Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1563 (14ca1abc72*) started at 2026-01-15T16:24:03.516 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 10.01s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.14.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.18.0+0 [e37daf67] + LibGit2_jll v1.9.2+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.12.2 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.99s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling packages... 1435.5 ms ✓ Measurements 5079.8 ms ✓ StatsBase 6493.1 ms ✓ RayTraceHeatTransfer 3 dependencies successfully precompiled in 14 seconds. 58 already precompiled. Precompilation completed after 33.28s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_GSvSkg/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.16 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_GSvSkg/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.16 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.18.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443558531181326e-15 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.0569008315563939e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.691850745534255e-16 Converged after 6 iterations. d = 1.6184142622847344e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.485546236472086e-16 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2585248453105973e-15 Converged after 6 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 8.64442489944963e-16 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2785653431858247e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.741771048821297e-15 Converged after 5 iterations. d = 2.1647144989062977e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.6708853471768988e-15 Converged after 5 iterations. d = 1.8174569082716346e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5394136982922497e-15 Converged after 5 iterations. d = 1.6288904732141786e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:03:10 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 99%|████████████████████████████████▊| ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:05 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00123985209959028 Iteration 10: d = 1.1846152795935167e-5 Iteration 20: d = 1.7224510847005759e-7 Iteration 30: d = 2.8362026967545372e-9 Iteration 40: d = 4.783227503261099e-11 Iteration 50: d = 8.158171023415484e-13 Iteration 60: d = 1.400092945933682e-14 Converged after 65 iterations. d = 1.8485386831634116e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 33%|███████████ | ETA: 0:00:02 Bin 1 progress: 71%|███████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013699043620237356 Iteration 10: d = 1.2512427214898431e-5 Iteration 20: d = 1.8402046187047306e-7 Iteration 30: d = 3.1790231714914413e-9 Iteration 40: d = 5.6065231727243656e-11 Iteration 50: d = 9.93111944657709e-13 Iteration 60: d = 1.761791703057503e-14 Converged after 66 iterations. d = 1.6053494248410698e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:01 Bin 1 progress: 81%|██████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012060556880974778 Iteration 10: d = 1.2065714225639613e-5 Iteration 20: d = 1.7813488195974108e-7 Iteration 30: d = 2.940461542569196e-9 Iteration 40: d = 4.968443365453323e-11 Iteration 50: d = 8.482583549566869e-13 Iteration 60: d = 1.456111481725654e-14 Converged after 65 iterations. d = 1.90458393010534e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011635402681138833 Iteration 10: d = 9.459452844693622e-6 Iteration 20: d = 1.284526648447636e-7 Iteration 30: d = 2.12014633585827e-9 Iteration 40: d = 3.6118647011871646e-11 Iteration 50: d = 6.222723000460216e-13 Iteration 60: d = 1.0806990309861542e-14 Converged after 64 iterations. d = 2.172953072117347e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013258323207858004 Iteration 10: d = 1.2035427627756614e-5 Iteration 20: d = 1.5740206339510907e-7 Iteration 30: d = 2.3498891455334387e-9 Iteration 40: d = 3.6050775264265273e-11 Iteration 50: d = 5.590823542945126e-13 Iteration 60: d = 8.69675838437255e-15 Converged after 64 iterations. d = 1.6670993813184957e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:01 Bin 1 progress: 81%|██████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012398898853990445 Iteration 10: d = 1.0553025499835862e-5 Iteration 20: d = 1.2893139876584105e-7 Iteration 30: d = 1.8529266033085478e-9 Iteration 40: d = 2.7848230743323183e-11 Iteration 50: d = 4.2703328908903443e-13 Iteration 60: d = 6.6352331451795445e-15 Converged after 63 iterations. d = 1.8692174925021533e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013067580492078987 Iteration 10: d = 1.054585361638942e-5 Iteration 20: d = 1.2891407582601816e-7 Iteration 30: d = 1.864613682772584e-9 Iteration 40: d = 2.810860507870118e-11 Iteration 50: d = 4.312635941236975e-13 Iteration 60: d = 6.638003169264859e-15 Converged after 63 iterations. d = 1.938138111864861e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 86%|████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012658080293771784 Iteration 10: d = 7.781504631651589e-6 Iteration 20: d = 6.472260084681937e-8 Iteration 30: d = 6.681901099340517e-10 Iteration 40: d = 7.370060367466082e-12 Iteration 50: d = 8.634654662130903e-14 Converged after 59 iterations. d = 1.6549205239368872e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 79%|██████████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015493820065417788 Iteration 10: d = 1.0231613825465331e-5 Iteration 20: d = 9.856565589741945e-8 Iteration 30: d = 1.303262840376283e-9 Iteration 40: d = 1.873059914869415e-11 Iteration 50: d = 2.7960428092670005e-13 Iteration 60: d = 4.261289844741835e-15 Converged after 62 iterations. d = 1.862953005306112e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016670215048234488 Iteration 10: d = 1.3912593732361365e-5 Iteration 20: d = 1.472739758716338e-7 Iteration 30: d = 1.971287832342241e-9 Iteration 40: d = 2.8609577119494786e-11 Iteration 50: d = 4.299844113960765e-13 Iteration 60: d = 6.5926672779279965e-15 Converged after 63 iterations. d = 1.8990005226032637e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.005415502702281915 Iteration 10: d = 4.210005729419317e-5 Iteration 20: d = 4.517133578497475e-7 Iteration 30: d = 6.0857163064180485e-9 Iteration 40: d = 8.467807671625003e-11 Iteration 50: d = 1.1834144878081244e-12 Iteration 60: d = 1.6586965754630204e-14 Converged after 65 iterations. d = 1.9178487787304175e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0033351431203921846 Iteration 10: d = 2.9247476794015924e-5 Iteration 20: d = 3.7855431107536474e-7 Iteration 30: d = 5.787789664447863e-9 Iteration 40: d = 9.012415598879794e-11 Iteration 50: d = 1.4039920157849633e-12 Iteration 60: d = 2.1852219994190633e-14 Converged after 66 iterations. d = 1.795917512291246e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002871910706270481 Iteration 10: d = 2.722349748712244e-5 Iteration 20: d = 3.8932830028688586e-7 Iteration 30: d = 6.3211452391692875e-9 Iteration 40: d = 1.0535715274624892e-10 Iteration 50: d = 1.772530838499298e-12 Iteration 60: d = 2.9923041711817596e-14 Converged after 67 iterations. d = 1.7438123816457808e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018896948392039027 Iteration 10: d = 2.1170724350762973e-5 Iteration 20: d = 3.35910142188488e-7 Iteration 30: d = 5.817870991828605e-9 Iteration 40: d = 1.0302421565599162e-10 Iteration 50: d = 1.8422719412259275e-12 Iteration 60: d = 3.311097006520754e-14 Converged after 67 iterations. d = 2.004451970157035e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 51%|████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013258323207858004 Iteration 10: d = 1.2035427627756614e-5 Iteration 20: d = 1.5740206339510907e-7 Iteration 30: d = 2.3498891455334387e-9 Iteration 40: d = 3.6050775264265273e-11 Iteration 50: d = 5.590823542945126e-13 Iteration 60: d = 8.69675838437255e-15 Converged after 64 iterations. d = 1.6670993813184957e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 89%|█████████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001729584957697491 Iteration 10: d = 1.6381895345412165e-5 Iteration 20: d = 2.0404191361184421e-7 Iteration 30: d = 2.8302755411206964e-9 Iteration 40: d = 3.9805322859126486e-11 Iteration 50: d = 5.619606045898452e-13 Iteration 60: d = 7.965364609476625e-15 Converged after 63 iterations. d = 2.2119498967548057e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015179145902740737 Iteration 10: d = 2.045143096002533e-5 Iteration 20: d = 2.788013097672795e-7 Iteration 30: d = 3.940835065089152e-9 Iteration 40: d = 5.60250900126392e-11 Iteration 50: d = 7.98047520786413e-13 Iteration 60: d = 1.135034817884729e-14 Converged after 64 iterations. d = 2.1062955779692692e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.377277092419 Iteration 2: convergence error = 4828.886736431159 Iteration 3: convergence error = 1095.6241438439904 Iteration 4: convergence error = 319.10806908345126 Iteration 5: convergence error = 94.64086135746152 Iteration 6: convergence error = 28.21001517893319 Iteration 7: convergence error = 8.455362822551933 Iteration 8: convergence error = 2.5326180758934242 Iteration 9: convergence error = 0.7568358618921138 Iteration 10: convergence error = 0.2258663715815601 Iteration 11: convergence error = 0.06735485630315452 Iteration 12: convergence error = 0.020076910388070246 Iteration 13: convergence error = 0.005982969822071027 Iteration 14: convergence error = 0.0017826861096637003 Iteration 15: convergence error = 0.000531125765746765 Iteration 16: convergence error = 0.00015823381636437261 Iteration 17: convergence error = 4.713998123406782e-5 Iteration 18: convergence error = 1.404340764565859e-5 Iteration 19: convergence error = 4.183611963526346e-6 Iteration 20: convergence error = 1.2463144685170846e-6 Iteration 21: convergence error = 3.7127688301552553e-7 Iteration 22: convergence error = 1.1046472536690999e-7 Iteration 23: convergence error = 3.1996705729397945e-8 Iteration 24: convergence error = 9.203631634591147e-9 Iteration 25: convergence error = 2.654360287124291e-9 Iteration 26: convergence error = 7.678409019717947e-10 Iteration 27: convergence error = 2.1782398107461631e-10 Iteration 28: convergence error = 6.184563972055912e-11 Iteration 29: convergence error = 1.9099388737231493e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001729584957697491 Iteration 10: d = 1.6381895345412165e-5 Iteration 20: d = 2.0404191361184421e-7 Iteration 30: d = 2.8302755411206964e-9 Iteration 40: d = 3.9805322859126486e-11 Iteration 50: d = 5.619606045898452e-13 Iteration 60: d = 7.965364609476625e-15 Converged after 63 iterations. d = 2.2119498967548057e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.92303342049 Iteration 2: convergence error = 4826.418153681387 Iteration 3: convergence error = 1100.6175367210014 Iteration 4: convergence error = 321.44454711061417 Iteration 5: convergence error = 95.40662274800775 Iteration 6: convergence error = 28.46168382195424 Iteration 7: convergence error = 8.49863469247498 Iteration 8: convergence error = 2.545310009394143 Iteration 9: convergence error = 0.7615062290544756 Iteration 10: convergence error = 0.22751411289095813 Iteration 11: convergence error = 0.06792067694846082 Iteration 12: convergence error = 0.020267555753662236 Iteration 13: convergence error = 0.006046302595677844 Iteration 14: convergence error = 0.0018034947133855894 Iteration 15: convergence error = 0.0005379022081797302 Iteration 16: convergence error = 0.0001604244964710233 Iteration 17: convergence error = 4.7843819857007475e-5 Iteration 18: convergence error = 1.4268351151258685e-5 Iteration 19: convergence error = 4.255179192114156e-6 Iteration 20: convergence error = 1.268985215574503e-6 Iteration 21: convergence error = 3.784500677284086e-7 Iteration 22: convergence error = 1.1272322808508761e-7 Iteration 23: convergence error = 3.271452442277223e-8 Iteration 24: convergence error = 9.433733794139698e-9 Iteration 25: convergence error = 2.710294211283326e-9 Iteration 26: convergence error = 7.812559488229454e-10 Iteration 27: convergence error = 2.2009771782904863e-10 Iteration 28: convergence error = 6.389200279954821e-11 Iteration 29: convergence error = 1.77351466845721e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 7:05:31 Bin 1 ray tracing: 9%|██▋ | ETA: 0:00:37 Bin 1 ray tracing: 18%|█████▎ | ETA: 0:00:22 Bin 1 ray tracing: 26%|███████▉ | ETA: 0:00:16 Bin 1 ray tracing: 35%|██████████▍ | ETA: 0:00:13 Bin 1 ray tracing: 43%|█████████████ | ETA: 0:00:10 Bin 1 ray tracing: 52%|███████████████▋ | ETA: 0:00:08 Bin 1 ray tracing: 60%|██████████████████▏ | ETA: 0:00:06 Bin 1 ray tracing: 69%|████████████████████▋ | ETA: 0:00:05 Bin 1 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:03 Bin 1 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 1 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 2 ray tracing: 18%|█████▍ | ETA: 0:00:09 Bin 2 ray tracing: 26%|████████ | ETA: 0:00:08 Bin 2 ray tracing: 35%|██████████▌ | ETA: 0:00:08 Bin 2 ray tracing: 43%|█████████████ | ETA: 0:00:07 Bin 2 ray tracing: 52%|███████████████▌ | ETA: 0:00:06 Bin 2 ray tracing: 60%|█████████████████▉ | ETA: 0:00:05 Bin 2 ray tracing: 69%|████████████████████▋ | ETA: 0:00:04 Bin 2 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 2 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 2 