Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1584 (ac5fadde9b*) started at 2026-01-18T16:24:14.819 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 9.66s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.14.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.18.0+0 [e37daf67] + LibGit2_jll v1.9.2+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.12.2 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.95s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling packages... 1466.1 ms ✓ Measurements 4854.3 ms ✓ StatsBase 21468.0 ms ✓ GeometryBasics 6441.3 ms ✓ RayTraceHeatTransfer 4 dependencies successfully precompiled in 39 seconds. 57 already precompiled. Precompilation completed after 53.31s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_yEZwu1/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.16 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_yEZwu1/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.16 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.18.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443558531181326e-15 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.0569008315563939e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.691850745534255e-16 Converged after 6 iterations. d = 1.6184142622847344e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.485546236472086e-16 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2585248453105973e-15 Converged after 6 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 8.64442489944963e-16 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2785653431858247e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.741771048821297e-15 Converged after 5 iterations. d = 2.1647144989062977e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.6708853471768988e-15 Converged after 5 iterations. d = 1.8174569082716346e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5394136982922497e-15 Converged after 5 iterations. d = 1.6288904732141786e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:02:58 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:05 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013036848428996414 Iteration 10: d = 1.426405758862456e-5 Iteration 20: d = 2.0242148861309738e-7 Iteration 30: d = 3.2356976517549087e-9 Iteration 40: d = 5.363036426199764e-11 Iteration 50: d = 9.056160454097518e-13 Iteration 60: d = 1.5462323100860852e-14 Converged after 65 iterations. d = 1.9923343604884747e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 35%|███████████▋ | ETA: 0:00:02 Bin 1 progress: 72%|███████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012889091457916441 Iteration 10: d = 1.1690648576383414e-5 Iteration 20: d = 1.552200869145119e-7 Iteration 30: d = 2.471010756414877e-9 Iteration 40: d = 4.116570637882482e-11 Iteration 50: d = 6.991641878101703e-13 Iteration 60: d = 1.1942695777196458e-14 Converged after 65 iterations. d = 1.5739703293499279e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:01 Bin 1 progress: 83%|███████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014174668391670688 Iteration 10: d = 1.656635950489885e-5 Iteration 20: d = 2.536768567212026e-7 Iteration 30: d = 4.285124288572743e-9 Iteration 40: d = 7.392125008325858e-11 Iteration 50: d = 1.2860522508290677e-12 Iteration 60: d = 2.2423143924674474e-14 Converged after 66 iterations. d = 2.0218752702892198e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▋ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015132395104027105 Iteration 10: d = 1.743480795174522e-5 Iteration 20: d = 2.484140925540056e-7 Iteration 30: d = 4.066174113838505e-9 Iteration 40: d = 6.880570800864936e-11 Iteration 50: d = 1.179818048862529e-12 Iteration 60: d = 2.037549514104597e-14 Converged after 66 iterations. d = 1.778537623967017e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 77%|█████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001254107523120325 Iteration 10: d = 1.1302889253464114e-5 Iteration 20: d = 1.384917808738399e-7 Iteration 30: d = 2.0459456448962938e-9 Iteration 40: d = 3.1318382611565864e-11 Iteration 50: d = 4.839125727322106e-13 Iteration 60: d = 7.500600017665193e-15 Converged after 63 iterations. d = 2.1104539018137335e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013380758204100869 Iteration 10: d = 1.4859716060961024e-5 Iteration 20: d = 2.2088003178054e-7 Iteration 30: d = 3.504005989209763e-9 Iteration 40: d = 5.538099318416534e-11 Iteration 50: d = 8.710731489716824e-13 Iteration 60: d = 1.3685956705282317e-14 Converged after 65 iterations. d = 1.7093810914926147e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 75%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014254743785614222 Iteration 10: d = 1.6417846451928896e-5 Iteration 20: d = 2.334380048335209e-7 Iteration 30: d = 3.651903928410236e-9 Iteration 40: d = 5.77603761514509e-11 Iteration 50: d = 9.130921997378701e-13 Iteration 60: d = 1.439246588070601e-14 Converged after 65 iterations. d = 1.7985151631920483e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 77%|█████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014728255128017376 Iteration 10: d = 1.4103000313624666e-5 Iteration 20: d = 1.920485992384959e-7 Iteration 30: d = 2.9963380991451405e-9 Iteration 40: d = 4.726164628186995e-11 Iteration 50: d = 7.444747047693486e-13 Iteration 60: d = 1.1693679107790175e-14 Converged after 64 iterations. d = 2.2151072787229173e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001365454773601311 Iteration 10: d = 1.651938820823336e-5 Iteration 20: d = 2.3725266658087748e-7 Iteration 30: d = 3.661232901107037e-9 Iteration 40: d = 5.720596616899853e-11 Iteration 50: d = 8.97129530540695e-13 Iteration 60: d = 1.4074954555347464e-14 Converged after 65 iterations. d = 1.7743658256277558e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013087713090292677 Iteration 10: d = 1.1640752211009188e-5 Iteration 20: d = 1.5914411183289014e-7 Iteration 30: d = 2.4967483460559002e-9 Iteration 40: d = 3.957306031354062e-11 Iteration 50: d = 6.256262622564663e-13 Iteration 60: d = 9.849407906268273e-15 Converged after 64 iterations. d = 1.8797160964176154e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.005429213023950995 Iteration 10: d = 4.9569405882899176e-5 Iteration 20: d = 5.147044213517145e-7 Iteration 30: d = 6.768241029154406e-9 Iteration 40: d = 9.438196571572253e-11 Iteration 50: d = 1.339286991913356e-12 Iteration 60: d = 1.9118622740114353e-14 Converged after 66 iterations. d = 1.5050553945386013e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0030363891483763316 Iteration 10: d = 3.036810227070593e-5 Iteration 20: d = 3.207967183710493e-7 Iteration 30: d = 4.0812235875920075e-9 Iteration 40: d = 5.771544789638727e-11 Iteration 50: d = 8.628136250712784e-13 Iteration 60: d = 1.3214226142864596e-14 Converged after 65 iterations. d = 1.6348691376416116e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002786659771777346 Iteration 10: d = 3.699009493188076e-5 Iteration 20: d = 5.758545007272835e-7 Iteration 30: d = 9.495405768516074e-9 Iteration 40: d = 1.5917262844695432e-10 Iteration 50: d = 2.685949774051206e-12 Iteration 60: d = 4.545999255114964e-14 Converged after 68 iterations. d = 1.727772138316612e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0023857182111247204 Iteration 10: d = 2.711855796797385e-5 Iteration 20: d = 3.7038158752486163e-7 Iteration 30: d = 5.793861783920039e-9 Iteration 40: d = 9.6685742274003e-11 Iteration 50: d = 1.6671034296620869e-12 Iteration 60: d = 2.920864022420232e-14 Converged after 67 iterations. d = 1.7377018161907535e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001254107523120325 Iteration 10: d = 1.1302889253464114e-5 Iteration 20: d = 1.384917808738399e-7 Iteration 30: d = 2.0459456448962938e-9 Iteration 40: d = 3.1318382611565864e-11 Iteration 50: d = 4.839125727322106e-13 Iteration 60: d = 7.500600017665193e-15 Converged after 63 iterations. d = 2.1104539018137335e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017083222183409102 Iteration 10: d = 1.7737644161203622e-5 Iteration 20: d = 2.1062868640638454e-7 Iteration 30: d = 2.7889652806562e-9 Iteration 40: d = 3.7592913468168896e-11 Iteration 50: d = 5.096599990446671e-13 Iteration 60: d = 6.967556739741005e-15 Converged after 63 iterations. d = 1.9005916052852703e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010252573689486656 Iteration 10: d = 8.418301616609335e-6 Iteration 20: d = 9.284534478980117e-8 Iteration 30: d = 1.2126756941807396e-9 Iteration 40: d = 1.6265179975662875e-11 Iteration 50: d = 2.1991077757612453e-13 Iteration 60: d = 2.9857204109662614e-15 Converged after 61 iterations. d = 1.9230070489603107e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.913303066143 Iteration 2: convergence error = 4825.155801597049 Iteration 3: convergence error = 1093.1636917278845 Iteration 4: convergence error = 319.93252984018045 Iteration 5: convergence error = 94.89394926094383 Iteration 6: convergence error = 28.28794483128013 Iteration 7: convergence error = 8.462897675323802 Iteration 8: convergence error = 2.5361723229630115 Iteration 9: convergence error = 0.7581887900259972 Iteration 10: convergence error = 0.22634100615255193 Iteration 11: convergence error = 0.06751487906444709 Iteration 12: convergence error = 0.02012967255791409 Iteration 13: convergence error = 0.006000126224989799 Iteration 14: convergence error = 0.001788212146038859 Iteration 15: convergence error = 0.0005328933455075457 Iteration 16: convergence error = 0.00015879614988989488 Iteration 17: convergence error = 4.731808371616353e-5 Iteration 18: convergence error = 1.4099603959039086e-5 Iteration 19: convergence error = 4.201288220428978e-6 Iteration 20: convergence error = 1.2518635230662767e-6 Iteration 21: convergence error = 3.73005377696245e-7 Iteration 22: convergence error = 1.1100769370386843e-7 Iteration 23: convergence error = 3.217655830667354e-8 Iteration 24: convergence error = 9.270252121496014e-9 Iteration 25: convergence error = 2.6627731131156906e-9 Iteration 26: convergence error = 7.723883754806593e-10 Iteration 27: convergence error = 2.1577761799562722e-10 Iteration 28: convergence error = 6.275513442233205e-11 Iteration 29: convergence error = 1.8189894035458565e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017083222183409102 Iteration 10: d = 1.7737644161203622e-5 Iteration 20: d = 2.1062868640638454e-7 Iteration 30: d = 2.7889652806562e-9 Iteration 40: d = 3.7592913468168896e-11 Iteration 50: d = 5.096599990446671e-13 Iteration 60: d = 6.967556739741005e-15 Converged after 63 iterations. d = 1.9005916052852703e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.687342634623 Iteration 2: convergence error = 4826.706037462606 Iteration 3: convergence error = 1091.2434643048005 Iteration 4: convergence error = 318.4103766616188 Iteration 5: convergence error = 94.67202746983867 Iteration 6: convergence error = 28.697677584115127 Iteration 7: convergence error = 8.642795310821839 Iteration 8: convergence error = 2.5923203517418187 Iteration 9: convergence error = 0.7756588892295895 Iteration 10: convergence error = 0.23176423227300802 Iteration 11: convergence error = 0.06919528716662171 Iteration 12: convergence error = 0.020649529769571018 Iteration 13: convergence error = 0.0061607256823208445 Iteration 14: convergence error = 0.0018377631172370457 Iteration 15: convergence error = 0.0005481638374931208 Iteration 16: convergence error = 0.00016349707948393188 Iteration 17: convergence error = 4.876377147411404e-5 Iteration 18: convergence error = 1.4543792985932669e-5 Iteration 19: convergence error = 4.337635118645267e-6 Iteration 20: convergence error = 1.2936832263221731e-6 Iteration 21: convergence error = 3.8582811612286605e-7 Iteration 22: convergence error = 1.14942622531089e-7 Iteration 23: convergence error = 3.3369815355399624e-8 Iteration 24: convergence error = 9.63086677074898e-9 Iteration 25: convergence error = 2.7741862140828744e-9 Iteration 26: convergence error = 7.939888746477664e-10 Iteration 27: convergence error = 2.269189280923456e-10 Iteration 28: convergence error = 6.434675015043467e-11 Iteration 29: convergence error = 1.8417267710901797e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 6:52:03 Bin 1 ray tracing: 8%|██▎ | ETA: 0:00:42 Bin 1 ray tracing: 15%|████▌ | ETA: 0:00:27 Bin 1 ray tracing: 23%|██████▉ | ETA: 0:00:20 Bin 1 ray tracing: 31%|█████████▎ | ETA: 0:00:15 Bin 1 ray tracing: 39%|███████████▋ | ETA: 0:00:12 Bin 1 ray tracing: 47%|██████████████▏ | ETA: 0:00:10 Bin 1 ray tracing: 55%|████████████████▋ | ETA: 0:00:08 Bin 1 ray tracing: 64%|███████████████████▏ | ETA: 0:00:06 Bin 1 ray tracing: 71%|█████████████████████▌ | ETA: 0:00:05 Bin 1 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:03 Bin 1 ray tracing: 88%|██████████████████████████▎ | ETA: 0:00:02 Bin 1 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 2 ray tracing: 16%|████▉ | ETA: 0:00:10 Bin 2 ray tracing: 24%|███████▍ | ETA: 0:00:09 Bin 2 ray tracing: 33%|█████████▉ | ETA: 0:00:08 Bin 2 ray tracing: 41%|████████████▎ | ETA: 0:00:07 Bin 2 ray tracing: 49%|██████████████▊ | ETA: 0:00:06 Bin 2 ray tracing: 57%|█████████████████▏ | ETA: 0:00:05 Bin 2 ray tracing: 65%|███████████████████▋ | ETA: 0:00:04 Bin 2 ray tracing: 73%|██████████████████████ | ETA: 0:00:03 Bin 2 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:02 Bin 2 ray tracing: 89%|██████████████████████████▉ | ETA: 0:00:01 Bin 2 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 10%|███ | ETA: 0:00:09 Bin 3 ray tracing: 22%|██████▌ | ETA: 0:00:07 Bin 3 ray tracing: 34%|██████████▎ | ETA: 0:00:06 Bin 3 ray tracing: 47%|██████████████▏ | ETA: 0:00:05 Bin 3 ray tracing: 59%|█████████████████▊ | ETA: 0:00:04 Bin 3 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:03 Bin 3 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:02 Bin 3 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:08 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 11%|███▏ | ETA: 0:00:08 Bin 4 ray tracing: 21%|██████▍ | ETA: 0:00:08 Bin 4 ray tracing: 30%|█████████▏ | ETA: 0:00:07 Bin 4 ray tracing: 39%|███████████▉ | ETA: 0:00:06 Bin 4 ray tracing: 48%|██████████████▌ | ETA: 0:00:06 Bin 4 ray tracing: 57%|█████████████████▎ | ETA: 0:00:05 Bin 4 ray tracing: 66%|███████████████████▉ | ETA: 0:00:04 Bin 4 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:03 Bin 4 ray tracing: 83%|█████████████████████████ | ETA: 0:00:02 Bin 4 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 5 ray tracing: 18%|█████▍ | ETA: 0:00:09 Bin 5 ray tracing: 27%|████████ | ETA: 0:00:08 Bin 5 ray tracing: 35%|██████████▋ | ETA: 0:00:07 Bin 5 ray tracing: 44%|█████████████▎ | ETA: 0:00:06 Bin 5 ray tracing: 53%|███████████████▉ | ETA: 0:00:05 Bin 5 ray tracing: 62%|██████████████████▌ | ETA: 0:00:04 Bin 5 ray tracing: 71%|█████████████████████▏ | ETA: 0:00:03 Bin 5 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:02 Bin 5 ray tracing: 89%|██████████████████████████▌ | ETA: 0:00:01 Bin 5 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 6 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 6 ray tracing: 27%|████████ | ETA: 0:00:08 Bin 6 ray tracing: 36%|██████████▉ | ETA: 0:00:07 Bin 6 ray tracing: 46%|█████████████▊ | ETA: 0:00:06 Bin 6 ray tracing: 55%|████████████████▌ | ETA: 0:00:05 Bin 6 ray tracing: 63%|███████████████████ | ETA: 0:00:04 Bin 6 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:03 Bin 6 ray tracing: 80%|████████████████████████▏ | ETA: 0:00:02 Bin 6 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:01 Bin 6 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 7 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 7 ray tracing: 26%|███████▊ | ETA: 0:00:09 Bin 7 ray tracing: 35%|██████████▌ | ETA: 0:00:08 Bin 7 ray tracing: 45%|█████████████▍ | ETA: 0:00:06 Bin 7 ray tracing: 54%|████████████████▎ | ETA: 0:00:05 Bin 7 ray tracing: 64%|███████████████████▏ | ETA: 0:00:04 Bin 7 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:03 Bin 7 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:02 Bin 7 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 8 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 8 ray tracing: 26%|███████▊ | ETA: 0:00:09 Bin 8 ray tracing: 35%|██████████▋ | ETA: 0:00:08 Bin 8 ray tracing: 44%|█████████████▍ | ETA: 0:00:06 Bin 8 ray tracing: 54%|████████████████▎ | ETA: 0:00:05 Bin 8 ray tracing: 64%|███████████████████▏ | ETA: 0:00:04 Bin 8 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:03 Bin 8 ray tracing: 81%|████████████████████████▌ | ETA: 0:00:02 Bin 8 ray tracing: 90%|███████████████████████████▏ | ETA: 0:00:01 Bin 8 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 9 ray tracing: 16%|████▉ | ETA: 0:00:10 Bin 9 ray tracing: 25%|███████▍ | ETA: 0:00:09 Bin 9 ray tracing: 33%|█████████▉ | ETA: 0:00:08 Bin 9 ray tracing: 41%|████████████▍ | ETA: 0:00:07 Bin 9 ray tracing: 49%|██████████████▊ | ETA: 0:00:06 Bin 9 ray tracing: 57%|█████████████████▎ | ETA: 0:00:05 Bin 9 ray tracing: 66%|███████████████████▊ | ETA: 0:00:04 Bin 9 ray tracing: 74%|██████████████████████▎ | ETA: 0:00:03 Bin 9 ray tracing: 82%|████████████████████████▊ | ETA: 0:00:02 Bin 9 ray tracing: 91%|███████████████████████████▏ | ETA: 0:00:01 Bin 9 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 8%|██▍ | ETA: 0:00:11 Bin 10 ray tracing: 17%|████▉ | ETA: 0:00:10 Bin 10 ray tracing: 26%|███████▍ | ETA: 0:00:09 Bin 10 ray tracing: 34%|██████████ | ETA: 0:00:08 Bin 10 ray tracing: 43%|████████████▍ | ETA: 0:00:07 Bin 10 ray tracing: 52%|███████████████ | ETA: 0:00:06 Bin 10 ray tracing: 60%|█████████████████▌ | ETA: 0:00:05 Bin 10 ray tracing: 68%|███████████████████▉ | ETA: 0:00:04 Bin 10 ray tracing: 77%|██████████████████████▎ | ETA: 0:00:03 Bin 10 ray tracing: 85%|████████████████████████▊ | ETA: 0:00:02 Bin 10 ray tracing: 94%|███████████████████████████▎ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 22%|███████▍ | ETA: 0:00:04 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 22%|███████▍ | ETA: 0:00:04 Bin 2 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 2 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 2 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 24%|████████▏ | ETA: 0:00:03 Bin 3 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 3 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 3 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 24%|████████▏ | ETA: 0:00:03 Bin 4 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 4 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 4 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 24%|████████▏ | ETA: 0:00:03 Bin 5 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 5 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 29%|█████████▌ | ETA: 0:00:03 Bin 6 progress: 56%|██████████████████▍ | ETA: 0:00:02 Bin 6 progress: 82%|███████████████████████████▏ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 22%|███████▍ | ETA: 0:00:04 Bin 7 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 7 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 7 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 27%|████████▊ | ETA: 0:00:03 Bin 8 progress: 53%|█████████████████▋ | ETA: 0:00:02 Bin 8 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 22%|███████▍ | ETA: 0:00:04 Bin 9 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 9 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 9 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 24%|███████▉ | ETA: 0:00:03 Bin 10 progress: 51%|████████████████▍ | ETA: 0:00:02 Bin 10 progress: 76%|████████████████████████▏ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:04 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017083222183409102 Iteration 10: d = 1.7737644161203622e-5 Iteration 20: d = 2.1062868640638454e-7 Iteration 30: d = 2.7889652806562e-9 Iteration 40: d = 3.7592913468168896e-11 Iteration 50: d = 5.096599990446671e-13 Iteration 60: d = 6.967556739741005e-15 Converged after 63 iterations. d = 1.9005916052852703e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010290973963984957 Iteration 10: d = 8.29469046292086e-6 Iteration 20: d = 9.130122474303351e-8 Iteration 30: d = 1.1901550702956438e-9 Iteration 40: d = 1.5924121806063544e-11 Iteration 50: d = 2.147446187773491e-13 Iteration 60: d = 2.916802686837829e-15 Converged after 61 iterations. d = 1.897330900651035e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001364379589010334 Iteration 10: d = 1.8401339222552912e-5 Iteration 20: d = 2.3350979288026622e-7 Iteration 30: d = 3.175186158453589e-9 Iteration 40: d = 4.387753844094962e-11 Iteration 50: d = 6.098834862684257e-13 Iteration 60: d = 8.512907522204248e-15 Converged after 64 iterations. d = 1.4991944578379034e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012333371066107048 Iteration 10: d = 1.2176713361128779e-5 Iteration 20: d = 1.4050032406745366e-7 Iteration 30: d = 1.802283571695792e-9 Iteration 40: d = 2.3717410834148356e-11 Iteration 50: d = 3.1585408565901574e-13 Iteration 60: d = 4.2203048835040676e-15 Converged after 62 iterations. d = 1.784148956083217e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014209694834203116 Iteration 10: d = 1.2391060540360684e-5 Iteration 20: d = 1.3918116878615474e-7 Iteration 30: d = 1.9168504049195034e-9 Iteration 40: d = 2.716039975454602e-11 Iteration 50: d = 3.86990788633496e-13 Iteration 60: d = 5.520086477341489e-15 Converged after 63 iterations. d = 1.5147466659781031e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013923549194015553 Iteration 10: d = 1.4933152390647067e-5 Iteration 20: d = 1.7841686424760974e-7 Iteration 30: d = 2.443150595856189e-9 Iteration 40: d = 3.431637798894854e-11 Iteration 50: d = 4.853673432186894e-13 Iteration 60: d = 6.8930709518383335e-15 Converged after 63 iterations. d = 1.8876383145929296e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001237042598106137 Iteration 10: d = 1.4085927269854982e-5 Iteration 20: d = 1.8485009145996613e-7 Iteration 30: d = 2.5741504177966693e-9 Iteration 40: d = 3.6212519257423166e-11 Iteration 50: d = 5.116367098004598e-13 Iteration 60: d = 7.198731501040976e-15 Converged after 63 iterations. d = 2.017621319646386e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013544970442762763 Iteration 10: d = 1.2067199023035355e-5 Iteration 20: d = 1.1667162764238096e-7 Iteration 30: d = 1.4440659228039394e-9 Iteration 40: d = 1.959934613991174e-11 Iteration 50: d = 2.747046934746785e-13 Iteration 60: d = 3.870053633214207e-15 Converged after 62 iterations. d = 1.647666124580028e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014462159075528808 Iteration 10: d = 2.0222688991219455e-5 Iteration 20: d = 2.470239053990632e-7 Iteration 30: d = 3.2391833905206436e-9 Iteration 40: d = 4.357779532106657e-11 Iteration 50: d = 5.931337270993171e-13 Iteration 60: d = 8.131964329472275e-15 Converged after 64 iterations. d = 1.483330984054075e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016049984926805913 Iteration 10: d = 1.920491888250866e-5 Iteration 20: d = 2.331572383628081e-7 Iteration 30: d = 3.1858363723264918e-9 Iteration 40: d = 4.442450365429812e-11 Iteration 50: d = 6.218636806156294e-13 Iteration 60: d = 8.682911983819627e-15 Converged after 64 iterations. d = 1.5963112206012217e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.714167591355 Iteration 2: convergence error = 4805.932409560708 Iteration 3: convergence error = 1096.8253048152308 Iteration 4: convergence error = 323.43949043835414 Iteration 5: convergence error = 96.43789318342101 Iteration 6: convergence error = 28.924885402125938 Iteration 7: convergence error = 8.73338186786782 Iteration 8: convergence error = 2.633933679721167 Iteration 9: convergence error = 0.792596170721481 Iteration 10: convergence error = 0.23819986509397495 Iteration 11: convergence error = 0.07153456450669182 Iteration 12: convergence error = 0.021473982532143054 Iteration 13: convergence error = 0.006444788722319572 Iteration 14: convergence error = 0.001933960571022908 Iteration 15: convergence error = 0.0005803017770631413 Iteration 16: convergence error = 0.000174117118376671 Iteration 17: convergence error = 5.2241812454667524e-5 Iteration 18: convergence error = 1.5674314681746182e-5 Iteration 19: convergence error = 4.702790874944185e-6 Iteration 20: convergence error = 1.4109780295257224e-6 Iteration 21: convergence error = 4.233356776239816e-7 Iteration 22: convergence error = 1.2688133210758679e-7 Iteration 23: convergence error = 3.712966645252891e-8 Iteration 24: convergence error = 1.07775122160092e-8 Iteration 25: convergence error = 3.1163835956249386e-9 Iteration 26: convergence error = 8.978986443253234e-10 Iteration 27: convergence error = 2.5988811103161424e-10 Iteration 28: convergence error = 7.617018127348274e-11 Iteration 29: convergence error = 2.205524651799351e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.3080711881271 K, F = -7448.887077837846, relative_change = 0.0326919288118729 Iter 2: T = 936.6905892381166 K, F = -6314.238300627193, relative_change = 0.0316522552245466 Iter 3: T = 908.1162345764253 K, F = -5350.915747556138, relative_change = 0.030505649346742134 Iter 5: T = 856.9587901264161 K, F = -3839.0498706685917, relative_change = 0.02789701702843916 Iter 10: T = 761.8093682686506 K, F = -1662.3523082411057, relative_change = 0.019979078922903265 Iter 15: T = 706.0933981229882 K, F = -711.7393096026069, relative_change = 0.011973491197133868 Iter 20: T = 677.4365582276364 K, F = -301.6574533293123, relative_change = 0.006132172885991748 Iter 25: T = 664.0724195124723 K, F = -126.99163758255384, relative_change = 0.0028329458268584206 Iter 30: T = 658.188903090552 K, F = -53.26842904946999, relative_change = 0.0012392629645575119 Iter 35: T = 655.6718330692127 K, F = -22.30638477000306, relative_change = 0.0005284614788220526 Iter 40: T = 654.6088681788659 K, F = -9.333933380629416, relative_change = 0.00022284244689367512 Iter 45: T = 654.1624910394374 K, F = -3.904467130852636, relative_change = 9.351998130174995e-5 Iter 50: T = 653.9754879059099 K, F = -1.633053483548363, relative_change = 3.916823822243658e-5 Iter 55: T = 653.8972243144796 K, F = -0.682990260424688, relative_change = 1.6390627149453308e-5 Iter 60: T = 653.8644836252749 K, F = -0.28563954663381447, relative_change = 6.8565069762212e-6 Iter 65: T = 653.8507893419777 K, F = -0.11945872038271432, relative_change = 2.8677794603012527e-6 Iter 70: T = 653.8450619254506 K, F = -0.04995921230066752, relative_change = 1.1993932095749972e-6 Iter 75: T = 653.8426665983357 K, F = -0.020893565244584855, relative_change = 5.016099376198374e-7 Iter 80: T = 653.8416648346383 K, F = -0.008737943056761177, relative_change = 2.097809058592915e-7 Iter 85: T = 653.8412458834715 K, F = -0.003654312935033155, relative_change = 8.773316688724098e-8 Iter 90: T = 653.8410706728059 K, F = -0.0015282774492146323, relative_change = 3.6691108273581864e-8 Iter 95: T = 653.8409973975635 K, F = -0.0006391439040397962, relative_change = 1.5344668410916206e-8 Iter 100: T = 653.8409667529734 K, F = -0.0002672976176539277, relative_change = 6.41732511136247e-9 Iter 105: T = 653.8409539370383 K, F = -0.00011178705750386486, relative_change = 2.683802289325818e-9 Iter 110: T = 653.8409485772609 K, F = -4.675068203441324e-5, relative_change = 1.1223982021710135e-9 Iter 115: T = 653.8409463357378 K, F = -1.9551692741370807e-5, relative_change = 4.694003207128204e-10 Iter 120: T = 653.8409453983063 K, F = -8.176751781163727e-6, relative_change = 1.9630883041371798e-10 Iter 125: T = 653.8409450062611 K, F = -3.419615287492128e-6, relative_change = 8.209869853396631e-11 Iter 130: T = 653.8409448423031 K, F = -1.4301226810564671e-6, relative_change = 3.4334625718942996e-11 Iter 135: T = 653.840944773734 K, F = -5.980948939443564e-7, relative_change = 1.4359162755934766e-11 Iter 140: T = 653.8409447450575 K, F = -2.5012981941241463e-7, relative_change = 6.0051587535197415e-12 Iter 145: T = 653.8409447330648 K, F = -1.0460842631010436e-7, relative_change = 2.51145668468718e-12 Iter 150: T = 653.8409447280492 K, F = -4.3748397349219204e-8, relative_change = 1.0503188781881848e-12 Iter 155: T = 653.8409447259517 K, F = -1.8295817860725094e-8, relative_change = 4.3924907095250665e-13 Converged in 159 iterations to T = 653.8409447251945 K Iter 1: T = 970.51066993707 K, F = -6719.171906433312, relative_change = 0.029489330062929968 Iter 2: T = 943.1888154373105 K, F = -5690.724449879998, relative_change = 0.028152039277972232 Iter 3: T = 917.9886598418957 K, F = -4817.935979202648, relative_change = 0.026718039042618148 Iter 5: T = 873.7322406203996 K, F = -3449.2669809772706, relative_change = 0.023606946831973428 Iter 10: T = 795.3591639054491 K, F = -1484.20944588416, relative_change = 0.01530238201120645 Iter 15: T = 752.7985085263927 K, F = -631.6275653953804, relative_change = 0.008345974669839615 Iter 20: T = 732.189251609793 K, F = -266.56823740400876, relative_change = 0.004005208255310856 Iter 25: T = 722.926247979716 K, F = -111.95740725698475, relative_change = 0.0017858684831370507 Iter 30: T = 718.9239827429392 K, F = -46.909727824246495, relative_change = 0.0007681958614895164 Iter 35: T = 717.2263783291011 K, F = -19.633935069996827, relative_change = 0.0003251565815669389 Iter 40: T = 716.5121486706737 K, F = -8.213924771721304, relative_change = 0.0001366765064530286 Iter 45: T = 716.2126941804156 K, F = -3.435649504581086, relative_change = 5.728171000031948e-5 Iter 50: T = 716.0873260666422 K, F = -1.4369151702072662, relative_change = 2.397729351441754e-5 Iter 55: T = 716.0348723761183 K, F = -0.6009500527520559, relative_change = 1.0031337994376476e-5 Iter 60: T = 716.0129315469591 K, F = -0.25132710765376887, relative_change = 4.195881149527185e-6 Iter 65: T = 716.0037549182061 K, F = -0.10510845596361929, relative_change = 1.7548823325457973e-6 Iter 70: T = 715.9999170179285 K, F = -0.04395769165598162, relative_change = 7.339328167691183e-7 Iter 75: T = 715.9983119404149 K, F = -0.018383645625279055, relative_change = 3.069429789172221e-7 Iter 80: T = 715.9976406740201 K, F = -0.007688262596299289, relative_change = 1.2836783333363122e-7 Iter 85: T = 715.9973599417308 K, F = -0.003215323662348335, relative_change = 5.3685068288490583e-8 Iter 90: T = 715.9972425360182 K, F = -0.0013446868289912484, relative_change = 2.2451755462562902e-8 Iter 95: T = 715.9971934355268 K, F = -0.000562364104165658, relative_change = 9.389595553301679e-9 Iter 100: T = 715.9971729011113 K, F = -0.00023518738678385276, relative_change = 3.926841571712845e-9 Iter 105: T = 715.997164313373 K, F = -9.83581749145479e-5, relative_change = 1.6422521526781092e-9 Iter 110: T = 715.997160721878 K, F = -4.113456292498263e-5, relative_change = 6.868094714551033e-10 Iter 115: T = 715.997159219872 K, F = -1.7202964457951886e-5, relative_change = 2.8723190924337865e-10 Iter 120: T = 715.9971585917151 K, F = -7.194485642014747e-6, relative_change = 1.2012382288312712e-10 Iter 125: T = 715.9971583290123 K, F = -3.008819705607735e-6, relative_change = 5.023721555914436e-11 Iter 130: T = 715.997158219147 K, F = -1.258323989228316e-6, relative_change = 2.100979776836432e-11 Iter 135: T = 715.9971581732 K, F = -5.262459735755343e-7, relative_change = 8.786545896972423e-12 Iter 140: T = 715.9971581539843 K, F = -2.2008176603360852e-7, relative_change = 3.67462866356844e-12 Iter 145: T = 715.9971581459481 K, F = -9.204103257332008e-8, relative_change = 1.5367770925865036e-12 Iter 150: T = 715.9971581425872 K, F = -3.849091845253838e-8, relative_change = 6.42669471408608e-13 Iter 155: T = 715.9971581411817 K, F = -1.6096579846802683e-8, relative_change = 2.6875899244866186e-13 Converged in 157 iterations to T = 715.9971581408843 K Iter 1: T = 974.3294041494911 K, F = -5849.069683579141, relative_change = 0.025670595850508852 Iter 2: T = 950.8486285727429 K, F = -4948.636635935149, relative_change = 0.02409942210175315 Iter 3: T = 929.4836413044104 K, F = -4185.015932882264, relative_change = 0.022469388529699045 Iter 5: T = 892.7505632708067 K, F = -2989.0340465348463, relative_change = 0.019116614683093933 Iter 10: T = 830.812621558875 K, F = -1278.293003426662, relative_change = 0.011253121117981931 Iter 15: T = 799.3311882440568 K, F = -541.3154076429715, relative_change = 0.005687729020543791 Iter 20: T = 784.7615238404413 K, F = -227.77026270933388, relative_change = 0.0026080080823489707 Iter 25: T = 778.3729115404136 K, F = -95.51844312812918, relative_change = 0.0011367302162428605 Iter 30: T = 775.6448383419862 K, F = -39.99444702648852, relative_change = 0.0004839527625141005 Iter 35: T = 774.4937064358171 K, F = -16.734588040457155, relative_change = 0.0002039316029415669 Iter 40: T = 774.0104731738363 K, F = -7.000088880599355, relative_change = 8.555842181909618e-5 Iter 45: T = 773.8080594550065 K, F = -2.927781071731779, relative_change = 3.5829312870397205e-5 Iter 50: T = 773.7233515288301 K, F = -1.224478587548022, relative_change = 1.4992616030353153e-5 Iter 55: T = 773.6879158403422 K, F = -0.512099544027889, relative_change = 6.2715561080731996e-6 Iter 60: T = 773.6730944934709 K, F = -0.21416754020721773, relative_change = 2.6230959863577867e-6 Iter 65: T = 773.6668957285316 K, F = -0.08956766703203689, relative_change = 1.097054905477915e-6 Iter 70: T = 773.6643032784128 K, F = -0.037458310691474095, relative_change = 4.588093056283937e-7 Iter 75: T = 773.663219075614 K, F = -0.01566552033869495, relative_change = 1.9188090262216675e-7 Iter 80: T = 773.6627656474468 K, F = -0.006551508996062938, relative_change = 8.024712492359242e-8 Iter 85: T = 773.6625760180907 K, F = -0.002739919531363766, relative_change = 3.356034794977611e-8 Iter 90: T = 773.6624967127802 K, F = -0.0011458671099326967, relative_change = 1.4035345652256499e-8 Iter 95: T = 773.6624635463437 K, F = -0.0004792153174260072, relative_change = 5.8697504592514e-9 Iter 100: T = 773.6624496757422 K, F = -0.00020041356930300402, relative_change = 2.454799957548418e-9 Iter 105: T = 773.6624438748909 K, F = -8.381534778734157e-5, relative_change = 1.0266266912511784e-9 Iter 110: T = 773.6624414489055 K, F = -3.5052579545724605e-5, relative_change = 4.293475508496868e-10 Iter 115: T = 773.6624404343295 K, F = -1.4659408275385921e-5, relative_change = 1.7955828531908563e-10 Iter 120: T = 773.6624400100217 K, F = -6.130740026755177e-6, relative_change = 7.50934245868659e-11 Iter 125: T = 773.6624398325712 K, F = -2.56395082576244e-6, relative_change = 3.140499309199832e-11 Iter 130: T = 773.6624397583591 K, F = -1.0722748076119615e-6, relative_change = 1.3133942586883764e-11 Iter 135: T = 773.6624397273227 K, F = -4.4843963120655417e-7, relative_change = 5.4927900285115934e-12 Iter 140: T = 773.6624397143429 K, F = -1.8754195629799852e-7, relative_change = 2.2971399400892954e-12 Iter 145: T = 773.6624397089147 K, F = -7.843346250258065e-8, relative_change = 9.607057690808351e-13 Iter 150: T = 773.6624397066445 K, F = -3.2800773430707864e-8, relative_change = 4.0176592056735814e-13 Converged in 154 iterations to T = 773.662439705825 K Iter 1: T = 970.3665046594892 K, F = -6752.02010206668, relative_change = 0.029633495340510768 Iter 2: T = 942.8977658077035 K, F = -5718.769328151689, relative_change = 0.02830759173970529 Iter 3: T = 917.5488887198518 K, F = -4841.885120910954, relative_change = 0.026884014372584055 Iter 5: T = 872.9940116086941 K, F = -3466.736388146671, relative_change = 0.023789097900879595 Iter 10: T = 793.9315826274704 K, F = -1492.111829369729, relative_change = 0.015483399242843063 Iter 15: T = 750.8704558219603 K, F = -635.1348515597065, relative_change = 0.008474443207824131 Iter 20: T = 729.9737229542995 K, F = -268.0878963834216, relative_change = 0.004075999518290717 Iter 25: T = 720.5698439266914 K, F = -112.60432407346596, relative_change = 0.0018195493717455798 Iter 30: T = 716.504243499741 K, F = -47.182467575564864, relative_change = 0.0007831044020228426 Iter 35: T = 714.7793047334364 K, F = -19.748397959777474, relative_change = 0.00033154474598332277 Iter 40: T = 714.0534894387214 K, F = -8.261865734257343, relative_change = 0.00013937564163251308 Iter 45: T = 713.7491622911958 K, F = -3.4557115387720496, relative_change = 5.84153900385339e-5 Iter 50: T = 713.6217515466465 K, F = -1.4453075547551997, relative_change = 2.4452267769311582e-5 Iter 55: T = 713.568442756728 K, F = -0.6044602338912386, relative_change = 1.023012786478491e-5 Iter 60: T = 713.5461441664979 K, F = -0.25279517482162966, relative_change = 4.279043698151071e-6 Iter 65: T = 713.5368178918427 K, F = -0.10572243099247491, relative_change = 1.7896664964191814e-6 Iter 70: T = 713.532917403322 K, F = -0.044214465410920556, relative_change = 7.48480772928666e-7 Iter 75: T = 713.5312861498635 K, F = -0.01849103183712042, relative_change = 3.130272484444032e-7 Iter 80: T = 713.5306039362371 K, F = -0.0077331728549520085, relative_change = 1.3091237207660211e-7 Iter 85: T = 713.5303186256605 K, F = -0.003234105679420729, relative_change = 5.4749229069363845e-8 Iter 90: T = 713.5301993052493 K, F = -0.0013525416950331826, relative_change = 2.289680096611195e-8 Iter 95: T = 713.5301494040073 K, F = -0.0005656491020040733, relative_change = 9.575719007650817e-9 Iter 100: T = 713.5301285347082 K, F = -0.00023656121135751107, relative_change = 4.004680632367898e-9 Iter 105: T = 713.5301198069175 K, F = -9.893272396965802e-5, relative_change = 1.67480536808402e-9 Iter 110: T = 713.530116156851 K, F = -4.137484610777786e-5, relative_change = 7.004236138684071e-10 Iter 115: T = 713.5301146303497 K, F = -1.7303454483919012e-5, relative_change = 2.9292551841552544e-10 Iter 120: T = 713.5301139919486 K, F = -7.236511339381302e-6, relative_change = 1.2250495105517208e-10 Iter 125: T = 713.5301137249617 K, F = -3.026396685923416e-6, relative_change = 5.123305432072642e-11 Iter 130: T = 713.5301136133045 K, F = -1.2656739596383915e-6, relative_change = 2.142625356299236e-11 Iter 135: T = 713.5301135666082 K, F = -5.293212560486538e-7, relative_change = 8.960736977755447e-12 Iter 140: T = 713.5301135470792 K, F = -2.213679832774318e-7, relative_change = 3.747478966764542e-12 Iter 145: T = 713.5301135389119 K, F = -9.25782247529483e-8, relative_change = 1.5672318323746993e-12 Iter 150: T = 713.5301135354962 K, F = -3.871690235079939e-8, relative_change = 6.55428012131613e-13 Iter 155: T = 713.5301135340678 K, F = -1.619179679224203e-8, relative_change = 2.7410656690256245e-13 Converged in 157 iterations to T = 713.5301135337655 K Iter 1: T = 969.2827393180861 K, F = -6998.957066032371, relative_change = 0.03071726068191391 Iter 2: T = 940.7053799416021 K, F = -5929.665729098237, relative_change = 0.029482996258231982 Iter 3: T = 914.2290374470787 K, F = -5022.052610365052, relative_change = 0.028145201525441543 Iter 5: T = 867.394649589444 K, F = -3598.2912716429614, relative_change = 0.025190403462251244 Iter 10: T = 782.96387162517 K, F = -1551.853462901311, relative_change = 0.016925141715595136 Iter 15: T = 735.8946440273083 K, F = -661.7747290672046, relative_change = 0.009530098809303621 Iter 20: T = 712.6452454747098 K, F = -279.67311626022007, relative_change = 0.004669823068623439 Iter 25: T = 702.0735088665424 K, F = -117.54660444300731, relative_change = 0.002105176166113408 Iter 30: T = 697.479467145383 K, F = -49.26827592043363, relative_change = 0.0009101797598445545 Iter 35: T = 695.5257946762101 K, F = -20.624168376531298, relative_change = 0.0003861170772849727 Iter 40: T = 694.7029079022235 K, F = -8.6287407692726, relative_change = 0.0001624556122690129 Iter 45: T = 694.3577327030586 K, F = -3.609251952084302, relative_change = 6.81132486749741e-5 Iter 50: T = 694.213194468193 K, F = -1.509539101912813, relative_change = 2.851603442367329e-5 Iter 55: T = 694.1527149756398 K, F = -0.631325981761071, relative_change = 1.1931046982654502e-5 Iter 60: T = 694.1274161490609 K, F = -0.2640313373140162, relative_change = 4.990634061387672e-6 Iter 65: T = 694.1168349012308 K, F = -0.11042163083451534, relative_change = 2.087305069692635e-6 Iter 70: T = 694.1124095262165 K, F = -0.04617974483387077, relative_change = 8.729642981603169e-7 Iter 75: T = 694.1105587516596 K, F = -0.019312938297635696, relative_change = 3.650890605569434e-7 Iter 80: T = 694.1097847304117 K, F = -0.008076904501756799, relative_change = 1.52685473704298e-7 Iter 85: T = 694.1094610245682 K, F = -0.0033778584563316505, relative_change = 6.385504045114621e-8 Iter 90: T = 694.1093256467586 K, F = -0.0014126608397695417, relative_change = 2.6704967066546848e-8 Iter 95: T = 694.109269030114 K, F = -0.0005907916494749532, relative_change = 1.116834078307629e-8 Iter 100: T = 694.1092453523522 K, F = -0.0002470761263029253, relative_change = 4.670734307996332e-9 Iter 105: T = 694.1092354500287 K, F = -0.00010333018663233329, relative_change = 1.953356998745851e-9 Iter 110: T = 694.1092313087585 K, F = -4.3213917788942346e-5, relative_change = 8.169172427263928e-10 Iter 115: T = 694.1092295768299 K, F = -1.807257574593102e-5, relative_change = 3.4164453671679957e-10 Iter 120: T = 694.1092288525166 K, F = -7.558167416488182e-6, relative_change = 1.4287983376385164e-10 Iter 125: T = 694.1092285496002 K, F = -3.1609154783618365e-6, relative_change = 5.975404541093996e-11 Iter 130: T = 694.109228422917 K, F = -1.321933455256108e-6, relative_change = 2.498987154986866e-11 Iter 135: T = 694.1092283699365 K, F = -5.528488098427431e-7, relative_change = 1.0451071265771116e-11 Iter 140: T = 694.1092283477794 K, F = -2.312089377731752e-7, relative_change = 4.370781022401538e-12 Iter 145: T = 694.109228338513 K, F = -9.669384559707339e-8, relative_change = 1.827903494631292e-12 Iter 150: T = 694.1092283346377 K, F = -4.0437809656346246e-8, relative_change = 7.644376240453546e-13 Iter 155: T = 694.109228333017 K, F = -1.6911170019895394e-8, relative_change = 3.1968928930231393e-13 Converged in 158 iterations to T = 694.1092283325424 K Iter 1: T = 963.6117731591075 K, F = -8291.092099837108, relative_change = 0.03638822684089251 Iter 2: T = 929.1044872600535 K, F = -7035.174620522372, relative_change = 0.03581036145493047 Iter 3: T = 896.4448065387103 K, F = -5968.571484765153, relative_change = 0.03515178450774385 Iter 5: T = 836.5499586484813 K, F = -4293.580002951999, relative_change = 0.033563427015224134 Iter 10: T = 717.2077911917859 K, F = -1876.0499006073696, relative_change = 0.027795682502963208 Iter 15: T = 637.9548177860514 K, F = -812.224465929116, relative_change = 0.019857276961755065 Iter 20: T = 591.6387010373096 K, F = -347.69825632601766, relative_change = 0.011869995727145727 Iter 25: T = 567.8573350797766 K, F = -147.34704604719667, relative_change = 0.006067545992668974 Iter 30: T = 556.7792360806321 K, F = -62.02561457092574, relative_change = 0.002800016377595605 Iter 35: T = 551.9050095716267 K, F = -26.01659430424741, relative_change = 0.0012242039960087636 Iter 40: T = 549.820303829452 K, F = -10.89438780408367, relative_change = 0.0005219150177452219 Iter 45: T = 548.9400335946548 K, F = -4.558640624871014, relative_change = 0.00022005925709196473 Iter 50: T = 548.5703955379333 K, F = -1.9069142639395649, relative_change = 9.234793579469811e-5 Iter 55: T = 548.4155444781409 K, F = -0.7975708509538071, relative_change = 3.867665038724025e-5 Iter 60: T = 548.3507375985872 K, F = -0.3335670566577334, relative_change = 1.6184789319002204e-5 Iter 65: T = 548.3236264763184 K, F = -0.13950407187969538, relative_change = 6.770379366355021e-6 Iter 70: T = 548.3122868617787 K, F = -0.05834267913814847, relative_change = 2.8317522054293766e-6 Iter 75: T = 548.3075442512394 K, F = -0.024399676929166364, relative_change = 1.1843248412795988e-6 Iter 80: T = 548.3055607914389 K, F = -0.010204248834872004, relative_change = 4.953079317015704e-7 Iter 85: T = 548.3047312772658 K, F = -0.004267540921838814, relative_change = 2.0714529075813667e-7 Iter 90: T = 548.3043843632034 K, F = -0.0017847369619329312, relative_change = 8.663091398364816e-8 Iter 95: T = 548.3042392793673 K, F = -0.0007463983793892515, relative_change = 3.6230131743908035e-8 Iter 100: T = 548.3041786035336 K, F = -0.00031215272800622085, relative_change = 1.5151882333080732e-8 Iter 105: T = 548.3041532281683 K, F = -0.00013054600071571443, relative_change = 6.336699635309847e-9 Iter 110: T = 548.3041426158861 K, F = -5.4595897019255046e-5, relative_change = 2.6500837307383843e-9 Iter 115: T = 548.3041381777028 K, F = -2.2832656288468423e-5, relative_change = 1.1082967144955682e-9 Iter 120: T = 548.3041363216016 K, F = -9.548890054084103e-6, relative_change = 4.6350295431568747e-10 Iter 125: T = 548.3041355453578 K, F = -3.9934594413815194e-6, relative_change = 1.9384245195117793e-10 Iter 130: T = 548.3041352207233 K, F = -1.6701123157769615e-6, relative_change = 8.106722304023514e-11 Iter 135: T = 548.3041350849574 K, F = -6.984607138216248e-7, relative_change = 3.390327105792677e-11 Iter 140: T = 548.3041350281784 K, F = -2.921044217618629e-7, relative_change = 1.4178743624545374e-11 Iter 145: T = 548.3041350044327 K, F = -1.221616584279328e-7, relative_change = 5.929724807001223e-12 Iter 150: T = 548.3041349945021 K, F = -5.1089199537557306e-8, relative_change = 2.479868870415904e-12 Iter 155: T = 548.3041349903489 K, F = -2.1365937380446454e-8, relative_change = 1.0371022344944867e-12 Iter 160: T = 548.304134988612 K, F = -8.935254647290947e-9, relative_change = 4.3371710754442037e-13 Converged in 164 iterations to T = 548.3041349879851 K Iter 1: T = 966.7950799494695 K, F = -7565.7726195466375, relative_change = 0.03320492005053055 Iter 2: T = 935.6433095712616 K, F = -6414.210245086446, relative_change = 0.032221688984842616 Iter 3: T = 906.5144799818024 K, F = -5436.475211361723, relative_change = 0.0311324083563499 Iter 5: T = 854.1963762280393 K, F = -3901.825353572853, relative_change = 0.02863462810445615 Iter 10: T = 756.0395266854889 K, F = -1691.4393864212402, relative_change = 0.020879388859869796 Iter 15: T = 697.7258311699956 K, F = -725.0730474541128, relative_change = 0.012753122847273968 Iter 20: T = 667.3467127231416 K, F = -307.59759944302033, relative_change = 0.006626482782406542 Iter 25: T = 653.0589741814579 K, F = -129.56388988028968, relative_change = 0.0030871043125936973 Iter 30: T = 646.7403914774391 K, F = -54.36223038302363, relative_change = 0.0013560150588282096 Iter 35: T = 644.0314595838519 K, F = -22.76721948065339, relative_change = 0.0005793190569175697 Iter 40: T = 642.886403508642 K, F = -9.527272398177566, relative_change = 0.0002444831843214908 Iter 45: T = 642.4053615594355 K, F = -3.9854323633063844, relative_change = 0.00010263662360359992 Iter 50: T = 642.2038021902656 K, F = -1.666933201859831, relative_change = 4.2992603652615786e-5 Iter 55: T = 642.1194406361894 K, F = -0.697162510123617, relative_change = 1.7992071615550956e-5 Iter 60: T = 642.0841478884307 K, F = -0.2915671366602045, relative_change = 7.526609085624225e-6 Iter 65: T = 642.0693859855598 K, F = -0.12193781184792446, relative_change = 3.1480869757212548e-6 Iter 70: T = 642.0632120221014 K, F = -0.05099601589244268, relative_change = 1.3166321484308382e-6 Iter 75: T = 642.0606299339877 K, F = -0.02132717202584733, relative_change = 5.506425840444327e-7 Iter 80: T = 642.0595500629069 K, F = -0.00891928314039514, relative_change = 2.302872803675465e-7 Iter 85: T = 642.0590984460014 K, F = -0.003730151618949129, relative_change = 9.630923638638104e-8 Iter 90: T = 642.0589095740818 K, F = -0.001559994109412599, relative_change = 4.0277733242699724e-8 Iter 95: T = 642.0588305855307 K, F = -0.0006524081942251292, relative_change = 1.6844639633591703e-8 Iter 100: T = 642.058797551565 K, F = -0.00027284490393553185, relative_change = 7.044631335324175e-9 Iter 105: T = 642.0587837363643 K, F = -0.00011410699910824329, relative_change = 2.9461493040587106e-9 Iter 110: T = 642.0587779586818 K, F = -4.7720908832316056e-5, relative_change = 1.2321148524413583e-9 Iter 115: T = 642.0587755423862 K, F = -1.9957454943542174e-5, relative_change = 5.152851799168171e-10 Iter 120: T = 642.0587745318625 K, F = -8.34644687019992e-6, relative_change = 2.1549844013531502e-10 Iter 125: T = 642.0587741092493 K, F = -3.49058312243411e-6, relative_change = 9.012400511290425e-11 Iter 130: T = 642.0587739325074 K, F = -1.4598039980162625e-6, relative_change = 3.7690946910250443e-11 Iter 135: T = 642.0587738585918 K, F = -6.105068213746456e-7, relative_change = 1.5762787495210917e-11 Iter 140: T = 642.0587738276795 K, F = -2.5532099989789003e-7, relative_change = 6.592179684930989e-12 Iter 145: T = 642.0587738147516 K, F = -1.067784595742971e-7, relative_change = 2.7569326155815434e-12 Iter 150: T = 642.058773809345 K, F = -4.465621061822134e-8, relative_change = 1.1529868855330822e-12 Iter 155: T = 642.0587738070839 K, F = -1.8675387403188637e-8, relative_change = 4.821832497740246e-13 Converged in 160 iterations to T = 642.0587738061382 K Iter 1: T = 965.2590708344262 K, F = -7915.753757531106, relative_change = 0.03474092916557376 Iter 2: T = 932.4968465435969 K, F = -6713.709068361487, relative_change = 0.033941379346487485 Iter 3: T = 901.6839352168984 K, F = -5692.970477600946, relative_change = 0.03304344828715515 Iter 5: T = 845.7926970140036 K, F = -4090.3725484060637, relative_change = 0.03093444649895148 Iter 10: T = 737.9983254933493 K, F = -1779.5798024086534, relative_change = 0.02389822279296064 Iter 15: T = 670.7785498285299 K, F = -766.0634222485174, relative_change = 0.015592236347061451 Iter 20: T = 634.1033635734946 K, F = -326.1281778295383, relative_change = 0.008552010392902952 Iter 25: T = 616.2825085416375 K, F = -137.66959027282107, relative_change = 0.0041188698856386595 Iter 30: T = 608.2568288555851 K, F = -57.82771573929613, relative_change = 0.0018399790815675167 Iter 35: T = 604.7857971575326 K, F = -24.230980111822237, relative_change = 0.0007921542910224618 Iter 40: T = 603.3128774356048 K, F = -10.142062921219702, relative_change = 0.00033542382969257734 Iter 45: T = 602.6930620296336 K, F = -4.243012502298612, relative_change = 0.00014101487067269834 Iter 50: T = 602.4331717574607 K, F = -1.774738615452079, relative_change = 5.910393395005496e-5 Iter 55: T = 602.3243637438159 K, F = -0.7422624623700577, relative_change = 2.4740752071555725e-5 Iter 60: T = 602.2788381144504 K, F = -0.31043100411952274, relative_change = 1.0350867806849017e-5 Iter 65: T = 602.2597951083765 K, F = -0.1298273490223397, relative_change = 4.329554751684661e-6 Iter 70: T = 602.2518304582255 K, F = -0.054295591972649104, relative_change = 1.8107936509851615e-6 Iter 75: T = 602.2484994348839 K, F = -0.022707107688966888, relative_change = 7.573168961049814e-7 Iter 80: T = 602.2471063416339 K, F = -0.009496391082005284, relative_change = 3.1672270721897424e-7 Iter 85: T = 602.2465237299878 K, F = -0.003971505467393888, relative_change = 1.3245787224819727e-7 Iter 90: T = 602.2462800742428 K, F = -0.0016609312442347202, relative_change = 5.53955783602503e-8 Iter 95: T = 602.2461781743959 K, F = -0.0006946213213032681, relative_change = 2.316711240471985e-8 Iter 100: T = 602.2461355586448 K, F = -0.00029049893886651246, relative_change = 9.688766571157251e-9 Iter 105: T = 602.2461177362256 K, F = -0.00012149012650142232, relative_change = 4.051958491854848e-9 Iter 110: T = 602.2461102826765 K, F = -5.0808621621101224e-5, relative_change = 1.6945775257326878e-9 Iter 115: T = 602.2461071655132 K, F = -2.1248772508974945e-5, relative_change = 7.086925817225615e-10 Iter 120: T = 602.2461058618783 K, F = -8.886491138559993e-6, relative_change = 2.96383728033397e-10 Iter 125: T = 602.2461053166826 K, F = -3.7164372748699215e-6, relative_change = 1.239512336310149e-10 Iter 130: T = 602.2461050886751 K, F = -1.5542570125370858e-6, relative_change = 5.183783827957126e-11 Iter 135: T = 602.2461049933197 K, F = -6.500089768102235e-7, relative_change = 2.167920747583165e-11 Iter 140: T = 602.246104953441 K, F = -2.718414750524367e-7, relative_change = 9.066502079672645e-12 Iter 145: T = 602.2461049367633 K, F = -1.1368797736555081e-7, relative_change = 3.79174032643699e-12 Iter 150: T = 602.2461049297884 K, F = -4.754570048781659e-8, relative_change = 1.5857521092016316e-12 Iter 155: T = 602.2461049268716 K, F = -1.988510145434219e-8, relative_change = 6.632112104798804e-13 Iter 160: T = 602.2461049256517 K, F = -8.317202482288621e-9, relative_change = 2.7739672029350336e-13 Converged in 162 iterations to T = 602.2461049253935 K Iter 1: T = 980.1102630725323 K, F = -4531.895478947739, relative_change = 0.019889736927467667 Iter 2: T = 962.2656117695601 K, F = -3828.1369583511423, relative_change = 0.018206779354632316 Iter 3: T = 946.3453703346132 K, F = -3232.158122307949, relative_change = 0.016544539511985968 Iter 5: T = 919.755594534998 K, F = -2300.944176280398, relative_change = 0.013371111188493327 Iter 10: T = 877.5261729466597 K, F = -976.8643237572961, relative_change = 0.007028556562217779 Iter 15: T = 857.5282349811447 K, F = -411.65350390813444, relative_change = 0.0032970132378543843 Iter 20: T = 848.6514055887014 K, F = -172.76007421302353, relative_change = 0.0014531709316678736 Iter 25: T = 844.8389765352075 K, F = -72.36035329583119, relative_change = 0.0006217849043995222 Iter 30: T = 843.2262198984121 K, F = -30.281582875317792, relative_change = 0.00026257973643317283 Iter 35: T = 842.5484691946812 K, F = -12.667579217948633, relative_change = 0.00011026496279568102 Iter 40: T = 842.2644476723776 K, F = -5.298340094201475, relative_change = 4.6193477787546814e-5 Iter 45: T = 842.1455650025362 K, F = -2.2159354532759226, relative_change = 1.9332578184952214e-5 Iter 50: T = 842.09582907459 K, F = -0.9267492823378698, relative_change = 8.087551243643403e-6 Iter 55: T = 842.0750258045783 K, F = -0.3875808736032801, relative_change = 3.3827367923517904e-6 Iter 60: T = 842.0663250843589 K, F = -0.16209151954826195, relative_change = 1.4147754948253439e-6 Iter 65: T = 842.0626862440533 K, F = -0.06778870886005284, relative_change = 5.916890512070342e-7 Iter 70: T = 842.0611644209291 K, F = -0.028350065027584304, relative_change = 2.4745370877402677e-7 Iter 75: T = 842.060527973412 K, F = -0.011856338811586209, relative_change = 1.0348849523812439e-7 Iter 80: T = 842.0602618029501 K, F = -0.004958463014923753, relative_change = 4.328019438000116e-8 Iter 85: T = 842.0601504871953 K, F = -0.0020736885440426622, relative_change = 1.810030638318412e-8 Iter 90: T = 842.0601039336016 K, F = -0.0008672413305241822, relative_change = 7.56976642792255e-9 Iter 95: T = 842.06008446433 K, F = -0.00036269068376815206, relative_change = 3.1657670907917917e-9 Iter 100: T = 842.0600763220476 K, F = -0.0001516815737316879, relative_change = 1.323961651062957e-9 Iter 105: T = 842.0600729168478 K, F = -6.343504856487492e-5, relative_change = 5.536966104983081e-10 Iter 110: T = 842.0600714927526 K, F = -2.6529293546406763e-5, relative_change = 2.315625252311366e-10 Iter 115: T = 842.060070897179 K, F = -1.1094869976080446e-5, relative_change = 9.684223641048018e-11 Iter 120: T = 842.060070648103 K, F = -4.640006265432817e-6, relative_change = 4.0500572364052556e-11 Iter 125: T = 842.0600705439364 K, F = -1.9405057856136665e-6, relative_change = 1.693782088720261e-11 Iter 130: T = 842.0600705003727 K, F = -8.115431955335595e-7, relative_change = 7.083603354068034e-12 Iter 135: T = 842.060070482154 K, F = -3.393981065080709e-7, relative_change = 2.9624566863528802e-12 Iter 140: T = 842.0600704745344 K, F = -1.4193916331173284e-7, relative_change = 1.2389244823800837e-12 Iter 145: T = 842.0600704713479 K, F = -5.935943181434311e-8, relative_change = 5.181223534111601e-13 Converged in 150 iterations to T = 842.0600704700153 K Iter 1: T = 976.4313545658127 K, F = -5370.138281749239, relative_change = 0.02356864543418728 Iter 2: T = 955.0244819200724 K, F = -4540.813567034299, relative_change = 0.021923581771152 Iter 3: T = 935.6877905976606 K, F = -3837.824989765591, relative_change = 0.020247325265982122 Iter 5: T = 902.804155438422 K, F = -2737.6864095584456, relative_change = 0.016894411844257152 Iter 10: T = 848.6449464575305 K, F = -1167.4179758444327, relative_change = 0.009507064632290244 Iter 15: T = 821.903641335112 K, F = -493.35039760209924, relative_change = 0.004656654983016055 Iter 20: T = 809.7468475747604 K, F = -207.35221399096957, relative_change = 0.0020987868963704736 Iter 25: T = 804.4646027655659 K, F = -86.90865801652775, relative_change = 0.0009073254818271568 Iter 30: T = 802.2183789111973 K, F = -36.38068245498502, relative_change = 0.000384889093414368 Iter 35: T = 801.2722905775346 K, F = -15.22093281411171, relative_change = 0.00016193586627100012 Iter 40: T = 800.8754399412028 K, F = -6.36664765204603, relative_change = 6.789478789326223e-5 Iter 45: T = 800.7092638595316 K, F = -2.662795934775339, relative_change = 2.8424478614852125e-5 Iter 50: T = 800.6397305051087 K, F = -1.113645945203173, relative_change = 1.1892723432736827e-5 Iter 55: T = 800.6106444302933 K, F = -0.4657457876792681, relative_change = 4.974600774701937e-6 Iter 60: T = 800.598479167409 K, F = -0.19478145703019223, relative_change = 2.0805987217623703e-6 Iter 65: T = 800.5933913134348 K, F = -0.08146010753869803, relative_change = 8.7015944216899e-7 Iter 70: T = 800.5912634779016 K, F = -0.0340676205929471, relative_change = 3.639160045850957e-7 Iter 75: T = 800.5903735856815 K, F = -0.014247491166734072, relative_change = 1.5219488214307947e-7 Iter 80: T = 800.5900014210802 K, F = -0.005958471897151152, relative_change = 6.364986822487547e-8 Iter 85: T = 800.589845777216 K, F = -0.0024919042694560023, relative_change = 2.6619161411397676e-8 Iter 90: T = 800.5897806850613 K, F = -0.0010421441538221998, relative_change = 1.1132455818439758e-8 Iter 95: T = 800.5897534627393 K, F = -0.0004358371366179892, relative_change = 4.6557267870766895e-9 Iter 100: T = 800.5897420780381 K, F = -0.00018227229601819328, relative_change = 1.9470806805397664e-9 Iter 105: T = 800.5897373168199 K, F = -7.622844882837487e-5, relative_change = 8.142923936677135e-10 Iter 110: T = 800.5897353256215 K, F = -3.1879647810817424e-5, relative_change = 3.405468093809958e-10 Iter 115: T = 800.5897344928786 K, F = -1.3332448696390387e-5, relative_change = 1.4242073545545195e-10 Iter 120: T = 800.5897341446156 K, F = -5.57578897364408e-6, relative_change = 5.956204941036303e-11 Iter 125: T = 800.5897339989677 K, F = -2.331860202597902e-6, relative_change = 2.4909546143517168e-11 Iter 130: T = 800.5897339380563 K, F = -9.752114222827402e-7, relative_change = 1.0417465808959402e-11 Iter 135: T = 800.5897339125823 K, F = -4.0784646548885917e-7, relative_change = 4.356723591519813e-12 Iter 140: T = 800.5897339019288 K, F = -1.7056578849317106e-7, relative_change = 1.8220287720055235e-12 Iter 145: T = 800.5897338974734 K, F = -7.13334160629131e-8, relative_change = 7.620023782243777e-13 Iter 150: T = 800.58973389561 K, F = -2.983230562580985e-8, relative_change = 3.186765626783746e-13 Converged in 153 iterations to T = 800.5897338950645 K Iter 1: T = 980.6642441148423 K, F = -4405.6703714854, relative_change = 0.01933575588515771 Iter 2: T = 963.3486460254062 K, F = -3720.9428866995263, relative_change = 0.01765700971902496 Iter 3: T = 947.9286745504379 K, F = -3141.1731974757895, relative_change = 0.01600663637052713 Iter 5: T = 922.2412638093741 K, F = -2235.5145205980652, relative_change = 0.012877168280234838 Iter 10: T = 881.6491035909196 K, F = -948.5156073177867, relative_change = 0.006706528816408359 Iter 15: T = 862.5317395292417 K, F = -399.56254415654706, relative_change = 0.003128683132636846 Iter 20: T = 854.0710405978115 K, F = -167.65542057689763, relative_change = 0.0013752107399507363 Iter 25: T = 850.4424608209813 K, F = -70.21649866572012, relative_change = 0.0005876995662157437 Iter 30: T = 848.9084357859482 K, F = -29.383368688553027, relative_change = 0.0002480526881840284 Iter 35: T = 848.2639440322653 K, F = -12.291646700745103, relative_change = 0.00010414097452928118 Iter 40: T = 847.9938907032092 K, F = -5.141069865494988, relative_change = 4.362377702657753e-5 Iter 45: T = 847.8808600569648 K, F = -2.150154266682428, relative_change = 1.8256393198657874e-5 Iter 50: T = 847.8335733309962 K, F = -0.8992372465973597, relative_change = 7.637214120631404e-6 Iter 55: T = 847.8137946643932 K, F = -0.37607473910266187, relative_change = 3.1943542765157105e-6 Iter 60: T = 847.8055225011774 K, F = -0.1572794690029795, relative_change = 1.335983602578729e-6 Iter 65: T = 847.8020628982587 K, F = -0.06577624351088462, relative_change = 5.587359285025222e-7 Iter 70: T = 847.8006160360522 K, F = -0.027508426527029783, relative_change = 2.3367207229024153e-7 Iter 75: T = 847.8000109383837 K, F = -0.011504355284726042, relative_change = 9.772480706977305e-8 Iter 80: T = 847.7997578788551 K, F = -0.004811259258852507, relative_change = 4.086974362466576e-8 Iter 85: T = 847.7996520462581 K, F = -0.0020121261668950563, relative_change = 1.709222576350386e-8 Iter 90: T = 847.799607785788 K, F = -0.0008414952057309577, relative_change = 7.148174824765641e-9 Iter 95: T = 847.7995892755285 K, F = -0.0003519233470237193, relative_change = 2.989452410209935e-9 Iter 100: T = 847.7995815343164 K, F = -0.0001471785457165531, relative_change = 1.2502247465902485e-9 Iter 105: T = 847.7995782968491 K, F = -6.155182437694862e-5, relative_change = 5.228589198129539e-10 Iter 110: T = 847.7995769429016 K, F = -2.5741709102522492e-5, relative_change = 2.1866585522146468e-10 Iter 115: T = 847.7995763766646 K, F = -1.076549138079308e-5, relative_change = 9.14486826717999e-11 Iter 120: T = 847.7995761398574 K, F = -4.502256766736323e-6, relative_change = 3.8244928759161515e-11 Iter 125: T = 847.7995760408219 K, F = -1.8828965535622189e-6, relative_change = 1.5994477508245405e-11 Iter 130: T = 847.799575999404 K, F = -7.874518686001863e-7, relative_change = 6.689098867515108e-12 Iter 135: T = 847.7995759820826 K, F = -3.293219399402858e-7, relative_change = 2.797462427300684e-12 Iter 140: T = 847.7995759748385 K, F = -1.3772606122230968e-7, relative_change = 1.169929588095652e-12 Iter 145: T = 847.7995759718088 K, F = -5.7596331926035305e-8, relative_change = 4.892585491022396e-13 Converged in 150 iterations to T = 847.7995759705419 K Iter 1: T = 967.3590338775247 K, F = -7437.2751805805865, relative_change = 0.03264096612247537 Iter 2: T = 936.7945332977371 K, F = -6304.308140585893, relative_change = 0.03159581862514276 Iter 3: T = 908.2750473764966 K, F = -5342.418746778921, relative_change = 0.030443693795741113 Iter 5: T = 857.2320392087984 K, F = -3832.818739188955, relative_change = 0.027824542265327774 Iter 10: T = 762.3760341428825 K, F = -1659.4716960133032, relative_change = 0.019892279410889484 Iter 15: T = 706.9092372188807 K, F = -710.4233891280721, relative_change = 0.011899833373445643 Iter 20: T = 678.4150940514827 K, F = -301.0731454869172, relative_change = 0.006086191997718904 Iter 25: T = 665.1373129552551 K, F = -126.73916255002709, relative_change = 0.002809517931768926 Iter 30: T = 659.294250806857 K, F = -53.161189614443494, relative_change = 0.0012285490485172594 Iter 35: T = 656.7949741942952 K, F = -22.26122665924897, relative_change = 0.0005238038636959327 Iter 40: T = 655.7396136874818 K, F = -9.314991996772047, relative_change = 0.0002208622793908607 Iter 45: T = 655.2964460742289 K, F = -3.896535748733113, relative_change = 9.268609943018076e-5 Iter 50: T = 655.1107903830532 K, F = -1.6297347495447883, relative_change = 3.881848510202255e-5 Iter 55: T = 655.033091218472 K, F = -0.6816020220527834, relative_change = 1.624417834144579e-5 Iter 60: T = 655.0005867388602 K, F = -0.2850589155178741, relative_change = 6.795229183356985e-6 Iter 65: T = 654.9869912691635 K, F = -0.11921588419932605, relative_change = 2.842146903888566e-6 Iter 70: T = 654.9813051825505 K, F = -0.049857653679313385, relative_change = 1.1886724146561046e-6 Iter 75: T = 654.9789271409538 K, F = -0.020851091932175325, relative_change = 4.971262063524715e-7 Iter 80: T = 654.9779326064163 K, F = -0.008720180161040314, relative_change = 2.0790572673284933e-7 Iter 85: T = 654.9775166785964 K, F = -0.003646884270235129, relative_change = 8.694893945607839e-8 Iter 90: T = 654.9773427323354 K, F = -0.0015251706920293984, relative_change = 3.6363134119907006e-8 Iter 95: T = 654.9772699858827 K, F = -0.0006378446210771882, relative_change = 1.5207505553303958e-8 Iter 100: T = 654.977239562439 K, F = -0.0002667542424252267, relative_change = 6.359961950174235e-9 Iter 105: T = 654.9772268389898 K, F = -0.00011155980991151004, relative_change = 2.6598122878053387e-9 Iter 110: T = 654.9772215178913 K, F = -4.6655644102444604e-5, relative_change = 1.112365289771327e-9 Iter 115: T = 654.9772192925443 K, F = -1.9511947932593365e-5, relative_change = 4.652044652834875e-10 Iter 120: T = 654.9772183618776 K, F = -8.16012968984925e-6, relative_change = 1.9455406542726428e-10 Iter 125: T = 654.9772179726617 K, F = -3.4126635125586446e-6, relative_change = 8.13648296555797e-11 Iter 130: T = 654.977217809887 K, F = -1.4272167471740538e-6, relative_change = 3.4027746135962645e-11 Iter 135: T = 654.9772177418126 K, F = -5.968791447763522e-7, relative_change = 1.4230811166254881e-11 Iter 140: T = 654.9772177133432 K, F = -2.4962292999308744e-7, relative_change = 5.951517675433393e-12 Iter 145: T = 654.9772177014368 K, F = -1.043951243229202e-7, relative_change = 2.488991807394874e-12 Iter 150: T = 654.9772176964575 K, F = -4.365968636621531e-8, relative_change = 1.0409356029572195e-12 Iter 155: T = 654.977217694375 K, F = -1.825813439326751e-8, relative_change = 4.353110092088159e-13 Converged in 159 iterations to T = 654.9772176936233 K Iter 1: T = 973.4038829447131 K, F = -6059.950570485765, relative_change = 0.026596117055286878 Iter 2: T = 949.0009061073605 K, F = -5128.352983166372, relative_change = 0.025069734428765044 Iter 3: T = 926.7245292435674 K, F = -4338.155690158823, relative_change = 0.023473504314307735 Iter 5: T = 888.2331778611087 K, F = -3100.143189121269, relative_change = 0.020148605285378336 Iter 10: T = 822.6075358954483 K, F = -1327.6355476473177, relative_change = 0.012118263080329561 Iter 15: T = 788.7730649393443 K, F = -562.7917531030616, relative_change = 0.00622295411685616 Iter 20: T = 772.9696636966095 K, F = -236.94791692245786, relative_change = 0.002879317466481623 Iter 25: T = 766.0065141194655 K, F = -99.396095317944, relative_change = 0.0012604954169647493 Iter 30: T = 763.02640635531 K, F = -41.62347766126115, relative_change = 0.0005376968327393522 Iter 35: T = 761.7676856532379 K, F = -17.417189324953043, relative_change = 0.00022676974897872868 Iter 40: T = 761.239065253909 K, F = -7.285794670697821, relative_change = 9.517399946662938e-5 Iter 45: T = 761.0176007347017 K, F = -3.047307733967542, relative_change = 3.986200830546136e-5 Iter 50: T = 760.9249133494549 K, F = -1.2744732663459999, relative_change = 1.6681128028419797e-5 Iter 55: T = 760.8861384202698 K, F = -0.5330091763405043, relative_change = 6.978060603113261e-6 Iter 60: T = 760.8699201892357 K, F = -0.22291241871043288, relative_change = 2.9186256095104974e-6 Iter 65: T = 760.8631371652525 K, F = -0.09322491823743384, relative_change = 1.2206595956440037e-6 Iter 70: T = 760.8603003595832 K, F = -0.03898782356989794, relative_change = 5.105041299890718e-7 Iter 75: T = 760.859113962374 K, F = -0.016305182071957303, relative_change = 2.1350062206325296e-7 Iter 80: T = 760.8586177949337 K, F = -0.0068190233772355, relative_change = 8.928880687936206e-8 Iter 85: T = 760.858410291442 K, F = -0.0028517972767676536, relative_change = 3.734169731599842e-8 Iter 90: T = 760.8583235109438 K, F = -0.0011926557242667446, relative_change = 1.5616752847573798e-8 Iter 95: T = 760.8582872182926 K, F = -0.0004987828737853528, relative_change = 6.531114113691631e-9 Iter 100: T = 760.8582720402707 K, F = -0.00020859695552888358, relative_change = 2.731390192660988e-9 Iter 105: T = 760.8582656926403 K, F = -8.72377385853218e-5, relative_change = 1.1423000516117665e-9 Iter 110: T = 760.8582630379855 K, F = -3.6483864652048226e-5, relative_change = 4.777235384957123e-10 Iter 115: T = 760.8582619277771 K, F = -1.5257987718730881e-5, relative_change = 1.9978968794762162e-10 Iter 120: T = 760.8582614634746 K, F = -6.381072427008583e-6, relative_change = 8.355443038548604e-11 Iter 125: T = 760.8582612692977 K, F = -2.6686389716923387e-6, relative_change = 3.494343811416837e-11 Iter 130: T = 760.8582611880906 K, F = -1.1160550912325817e-6, relative_change = 1.4613742228149648e-11 Iter 135: T = 760.8582611541289 K, F = -4.667468616048609e-7, relative_change = 6.111632280811319e-12 Iter 140: T = 760.8582611399257 K, F = -1.9519866634176708e-7, relative_change = 2.5559517773504576e-12 Iter 145: T = 760.8582611339857 K, F = -8.163273435002338e-8, relative_change = 1.0689075718087042e-12 Iter 150: T = 760.8582611315015 K, F = -3.413825555576011e-8, relative_change = 4.4700989306564054e-13 Converged in 155 iterations to T = 760.8582611304628 K Iter 1: T = 970.0111515524429 K, F = -6832.987645535258, relative_change = 0.029988848447557104 Iter 2: T = 942.1797694119329 K, F = -5787.906308297246, relative_change = 0.02869181668269246 Iter 3: T = 916.4630538428858 K, F = -4900.934610745293, relative_change = 0.02729491377754618 Iter 5: T = 871.1677713276241 K, F = -3509.8270349205955, relative_change = 0.024242295325540293 Iter 10: T = 790.3818944567226 K, F = -1511.6343729750029, relative_change = 0.015940033111332592 Iter 15: T = 746.0556659223886 K, F = -643.8154180001732, relative_change = 0.008802485642688606 Iter 20: T = 724.4261275588907 K, F = -271.8543971269649, relative_change = 0.004258198521144178 Iter 25: T = 714.661368047843 K, F = -114.2090155073595, relative_change = 0.0019065952535030795 Iter 30: T = 710.4331245420459 K, F = -47.85926884150204, relative_change = 0.0008217086061212709 Iter 35: T = 708.6379141906374 K, F = -20.032486028106316, relative_change = 0.0003481001968713563 Iter 40: T = 707.8823000965939 K, F = -8.380860402647105, relative_change = 0.00014637318204498433 Iter 45: T = 707.565437699989 K, F = -3.5055092580862817, relative_change = 6.135491395200808e-5 Iter 50: T = 707.4327716967516 K, F = -1.4661392989034672, relative_change = 2.5683908797038595e-5 Iter 55: T = 707.3772628373711 K, F = -0.6131733239730596, relative_change = 1.0745617430166535e-5 Iter 60: T = 707.3540437564671 K, F = -0.25643926918469656, relative_change = 4.494698062719854e-6 Iter 65: T = 707.3443324524349 K, F = -0.1072464655704034, relative_change = 1.879868057209054e-6 Iter 70: T = 707.3402709279271 K, F = -0.044851840258564146, relative_change = 7.86206299742303e-7 Iter 75: T = 707.3385723251788 K, F = -0.0187575905532128, relative_change = 3.288048915690954e-7 Iter 80: T = 707.3378619449047 K, F = -0.007844651058534935, relative_change = 1.375108368457348e-7 Iter 85: T = 707.337564854635 K, F = -0.0032807272259517406, relative_change = 5.750879740681798e-8 Iter 90: T = 707.3374406078042 K, F = -0.0013720393873378756, relative_change = 2.4050887414550476e-8 Iter 95: T = 707.3373886462726 K, F = -0.0005738032725791653, relative_change = 1.0058372129152273e-8 Iter 100: T = 707.3373669153356 K, F = -0.00023997138457654277, relative_change = 4.206532020337624e-9 Iter 105: T = 707.3373578271974 K, F = -0.00010035889957826782, relative_change = 1.7592220471271743e-9 Iter 110: T = 707.3373540264294 K, F = -4.197128985206078e-5, relative_change = 7.357276798905714e-10 Iter 115: T = 707.3373524369027 K, F = -1.7552895344330466e-5, relative_change = 3.076901174764129e-10 Iter 120: T = 707.3373517721437 K, F = -7.3408306352495956e-6, relative_change = 1.2867968539279024e-10 Iter 125: T = 707.3373514941335 K, F = -3.0700222037882696e-6, relative_change = 5.381536663911598e-11 Iter 130: T = 707.3373513778664 K, F = -1.2839201488645813e-6, relative_change = 2.2506232533207616e-11 Iter 135: T = 707.337351329242 K, F = -5.36949583684887e-7, relative_change = 9.412354969009012e-12 Iter 140: T = 707.3373513089068 K, F = -2.2455918113895024e-7, relative_change = 3.936367191522958e-12 Iter 145: T = 707.3373513004022 K, F = -9.391306654560339e-8, relative_change = 1.6462311278105493e-12 Iter 150: T = 707.3373512968457 K, F = -3.927476410758857e-8, relative_change = 6.884594614049854e-13 Iter 155: T = 707.3373512953583 K, F = -1.6426078497389085e-8, relative_change = 2.8793779956113563e-13 Converged in 157 iterations to T = 707.3373512950435 K Iter 1: T = 973.4876266104156 K, F = -6040.86949659465, relative_change = 0.02651237338958434 Iter 2: T = 949.1683215983958 K, F = -5112.0881066439015, relative_change = 0.024981627241321133 Iter 3: T = 926.9748781891752 K, F = -4324.292460440701, relative_change = 0.023381989162730227 Iter 5: T = 888.644270903083 K, F = -3090.0785251749217, relative_change = 0.020053817111953996 Iter 10: T = 823.3594424548268 K, F = -1323.1569707938015, relative_change = 0.01203727871915914 Iter 15: T = 789.7454517353118 K, F = -560.8387189141637, relative_change = 0.00617213936963837 Iter 20: T = 774.0587104360886 K, F = -236.1122620336359, relative_change = 0.002853349514352491 Iter 25: T = 767.1501529861378 K, F = -99.04279169541357, relative_change = 0.0012486025773854085 Iter 30: T = 764.1940481461869 K, F = -41.47500739826631, relative_change = 0.0005325233251617081 Iter 35: T = 762.9455841537006 K, F = -17.354968684766817, relative_change = 0.00022456963102329732 Iter 40: T = 762.4212924859024 K, F = -7.259750487097505, relative_change = 9.424738198350648e-5 Iter 45: T = 762.2016452388247 K, F = -3.036411742571297, relative_change = 3.947333976568203e-5 Iter 50: T = 762.1097190790466 K, F = -1.2699157310207878, relative_change = 1.6518381106353778e-5 Iter 55: T = 762.0712627173543 K, F = -0.5311030378164024, relative_change = 6.909962676644566e-6 Iter 60: T = 762.0551777524951 K, F = -0.22211522732498423, relative_change = 2.890140079854943e-6 Iter 65: T = 762.0484504685693 K, F = -0.0928915195202975, relative_change = 1.2087455286864465e-6 Iter 70: T = 762.0456369752037 K, F = -0.03884839158642295, relative_change = 5.055213362845077e-7 Iter 75: T = 762.0444603276787 K, F = -0.016246869835736533, relative_change = 2.11416725232621e-7 Iter 80: T = 762.0439682377079 K, F = -0.006794636484950378, relative_change = 8.84172905864111e-8 Iter 85: T = 762.0437624394689 K, F = -0.0028415983831439062, relative_change = 3.6977217778385077e-8 Iter 90: T = 762.0436763721286 K, F = -0.0011883904240682641, relative_change = 1.546432296958964e-8 Iter 95: T = 762.0436403777288 K, F = -0.000496999074272586, relative_change = 6.467366088565673e-9 Iter 100: T = 762.0436253244392 K, F = -0.0002078509484055857, relative_change = 2.704729990878428e-9 Iter 105: T = 762.0436190289734 K, F = -8.692574901314476e-5, relative_change = 1.1311504296070005e-9 Iter 110: T = 762.0436163961344 K, F = -3.635338652208109e-5, relative_change = 4.730606284719967e-10 Iter 115: T = 762.0436152950497 K, F = -1.5203420629217312e-5, relative_change = 1.978396087773442e-10 Iter 120: T = 762.043614834563 K, F = -6.358253093585731e-6, relative_change = 8.27389005960981e-11 Iter 125: T = 762.043614641982 K, F = -2.6591002828535437e-6, relative_change = 3.460243419135832e-11 Iter 130: T = 762.0436145614422 K, F = -1.1120671136177762e-6, relative_change = 1.447114626809126e-11 Iter 135: T = 762.0436145277595 K, F = -4.6508004847289897e-7, relative_change = 6.0520101051669795e-12 Iter 140: T = 762.043614513673 K, F = -1.9450168908807797e-7, relative_change = 2.5310184597292783e-12 Iter 145: T = 762.0436145077819 K, F = -8.134366269452187e-8, relative_change = 1.0585116912592627e-12 Iter 150: T = 762.0436145053181 K, F = -3.401963566407318e-8, relative_change = 4.4269191834389173e-13 Converged in 154 iterations to T = 762.0436145044288 K Iter 1: T = 964.3784525146515 K, F = -8116.403479376069, relative_change = 0.03562154748534854 Iter 2: T = 930.6856664143794 K, F = -6885.524945207745, relative_change = 0.03493730704208179 Iter 3: T = 898.8908171108922 K, F = -5840.234797094685, relative_change = 0.034162822584323356 Iter 5: T = 840.8821553549623 K, F = -4198.87289259958, relative_change = 0.03231800110640328 Iter 10: T = 727.0855027552698 K, F = -1830.8824068306615, relative_change = 0.025884846079078656 Iter 15: T = 653.815779895693 K, F = -790.4136545417566, relative_change = 0.017672997965005023 Iter 20: T = 612.4739499925595 K, F = -337.3899015694118, relative_change = 0.010101225925159777 Iter 25: T = 591.858519485568 K, F = -142.67951955463252, relative_change = 0.0050003163723878995 Iter 30: T = 582.4305022007188 K, F = -59.98993661474069, relative_change = 0.0022665693945417755 Iter 35: T = 578.3216080410468 K, F = -25.148392355148538, relative_change = 0.0009824961877661791 Iter 40: T = 576.5719463107861 K, F = -10.528154477484286, relative_change = 0.0004172706294539095 Iter 45: T = 575.8345670433703 K, F = -4.404912945160393, relative_change = 0.0001756488496336187 Iter 50: T = 575.5251843403836 K, F = -1.842523628891657, relative_change = 7.365998122467827e-5 Iter 55: T = 575.3956205465026 K, F = -0.7706243636212964, relative_change = 3.08408746073728e-5 Iter 60: T = 575.3414045185223 K, F = -0.3222946372423111, relative_change = 1.2904222410299532e-5 Iter 65: T = 575.3187253178186 K, F = -0.13478927289936177, relative_change = 5.397785131090802e-6 Iter 70: T = 575.3092396585619 K, F = -0.05637079966957981, relative_change = 2.2576080652210258e-6 Iter 75: T = 575.3052724769744 K, F = -0.023574996903450524, relative_change = 9.441918651392391e-7 Iter 80: T = 575.3036133252901 K, F = -0.009859354915176588, relative_change = 3.9487812284211557e-7 Iter 85: T = 575.3029194431751 K, F = -0.0041233016608976936, relative_change = 1.6514376277596055e-7 Iter 90: T = 575.3026292525018 K, F = -0.0017244142919883299, relative_change = 6.90652714897845e-8 Iter 95: T = 575.3025078911418 K, F = -0.0007211707020496338, relative_change = 2.888395241336155e-8 Iter 100: T = 575.3024571363446 K, F = -0.0003016022094315396, relative_change = 1.2079619290157984e-8 Iter 105: T = 575.3024359100775 K, F = -0.0001261336479848607, relative_change = 5.051842020148261e-9 Iter 110: T = 575.3024270329981 K, F = -5.2750597773043584e-5, relative_change = 2.1127408130344496e-9 Iter 115: T = 575.3024233204975 K, F = -2.2060929543765706e-5, relative_change = 8.835734497849606e-10 Iter 120: T = 575.3024217678853 K, F = -9.226144116802892e-6, relative_change = 3.695209702776089e-10 Iter 125: T = 575.3024211185644 K, F = -3.8584839314737e-6, relative_change = 1.5453809476305909e-10 Iter 130: T = 575.3024208470107 K, F = -1.6136642231878717e-6, relative_change = 6.462968347879577e-11 Iter 135: T = 575.3024207334437 K, F = -6.748535576472925e-7, relative_change = 2.702890182451338e-11 Iter 140: T = 575.3024206859485 K, F = -2.822314463801767e-7, relative_change = 1.1303794686350966e-11 Iter 145: T = 575.3024206660855 K, F = -1.1803182942138335e-7, relative_change = 4.727352616319726e-12 Iter 150: T = 575.3024206577785 K, F = -4.936205660888149e-8, relative_change = 1.9770247450785035e-12 Iter 155: T = 575.3024206543045 K, F = -2.0643453335633666e-8, relative_change = 8.268014113141968e-13 Iter 160: T = 575.3024206528515 K, F = -8.632933978791613e-9, relative_change = 3.4576201382024784e-13 Converged in 163 iterations to T = 575.3024206524261 K Iter 1: T = 963.6295290662205 K, F = -8287.046399511195, relative_change = 0.03637047093377957 Iter 2: T = 929.1411524114936 K, F = -7031.7081340337645, relative_change = 0.035790078670738586 Iter 3: T = 896.5016064851252 K, F = -5965.5979395856075, relative_change = 0.03512872704180171 Iter 5: T = 836.6509019644277 K, F = -4291.384021216438, relative_change = 0.03353414009382497 Iter 10: T = 717.4407592649495 K, F = -1874.9982770857284, relative_change = 0.027749332001543107 Iter 15: T = 638.3349763196103 K, F = -811.712184904335, relative_change = 0.01980199563001455 Iter 20: T = 592.1458969939135 K, F = -347.4532781217281, relative_change = 0.01182328784196123 Iter 25: T = 568.4479776726986 K, F = -147.23499738350432, relative_change = 0.006038483979195671 Iter 30: T = 557.4142589877217 K, F = -61.97644231281857, relative_change = 0.002785236859550216 Iter 35: T = 552.5608358468382 K, F = -25.99555729758005, relative_change = 0.0012174513540231416 Iter 40: T = 550.4852823020498 K, F = -10.885501223244372, relative_change = 0.0005189806875800896 Iter 45: T = 549.6089237775053 K, F = -4.554908168582934, relative_change = 0.00021881196068089734 Iter 50: T = 549.240936762533 K, F = -1.9053504747536074, relative_change = 9.182271805182606e-5 Iter 55: T = 549.0867788623333 K, F = -0.7969163577456246, relative_change = 3.845636655353088e-5 Iter 60: T = 549.0222623403514 K, F = -0.3332932525018935, relative_change = 1.6092553188923618e-5 Iter 65: T = 548.9952727314459 K, F = -0.13938954843185103, relative_change = 6.7317857104885725e-6 Iter 70: T = 548.9839839496625 K, F = -0.05829478139025995, relative_change = 2.8156084818141926e-6 Iter 75: T = 548.9792626005114 K, F = -0.02437964505140025, relative_change = 1.1775727492076532e-6 Iter 80: T = 548.9772880329185 K, F = -0.010195871182018146, relative_change = 4.924840222217485e-7 Iter 85: T = 548.9764622376501 K, F = -0.004264037272930593, relative_change = 2.0596427990790135e-7 Iter 90: T = 548.9761168788916 K, F = -0.001783271691852939, relative_change = 8.613699797459803e-8 Iter 95: T = 548.9759724455045 K, F = -0.0007457855853611473, relative_change = 3.602356960724969e-8 Iter 100: T = 548.9759120416968 K, F = -0.0003118964501824806, relative_change = 1.5065495485009542e-8 Iter 105: T = 548.975886780096 K, F = -0.00013043882238827909, relative_change = 6.300571613178105e-9 Iter 110: T = 548.9758762153915 K, F = -5.4551073175312936e-5, relative_change = 2.6349745291604028e-9 Iter 115: T = 548.9758717971057 K, F = -2.2813909745983407e-5, relative_change = 1.101977832799029e-9 Iter 120: T = 548.9758699493258 K, F = -9.541049081962516e-6, relative_change = 4.6086027671353104e-10 Iter 125: T = 548.9758691765622 K, F = -3.99018075430968e-6, relative_change = 1.9273727690682885e-10 Iter 130: T = 548.9758688533833 K, F = -1.668741290039577e-6, relative_change = 8.060503340813843e-11 Iter 135: T = 548.975868718226 K, F = -6.978876562757641e-7, relative_change = 3.370999342494653e-11 Iter 140: T = 548.9758686617015 K, F = -2.918645943261744e-7, relative_change = 1.4097904543887263e-11 Iter 145: T = 548.9758686380625 K, F = -1.2206145216797637e-7, relative_change = 5.895921379151824e-12 Iter 150: T = 548.9758686281762 K, F = -5.104737127448189e-8, relative_change = 2.4657357611831227e-12 Iter 155: T = 548.9758686240417 K, F = -2.1348373957508215e-8, relative_change = 1.0311882433472119e-12 Iter 160: T = 548.9758686223126 K, F = -8.928266931329532e-9, relative_change = 4.312611307781946e-13 Converged in 164 iterations to T = 548.9758686216885 K Iter 1: T = 969.333699477874 K, F = -6987.34574514907, relative_change = 0.03066630052212601 Iter 2: T = 940.80864400263 K, F = -5919.74638002753, relative_change = 0.029427487655292364 Iter 3: T = 914.385692856086 K, F = -5013.575758273096, relative_change = 0.028085361794858286 Iter 5: T = 867.6599303638117 K, F = -3592.0962742882807, relative_change = 0.025123221766174292 Iter 10: T = 783.4892172074408 K, F = -1549.030689253373, relative_change = 0.016853973999757067 Iter 15: T = 736.6188224791539 K, F = -660.5107298452895, relative_change = 0.009476598882726405 Iter 20: T = 713.4883039506348 K, F = -279.12158815649565, relative_change = 0.004639199371687855 Iter 25: T = 702.9762322190669 K, F = -117.31086278767874, relative_change = 0.002090309565105294 Iter 30: T = 698.4093374523554 K, F = -49.1686903445518, relative_change = 0.0009035370044233029 Iter 35: T = 696.4674449365218 K, F = -20.582337468348303, relative_change = 0.000383258945328924 Iter 40: T = 695.6495628557105 K, F = -8.611213880075072, relative_change = 0.00016124586020169868 Iter 45: T = 695.3064946239791 K, F = -3.601916225865396, relative_change = 6.760475540994392e-5 Iter 50: T = 695.1628400073739 K, F = -1.5064702002620478, relative_change = 2.830292613544531e-5 Iter 55: T = 695.1027304861676 K, F = -0.6300423529255846, relative_change = 1.1841843604181324e-5 Iter 60: T = 695.0775864616284 K, F = -0.2634944773389228, relative_change = 4.953314321791618e-6 Iter 65: T = 695.0670699670912 K, F = -0.11019710414440598, relative_change = 2.071695090498831e-6 Iter 70: T = 695.0626716749921 K, F = -0.04608584413984251, relative_change = 8.664355953907348e-7 Iter 75: T = 695.0608322272388 K, F = -0.019273667741452116, relative_change = 3.623586051263647e-7 Iter 80: T = 695.0600629430662 K, F = -0.008060481058517532, relative_change = 1.5154355171932111e-7 Iter 85: T = 695.0597412183365 K, F = -0.003370989970995275, relative_change = 6.337747277316237e-8 Iter 90: T = 695.0596066690548 K, F = -0.0014097883580510562, relative_change = 2.6505242197580966e-8 Iter 95: T = 695.0595503989106 K, F = -0.0005895903442501016, relative_change = 1.1084813408989617e-8 Iter 100: T = 695.0595268660595 K, F = -0.0002465737267426382, relative_change = 4.635802162887394e-9 Iter 105: T = 695.0595170243392 K, F = -0.00010312007693336067, relative_change = 1.9387479527010416e-9 Iter 110: T = 695.0595129084141 K, F = -4.3126047680197566e-5, relative_change = 8.108075700854884e-10 Iter 115: T = 695.0595111870851 K, F = -1.803582927295544e-5, relative_change = 3.390894335634379e-10 Iter 120: T = 695.0595104672047 K, F = -7.5427985726239655e-6, relative_change = 1.4181123969285116e-10 Iter 125: T = 695.0595101661421 K, F = -3.154487995482569e-6, relative_change = 5.930714572993212e-11 Iter 130: T = 695.0595100402342 K, F = -1.3192446943754987e-6, relative_change = 2.4802959314567853e-11 Iter 135: T = 695.059509987578 K, F = -5.517246179920221e-7, relative_change = 1.0372907555497386e-11 Iter 140: T = 695.0595099655566 K, F = -2.3073707289267276e-7, relative_change = 4.33805969328235e-12 Iter 145: T = 695.0595099563468 K, F = -9.64954726123679e-8, relative_change = 1.8141996650233362e-12 Iter 150: T = 695.0595099524953 K, F = -4.0355782049417144e-8, relative_change = 7.587241587161788e-13 Iter 155: T = 695.0595099508846 K, F = -1.68776045361696e-8, relative_change = 3.173137937783039e-13 Converged in 158 iterations to T = 695.0595099504129 K Iter 1: T = 966.5375747405228 K, F = -7624.445426355825, relative_change = 0.033462425259477215 Iter 2: T = 935.1169373874759 K, F = -6464.403108180676, relative_change = 0.032508448894479944 Iter 3: T = 905.7082866378737 K, F = -5479.442913271848, relative_change = 0.03144916916141408 Iter 5: T = 852.8015068108763 K, F = -3933.3730793856184, relative_change = 0.029010506949713 Iter 10: T = 753.0969791093399 K, F = -1706.1038424574162, relative_change = 0.021350329304020223 Iter 15: T = 693.4144487202296 K, F = -731.8288346698274, relative_change = 0.01317261508172788 Iter 20: T = 662.1080960003443 K, F = -310.62185361850004, relative_change = 0.006898343580038202 Iter 25: T = 647.3158109612466 K, F = -130.87769423739414, relative_change = 0.003228703614508039 Iter 30: T = 640.757667567413 K, F = -54.92184350135934, relative_change = 0.0014214781393016396 Iter 35: T = 637.9426924235421 K, F = -23.003177001238797, relative_change = 0.0006079173161788628 Iter 40: T = 636.7521884037309 K, F = -9.626300035652378, relative_change = 0.0002566673877774693 Iter 45: T = 636.2519413548291 K, F = -4.026908534688659, relative_change = 0.0001077722036324626 Iter 50: T = 636.0423150641801 K, F = -1.6842898762891545, relative_change = 4.514742125348243e-5 Iter 55: T = 635.9545736514337 K, F = -0.7044231801034512, relative_change = 1.8894480763238917e-5 Iter 60: T = 635.9178663238127 K, F = -0.2946039684721671, relative_change = 7.90422434506774e-6 Iter 65: T = 635.9025126372218 K, F = -0.12320790943232429, relative_change = 3.306048160426202e-6 Iter 70: T = 635.8960911495823 K, F = -0.051527196058821056, relative_change = 1.382700045641815e-6 Iter 75: T = 635.893405538099 K, F = -0.02154931969829149, relative_change = 5.782741297534594e-7 Iter 80: T = 635.8922823712941 K, F = -0.009012188262321641, relative_change = 2.418433260416119e-7 Iter 85: T = 635.8918126474224 K, F = -0.003769005705856643, relative_change = 1.011421482679552e-7 Iter 90: T = 635.8916162029221 K, F = -0.0015762433631019146, relative_change = 4.229892095208258e-8 Iter 95: T = 635.8915340474218 K, F = -0.0006592038276524437, relative_change = 1.7689925554245048e-8 Iter 100: T = 635.8914996889993 K, F = -0.00027568691841162174, relative_change = 7.3981401699485436e-9 Iter 105: T = 635.8914853198946 K, F = -0.0001152955625514096, relative_change = 3.0939909278558893e-9 Iter 110: T = 635.8914793105631 K, F = -4.821798162385482e-5, relative_change = 1.2939440262454443e-9 Iter 115: T = 635.8914767973888 K, F = -2.016533453680358e-5, relative_change = 5.411428221044357e-10 Iter 120: T = 635.8914757463493 K, F = -8.433383963002417e-6, relative_change = 2.2631239889489733e-10 Iter 125: T = 635.8914753067921 K, F = -3.5269420541328422e-6, relative_change = 9.464655269612513e-11 Iter 130: T = 635.891475122964 K, F = -1.4750095059246071e-6, relative_change = 3.9582324568767836e-11 Iter 135: T = 635.8914750460849 K, F = -6.168662640138045e-7, relative_change = 1.6553792089947528e-11 Iter 140: T = 635.8914750139331 K, F = -2.5798103969743025e-7, relative_change = 6.922998945574076e-12 Iter 145: T = 635.8914750004869 K, F = -1.078908554719149e-7, relative_change = 2.8952836209218068e-12 Iter 150: T = 635.8914749948635 K, F = -4.5121715808171814e-8, relative_change = 1.2108548417877335e-12 Iter 155: T = 635.8914749925118 K, F = -1.8870437712426025e-8, relative_change = 5.063938828985991e-13 Converged in 160 iterations to T = 635.8914749915282 K Iter 1: T = 966.5064652684896 K, F = -7631.533749151345, relative_change = 0.03349353473151044 Iter 2: T = 935.0533153892447 K, F = -6470.467418851679, relative_change = 0.03254313448436927 Iter 3: T = 905.6107912832213 K, F = -5484.634773480823, relative_change = 0.03148753511853726 Iter 5: T = 852.6326155605028 K, F = -3937.186051688405, relative_change = 0.0290561752944945 Iter 10: T = 752.7393399600993 K, F = -1707.8784159522818, relative_change = 0.02140812056143444 Iter 15: T = 692.8883425401908 K, F = -732.6479635584119, relative_change = 0.013224660604795413 Iter 20: T = 661.466906274357 K, F = -310.98925224294993, relative_change = 0.0069323662512743274 Iter 25: T = 646.6116350238603 K, F = -131.0375101622048, relative_change = 0.0032465163174499588 Iter 30: T = 640.0234900524996 K, F = -54.98996418736365, relative_change = 0.0014297344277545327 Iter 35: T = 637.1952142777441 K, F = -23.0319089671276, relative_change = 0.0006115283784878501 Iter 40: T = 635.9990060327223 K, F = -9.638360094403, relative_change = 0.0002582066477208354 Iter 45: T = 635.4963478306987 K, F = -4.031960005984615, relative_change = 0.00010842113303403215 Iter 50: T = 635.2857086338125 K, F = -1.6864038364788514, relative_change = 4.541972752946418e-5 Iter 55: T = 635.1975428142962 K, F = -0.7053075045385042, relative_change = 1.9008523349139177e-5 Iter 60: T = 635.1606578549239 K, F = -0.29497384571499824, relative_change = 7.951946492916292e-6 Iter 65: T = 635.1452298561431 K, F = -0.1233626038958387, relative_change = 3.326011063843166e-6 Iter 70: T = 635.138777285977 K, F = -0.05159189242481371, relative_change = 1.3910496330380706e-6 Iter 75: T = 635.1360786746608 K, F = -0.02157637671710627, relative_change = 5.817661778247897e-7 Iter 80: T = 635.1349500710393 K, F = -0.009023503868826666, relative_change = 2.4330376860597645e-7 Iter 85: T = 635.1344780734031 K, F = -0.0037737380339576965, relative_change = 1.0175292739049198e-7 Iter 90: T = 635.1342806779834 K, F = -0.0015782224795451438, relative_change = 4.2554356858733145e-8 Iter 95: T = 635.1341981247966 K, F = -0.0006600315178663108, relative_change = 1.779675203867349e-8 Iter 100: T = 635.1341636000567 K, F = -0.0002760330686145118, relative_change = 7.44281631252651e-9 Iter 105: T = 635.1341491613961 K, F = -0.00011544032675381288, relative_change = 3.112675029818718e-9 Iter 110: T = 635.1341431229754 K, F = -4.8278523026246134e-5, relative_change = 1.3017579222806388e-9 Iter 115: T = 635.1341405976358 K, F = -2.0190655065421836e-5, relative_change = 5.444107242200868e-10 Iter 120: T = 635.1341395415086 K, F = -8.443974038097046e-6, relative_change = 2.2767909425792517e-10 Iter 125: T = 635.1341390998235 K, F = -3.5313702329009544e-6, relative_change = 9.521810170789066e-11 Iter 130: T = 635.1341389151056 K, F = -1.4768614489679699e-6, relative_change = 3.9821353915500054e-11 Iter 135: T = 635.1341388378543 K, F = -6.176406920355149e-7, relative_change = 1.6653754908146894e-11 Iter 140: T = 635.1341388055469 K, F = -2.5830357569534e-7, relative_change = 6.96476851030177e-12 Iter 145: T = 635.1341387920355 K, F = -1.0802566791090484e-7, relative_change = 2.9127501166835812e-12 Iter 150: T = 635.1341387863849 K, F = -4.5176717200501315e-8, relative_change = 1.2181224226379604e-12 Iter 155: T = 635.1341387840218 K, F = -1.8893433373357027e-8, relative_change = 5.094330942854527e-13 Converged in 160 iterations to T = 635.1341387830336 K Iter 1: T = 976.4843951965884 K, F = -5358.052923572334, relative_change = 0.023515604803411593 Iter 2: T = 955.129489409986 K, F = -4530.528507236614, relative_change = 0.021869172607006226 Iter 3: T = 935.8432470876995 K, F = -3829.0747778039663, relative_change = 0.020192280246943466 Iter 5: T = 903.0542614978903 K, F = -2731.361366455179, relative_change = 0.016840415611838543 Iter 10: T = 849.081462470553 K, F = -1164.6402349745856, relative_change = 0.009466507255973866 Iter 15: T = 822.4502388914294 K, F = -492.1533396556268, relative_change = 0.004633452858409351 Iter 20: T = 810.3483817967063 K, F = -206.84384199443772, relative_change = 0.0020875266171726525 Iter 25: T = 805.0910705229819 K, F = -86.69454330424388, relative_change = 0.0009022948412557779 Iter 30: T = 802.8556546297953 K, F = -36.290860724573996, relative_change = 0.00038272473197759364 Iter 35: T = 801.9141559742699 K, F = -15.183318962271668, relative_change = 0.00016101978897973437 Iter 40: T = 801.5192372195279 K, F = -6.350908387704299, relative_change = 6.750973890924441e-5 Iter 45: T = 801.3538712645961 K, F = -2.6562120589374807, relative_change = 2.8263106299029427e-5 Iter 50: T = 801.2846770993449 K, F = -1.110892222128744, relative_change = 1.1825175957547441e-5 Iter 55: T = 801.2557329448374 K, F = -0.4645941009733401, relative_change = 4.946341171647369e-6 Iter 60: T = 801.2436270465067 K, F = -0.19429979970461875, relative_change = 2.0687783911881994e-6 Iter 65: T = 801.2385640215598 K, F = -0.08125867126087016, relative_change = 8.652157191525118e-7 Iter 70: T = 801.236446570183 K, F = -0.033983377285337735, relative_change = 3.618484246750222e-7 Iter 75: T = 801.2355610208042 K, F = -0.01421225956545813, relative_change = 1.513301857532683e-7 Iter 80: T = 801.235190672442 K, F = -0.0059437376144554355, relative_change = 6.328824017250976e-8 Iter 85: T = 801.2350357881527 K, F = -0.002485742216252307, relative_change = 2.6467923954068042e-8 Iter 90: T = 801.2349710136616 K, F = -0.001039567109345052, relative_change = 1.1069206455288905e-8 Iter 95: T = 801.2349439241904 K, F = -0.00043475938716763807, relative_change = 4.6292751534386184e-9 Iter 100: T = 801.2349325950488 K, F = -0.00018182156798163263, relative_change = 1.9360182862650055e-9 Iter 105: T = 801.2349278570664 K, F = -7.603995050442514e-5, relative_change = 8.09665984306944e-10 Iter 110: T = 801.2349258755856 K, F = -3.1800816886473626e-5, relative_change = 3.38612003802262e-10 Iter 115: T = 801.2349250469067 K, F = -1.3299482171769128e-5, relative_change = 1.4161159274517856e-10 Iter 120: T = 801.2349247003432 K, F = -5.562002711068104e-6, relative_change = 5.922366406576185e-11 Iter 125: T = 801.2349245554062 K, F = -2.326096180116366e-6, relative_change = 2.4768045977463686e-11 Iter 130: T = 801.2349244947918 K, F = -9.727989036534268e-7, relative_change = 1.0358268152088045e-11 Iter 135: T = 801.2349244694421 K, F = -4.0683488999881945e-7, relative_change = 4.331938357497524e-12 Iter 140: T = 801.2349244588407 K, F = -1.70144606848055e-7, relative_change = 1.8116832329080644e-12 Iter 145: T = 801.2349244544071 K, F = -7.115830569226489e-8, relative_change = 7.576867212920009e-13 Iter 150: T = 801.2349244525527 K, F = -2.9758264963319903e-8, relative_change = 3.1686311235619977e-13 Converged in 153 iterations to T = 801.2349244520099 K Iter 1: T = 965.2422010472008 K, F = -7919.597554597741, relative_change = 0.034757798952799235 Iter 2: T = 932.4622001048155 K, F = -6716.99976073629, relative_change = 0.03396038932697091 Iter 3: T = 901.6305915877531 K, F = -5695.790131714677, relative_change = 0.03306472746412308 Iter 5: T = 845.699272246899 K, F = -4092.448269459525, relative_change = 0.030960493113316966 Iter 10: T = 737.7933754660536 K, F = -1780.55707766133, relative_change = 0.02393437713215554 Iter 15: T = 670.4649301190419 K, F = -766.5235416550704, relative_change = 0.015628505372930052 Iter 20: T = 633.7088756797845 K, F = -326.33896064297704, relative_change = 0.008577964015422004 Iter 25: T = 615.8409329361198 K, F = -137.7626736224399, relative_change = 0.004133247927725489 Iter 30: T = 607.7920200206499 K, F = -57.867720653963865, relative_change = 0.001846838939222021 Iter 35: T = 604.3105100187718 K, F = -24.247919324224625, relative_change = 0.0007951946739642507 Iter 40: T = 602.8330617789317 K, F = -10.149185289513209, relative_change = 0.00033672734142750404 Iter 45: T = 602.2113258299643 K, F = -4.245997971153444, relative_change = 0.00014156576493533148 Iter 50: T = 601.9506276191204 K, F = -1.7759883749054404, relative_change = 5.9335341902718174e-5 Iter 55: T = 601.8414808799673 K, F = -0.7427853374279948, relative_change = 2.483770844989126e-5 Iter 60: T = 601.795813444901 K, F = -0.3106497136233573, relative_change = 1.0391447459717974e-5 Iter 65: T = 601.7767111083077 K, F = -0.12991882240831612, relative_change = 4.346531132775625e-6 Iter 70: T = 601.768721640931 K, F = -0.05433384836564792, relative_change = 1.8178943361000623e-6 Iter 75: T = 601.7653802379428 K, F = -0.022723107167165857, relative_change = 7.602866553155915e-7 Iter 80: T = 601.7639828036631 K, F = -0.009503082289997633, relative_change = 3.179647253721934e-7 Iter 85: T = 601.7633983765226 K, F = -0.003974303816143443, relative_change = 1.3297730419598204e-7 Iter 90: T = 601.7631539615118 K, F = -0.0016621015476011025, relative_change = 5.5612811883792674e-8 Iter 95: T = 601.7630517441304 K, F = -0.0006951107570335457, relative_change = 2.325796223908982e-8 Iter 100: T = 601.7630089955824 K, F = -0.0002907036270705099, relative_change = 9.726761094501103e-9 Iter 105: T = 601.7629911176259 K, F = -0.00012157573065596505, relative_change = 4.067848296768931e-9 Iter 110: T = 601.7629836408503 K, F = -5.0844422042894966e-5, relative_change = 1.7012228240460413e-9 Iter 115: T = 601.7629805139734 K, F = -2.1263744616806246e-5, relative_change = 7.114717231162274e-10 Iter 120: T = 601.7629792062762 K, F = -8.892752260680759e-6, relative_change = 2.975459851323905e-10 Iter 125: T = 601.7629786593816 K, F = -3.71905617418955e-6, relative_change = 1.24437317656172e-10 Iter 130: T = 601.7629784306638 K, F = -1.5553541365398438e-6, relative_change = 5.2041186806986576e-11 Iter 135: T = 601.7629783350111 K, F = -6.504677242946677e-7, relative_change = 2.176424749983916e-11 Iter 140: T = 601.762978295008 K, F = -2.720328943217609e-7, relative_change = 9.102052293847754e-12 Iter 145: T = 601.7629782782782 K, F = -1.1376635522530876e-7, relative_change = 3.8065518409456794e-12 Iter 150: T = 601.7629782712817 K, F = -4.7578874617926203e-8, relative_change = 1.5919597003730442e-12 Iter 155: T = 601.7629782683557 K, F = -1.9898024172793072e-8, relative_change = 6.657755748794807e-13 Iter 160: T = 601.762978267132 K, F = -8.322044497965919e-9, relative_change = 2.7845045878652133e-13 Converged in 162 iterations to T = 601.762978266873 K Iter 1: T = 964.5861052605887 K, F = -8069.089603685504, relative_change = 0.03541389473941126 Iter 2: T = 931.1132278690338 K, F = -6845.003075185916, relative_change = 0.034701803404592904 Iter 3: T = 899.5510162422688 K, F = -5805.495437597356, relative_change = 0.03389728626130574 Iter 5: T = 842.0463132226009 K, F = -4173.261228151804, relative_change = 0.03198731117411058 Iter 10: T = 729.6990468294935 K, F = -1818.7311237952126, relative_change = 0.02539745697457122 Iter 15: T = 657.9289030964298 K, F = -784.6083653566012, relative_change = 0.017145450822498166 Iter 20: T = 617.7759934456418 K, F = -334.68387689102155, relative_change = 0.009696522649831736 Iter 25: T = 597.887879728091 K, F = -141.46830729410843, relative_change = 0.004765419804550632 Iter 30: T = 588.8295322794797 K, F = -59.46533997257039, relative_change = 0.002151674386385083 Iter 35: T = 584.889869180591 K, F = -24.925427191340514, relative_change = 0.0009309753723399013 Iter 40: T = 583.2138450171096 K, F = -10.434247774910668, relative_change = 0.0003950682955007192 Iter 45: T = 582.5077877942161 K, F = -4.365521860819924, relative_change = 0.00016624502414521518 Iter 50: T = 582.2115982739285 K, F = -1.8260289308797413, relative_change = 6.9706163557659e-5 Iter 55: T = 582.0875686004321 K, F = -0.7637224173989213, relative_change = 2.918364178108973e-5 Iter 60: T = 582.0356699172089 K, F = -0.31940751850390087, relative_change = 1.2210499286543873e-5 Iter 65: T = 582.0139603674248 K, F = -0.133581732923936, relative_change = 5.107548284355348e-6 Iter 70: T = 582.0048803169622 K, F = -0.05586577236018475, relative_change = 2.1362076809501028e-6 Iter 75: T = 582.0010827814214 K, F = -0.02336378500988029, relative_change = 8.934172988883907e-7 Iter 80: T = 581.9994945804697 K, F = -0.009771022977690225, relative_change = 3.7364298493878856e-7 Iter 85: T = 581.9988303712757 K, F = -0.004086360084742058, relative_change = 1.562628681815319e-7 Iter 90: T = 581.9985525902559 K, F = -0.0017089648659917578, relative_change = 6.535115674180819e-8 Iter 95: T = 581.9984364187758 K, F = -0.0007147095646320989, relative_change = 2.73306620277015e-8 Iter 100: T = 581.9983878344508 K, F = -0.000298900084311271, relative_change = 1.1430014141839386e-8 Iter 105: T = 581.9983675159016 K, F = -0.00012500358644451648, relative_change = 4.780169271666606e-9 Iter 110: T = 581.9983590184409 K, F = -5.227799266266375e-5, relative_change = 1.9991240138713536e-9 Iter 115: T = 581.9983554647011 K, F = -2.186328033210172e-5, relative_change = 8.360575412016894e-10 Iter 120: T = 581.9983539784847 K, F = -9.143485165896692e-6, relative_change = 3.49649261347505e-10 Iter 125: T = 581.9983533569314 K, F = -3.823914942857609e-6, relative_change = 1.4622750710098972e-10 Iter 130: T = 581.9983530969902 K, F = -1.599206108371387e-6, relative_change = 6.115405979462538e-11 Iter 135: T = 581.9983529882797 K, F = -6.688066756521671e-7, relative_change = 2.5575342200200475e-11 Iter 140: T = 581.9983529428157 K, F = -2.79702671579507e-7, relative_change = 1.0695903320105335e-11 Iter 145: T = 581.9983529238021 K, F = -1.169741375428579e-7, relative_change = 4.47312161603743e-12 Iter 150: T = 581.9983529158504 K, F = -4.891998545142329e-8, relative_change = 1.8707130395644687e-12 Iter 155: T = 581.998352912525 K, F = -2.0459126337524225e-8, relative_change = 7.823623426206693e-13 Iter 160: T = 581.9983529111342 K, F = -8.556571395867962e-9, relative_change = 3.272055283157568e-13 Converged in 163 iterations to T = 581.998352910727 K Iter 1: T = 964.396796620756 K, F = -8112.223757350384, relative_change = 0.035603203379243935 Iter 2: T = 930.7234492497884 K, F = -6881.945054389784, relative_change = 0.03491648612786664 Iter 3: T = 898.9491785455082 K, F = -5837.165564700829, relative_change = 0.034139325413893785 Iter 5: T = 840.9851539385515 K, F = -4196.609677098756, relative_change = 0.03228867569803363 Iter 10: T = 727.3174151209606 K, F = -1829.8075823997717, relative_change = 0.025841295878380043 Iter 15: T = 654.1821074617662 K, F = -789.8991505115004, relative_change = 0.017625389950031767 Iter 20: T = 612.9477500300017 K, F = -337.1494907897303, relative_change = 0.010064359139857879 Iter 25: T = 592.3985125134666 K, F = -142.57170095892977, relative_change = 0.004978779227601034 Iter 30: T = 583.0042794432603 K, F = -59.943184659564416, relative_change = 0.0022559977459799658 Iter 35: T = 578.9108843114244 K, F = -25.128510487625864, relative_change = 0.000977747773393825 Iter 40: T = 577.1679732706232 K, F = -10.519778661370447, relative_change = 0.00041522284375173117 Iter 45: T = 576.4334666594964 K, F = -4.401399153043373, relative_change = 0.00017478123384925118 Iter 50: T = 576.1252941695163 K, F = -1.8410521885635447, relative_change = 7.329514547176665e-5 Iter 55: T = 575.9962380602343 K, F = -0.7700086506071077, relative_change = 3.0687946052587065e-5 Iter 60: T = 575.9422346257346 K, F = -0.3220370792922799, relative_change = 1.2840204512348461e-5 Iter 65: T = 575.919644382113 K, F = -0.1346815486893911, relative_change = 5.371001340117097e-6 Iter 70: T = 575.9101959341625 K, F = -0.056325746299672075, relative_change = 2.24640488446263e-6 Iter 75: T = 575.9062443162558 K, F = -0.02355615472801237, relative_change = 9.395062323660559e-7 Iter 80: T = 575.9045916737456 K, F = -0.009851474837457685, relative_change = 3.929184777773088e-7 Iter 85: T = 575.9039005138898 K, F = -0.004120006108561558, relative_change = 1.643242057483364e-7 Iter 90: T = 575.9036114617056 K, F = -0.001723036051200777, relative_change = 6.872252120440961e-8 Iter 95: T = 575.9034905764767 K, F = -0.0007205943054961472, relative_change = 2.8740609863070603e-8 Iter 100: T = 575.9034400208034 K, F = -0.0003013611527837856, relative_change = 1.2019671643046174e-8 Iter 105: T = 575.9034188778123 K, F = -0.00012603283441225965, relative_change = 5.026771157007523e-9 Iter 110: T = 575.9034100355602 K, F = -5.270843740373676e-5, relative_change = 2.1022559198564603e-9 Iter 115: T = 575.9034063376247 K, F = -2.204329816735129e-5, relative_change = 8.791885657159589e-10 Iter 120: T = 575.9034047911038 K, F = -9.2187708008451e-6, relative_change = 3.6768717277005867e-10 Iter 125: T = 575.9034041443302 K, F = -3.8553994013978965e-6, relative_change = 1.5377114194539944e-10 Iter 130: T = 575.9034038738419 K, F = -1.612374543991102e-6, relative_change = 6.430894691162595e-11 Iter 135: T = 575.9034037607204 K, F = -6.743145075094326e-7, relative_change = 2.689477830527892e-11 Iter 140: T = 575.9034037134115 K, F = -2.8200620799667675e-7, relative_change = 1.1247710620615939e-11 Iter 145: T = 575.9034036936265 K, F = -1.1793862975117975e-7, relative_change = 4.7039375057510665e-12 Iter 150: T = 575.9034036853521 K, F = -4.932278413471991e-8, relative_change = 1.9672205339737065e-12 Iter 155: T = 575.9034036818916 K, F = -2.062733112095927e-8, relative_change = 8.227132765366792e-13 Iter 160: T = 575.9034036804444 K, F = -8.62598764639344e-9, relative_change = 3.440442449097671e-13 Converged in 163 iterations to T = 575.9034036800207 K Iter 1: T = 980.078327325648 K, F = -4539.172069254061, relative_change = 0.01992167267435195 Iter 2: T = 962.2031190441426 K, F = -3834.3174358866127, relative_change = 0.0182385507189836 Iter 3: T = 946.2539273439631 K, F = -3237.404927344152, relative_change = 0.016575701517184266 Iter 5: T = 919.6117852379242 K, F = -2304.718669983266, relative_change = 0.013399862114522796 Iter 10: T = 877.2868147085818 K, F = -978.5011536417112, relative_change = 0.007047482083668514 Iter 15: T = 857.2371710549838 K, F = -412.352063167033, relative_change = 0.003306963261844387 Iter 20: T = 848.3358237390537 K, F = -173.0550974639275, relative_change = 0.001457792488893045 Iter 25: T = 844.5125447478657 K, F = -72.48427707952625, relative_change = 0.0006238081619010933 Iter 30: T = 842.8951383484214 K, F = -30.333507069979586, relative_change = 0.0002634425301825574 Iter 35: T = 842.215422809506 K, F = -12.689311873598943, relative_change = 0.00011062876758196088 Iter 40: T = 841.9305759806251 K, F = -5.30743200007238, relative_change = 4.634615019968051e-5 Iter 45: T = 841.8113475264653 K, F = -2.2197383315789696, relative_change = 1.9396519766550053e-5 Iter 50: T = 841.7614668767217 K, F = -0.9283397850702281, relative_change = 8.11430852041209e-6 Iter 55: T = 841.7406030629514 K, F = -0.38824605722204364, relative_change = 3.3939298304964276e-6 Iter 60: T = 841.7318770192189 K, F = -0.16236971014480583, relative_change = 1.4194570513410302e-6 Iter 65: T = 841.7282275877247 K, F = -0.06790505198938424, relative_change = 5.936470205024376e-7 Iter 70: T = 841.7267013351353 K, F = -0.028398721202502974, relative_change = 2.4827257004993597e-7 Iter 75: T = 841.7260630351448 K, F = -0.011876687420379284, relative_change = 1.0383095544843542e-7 Iter 80: T = 841.7257960899533 K, F = -0.004966973051631962, relative_change = 4.342341581700812e-8 Iter 85: T = 841.7256844501966 K, F = -0.0020772475409245317, relative_change = 1.816020335703756e-8 Iter 90: T = 841.7256377611016 K, F = -0.0008687297466096755, relative_change = 7.594816080640159e-9 Iter 95: T = 841.7256182351615 K, F = -0.0003633131578431037, relative_change = 3.1762431631111307e-9 Iter 100: T = 841.7256100691798 K, F = -0.0001519419035491687, relative_change = 1.328342902567954e-9 Iter 105: T = 841.7256066540685 K, F = -6.35439166793983e-5, relative_change = 5.555288592637735e-10 Iter 110: T = 841.7256052258283 K, F = -2.6574824951941522e-5, relative_change = 2.323288063032401e-10 Iter 115: T = 841.7256046285212 K, F = -1.1113909319959703e-5, relative_change = 9.71626830679911e-11 Iter 120: T = 841.7256043787202 K, F = -4.647972298821301e-6, relative_change = 4.063461802826261e-11 Iter 125: T = 841.7256042742503 K, F = -1.943833487061397e-6, relative_change = 1.6993847257651072e-11 Iter 130: T = 841.7256042305598 K, F = -8.12934791039055e-7, relative_change = 7.107033480345653e-12 Iter 135: T = 841.725604212288 K, F = -3.399787631419571e-7, relative_change = 2.9722438738509436e-12 Iter 140: T = 841.7256042046465 K, F = -1.4218347765826422e-7, relative_change = 1.2430304956266003e-12 Iter 145: T = 841.7256042014507 K, F = -5.9462611501359675e-8, relative_change = 5.198483020986026e-13 Converged in 150 iterations to T = 841.7256042001142 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 6%|█▉ | ETA: 0:00:16 Bin 1 ray tracing: 12%|███▊ | ETA: 0:00:15 Bin 1 ray tracing: 19%|█████▌ | ETA: 0:00:14 Bin 1 ray tracing: 25%|███████▍ | ETA: 0:00:13 Bin 1 ray tracing: 31%|█████████▎ | ETA: 0:00:11 Bin 1 ray tracing: 37%|███████████▏ | ETA: 0:00:10 Bin 1 ray tracing: 44%|█████████████▏ | ETA: 0:00:09 Bin 1 ray tracing: 50%|███████████████ | ETA: 0:00:08 Bin 1 ray tracing: 56%|████████████████▊ | ETA: 0:00:07 Bin 1 ray tracing: 62%|██████████████████▋ | ETA: 0:00:06 Bin 1 ray tracing: 68%|████████████████████▍ | ETA: 0:00:05 Bin 1 ray tracing: 73%|██████████████████████ | ETA: 0:00:05 Bin 1 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:04 Bin 1 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:03 Bin 1 ray tracing: 90%|███████████████████████████▏ | ETA: 0:00:02 Bin 1 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 2 ray tracing: 12%|███▋ | ETA: 0:00:15 Bin 2 ray tracing: 18%|█████▌ | ETA: 0:00:14 Bin 2 ray tracing: 24%|███████▍ | ETA: 0:00:12 Bin 2 ray tracing: 31%|█████████▏ | ETA: 0:00:12 Bin 2 ray tracing: 37%|███████████▏ | ETA: 0:00:10 Bin 2 ray tracing: 43%|█████████████ | ETA: 0:00:09 Bin 2 ray tracing: 49%|██████████████▉ | ETA: 0:00:08 Bin 2 ray tracing: 56%|████████████████▊ | ETA: 0:00:07 Bin 2 ray tracing: 61%|██████████████████▍ | ETA: 0:00:06 Bin 2 ray tracing: 68%|████████████████████▍ | ETA: 0:00:05 Bin 2 ray tracing: 75%|██████████████████████▋ | ETA: 0:00:04 Bin 2 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 2 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 10%|██▉ | ETA: 0:00:13 Bin 3 ray tracing: 17%|█████ | ETA: 0:00:12 Bin 3 ray tracing: 24%|███████▏ | ETA: 0:00:11 Bin 3 ray tracing: 31%|█████████▎ | ETA: 0:00:10 Bin 3 ray tracing: 38%|███████████▌ | ETA: 0:00:09 Bin 3 ray tracing: 46%|█████████████▊ | ETA: 0:00:08 Bin 3 ray tracing: 54%|████████████████▎ | ETA: 0:00:06 Bin 3 ray tracing: 63%|██████████████████▉ | ETA: 0:00:05 Bin 3 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:04 Bin 3 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 3 ray tracing: 84%|█████████████████████████▍ | ETA: 0:00:02 Bin 3 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 3 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 10%|███ | ETA: 0:00:12 Bin 4 ray tracing: 19%|█████▋ | ETA: 0:00:10 Bin 4 ray tracing: 28%|████████▎ | ETA: 0:00:09 Bin 4 ray tracing: 37%|███████████▏ | ETA: 0:00:08 Bin 4 ray tracing: 46%|█████████████▉ | ETA: 0:00:07 Bin 4 ray tracing: 54%|████████████████▏ | ETA: 0:00:06 Bin 4 ray tracing: 61%|██████████████████▍ | ETA: 0:00:05 Bin 4 ray tracing: 68%|████████████████████▌ | ETA: 0:00:04 Bin 4 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:03 Bin 4 ray tracing: 82%|████████████████████████▊ | ETA: 0:00:02 Bin 4 ray tracing: 90%|██████████████████████████▉ | ETA: 0:00:01 Bin 4 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 6%|█▉ | ETA: 0:00:16 Bin 5 ray tracing: 12%|███▊ | ETA: 0:00:14 Bin 5 ray tracing: 20%|█████▉ | ETA: 0:00:12 Bin 5 ray tracing: 27%|████████ | ETA: 0:00:11 Bin 5 ray tracing: 33%|██████████ | ETA: 0:00:10 Bin 5 ray tracing: 40%|████████████▏ | ETA: 0:00:09 Bin 5 ray tracing: 47%|██████████████▎ | ETA: 0:00:08 Bin 5 ray tracing: 54%|████████████████▏ | ETA: 0:00:07 Bin 5 ray tracing: 60%|██████████████████▏ | ETA: 0:00:06 Bin 5 ray tracing: 67%|████████████████████▏ | ETA: 0:00:05 Bin 5 ray tracing: 74%|██████████████████████▎ | ETA: 0:00:04 Bin 5 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:03 Bin 5 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 6 ray tracing: 19%|█████▋ | ETA: 0:00:09 Bin 6 ray tracing: 29%|████████▊ | ETA: 0:00:07 Bin 6 ray tracing: 40%|████████████ | ETA: 0:00:06 Bin 6 ray tracing: 51%|███████████████▎ | ETA: 0:00:05 Bin 6 ray tracing: 62%|██████████████████▌ | ETA: 0:00:04 Bin 6 ray tracing: 72%|█████████████████████▊ | ETA: 0:00:03 Bin 6 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:02 Bin 6 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 10%|███ | ETA: 0:00:09 Bin 7 ray tracing: 20%|██████ | ETA: 0:00:08 Bin 7 ray tracing: 29%|████████▊ | ETA: 0:00:08 Bin 7 ray tracing: 38%|███████████▌ | ETA: 0:00:07 Bin 7 ray tracing: 46%|█████████████▊ | ETA: 0:00:07 Bin 7 ray tracing: 53%|████████████████ | ETA: 0:00:06 Bin 7 ray tracing: 61%|██████████████████▎ | ETA: 0:00:05 Bin 7 ray tracing: 67%|████████████████████▎ | ETA: 0:00:04 Bin 7 ray tracing: 74%|██████████████████████▎ | ETA: 0:00:03 Bin 7 ray tracing: 81%|████████████████████████▏ | ETA: 0:00:03 Bin 7 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 7 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 8 ray tracing: 14%|████▍ | ETA: 0:00:12 Bin 8 ray tracing: 22%|██████▌ | ETA: 0:00:11 Bin 8 ray tracing: 28%|████████▌ | ETA: 0:00:10 Bin 8 ray tracing: 35%|██████████▋ | ETA: 0:00:09 Bin 8 ray tracing: 42%|████████████▋ | ETA: 0:00:08 Bin 8 ray tracing: 49%|██████████████▋ | ETA: 0:00:08 Bin 8 ray tracing: 55%|████████████████▋ | ETA: 0:00:07 Bin 8 ray tracing: 62%|██████████████████▊ | ETA: 0:00:06 Bin 8 ray tracing: 70%|█████████████████████ | ETA: 0:00:04 Bin 8 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:03 Bin 8 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:02 Bin 8 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 8 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 7%|██ | ETA: 0:00:14 Bin 9 ray tracing: 13%|███▉ | ETA: 0:00:13 Bin 9 ray tracing: 19%|█████▉ | ETA: 0:00:12 Bin 9 ray tracing: 26%|███████▊ | ETA: 0:00:11 Bin 9 ray tracing: 34%|██████████▏ | ETA: 0:00:10 Bin 9 ray tracing: 41%|████████████▍ | ETA: 0:00:09 Bin 9 ray tracing: 50%|██████████████▉ | ETA: 0:00:07 Bin 9 ray tracing: 60%|██████████████████ | ETA: 0:00:05 Bin 9 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:04 Bin 9 ray tracing: 81%|████████████████████████▏ | ETA: 0:00:02 Bin 9 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 11%|███ | ETA: 0:00:08 Bin 10 ray tracing: 21%|██████▏ | ETA: 0:00:08 Bin 10 ray tracing: 31%|█████████▏ | ETA: 0:00:07 Bin 10 ray tracing: 42%|████████████ | ETA: 0:00:06 Bin 10 ray tracing: 50%|██████████████▍ | ETA: 0:00:06 Bin 10 ray tracing: 57%|████████████████▌ | ETA: 0:00:05 Bin 10 ray tracing: 64%|██████████████████▋ | ETA: 0:00:04 Bin 10 ray tracing: 72%|████████████████████▊ | ETA: 0:00:03 Bin 10 ray tracing: 79%|██████████████████████▊ | ETA: 0:00:03 Bin 10 ray tracing: 85%|████████████████████████▊ | ETA: 0:00:02 Bin 10 ray tracing: 92%|██████████████████████████▊ | ETA: 0:00:01 Bin 10 ray tracing: 99%|████████████████████████████▋| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.3012953524961 K, F = -7450.43095843185, relative_change = 0.032698704647503886 Iter 2: T = 936.6767678495563 K, F = -6315.55860285403, relative_change = 0.03165976066617366 Iter 3: T = 908.0951150970891 K, F = -5352.04552004562, relative_change = 0.030513890953103914 Iter 5: T = 856.9224438250473 K, F = -3839.878413070799, relative_change = 0.02790666386837056 Iter 10: T = 761.7339386213409 K, F = -1662.7354263050802, relative_change = 0.01999065454383736 Iter 15: T = 705.9847220912801 K, F = -711.9143857409287, relative_change = 0.011983333931821792 Iter 20: T = 677.3061415055056 K, F = -301.73521741570295, relative_change = 0.00613832651133074 Iter 25: T = 663.9304515805346 K, F = -127.02524589051161, relative_change = 0.0028360839266627046 Iter 30: T = 658.0415211031715 K, F = -53.282705810907515, relative_change = 0.0012406986773153853 Iter 35: T = 655.522069166072 K, F = -22.312396958048645, relative_change = 0.0005290857399876649 Iter 40: T = 654.458086201872 K, F = -9.33645522285002, relative_change = 0.00022310787114830652 Iter 45: T = 654.0112793511773 K, F = -3.9055231191039153, relative_change = 9.363175984442018e-5 Iter 50: T = 653.8240958101084 K, F = -1.633495343200476, relative_change = 3.921512192629947e-5 Iter 55: T = 653.7457566475679 K, F = -0.6831750922068304, relative_change = 1.6410258439592217e-5 Iter 60: T = 653.7129843321501 K, F = -0.28571685263492175, relative_change = 6.8647212134018615e-6 Iter 65: T = 653.6992768186341 K, F = -0.1194910519249161, relative_change = 2.8712154868869957e-6 Iter 70: T = 653.6935438684139 K, F = -0.04997273395592461, relative_change = 1.2008303254141703e-6 Iter 75: T = 653.6911462269275 K, F = -0.02089922020164342, relative_change = 5.02210979129509e-7 Iter 80: T = 653.6901434953122 K, F = -0.008740308034988764, relative_change = 2.1003227255098815e-7 Iter 85: T = 653.689724139347 K, F = -0.00365530199859454, relative_change = 8.783829213333193e-8 Iter 90: T = 653.6895487593894 K, F = -0.0015286910883707816, relative_change = 3.673507304541637e-8 Iter 95: T = 653.6894754133467 K, F = -0.0006393168938884641, relative_change = 1.5363055048057315e-8 Iter 100: T = 653.6894447391471 K, F = -0.00026736996419629566, relative_change = 6.425014629045305e-9 Iter 105: T = 653.689431910829 K, F = -0.00011181731186410415, relative_change = 2.6870180941667284e-9 Iter 110: T = 653.6894265458728 K, F = -4.6763335727673105e-5, relative_change = 1.1237431132887306e-9 Iter 115: T = 653.6894243021841 K, F = -1.9556985488500267e-5, relative_change = 4.699627983450841e-10 Iter 120: T = 653.6894233638467 K, F = -8.178965387684034e-6, relative_change = 1.965440680872426e-10 Iter 125: T = 653.6894229714227 K, F = -3.4205407567489132e-6, relative_change = 8.219707083288087e-11 Iter 130: T = 653.6894228073063 K, F = -1.4305110988543923e-6, relative_change = 3.437579921487764e-11 Iter 135: T = 653.6894227386708 K, F = -5.982562334416741e-7, relative_change = 1.4376355546342992e-11 Iter 140: T = 653.6894227099667 K, F = -2.501985523761796e-7, relative_change = 6.012379221190242e-12 Iter 145: T = 653.6894226979623 K, F = -1.0463582444941721e-7, relative_change = 2.5144440317180894e-12 Iter 150: T = 653.689422692942 K, F = -4.376009321571672e-8, relative_change = 1.0515739307898416e-12 Iter 155: T = 653.6894226908424 K, F = -1.8302284854332385e-8, relative_change = 4.3981180597868557e-13 Converged in 159 iterations to T = 653.6894226900846 K Iter 1: T = 970.3126251094026 K, F = -6764.296608806618, relative_change = 0.029687374890597466 Iter 2: T = 942.7889551743914 K, F = -5729.251218477028, relative_change = 0.028365775341640947 Iter 3: T = 917.3844204298533 K, F = -4850.836778775478, relative_change = 0.026946152269930718 Iter 5: T = 872.7177156731891 K, F = -3473.2671268519653, relative_change = 0.023857426033150872 Iter 10: T = 793.3962069209115 K, F = -1495.0678468689887, relative_change = 0.015551671127033866 Iter 15: T = 750.1461741111117 K, F = -636.4477517799451, relative_change = 0.008523126338633153 Iter 20: T = 729.1405774116794 K, F = -268.65707063510814, relative_change = 0.0041029081066833 Iter 25: T = 719.6832486273785 K, F = -112.84669653242312, relative_change = 0.0018323723394946545 Iter 30: T = 715.5935954047145 K, F = -47.284667059505736, relative_change = 0.0007887845747227402 Iter 35: T = 713.8582714491823 K, F = -19.79129171733531, relative_change = 0.00033397943261866337 Iter 40: T = 713.1280535914235 K, F = -8.279831620444657, relative_change = 0.00014040449041662472 Iter 45: T = 712.8218746803698 K, F = -3.4632298820488643, relative_change = 5.884754815876579e-5 Iter 50: T = 712.6936876461209 K, F = -1.4484526571040708, relative_change = 2.4633332077747133e-5 Iter 55: T = 712.6400538762705 K, F = -0.6057757006156531, relative_change = 1.0305909063504917e-5 Iter 60: T = 712.6176193184081 K, F = -0.253345344504891, relative_change = 4.310746443246985e-6 Iter 65: T = 712.6082361704656 K, F = -0.10595252303610114, relative_change = 1.802926737636765e-6 Iter 70: T = 712.6043118951076 K, F = -0.04431069344195715, relative_change = 7.540266746154338e-7 Iter 75: T = 712.6026706934036 K, F = -0.018531275687058146, relative_change = 3.1534666506086016e-7 Iter 80: T = 712.6019843192487 K, F = -0.0077500033394953816, relative_change = 1.3188238933161318e-7 Iter 85: T = 712.60169726868 K, F = -0.0032411443926910755, relative_change = 5.5154903520755994e-8 Iter 90: T = 712.6015772205817 K, F = -0.0013554853696419178, relative_change = 2.3066459155593246e-8 Iter 95: T = 712.601527015012 K, F = -0.0005668801847733551, relative_change = 9.646672186388895e-9 Iter 100: T = 712.6015060184393 K, F = -0.00023707606494383082, relative_change = 4.034354108704946e-9 Iter 105: T = 712.6014972374212 K, F = -9.914804182087344e-5, relative_change = 1.6872151705923813e-9 Iter 110: T = 712.6014935650944 K, F = -4.146489452960811e-5, relative_change = 7.056135404097008e-10 Iter 115: T = 712.6014920292835 K, F = -1.7341112252489133e-5, relative_change = 2.950959812026505e-10 Iter 120: T = 712.6014913869891 K, F = -7.252260758927598e-6, relative_change = 1.2341267287916207e-10 Iter 125: T = 712.6014911183738 K, F = -3.0329811642193505e-6, relative_change = 5.1612638511302936e-11 Iter 130: T = 712.6014910060359 K, F = -1.2684299166565438e-6, relative_change = 2.1585038373063595e-11 Iter 135: T = 712.6014909590547 K, F = -5.304724225441149e-7, relative_change = 9.02711884172734e-12 Iter 140: T = 712.6014909394065 K, F = -2.2184931103286232e-7, relative_change = 3.775238845230145e-12 Iter 145: T = 712.6014909311896 K, F = -9.27794610028343e-8, relative_change = 1.5788402659711699e-12 Iter 150: T = 712.601490927753 K, F = -3.8801151069911555e-8, relative_change = 6.60284280749829e-13 Iter 155: T = 712.6014909263158 K, F = -1.6226241017491816e-8, relative_change = 2.761240732344919e-13 Converged in 157 iterations to T = 712.6014909260117 K Iter 1: T = 974.5191557686051 K, F = -5805.83459666366, relative_change = 0.025480844231394992 Iter 2: T = 951.2267664710115 K, F = -4911.801924457071, relative_change = 0.02390141759627369 Iter 3: T = 930.0472357911657 K, F = -4153.639180222619, relative_change = 0.022265490655209854 Iter 5: T = 893.6697482823341 K, F = -2966.287713939381, relative_change = 0.018909200364687035 Iter 10: T = 832.4670195205148 K, F = -1268.21768353369, relative_change = 0.011083549984183875 Iter 15: T = 801.4462859467643 K, F = -536.9407784962452, relative_change = 0.005584762758926224 Iter 20: T = 787.1153037211342 K, F = -225.90376768625862, relative_change = 0.0025563682759978212 Iter 25: T = 780.8371379219159 K, F = -94.73047338276567, relative_change = 0.001113295400336473 Iter 30: T = 778.157370349839 K, F = -39.663539268996, relative_change = 0.0004738000156691933 Iter 35: T = 777.0268321388677 K, F = -16.59595275385531, relative_change = 0.00019962158644728917 Iter 40: T = 776.5522816051648 K, F = -6.942066504883251, relative_change = 8.374453864729305e-5 Iter 45: T = 776.3535115118108 K, F = -2.9035077883063583, relative_change = 3.5068720545821024e-5 Iter 50: T = 776.2703295723295 K, F = -1.2143258729707858, relative_change = 1.4674175588379225e-5 Iter 55: T = 776.2355324515025 K, F = -0.5078533234149865, relative_change = 6.138318933667994e-6 Iter 60: T = 776.2209782280812 K, F = -0.21239167907731393, relative_change = 2.5673638332327606e-6 Iter 65: T = 776.2148911890507 K, F = -0.0888249735317409, relative_change = 1.0737451683607172e-6 Iter 70: T = 776.2123454660864 K, F = -0.03714770614547158, relative_change = 4.490605654440542e-7 Iter 75: T = 776.2112808054994 K, F = -0.015535621587857262, relative_change = 1.8780380536757809e-7 Iter 80: T = 776.2108355501811 K, F = -0.006497183745272528, relative_change = 7.854202403124001e-8 Iter 85: T = 776.2106493388192 K, F = -0.002717200058540925, relative_change = 3.284725265998839e-8 Iter 90: T = 776.2105714629564 K, F = -0.0011363655517375726, relative_change = 1.373712035115897e-8 Iter 95: T = 776.2105388943322 K, F = -0.0004752416499294032, relative_change = 5.7450289963427786e-9 Iter 100: T = 776.2105252737433 K, F = -0.0001987517360308999, relative_change = 2.402639966716672e-9 Iter 105: T = 776.21051957745 K, F = -8.312034846991168e-5, relative_change = 1.004812749047505e-9 Iter 110: T = 776.2105171951922 K, F = -3.4761922108828e-5, relative_change = 4.202246943105379e-10 Iter 115: T = 776.2105161989035 K, F = -1.4537851015572478e-5, relative_change = 1.7574298731696915e-10 Iter 120: T = 776.2105157822438 K, F = -6.0799044081516485e-6, relative_change = 7.349783436881227e-11 Iter 125: T = 776.2105156079916 K, F = -2.5426893123237093e-6, relative_change = 3.073768032893801e-11 Iter 130: T = 776.2105155351172 K, F = -1.063382615296149e-6, relative_change = 1.2854859912500656e-11 Iter 135: T = 776.2105155046403 K, F = -4.4471891691433285e-7, relative_change = 5.376051193811715e-12 Iter 140: T = 776.2105154918944 K, F = -1.8598570294958705e-7, relative_change = 2.248316009109227e-12 Iter 145: T = 776.2105154865641 K, F = -7.778233590549632e-8, relative_change = 9.402834103617047e-13 Iter 150: T = 776.2105154843348 K, F = -3.2529734239616914e-8, relative_change = 3.9324056154044855e-13 Converged in 154 iterations to T = 776.2105154835302 K Iter 1: T = 970.3423829284 K, F = -6757.516261441056, relative_change = 0.02965761707160002 Iter 2: T = 942.8490539538124 K, F = -5723.462005582307, relative_change = 0.028333637134982628 Iter 3: T = 917.4752641512843 K, F = -4845.8926846313425, relative_change = 0.026911826125426783 Iter 5: T = 872.8703412209828 K, F = -3469.660060094154, relative_change = 0.02381967122499179 Iter 10: T = 793.6920206242555 K, F = -1493.4350533554523, relative_change = 0.015513922401076885 Iter 15: T = 750.5464475177297 K, F = -635.7224908839084, relative_change = 0.008496192926924741 Iter 20: T = 729.6010735393381 K, F = -268.34263107488295, relative_change = 0.004088015623193802 Iter 25: T = 720.1733197278118 K, F = -112.7127930239785, relative_change = 0.0018252741087038265 Iter 30: T = 716.0969770133432 K, F = -47.22820386125564, relative_change = 0.0007856399945084252 Iter 35: T = 714.3674003898622 K, F = -19.767593566250515, relative_change = 0.0003326315206706654 Iter 40: T = 713.6396190371869 K, F = -8.269905705220895, relative_change = 0.00013983488070974307 Iter 45: T = 713.3344649552338 K, F = -3.4590760902681397, relative_change = 5.860828731876679e-5 Iter 50: T = 713.206707547926 K, F = -1.4467150258119297, relative_change = 2.453308698972069e-5 Iter 55: T = 713.15325363409 K, F = -0.6050489208494906, relative_change = 1.0263953238142795e-5 Iter 60: T = 713.1308943258398 K, F = -0.25304138224682715, relative_change = 4.293194391311403e-6 Iter 65: T = 713.1215426537273 K, F = -0.10582539989039064, relative_change = 1.7955852757680565e-6 Iter 70: T = 713.117631542907 K, F = -0.044257528585748274, relative_change = 7.509562154126491e-7 Iter 75: T = 713.1159958469397 K, F = -0.01850904143255061, relative_change = 3.140625322377846e-7 Iter 80: T = 713.1153117753792 K, F = -0.0077407046943943625, relative_change = 1.3134534436636265e-7 Iter 85: T = 713.1150256877883 K, F = -0.0032372555882701493, relative_change = 5.4930304021436075e-8 Iter 90: T = 713.1149060424195 K, F = -0.0013538590238415527, relative_change = 2.2972528785649696e-8 Iter 95: T = 713.1148560052764 K, F = -0.0005662000257932176, relative_change = 9.607389327277227e-9 Iter 100: T = 713.1148350791418 K, F = -0.0002367916158366734, relative_change = 4.017925568677115e-9 Iter 105: T = 713.1148263275817 K, F = -9.902908120573706e-5, relative_change = 1.6803445479353535e-9 Iter 110: T = 713.1148226675747 K, F = -4.141514487632225e-5, relative_change = 7.027401824606927e-10 Iter 115: T = 713.1148211369159 K, F = -1.7320307368562382e-5, relative_change = 2.9389432588477776e-10 Iter 120: T = 713.1148204967762 K, F = -7.243559584146908e-6, relative_change = 1.2291012074944806e-10 Iter 125: T = 713.1148202290622 K, F = -3.0293439887696394e-6, relative_change = 5.140249511189154e-11 Iter 130: T = 713.114820117101 K, F = -1.2669068504278513e-6, relative_change = 2.149712065597028e-11 Iter 135: T = 713.1148200702775 K, F = -5.298360992167517e-7, relative_change = 8.99036148748057e-12 Iter 140: T = 713.1148200506952 K, F = -2.215832328733569e-7, relative_change = 3.759867185911694e-12 Iter 145: T = 713.1148200425058 K, F = -9.266910883098944e-8, relative_change = 1.5724273761250913e-12 Iter 150: T = 713.1148200390808 K, F = -3.875456044966086e-8, relative_change = 6.575948832450241e-13 Iter 155: T = 713.1148200376484 K, F = -1.620746925556915e-8, relative_change = 2.75011475533546e-13 Converged in 157 iterations to T = 713.1148200373453 K Iter 1: T = 969.2958592141379 K, F = -6995.967685236731, relative_change = 0.030704140785862137 Iter 2: T = 940.7319673398239 K, F = -5927.111927678801, relative_change = 0.029468703082536917 Iter 3: T = 914.2693742334242 K, F = -5019.870162612487, relative_change = 0.02812979044523166 Iter 5: T = 867.4629661781402 K, F = -3596.6962583889076, relative_change = 0.025173094872396 Iter 10: T = 783.0992174439773 K, F = -1551.1265965842279, relative_change = 0.016906785896053322 Iter 15: T = 736.0812838699783 K, F = -661.4491955320685, relative_change = 0.009516285755656112 Iter 20: T = 712.8625756854155 K, F = -279.5310555362977, relative_change = 0.004661910888393408 Iter 25: T = 702.306249101174 K, F = -117.48587816019986, relative_change = 0.0021013336765388843 Iter 30: T = 697.7192203596629 K, F = -49.242622012421, relative_change = 0.0009084625406871297 Iter 35: T = 695.7685913625361 K, F = -20.61339226936104, relative_change = 0.0003853781640951608 Iter 40: T = 694.9469976598078 K, F = -8.624225613999846, relative_change = 0.0001621428445525041 Iter 45: T = 694.602366851737 K, F = -3.6073621673510603, relative_change = 6.798178165093343e-5 Iter 50: T = 694.4580569249712 K, F = -1.5087485092669357, relative_change = 2.8460936590361008e-5 Iter 55: T = 694.3976730254361 K, F = -0.630995300560449, relative_change = 1.1907983942630097e-5 Iter 60: T = 694.3724141965894 K, F = -0.2638930344513685, relative_change = 4.9809852392268995e-6 Iter 65: T = 694.361849679717 K, F = -0.1103637895181877, relative_change = 2.083269190006242e-6 Iter 70: T = 694.3574313023888 K, F = -0.04615555465955157, relative_change = 8.712763354119852e-7 Iter 75: T = 694.3555834544527 K, F = -0.019302821635262535, relative_change = 3.643831152005853e-7 Iter 80: T = 694.3548106571709 K, F = -0.008072673584861967, relative_change = 1.5239023556343703e-7 Iter 85: T = 694.3544874632079 K, F = -0.0033760890342598993, relative_change = 6.373156773309535e-8 Iter 90: T = 694.3543522994735 K, F = -0.0014119208467304745, relative_change = 2.6653329210592927e-8 Iter 95: T = 694.3542957723578 K, F = -0.000590482176474616, relative_change = 1.114674521533889e-8 Iter 100: T = 694.354272132038 K, F = -0.00024694669998803764, relative_change = 4.661702761582551e-9 Iter 105: T = 694.3542622453731 K, F = -0.00010327605905169346, relative_change = 1.9495798986086377e-9 Iter 110: T = 694.3542581106516 K, F = -4.31912810839874e-5, relative_change = 8.15337616065166e-10 Iter 115: T = 694.3542563814616 K, F = -1.8063108971899666e-5, relative_change = 3.4098392112652837e-10 Iter 120: T = 694.3542556582938 K, F = -7.554208209192836e-6, relative_change = 1.4260355473450658e-10 Iter 125: T = 694.3542553558564 K, F = -3.1592591246409896e-6, relative_change = 5.963849154796464e-11 Iter 130: T = 694.3542552293734 K, F = -1.3212404429419067e-6, relative_change = 2.4941539756259452e-11 Iter 135: T = 694.3542551764767 K, F = -5.525592415844827e-7, relative_change = 1.0430863186400812e-11 Iter 140: T = 694.3542551543547 K, F = -2.3108667535076677e-7, relative_change = 4.362307810177425e-12 Iter 145: T = 694.354255145103 K, F = -9.664238864726116e-8, relative_change = 1.824353767593789e-12 Iter 150: T = 694.3542551412338 K, F = -4.041707990509735e-8, relative_change = 7.629680209073496e-13 Iter 155: T = 694.3542551396157 K, F = -1.6903102029175443e-8, relative_change = 3.1908604809699754e-13 Converged in 158 iterations to T = 694.354255139142 K Iter 1: T = 963.5579159638636 K, F = -8303.363513004855, relative_change = 0.03644208403613644 Iter 2: T = 928.9932612505571 K, F = -7045.689358813623, relative_change = 0.03587190156466193 Iter 3: T = 896.2724768708396 K, F = -5977.591225205468, relative_change = 0.035221767201702545 Iter 5: T = 836.2435983239299 K, F = -4300.2416145894595, relative_change = 0.033652390655443884 Iter 10: T = 716.4998958567867 K, F = -1879.2413410541576, relative_change = 0.027936911072376388 Iter 15: T = 636.797781282674 K, F = -813.7805102182172, relative_change = 0.02002645304090413 Iter 20: T = 590.0924925972935 K, F = -348.4433009478901, relative_change = 0.012013589225666648 Iter 25: T = 566.0546094948304 K, F = -147.68819450648382, relative_change = 0.006157199399173166 Iter 30: T = 554.8397727367392 K, F = -62.17543126559523, relative_change = 0.002845700582175851 Iter 35: T = 549.9013719030991 K, F = -26.080712082335854, relative_change = 0.0012450970756641446 Iter 40: T = 547.788417224455 K, F = -10.921477227905623, relative_change = 0.0005309979793332945 Iter 45: T = 546.8960701536826 K, F = -4.570019267347616, relative_change = 0.00022392088104712218 Iter 50: T = 546.5213341947979 K, F = -1.9116817227917424, relative_change = 9.397413727637793e-5 Iter 55: T = 546.3643427765969 K, F = -0.7995662022929138, relative_change = 3.935872543474504e-5 Iter 60: T = 546.2986393052789 K, F = -0.3344018069284992, relative_change = 1.6470388341786408e-5 Iter 65: T = 546.2711529602983 K, F = -0.13985322176963133, relative_change = 6.889881076614483e-6 Iter 70: T = 546.2596563780945 K, F = -0.05848870607737122, relative_change = 2.8817398856507983e-6 Iter 75: T = 546.2548481139222 K, F = -0.024460748588211928, relative_change = 1.2052321471184516e-6 Iter 80: T = 546.2528371956097 K, F = -0.010229789985004234, relative_change = 5.040519421853323e-7 Iter 85: T = 546.251996197718 K, F = -0.004278222580228641, relative_change = 2.1080219730627794e-7 Iter 90: T = 546.251644480985 K, F = -0.0017892041665846792, relative_change = 8.816028592247132e-8 Iter 95: T = 546.2514973886072 K, F = -0.0007482666179279007, relative_change = 3.6869735038606965e-8 Iter 100: T = 546.2514358727763 K, F = -0.00031293404744764386, relative_change = 1.5419372351256265e-8 Iter 105: T = 546.2514101461138 K, F = -0.0001308727577048474, relative_change = 6.448567200079791e-9 Iter 110: T = 546.2513993869151 K, F = -5.473255050086889e-5, relative_change = 2.696868081813132e-9 Iter 115: T = 546.2513948872895 K, F = -2.2889807101494908e-5, relative_change = 1.1278625247103642e-9 Iter 120: T = 546.2513930054923 K, F = -9.572791419082405e-6, relative_change = 4.716856209252658e-10 Iter 125: T = 546.2513922185021 K, F = -4.003455325224392e-6, relative_change = 1.972645429329137e-10 Iter 130: T = 546.2513918893735 K, F = -1.674293451714437e-6, relative_change = 8.249841864213101e-11 Iter 135: T = 546.2513917517279 K, F = -7.002087327179218e-7, relative_change = 3.4501785322511524e-11 Iter 140: T = 546.2513916941629 K, F = -2.928356994669201e-7, relative_change = 1.4429060893923807e-11 Iter 145: T = 546.2513916700885 K, F = -1.2246771893820174e-7, relative_change = 6.034421956362764e-12 Iter 150: T = 546.2513916600203 K, F = -5.1217150409677004e-8, relative_change = 2.5236519442120646e-12 Iter 155: T = 546.2513916558097 K, F = -2.141942687106102e-8, relative_change = 1.0554116704398254e-12 Iter 160: T = 546.2513916540487 K, F = -8.957419556088198e-9, relative_change = 4.413640567310942e-13 Converged in 164 iterations to T = 546.2513916534132 K Iter 1: T = 966.9098913197598 K, F = -7539.612739612162, relative_change = 0.03309010868024015 Iter 2: T = 935.8778533332926 K, F = -6391.8334204616385, relative_change = 0.03209403302732876 Iter 3: T = 906.8734625831958 K, F = -5417.321837781741, relative_change = 0.030991641320277635 Iter 5: T = 854.8165130523474 K, F = -3887.767346241017, relative_change = 0.02846825831497436 Iter 10: T = 757.3413995841912 K, F = -1684.9149536414095, relative_change = 0.02067359506125312 Iter 15: T = 699.6236680800336 K, F = -722.074687428813, relative_change = 0.01257236259152143 Iter 20: T = 669.6439440246085 K, F = -306.2586159558905, relative_change = 0.006510620560760505 Iter 25: T = 655.571940921131 K, F = -128.98314912686388, relative_change = 0.003027151404127882 Iter 30: T = 649.3553789793012 K, F = -54.11507631421792, relative_change = 0.0013283882736719135 Iter 35: T = 646.6915208349532 K, F = -22.663049849035353, relative_change = 0.0005672677698304605 Iter 40: T = 645.5657660280453 K, F = -9.483561652843463, relative_change = 0.00023935204215273128 Iter 45: T = 645.0928773123452 K, F = -3.967126160782495, relative_change = 0.00010047445821418646 Iter 50: T = 644.8947421046372 K, F = -1.6592727824601405, relative_change = 4.2085492540578785e-5 Iter 55: T = 644.8118151043519 K, F = -0.6939580340584269, relative_change = 1.761220359472325e-5 Iter 60: T = 644.7771227473403 K, F = -0.2902268469287296, relative_change = 7.367655582732102e-6 Iter 65: T = 644.7626120126408 K, F = -0.12137726225293932, relative_change = 3.081595293769305e-6 Iter 70: T = 644.7565431042873 K, F = -0.050761583085037365, relative_change = 1.288821833767558e-6 Iter 75: T = 644.7540049538478 K, F = -0.021229128679883746, relative_change = 5.390115062146285e-7 Iter 80: T = 644.7529434584424 K, F = -0.008878280110923453, relative_change = 2.2542294211832875e-7 Iter 85: T = 644.7524995265367 K, F = -0.003713003640020973, relative_change = 9.427489760831104e-8 Iter 90: T = 644.7523138685883 K, F = -0.0015528226167230708, relative_change = 3.942694596727093e-8 Iter 95: T = 644.7522362241605 K, F = -0.0006494089894086841, relative_change = 1.6488829786755616e-8 Iter 100: T = 644.7522037523237 K, F = -0.00027159059933734575, relative_change = 6.8958272998685764e-9 Iter 105: T = 644.752190172212 K, F = -0.0001135824332171298, relative_change = 2.8839176474381656e-9 Iter 110: T = 644.7521844928467 K, F = -4.750152969928978e-5, relative_change = 1.2060888435389418e-9 Iter 115: T = 644.7521821176683 K, F = -1.9865706605337596e-5, relative_change = 5.044007567255972e-10 Iter 120: T = 644.7521811243404 K, F = -8.308075353291589e-6, relative_change = 2.109464117800691e-10 Iter 125: T = 644.7521807089187 K, F = -3.4745357809229382e-6, relative_change = 8.822029491404719e-11 