498990566e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.310594896168 Iteration 2: convergence error = 3610.337924655499 Iteration 3: convergence error = 592.8343159758318 Iteration 4: convergence error = 105.14974717714108 Iteration 5: convergence error = 18.714867069871843 Iteration 6: convergence error = 3.2994909466140143 Iteration 7: convergence error = 0.5794575486690974 Iteration 8: convergence error = 0.10160000418295567 Iteration 9: convergence error = 0.01780225539573621 Iteration 10: convergence error = 0.0031184329748157325 Iteration 11: convergence error = 0.0005461958187424898 Iteration 12: convergence error = 9.566209200784215e-5 Iteration 13: convergence error = 1.6754169564592303e-5 Iteration 14: convergence error = 2.9342872949200682e-6 Iteration 15: convergence error = 5.13908389621065e-7 Iteration 16: convergence error = 9.000223144539632e-8 Iteration 17: convergence error = 1.5776095096953213e-8 Iteration 18: convergence error = 2.733486326178536e-9 Iteration 19: convergence error = 4.858975444221869e-10 Iteration 20: convergence error = 8.549250196665525e-11 Iteration 21: convergence error = 1.432454155292362e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.492427513024 Iteration 2: convergence error = 871.304602661783 Iteration 3: convergence error = 207.75299581225158 Iteration 4: convergence error = 62.49550550490892 Iteration 5: convergence error = 18.97931530918413 Iteration 6: convergence error = 5.76621559404623 Iteration 7: convergence error = 1.7533061530655232 Iteration 8: convergence error = 0.5333443698997371 Iteration 9: convergence error = 0.16226812526508638 Iteration 10: convergence error = 0.04937275063014113 Iteration 11: convergence error = 0.015022831428041172 Iteration 12: convergence error = 0.0045710916562029524 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318846916256 Iteration 15: convergence error = 0.0001287742984459328 Iteration 16: convergence error = 3.9183143599075265e-5 Iteration 17: convergence error = 1.1922556950594299e-5 Iteration 18: convergence error = 3.6277691606301232e-6 Iteration 19: convergence error = 1.1038513321182108e-6 Iteration 20: convergence error = 3.3587832604098367e-7 Iteration 21: convergence error = 1.0220117019343888e-7 Iteration 22: convergence error = 3.1099034458748065e-8 Iteration 23: convergence error = 9.464656613999978e-9 Iteration 24: convergence error = 2.880597094190307e-9 Iteration 25: convergence error = 8.786855687503703e-10 Iteration 26: convergence error = 2.6830093702301383e-10 Iteration 27: convergence error = 8.185452315956354e-11 Iteration 28: convergence error = 2.6261659513693303e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [9.81469183839774e-26, 1.2278462217584005e-25, 1.7064639101740927e-25, 1.3045866106183005e-25, 1.2440020930973268e-25, -2.642742795433417e-19, -7.993605777301127e-15, 8.526512829121202e-14, 7.013056801952189e-12, 4.575895218295045e-12, 5.826450433232822e-13, 8.79296635503124e-14, 5.218048215738236e-15, 3.642919299551295e-16, 2.0166160408230382e-17, 8.775261333554552e-19, 3.7613556814011274e-20, 1.2358078351542233e-21, 3.6499344528902346e-23, 4.998575315730623e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729987 Iteration 2: convergence error = 2115.1156110176394 Iteration 3: convergence error = 714.8959934551629 Iteration 4: convergence error = 296.01907471323966 Iteration 5: convergence error = 115.88799395378669 Iteration 6: convergence error = 44.11524923618913 Iteration 7: convergence error = 16.599581025126554 Iteration 8: convergence error = 6.215983404932786 Iteration 9: convergence error = 2.323124567003788 Iteration 10: convergence error = 0.867563639824084 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.12090784413658184 Iteration 13: convergence error = 0.04513241840754745 Iteration 14: convergence error = 0.016846741615154315 Iteration 15: convergence error = 0.0062884074741305085 Iteration 16: convergence error = 0.0023472777563711134 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782211112615 Iteration 19: convergence error = 0.00012207719146317686 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985607473878e-6 Iteration 23: convergence error = 2.3698869426880265e-6 Iteration 24: convergence error = 8.846079708746402e-7 Iteration 25: convergence error = 3.302000095573021e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7174670574604534e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.949427865445614e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.248281478183344e-10 Iteration 34: convergence error = 4.774847184307873e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.9952501103574007e-25, 1.4136387421560532e-25, 1.0339757656912846e-25, 1.6478988765704848e-25, 2.1729646950855903e-25, 9.486769009248164e-20, 5.240252676230739e-14, 2.9274360713316128e-12, 1.2093437362636905e-11, 5.6203930398623925e-12, 2.0961010704922955e-13, 1.84297022087776e-14, 1.582067810090848e-15, 1.723881454251952e-16, 7.101524229780054e-18, 4.641740550953566e-19, 1.4770137017746862e-20, 4.963083675318166e-22, 1.7991178323028352e-23, 9.298117831235686e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238243 Iteration 2: convergence error = 864.8522700482431 Iteration 3: convergence error = 203.43244494690748 Iteration 4: convergence error = 60.87736397590345 Iteration 5: convergence error = 18.481426659698286 Iteration 6: convergence error = 5.6143306186266955 Iteration 7: convergence error = 1.7070587705935623 Iteration 8: convergence error = 0.5192694771476454 Iteration 9: convergence error = 0.1579851928424887 Iteration 10: convergence error = 0.04806952669207476 Iteration 11: convergence error = 0.014626287390910875 Iteration 12: convergence error = 0.004450431969985402 Iteration 13: convergence error = 0.0013541649049102489 Iteration 14: convergence error = 0.0004120419150694943 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.8148852013364376e-5 Iteration 17: convergence error = 1.1607843930505624e-5 Iteration 18: convergence error = 3.532008690854127e-6 Iteration 19: convergence error = 1.0747122587417834e-6 Iteration 20: convergence error = 3.270116621933994e-7 Iteration 21: convergence error = 9.950440471584443e-8 Iteration 22: convergence error = 3.027832917723572e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8029489840264432e-9 Iteration 25: convergence error = 8.546976459911093e-10 Iteration 26: convergence error = 2.609112925711088e-10 Iteration 27: convergence error = 8.003553375601768e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.753886504564434e-12 Converged after 29 iterations Energy conservation errors by band: [1.4621063561728321e-25, 7.674038885990003e-26, 1.32882041762669e-25, 1.3116548043290807e-25, 1.126872025890111e-25, -1.5246593050577406e-19, -3.6637359812630166e-14, 2.5721647034515627e-12, 7.627676268384675e-12, 2.8421709430404007e-12, 4.973799150320701e-13, 7.194245199571014e-14, 4.385380947269368e-15, 4.198030811863873e-16, 2.3310346708438345e-17, 9.84252284709497e-19, 4.1081097941833566e-20, 9.880672416945916e-22, 2.4156258825962636e-23, 4.8210806556121566e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 9m50.8s Testing RayTraceHeatTransfer tests passed Testing completed after 595.18s PkgEval succeeded after 687.79s