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 10%|███ | ETA: 0:00:10 Bin 3 ray tracing: 19%|█████▊ | ETA: 0:00:09 Bin 3 ray tracing: 29%|████████▋ | ETA: 0:00:08 Bin 3 ray tracing: 38%|███████████▍ | ETA: 0:00:07 Bin 3 ray tracing: 46%|█████████████▉ | ETA: 0:00:06 Bin 3 ray tracing: 54%|████████████████▍ | ETA: 0:00:05 Bin 3 ray tracing: 63%|██████████████████▊ | ETA: 0:00:04 Bin 3 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:04 Bin 3 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:03 Bin 3 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 3 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 4 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 4 ray tracing: 26%|███████▊ | ETA: 0:00:09 Bin 4 ray tracing: 35%|██████████▍ | ETA: 0:00:08 Bin 4 ray tracing: 43%|█████████████ | ETA: 0:00:07 Bin 4 ray tracing: 52%|███████████████▋ | ETA: 0:00:06 Bin 4 ray tracing: 61%|██████████████████▍ | ETA: 0:00:04 Bin 4 ray tracing: 70%|█████████████████████ | ETA: 0:00:03 Bin 4 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:02 Bin 4 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:01 Bin 4 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 5 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 5 ray tracing: 26%|███████▋ | ETA: 0:00:09 Bin 5 ray tracing: 34%|██████████▎ | ETA: 0:00:08 Bin 5 ray tracing: 43%|████████████▉ | ETA: 0:00:07 Bin 5 ray tracing: 52%|███████████████▌ | ETA: 0:00:06 Bin 5 ray tracing: 61%|██████████████████▏ | ETA: 0:00:05 Bin 5 ray tracing: 69%|████████████████████▊ | ETA: 0:00:04 Bin 5 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:03 Bin 5 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 5 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 9%|██▌ | ETA: 0:00:11 Bin 6 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 6 ray tracing: 25%|███████▋ | ETA: 0:00:09 Bin 6 ray tracing: 34%|██████████▎ | ETA: 0:00:08 Bin 6 ray tracing: 43%|████████████▉ | ETA: 0:00:07 Bin 6 ray tracing: 52%|███████████████▌ | ETA: 0:00:06 Bin 6 ray tracing: 60%|██████████████████ | ETA: 0:00:05 Bin 6 ray tracing: 69%|████████████████████▋ | ETA: 0:00:04 Bin 6 ray tracing: 77%|███████████████████████▎ | ETA: 0:00:03 Bin 6 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 6 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 7 ray tracing: 18%|█████▍ | ETA: 0:00:09 Bin 7 ray tracing: 27%|████████ | ETA: 0:00:08 Bin 7 ray tracing: 35%|██████████▋ | ETA: 0:00:07 Bin 7 ray tracing: 44%|█████████████▎ | ETA: 0:00:06 Bin 7 ray tracing: 53%|███████████████▉ | ETA: 0:00:05 Bin 7 ray tracing: 61%|██████████████████▍ | ETA: 0:00:04 Bin 7 ray tracing: 70%|█████████████████████ | ETA: 0:00:03 Bin 7 ray tracing: 79%|███████████████████████▌ | ETA: 0:00:02 Bin 7 ray tracing: 87%|██████████████████████████▎ | ETA: 0:00:01 Bin 7 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 8 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 8 ray tracing: 26%|███████▉ | ETA: 0:00:08 Bin 8 ray tracing: 35%|██████████▋ | ETA: 0:00:07 Bin 8 ray tracing: 44%|█████████████▎ | ETA: 0:00:06 Bin 8 ray tracing: 53%|███████████████▉ | ETA: 0:00:05 Bin 8 ray tracing: 62%|██████████████████▌ | ETA: 0:00:04 Bin 8 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:03 Bin 8 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:02 Bin 8 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:01 Bin 8 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 10%|███ | ETA: 0:00:10 Bin 9 ray tracing: 19%|█████▊ | ETA: 0:00:09 Bin 9 ray tracing: 29%|████████▌ | ETA: 0:00:08 Bin 9 ray tracing: 38%|███████████▍ | ETA: 0:00:07 Bin 9 ray tracing: 47%|██████████████▏ | ETA: 0:00:06 Bin 9 ray tracing: 56%|████████████████▊ | ETA: 0:00:05 Bin 9 ray tracing: 64%|███████████████████▎ | ETA: 0:00:04 Bin 9 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:03 Bin 9 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:02 Bin 9 ray tracing: 90%|███████████████████████████ | ETA: 0:00:01 Bin 9 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 10 ray tracing: 19%|█████▍ | ETA: 0:00:09 Bin 10 ray tracing: 28%|████████▏ | ETA: 0:00:08 Bin 10 ray tracing: 37%|██████████▊ | ETA: 0:00:07 Bin 10 ray tracing: 46%|█████████████▍ | ETA: 0:00:06 Bin 10 ray tracing: 55%|████████████████ | ETA: 0:00:05 Bin 10 ray tracing: 64%|██████████████████▌ | ETA: 0:00:04 Bin 10 ray tracing: 73%|█████████████████████ | ETA: 0:00:03 Bin 10 ray tracing: 81%|███████████████████████▋ | ETA: 0:00:02 Bin 10 ray tracing: 90%|██████████████████████████ | ETA: 0:00:01 Bin 10 ray tracing: 98%|████████████████████████████▌| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 22%|███████▍ | ETA: 0:00:04 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 1 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 1 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 24%|████████▏ | ETA: 0:00:03 Bin 2 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 2 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 2 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 22%|███████▍ | ETA: 0:00:04 Bin 3 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 3 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 3 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 22%|███████▍ | ETA: 0:00:04 Bin 4 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 4 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 4 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 24%|████████▏ | ETA: 0:00:03 Bin 5 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 5 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 5 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 22%|███████▍ | ETA: 0:00:04 Bin 6 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 6 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 6 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 22%|███████▍ | ETA: 0:00:04 Bin 7 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 7 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 7 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 24%|████████▏ | ETA: 0:00:03 Bin 8 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 8 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 8 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 33%|███████████ | ETA: 0:00:02 Bin 9 progress: 67%|██████████████████████ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 36%|███████████▍ | ETA: 0:00:02 Bin 10 progress: 71%|██████████████████████▊ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:02 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001729584957697491 Iteration 10: d = 1.6381895345412165e-5 Iteration 20: d = 2.0404191361184421e-7 Iteration 30: d = 2.8302755411206964e-9 Iteration 40: d = 3.9805322859126486e-11 Iteration 50: d = 5.619606045898452e-13 Iteration 60: d = 7.965364609476625e-15 Converged after 63 iterations. d = 2.2119498967548057e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015190526532608193 Iteration 10: d = 2.0289186048658974e-5 Iteration 20: d = 2.759924298794137e-7 Iteration 30: d = 3.896462023047511e-9 Iteration 40: d = 5.533687135188706e-11 Iteration 50: d = 7.874670161211175e-13 Iteration 60: d = 1.1228990096504805e-14 Converged after 64 iterations. d = 2.0493852644219338e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012982037118596946 Iteration 10: d = 1.5370680626542858e-5 Iteration 20: d = 1.7864268816761448e-7 Iteration 30: d = 2.3157446193073554e-9 Iteration 40: d = 3.161666493665634e-11 Iteration 50: d = 4.434659768370646e-13 Iteration 60: d = 6.334071276471622e-15 Converged after 63 iterations. d = 1.7307799923276553e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012213018952408393 Iteration 10: d = 8.54762715539709e-6 Iteration 20: d = 7.396850229739869e-8 Iteration 30: d = 8.535638636468016e-10 Iteration 40: d = 1.0682511848199596e-11 Iteration 50: d = 1.3703293830728877e-13 Converged after 60 iterations. d = 1.7733711604501245e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001897193859945928 Iteration 10: d = 2.1649409796449845e-5 Iteration 20: d = 2.415473530157384e-7 Iteration 30: d = 3.0906189651795657e-9 Iteration 40: d = 4.082908692169718e-11 Iteration 50: d = 5.445499462938887e-13 Iteration 60: d = 7.287312692372527e-15 Converged after 63 iterations. d = 2.0016890531570085e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016540774773782473 Iteration 10: d = 1.4806949073646614e-5 Iteration 20: d = 1.7347964612976593e-7 Iteration 30: d = 2.3644707894887108e-9 Iteration 40: d = 3.319930372714788e-11 Iteration 50: d = 4.702532356951021e-13 Iteration 60: d = 6.643033531467524e-15 Converged after 63 iterations. d = 1.8617428270373493e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001653360749603638 Iteration 10: d = 2.1007535800112395e-5 Iteration 20: d = 2.8000782088027567e-7 Iteration 30: d = 3.855374391158798e-9 Iteration 40: d = 5.3330805687301764e-11 Iteration 50: d = 7.39706797755111e-13 Iteration 60: d = 1.029241947063622e-14 Converged after 64 iterations. d = 1.8542318053779427e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012499174125408504 Iteration 10: d = 1.1848769316010175e-5 Iteration 20: d = 1.4960462763305153e-7 Iteration 30: d = 2.1050041194797355e-9 Iteration 40: d = 2.98500234354443e-11 Iteration 50: d = 4.2336566328283523e-13 Iteration 60: d = 5.964864577437628e-15 Converged after 63 iterations. d = 1.662605909376744e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001405726769871832 Iteration 10: d = 1.0572749962357917e-5 Iteration 20: d = 1.022683478458855e-7 Iteration 30: d = 1.2576834959085352e-9 Iteration 40: d = 1.67829722459495e-11 Iteration 50: d = 2.3095623741775647e-13 Iteration 60: d = 3.216753227434326e-15 Converged after 61 iterations. d = 2.1198907916899725e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00149704776658604 Iteration 10: d = 1.1426799024700849e-5 Iteration 20: d = 8.209533054613331e-8 Iteration 30: d = 8.325673493363899e-10 Iteration 40: d = 1.0380615030451856e-11 Iteration 50: d = 1.4013180612689702e-13 Converged after 60 iterations. d = 1.955283076026835e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8653.889252422268 Iteration 2: convergence error = 4810.212090028981 Iteration 3: convergence error = 1094.0741785419182 Iteration 4: convergence error = 318.4209125575462 Iteration 5: convergence error = 94.96334807728226 Iteration 6: convergence error = 28.955941566286583 Iteration 7: convergence error = 8.77517548486071 Iteration 8: convergence error = 2.6488888984988535 Iteration 9: convergence error = 0.7977126254872928 Iteration 10: convergence error = 0.2399026939419855 Iteration 11: convergence error = 0.07209152558016285 Iteration 12: convergence error = 0.021654085644740917 Iteration 13: convergence error = 0.006502570884549641 Iteration 14: convergence error = 0.0019523924549957883 Iteration 15: convergence error = 0.0005861554386683565 Iteration 16: convergence error = 0.00017596953239262803 Iteration 17: convergence error = 5.2826278306383756e-5 Iteration 18: convergence error = 1.585825884831138e-5 Iteration 19: convergence error = 4.760547426485573e-6 Iteration 20: convergence error = 1.4290778835857054e-6 Iteration 21: convergence error = 4.2899614527414087e-7 Iteration 22: convergence error = 1.2866030374425463e-7 Iteration 23: convergence error = 3.77649485017173e-8 Iteration 24: convergence error = 1.0974645192618482e-8 Iteration 25: convergence error = 3.1748186302138492e-9 Iteration 26: convergence error = 9.172254067379981e-10 Iteration 27: convergence error = 2.646629582159221e-10 Iteration 28: convergence error = 7.73070496506989e-11 Iteration 29: convergence error = 2.091837814077735e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.3838917039797 K, F = -7431.611301176915, relative_change = 0.032616108296020366 Iter 2: T = 936.8452272350247 K, F = -6299.464650506334, relative_change = 0.03156829954565733 Iter 3: T = 908.3524903201917 K, F = -5338.274391101239, relative_change = 0.030413494232046857 Iter 5: T = 857.3652436884166 K, F = -3829.7797526844947, relative_change = 0.02778924368616505 Iter 10: T = 762.6520132216785 K, F = -1658.0672157538338, relative_change = 0.0198501097190587 Iter 15: T = 707.3061931400812 K, F = -709.7820834402226, relative_change = 0.011864142104954008 Iter 20: T = 678.8908863458478 K, F = -300.78850643437806, relative_change = 0.006063955799085668 Iter 25: T = 665.6548962632365 K, F = -126.61620566220783, relative_change = 0.002798201237562859 Iter 30: T = 659.8313974997197 K, F = -53.108970704522484, relative_change = 0.0012233766555509527 Iter 35: T = 657.3407228259938 K, F = -22.239238901828735, relative_change = 0.0005215558558329481 Iter 40: T = 656.2890380055039 K, F = -9.305769582422695, relative_change = 0.00021990665077530188 Iter 45: T = 655.8474216662122 K, F = -3.8926740660238766, relative_change = 9.228368658564932e-5 Iter 50: T = 655.6624172230897 K, F = -1.6281189110011942, relative_change = 3.86497052794935e-5 Iter 55: T = 655.5849908552312 K, F = -0.6809261124110482, relative_change = 1.6173507337787513e-5 Iter 60: T = 655.5526005390527 K, F = -0.2847762163575589, relative_change = 6.765658792626915e-6 Iter 65: T = 655.5390528272733 K, F = -0.11909765154233626, relative_change = 2.829777600098991e-6 Iter 70: T = 655.5333867159371 K, F = -0.04980820658303137, relative_change = 1.1834989668937316e-6 Iter 75: T = 655.5310170286502 K, F = -0.02083041242899658, relative_change = 4.949625287588202e-7 Iter 80: T = 655.5300259880565 K, F = -0.008711531721611765, relative_change = 2.0700083693214976e-7 Iter 85: T = 655.5296115214584 