Iter 130: T = 644.7521805351845 K, F = -1.453092463299388e-6, relative_change = 3.689478361913931e-11 Iter 135: T = 644.7521804625268 K, F = -6.077009779836828e-7, relative_change = 1.5429848179769413e-11 Iter 140: T = 644.7521804321404 K, F = -2.541487522100816e-7, relative_change = 6.4529707942391864e-12 Iter 145: T = 644.7521804194325 K, F = -1.0628809155033281e-7, relative_change = 2.698710674948074e-12 Iter 150: T = 644.7521804141179 K, F = -4.445147738785238e-8, relative_change = 1.128646443818309e-12 Iter 155: T = 644.7521804118952 K, F = -1.8590121331207854e-8, relative_change = 4.720129805336198e-13 Converged in 160 iterations to T = 644.7521804109657 K Iter 1: T = 965.1808530825343 K, F = -7933.575746703977, relative_change = 0.03481914691746571 Iter 2: T = 932.3361899081783 K, F = -6728.966799826499, relative_change = 0.03402954282553239 Iter 3: T = 901.4365507587518 K, F = -5706.044445806425, relative_change = 0.03314216425779813 Iter 5: T = 845.3593171173438 K, F = -4099.997664364934, relative_change = 0.031055361713886814 Iter 10: T = 737.0467482134001 K, F = -1784.1127691433153, relative_change = 0.0240664532194218 Iter 15: T = 669.3208857475453 K, F = -768.1987836203427, relative_change = 0.01576148573848525 Iter 20: T = 632.2682024120298 K, F = -327.10700010920453, relative_change = 0.008673431010682813 Iter 25: T = 614.2271486500582 K, F = -138.1020456820497, relative_change = 0.004186247024473161 Iter 30: T = 606.0927087530932 K, F = -58.013622656924206, relative_change = 0.0018721530597973067 Iter 35: T = 602.5726002425175 K, F = -24.309708170923685, relative_change = 0.0008064199883466416 Iter 40: T = 601.0784655131442 K, F = -10.175167250596317, relative_change = 0.0003415410810642534 Iter 45: T = 600.4496519170729 K, F = -4.256889107262897, relative_change = 0.00014360035750209392 Iter 50: T = 600.1859761016664 K, F = -1.780547616706348, relative_change = 6.0190024786240766e-5 Iter 55: T = 600.0755809833116 K, F = -0.7446928458043138, relative_change = 2.5195813515747617e-5 Iter 60: T = 600.0293909156364 K, F = -0.31144759285250534, relative_change = 1.0541328081877195e-5 Iter 65: T = 600.0100699123097 K, F = -0.13025252890926545, relative_change = 4.4092334461170655e-6 Iter 70: T = 600.0019889791755 K, F = -0.0544734125865432, relative_change = 1.8441207698658836e-6 Iter 75: T = 599.9986093211907 K, F = -0.022781475322609213, relative_change = 7.712554889584642e-7 Iter 80: T = 599.9971958877028 K, F = -0.009527492676609517, relative_change = 3.225521320282177e-7 Iter 85: T = 599.9966047694128 K, F = -0.003984512553026565, relative_change = 1.3489583156704535e-7 Iter 90: T = 599.9963575560679 K, F = -0.0016663709676618677, relative_change = 5.641516630645327e-8 Iter 95: T = 599.9962541683869 K, F = -0.0006968962803066692, relative_change = 2.359351703093208e-8 Iter 100: T = 599.9962109304051 K, F = -0.0002914503536651236, relative_change = 9.867094195216957e-9 Iter 105: T = 599.9961928477616 K, F = -0.00012188801982171427, relative_change = 4.126537265409462e-9 Iter 110: T = 599.9961852853834 K, F = -5.097502516721031e-5, relative_change = 1.7257672566005922e-9 Iter 115: T = 599.9961821227065 K, F = -2.131836481972238e-5, relative_change = 7.217365125911218e-10 Iter 120: T = 599.9961808000372 K, F = -8.915593991520865e-6, relative_change = 3.018388059810289e-10 Iter 125: T = 599.9961802468811 K, F = -3.7286075085796178e-6, relative_change = 1.2623258129203345e-10 Iter 130: T = 599.9961800155446 K, F = -1.5593478946418493e-6, relative_change = 5.2791963160867095e-11 Iter 135: T = 599.9961799187969 K, F = -6.521377748924806e-7, relative_change = 2.2078224835305725e-11 Iter 140: T = 599.996179878336 K, F = -2.727318120787636e-7, relative_change = 9.233377517107145e-12 Iter 145: T = 599.9961798614146 K, F = -1.1405964228661247e-7, relative_change = 3.8615067630458596e-12 Iter 150: T = 599.9961798543379 K, F = -4.770064560011278e-8, relative_change = 1.6149127062311693e-12 Iter 155: T = 599.9961798513784 K, F = -1.9948720897389194e-8, relative_change = 6.75367019580411e-13 Iter 160: T = 599.9961798501406 K, F = -8.342513679870933e-9, relative_change = 2.824370860076528e-13 Converged in 162 iterations to T = 599.9961798498787 K Iter 1: T = 980.2458658797412 K, F = -4500.998250333621, relative_change = 0.019754134120258768 Iter 2: T = 962.5308921749493 K, F = -3801.895142361684, relative_change = 0.018071969820442232 Iter 3: T = 946.7334419519119 K, F = -3209.8816956011265, relative_change = 0.016412408527835622 Iter 5: T = 920.3655960957669 K, F = -2284.9204402278233, relative_change = 0.01324936897913198 Iter 10: T = 878.5404588589762 K, F = -969.9173251597691, relative_change = 0.00694864118028992 Iter 15: T = 858.7609085104126 K, F = -408.6892329984529, relative_change = 0.003255068410125347 Iter 20: T = 849.9875320171993 K, F = -171.5082943915678, relative_change = 0.0014337048943808852 Iter 25: T = 846.220862227658 K, F = -71.83457077871427, relative_change = 0.000613266179320697 Iter 30: T = 844.627711649216 K, F = -30.06128397059581, relative_change = 0.00025894762985141553 Iter 35: T = 843.95824505777 K, F = -12.5753748364093, relative_change = 0.00010873355979263894 Iter 40: T = 843.6777030477941 K, F = -5.25976632445412, relative_change = 4.555083622106917e-5 Iter 45: T = 843.5602781892667 K, F = -2.1998011986923034, relative_change = 1.9063433235280208e-5 Iter 50: T = 843.511152397834 K, F = -0.920001351621744, relative_change = 7.974924243365635e-6 Iter 55: T = 843.4906043751542 K, F = -0.3847587396706861, relative_change = 3.3356230453035325e-6 Iter 60: T = 843.482010416582 K, F = -0.16091125741305579, relative_change = 1.3950699004168718e-6 Iter 65: T = 843.4784162277501 K, F = -0.06729510703293107, relative_change = 5.834475754384721e-7 Iter 70: T = 843.4769130788391 K, F = -0.028143634483989155, relative_change = 2.440069621009319e-7 Iter 75: T = 843.4762844411765 K, F = -0.011770007024070717, relative_change = 1.0204701353886332e-7 Iter 80: T = 843.4760215369025 K, F = -0.004922358021036466, relative_change = 4.2677347604688126e-8 Iter 85: T = 843.4759115871087 K, F = -0.002058589001310951, relative_change = 1.7848188314637435e-8 Iter 90: T = 843.4758656047766 K, F = -0.0008609265209824635, relative_change = 7.464327580798256e-9 Iter 95: T = 843.4758463744135 K, F = -0.00036004975458370225, relative_change = 3.1216712923077965e-9 Iter 100: T = 843.4758383320457 K, F = -0.00015057711019661468, relative_change = 1.3055202997218466e-9 Iter 105: T = 843.4758349686313 K, F = -6.297314647407681e-5, relative_change = 5.459841971519254e-10 Iter 110: T = 843.4758335620111 K, F = -2.6336121534020762e-5, relative_change = 2.2833711019886392e-10 Iter 115: T = 843.4758329737457 K, F = -1.1014078953763828e-5, relative_change = 9.549329292496804e-11 Iter 120: T = 843.4758327277262 K, F = -4.606221046810077e-6, relative_change = 3.993645026130231e-11 Iter 125: T = 843.4758326248381 K, F = -1.926379615824203e-6, relative_change = 1.67019261504416e-11 Iter 130: T = 843.4758325818088 K, F = -8.056349503071658e-7, relative_change = 6.9849448867617146e-12 Iter 135: T = 843.4758325638135 K, F = -3.3692556167252974e-7, relative_change = 2.9211822036340774e-12 Iter 140: T = 843.4758325562876 K, F = -1.4090637989738752e-7, relative_change = 1.221674031821602e-12 Iter 145: T = 843.4758325531402 K, F = -5.892894172632168e-8, relative_change = 5.109204983016491e-13 Converged in 150 iterations to T = 843.4758325518239 K Iter 1: T = 976.4169822652623 K, F = -5373.413024101249, relative_change = 0.02358301773473774 Iter 2: T = 954.996025187222 K, F = -4543.600537088324, relative_change = 0.021938329081848014 Iter 3: T = 935.645657675139 K, F = -3840.1961063364183, relative_change = 0.020262249267780495 Iter 5: T = 902.7363549776425 K, F = -2739.40043831319, relative_change = 0.01690906013022891 Iter 10: T = 848.5265555828098 K, F = -1168.1708176479826, relative_change = 0.009518081867319565 Iter 15: T = 821.7553477614971 K, F = -493.67486789247096, relative_change = 0.0046629634385078654 Iter 20: T = 809.58362258288 K, F = -207.4900205820621, relative_change = 0.0021018499566919967 Iter 25: T = 804.2945990811467 K, F = -86.96670090808531, relative_change = 0.000908694247213974 Iter 30: T = 802.0454364793806 K, F = -36.40503197064374, relative_change = 0.0003854780445640837 Iter 35: T = 801.0981001150731 K, F = -15.231129510158745, relative_change = 0.00016218515366518655 Iter 40: T = 800.7007241466174 K, F = -6.370914402672757, relative_change = 6.799957119584061e-5 Iter 45: T = 800.534327766813 K, F = -2.664580756958686, relative_change = 2.8468393166131947e-5 Iter 50: T = 800.4647021761327 K, F = -1.1143924520438118, relative_change = 1.1911105312779227e-5 Iter 55: T = 800.4355775086309 K, F = -0.4660579985091001, relative_change = 4.982291148401973e-6 Iter 60: T = 800.4233961026073 K, F = -0.1949120295607224, relative_change = 2.083815426915059e-6 Iter 65: T = 800.4183014968166 K, F = -0.08151471491987805, relative_change = 8.715047939639059e-7 Iter 70: T = 800.4161708374947 K, F = -0.0340904581205842, relative_change = 3.644786620456109e-7 Iter 75: T = 800.4152797643153 K, F = -0.01425704210564005, relative_change = 1.5243019488499126e-7 Iter 80: T = 800.4149071058196 K, F = -0.005962466217893314, relative_change = 6.374827931160304e-8 Iter 85: T = 800.4147512554024 K, F = -0.002493574741603388, relative_change = 2.6660318175686297e-8 Iter 90: T = 800.4146860768647 K, F = -0.0010428427660766904, relative_change = 1.1149668091503468e-8 Iter 95: T = 800.4146588184161 K, F = -0.00043612930224723456, relative_change = 4.6629251423962475e-9 Iter 100: T = 800.4146474186065 K, F = -0.0001823944841783387, relative_change = 1.9500911298564044e-9 Iter 105: T = 800.4146426510698 K, F = -7.627955103495232e-5, relative_change = 8.155514173103978e-10 Iter 110: T = 800.414640657229 K, F = -3.190102052930133e-5, relative_change = 3.410733605782225e-10 Iter 115: T = 800.4146398233808 K, F = -1.3341386096210606e-5, relative_change = 1.426409355461563e-10 Iter 120: T = 800.4146394746556 K, F = -5.5795253787183086e-6, relative_change = 5.965412557851802e-11 Iter 125: T = 800.4146393288146 K, F = -2.3334253942408623e-6, relative_change = 2.494808109446797e-11 Iter 130: T = 800.414639267822 K, F = -9.758649032187705e-7, relative_change = 1.0433569811860464e-11 Iter 135: T = 800.4146392423144 K, F = -4.08119317563127e-7, relative_change = 4.363453771075154e-12 Iter 140: T = 800.4146392316467 K, F = -1.706799952483351e-7, relative_change = 1.8248444435505058e-12 Iter 145: T = 800.4146392271854 K, F = -7.138003432771711e-8, relative_change = 7.631676977569305e-13 Iter 150: T = 800.4146392253197 K, F = -2.9853973515514554e-8, relative_change = 3.1918712916810033e-13 Converged in 153 iterations to T = 800.4146392247733 K Iter 1: T = 980.8900697925246 K, F = -4354.215776009813, relative_change = 0.019109930207475416 Iter 2: T = 963.7895883366155 K, F = -3677.255389502683, relative_change = 0.017433637043064647 Iter 3: T = 948.5725094048162 K, F = -3104.100234659706, relative_change = 0.01578879779980001 Iter 5: T = 923.2497043789201 K, F = -2208.8672380566322, relative_change = 0.01267838525841601 Iter 10: T = 883.3141981307416 K, F = -936.9835612319683, relative_change = 0.006578572290168851 Iter 15: T = 864.5471589975621 K, F = -394.6480267722677, relative_change = 0.003062305283788429 Iter 20: T = 856.2512718113285 K, F = -165.5814796688973, relative_change = 0.0013445851108285268 Iter 25: T = 852.6953508322275 K, F = -69.34566276913499, relative_change = 0.0005743326011590408 Iter 30: T = 851.1924115210055 K, F = -29.01854608942731, relative_change = 0.00024235997580858743 Iter 35: T = 850.5610460732287 K, F = -12.138962188512908, relative_change = 0.00010174192624599675 Iter 40: T = 850.2965046144018 K, F = -5.077195800970291, relative_change = 4.2617240713290164e-5 Iter 45: T = 850.1857830174558 K, F = -2.1234379382161137, relative_change = 1.7834881520289977e-5 Iter 50: T = 850.139462650477 K, F = -0.888063558174299, relative_change = 7.4608337320665715e-6 Iter 55: T = 850.1200882470112 K, F = -0.37140166404544284, relative_change = 3.1205725358047984e-6 Iter 60: T = 850.1119851725099 K, F = -0.1553251148176682, relative_change = 1.3051241611406158e-6 Iter 65: T = 850.108596288192 K, F = -0.0649589060350586, relative_change = 5.45829610444729e-7 Iter 70: T = 850.1071790019928 K, F = -0.02716660567461493, relative_change = 2.2827440307839036e-7 Iter 75: T = 850.1065862734762 K, F = -0.01136140162029986, relative_change = 9.54674210674185e-8 Iter 80: T = 850.1063383868943 K, F = -0.004751474310161319, relative_change = 3.992567498275928e-8 Iter 85: T = 850.106234717689 K, F = -0.0019871233823394174, relative_change = 1.669740446880269e-8 Iter 90: T = 850.1061913619758 K, F = -0.0008310387460990221, relative_change = 6.983055790959425e-9 Iter 95: T = 850.1061732300964 K, F = -0.00034755032951450104, relative_change = 2.920397633715409e-9 Iter 100: T = 850.1061656471275 K, F = -0.00014534969864965497, relative_change = 1.221345221046716e-9 Iter 105: T = 850.1061624758393 K, F = -6.0786979691584975e-5, relative_change = 5.107811654003249e-10 Iter 110: T = 850.1061611495686 K, F = -2.5421838151906684e-5, relative_change = 2.1361476224327818e-10 Iter 115: T = 850.1061605949064 K, F = -1.0631717215492387e-5, relative_change = 8.93362525050201e-11 Iter 120: T = 850.1061603629402 K, F = -4.446312836359212e-6, relative_change = 3.7361502260664594e-11 Iter 125: T = 850.1061602659289 K, F = -1.8594990447429183e-6, relative_change = 1.5625008936281162e-11 Iter 130: T = 850.1061602253577 K, F = -7.776630455147426e-7, relative_change = 6.534551374305491e-12 Iter 135: T = 850.1061602083904 K, F = -3.2522837600801324e-7, relative_change = 2.7328308113208135e-12 Iter 140: T = 850.1061602012945 K, F = -1.3601432180543327e-7, relative_change = 1.1429019016975527e-12 Iter 145: T = 850.106160198327 K, F = -5.688545656745703e-8, relative_change = 4.779974316525518e-13 Converged in 150 iterations to T = 850.1061601970857 K Iter 1: T = 967.3143044380889 K, F = -7447.466825904691, relative_change = 0.03268569556191107 Iter 2: T = 936.7033035836887 K, F = -6313.023727821217, relative_change = 0.0316453511686485 Iter 3: T = 908.1356620014956 K, F = -5349.876451358991, relative_change = 0.030498068569735495 Iter 5: T = 856.9922226268149 K, F = -3838.2876898527643, relative_change = 0.027888144920419796 Iter 10: T = 761.878739593144 K, F = -1661.9998940888388, relative_change = 0.01996843751622321 Iter 15: T = 706.1933292314515 K, F = -711.5782769685634, relative_change = 0.011964446918357432 Iter 20: T = 677.5564664103305 K, F = -301.5859322051656, relative_change = 0.006126520385899184 Iter 25: T = 664.2029394734379 K, F = -126.96072884012479, relative_change = 0.002830063851587099 Iter 30: T = 658.324396194646 K, F = -53.255299381334574, relative_change = 0.0012379445592605337 Iter 35: T = 655.8095139851495 K, F = -22.300855704863242, relative_change = 0.0005278882489791256 Iter 40: T = 654.7474841816944 K, F = -9.33161419811099, relative_change = 0.00022259872478481104 Iter 45: T = 654.3015017219465 K, F = -3.903496005716662, relative_change = 9.341734303487715e-5 Iter 50: T = 654.1146642877475 K, F = -1.6326471337275097, relative_change = 3.91251884035564e-5 Iter 55: T = 654.0364701061561 K, F = -0.6828202826171541, relative_change = 1.637260122075427e-5 Iter 60: T = 654.0037584646739 K, F = -0.28556845332697395, relative_change = 6.848964468013759e-6 Iter 65: T = 653.9900763329293 K, F = -0.11942898716644795, relative_change = 2.8646244196493882e-6 Iter 70: T = 653.9843539989299 K, F = -0.04994677731300168, relative_change = 1.198073616022508e-6 Iter 75: T = 653.9819607974943 K, F = -0.020888364748826327, relative_change = 5.010580472150356e-7 Iter 80: T = 653.9809599227999 K, F = -0.008735768141647782, relative_change = 2.0955009510645287e-7 Iter 85: T = 653.980541343428 K, F = -0.0036534033579787017, relative_change = 8.763663843116458e-8 Iter 90: T = 653.9803662882521 K, F = -0.0015278970528727065, relative_change = 3.665073880616726e-8 Iter 95: T = 653.9802930780374 K, F = -0.0006389848196390324, relative_change = 1.5327785444440435e-8 Iter 100: T = 653.9802624606426 K, F = -0.0002672310872135486, relative_change = 6.410264463260688e-9 Iter 105: T = 653.9802496560809 K, F = -0.00011175923294309831, relative_change = 2.6808494237279514e-9 Iter 110: T = 653.98024430106 K, F = -4.673904539537199e-5, relative_change = 1.121163276616368e-9 Iter 115: T = 653.9802420615264 K, F = -1.9546828129490823e-5, relative_change = 4.6888390734211e-10 Iter 120: T = 653.9802411249266 K, F = -8.174716616793365e-6, relative_change = 1.9609284275892262e-10 Iter 125: T = 653.9802407332293 K, F = -3.4187637016347416e-6, relative_change = 8.200835898201904e-11 Iter 130: T = 653.9802405694169 K, F = -1.4297680062114182e-6, relative_change = 3.429687989203737e-11 Iter 135: T = 653.9802405009085 K, F = -5.979459846705559e-7, relative_change = 1.4343363076602358e-11 Iter 140: T = 653.9802404722575 K, F = -2.5006810638883437e-7, relative_change = 5.998564647169279e-12 Iter 145: T = 653.9802404602754 K, F = -1.0458117383205234e-7, relative_change = 2.5086643043862734e-12 Iter 150: T = 653.9802404552643 K, F = -4.373675854818515e-8, relative_change = 1.0491452805798255e-12 Iter 155: T = 653.9802404531686 K, F = -1.8291238523815423e-8, relative_change = 4.3876517626178567e-13 Converged in 159 iterations to T = 653.9802404524121 K Iter 1: T = 973.4143572754442 K, F = -6057.563984265012, relative_change = 0.026585642724555734 Iter 2: T = 949.0218482762614 K, F = -5126.31859615482, relative_change = 0.02505871093524518 Iter 3: T = 926.7558495328736 K, F = -4336.421658141934, relative_change = 0.023462050724996616 Iter 5: T = 888.284621569935 K, F = -3098.8842174862557, relative_change = 0.020136733962942206 Iter 10: T = 822.7016869278372 K, F = -1327.0752302401618, relative_change = 0.012108103375323056 Iter 15: T = 788.8948786016504 K, F = -562.5473654481455, relative_change = 0.006216571073002674 Iter 20: T = 773.106126325472 K, F = -236.8433374459986, relative_change = 0.002876053093434214 Iter 25: T = 766.1498349446288 K, F = -99.35187785387447, relative_change = 0.001258999847637261 Iter 30: T = 763.1727432123615 K, F = -41.60489545140522, relative_change = 0.0005370461377413224 Iter 35: T = 761.9153114137497 K, F = -17.409401832073534, relative_change = 0.0002264930107619649 Iter 40: T = 761.387235003701 K, F = -7.2825349814848845, relative_change = 9.50574429093697e-5 Iter 45: T = 761.1659988639254 K, F = -3.045943989030282, relative_change = 3.981311818615756e-5 Iter 50: T = 761.0734071437523 K, F = -1.2739028435897282, relative_change = 1.6660656192492755e-5 Iter 55: T = 761.0346722498454 K, F = -0.5327706032687828, relative_change = 6.969494587565019e-6 Iter 60: T = 761.018470766769 K, F = -0.22281264189628336, relative_change = 2.9150424208673628e-6 Iter 65: T = 761.0116947478089 K, F = -0.09318318990853702, relative_change = 1.219160927140734e-6 Iter 70: T = 761.0088608718685 K, F = -0.03897037220120947, relative_change = 5.098773450910008e-7 Iter 75: T = 761.0076756999322 K, F = -0.016297883684778802, relative_change = 2.1323848894116225e-7 Iter 80: T = 761.0071800449201 K, F = -0.006815971103834917, relative_change = 8.917917897198029e-8 Iter 85: T = 761.0069727557328 K, F = -0.0028505207771395424, relative_change = 3.729584946228187e-8 Iter 90: T = 761.0068860648594 K, F = -0.0011921218767717567, relative_change = 1.559757870494876e-8 Iter 95: T = 761.0068498096904 K, F = -0.0004985596123878722, relative_change = 6.523095254556329e-9 Iter 100: T = 761.0068346473439 K, F = -0.00020850358556712134, relative_change = 2.7280366174831606e-9 Iter 105: T = 761.0068283062692 K, F = -8.719868831985611e-5, relative_change = 1.1408975223299792e-9 Iter 110: T = 761.006825654356 K, F = -3.6467532710360295e-5, relative_change = 4.771369754144315e-10 Iter 115: T = 761.0068245452942 K, F = -1.5251157593487719e-5, relative_change = 1.9954438140946901e-10 Iter 120: T = 761.0068240814714 K, F = -6.3782168363557545e-6, relative_change = 8.34518513757192e-11 Iter 125: T = 761.0068238874951 K, F = -2.667445115789313e-6, relative_change = 3.490054341788044e-11 Iter 130: T = 761.0068238063718 K, F = -1.1155564559883757e-6, relative_change = 1.459581166885938e-11 Iter 135: T = 761.0068237724453 K, F = -4.665390838098915e-7, relative_change = 6.104143423977213e-12 Iter 140: T = 761.0068237582568 K, F = -1.9511342841393997e-7, relative_change = 2.552841535509257e-12 Iter 145: T = 761.0068237523228 K, F = -8.159833675414063e-8, relative_change = 1.0676232025416686e-12 Iter 150: T = 761.0068237498411 K, F = -3.4123925574114367e-8, relative_change = 4.4647349632952524e-13 Converged in 155 iterations to T = 761.0068237488034 K Iter 1: T = 969.9731344143257 K, F = -6841.649886618891, relative_change = 0.030026865585674283 Iter 2: T = 942.1029056136678 K, F = -5795.303636563925, relative_change = 0.028732990442550916 Iter 3: T = 916.3467311138306 K, F = -4907.253421247323, relative_change = 0.02733902458676741 Iter 5: T = 870.9718351635917 K, F = -3514.4396113540242, relative_change = 0.024291138443795317 Iter 10: T = 789.9994983426865 K, F = -1513.7267250979785, relative_change = 0.01598978683870618 Iter 15: T = 745.535193576676 K, F = -644.7471517120388, relative_change = 0.008838575858996238 Iter 20: T = 723.8251379683666 K, F = -272.25914401518065, relative_change = 0.004278370375432395 Iter 25: T = 714.0205696689088 K, F = -114.38156953136848, relative_change = 0.001916264377224738 Iter 30: T = 709.7743497051566 K, F = -47.93206932802273, relative_change = 0.0008260034002949043 Iter 35: T = 707.9713655330747 K, F = -20.063048492265345, relative_change = 0.0003499432665627247 Iter 40: T = 707.2124536659896 K, F = -8.393662750958752, relative_change = 0.00014715242187124958 Iter 45: T = 706.8942037918978 K, F = -3.5108670138475992, relative_change = 6.168229642892638e-5 Iter 50: T = 706.7609560647082 K, F = -1.4683806188211528, relative_change = 2.582108687074982e-5 Iter 55: T = 706.7052036645072 K, F = -0.6141107832583614, relative_change = 1.0803033002130849e-5 Iter 60: T = 706.6818826869294 K, F = -0.25683134554764947, relative_change = 4.5187180042645895e-6 Iter 65: T = 706.6721287606172 K, F = -0.107410440033116, relative_change = 1.8899148944854095e-6 Iter 70: T = 706.6680494095856 K, F = -0.0449204169399362, relative_change = 7.904082538776713e-7 Iter 75: T = 706.6663433513311 K, F = -0.018786270244563807, relative_change = 3.305622421176856e-7 Iter 80: T = 706.6656298530332 K, F = -0.00785664526719132, relative_change = 1.382457893964623e-7 Iter 85: T = 706.6653314587613 K, F = -0.003285743349471737, relative_change = 5.781616464359815e-8 Iter 90: T = 706.6652066665799 K, F = -0.0013741371918921663, relative_change = 2.4179432316268497e-8 Iter 95: T = 706.665154476976 K, F = -0.0005746805988225967, relative_change = 1.0112131169055713e-8 Iter 100: T = 706.6651326506561 K, F = -0.00024033829147263042, relative_change = 4.229014674737318e-9 Iter 105: T = 706.6651235226278 K, F = -0.00010051234383112728, relative_change = 1.7686245524635242e-9 Iter 110: T = 706.6651197051773 K, F = -4.203546206782427e-5, relative_change = 7.396599200229148e-10 Iter 115: T = 706.6651181086739 K, F = -1.7579733523342966e-5, relative_change = 3.093346377585883e-10 Iter 120: T = 706.6651174409972 K, F = -7.352054894660398e-6, relative_change = 1.2936744717044596e-10 Iter 125: T = 706.6651171617667 K, F = -3.074718117113129e-6, relative_change = 5.4103028340669316e-11 Iter 130: T = 706.6651170449893 K, F = -1.2858848350560947e-6, relative_change = 2.262655016777064e-11 Iter 135: T = 706.6651169961515 K, F = -5.377720688759524e-7, relative_change = 9.462687767618396e-12 Iter 140: T = 706.665116975727 K, F = -2.2490340401137843e-7, relative_change = 3.957421393742886e-12 Iter 145: T = 706.6651169671851 K, F = -9.405703638165619e-8, relative_change = 1.6550364351595536e-12 Iter 150: T = 706.665116963613 K, F = -3.933567627179002e-8, relative_change = 6.921542495646529e-13 Iter 155: T = 706.665116962119 K, F = -1.6451183526555724e-8, relative_change = 2.894765685407651e-13 Converged in 157 iterations to T = 706.6651169618027 K Iter 1: T = 973.5320831761796 K, F = -6030.740025796209, relative_change = 0.026467916823820332 Iter 2: T = 949.2571780833329 K, F = -5103.453951256175, relative_change = 0.02493487940700334 Iter 3: T = 927.1077230736227 K, F = -4316.933504320289, relative_change = 0.023333460648075042 Iter 5: T = 888.862314391404 K, F = -3084.7364601739473, relative_change = 0.020003612945795293 Iter 10: T = 823.7578218903825 K, F = -1320.7805965135017, relative_change = 0.011994512411754218 Iter 15: T = 790.2602423864261 K, F = -559.8027338581269, relative_change = 0.006145365244234116 Iter 20: T = 774.6350068708005 K, F = -235.66907859482765, relative_change = 0.0028396848980482576 Iter 25: T = 767.7552091330854 K, F = -98.8554393739559, relative_change = 0.0012423484328637226 Iter 30: T = 764.8117446227159 K, F = -41.39627936853995, relative_change = 0.0005298034883821672 Iter 35: T = 763.568681100357 K, F = -17.321976188960857, relative_change = 0.00022341311946935875 Iter 40: T = 763.046668482729 K, F = -7.2459406829436634, relative_change = 9.376032280853278e-5 Iter 45: T = 762.8279779899319 K, F = -3.030634217095272, relative_change = 3.926904791093918e-5 Iter 50: T = 762.7364525938642 K, F = -1.2674991327117087, relative_change = 1.6432838903006416e-5 Iter 55: T = 762.6981639480911 K, F = -0.5300923230961263, relative_change = 6.874169531952132e-6 Iter 60: T = 762.6821491435935 K, F = -0.22169252308325782, relative_change = 2.875167743903674e-6 Iter 65: T = 762.6754512049915 K, F = -0.0927147375850309, relative_change = 1.2024833564666657e-6 Iter 70: T = 762.6726499847894 K, F = -0.0387744589244442, relative_change = 5.029023226779032e-7 Iter 75: T = 762.6714784701528 K, F = -0.01621595025429412, relative_change = 2.1032140526915288e-7 Iter 80: T = 762.6709885268355 K, F = -0.006781705536675009, relative_change = 8.795921169321597e-8 Iter 85: T = 762.6707836263557 K, F = -0.002836190503860747, relative_change = 3.678564318249435e-8 Iter 90: T = 762.6706979344698 K, F = -0.0011861287842207524, relative_change = 1.5384204095951306e-8 Iter 95: T = 762.6706620970896 K, F = -0.0004960532313486032, relative_change = 6.43385942773065e-9 Iter 100: T = 762.6706471094673 K, F = -0.00020745538549082898, relative_change = 2.690717101125617e-9 Iter 105: T = 762.6706408414644 K, F = -8.676031968690712e-5, relative_change = 1.1252900688171946e-9 Iter 110: T = 762.6706382201107 K, F = -3.6284203070446885e-5, relative_change = 4.706097693696377e-10 Iter 115: T = 762.6706371238292 K, F = -1.5174486234781348e-5, relative_change = 1.96814616604976e-10 Iter 120: T = 762.6706366653513 K, F = -6.346151543157319e-6, relative_change = 8.23102256731199e-11 Iter 125: T = 762.6706364736103 K, F = -2.6540362076943325e-6, relative_change = 3.442311737685944e-11 Iter 130: T = 762.6706363934219 K, F = -1.1099486055821117e-6, relative_change = 1.4396145403213669e-11 Iter 135: T = 762.6706363598862 K, F = -4.64192320137613e-7, relative_change = 6.02062122835909e-12 Iter 140: T = 762.6706363458612 K, F = -1.941314619058332e-7, relative_change = 2.5179046486561444e-12 Iter 145: T = 762.6706363399957 K, F = -8.118707850446327e-8, relative_change = 1.0530045999645482e-12 Iter 150: T = 762.6706363375428 K, F = -3.3954036138261756e-8, relative_change = 4.4038727467615515e-13 Converged in 154 iterations to T = 762.6706363366574 K Iter 1: T = 964.3009174300308 K, F = -8134.069922161791, relative_change = 0.03569908256996919 Iter 2: T = 930.5259440493295 K, F = -6900.656457760808, relative_change = 0.03502534610328421 Iter 3: T = 898.6440565428834 K, F = -5853.208273234224, relative_change = 0.03426222311191785 Iter 5: T = 840.446474753521 K, F = -4208.440276452897, relative_change = 0.03244219224992433 Iter 10: T = 726.1030483937727 K, F = -1835.428342830848, relative_change = 0.026069995106579667 Iter 15: T = 652.2609370534652 K, F = -792.5919361861756, relative_change = 0.017876441307962128 Iter 20: T = 610.4594291957388 K, F = -338.4090401209254, relative_change = 0.010259549537028258 Iter 25: T = 589.5598636808814 K, F = -143.1370541800928, relative_change = 0.005093126938627137 Iter 30: T = 579.9865036489698 K, F = -60.18845345267856, relative_change = 0.0023122123656086828 Iter 35: T = 575.8108550216486 K, F = -25.232839790226496, relative_change = 0.0010030158647331231 Iter 40: T = 574.0321027048303 K, F = -10.563735273150275, relative_change = 0.0004261234032615333 Iter 45: T = 573.2823415261502 K, F = -4.4198405503912745, relative_change = 0.00017940027595585105 Iter 50: T = 572.9677419739661 K, F = -1.8487748888721534, relative_change = 7.523758408601756e-5 Iter 55: T = 572.8359896206621 K, F = -0.7732401832400531, relative_change = 3.150217995108202e-5 Iter 60: T = 572.7808571151958 K, F = -0.32338886147553264, relative_change = 1.3181057010017515e-5 Iter 65: T = 572.7577944231791 K, F = -0.13524693556592157, relative_change = 5.5136077318497174e-6 Iter 70: T = 572.748148346612 K, F = -0.05656220754047367, relative_change = 2.3060546955165325e-6 Iter 75: T = 572.7441140701752 K, F = -0.02365504733925397, relative_change = 9.644542651693077e-7 Iter 80: T = 572.7424268575016 K, F = -0.009892833205462193, relative_change = 4.03352352549813e-7 Iter 85: T = 572.7417212397496 K, F = -0.004137302724388503, relative_change = 1.6868783093898753e-7 Iter 90: T = 572.7414261410584 K, F = -0.0017302697121214239, relative_change = 7.054745086149281e-8 Iter 95: T = 572.7413027271004 K, F = -0.0007236195098841436, relative_change = 2.9503818872160986e-8 Iter 100: T = 572.7412511138813 K, F = -0.00030262633014455087, relative_change = 1.2338855074049747e-8 Iter 105: T = 572.7412295286117 K, F = -0.00012656194702387324, relative_change = 5.160257541601781e-9 Iter 110: T = 572.7412205013933 K, F = -5.292971806192259e-5, relative_change = 2.1580815065030584e-9 Iter 115: T = 572.7412167261026 K, F = -2.213583983989853e-5, relative_change = 9.025354722777816e-10 Iter 120: T = 572.7412151472311 K, F = -9.257472872170602e-6, relative_change = 3.774511299715807e-10 Iter 125: T = 572.741214486928 K, F = -3.871585758763452e-6, relative_change = 1.578545730164704e-10 Iter 130: T = 572.7412142107813 K, F = -1.6191425347145127e-6, relative_change = 6.60166324556615e-11 Iter 135: T = 572.7412140952936 K, F = -6.771451638298842e-7, relative_change = 2.7608961215068316e-11 Iter 140: T = 572.7412140469952 K, F = -2.831906766309622e-7, relative_change = 1.1546416969872086e-11 Iter 145: T = 572.7412140267963 K, F = -1.1843407698997055e-7, relative_change = 4.8288639049362935e-12 Iter 150: T = 572.7412140183488 K, F = -4.953059251633363e-8, relative_change = 2.0194904751043938e-12 Iter 155: T = 572.741214014816 K, F = -2.0714515824860058e-8, relative_change = 8.445844331891946e-13 Iter 160: T = 572.7412140133385 K, F = -8.663560147059712e-9, relative_change = 3.532357742831393e-13 Converged in 163 iterations to T = 572.7412140129059 K Iter 1: T = 963.5490791281544 K, F = -8305.376994427183, relative_change = 0.03645092087184557 Iter 2: T = 928.9750094827709 K, F = -7047.414634872585, relative_change = 0.03588200164818484 Iter 3: T = 896.2441948449866 K, F = -5979.071230945935, relative_change = 0.03523325633485876 Iter 5: T = 836.1933052592653 K, F = -4301.334754893391, relative_change = 0.033667006508148724 Iter 10: T = 716.3835640020437 K, F = -1879.7652281477913, relative_change = 0.027960175849682245 Iter 15: T = 636.6073665836725 K, F = -814.0361414023085, relative_change = 0.020054428385820573 Iter 20: T = 589.837664564189 K, F = -348.56583372516013, relative_change = 0.012037429694206661 Iter 25: T = 565.7571952827677 K, F = -147.74435623799522, relative_change = 0.006172129540899739 Iter 30: T = 554.5196120727978 K, F = -62.20011021564448, relative_change = 0.0028533218128708716 Iter 35: T = 549.5705242914484 K, F = -26.091277393048017, relative_change = 0.0012485855409140674 Iter 40: T = 547.4528629365074 K, F = -10.925941661275347, relative_change = 0.0005325151232621377 Iter 45: T = 546.5585032432898 K, F = -4.57189462586162, relative_change = 0.00022456600244548898 Iter 50: T = 546.1829176304163 K, F = -1.9124674872821836, relative_change = 9.424582898910469e-5 Iter 55: T = 546.0255694699108 K, F = -0.7998950764156343, relative_change = 3.947268402184838e-5 Iter 60: T = 545.9597165574409 K, F = -0.33453939124840915, relative_change = 1.6518105766795546e-5 Iter 65: T = 545.9321676710518 K, F = -0.13991076909500005, relative_change = 6.909847333736353e-6 Iter 70: T = 545.9206449256984 K, F = -0.05851277444207484, relative_change = 2.8900918083606315e-6 Iter 75: T = 545.9158257184573 K, F = -0.02447081450870961, relative_change = 1.2087253350779157e-6 Iter 80: T = 545.9138102233904 K, F = -0.01023399971526609, relative_change = 5.055128900364454e-7 Iter 85: T = 545.9129673114048 K, F = -0.004279983146651151, relative_change = 2.1141319273224378e-7 Iter 90: T = 545.9126147941679 K, F = -0.0017899404580449807, relative_change = 8.841581320001644e-8 Iter 95: T = 545.9124673670085 K, F = -0.0007485745443593927, relative_change = 3.697659990756631e-8 Iter 100: T = 545.9124057111677 K, F = -0.0003130628264351454, relative_change = 1.546406458864203e-8 Iter 105: T = 545.9123799259514 K, F = -0.000130926615068222, relative_change = 6.467258058481008e-9 Iter 110: T = 545.9123691422648 K, F = -5.475507459001827e-5, relative_change = 2.7046848381651714e-9 Iter 115: T = 545.9123646323978 K, F = -2.2899225671113577e-5, relative_change = 1.1311315230240995e-9 Iter 120: T = 545.9123627463176 K, F = -9.576729408211637e-6, relative_change = 4.730527073211184e-10 Iter 125: T = 545.9123619575364 K, F = -4.005102303000774e-6, relative_change = 1.9783627789889611e-10 Iter 130: T = 545.9123616276587 K, F = -1.6749817627892405e-6, relative_change = 8.27375016622626e-11 Iter 135: T = 545.9123614897 K, F = -7.004976124713735e-7, relative_change = 3.4601822977152064e-11 Iter 140: T = 545.9123614320039 K, F = -2.9295658207639796e-7, relative_change = 1.4470901281642503e-11 Iter 145: T = 545.9123614078746 K, F = -1.225178055119791e-7, relative_change = 6.051897030659824e-12 Iter 150: T = 545.9123613977836 K, F = -5.123861054889822e-8, relative_change = 2.530985547508704e-12 Iter 155: T = 545.9123613935634 K, F = -2.142871635690824e-8, relative_change = 1.0584941867468422e-12 Iter 160: T = 545.9123613917983 K, F = -8.961172942578699e-9, relative_change = 4.426466479986212e-13 Converged in 164 iterations to T = 545.9123613911613 K Iter 1: T = 969.3525896544901 K, F = -6983.041600437888, relative_change = 0.030647410345509874 Iter 2: T = 940.846918064048 K, F = -5916.069491999615, relative_change = 0.029406917456735182 Iter 3: T = 914.4437488065935 K, F = -5010.433643427475, relative_change = 0.028063193650868887 Iter 5: T = 867.7582155594861 K, F = -3589.8001103572487, relative_change = 0.025098351416755683 Iter 10: T = 783.6837069046605 K, F = -1547.9846792075525, relative_change = 0.016827681740349043 Iter 15: T = 736.8867418219329 K, F = -660.0424807544683, relative_change = 0.009456871229871041 Iter 20: T = 713.8000674539867 K, F = -278.9173240115596, relative_change = 0.004627921620069876 Iter 25: T = 703.3099828609943 K, F = -117.22356598210673, relative_change = 0.0020848384372932744 Iter 30: T = 698.7530879193558 K, F = -49.131815708997486, relative_change = 0.0009010931665167867 Iter 35: T = 696.8155338396687 K, F = -20.566848774744948, relative_change = 0.00038220760269649115 Iter 40: T = 695.9994947854287 K, F = -8.604724303156868, relative_change = 0.0001608008891049639 Iter 45: T = 695.6572024378241 K, F = -3.5992000859612236, relative_change = 6.741772620958718e-5 Iter 50: T = 695.5138732060994 K, F = -1.5053339056897483, relative_change = 2.8224543503379004e-5 Iter 55: T = 695.4538999228464 K, F = -0.629567075724489, relative_change = 1.180903416307618e-5 Iter 60: T = 695.42881290234 K, F = -0.26329569931706664, relative_change = 4.939587964155977e-6 Iter 65: T = 695.4183202524171 K, F = -0.11011397080494856, relative_change = 2.065953678902546e-6 Iter 70: T = 695.413931933268 K, F = -0.04605107643445372, relative_change = 8.64034313683643e-7 Iter 75: T = 695.4120966564699 K, F = -0.019259127409368415, relative_change = 3.6135433333710994e-7 Iter 80: T = 695.4113291166664 K, F = -0.00805440010550218, relative_change = 1.511235484938962e-7 Iter 85: T = 695.4110081214573 K, F = -0.003368446841499062, relative_change = 6.32018215715876e-8 Iter 90: T = 695.4108738772705 K, F = -0.001408724789007998, relative_change = 2.6431782592620247e-8 Iter 95: T = 695.4108177347209 K, F = -0.0005891455454917205, relative_change = 1.105409167280358e-8 Iter 100: T = 695.4107942552315 K, F = -0.0002463877057387043, relative_change = 4.622953945676823e-9 Iter 105: T = 695.4107844358277 K, F = -0.000103042281813015, relative_change = 1.933374694470376e-9 Iter 110: T = 695.4107803292358 K, F = -4.309351250253446e-5, relative_change = 8.08560403018938e-10 Iter 115: T = 695.4107786118097 K, F = -1.8022221218383372e-5, relative_change = 3.381496141006839e-10 Iter 120: T = 695.4107778935618 K, F = -7.537108065447384e-6, relative_change = 1.414182061919994e-10 Iter 125: T = 695.4107775931819 K, F = -3.1521085245289626e-6, relative_change = 5.914278133037104e-11 Iter 130: T = 695.4107774675595 K, F = -1.3182496334529503e-6, relative_change = 2.4734221322172155e-11 Iter 135: T = 695.4107774150227 K, F = -5.513079972541135e-7, relative_change = 1.034415157768995e-11 Iter 140: T = 695.4107773930513 K, F = -2.305650087519595e-7, relative_change = 4.32607437454083e-12 Iter 145: T = 695.4107773838624 K, F = -9.642506504370374e-8, relative_change = 1.8092164341554588e-12 Iter 150: T = 695.4107773800196 K, F = -4.032634681738756e-8, relative_change = 7.566402922344079e-13 Iter 155: T = 695.4107773784124 K, F = -1.6864967644636408e-8, relative_change = 3.164361528974374e-13 Converged in 158 iterations to T = 695.4107773779418 K Iter 1: T = 966.4999695751346 K, F = -7633.013799061256, relative_change = 0.03350003042486534 Iter 2: T = 935.0400302149103 K, F = -6471.733666334925, relative_change = 0.03255037801403535 Iter 3: T = 905.5904314634837 K, F = -5485.718863988706, relative_change = 0.03149554863940738 Iter 5: T = 852.5973406208504 K, F = -3937.9822498935564, relative_change = 0.02906571795392481 Iter 10: T = 752.6646055417896 K, F = -1708.2490297151728, relative_change = 0.021420212206404728 Iter 15: T = 692.7783460554411 K, F = -732.8190802559587, relative_change = 0.013235565934472613 Iter 20: T = 661.3327944246482 K, F = -311.06602207332645, relative_change = 0.006939503449248332 Iter 25: T = 646.4643143407359 K, F = -131.07091043172215, relative_change = 0.003250255632741031 Iter 30: T = 639.8698750349256 K, F = -55.00420221297853, relative_change = 0.0014314682263352131 Iter 35: T = 637.0388082119586 K, F = -23.037914549569372, relative_change = 0.0006122868119720108 Iter 40: T = 635.8414028640559 K, F = -9.640880947615035, relative_change = 0.00025852996153339985 Iter 45: T = 635.3382386315783 K, F = -4.03301589818843, relative_change = 0.00010855744135955039 Iter 50: T = 635.1273868517962 K, F = -1.6868457120570286, relative_change = 4.547692645907658e-5 Iter 55: T = 635.0391319596231 K, F = -0.705492352833387, relative_change = 1.9032478534599404e-5 Iter 60: T = 635.0022097195584 K, F = -0.2950511603493983, relative_change = 7.96197077775454e-6 Iter 65: T = 634.986766124392 K, F = -0.12339493935086981, relative_change = 3.330204379089792e-6 Iter 70: T = 634.9803070307291 K, F = -0.05160541576899419, relative_change = 1.3928035094127182e-6 Iter 75: T = 634.977605691051 K, F = -0.021582032389951045, relative_change = 5.824997017206096e-7 Iter 80: T = 634.9764759463684 K, F = -0.009025869147218424, relative_change = 2.436105426282651e-7 Iter 85: T = 634.976003471522 K, F = -0.0037747272227531825, relative_change = 1.0188122491468169e-7 Iter 90: T = 634.9758058765265 K, F = -0.001578636171972736, relative_change = 4.2608012629092135e-8 Iter 95: T = 634.9757232398744 K, F = -0.0006602045280112434, relative_change = 1.781919152504291e-8 Iter 100: T = 634.9756886802282 K, F = -0.00027610542249162373, relative_change = 7.45220075087066e-9 Iter 105: T = 634.9756742269697 K, F = -0.00011547058674099553, relative_change = 3.1165997346317015e-9 Iter 110: T = 634.9756681824438 K, F = -4.8291178257331424e-5, relative_change = 1.3033992847070735e-9 Iter 115: T = 634.9756656545509 K, F = -2.0195947359191724e-5, relative_change = 5.450971541968594e-10 Iter 120: T = 634.975664597356 K, F = -8.446187554189688e-6, relative_change = 2.2796617332244785e-10 Iter 125: T = 634.9756641552242 K, F = -3.5322953563232673e-6, relative_change = 9.533814551580404e-11 Iter 130: T = 634.9756639703195 K, F = -1.4772480388947073e-6, relative_change = 3.987154937036044e-11 Iter 135: T = 634.9756638929902 K, F = -6.178028671977032e-7, relative_change = 1.667476069444388e-11 Iter 140: T = 634.9756638606501 K, F = -2.583726662619412e-7, relative_change = 6.973587546606958e-12 Iter 145: T = 634.9756638471251 K, F = -1.0805424555115906e-7, relative_change = 2.9164297915556385e-12 Iter 150: T = 634.9756638414688 K, F = -4.518838953027071e-8, relative_change = 1.2196537469848458e-12 Iter 155: T = 634.9756638391032 K, F = -1.88973026671313e-8, relative_change = 5.100461920830956e-13 Converged in 160 iterations to T = 634.975663838114 K Iter 1: T = 966.4773419130235 K, F = -7638.169533397754, relative_change = 0.03352265808697653 Iter 2: T = 934.9937492504889 K, F = -6476.144656396385, relative_change = 0.03257561382682452 Iter 3: T = 905.5195010728481 K, F = -5489.495344145696, relative_change = 0.03152347082669586 Iter 5: T = 852.474433153709 K, F = -3940.755917901336, relative_change = 0.029098978740292384 Iter 10: T = 752.4041098297907 K, F = -1709.5402761803618, relative_change = 0.021462400311157093 Iter 15: T = 692.3947825415429 K, F = -733.4153839861442, relative_change = 0.013273658031174137 Iter 20: T = 660.8649925241422 K, F = -311.33360207940774, relative_change = 0.0069644560781654185 Iter 25: T = 645.9503440911826 K, F = -131.18734260399324, relative_change = 0.0032633359090575393 Iter 30: T = 639.33389704908 K, F = -55.05383911591549, relative_change = 0.001437534775941395 Iter 35: T = 636.4930699376397 K, F = -23.058852053338104, relative_change = 0.0006149408936202444 Iter 40: T = 635.2914780251235 K, F = -9.649669631485938, relative_change = 0.000259661434791772 Iter 45: T = 634.7865440248403 K, F = -4.036697176473318, relative_change = 0.00010903447860746842 Iter 50: T = 634.5749487577049 K, F = -1.6883862778044805, relative_change = 4.567710704911913e-5 Iter 55: T = 634.4863823411529 K, F = -0.7061368131514034, relative_change = 1.911631546015316e-5 Iter 60: T = 634.4493297145981 K, F = -0.29532071239664404, relative_change = 7.997053229131452e-6 Iter 65: T = 634.4338315721641 K, F = -0.12350767467007401, relative_change = 3.344879927974955e-6 Iter 70: T = 634.4273496630187 K, F = -0.05165256397697482, relative_change = 1.3989416375790089e-6 Iter 75: T = 634.4246387810799 K, F = -0.0216017504983419, relative_change = 5.850668518429052e-7 Iter 80: T = 634.4235050456132 K, F = -0.009034115525265896, relative_change = 2.4468417501278866e-7 Iter 85: T = 634.4230309017562 K, F = -0.0037781759618985, relative_change = 1.0233023422310332e-7 Iter 90: T = 634.4228326087575 K, F = -0.001580078475734048, relative_change = 4.279579425391991e-8 Iter 95: T = 634.4227496801917 K, F = -0.0006608077168831494, relative_change = 1.7897724149100715e-8 Iter 100: T = 634.4227149984637 K, F = -0.0002763576831187886, relative_change = 7.485044045193472e-9 Iter 105: T = 634.4227004941489 K, F = -0.0001155760842291853, relative_change = 3.130335170805993e-9 Iter 110: T = 634.4226944282709 K, F = -4.833529938558234e-5, relative_change = 1.3091436308371472e-9 Iter 115: T = 634.4226918914482 K, F = -2.0214399172380215e-5, relative_change = 5.474995038391051e-10 Iter 120: T = 634.4226908305186 K, F = -8.45390265463708e-6, relative_change = 2.289708195776029e-10 Iter 125: T = 634.4226903868253 K, F = -3.5355242223866767e-6, relative_change = 9.575836327944794e-11 Iter 130: T = 634.4226902012674 K, F = -1.4785981053422326e-6, relative_change = 4.004728176271644e-11 Iter 135: T = 634.4226901236648 K, F = -6.18367273885756e-7, relative_change = 1.6748248476103363e-11 Iter 140: T = 634.4226900912105 K, F = -2.586081778166438e-7, relative_change = 7.00430667014981e-12 Iter 145: T = 634.4226900776378 K, F = -1.0815325335311599e-7, relative_change = 2.9292907917007006e-12 Iter 150: T = 634.4226900719615 K, F = -4.523078461771135e-8, relative_change = 1.2250590414984155e-12 Iter 155: T = 634.4226900695875 K, F = -1.8915492561166758e-8, relative_change = 5.123191070577254e-13 Converged in 160 iterations to T = 634.4226900685948 K Iter 1: T = 976.4869135380504 K, F = -5357.479117074647, relative_change = 0.02351308646194955 Iter 2: T = 955.1344746647387 K, F = -4530.040185260599, relative_change = 0.021866589892072026 Iter 3: T = 935.8506267486935 K, F = -3828.659335490195, relative_change = 0.02018966797613922 Iter 5: T = 903.0661321048515 K, F = -2731.0610777899533, relative_change = 0.01683785435816612 Iter 10: T = 849.1021722891592 K, F = -1164.5083728834072, relative_change = 0.009464585573498698 Iter 15: T = 822.4761646454632 K, F = -492.096519274833, relative_change = 0.004632354317480605 Iter 20: T = 810.3769093873998 K, F = -206.81971256314344, relative_change = 0.002086993694967456 Iter 25: T = 805.1207787063947 K, F = -86.68438080916452, relative_change = 0.0009020567978477704 Iter 30: T = 802.885874511052 K, F = -36.28659758041823, relative_change = 0.0003826223256885405 Iter 35: T = 801.9445931415778 K, F = -15.181533732382242, relative_change = 0.00016097644652021722 Iter 40: T = 801.5497658448006 K, F = -6.350161371863624, relative_change = 6.7491521319714e-5 Iter 45: T = 801.3844382420775 K, F = -2.655899575782051, relative_change = 2.8255471436325304e-5 Iter 50: T = 801.3152601343241 K, F = -1.1107615252948522, relative_change = 1.182198015327097e-5 Iter 55: T = 801.2863226984325 K, F = -0.46453943978588963, relative_change = 4.94500415559632e-6 Iter 60: T = 801.2742196104633 K, F = -0.1942769393553635, relative_change = 2.068219148916205e-6 Iter 65: T = 801.2691577609404 K, F = -0.08124911072054708, relative_change = 8.649818222629708e-7 Iter 70: T = 801.2670408011571 K, F = -0.03397937894344227, relative_change = 3.617506035877036e-7 Iter 75: T = 801.2661554573715 K, F = -0.014210587411144338, relative_change = 1.512892753673291e-7 Iter 80: T = 801.2657851949912 K, F = -0.00594303829663656, relative_change = 6.327113085268801e-8 Iter 85: T = 801.2656303466608 K, F = -0.0024854497545504506, relative_change = 2.6460768633252446e-8 Iter 90: T = 801.265565587208 K, F = -0.0010394447970086818, relative_change = 1.1066213997843495e-8 Iter 95: T = 801.2655385040259 K, F = -0.0004347082316503714, relative_change = 4.628023639245409e-9 Iter 100: T = 801.2655271775147 K, F = -0.00018180017271274274, relative_change = 1.9354948728879145e-9 Iter 105: T = 801.2655224406325 K, F = -7.603100453246192e-5, relative_change = 8.094471055740778e-10 Iter 110: T = 801.2655204596117 K, F = -3.1797074405259806e-5, relative_change = 3.3852045365320975e-10 Iter 115: T = 801.2655196311251 K, F = -1.329791869975061e-5, relative_change = 1.4157332324573646e-10 Iter 120: T = 801.2655192846421 K, F = -5.561346940297085e-6, relative_change = 5.920763898911139e-11 Iter 125: T = 801.2655191397388 K, F = -2.3258213361909696e-6, relative_change = 2.4761337787996753e-11 Iter 130: T = 801.2655190791385 K, F = -9.72687037359421e-7, relative_change = 1.0355495466465958e-11 Iter 135: T = 801.2655190537947 K, F = -4.0678880908195936e-7, relative_change = 4.3307862725584305e-12 Iter 140: T = 801.2655190431957 K, F = -1.7012467834476297e-7, relative_change = 1.8111944212724798e-12 Iter 145: T = 801.2655190387629 K, F = -7.114728206580878e-8, relative_change = 7.574536605944062e-13 Iter 150: T = 801.2655190369092 K, F = -2.975461166343507e-8, relative_change = 3.1677583274980967e-13 Converged in 153 iterations to T = 801.2655190363665 K Iter 1: T = 965.1123781682089 K, F = -7949.177821069482, relative_change = 0.03488762183179112 Iter 2: T = 932.1955103894827 K, F = -6742.324533193337, relative_change = 0.03410677194007472 Iter 3: T = 901.2198683192915 K, F = -5717.490914629715, relative_change = 0.03322869690420319 Iter 5: T = 844.9794778684302 K, F = -4108.425787410415, relative_change = 0.03116152741054478 Iter 10: T = 736.2109359097166 K, F = -1788.0848334476198, relative_change = 0.024214991191416655 Iter 15: T = 668.0373028815018 K, F = -770.0723634753593, relative_change = 0.015911956922685 Iter 20: T = 630.6487310233955 K, F = -327.96710865952474, relative_change = 0.008782041778237954 Iter 25: T = 612.4109089750921 K, F = -138.48247890249905, relative_change = 0.0042467566779812345 Iter 30: T = 604.1790364547611 K, F = -58.17726945723135, relative_change = 0.0019011082481994591 Iter 35: T = 600.6149075268813 K, F = -24.37903055203054, relative_change = 0.0008192710029094321 Iter 40: T = 599.1017327965317 K, F = -10.204320525431706, relative_change = 0.0003470540550111761 Iter 45: T = 598.4648415431992 K, F = -4.269110225230568, relative_change = 0.00014593086736901112 Iter 50: T = 598.1977670995714 K, F = -1.7856637260559451, relative_change = 6.1169082025253e-5 Iter 55: T = 598.0859470298367 K, F = -0.7468333575408178, relative_change = 2.5606042136581847e-5 Iter 60: T = 598.0391603980759 K, F = -0.31234293696511134, relative_change = 1.0713026454829965e-5 Iter 65: T = 598.0195897937713 K, F = -0.13062699990523446, relative_change = 4.481063539762128e-6 Iter 70: T = 598.0114044551459 K, F = -0.054630025622214085, relative_change = 1.8741651341584743e-6 Iter 75: T = 598.0079811301472 K, F = -0.022846973602261234, relative_change = 7.838211288155993e-7 Iter 80: T = 598.0065494339997 K, F = -0.009554884986808676, relative_change = 3.2780736003110186e-7 Iter 85: T = 598.0059506779435 K, F = -0.003995968369997327, relative_change = 1.370936529497034e-7 Iter 90: T = 598.0057002703754 K, F = -0.0016711619325426308, relative_change = 5.7334325382746346e-8 Iter 95: T = 598.005595546829 K, F = -0.0006988999190761791, relative_change = 2.3977920989481035e-8 Iter 100: T = 598.0055517501719 K, F = -0.0002922883007724919, relative_change = 1.0027856685197467e-8 Iter 105: T = 598.0055334338834 K, F = -0.00012223846026071516, relative_change = 4.193770111297255e-9 Iter 110: T = 598.0055257737922 K, F = -5.1121583971358575e-5, relative_change = 1.7538848535775825e-9 Iter 115: T = 598.0055225702504 K, F = -2.137965627446725e-5, relative_change = 7.33495587535932e-10 Iter 120: T = 598.0055212304909 K, F = -8.9412266056077e-6, relative_change = 3.067565843028952e-10 Iter 125: T = 598.0055206701876 K, F = -3.739328030549771e-6, relative_change = 1.2828927729411399e-10 Iter 130: T = 598.0055204358621 K, F = -1.5638320051136745e-6, relative_change = 5.365212050952755e-11 Iter 135: T = 598.0055203378643 K, F = -6.540125463971869e-7, relative_change = 2.243793442433777e-11 Iter 140: T = 598.0055202968804 K, F = -2.735155307242998e-7, relative_change = 9.383800935074302e-12 Iter 145: T = 598.0055202797405 K, F = -1.1438742758551612e-7, relative_change = 3.924416457236367e-12 Iter 150: T = 598.0055202725724 K, F = -4.783826196286256e-8, relative_change = 1.6412403574947396e-12 Iter 155: T = 598.0055202695746 K, F = -2.0006175438513907e-8, relative_change = 6.863740692561718e-13 Iter 160: T = 598.0055202683209 K, F = -8.366719705943382e-9, relative_change = 2.8704634069619325e-13 Converged in 162 iterations to T = 598.0055202680556 K Iter 1: T = 964.5688944709211 K, F = -8073.011098482956, relative_change = 0.03543110552907887 Iter 2: T = 931.0778017380387 K, F = -6848.361464496823, relative_change = 0.03472130702623654 Iter 3: T = 899.4963342619534 K, F = -5808.374397054885, relative_change = 0.033919257249106674 Iter 5: T = 841.9499722848859 K, F = -4175.383353575841, relative_change = 0.03201461407189114 Iter 10: T = 729.4833969009036 K, F = -1819.7369608940476, relative_change = 0.02543739127811687 Iter 15: T = 657.5907715193471 K, F = -785.087970115409, relative_change = 0.017188245027109486 Iter 20: T = 617.3415769144723 K, F = -334.9068971306488, relative_change = 0.009729041358685206 Iter 25: T = 597.394962884489 K, F = -141.56793800963726, relative_change = 0.004784170785076095 Iter 30: T = 588.3070067054896 K, F = -59.50844280319655, relative_change = 0.0021608133607633768 Iter 35: T = 584.3538181353131 K, F = -24.94373665968394, relative_change = 0.0009350665142512058 Iter 40: T = 582.6719144312158 K, F = -10.441957287780996, relative_change = 0.00039683001157234045 Iter 45: T = 581.9633573957376 K, F = -4.368755425676906, relative_change = 0.00016699096241140724 Iter 50: T = 581.6661151199891 K, F = -1.8273828983355656, relative_change = 7.001974926973383e-5 Iter 55: T = 581.5416438830936 K, F = -0.7642889528741852, relative_change = 2.931507299088781e-5 Iter 60: T = 581.4895603066112 K, F = -0.31964450123312216, relative_change = 1.2265515515909019e-5 Iter 65: T = 581.4677733926407 K, F = -0.13368085082913128, relative_change = 5.130565504782572e-6 Iter 70: T = 581.4586609806175 K, F = -0.05590722620775837, relative_change = 2.1458352930113353e-6 Iter 75: T = 581.4548499098729 K, F = -0.0233811217768069, relative_change = 8.974439498790575e-7 Iter 80: T = 581.453256048125 K, F = -0.009778273468570464, relative_change = 3.7532702546897066e-7 Iter 85: T = 581.4525894714814 K, F = -0.004089392334496844, relative_change = 1.5696716224386982e-7 Iter 90: T = 581.4523107003594 K, F = -0.0017102329902354274, relative_change = 6.564570235661275e-8 Iter 95: T = 581.4521941148054 K, F = -0.0007152399093104389, relative_change = 2.7453844762071793e-8 Iter 100: T = 581.4521453573096 K, F = -0.0002991218798547579, relative_change = 1.1481530638917401e-8 Iter 105: T = 581.4521249663384 K, F = -0.00012509634402935177, relative_change = 4.801714094910435e-9 Iter 110: T = 581.4521164385898 K, F = -5.231678502093384e-5, relative_change = 2.0081343185953902e-9 Iter 115: T = 581.4521128721834 K, F = -2.1879504306598907e-5, relative_change = 8.398257793820352e-10 Iter 120: T = 581.4521113806696 K, F = -9.150269886737394e-6, relative_change = 3.5122517061393513e-10 Iter 125: T = 581.4521107569008 K, F = -3.826751485136448e-6, relative_change = 1.4688653632794872e-10 Iter 130: T = 581.4521104960332 K, F = -1.6003935824349114e-6, relative_change = 6.142971956776456e-11 Iter 135: T = 581.4521103869354 K, F = -6.693041222360918e-7, relative_change = 2.569065823713516e-11 Iter 140: T = 581.4521103413093 K, F = -2.7991132145466224e-7, relative_change = 1.0744153307853808e-11 Iter 145: T = 581.4521103222279 K, F = -1.170619628454439e-7, relative_change = 4.493321917062788e-12 Iter 150: T = 581.4521103142478 K, F = -4.895631627865882e-8, relative_change = 1.879145741117995e-12 Iter 155: T = 581.4521103109105 K, F = -2.04741047449275e-8, relative_change = 7.858807537048533e-13 Iter 160: T = 581.4521103095149 K, F = -8.56351167755065e-9, relative_change = 3.287029687223841e-13 Converged in 163 iterations to T = 581.4521103091063 K Iter 1: T = 964.2753476171122 K, F = -8139.8960283584765, relative_change = 0.03572465238288784 Iter 2: T = 930.4732611419329 K, F = -6905.646719141296, relative_change = 0.03505439246031746 Iter 3: T = 898.5626490580603 K, F = -5857.486978717482, relative_change = 0.03429503395370004 Iter 5: T = 840.3026749607826 K, F = -4211.595957186263, relative_change = 0.03248323425936783 Iter 10: T = 725.778256711129 K, F = -1836.9285769291082, relative_change = 0.026131438280845486 Iter 15: T = 651.7458565808175 K, F = -793.3115942460616, relative_change = 0.01794433103929738 Iter 20: T = 609.790800371437 K, F = -338.74621009156374, relative_change = 0.010312665889937699 Iter 25: T = 588.7959547087647 K, F = -143.28859610298412, relative_change = 0.005124380848246238 Iter 30: T = 579.1737383899579 K, F = -60.25424940428144, relative_change = 0.0023276142118198893 Iter 35: T = 574.9756226715875 K, F = -25.260838168029366, relative_change = 0.0010099468301942327 Iter 40: T = 573.1870739336919 K, F = -10.57553378198532, relative_change = 0.00042911491343383413 Iter 45: T = 572.4331420345753 K, F = -4.424790829483983, relative_change = 0.00018066818491614981 Iter 50: T = 572.1167850531232 K, F = -1.8508479829129252, relative_change = 7.577082487974195e-5 Iter 55: T = 571.9842953944833 K, F = -0.7741076727641023, relative_change = 3.172571313669285e-5 Iter 60: T = 571.9288541304618 K, F = -0.32375174301329135, relative_change = 1.3274633409994447e-5 Iter 65: T = 571.9056622403383 K, F = -0.1353987121967986, relative_change = 5.552758634865564e-6 Iter 70: T = 571.8959621190498 K, F = -0.05662568500562351, relative_change = 2.322430894009427e-6 Iter 75: T = 571.891905238273 K, F = -0.023681594838607656, relative_change = 9.713034808043925e-7 Iter 80: T = 571.8902085718113 K, F = -0.009903935768006189, relative_change = 4.0621686270213477e-7 Iter 85: T = 571.8894990003049 K, F = -0.004141945962523208, relative_change = 1.6988581838852898e-7 Iter 90: T = 571.8892022480948 K, F = -0.0017322115720209141, relative_change = 7.104846615298884e-8 Iter 95: T = 571.8890781426135 K, F = -0.0007244316198624645, relative_change = 2.971334993475571e-8 Iter 100: T = 571.8890262401906 K, F = -0.00030296596417184185, relative_change = 1.2426483541833315e-8 Iter 105: T = 571.8890045339725 K, F = -0.00012670398597269816, relative_change = 5.196904824572193e-9 Iter 110: T = 571.888995456172 K, F = -5.2989120953361724e-5, relative_change = 2.173407861079589e-9 Iter 115: T = 571.8889916597273 K, F = -2.2160682720762104e-5, relative_change = 9.089451322812123e-10 Iter 120: T = 571.8889900720087 K, F = -9.267862146389305e-6, relative_change = 3.8013171354444626e-10 Iter 125: T = 571.8889894080057 K, F = -3.875929815322365e-6, relative_change = 1.5897558974750966e-10 Iter 130: T = 571.8889891303118 K, F = -1.620959457326876e-6, relative_change = 6.648546247208967e-11 Iter 135: T = 571.8889890141769 K, F = -6.779045062521583e-7, relative_change = 2.780501045225975e-11 Iter 140: T = 571.888988965608 K, F = -2.8350757980133423e-7, relative_change = 1.162838003016029e-11 Iter 145: T = 571.8889889452959 K, F = -1.1856645221186568e-7, relative_change = 4.863135463068358e-12 Iter 150: T = 571.888988936801 K, F = -4.958527111131872e-8, relative_change = 2.0337952760319977e-12 Iter 155: T = 571.8889889332484 K, F = -2.0736397265963546e-8, relative_change = 8.505264942084775e-13 Iter 160: T = 571.8889889317627 K, F = -8.672509543838913e-9, relative_change = 3.5571266521351327e-13 Converged in 163 iterations to T = 571.8889889313276 K Iter 1: T = 980.2049722249659 K, F = -4510.315908474092, relative_change = 0.019795027775034113 Iter 2: T = 962.4509037939692 K, F = -3809.808667138341, relative_change = 0.018112608009625445 Iter 3: T = 946.6164464816887 K, F = -3216.599225364886, relative_change = 0.016452223432760343 Iter 5: T = 920.1817454144923 K, F = -2289.7521645410616, relative_change = 0.013286025276978806 Iter 10: T = 878.2349310192843 K, F = -972.011788452656, relative_change = 0.006972665733834047 Iter 15: T = 858.3897186614946 K, F = -409.5828448948409, relative_change = 0.003267666117305411 Iter 20: T = 849.5852546943058 K, F = -171.88563612850098, relative_change = 0.0014395485441328947 Iter 25: T = 845.8048380062114 K, F = -71.99306070615681, relative_change = 0.0006158229246790826 Iter 30: T = 844.2057981254171 K, F = -30.127689287843673, relative_change = 0.0002600376407062156 Iter 35: T = 843.5338432660974 K, F = -12.603168124977648, relative_change = 0.00010919312218249239 Iter 40: T = 843.252256150806 K, F = -5.271393642651489, relative_change = 4.574368484100295e-5 Iter 45: T = 843.1343934285103 K, F = -2.2046645540050527, relative_change = 1.9144199670040567e-5 Iter 50: T = 843.0850843790363 K, F = -0.9220353825399419, relative_change = 8.008721847862083e-6 Iter 55: T = 843.0644596914628 K, F = -0.3856094162738414, relative_change = 3.349761127885759e-6 Iter 60: T = 843.0558336664837 K, F = -0.1612670241255707, relative_change = 1.4009832313275513e-6 Iter 65: T = 843.0522260663572 K, F = -0.06744389355271774, relative_change = 5.85920708806628e-7 Iter 70: T = 843.050717308553 K, F = -0.028205858892533353, relative_change = 2.45041274846912e-7 Iter 75: T = 843.0500863251617 K, F = -0.011796030037261929, relative_change = 1.024795788049848e-7 Iter 80: T = 843.049822439872 K, F = -0.004933241158581403, relative_change = 4.285825213510424e-8 Iter 85: T = 843.0497120798049 K, F = -0.002063140460515367, relative_change = 1.7923844855082495e-8 Iter 90: T = 843.0496659258916 K, F = -0.0008628299982911258, relative_change = 7.495968089854851e-9 Iter 95: T = 843.0496466237712 K, F = -0.00036084581294315576, relative_change = 3.1349037462819e-9 Iter 100: T = 843.0496385513934 K, F = -0.00015091002880973647, relative_change = 1.3110542488406415e-9 Iter 105: T = 843.0496351754285 K, F = -6.31123757366403e-5, relative_change = 5.482985497663829e-10 Iter 110: T = 843.0496337635598 K, F = -2.639435107676391e-5, relative_change = 2.2930501924378934e-10 Iter 115: T = 843.0496331730993 K, F = -1.1038432047527635e-5, relative_change = 9.589809100283958e-11 Iter 120: T = 843.0496329261616 K, F = -4.616403383561618e-6, relative_change = 4.010572067607869e-11 Iter 125: T = 843.0496328228893 K, F = -1.930633741764609e-6, relative_change = 1.677268019859371e-11 Iter 130: T = 843.0496327796997 K, F = -8.074138040381484e-7, relative_change = 7.014532706751144e-12 Iter 135: T = 843.0496327616372 K, F = -3.3766868745566114e-7, relative_change = 2.9335491176878353e-12 Iter 140: T = 843.0496327540833 K, F = -1.412163326275362e-7, relative_change = 1.2268388020274776e-12 Iter 145: T = 843.0496327509242 K, F = -5.9057478463131474e-8, relative_change = 5.130710080176412e-13 Converged in 150 iterations to T = 843.049632749603 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017083222183409102 Iteration 10: d = 1.7737644161203622e-5 Iteration 20: d = 2.1062868640638454e-7 Iteration 30: d = 2.7889652806562e-9 Iteration 40: d = 3.7592913468168896e-11 Iteration 50: d = 5.096599990446671e-13 Iteration 60: d = 6.967556739741005e-15 Converged after 63 iterations. d = 1.9005916052852703e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.687342634623 Iteration 2: convergence error = 4826.706037462606 Iteration 3: convergence error = 1091.2434643048005 Iteration 4: convergence error = 318.4103766616188 Iteration 5: convergence error = 94.67202746983867 Iteration 6: convergence error = 28.697677584115127 Iteration 7: convergence error = 8.642795310821839 Iteration 8: convergence error = 2.5923203517418187 Iteration 9: convergence error = 0.7756588892295895 Iteration 10: convergence error = 0.23176423227300802 Iteration 11: convergence error = 0.06919528716662171 Iteration 12: convergence error = 0.020649529769571018 Iteration 13: convergence error = 0.0061607256823208445 Iteration 14: convergence error = 0.0018377631172370457 Iteration 15: convergence error = 0.0005481638374931208 Iteration 16: convergence error = 0.00016349707948393188 Iteration 17: convergence error = 4.876377147411404e-5 Iteration 18: convergence error = 1.4543792985932669e-5 Iteration 19: convergence error = 4.337635118645267e-6 Iteration 20: convergence error = 1.2936832263221731e-6 Iteration 21: convergence error = 3.8582811612286605e-7 Iteration 22: convergence error = 1.14942622531089e-7 Iteration 23: convergence error = 3.3369815355399624e-8 Iteration 24: convergence error = 9.63086677074898e-9 Iteration 25: convergence error = 2.7741862140828744e-9 Iteration 26: convergence error = 7.939888746477664e-10 Iteration 27: convergence error = 2.269189280923456e-10 Iteration 28: convergence error = 6.434675015043467e-11 Iteration 29: convergence error = 1.8417267710901797e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 88%|████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016824226582201915 Iteration 10: d = 1.9615872993541817e-5 Iteration 20: d = 2.4095172726256826e-7 Iteration 30: d = 3.1494663046207884e-9 Iteration 40: d = 4.1515422608302654e-11 Iteration 50: d = 5.485298014721214e-13 Iteration 60: d = 7.267315503402694e-15 Converged after 63 iterations. d = 2.021882443776971e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12270.40413039993 Iteration 2: convergence error = 8315.776248018705 Iteration 3: convergence error = 1955.533487443925 Iteration 4: convergence error = 482.1297803174066 Iteration 5: convergence error = 123.07447349058043 Iteration 6: convergence error = 32.89799961966037 Iteration 7: convergence error = 8.972030905488282 Iteration 8: convergence error = 2.4608079256965993 Iteration 9: convergence error = 0.6757450014972619 Iteration 10: convergence error = 0.18558343193421933 Iteration 11: convergence error = 0.0509643540738125 Iteration 12: convergence error = 0.013994783314274173 Iteration 13: convergence error = 0.0038428137729624723 Iteration 14: convergence error = 0.0010551737632340519 Iteration 15: convergence error = 0.00028973070129723055 Iteration 16: convergence error = 7.955420323924045e-5 Iteration 17: convergence error = 2.184393633797299e-5 Iteration 18: convergence error = 5.9978881381539395e-6 Iteration 19: convergence error = 1.6468939065816812e-6 Iteration 20: convergence error = 4.522028120845789e-7 Iteration 21: convergence error = 1.2501391211117152e-7 Iteration 22: convergence error = 3.367063072801102e-8 Iteration 23: convergence error = 9.016957847052254e-9 Iteration 24: convergence error = 2.4110704544000328e-9 Iteration 25: convergence error = 6.446043698815629e-10 Iteration 26: convergence error = 1.7212187231052667e-10 Iteration 27: convergence error = 4.547473508864641e-11 Iteration 28: convergence error = 1.2505552149377763e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:01 Bin 1 progress: 81%|██████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016824226582201915 Iteration 10: d = 1.9615872993541817e-5 Iteration 20: d = 2.4095172726256826e-7 Iteration 30: d = 3.1494663046207884e-9 Iteration 40: d = 4.1515422608302654e-11 Iteration 50: d = 5.485298014721214e-13 Iteration 60: d = 7.267315503402694e-15 Converged after 63 iterations. d = 2.021882443776971e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10995.788783731503 Iteration 2: convergence error = 5737.214438440242 Iteration 3: convergence error = 2010.6024526500973 Iteration 4: convergence error = 892.8909936210612 Iteration 5: convergence error = 411.7748892137247 Iteration 6: convergence error = 194.42085264819298 Iteration 7: convergence error = 91.8689671604966 Iteration 8: convergence error = 43.42981758194401 Iteration 9: convergence error = 20.530704996574514 Iteration 10: convergence error = 9.703405308452602 Iteration 11: convergence error = 4.584911351877054 Iteration 12: convergence error = 2.165900660144871 Iteration 13: convergence error = 1.0229863186386865 Iteration 14: convergence error = 0.48311021034578516 Iteration 15: convergence error = 0.2281311687484049 Iteration 16: convergence error = 0.1076340205077031 Iteration 17: convergence error = 0.05035140214840794 Iteration 18: convergence error = 0.023016522697616892 Iteration 19: convergence error = 0.010481546551545762 Iteration 20: convergence error = 0.004762827116337576 Iteration 21: convergence error = 0.00216150965570705 Iteration 22: convergence error = 0.0009802368740565726 Iteration 23: convergence error = 0.0004443425659701461 Iteration 24: convergence error = 0.00020136965622441494 Iteration 25: convergence error = 9.124392272497062e-5 Iteration 26: convergence error = 4.1340329062222736e-5 Iteration 27: convergence error = 1.8729211205936735e-5 Iteration 28: convergence error = 8.484976660838583e-6 Iteration 29: convergence error = 3.843900685751578e-6 Iteration 30: convergence error = 1.7413635760021862e-6 Iteration 31: convergence error = 7.888575055403635e-7 Iteration 32: convergence error = 3.573713911464438e-7 Iteration 33: convergence error = 1.618845999473706e-7 Iteration 34: convergence error = 7.333846951951273e-8 Iteration 35: convergence error = 3.32261151925195e-8 Iteration 36: convergence error = 1.504713509348221e-8 Iteration 37: convergence error = 6.818481779191643e-9 Iteration 38: convergence error = 3.0868250178173184e-9 Iteration 39: convergence error = 1.4038050721865147e-9 Iteration 40: convergence error = 6.307345756795257e-10 Iteration 41: convergence error = 2.878550731111318e-10 Iteration 42: convergence error = 1.3096723705530167e-10 Iteration 43: convergence error = 6.048139766789973e-11 Iteration 44: convergence error = 2.6830093702301383e-11 Iteration 45: convergence error = 1.318767317570746e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016824226582201915 Iteration 10: d = 1.9615872993541817e-5 Iteration 20: d = 2.4095172726256826e-7 Iteration 30: d = 3.1494663046207884e-9 Iteration 40: d = 4.1515422608302654e-11 Iteration 50: d = 5.485298014721214e-13 Iteration 60: d = 7.267315503402694e-15 Converged after 63 iterations. d = 2.021882443776971e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10827.087568943385 Iteration 2: convergence error = 7354.183813664677 Iteration 3: convergence error = 1728.4275257329323 Iteration 4: convergence error = 506.8639568463309 Iteration 5: convergence error = 157.68746111800328 Iteration 6: convergence error = 49.04156014412911 Iteration 7: convergence error = 15.224857493034506 Iteration 8: convergence error = 4.718442837222028 Iteration 9: convergence error = 1.4605929864774225 Iteration 10: convergence error = 0.45179682518346453 Iteration 11: convergence error = 0.13969217579415272 Iteration 12: convergence error = 0.043181234940675495 Iteration 13: convergence error = 0.013346207128506649 Iteration 14: convergence error = 0.004124644528928911 Iteration 15: convergence error = 0.0012746642473757674 Iteration 16: convergence error = 0.0003939073008041305 Iteration 17: convergence error = 0.00012172673359600594 Iteration 18: convergence error = 3.761614107133937e-5 Iteration 19: convergence error = 1.1624128546827706e-5 Iteration 20: convergence error = 3.5920807022193912e-6 Iteration 21: convergence error = 1.1100237315986305e-6 Iteration 22: convergence error = 3.4285631045349874e-7 Iteration 23: convergence error = 1.0474559530848637e-7 Iteration 24: convergence error = 3.120976543868892e-8 Iteration 25: convergence error = 9.264567779609933e-9 Iteration 26: convergence error = 2.746219252003357e-9 Iteration 27: convergence error = 8.117240213323385e-10 Iteration 28: convergence error = 2.4283508537337184e-10 Iteration 29: convergence error = 6.821210263296962e-11 Iteration 30: convergence error = 2.0463630789890885e-11 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 53%|█████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016824226582201915 Iteration 10: d = 1.9615872993541817e-5 Iteration 20: d = 2.4095172726256826e-7 Iteration 30: d = 3.1494663046207884e-9 Iteration 40: d = 4.1515422608302654e-11 Iteration 50: d = 5.485298014721214e-13 Iteration 60: d = 7.267315503402694e-15 Converged after 63 iterations. d = 2.021882443776971e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.839610195266 Iteration 2: convergence error = 5521.715238947166 Iteration 3: convergence error = 934.5209944669161 Iteration 4: convergence error = 170.195179457957 Iteration 5: convergence error = 30.908282799000062 Iteration 6: convergence error = 5.6336656805242455 Iteration 7: convergence error = 1.0345986677416477 Iteration 8: convergence error = 0.1895269217011446 Iteration 9: convergence error = 0.03467739582356444 Iteration 10: convergence error = 0.0063410696907340025 Iteration 11: convergence error = 0.001159170946721133 Iteration 12: convergence error = 0.00021186794583627488 Iteration 13: convergence error = 3.8721159398846794e-5 Iteration 14: convergence error = 7.076424481056165e-6 Iteration 15: convergence error = 1.2932109711982775e-6 Iteration 16: convergence error = 2.363221938139759e-7 Iteration 17: convergence error = 4.3183717934880406e-8 Iteration 18: convergence error = 7.89395926403813e-9 Iteration 19: convergence error = 1.4474608178716153e-9 Iteration 20: convergence error = 2.623892214614898e-10 Iteration 21: convergence error = 4.661160346586257e-11 Iteration 22: convergence error = 9.094947017729282e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▌ | ETA: 0:00:01 Bin 1 progress: 97%|████████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016824226582201915 Iteration 10: d = 1.9615872993541817e-5 Iteration 20: d = 2.4095172726256826e-7 Iteration 30: d = 3.1494663046207884e-9 Iteration 40: d = 4.1515422608302654e-11 Iteration 50: d = 5.485298014721214e-13 Iteration 60: d = 7.267315503402694e-15 Converged after 63 iterations. d = 2.021882443776971e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.50769106347 Iteration 2: convergence error = 2714.79398163141 Iteration 3: convergence error = 204.57275371269253 Iteration 4: convergence error = 19.368634282349205 Iteration 5: convergence error = 1.601010799755457 Iteration 6: convergence error = 0.1304651055677372 Iteration 7: convergence error = 0.010647952376578059 Iteration 8: convergence error = 0.0008711729192637116 Iteration 9: convergence error = 7.138959951847008e-5 Iteration 10: convergence error = 5.862405060116984e-6 Iteration 11: convergence error = 4.814232353923045e-7 Iteration 12: convergence error = 3.953001066659933e-8 Iteration 13: convergence error = 3.2467659824214143e-9 Iteration 14: convergence error = 2.653098048111653e-10 Iteration 15: convergence error = 2.2396307031158358e-11 Iteration 16: convergence error = 5.229594535194337e-12 Converged after 16 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346345 Iteration 2: convergence error = 858.4060420534043 Iteration 3: convergence error = 199.12106737711986 Iteration 4: convergence error = 59.265629268140856 Iteration 5: convergence error = 17.98548291103714 Iteration 6: convergence error = 5.463033078096942 Iteration 7: convergence error = 1.660989611064906 Iteration 8: convergence error = 0.5052487627306164 Iteration 9: convergence error = 0.15371874094194027 Iteration 10: convergence error = 0.046771316975991795 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.00433023651169151 Iteration 13: convergence error = 0.0013175920927324114 Iteration 14: convergence error = 0.0004009136252989265 Iteration 15: convergence error = 0.00012198904050819692 Iteration 16: convergence error = 3.711853867116588e-5 Iteration 17: convergence error = 1.1294342129986035e-5 Iteration 18: convergence error = 3.4366162253718358e-6 Iteration 19: convergence error = 1.0456861900820513e-6 Iteration 20: convergence error = 3.181812644470483e-7 Iteration 21: convergence error = 9.681605206424138e-8 Iteration 22: convergence error = 2.9460807127179578e-8 Iteration 23: convergence error = 8.963411346485373e-9 Iteration 24: convergence error = 2.730530468397774e-9 Iteration 25: convergence error = 8.295728548546322e-10 Iteration 26: convergence error = 2.538627086323686e-10 Iteration 27: convergence error = 7.707967597525567e-11 Iteration 28: convergence error = 2.4556356947869062e-11 Iteration 29: convergence error = 8.640199666842818e-12 Converged after 29 iterations Energy conservation errors by band: [4.6852026882886333e-26, 1.7771458472818954e-26, 2.50416005753358e-26, 4.13994203059987e-26, 6.522933053091502e-26, 4.828087799349512e-20, -1.176836406102666e-14, 1.1084466677857563e-12, -1.4779288903810084e-12, -7.389644451905042e-13, -1.1368683772161603e-13, 7.993605777301127e-15, 2.220446049250313e-16, 1.5612511283791264e-16, 6.451002926288751e-18, 2.0328790734103208e-20, 1.3923104070492562e-20, 4.793511649744795e-22, 1.0481929324695398e-23, 1.318298825299594e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 56%|██████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017083222183409102 Iteration 10: d = 1.7737644161203622e-5 Iteration 20: d = 2.1062868640638454e-7 Iteration 30: d = 2.7889652806562e-9 Iteration 40: d = 3.7592913468168896e-11 Iteration 50: d = 5.096599990446671e-13 Iteration 60: d = 6.967556739741005e-15 Converged after 63 iterations. d = 1.9005916052852703e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.340693849815 Iteration 2: convergence error = 3613.7639365473183 Iteration 3: convergence error = 590.03375873348 Iteration 4: convergence error = 104.20217693346854 Iteration 5: convergence error = 18.53986219594435 Iteration 6: convergence error = 3.269631373534139 Iteration 7: convergence error = 0.5745119848481863 Iteration 8: convergence error = 0.10079376489829883 Iteration 9: convergence error = 0.017672334427516034 Iteration 10: convergence error = 0.0030977207284195174 Iteration 11: convergence error = 0.0005429317784546583 Iteration 12: convergence error = 9.515463193565665e-5 Iteration 13: convergence error = 1.667658921178372e-5 Iteration 14: convergence error = 2.922683279393823e-6 Iteration 15: convergence error = 5.122278707858641e-7 Iteration 16: convergence error = 8.976644494396169e-8 Iteration 17: convergence error = 1.57428985403385e-8 Iteration 18: convergence error = 2.7341684472048655e-9 Iteration 19: convergence error = 4.872617864748463e-10 Iteration 20: convergence error = 8.43556335894391e-11 Iteration 21: convergence error = 1.4097167877480388e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.4924275130247 Iteration 2: convergence error = 871.3046026617826 Iteration 3: convergence error = 207.75299581225215 Iteration 4: convergence error = 62.495505504907555 Iteration 5: convergence error = 18.979315309184585 Iteration 6: convergence error = 5.766215594047026 Iteration 7: convergence error = 1.7533061530645 Iteration 8: convergence error = 0.5333443699004192 Iteration 9: convergence error = 0.16226812526360845 Iteration 10: convergence error = 0.04937275062957269 Iteration 11: convergence error = 0.015022831427586425 Iteration 12: convergence error = 0.004571091655407145 Iteration 13: convergence error = 0.0013908789693459767 Iteration 14: convergence error = 0.00042321318755966786 Iteration 15: convergence error = 0.00012877429912805383 Iteration 16: convergence error = 3.918314223483321e-5 Iteration 17: convergence error = 1.192255740534165e-5 Iteration 18: convergence error = 3.6277690469432855e-6 Iteration 19: convergence error = 1.1038503089366714e-6 Iteration 20: convergence error = 3.358788944751723e-7 Iteration 21: convergence error = 1.0220196600130294e-7 Iteration 22: convergence error = 3.1098920771910343e-8 Iteration 23: convergence error = 9.464429240324534e-9 Iteration 24: convergence error = 2.8813929020543583e-9 Iteration 25: convergence error = 8.774350135354325e-10 Iteration 26: convergence error = 2.6773250283440575e-10 Iteration 27: convergence error = 8.174083632184193e-11 Iteration 28: convergence error = 2.546585164964199e-11 Iteration 29: convergence error = 8.526512829121202e-12 Converged after 29 iterations Energy conservation errors by band: [3.473512337869159e-26, 2.928251680180396e-26, 6.54312789226516e-26, 3.0090310368750274e-26, 3.4028304007613565e-26, 3.3881317890172014e-20, -1.4654943925052066e-14, 3.552713678800501e-13, -3.268496584496461e-13, 2.0463630789890885e-12, 7.815970093361102e-14, 2.220446049250313e-14, 1.6653345369377348e-15, 1.8735013540549517e-16, 3.7947076036992655e-18, -1.3976043629695956e-19, 2.2658131339052534e-20, 1.5923226791645783e-22, -7.302453845194697e-25, 1.6176561218948528e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729989 Iteration 2: convergence error = 2115.1156110176375 Iteration 3: convergence error = 714.8959934551624 Iteration 4: convergence error = 296.0190747132401 Iteration 5: convergence error = 115.88799395378715 Iteration 6: convergence error = 44.115249236190266 Iteration 7: convergence error = 16.5995810251261 Iteration 8: convergence error = 6.21598340493324 Iteration 9: convergence error = 2.323124567003333 Iteration 10: convergence error = 0.8675636398231745 Iteration 11: convergence error = 0.32389343048794217 Iteration 12: convergence error = 0.12090784413680922 Iteration 13: convergence error = 0.04513241840777482 Iteration 14: convergence error = 0.016846741615609062 Iteration 15: convergence error = 0.0062884074734483875 Iteration 16: convergence error = 0.002347277756598487 Iteration 17: convergence error = 0.0008761691049130604 Iteration 18: convergence error = 0.0003270478227932472 Iteration 19: convergence error = 0.00012207719078105583 Iteration 20: convergence error = 4.556777048492222e-5 Iteration 21: convergence error = 1.7009089560815482e-5 Iteration 22: convergence error = 6.3489862895949045e-6 Iteration 23: convergence error = 2.369887170061702e-6 Iteration 24: convergence error = 8.846072887536138e-7 Iteration 25: convergence error = 3.3019910006260034e-7 Iteration 26: convergence error = 1.2325517673161812e-7 Iteration 27: convergence error = 4.600769898388535e-8 Iteration 28: convergence error = 1.7175352695630863e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.956249075708911e-10 Iteration 32: convergence error = 3.3514879760332406e-10 Iteration 33: convergence error = 1.2505552149377763e-10 Iteration 34: convergence error = 4.8203219193965197e-11 Iteration 35: convergence error = 1.887201506178826e-11 Converged after 35 iterations Energy conservation errors by band: [-2.3022116657970009e-26, -1.308625578453032e-25, -1.0743654440386004e-25, -8.320273739547056e-26, -1.0057029908481635e-25, -6.945670167485263e-20, -9.769962616701378e-15, -1.4068746168049984e-12, -7.837286375433905e-12, -1.0373923942097463e-12, -8.881784197001252e-15, -1.5543122344752192e-15, 9.71445146547012e-16, 2.927345865710862e-18, 1.4365678785432934e-18, 4.1504614415460717e-20, 5.717472393966527e-21, 1.2904017555827232e-22, -3.9291079096268815e-24, 5.551115123125783e-17] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.362166223825 Iteration 2: convergence error = 864.8522700482426 Iteration 3: convergence error = 203.43244494690714 Iteration 4: convergence error = 60.87736397590493 Iteration 5: convergence error = 18.481426659698172 Iteration 6: convergence error = 5.614330618626127 Iteration 7: convergence error = 1.7070587705939033 Iteration 8: convergence error = 0.5192694771479864 Iteration 9: convergence error = 0.15798519284180657 Iteration 10: convergence error = 0.04806952669321163 Iteration 11: convergence error = 0.01462628739034244 Iteration 12: convergence error = 0.00445043197044015 Iteration 13: convergence error = 0.0013541649042281279 Iteration 14: convergence error = 0.00041204191563792847 Iteration 15: convergence error = 0.00012537513089228014 Iteration 16: convergence error = 3.814885076280916e-5 Iteration 17: convergence error = 1.1607843816818786e-5 Iteration 18: convergence error = 3.5320085771672893e-6 Iteration 19: convergence error = 1.074713281923323e-6 Iteration 20: convergence error = 3.270117758802371e-7 Iteration 21: convergence error = 9.950326784746721e-8 Iteration 22: convergence error = 3.0277988116722554e-8 Iteration 23: convergence error = 9.213749763148371e-9 Iteration 24: convergence error = 2.8026079235132784e-9 Iteration 25: convergence error = 8.545839591533877e-10 Iteration 26: convergence error = 2.629576556500979e-10 Iteration 27: convergence error = 8.01492205937393e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.86757334228605e-12 Converged after 29 iterations Energy conservation errors by band: [4.281305904815475e-26, 4.52364397489937e-26, 4.119747191426212e-26, 5.634360129450555e-26, 9.895471195092372e-26, -6.606856988583543e-20, 2.4424906541753444e-15, -8.526512829121202e-14, 3.126388037344441e-12, 5.684341886080801e-13, 2.984279490192421e-13, 3.552713678800501e-14, 8.326672684688674e-16, 1.3010426069826053e-16, 2.0599841277224584e-18, 3.9810548520952116e-19, 2.3002238473874594e-20, 5.438712527536157e-22, -1.2782525403358506e-23, 3.1963148993622903e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 8m33.2s Testing RayTraceHeatTransfer tests passed Testing completed after 540.02s PkgEval succeeded after 627.0s