K, F = -0.0036432673857952347, relative_change = 8.657050129845998e-8 Iter 90: T = 655.5294381862998 K, F = -0.0015236580672615685, relative_change = 3.620486634063792e-8 Iter 95: T = 655.5293656954179 K, F = -0.0006372120234416356, relative_change = 1.5141316008722495e-8 Iter 100: T = 655.5293353788569 K, F = -0.00026648968262010797, relative_change = 6.3322806815113406e-9 Iter 105: T = 655.5293227001075 K, F = -0.00011144916743510702, relative_change = 2.6482356388722265e-9 Iter 110: T = 655.5293173977028 K, F = -4.660937317518821e-5, relative_change = 1.1075238222249235e-9 Iter 115: T = 655.5293151801739 K, F = -1.949259627181954e-5, relative_change = 4.6317969123091983e-10 Iter 120: T = 655.5293142527768 K, F = -8.152036678588104e-6, relative_change = 1.937072827277985e-10 Iter 125: T = 655.5293138649282 K, F = -3.409279559996037e-6, relative_change = 8.101071027086247e-11 Iter 130: T = 655.5293137027254 K, F = -1.4258015508250566e-6, relative_change = 3.3879649480502434e-11 Iter 135: T = 655.5293136348902 K, F = -5.962870754383509e-7, relative_change = 1.41688702076865e-11 Iter 140: T = 655.5293136065206 K, F = -2.4937454595752584e-7, relative_change = 5.925594769773391e-12 Iter 145: T = 655.5293135946562 K, F = -1.042905948267503e-7, relative_change = 2.4781350515238894e-12 Iter 150: T = 655.5293135896944 K, F = -4.3616865785800485e-8, relative_change = 1.0364164105580104e-12 Iter 155: T = 655.5293135876193 K, F = -1.8241381849470883e-8, relative_change = 4.3344855618870156e-13 Converged in 159 iterations to T = 655.5293135868703 K Iter 1: T = 970.4730559352583 K, F = -6727.742292526271, relative_change = 0.02952694406474171 Iter 2: T = 943.1128912650165 K, F = -5698.041401420279, relative_change = 0.028192606175834942 Iter 3: T = 917.8739611627358 K, F = -4824.1841342901125, relative_change = 0.02676130327136892 Iter 5: T = 873.5397779285581 K, F = -3453.824222799884, relative_change = 0.023654377277969416 Iter 10: T = 794.9873831452359 K, F = -1486.2702662551847, relative_change = 0.015349379978884636 Iter 15: T = 752.2968439513616 K, F = -632.541861409937, relative_change = 0.008379244340011102 Iter 20: T = 731.6131109121901 K, F = -266.9642734245106, relative_change = 0.004023511026461528 Iter 25: T = 722.3136481737814 K, F = -112.12597125059612, relative_change = 0.0017945690590711874 Iter 30: T = 718.2949998380517 K, F = -46.9807886160249, relative_change = 0.0007720455619773697 Iter 35: T = 716.5903263838868 K, F = -19.6637566629762, relative_change = 0.0003268058539555097 Iter 40: T = 715.8731008164734 K, F = -8.226414881019238, relative_change = 0.00013737330743007948 Iter 45: T = 715.5723863673315 K, F = -3.440876253602551, relative_change = 5.757436843465833e-5 Iter 50: T = 715.4464900847928 K, F = -1.4391016268797125, relative_change = 2.409990606338188e-5 Iter 55: T = 715.3938152904576 K, F = -0.6018645544881727, relative_change = 1.0082654457592243e-5 Iter 60: T = 715.3717819549864 K, F = -0.2517095806040986, relative_change = 4.21734903445862e-6 Iter 65: T = 715.3625666323294 K, F = -0.10526841376176466, relative_change = 1.7638616353684117e-6 Iter 70: T = 715.3587125486339 K, F = -0.044024588449074975, relative_change = 7.376882743165726e-7 Iter 75: T = 715.3571007028179 K, F = -0.01841162275695518, relative_change = 3.0851359213754577e-7 Iter 80: T = 715.3564266058025 K, F = -0.007699962983022113, relative_change = 1.2902468883548123e-7 Iter 85: T = 715.3561446897078 K, F = -0.0032202169061090746, relative_change = 5.395977419627421e-8 Iter 90: T = 715.3560267889126 K, F = -0.0013467332432185453, relative_change = 2.256664095910005e-8 Iter 95: T = 715.3559774813713 K, F = -0.0005632199374275837, relative_change = 9.437642045296665e-9 Iter 100: T = 715.3559568603652 K, F = -0.00023554530522729156, relative_change = 3.946935173201274e-9 Iter 105: T = 715.3559482364135 K, F = -9.850786026210923e-5, relative_change = 1.650655530776182e-9 Iter 110: T = 715.3559446297738 K, F = -4.119716390271755e-5, relative_change = 6.903238777061014e-10 Iter 115: T = 715.355943121434 K, F = -1.7229146701103204e-5, relative_change = 2.8870170548046583e-10 Iter 120: T = 715.3559424906284 K, F = -7.2054350468420125e-6, relative_change = 1.2073850386057814e-10 Iter 125: T = 715.3559422268179 K, F = -3.0133992114933505e-6, relative_change = 5.0494288076143305e-11 Iter 130: T = 715.3559421164892 K, F = -1.2602405566886077e-6, relative_change = 2.1117331390640966e-11 Iter 135: T = 715.3559420703484 K, F = -5.2704795849845e-7, relative_change = 8.831525332778627e-12 Iter 140: T = 715.3559420510518 K, F = -2.2041718272802768e-7, relative_change = 3.693439850973266e-12 Iter 145: T = 715.3559420429817 K, F = -9.218130081478648e-8, relative_change = 1.5446440506513236e-12 Iter 150: T = 715.3559420396067 K, F = -3.8552044778761285e-8, relative_change = 6.46000719049764e-13 Iter 155: T = 715.3559420381953 K, F = -1.6124007906626048e-8, relative_change = 2.7018335243999053e-13 Converged in 157 iterations to T = 715.3559420378965 K Iter 1: T = 974.4304346852745 K, F = -5826.0497798960705, relative_change = 0.02556956531472557 Iter 2: T = 951.0499916273809 K, F = -4929.0240552638115, relative_change = 0.02399395813765304 Iter 3: T = 929.7838069103875 K, F = -4168.3089768089185, relative_change = 0.02236074328816713 Iter 5: T = 893.2402626086712 K, F = -2976.9216813858284, relative_change = 0.019006006345339926 Iter 10: T = 831.6946331269136 K, F = -1272.926844230509, relative_change = 0.011162517810833194 Iter 15: T = 800.4593722906648 K, F = -538.9850303692066, relative_change = 0.005632635406218676 Iter 20: T = 786.0173614554068 K, F = -226.7758578570176, relative_change = 0.0025803553877948348 Iter 25: T = 779.6878469356332 K, F = -95.09861424631626, relative_change = 0.0011241762288797914 Iter 30: T = 776.9856268667373 K, F = -39.81813505554866, relative_change = 0.00047851302067856646 Iter 35: T = 775.845517760091 K, F = -16.660720456925684, relative_change = 0.00020162216800770864 Iter 40: T = 775.3669321315424 K, F = -6.9691732685284835, relative_change = 8.458645894009175e-5 Iter 45: T = 775.1664687826452 K, F = -2.9148476985082286, relative_change = 3.5421746813291464e-5 Iter 50: T = 775.082577696857 K, F = -1.219068978804986, relative_change = 1.4821977666905718e-5 Iter 55: T = 775.0474838262 K, F = -0.5098370554357458, relative_change = 6.200159944885263e-6 Iter 60: T = 775.0328054675846 K, F = -0.2132213184850702, relative_change = 2.5932314553159825e-6 Iter 65: T = 775.0266665083321 K, F = -0.08917194196373357, relative_change = 1.0845641867779731e-6 Iter 70: T = 775.0240990707663 K, F = -0.03729281306886567, relative_change = 4.535853603199355e-7 Iter 75: T = 775.0230253287084 K, F = -0.01559630713928628, relative_change = 1.8969615525439617e-7 Iter 80: T = 775.0225762753814 K, F = -0.00652256318791411, relative_change = 7.933343203862839e-8 Iter 85: T = 775.0223884756418 K, F = -0.0027278140455805344, relative_change = 3.3178229729132954e-8 Iter 90: T = 775.0223099354997 K, F = -0.0011408044503842252, relative_change = 1.387553908034861e-8 Iter 95: T = 775.0222770890659 K, F = -0.00047709805169393604, relative_change = 5.802917401868924e-9 Iter 100: T = 775.0222633522936 K, F = -0.00019952810502288365, relative_change = 2.4268495886713802e-9 Iter 105: T = 775.0222576074111 K, F = -8.344503627388811e-5, relative_change = 1.0149375151025104e-9 Iter 110: T = 775.0222552048325 K, F = -3.489771035380951e-5, relative_change = 4.244589916144015e-10 Iter 115: T = 775.0222542000455 K, F = -1.4594638542697602e-5, relative_change = 1.7751381205939055e-10 Iter 120: T = 775.0222537798314 K, F = -6.103651277289401e-6, relative_change = 7.423838592096927e-11 Iter 125: T = 775.0222536040931 K, F = -2.5526201398173853e-6, relative_change = 3.104738305726885e-11 Iter 130: T = 775.0222535305971 K, F = -1.067537323762302e-6, relative_change = 1.2984399721971922e-11 Iter 135: T = 775.0222534998603 K, F = -4.4645841490442706e-7, relative_change = 5.430249969173402e-12 Iter 140: T = 775.0222534870056 K, F = -1.8671279755633208e-7, relative_change = 2.2709778322168342e-12 Iter 145: T = 775.0222534816297 K, F = -7.808527124897324e-8, relative_change = 9.497470037179001e-13 Iter 150: T = 775.0222534793814 K, F = -3.265562775744968e-8, relative_change = 3.9718866466768024e-13 Converged in 154 iterations to T = 775.02225347857 K Iter 1: T = 970.5397875088344 K, F = -6712.5374400088485, relative_change = 0.02946021249116564 Iter 2: T = 943.2475830682598 K, F = -5685.0603863026045, relative_change = 0.028120644606057527 Iter 3: T = 918.077429726519 K, F = -4813.0993756025, relative_change = 0.026684567014596143 Iter 5: T = 873.8811573895032 K, F = -3445.7394807736814, relative_change = 0.023570275827940048 Iter 10: T = 795.6466330782353 K, F = -1482.614607469564, relative_change = 0.015266111328890688 Iter 15: T = 753.1861895229456 K, F = -630.9201734882342, relative_change = 0.008320339378331232 Iter 20: T = 732.6343323693811 K, F = -266.2618793274934, relative_change = 0.003991119747759002 Iter 25: T = 723.399410503076 K, F = -111.82702607971527, relative_change = 0.0017791747829095214 Iter 30: T = 719.4097600189172 K, F = -46.85476631060601, relative_change = 0.0007652348585968759 Iter 35: T = 717.7175978982265 K, F = -19.610870256640755, relative_change = 0.0003238881770488142 Iter 40: T = 717.0056745813661 K, F = -8.204264679980444, relative_change = 0.0001361406427677453 Iter 45: T = 716.7071900205897 K, F = -3.43160705206446, relative_change = 5.7056650025156996e-5 Iter 50: T = 716.5822284922167 K, F = -1.43522413196767, relative_change = 2.3883002862767574e-5 Iter 55: T = 716.529945007085 K, F = -0.6002427639501499, relative_change = 9.991875097295087e-6 Iter 60: T = 716.5080753890142 K, F = -0.2510312976582676, relative_change = 4.179372144787958e-6 Iter 65: T = 716.4989285466917 K, F = -0.10498474234953903, relative_change = 1.7479771685405733e-6 Iter 70: T = 716.4951031043478 K, F = -0.04390595273738629, relative_change = 7.310448371274091e-7 Iter 75: T = 716.4935032370468 K, F = -0.018362007719995632, relative_change = 3.0573516377186816e-7 Iter 80: T = 716.4928341496524 K, F = -0.007679213352578151, relative_change = 1.278627057803289e-7 Iter 85: T = 716.492554328652 K, F = -0.0032115391574775165, relative_change = 5.3473817055140526e-8 Iter 90: T = 716.4924373040523 K, F = -0.0013431041054557946, relative_change = 2.236340755941181e-8 Iter 95: T = 716.4923883629468 K, F = -0.0005617021901502817, relative_change = 9.352647378229757e-9 Iter 100: T = 716.4923678951884 K, F = -0.00023491056604141303, relative_change = 3.911389392723935e-9 Iter 105: T = 716.4923593353268 K, F = -9.824240351175018e-5, relative_change = 1.6357898384234336e-9 Iter 110: T = 716.4923557554904 K, F = -4.108614735609528e-5, relative_change = 6.841068779002107e-10 Iter 115: T = 716.4923542583601 K, F = -1.7182718628716565e-5, relative_change = 2.861016879969968e-10 Iter 120: T = 716.4923536322424 K, F = -7.186018916582881e-6, relative_change = 1.196511561989172e-10 Iter 125: T = 716.4923533703923 K, F = -3.0052777583167156e-6, relative_change = 5.003952303512135e-11 Iter 130: T = 716.4923532608834 K, F = -1.2568417908642715e-6, relative_change = 2.0927105195909755e-11 Iter 135: T = 716.4923532150856 K, F = -5.256266755182537e-7, relative_change = 8.751972456398287e-12 Iter 140: T = 716.4923531959324 K, F = -2.198238345796355e-7, relative_change = 3.660187420755956e-12 Iter 145: T = 716.4923531879224 K, F = -9.193337435764448e-8, relative_change = 1.5307411092745175e-12 Iter 150: T = 716.4923531845724 K, F = -3.844753826420799e-8, relative_change = 6.401726009075234e-13 Iter 155: T = 716.4923531831714 K, F = -1.607838562289743e-8, relative_change = 2.6771393975780824e-13 Converged in 157 iterations to T = 716.4923531828749 K Iter 1: T = 969.3580028778406 K, F = -6981.808192348191, relative_change = 0.030641997122159464 Iter 2: T = 940.8578855508634 K, F = -5915.0158391485165, relative_change = 0.02940102340143239 Iter 3: T = 914.4603841023797 K, F = -5009.533242789219, relative_change = 0.028056842434846824 Iter 5: T = 867.7863754209308 K, F = -3589.1421379213766, relative_change = 0.025091227775014387 Iter 10: T = 783.7394157433143 K, F = -1547.6849664270424, relative_change = 0.016820156154121788 Iter 15: T = 736.963465592993 K, F = -659.9083274374398, relative_change = 0.00945122832714551 Iter 20: T = 713.8893332365168 K, F = -278.85880728006236, relative_change = 0.004624697162555312 Iter 25: T = 703.4055364906387 K, F = -117.19855880449305, relative_change = 0.0020832745434198005 Iter 30: T = 698.8515008761327 K, F = -49.121252802183484, relative_change = 0.0009003946864247799 Iter 35: T = 696.9151872383045 K, F = -20.5624120168258, relative_change = 0.000381907130407937 Iter 40: T = 696.0996751257104 K, F = -8.60286536357932, relative_change = 0.00016067371966343728 Iter 45: T = 695.7576046092782 K, F = -3.598422049132707, relative_change = 6.736427512764139e-5 Iter 50: T = 695.6143684070946 K, F = -1.5050084149888123, relative_change = 2.820214261210587e-5 Iter 55: T = 695.5544340750287 K, F = -0.6294309329844909, relative_change = 1.1799657601565563e-5 Iter 60: T = 695.5293633522773 K, F = -0.2632387595356452, relative_change = 4.935665131368411e-6 Iter 65: T = 695.5188775196532 K, F = -0.11009015733829414, relative_change = 2.064312850946185e-6 Iter 70: T = 695.514492051822 K, F = -0.04604111725938986, relative_change = 8.633480556928977e-7 Iter 75: T = 695.5126579675212 K, F = -0.019254962346024307, relative_change = 3.6106732432666606e-7 Iter 80: T = 695.511890926442 K, F = -0.008052658224259823, relative_change = 1.510035165666732e-7 Iter 85: T = 695.5115701398066 K, F = -0.003367718366435679, relative_change = 6.315162256876711e-8 Iter 90: T = 695.5114359828481 K, F = -0.0014084201323242285, relative_change = 2.6410788735956365e-8 Iter 95: T = 695.5113798767785 K, F = -0.000589018136737951, relative_change = 1.1045311827630298e-8 Iter 100: T = 695.5113564125453 K, F = -0.00024633442291654983, relative_change = 4.619282127869147e-9 Iter 105: T = 695.5113465995219 K, F = -0.00010301999732131861, relative_change = 1.931839077836657e-9 Iter 110: T = 695.5113424955981 K, F = -4.308419396081842e-5, relative_change = 8.079182103767506e-10 Iter 115: T = 695.5113407792882 K, F = -1.8018324013380216e-5, relative_change = 3.378810399737484e-10 Iter 120: T = 695.5113400615069 K, F = -7.535479216169705e-6, relative_change = 1.4130590419395606e-10 Iter 125: T = 695.5113397613222 K, F = -3.151427418135455e-6, relative_change = 5.909581712875997e-11 Iter 130: T = 695.5113396357814 K, F = -1.3179646410899082e-6, relative_change = 2.471457760085009e-11 Iter 135: T = 695.5113395832786 K, F = -5.51188389374957e-7, relative_change = 1.0335928447614268e-11 Iter 140: T = 695.5113395613214 K, F = -2.305135298197314e-7, relative_change = 4.322608016986127e-12 Iter 145: T = 695.5113395521386 K, F = -9.640381992692681e-8, relative_change = 1.8077720871148017e-12 Iter 150: T = 695.5113395482982 K, F = -4.031595690623391e-8, relative_change = 7.560080255904052e-13 Iter 155: T = 695.5113395466922 K, F = -1.6860790430506256e-8, relative_change = 3.161748811530695e-13 Converged in 158 iterations to T = 695.511339546222 K Iter 1: T = 963.5998066562447 K, F = -8293.818678897476, relative_change = 0.0364001933437553 Iter 2: T = 929.0797757405543 K, F = -7037.510859434703, relative_change = 0.03582403262976699 Iter 3: T = 896.4065224352961 K, F = -5970.57552602214, relative_change = 0.03516732810077034 Iter 5: T = 836.4819119007282 K, F = -4295.060043922107, relative_change = 0.03358317681933289 Iter 10: T = 717.0506678246758 K, F = -1876.7587895316713, relative_change = 0.027826978899152248 Iter 15: T = 637.6982496387669 K, F = -812.5699168486631, relative_change = 0.01989467087047379 Iter 20: T = 591.2961644995822 K, F = -347.8635395904251, relative_change = 0.011901649891772987 Iter 25: T = 567.458248483342 K, F = -147.4226782232872, relative_change = 0.006087269405494656 Iter 30: T = 556.3500456403017 K, F = -62.058815085593174, relative_change = 0.0028100549465548044 Iter 35: T = 551.4617008199593 K, F = -26.03080031310527, relative_change = 0.001228792370099069 Iter 40: T = 549.3707824302172 K, F = -10.900389193572694, relative_change = 0.0005239092324310846 Iter 45: T = 548.4878565929698 K, F = -4.561161343873117, relative_change = 0.00022090700388244306 Iter 50: T = 548.1170976186137 K, F = -1.9079703839220432, relative_change = 9.270492088825412e-5 Iter 55: T = 547.9617759533005 K, F = -0.7980128714940254, relative_change = 3.88263771016228e-5 Iter 60: T = 547.8967719402839 K, F = -0.33375197427462655, relative_change = 1.624748249135453e-5 Iter 65: T = 547.8695783182586 K, F = -0.13958141702568796, relative_change = 6.796611652544779e-6 Iter 70: T = 547.8582041914999 K, F = -0.05837502761949026, relative_change = 2.842725179993357e-6 Iter 75: T = 547.8534471458175 K, F = -0.024413205768476248, relative_change = 1.1889142760185878e-6 Iter 80: T = 547.8514576487665 K, F = -0.01020990681143133, relative_change = 4.972273590277695e-7 Iter 85: T = 547.850625609691 K, F = -0.004269907165234038, relative_change = 2.0794803061631028e-7 Iter 90: T = 547.8502776396749 K, F = -0.0017857265552335688, relative_change = 8.696663156721454e-8 Iter 95: T = 547.8501321142246 K, F = -0.0007468122391474097, relative_change = 3.637053321303864e-8 Iter 100: T = 547.8500712537024 K, F = -0.0003123258092093406, relative_change = 1.521059997346287e-8 Iter 105: T = 547.850045801098 K, F = -0.00013061838500830203, relative_change = 6.361256048668186e-9 Iter 110: T = 547.8500351565136 K, F = -5.462616928772479e-5, relative_change = 2.6603535323050877e-9 Iter 115: T = 547.8500307048212 K, F = -2.2845316437647423e-5, relative_change = 1.112591664859014e-9 Iter 120: T = 547.8500288430702 K, F = -9.554184093762963e-6, relative_change = 4.6529912545709547e-10 Iter 125: T = 547.8500280644636 K, F = -3.995673717338555e-6, relative_change = 1.9459364406456603e-10 Iter 130: T = 547.850027738841 K, F = -1.6710387162333085e-6, relative_change = 8.138139825429606e-11 Iter 135: T = 547.8500276026617 K, F = -6.988478091496386e-7, relative_change = 3.4034646468904854e-11 Iter 140: T = 547.8500275457101 K, F = -2.9226674483351367e-7, relative_change = 1.4233707553656174e-11 Iter 145: T = 547.8500275218921 K, F = -1.2222965148356302e-7, relative_change = 5.9527166354608594e-12 Iter 150: T = 547.8500275119311 K, F = -5.111769835197677e-8, relative_change = 2.4894873680756737e-12 Iter 155: T = 547.8500275077654 K, F = -2.1377942360789604e-8, relative_change = 1.0411289862487345e-12 Iter 160: T = 547.8500275060233 K, F = -8.940841261795285e-9, relative_change = 4.3542866952050716e-13 Converged in 164 iterations to T = 547.8500275053943 K Iter 1: T = 966.9496972670396 K, F = -7530.54291665923, relative_change = 0.03305030273296036 Iter 2: T = 935.9591505600605 K, F = -6384.075525235762, relative_change = 0.03204980237810712 Iter 3: T = 906.9978573787481 K, F = -5410.681829689851, relative_change = 0.030942902971761655 Iter 5: T = 855.031263927559 K, F = -3882.8944618531973, relative_change = 0.028410751020438704 Iter 10: T = 757.7913339941524 K, F = -1682.6548589056065, relative_change = 0.02060283400658306 Iter 15: T = 700.2782188461707 K, F = -721.0370759515482, relative_change = 0.012510562623729871 Iter 20: T = 670.4350278472236 K, F = -305.79569618579745, relative_change = 0.0064711838494131944 Iter 25: T = 656.4365567210286 K, F = -128.78250196685826, relative_change = 0.003006798263854861 Iter 30: T = 650.2547120912069 K, F = -54.02971290731011, relative_change = 0.0013190215392914267 Iter 35: T = 647.6061806986738 K, F = -22.62707680876635, relative_change = 0.0005631842277290514 Iter 40: T = 646.4869868264195 K, F = -9.468467994220259, relative_change = 0.00023761381009669281 Iter 45: T = 646.016869177047 K, F = -3.960805071618925, relative_change = 9.974207900185105e-5 Iter 50: T = 645.8198976792336 K, F = -1.6566276899502717, relative_change = 4.177824531000882e-5 Iter 55: T = 645.7374582031475 K, F = -0.6928515552213947, relative_change = 1.7483541089479847e-5 Iter 60: T = 645.7029698830087 K, F = -0.28976405707057773, relative_change = 7.313817953025878e-6 Iter 65: T = 645.6885445049503 K, F = -0.12118370975109716, relative_change = 3.0590746030620582e-6 Iter 70: T = 645.6825112983097 K, F = -0.05068063567288439, relative_change = 1.2794025108145026e-6 Iter 75: T = 645.6799880795481 K, F = -0.021195275251596313, relative_change = 5.350720752081551e-7 Iter 80: T = 645.6789328288879 K, F = -0.008864122158020904, relative_change = 2.2377539743657726e-7 Iter 85: T = 645.6784915086336 K, F = -0.0037070826071339824, relative_change = 9.35858699200914e-8 Iter 90: T = 645.6783069429133 K, F = -0.0015503463681288965, relative_change = 3.91387855013742e-8 Iter 95: T = 645.6782297552691 K, F = -0.0006483733925254365, relative_change = 1.6368317493275814e-8 Iter 100: T = 645.6781974744646 K, F = -0.0002711574994130883, relative_change = 6.845427571064853e-9 Iter 105: T = 645.678183974245 K, F = -0.00011340130560560935, relative_change = 2.862839873296568e-9 Iter 110: T = 645.6781783282917 K, F = -4.742578056871061e-5, relative_change = 1.1972738811218902e-9 Iter 115: T = 645.6781759670866 K, F = -1.983402888683372e-5, relative_change = 5.007142712742052e-10 Iter 120: T = 645.6781749796024 K, F = -8.294827774923963e-6, relative_change = 2.0940469022232987e-10 Iter 125: T = 645.6781745666246 K, F = -3.4689967820522583e-6, relative_change = 8.757556135596217e-11 Iter 130: T = 645.6781743939124 K, F = -1.4507758449022745e-6, relative_change = 3.66251447214163e-11 Iter 135: T = 645.6781743216821 K, F = -6.06731459240617e-7, relative_change = 1.531706472205282e-11 Iter 140: T = 645.6781742914745 K, F = -2.5374206519268583e-7, relative_change = 6.405772400517769e-12 Iter 145: T = 645.6781742788414 K, F = -1.061184476403021e-7, relative_change = 2.678982779726166e-12 Iter 150: T = 645.678174273558 K, F = -4.438009409968302e-8, relative_change = 1.1203849142545843e-12 Iter 155: T = 645.6781742713486 K, F = -1.856084708151684e-8, relative_change = 4.685725320804363e-13 Converged in 160 iterations to T = 645.6781742704245 K Iter 1: T = 965.2869493268696 K, F = -7909.401616508595, relative_change = 0.0347130506731304 Iter 2: T = 932.554097921301 K, F = -6708.271034725558, relative_change = 0.03390996990935643 Iter 3: T = 901.7720753299106 K, F = -5688.310927908052, relative_change = 0.03300829695564546 Iter 5: T = 845.9470332525333 K, F = -4086.9425130290138, relative_change = 0.030891441214604968 Iter 10: T = 738.336679092334 K, F = -1777.9652468426186, relative_change = 0.02383862998555424 Iter 15: T = 671.2959116284559 K, F = -765.3035573930473, relative_change = 0.015532578562856161 Iter 20: T = 634.7537115193204 K, F = -325.7802349842647, relative_change = 0.008509398105662862 Iter 25: T = 617.0101924724116 K, F = -137.5159869860677, relative_change = 0.004095291107945852 Iter 30: T = 609.0226420654119 K, F = -57.76171315922266, relative_change = 0.0018287364774081207 Iter 35: T = 605.568800490353 K, F = -24.203035247701123, relative_change = 0.0007871728504637162 Iter 40: T = 604.1033087583849 K, F = -10.130313512667623, relative_change = 0.00033328839235456355 Iter 45: T = 603.4866433321932 K, F = -4.238087609962108, relative_change = 0.00014011243391319538 Iter 50: T = 603.2280781603674 K, F = -1.7726770007372852, relative_change = 5.8724866094364774e-5 Iter 55: T = 603.1198256832935 K, F = -0.7413999254596753, relative_change = 2.4581929973153146e-5 Iter 60: T = 603.0745326252086 K, F = -0.3100702204522644, relative_change = 1.0284395440193965e-5 Iter 65: T = 603.0555869251203 K, F = -0.12967645440782122, relative_change = 4.301746274606373e-6 Iter 70: T = 603.047662976827 K, F = -0.05423248419335258, relative_change = 1.7991622497139194e-6 Iter 75: T = 603.044348976771 K, F = -0.02268071493945445, relative_change = 7.524522316221849e-7 Iter 80: T = 603.0429630030865 K, F = -0.009485353263289309, relative_change = 3.1468819861143613e-7 Iter 85: T = 603.0423833689669 K, F = -0.003966889308741117, relative_change = 1.316070080431396e-7 Iter 90: T = 603.042140958466 K, F = -0.0016590007099480109, relative_change = 5.5039735328384556e-8 Iter 95: T = 603.0420395793964 K, F = -0.0006938139491795003, relative_change = 2.3018294365536356e-8 Iter 100: T = 603.0419971814407 K, F = -0.00029016128584968826, relative_change = 9.626529035222051e-9 Iter 105: T = 603.0419794501062 K, F = -0.00012134891640708245, relative_change = 4.0259300178279425e-9 Iter 110: T = 603.0419720346498 K, F = -5.074956685385823e-5, relative_change = 1.6836921383353828e-9 Iter 115: T = 603.0419689334171 K, F = -2.122407501203849e-5, relative_change = 7.04140179541643e-10 Iter 120: T = 603.0419676364446 K, F = -8.876161152804318e-6, relative_change = 2.944798191783764e-10 Iter 125: T = 603.0419670940353 K, F = -3.7121166311937515e-6, relative_change = 1.231549788456396e-10 Iter 130: T = 603.0419668671931 K, F = -1.552450248520909e-6, relative_change = 5.1504841267991344e-11 Iter 135: T = 603.041966772325 K, F = -6.492528161206046e-7, relative_change = 2.153992586493061e-11 Iter 140: T = 603.0419667326502 K, F = -2.715255805751937e-7, relative_change = 9.008264165568812e-12 Iter 145: T = 603.0419667160577 K, F = -1.1355579021543605e-7, relative_change = 3.767381893660215e-12 Iter 150: T = 603.0419667091185 K, F = -4.749072635146234e-8, relative_change = 1.5755753382864696e-12 Iter 155: T = 603.0419667062164 K, F = -1.9860451339059892e-8, relative_change = 6.588999525128274e-13 Iter 160: T = 603.0419667050027 K, F = -8.305908794081773e-9, relative_change = 2.755608529039529e-13 Converged in 162 iterations to T = 603.0419667047458 K Iter 1: T = 980.0973438084852 K, F = -4534.839145550271, relative_change = 0.0199026561915148 Iter 2: T = 962.2403317733057 K, F = -3830.6371913791672, relative_change = 0.0182196310886736 Iter 3: T = 946.3083802789779 K, F = -3234.280638289813, relative_change = 0.016557143749074514 Iter 5: T = 919.6974248372267 K, F = -2302.471072686944, relative_change = 0.0133827384097482 Iter 10: T = 877.4293654358812 K, F = -977.5264514104381, relative_change = 0.007036207849264377 Iter 15: T = 857.4105231024763 K, F = -411.93607804938193, relative_change = 0.003301035104358838 Iter 20: T = 848.5237823506002 K, F = -172.87941269313038, relative_change = 0.0014550388166992912 Iter 25: T = 844.7069674538349 K, F = -72.4104808611084, relative_change = 0.0006226026044273901 Iter 30: T = 843.092331300728 K, F = -30.302586328213728, relative_change = 0.00026292842814642006 Iter 35: T = 842.413786384152 K, F = -12.676370116962792, relative_change = 0.00011041199062831706 Iter 40: T = 842.1294312632876 K, F = -5.30201778522055, relative_change = 4.6255178509440374e-5 Iter 45: T = 842.0104088236444 K, F = -2.2174737235893915, relative_change = 1.935841937061916e-5 Iter 50: T = 841.9606143976109 K, F = -0.92739264316772, relative_change = 8.098364853927589e-6 Iter 55: T = 841.9397866551773 K, F = -0.38784994140565077, relative_change = 3.3872603140779046e-6 Iter 60: T = 841.9310756989296 K, F = -0.16220404807236366, relative_change = 1.4166674851900742e-6 Iter 65: T = 841.9274325775554 K, F = -0.06783576983307027, relative_change = 5.92480339063655e-7 Iter 70: T = 841.9259089639953 K, F = -0.028369746525001016, relative_change = 2.4778464092084886e-7 Iter 75: T = 841.9252717676891 K, F = -0.011864569852110263, relative_change = 1.0362689605640338e-7 Iter 80: T = 841.9250052840736 K, F = -0.004961905337759864, relative_change = 4.333807546197324e-8 Iter 85: T = 841.9248938373538 K, F = -0.0020751281631681273, relative_change = 1.8124512961753268e-8 Iter 90: T = 841.9248472289889 K, F = -0.0008678433969737664, relative_change = 7.579889918297015e-9 Iter 95: T = 841.9248277368115 K, F = -0.000362942476236805, relative_change = 3.1700008658256897e-9 Iter 100: T = 841.9248195849495 K, F = -0.000151786878407556, relative_change = 1.3257322844766729e-9 Iter 105: T = 841.9248161757436 K, F = -6.347908576831429e-5, relative_change = 5.544370890129358e-10 Iter 110: T = 841.9248147499728 K, F = -2.6547712709268367e-5, relative_change = 2.318722220871458e-10 Iter 115: T = 841.9248141536984 K, F = -1.1102571823018437e-5, relative_change = 9.697174428393109e-11 Iter 120: T = 841.9248139043293 K, F = -4.6432252507333516e-6, relative_change = 4.055471646382691e-11 Iter 125: T = 841.9248138000402 K, F = -1.9418505843304956e-6, relative_change = 1.6960452197887217e-11 Iter 130: T = 841.9248137564252 K, F = -8.121057510912522e-7, relative_change = 7.0930693048964134e-12 Iter 135: T = 841.924813738185 K, F = -3.3963156731431354e-7, relative_change = 2.966399686373883e-12 Iter 140: T = 841.9248137305567 K, F = -1.4203760767550477e-7, relative_change = 1.2405805450061693e-12 Iter 145: T = 841.9248137273665 K, F = -5.9402974539324305e-8, relative_change = 5.188356501939387e-13 Converged in 150 iterations to T = 841.9248137260323 K Iter 1: T = 976.4351749171843 K, F = -5369.267811055116, relative_change = 0.023564825082815627 Iter 2: T = 955.0320458819231 K, F = -4540.072756420253, relative_change = 0.021919662037038542 Iter 3: T = 935.6989894348243 K, F = -3837.194721543782, relative_change = 0.02024335888042968 Iter 5: T = 902.8221755779889 K, F = -2737.2308080720254, relative_change = 0.016890519356124935 Iter 10: T = 848.6764085140037 K, F = -1167.217872083585, relative_change = 0.009504138078306327 Iter 15: T = 821.9430466029033 K, F = -493.2641566493117, relative_change = 0.0046549796512807854 Iter 20: T = 809.7902185538368 K, F = -207.31558703226509, relative_change = 0.0020979735487479684 Iter 25: T = 804.5097739937427 K, F = -86.89323120843841, relative_change = 0.0009069620501478098 Iter 30: T = 802.2643305688384 K, F = -36.37421079580367, relative_change = 0.0003847327206207449 Iter 35: T = 801.3185736637955 K, F = -15.218222722083716, relative_change = 0.00016186967858880248 Iter 40: T = 800.9218625344292 K, F = -6.365513629969503, relative_change = 6.786696727363242e-5 Iter 45: T = 800.7557449548722 K, F = -2.6623215627494234, relative_change = 2.841281905201055e-5 Iter 50: T = 800.6862360945736 K, F = -1.113447537808223, relative_change = 1.1887842943368655e-5 Iter 55: T = 800.6571602683701 K, F = -0.4656628079494579, relative_change = 4.9725589392709166e-6 Iter 60: T = 800.6449992924312 K, F = -0.19474675332519653, relative_change = 2.0797446694531e-6 Iter 65: T = 800.639913231458 K, F = -0.08144559393106798, relative_change = 8.69802244138102e-7 Iter 70: T = 800.6377861458054 K, F = -0.03406155081227957, relative_change = 3.637666160687432e-7 Iter 75: T = 800.6368965671987 K, F = -0.014244952707806124, relative_change = 1.5213240536248583e-7 Iter 80: T = 800.6365245337552 K, F = -0.005957410283091824, relative_change = 6.362373956877973e-8 Iter 85: T = 800.636368944743 K, F = -0.002491460291454195, relative_change = 2.660823409264782e-8 Iter 90: T = 800.636303875528 K, F = -0.0010419584765639645, relative_change = 1.1127885875831745e-8 Iter 95: T = 800.6362766627997 K, F = -0.00043575948500351736, relative_change = 4.6538155907582334e-9 Iter 100: T = 800.6362652821107 K, F = -0.00018223982038312325, relative_change = 1.9462813867344864e-9 Iter 105: T = 800.6362605225703 K, F = -7.621486809361588e-5, relative_change = 8.139581297309569e-10 Iter 110: T = 800.6362585320738 K, F = -3.187397051418461e-5, relative_change = 3.4040704107841787e-10 Iter 115: T = 800.6362576996245 K, F = -1.3330075843365208e-5, relative_change = 1.423622982783046e-10 Iter 120: T = 800.6362573514841 K, F = -5.574797331542314e-6, relative_change = 5.953761790427066e-11 Iter 125: T = 800.6362572058877 K, F = -2.3314471938595815e-6, relative_change = 2.4899346838457937e-11 Iter 130: T = 800.6362571449976 K, F = -9.75041022033274e-7, relative_change = 1.0413225168497773e-11 Iter 135: T = 800.6362571195325 K, F = -4.077745752173456e-7, relative_change = 4.354943406909175e-12 Iter 140: T = 800.6362571088828 K, F = -1.7053621370610728e-7, relative_change = 1.8212895180378816e-12 Iter 145: T = 800.636257104429 K, F = -7.132252732855449e-8, relative_change = 7.617090153694154e-13 Iter 150: T = 800.6362571025663 K, F = -2.982817270957838e-8, relative_change = 3.1855837021127577e-13 Converged in 153 iterations to T = 800.6362571020209 K Iter 1: T = 980.771904319705 K, F = -4381.139891396148, relative_change = 0.01922809568029504 Iter 2: T = 963.558900495069 K, F = -3700.114626399793, relative_change = 0.01755046586145372 Iter 3: T = 948.2357307948415 K, F = -3123.497847286036, relative_change = 0.01590268087644109 Iter 5: T = 922.7223742956515 K, F = -2222.8089194803147, relative_change = 0.01278221665583195 Iter 10: T = 882.4440334648531 K, F = -943.0160956371826, relative_change = 0.006645292201003 Iter 15: T = 863.4942934619097 K, F = -397.21858050790564, relative_change = 0.0030968806492934074 Iter 20: T = 855.1125061285893 K, F = -166.66619722884448, relative_change = 0.001360529406315539 Iter 25: T = 851.5187262547914 K, F = -69.80111693251256, relative_change = 0.0005812900845541772 Iter 30: T = 849.9995918012769 K, F = -29.209348933913763, relative_change = 0.0002453227253507205 Iter 35: T = 849.3613881455677 K, F = -12.218816038542624, relative_change = 0.0001029904481348417 Iter 40: T = 849.0939753203202 K, F = -5.110601801398201, relative_change = 4.314105679200782e-5 Iter 45: T = 848.982050853703 K, F = -2.1374105086562785, relative_change = 1.8054240653295746e-5 Iter 50: T = 848.9352270764506 K, F = -0.8939073659816215, relative_change = 7.552623661519175e-6 Iter 55: T = 848.9156420785077 K, F = -0.3738456688467223, relative_change = 3.1589691620137163e-6 Iter 60: T = 848.9074509199828 K, F = -0.15634723636123482, relative_change = 1.3211836600481561e-6 Iter 65: T = 848.9040251959676 K, F = -0.06538637114108825, relative_change = 5.525461595232606e-7 Iter 70: T = 848.9025925026338 K, F = -0.027345376977691682, relative_change = 2.3108339217700413e-7 Iter 75: T = 848.9019933306112 K, F = -0.011436165967930956, relative_change = 9.664218228499118e-8 Iter 80: T = 848.9017427492679 K, F = -0.0047827416621937235, relative_change = 4.041697562442737e-8 Iter 85: T = 848.9016379530792 K, F = -0.0020001997635090696, relative_change = 1.6902872518091208e-8 Iter 90: T = 848.901594126048 K, F = -0.0008365074431044839, relative_change = 7.068985010835533e-9 Iter 95: T = 848.9015757970578 K, F = -0.00034983740731164836, relative_change = 2.9563342958074483e-9 Iter 100: T = 848.9015681316547 K, F = -0.00014630617978195204, relative_change = 1.2363743457218983e-9 Iter 105: T = 848.9015649258915 K, F = -6.11869936406606e-5, relative_change = 5.170665429315988e-10 Iter 110: T = 848.901563585203 K, F = -2.5589129926784082e-5, relative_change = 2.1624339193830938e-10 Iter 115: T = 848.9015630245111 K, F = -1.0701680101199429e-5, relative_change = 9.043557238643896e-11 Iter 120: T = 848.901562790023 K, F = -4.475569982176353e-6, relative_change = 3.782123272220075e-11 Iter 125: T = 848.9015626919573 K, F = -1.8717364271836345e-6, relative_change = 1.581728792712256e-11 Iter 130: T = 848.901562650945 K, F = -7.827806896010259e-7, relative_change = 6.6149631829782985e-12 Iter 135: T = 848.9015626337933 K, F = -3.273696109751256e-7, relative_change = 2.7664682494128195e-12 Iter 140: T = 848.9015626266201 K, F = -1.3690826383694343e-7, relative_change = 1.1569563951711879e-12 Iter 145: T = 848.9015626236203 K, F = -5.7256284824447334e-8, relative_change = 4.838497183150087e-13 Converged in 150 iterations to T = 848.9015626223658 K Iter 1: T = 967.4077947711015 K, F = -7426.164964595518, relative_change = 0.032592205228898524 Iter 2: T = 936.8939701479601 K, F = -6294.8072527166605, relative_change = 0.03154184283822242 Iter 3: T = 908.4269461552881 K, F = -5334.289329928542, relative_change = 0.030384467079210987 Iter 5: T = 857.4932844321492 K, F = -3826.8577017213506, relative_change = 0.027755333038561338 Iter 10: T = 762.9171328263329 K, F = -1656.7170389432097, relative_change = 0.019809663144181318 Iter 15: T = 707.6872981981585 K, F = -709.1657507863252, relative_change = 0.011829966693271665 Iter 20: T = 679.3474802273817 K, F = -300.515024846742, relative_change = 0.006042690900706891 Iter 25: T = 666.1514733952749 K, F = -126.49808900410189, relative_change = 0.00278738675774241 Iter 30: T = 660.346683449442 K, F = -53.05881189523455, relative_change = 0.0012184355652253612 Iter 35: T = 657.8642332475681 K, F = -22.21811945738446, relative_change = 0.0005194087191460744 Iter 40: T = 656.8160624950431 K, F = -9.296911526814883, relative_change = 0.00021899396539586309 Iter 45: T = 656.3759291625037 K, F = -3.888964978781524, relative_change = 9.189936824687861e-5 Iter 50: T = 656.1915472974938 K, F = -1.626566927749636, relative_change = 3.848851662457522e-5 Iter 55: T = 656.1143817151892 K, F = -0.6802769144868182, relative_change = 1.6106015233227082e-5 Iter 60: T = 656.0821005355384 K, F = -0.2845046895252601, relative_change = 6.737418587995186e-6 Iter 65: T = 656.0685984787183 K, F = -0.11898409148953148, relative_change = 2.8179647241879607e-6 Iter 70: T = 656.0629514630639 K, F = -0.04976071366245738, relative_change = 1.178558246368211e-6 Iter 75: T = 656.0605897622097 K, F = -0.020810550190305144, relative_change = 4.928961843650118e-7 Iter 80: T = 656.0596020617058 K, F = -0.008703225072433984, relative_change = 2.061366537097158e-7 Iter 85: T = 656.0591889919851 K, F = -0.00363979344255827, relative_change = 8.620908724380181e-8 Iter 90: T = 656.0590162410195 K, F = -0.0015222052224628246, relative_change = 3.6053718270641184e-8 Iter 95: T = 656.0589439944545 K, F = -0.0006366044276045479, relative_change = 1.5078104041168205e-8 Iter 100: T = 656.0589137800697 K, F = -0.00026623557839072776, relative_change = 6.305844660474135e-9 Iter 105: T = 656.0589011440517 K, F = -0.00011134289919495499, relative_change = 2.637179805184972e-9 Iter 110: T = 656.0588958595177 K, F = -4.6564930798354e-5, relative_change = 1.1029001465609857e-9 Iter 115: T = 656.0588936494626 K, F = -1.9474010777120743e-5, relative_change = 4.612460346542091e-10 Iter 120: T = 656.058892725191 K, F = -8.144263616560732e-6, relative_change = 1.9289859528717221e-10 Iter 125: T = 656.0588923386496 K, F = -3.4060274413660885e-6, relative_change = 8.067247595671068e-11 Iter 130: T = 656.0588921769934 K, F = -1.4244414205943912e-6, relative_change = 3.3738194529449885e-11 Iter 135: T = 656.0588921093868 K, F = -5.957178111359873e-7, relative_change = 1.4109701610781644e-11 Iter 140: T = 656.058892081113 K, F = -2.4913597979070445e-7, relative_change = 5.900838065215073e-12 Iter 145: T = 656.0588920692885 K, F = -1.0419191742716549e-7, relative_change = 2.467807472093042e-12 Iter 150: T = 656.0588920643434 K, F = -4.357403032839713e-8, relative_change = 1.032060070423945e-12 Iter 155: T = 656.0588920622753 K, F = -1.8223881848022927e-8, relative_change = 4.316364734224098e-13 Converged in 159 iterations to T = 656.0588920615288 K Iter 1: T = 973.5436059070738 K, F = -6028.1145606010305, relative_change = 0.026456394092926185 Iter 2: T = 949.2802067686521 K, F = -5101.216091418421, relative_change = 0.024922765648298775 Iter 3: T = 927.1421488422458 K, F = -4315.026192562673, relative_change = 0.023320888572789498 Iter 5: T = 888.9188076228407 K, F = -3083.3519493127205, relative_change = 0.019990613536937846 Iter 10: T = 823.8609900194596 K, F = -1320.1647914376106, relative_change = 0.011983453155429237 Iter 15: T = 790.3935119234725 K, F = -559.5343076071008, relative_change = 0.006138448278464057 Iter 20: T = 774.7841704328775 K, F = -235.55425866015602, relative_change = 0.002836156706243931 Iter 25: T = 767.9118021184084 K, F = -98.80690235178058, relative_change = 0.0012407340655806202 Iter 30: T = 764.9716024297144 K, F = -41.3758838705885, relative_change = 0.0005291015107801208 Iter 35: T = 763.7299336753489 K, F = -17.313429141461285, relative_change = 0.00022311464506646856 Iter 40: T = 763.2085096454016 K, F = -7.242363124224276, relative_change = 9.363462463291778e-5 Iter 45: T = 762.9900662408892 K, F = -3.0291374976343466, relative_change = 3.9216325635417115e-5 Iter 50: T = 762.8986443442144 K, F = -1.2668730918146176, relative_change = 1.641076283170589e-5 Iter 55: T = 762.860399011886 K, F = -0.5298304886962271, relative_change = 6.864932329043526e-6 Iter 60: T = 762.8444023266233 K, F = -0.2215830179011874, relative_change = 2.87130380822583e-6 Iter 65: T = 762.8377119665826 K, F = -0.09266894070274834, relative_change = 1.2008672677448092e-6 Iter 70: T = 762.8349139159793 K, F = -0.03875530603136512, relative_change = 5.022264297518083e-7 Iter 75: T = 762.8337437269337 K, F = -0.016207940269273524, relative_change = 2.1003873433790405e-7 Iter 80: T = 762.833254337999 K, F = -0.00677835565992424, relative_change = 8.78409945255618e-8 Iter 85: T = 762.8330496693698 K, F = -0.0028347895461373618, relative_change = 3.673620323151845e-8 Iter 90: T = 762.8329640744466 K, F = -0.0011855428894923525, relative_change = 1.5363527728109838e-8 Iter 95: T = 762.8329282776174 K, F = -0.0004958082043323708, relative_change = 6.4252123347958706e-9 Iter 100: T = 762.832913306954 K, F = -0.00020735291206186446, relative_change = 2.6871007802651942e-9 Iter 105: T = 762.8329070460435 K, F = -8.671746365696009e-5, relative_change = 1.1237776747088218e-9 Iter 110: T = 762.8329044276559 K, F = -3.626627694564011e-5, relative_change = 4.699772263126337e-10 Iter 115: T = 762.8329033326149 K, F = -1.5166990862680585e-5, relative_change = 1.9655009960230158e-10 Iter 120: T = 762.8329028746558 K, F = -6.343017748711155e-6, relative_change = 8.219961264165732e-11 Iter 125: T = 762.8329026831318 K, F = -2.6527266752118805e-6, relative_change = 3.4376871395570944e-11 Iter 130: T = 762.8329026030341 K, F = -1.109401644217023e-6, relative_change = 1.4376813874088072e-11 Iter 135: T = 762.8329025695364 K, F = -4.6396548003535543e-7, relative_change = 6.0125612636643725e-12 Iter 140: T = 762.8329025555272 K, F = -1.9403637463444312e-7, relative_change = 2.514531016148074e-12 Iter 145: T = 762.8329025496685 K, F = -8.114981997486836e-8, relative_change = 1.0516262204626836e-12 Iter 150: T = 762.8329025472183 K, F = -3.393961001130208e-8, relative_change = 4.398257915022166e-13 Converged in 154 iterations to T = 762.8329025463339 K Iter 1: T = 969.9641846854029 K, F = -6843.689090867359, relative_change = 0.030035815314597158 Iter 2: T = 942.0848094805832 K, F = -5797.045085502451, relative_change = 0.028742685188795906 Iter 3: T = 916.3193428468792 K, F = -4908.740992315646, relative_change = 0.027349413104229718 Iter 5: T = 870.9256935052632 K, F = -3515.525544062535, relative_change = 0.02430264688586231 Iter 10: T = 789.9094024343498 K, F = -1514.2193984194287, relative_change = 0.016001525299714492 Iter 15: T = 745.4125143020007 K, F = -644.9665810862023, relative_change = 0.008847100717278513 Iter 20: T = 723.6834425987229 K, F = -272.3544780822127, relative_change = 0.004283138856580729 Iter 25: T = 713.8694679228739 K, F = -114.42221622872496, relative_change = 0.0019185510232321893 Iter 30: T = 709.6189992913287 K, F = -47.949218838494374, relative_change = 0.0008270192674218621 Iter 35: T = 707.8141776041662 K, F = -20.070248177791367, relative_change = 0.00035037925260809476 Iter 40: T = 707.054486198086 K, F = -8.396678659151156, relative_change = 0.00014733676096830044 Iter 45: T = 706.7359083406345 K, F = -3.5121291691443624, relative_change = 6.175974408456724e-5 Iter 50: T = 706.6025230995739 K, F = -1.4689086193080256, relative_change = 2.5853538782567417e-5 Iter 55: T = 706.5467131284917 K, F = -0.6143316260029562, relative_change = 1.0816615712216512e-5 Iter 60: T = 706.5233680634116 K, F = -0.2569237092822132, relative_change = 4.524400369725802e-6 Iter 65: T = 706.5136040615505 K, F = -0.10744906846521424, relative_change = 1.8922916624448154e-6 Iter 70: T = 706.5095204964774 K, F = -0.044936571954122595, relative_change = 7.914023051988656e-7 Iter 75: T = 706.5078126758033 K, F = -0.01879302649055825, relative_change = 3.3097797651834603e-7 Iter 80: T = 706.5070984404304 K, F = -0.007859470813569414, relative_change = 1.3841965626662322e-7 Iter 85: T = 706.5067997379032 K, F = -0.0032869250269409456, relative_change = 5.788887814913347e-8 Iter 90: T = 706.5066748168055 K, F = -0.001374631383596392, relative_change = 2.420984202645542e-8 Iter 95: T = 706.5066225732871 K, F = -0.0005748872754000045, relative_change = 1.0124848877003938e-8 Iter 100: T = 706.5066007244197 K, F = -0.00024042472612506582, relative_change = 4.234333374374243e-9 Iter 105: T = 706.5065915869617 K, F = -0.00010054849305463076, relative_change = 1.7708489179251714e-9 Iter 110: T = 706.5065877655675 K, F = -4.205057975692483e-5, relative_change = 7.405901701367491e-10 Iter 115: T = 706.5065861674149 K, F = -1.7586055305995885e-5, relative_change = 3.09723668654645e-10 Iter 120: T = 706.5065854990482 K, F = -7.354698192019171e-6, relative_change = 1.295301348997356e-10 Iter 125: T = 706.5065852195294 K, F = -3.075822161746622e-6, relative_change = 5.41710414060826e-11 Iter 130: T = 706.5065851026313 K, F = -1.2863475606916808e-6, relative_change = 2.2655011689026507e-11 Iter 135: T = 706.5065850537432 K, F = -5.37966202696083e-7, relative_change = 9.474601567124559e-12 Iter 140: T = 706.5065850332975 K, F = -2.2498322393982306e-7, relative_change = 3.962379784692385e-12 Iter 145: T = 706.5065850247469 K, F = -9.409088919110076e-8, relative_change = 1.6571183875280942e-12 Iter 150: T = 706.506585021171 K, F = -3.9350777192304065e-8, relative_change = 6.930415581259823e-13 Iter 155: T = 706.5065850196754 K, F = -1.6456809137643802e-8, relative_change = 2.898355117845059e-13 Converged in 157 iterations to T = 706.5065850193589 K Iter 1: T = 973.6026914553067 K, F = -6014.651862231296, relative_change = 0.026397308544693274 Iter 2: T = 949.3982782982274 K, F = -5089.741148080616, relative_change = 0.024860667877673367 Iter 3: T = 927.3186338188813 K, F = -4305.246395682282, relative_change = 0.02325646147044141 Iter 5: T = 889.2083504240788 K, F = -3076.253205678954, relative_change = 0.019924040198056114 Iter 10: T = 824.3894406504384 K, F = -1317.0079376539818, relative_change = 0.01192690756719676 Iter 15: T = 791.0758558976445 K, F = -558.1584776726226, relative_change = 0.006103125367813667 Iter 20: T = 775.5477082638279 K, F = -234.96580834337527, relative_change = 0.0028181520319032253 Iter 25: T = 768.7132766649887 K, F = -98.55816503558641, relative_change = 0.0012324986640027858 Iter 30: T = 765.789744729821 K, F = -41.27136596024474, relative_change = 0.0005255210570056274 Iter 35: T = 764.5551959951051 K, F = -17.269629804094535, relative_change = 0.00022159237133627065 Iter 40: T = 764.0367764772911 K, F = -7.224030017326018, relative_change = 9.299355931295455e-5 Iter 45: T = 763.8195943426239 K, F = -3.021467613364418, relative_change = 3.894744330637609e-5 Iter 50: T = 763.7287007582805 K, F = -1.2636649708636, relative_change = 1.6298175966978583e-5 Iter 55: T = 763.6906765186758 K, F = -0.528488729516854, relative_change = 6.817823152872428e-6 Iter 60: T = 763.674772322622 K, F = -0.2210218633703922, relative_change = 2.851597987316569e-6 Iter 65: T = 763.6681206471505 K, F = -0.0924342565832682, relative_change = 1.1926253231879461e-6 Iter 70: T = 763.6653387756794 K, F = -0.03865715787771873, relative_change = 4.987794215769086e-7 Iter 75: T = 763.6641753530771 K, F = -0.016166893459437004, relative_change = 2.0859713186224026e-7 Iter 80: T = 763.6636887939738 K, F = -0.006761189380287025, relative_change = 8.723809522545807e-8 Iter 85: T = 763.6634853088179 K, F = -0.0028276104008014835, relative_change = 3.648406285940311e-8 Iter 90: T = 763.6634002088382 K, F = -0.001182540483006922, relative_change = 1.525807947040323e-8 Iter 95: T = 763.6633646190004 K, F = -0.000494552560332373, relative_change = 6.381112571329006e-9 Iter 100: T = 763.6633497349034 K, F = -0.00020682778902680887, relative_change = 2.6686577585321003e-9 Iter 105: T = 763.663343510196 K, F = -8.649785173642233e-5, relative_change = 1.1160645925644065e-9 Iter 110: T = 763.663340906949 K, F = -3.617443634140738e-5, relative_change = 4.667515712981785e-10 Iter 115: T = 763.66333981824 K, F = -1.5128582709467153e-5, relative_change = 1.952011009223628e-10 Iter 120: T = 763.6633393629288 K, F = -6.326953612800779e-6, relative_change = 8.163542731841534e-11 Iter 125: T = 763.6633391725122 K, F = -2.64600628141487e-6, relative_change = 3.4140894172185215e-11 Iter 130: T = 763.6633390928778 K, F = -1.1065916974972723e-6, relative_change = 1.4278133170050189e-11 Iter 135: T = 763.6633390595737 K, F = -4.627907365106765e-7, relative_change = 5.971297075589509e-12 Iter 140: T = 763.6633390456454 K, F = -1.9354342617461384e-7, relative_change = 2.4972524375274382e-12 Iter 145: T = 763.6633390398206 K, F = -8.094148751247587e-8, relative_change = 1.0443719582219546e-12 Iter 150: T = 763.6633390373845 K, F = -3.3850379943523023e-8, relative_change = 4.3676473802464067e-13 Converged in 154 iterations to T = 763.6633390365052 K Iter 1: T = 964.2977608963832 K, F = -8134.789141356034, relative_change = 0.03570223910361679 Iter 2: T = 930.5194407107793 K, F = -6901.272490268898, relative_change = 0.03502893147258227 Iter 3: T = 898.6340077805743 K, F = -5853.736462353438, relative_change = 0.0342662727238125 Iter 5: T = 840.428726212342 K, F = -4208.829824095764, relative_change = 0.032447256484578815 Iter 10: T = 726.0629749931041 K, F = -1835.6135147567363, relative_change = 0.02607756976889011 Iter 15: T = 652.1974141272234 K, F = -792.6807413268373, relative_change = 0.01788480054497162 Iter 20: T = 610.3770040733164 K, F = -338.45063389448006, relative_change = 0.010266082052752947 Iter 25: T = 589.4657193459232 K, F = -143.15574393568875, relative_change = 0.005096967531342565 Iter 30: T = 579.8863533204254 K, F = -60.196566898510184, relative_change = 0.0023141041405493846 Iter 35: T = 575.7079435303837 K, F = -25.236292078831347, relative_change = 0.0010038669958698696 Iter 40: T = 573.9279874044599 K, F = -10.565190018461054, relative_change = 0.00042649072920714835 Iter 45: T = 573.1777137453815 K, F = -4.420450906535991, relative_change = 0.0001795559554273339 Iter 50: T = 572.8628982528433 K, F = -1.8490304942619513, relative_change = 7.530305661286303e-5 Iter 55: T = 572.7310553056253 K, F = -0.7733471414519996, relative_change = 3.1529625667740107e-5 Iter 60: T = 572.6758848626478 K, F = -0.32343360336329713, relative_change = 1.3192546415956839e-5 Iter 65: T = 572.6528062959419 K, F = -0.1352656490278955, relative_change = 5.518414713540178e-6 Iter 70: T = 572.6431535788554 K, F = -0.05657003406011951, relative_change = 2.3080653782036695e-6 Iter 75: T = 572.6391165250055 K, F = -0.023658320540016847, relative_change = 9.652952171151514e-7 Iter 80: T = 572.637428150738 K, F = -0.009894202106707717, relative_change = 4.0370405925366863e-7 Iter 85: T = 572.636722047185 K, F = -0.004137875216882969, relative_change = 1.6883492072794606e-7 Iter 90: T = 572.6364267453247 K, F = -0.0017305091348954194, relative_change = 7.060896586152745e-8 Iter 95: T = 572.6363032463989 K, F = -0.0007237196403072077, relative_change = 2.9529545273352273e-8 Iter 100: T = 572.636251597645 K, F = -0.00030266820583552123, relative_change = 1.2349614169830196e-8 Iter 105: T = 572.6362299975145 K, F = -0.00012657946075539384, relative_change = 5.1647571589664e-9 Iter 110: T = 572.636220964081 K, F = -5.293704224440532e-5, relative_change = 2.1599632895307305e-9 Iter 115: T = 572.6362171861911 K, F = -2.2138903906898655e-5, relative_change = 9.03322497515909e-10 Iter 120: T = 572.6362156062323 K, F = -9.258754080754272e-6, relative_change = 3.7778026433229645e-10 Iter 125: T = 572.6362149454746 K, F = -3.872120849957028e-6, relative_change = 1.5799219133598615e-10 Iter 130: T = 572.6362146691381 K, F = -1.6193676963816017e-6, relative_change = 6.607424236789415e-11 Iter 135: T = 572.6362145535708 K, F = -6.772397274090736e-7, relative_change = 2.7633070631812844e-11 Iter 140: T = 572.6362145052391 K, F = -2.8322973266714513e-7, relative_change = 1.1556479772543175e-11 Iter 145: T = 572.6362144850261 K, F = -1.1844937863880745e-7, relative_change = 4.8330301894837465e-12 Iter 150: T = 572.6362144765728 K, F = -4.9536428181617964e-8, relative_change = 2.021209867447469e-12 Iter 155: T = 572.6362144730376 K, F = -2.0716895254846435e-8, relative_change = 8.453010168532968e-13 Iter 160: T = 572.6362144715591 K, F = -8.663833483968375e-9, relative_change = 3.5350602316835515e-13 Converged in 163 iterations to T = 572.6362144711263 K Iter 1: T = 963.6025478297925 K, F = -8293.19409989708, relative_change = 0.0363974521702075 Iter 2: T = 929.0854365095571 K, F = -7036.975694587899, relative_change = 0.035820900845451434 Iter 3: T = 896.4152924858175 K, F = -5970.116456626296, relative_change = 0.03516376722734643 Iter 5: T = 836.49750058219 K, F = -4294.721005104405, relative_change = 0.03357865186461087 Iter 10: T = 717.0866683990857 K, F = -1876.5963930856028, relative_change = 0.02781980563481796 Iter 15: T = 637.757047654583 K, F = -812.4907698411158, relative_change = 0.019886095230428544 Iter 20: T = 591.3746804798155 K, F = -347.8256651192949, relative_change = 0.011894386305863789 Iter 25: T = 567.549740689652 K, F = -147.4053447272374, relative_change = 0.006082741535197841 Iter 30: T = 556.4484476257893 K, F = -62.05120545971608, relative_change = 0.0028077498221821748 Iter 35: T = 551.5633439078266 K, F = -26.027544118282158, relative_change = 0.0012277386252603224 Iter 40: T = 549.4738518433621 K, F = -10.899013571420163, relative_change = 0.0005234512246964402 Iter 45: T = 548.5915357100006 K, F = -4.5605835463005855, relative_change = 0.00022071229869888572 Iter 50: T = 548.2210340924217 K, F = -1.9077282998539673, relative_change = 9.262292994714824e-5 Iter 55: T = 548.0658204762849 K, F = -0.797911551278295, relative_change = 3.879198830751322e-5 Iter 60: T = 548.0008617244471 K, F = -0.3337095873181183, relative_change = 1.6233083280910707e-5 Iter 65: T = 547.9736870441072 K, F = -0.1395636879074596, relative_change = 6.790586682365549e-6 Iter 70: T = 547.9623208412493 K, F = -0.058367612673275254, relative_change = 2.8402049320623645e-6 Iter 75: T = 547.9575671098326 K, F = -0.024410104677100447, relative_change = 1.1878601849460391e-6 Iter 80: T = 547.9555789989163 K, F = -0.010208609885239361, relative_change = 4.967865092301238e-7 Iter 85: T = 547.9547475395508 K, F = -0.004269364772726825, relative_change = 2.0776365909864248e-7 Iter 90: T = 547.9543998119786 K, F = -0.0017854997206198653, relative_change = 8.688952473627225e-8 Iter 95: T = 547.9542543879215 K, F = -0.0007467173736620536, relative_change = 3.6338286105137855e-8 Iter 100: T = 547.9541935698034 K, F = -0.00031228613556236184, relative_change = 1.5197113844411946e-8 Iter 105: T = 547.9541681349328 K, F = -0.00013060179386129023, relative_change = 6.355616027053974e-9 Iter 110: T = 547.9541574977649 K, F = -5.4619230524105555e-5, relative_change = 2.657994800252999e-9 Iter 115: T = 547.9541530491739 K, F = -2.2842413793133787e-5, relative_change = 1.1116051773613502e-9 Iter 120: T = 547.9541511887202 K, F = -9.552970510168235e-6, relative_change = 4.6488658099379087e-10 Iter 125: T = 547.9541504106561 K, F = -3.9951663206028165e-6, relative_change = 1.9442111978313905e-10 Iter 130: T = 547.9541500852604 K, F = -1.6708258031017387e-6, relative_change = 8.130921179546262e-11 Iter 135: T = 547.954149949176 K, F = -6.987589644957826e-7, relative_change = 3.4004466892879644e-11 Iter 140: T = 547.954149892264 K, F = -2.9222998940148237e-7, relative_change = 1.4221105573641512e-11 Iter 145: T = 547.9541498684627 K, F = -1.222138449330501e-7, relative_change = 5.947425160821489e-12 Iter 150: T = 547.9541498585087 K, F = -5.1110970122891786e-8, relative_change = 2.4872686878945173e-12 Iter 155: T = 547.9541498543457 K, F = -2.137478805064319e-8, relative_change = 1.0401845416520067e-12 Iter 160: T = 547.9541498526048 K, F = -8.93942489477162e-9, relative_change = 4.3502894928875813e-13 Converged in 164 iterations to T = 547.9541498519764 K Iter 1: T = 969.3544536517126 K, F = -6982.616886897645, relative_change = 0.030645546348287474 Iter 2: T = 940.8506946464926 K, F = -5915.706675300464, relative_change = 0.029404887858968144 Iter 3: T = 914.4494770982134 K, F = -5010.123597513486, relative_change = 0.028061006595949862 Iter 5: T = 867.7679124199744 K, F = -3589.5735420175124, relative_change = 0.0250958982868317 Iter 10: T = 783.7028910081966 K, F = -1547.8814739191732, relative_change = 0.016825089926946802 Iter 15: T = 736.9131636080627 K, F = -659.9962847240079, relative_change = 0.009454927626832171 Iter 20: T = 713.8308090840866 K, F = -278.8971733813365, relative_change = 0.0046268109378910195 Iter 25: T = 703.3428903025709 K, F = -117.21495452982198, relative_change = 0.002084299726671399 Iter 30: T = 698.78698025956 K, F = -49.12817826164227, relative_change = 0.0009008525588834068 Iter 35: T = 696.8498534555935 K, F = -20.565320928344438, relative_change = 0.0003821040973164266 Iter 40: T = 696.033995909497 K, F = -8.60408415642083, relative_change = 0.00016075708219680468 Iter 45: T = 695.6917799730758 K, F = -3.5989321601574487, relative_change = 6.739931353390989e-5 Iter 50: T = 695.5484827860024 K, F = -1.5052218192626055, relative_change = 2.821682690427383e-5 Iter 55: T = 695.488522919752 K, F = -0.6295201934208857, relative_change = 1.1805804149522736e-5 Iter 60: T = 695.4634415131194 K, F = -0.26327609145370157, relative_change = 4.938236636768302e-6 Iter 65: T = 695.4529512114619 K, F = -0.1101057703649137, relative_change = 2.0653884506503015e-6 Iter 70: T = 695.4485638744692 K, F = -0.04604764687918583, relative_change = 8.637979132821482e-7 Iter 75: T = 695.446729008435 K, F = -0.019257693122534003, relative_change = 3.612554652072842e-7 Iter 80: T = 695.4459616404205 K, F = -0.008053800268426614, relative_change = 1.510822001931214e-7 Iter 85: T = 695.4456407170561 K, F = -0.0033681959825971886, relative_change = 6.318452914281189e-8 Iter 90: T = 695.4455065029156 K, F = -0.0014086198769807101, relative_change = 2.6424550681782234e-8 Iter 95: T = 695.4454503729318 K, F = -0.0005891016703255536, relative_change = 1.105106720450631e-8 Iter 100: T = 695.4454268986973 K, F = -0.00024636935451982644, relative_change = 4.621689037096405e-9 Iter 105: T = 695.4454170814913 K, F = -0.00010303460594540681, relative_change = 1.932845672597688e-9 Iter 110: T = 695.4454129758185 K, F = -4.309030356186572e-5, relative_change = 8.083391822319012e-10 Iter 115: T = 695.445411258777 K, F = -1.8020878399971352e-5, relative_change = 3.380570818967482e-10 Iter 120: T = 695.4454105406899 K, F = -7.536547080411182e-6, relative_change = 1.4137951933078368e-10 Iter 125: T = 695.4454102403772 K, F = -3.151874005569155e-6, relative_change = 5.912660374310461e-11 Iter 130: T = 695.4454101147828 K, F = -1.318151263474121e-6, relative_change = 2.4727450195727877e-11 Iter 135: T = 695.4454100622578 K, F = -5.512671161778115e-7, relative_change = 1.034132465860111e-11 Iter 140: T = 695.4454100402912 K, F = -2.3054667841471144e-7, relative_change = 4.324868980645254e-12 Iter 145: T = 695.4454100311045 K, F = -9.641765874590646e-8, relative_change = 1.8087171951041544e-12 Iter 150: T = 695.4454100272625 K, F = -4.032226019745622e-8, relative_change = 7.564129467063795e-13 Iter 155: T = 695.4454100256556 K, F = -1.686222073082888e-8, relative_change = 3.163216052051724e-13 Converged in 158 iterations to T = 695.4454100251853 K Iter 1: T = 966.5075740652229 K, F = -7631.281108760914, relative_change = 0.0334924259347771 Iter 2: T = 935.0555831028457 K, F = -6470.251274369652, relative_change = 0.03254189807337684 Iter 3: T = 905.6142665551904 K, F = -5484.449723089495, relative_change = 0.03148616732489695 Iter 5: T = 852.6386365402402 K, F = -3937.0501444375527, relative_change = 0.029054546632870853 Iter 10: T = 752.7520948798507 K, F = -1707.8151560078793, relative_change = 0.02140605740753044 Iter 15: T = 692.9071136230725 K, F = -732.6187572383627, relative_change = 0.013222800416413957 Iter 20: T = 661.4897908126393 K, F = -310.9761498043628, relative_change = 0.0069311491025568295 Iter 25: T = 646.6367722901438 K, F = -131.03180988568607, relative_change = 0.003245878720122788 Iter 30: T = 640.0497007054463 K, F = -54.98753429279029, relative_change = 0.0014294388156119219 Iter 35: T = 637.2219008743739 K, F = -23.030884049579207, relative_change = 0.000611399069961683 Iter 40: T = 636.0258967616091 K, F = -9.637929885237115, relative_change = 0.00025815152535200775 Iter 45: T = 635.5233248481716 K, F = -4.031779807570781, relative_change = 0.00010839789371335698 Iter 50: T = 635.3127219009133 K, F = -1.6863284261074933, relative_change = 4.5409975660258746e-5 Iter 55: T = 635.2245712700417 K, F = -0.7052759583847164, relative_change = 1.9004439223878537e-5 Iter 60: T = 635.1876926677592 K, F = -0.294960651226286, relative_change = 7.95023745100383e-6 Iter 65: T = 635.1722673284675 K, F = -0.12335708553931407, relative_change = 3.325296145012122e-6 Iter 70: T = 635.1658158706849 K, F = -0.05158958453482365, relative_change = 1.3907506144292143e-6 Iter 75: T = 635.1631177246079 K, F = -0.02157541152197273, relative_change = 5.816411192546201e-7 Iter 80: T = 635.1619893155597 K, F = -0.009023100211659085, relative_change = 2.432514666806478e-7 Iter 85: T = 635.1615173992972 K, F = -0.0037735692192635284, relative_change = 1.0173105392954533e-7 Iter 90: T = 635.161320037909 K, F = -0.0015781518794772964, relative_change = 4.2545209095141254e-8 Iter 95: T = 635.1612374989547 K, F = -0.0006600019926644163, relative_change = 1.779292634572034e-8 Iter 100: T = 635.161202980167 K, F = -0.0002760207205137477, relative_change = 7.441216352869331e-9 Iter 105: T = 635.1611885439956 K, F = -0.00011543516305456691, relative_change = 3.1120059188629752e-9 Iter 110: T = 635.161182506616 K, F = -4.827636352572329e-5, relative_change = 1.3014780926077333e-9 Iter 115: T = 635.1611799817117 K, F = -2.0189752458377175e-5, relative_change = 5.442937101726828e-10 Iter 120: T = 635.1611789257666 K, F = -8.443595693130579e-6, relative_change = 2.2763013429029783e-10 Iter 125: T = 635.1611784841577 K, F = -3.5312126319131387e-6, relative_change = 9.519764298102267e-11 Iter 130: T = 635.1611782994715 K, F = -1.476795042087975e-6, relative_change = 3.981278445169457e-11 Iter 135: T = 635.1611782222336 K, F = -6.176134288438107e-7, relative_change = 1.6650184778858235e-11 Iter 140: T = 635.1611781899319 K, F = -2.5829282701561596e-7, relative_change = 6.9632930520242285e-12 Iter 145: T = 635.1611781764229 K, F = -1.080224561467169e-7, relative_change = 2.9121676630211484e-12 Iter 150: T = 635.1611781707733 K, F = -4.5177375507243767e-8, relative_change = 1.2179327961145326e-12 Iter 155: T = 635.1611781684104 K, F = -1.8892674535919696e-8, relative_change = 5.093259107168059e-13 Converged in 160 iterations to T = 635.1611781674222 K Iter 1: T = 966.5536974109998 K, F = -7620.771860551023, relative_change = 0.03344630258900022 Iter 2: T = 935.1499072877275 K, F = -6461.260281698195, relative_change = 0.03249047642918353 Iter 3: T = 905.758805843393 K, F = -5476.752275876153, relative_change = 0.03142929407925542 Iter 5: T = 852.8890037694113 K, F = -3931.397124552978, relative_change = 0.028986861034400145 Iter 10: T = 753.2821442668641 K, F = -1705.1844105737648, relative_change = 0.02132045562430528 Iter 15: T = 693.686655944176 K, F = -731.404570026514, relative_change = 0.013145760577879763 Iter 20: T = 662.4396799406331 K, F = -310.43162275762074, relative_change = 0.006880814032141481 Iter 25: T = 647.6798605917838 K, F = -130.79496338251153, relative_change = 0.0032195339642726206 Iter 30: T = 641.1371729263876 K, F = -54.88658405365616, relative_change = 0.0014172298106126505 Iter 35: T = 638.3290480225008 K, F = -22.988306072694495, relative_change = 0.0006060595878368762 Iter 40: T = 637.1414815205529 K, F = -9.62005820818255, relative_change = 0.0002558755760550278 Iter 45: T = 636.6424760876813 K, F = -4.024294112107106, relative_change = 0.0001074383995902893 Iter 50: T = 636.4333713792105 K, F = -1.6831957868438079, relative_change = 4.500735125201694e-5 Iter 55: T = 636.3458485070037 K, F = -0.703965494909603, relative_change = 1.8835819454628216e-5 Iter 60: T = 636.3092326472845 K, F = -0.2944125373600781, relative_change = 7.879677057849417e-6 Iter 65: T = 636.2939172262043 K, F = -0.12312784685820821, relative_change = 3.2957796667500794e-6 Iter 70: T = 636.2875117438527 K, F = -0.05149371227102717, relative_change = 1.3784051972375721e-6 Iter 75: T = 636.2848328263559 K, F = -0.02153531626144839, relative_change = 5.764778955696576e-7 Iter 80: T = 636.2837124591232 K, F = -0.009006331836615422, relative_change = 2.4109210591603724e-7 Iter 85: T = 636.2832439060777 K, F = -0.0037665564737437984, relative_change = 1.0082797663894856e-7 Iter 90: T = 636.283047951233 K, F = -0.0015752190639089503, relative_change = 4.216753019929139e-8 Iter 95: T = 636.282966000513 K, F = -0.0006587754535565815, relative_change = 1.7634976304481505e-8 Iter 100: T = 636.282931727732 K, F = -0.0002755077676036555, relative_change = 7.3751597348192236e-9 Iter 105: T = 636.2829173944438 K, F = -0.0001152206396823896, relative_change = 3.084380237022571e-9 Iter 110: T = 636.282911400091 K, F = -4.8186647115811e-5, relative_change = 1.2899246968979528e-9 Iter 115: T = 636.2829088931811 K, F = -2.0152230832737317e-5, relative_change = 5.394619109703331e-10 Iter 120: T = 636.2829078447614 K, F = -8.427904382268814e-6, relative_change = 2.2560943634165345e-10 Iter 125: T = 636.2829074062998 K, F = -3.5246507273378747e-6, relative_change = 9.435257336067492e-11 Iter 130: T = 636.28290722293 K, F = -1.474051447458713e-6, relative_change = 3.945938428617902e-11 Iter 135: T = 636.2829071462425 K, F = -6.164658972185322e-7, relative_change = 1.650238517357436e-11 Iter 140: T = 636.2829071141708 K, F = -2.578128480146269e-7, relative_change = 6.901479775038316e-12 Iter 145: T = 636.282907100758 K, F = -1.0782022297206595e-7, relative_change = 2.8862762037922102e-12 Iter 150: T = 636.2829070951486 K, F = -4.509105511196765e-8, relative_change = 1.2070577837029316e-12 Iter 155: T = 636.2829070928028 K, F = -1.885744088658825e-8, relative_change = 5.048012459844284e-13 Converged in 160 iterations to T = 636.2829070918217 K Iter 1: T = 976.2954507645313 K, F = -5401.104092149108, relative_change = 0.023704549235468733 Iter 2: T = 954.7553437031122 K, F = -4567.167886336559, relative_change = 0.022063102972108648 Iter 3: T = 935.2892262292502 K, F = -3860.2477138694935, relative_change = 0.02038859232603064 Iter 5: T = 902.1625287975435 K, F = -2753.8966777715605, relative_change = 0.017033216831803605 Iter 10: T = 847.5235804742795 K, F = -1174.539611362782, relative_change = 0.009611714938929001 Iter 15: T = 820.4982433526958 K, F = -496.42039301091154, relative_change = 0.004716676134294443 Iter 20: T = 808.1994785817395 K, F = -208.65623578552209, relative_change = 0.002127955878716257 Iter 25: T = 802.852747223922 K, F = -87.45793285142027, relative_change = 0.0009203654292297816 Iter 30: T = 800.5785600791684 K, F = -36.611114364931346, relative_change = 0.00039050094168311615 Iter 35: T = 799.6205950395461 K, F = -15.317430475506743, relative_change = 0.00016431139947698097 Iter 40: T = 799.2187449357792 K, F = -6.407026758571791, relative_change = 6.889333207343852e-5 Iter 45: T = 799.0504722877231 K, F = -2.6796869321483667, relative_change = 2.8842973066126423e-5 Iter 50: T = 798.9800611186258 K, F = -1.1207106579295067, relative_change = 1.2067899074774655e-5 Iter 55: T = 798.9506077550976 K, F = -0.4687004567045657, relative_change = 5.047888677987363e-6 Iter 60: T = 798.9382888568625 K, F = -0.1960171562121975, relative_change = 2.1112533850486466e-6 Iter 65: T = 798.9331367453572 K, F = -0.08197689542042996, relative_change = 8.829804258141989e-7 Iter 70: T = 798.930982035614 K, F = -0.034283748109292245, relative_change = 3.692780395335958e-7 Iter 75: T = 798.9300809041131 K, F = -0.014337878390288217, relative_change = 1.544373748243767e-7 Iter 80: T = 798.9297040390815 K, F = -0.005996272933236901, relative_change = 6.458770992363978e-8 Iter 85: T = 798.9295464294363 K, F = -0.002507713116680077, relative_change = 2.701137878282332e-8 Iter 90: T = 798.9294805151675 K, F = -0.0010487556027204414, relative_change = 1.129648593978674e-8 Iter 95: T = 798.9294529490274 K, F = -0.00043860212379354113, relative_change = 4.7243261687488886e-9 Iter 100: T = 798.9294414205374 K, F = -0.00018342864784304247, relative_change = 1.9757697777331615e-9 Iter 105: T = 798.929436599185 K, F = -7.671205072545817e-5, relative_change = 8.262905361212803e-10 Iter 110: T = 798.929434582838 K, F = -3.208189691406016e-5, relative_change = 3.4556458690334776e-10 Iter 115: T = 798.9294337395775 K, F = -1.3417032895590708e-5, relative_change = 1.4451924291614146e-10 Iter 120: T = 798.9294333869159 K, F = -5.611164425101123e-6, relative_change = 6.043968458662804e-11 Iter 125: T = 798.9294332394285 K, F = -2.3466546341666117e-6, relative_change = 2.527658348648132e-11 Iter 130: T = 798.9294331777476 K, F = -9.81399338240152e-7, relative_change = 1.0570972802963415e-11 Iter 135: T = 798.9294331519519 K, F = -4.1043539422691566e-7, relative_change = 4.420933682504264e-12 Iter 140: T = 798.9294331411638 K, F = -1.716493885917103e-7, relative_change = 1.8488916266212675e-12 Iter 145: T = 798.929433136652 K, F = -7.178534178198248e-8, relative_change = 7.732233620366747e-13 Iter 150: T = 798.9294331347653 K, F = -3.0021440999838944e-8, relative_change = 3.233707462707729e-13 Converged in 153 iterations to T = 798.9294331342128 K Iter 1: T = 965.1657578226113 K, F = -7937.015216036722, relative_change = 0.03483424217738867 Iter 2: T = 932.305179935669 K, F = -6731.911464290624, relative_change = 0.03404656414777394 Iter 3: T = 901.388792238095 K, F = -5708.567733799057, relative_change = 0.033161231282344 Iter 5: T = 845.2756171910027 K, F = -4101.855486001909, relative_change = 0.03107874083831086 Iter 10: T = 736.8627162395884 K, F = -1784.9881089761898, relative_change = 0.024099096545356604 Iter 15: T = 669.0385245007543 K, F = -768.6114745426759, relative_change = 0.015794470480381188 Iter 20: T = 631.9122336154469 K, F = -327.29635107661613, relative_change = 0.008697186047675443 Iter 25: T = 613.8281274501556 K, F = -138.18576253232092, relative_change = 0.004199462050868714 Iter 30: T = 605.6723893701875 K, F = -58.04962580122403, relative_change = 0.0018784718395803 Iter 35: T = 602.1426627155992 K, F = -24.324957740805868, relative_change = 0.0008092234049670141 Iter 40: T = 600.6443687553372 K, F = -10.181580081439275, relative_change = 0.0003427435324773338 Iter 45: T = 600.0137907795582 K, F = -4.259577322668851, relative_change = 0.00014410863778213307 Iter 50: T = 599.7493726400621 K, F = -1.7816729703261496, relative_change = 6.040354945034144e-5 Iter 55: T = 599.638666290672 K, F = -0.7451636769181307, relative_change = 2.5285280075594748e-5 Iter 60: T = 599.5923459252209 K, F = -0.31164453416509474, relative_change = 1.0578773509079099e-5 Iter 65: T = 599.5729704057735 K, F = -0.13033489808894094, relative_change = 4.424898725110964e-6 Iter 70: T = 599.5648666691407 K, F = -0.054507861406118185, relative_change = 1.8506730784288857e-6 Iter 75: T = 599.5614774737245 K, F = -0.022795882412582624, relative_change = 7.739959003819728e-7 Iter 80: T = 599.5600600514404 K, F = -0.009533517926368251, relative_change = 3.2369823242911664e-7 Iter 85: T = 599.5594672649655 K, F = -0.003987032389971834, relative_change = 1.353751492662164e-7 Iter 90: T = 599.5592193539619 K, F = -0.0016674247950105303, relative_change = 5.661562355240375e-8 Iter 95: T = 599.5591156745111 K, F = -0.0006973370038605431, relative_change = 2.3677350799600307e-8 Iter 100: T = 599.5590723145075 K, F = -0.00029163466959553075, relative_change = 9.90215450581565e-9 Iter 105: T = 599.5590541808328 K, F = -0.00012196510294953944, relative_change = 4.141199910504538e-9 Iter 110: T = 599.559046597113 K, F = -5.1007262581337365e-5, relative_change = 1.7318993617766816e-9 Iter 115: T = 599.5590434255107 K, F = -2.1331846219774242e-5, relative_change = 7.243010095881476e-10 Iter 120: T = 599.5590420991088 K, F = -8.92123325230143e-6, relative_change = 3.029113492052822e-10 Iter 125: T = 599.5590415443916 K, F = -3.730965980330847e-6, relative_change = 1.266811338698765e-10 Iter 130: T = 599.5590413124023 K, F = -1.560334901229421e-6, relative_change = 5.2979575774928e-11 Iter 135: T = 599.5590412153816 K, F = -6.525508971511051e-7, relative_change = 2.2156698348546227e-11 Iter 140: T = 599.5590411748063 K, F = -2.729049133343153e-7, relative_change = 9.266207235222947e-12 Iter 145: T = 599.5590411578373 K, F = -1.1413232653412209e-7, relative_change = 3.875246426033598e-12 Iter 150: T = 599.5590411507407 K, F = -4.773196565777127e-8, relative_change = 1.6206900792297352e-12 Iter 155: T = 599.5590411477727 K, F = -1.9961931330136906e-8, relative_change = 6.777869635987499e-13 Iter 160: T = 599.5590411465314 K, F = -8.347838420519338e-9, relative_change = 2.834423163840104e-13 Converged in 162 iterations to T = 599.5590411462687 K Iter 1: T = 964.5786326188836 K, F = -8070.79225220635, relative_change = 0.03542136738111645 Iter 2: T = 931.0978466755712 K, F = -6846.461228867307, relative_change = 0.03471027121180385 Iter 3: T = 899.527275046951 K, F = -5806.745427161313, relative_change = 0.03390682487489476 Iter 5: T = 842.0044868382549 K, F = -4174.182606025445, relative_change = 0.03199916330877594 Iter 10: T = 729.6054365023344 K, F = -1819.1678132002485, relative_change = 0.025414785658075402 Iter 15: T = 657.7821527277013 K, F = -784.8165678237071, relative_change = 0.017164011156738983 Iter 20: T = 617.5874865578439 K, F = -334.7806811323313, relative_change = 0.009710619713737583 Iter 25: T = 597.6740112431941 K, F = -141.51154889459525, relative_change = 0.004773545840442057 Iter 30: T = 588.6028302081027 K, F = -59.48404636373275, relative_change = 0.002155634212266712 Iter 35: T = 584.6573052574594 K, F = -24.933373182459935, relative_change = 0.0009327478763704354 Iter 40: T = 582.9787330622613 K, F = -10.43759352853511, relative_change = 0.00039583153834901036 Iter 45: T = 582.2715925119136 K, F = -4.366925147177026, relative_change = 0.00016656818810959452 Iter 50: T = 581.9749467699496 K, F = -1.8266165176130382, relative_change = 6.984201787390114e-5 Iter 55: T = 581.8507257414403 K, F = -0.7639682788597988, relative_change = 2.924058138954143e-5 Iter 60: T = 581.7987469333787 K, F = -0.31951036272105815, relative_change = 1.2234333799899192e-5 Iter 65: T = 581.777003857284 K, F = -0.13362474745909683, relative_change = 5.117519959799309e-6 Iter 70: T = 581.7679097827167 K, F = -0.0558837622259222, relative_change = 2.140378619099737e-6 Iter 75: T = 581.7641063816031 K, F = -0.023371308705400662, relative_change = 8.951617512964645e-7 Iter 80: T = 581.7625157275069 K, F = -0.009774169497008323, relative_change = 3.7437255607480814e-7 Iter 85: T = 581.7618504923626 K, F = -0.0040876760000919665, relative_change = 1.5656798709112543e-7 Iter 90: T = 581.7615722822752 K, F = -0.0017095151972641998, relative_change = 6.547876170215695e-8 Iter 95: T = 581.7614559313532 K, F = -0.0007149397191588136, relative_change = 2.738402802822289e-8 Iter 100: T = 581.7614072719837 K, F = -0.0002989963373379312, relative_change = 1.1452332445680999e-8 Iter 105: T = 581.7613869220498 K, F = -0.0001250438402506382, relative_change = 4.789503042317603e-9 Iter 110: T = 581.7613784114637 K, F = -5.229482758750681e-5, relative_change = 2.0030275203490173e-9 Iter 115: T = 581.7613748522349 K, F = -2.1870321125050385e-5, relative_change = 8.376900429592409e-10 Iter 120: T = 581.7613733637229 K, F = -9.146429580497717e-6, relative_change = 3.503319881648781e-10 Iter 125: T = 581.7613727412094 K, F = -3.82514675117962e-6, relative_change = 1.4651304767571756e-10 Iter 130: T = 581.7613724808668 K, F = -1.599722218248445e-6, relative_change = 6.12735127239803e-11 Iter 135: T = 581.7613723719884 K, F = -6.690230301975575e-7, relative_change = 2.5625318397375228e-11 Iter 140: T = 581.7613723264542 K, F = -2.7979339378703116e-7, relative_change = 1.071681314442851e-11 Iter 145: T = 581.7613723074112 K, F = -1.1701325614010827e-7, relative_change = 4.481911401470132e-12 Iter 150: T = 581.7613722994471 K, F = -4.8935799801252955e-8, relative_change = 1.8743681384353203e-12 Iter 155: T = 581.7613722961165 K, F = -2.0465146965964465e-8, relative_change = 7.838682432541634e-13 Iter 160: T = 581.7613722947236 K, F = -8.559451702971899e-9, relative_change = 3.278492151003088e-13 Converged in 163 iterations to T = 581.7613722943158 K Iter 1: T = 964.3394789787619 K, F = -8125.283636601893, relative_change = 0.03566052102123803 Iter 2: T = 930.6053860504902 K, F = -6893.130826150988, relative_change = 0.034981553346749 Iter 3: T = 898.7667982511784 K, F = -5846.755852603454, relative_change = 0.034212769748126454 Iter 5: T = 840.6632255601331 K, F = -4203.681710786355, relative_change = 0.032380377781667746 Iter 10: T = 726.5921170980508 K, F = -1833.1668503662886, relative_change = 0.02597769438950401 Iter 15: T = 653.0355436461309 K, F = -791.5078468002805, relative_change = 0.017774808804679805 Iter 20: T = 611.4637581366395 K, F = -337.9015698082341, relative_change = 0.010180298517823188 Iter 25: T = 590.7063945385325 K, F = -142.9091323762467, relative_change = 0.005046604393837869 Iter 30: T = 581.2058403071286 K, F = -60.08953696619761, relative_change = 0.0022893156837212043 Iter 35: T = 577.063646147571 K, F = -25.19075630061429, relative_change = 0.0009927184728987298 Iter 40: T = 575.2994758900818 K, F = -10.546002967726002, relative_change = 0.0004216800990197738 Iter 45: T = 574.5559218931975 K, F = -4.412400940574262, relative_change = 0.00017751726396824884 Iter 50: T = 574.2439377057432 K, F = -1.845659358314601, relative_change = 7.444569015167863e-5 Iter 55: T = 574.1132825619712 K, F = -0.7719364939042523, relative_change = 3.117022688533864e-5 Iter 60: T = 574.0586095253525 K, F = -0.3228435138446001, relative_change = 1.3042094628047827e-5 Iter 65: T = 574.0357390942817 K, F = -0.13501884206187184, relative_change = 5.455468254035307e-6 Iter 70: T = 574.0261734420179 K, F = -0.05646681215636465, relative_change = 2.2817359157493506e-6 Iter 75: T = 574.0221728032184 K, F = -0.02361515115839033, relative_change = 9.542831340571876e-7 Iter 80: T = 574.020499658772 K, F = -0.009876148024406173, relative_change = 3.990985368601879e-7 Iter 85: T = 574.0197999246194 K, F = -0.004130324760909521, relative_change = 1.6690881216190387e-7 Iter 90: T = 574.0195072865371 K, F = -0.0017273514405435342, relative_change = 6.980344006427334e-8 Iter 95: T = 574.0193849016382 K, F = -0.0007223990534006575, relative_change = 2.9192663998861248e-8 Iter 100: T = 574.0193337187844 K, F = -0.0003021159208786428, relative_change = 1.2208726284158921e-8 Iter 105: T = 574.0193123134989 K, F = -0.00012634848820475275, relative_change = 5.105836125021075e-9 Iter 110: T = 574.0193033615519 K, F = -5.2840446431667853e-5, relative_change = 2.135321792274505e-9 Iter 115: T = 574.0192996177407 K, F = -2.209850574635963e-5, relative_change = 8.930171024036755e-10 Iter 120: T = 574.0192980520341 K, F = -9.241859169173416e-6, relative_change = 3.734704281809776e-10 Iter 125: T = 574.0192973972368 K, F = -3.865054893359421e-6, relative_change = 1.561897543970476e-10 Iter 130: T = 574.0192971233929 K, F = -1.6164129010287631e-6, relative_change = 6.532045250459034e-11 Iter 135: T = 574.0192970088681 K, F = -6.760033193775605e-7, relative_change = 2.731779901669115e-11 Iter 140: T = 574.0192969609725 K, F = -2.827129745308632e-7, relative_change = 1.1424642452679307e-11 Iter 145: T = 574.0192969409419 K, F = -1.1823393936127857e-7, relative_change = 4.777921796621756e-12 Iter 150: T = 574.0192969325649 K, F = -4.944713832832903e-8, relative_change = 1.998195791260949e-12 Iter 155: T = 574.0192969290615 K, F = -2.067903992486464e-8, relative_change = 8.356554482892894e-13 Iter 160: T = 574.0192969275963 K, F = -8.64843763270784e-9, relative_change = 3.494898241557294e-13 Converged in 163 iterations to T = 574.0192969271674 K Iter 1: T = 980.018247068708 K, F = -4552.8614129489415, relative_change = 0.01998175293129205 Iter 2: T = 962.0855351501795 K, F = -3845.9449688833856, relative_change = 0.01829834492588923 Iter 3: T = 946.0818468663884 K, F = -3247.276177453926, relative_change = 0.016634371580373963 Iter 5: T = 919.3410855047517 K, F = -2311.820348197493, relative_change = 0.013454033217229901 Iter 10: T = 876.8360110248367 K, F = -981.5812714266859, relative_change = 0.00708319534663121 Iter 15: T = 856.6888096048855 K, F = -413.6667150992129, relative_change = 0.0033257568060920855 Iter 20: T = 847.7411767145618 K, F = -173.61034621215256, relative_change = 0.001466525724641933 Iter 25: T = 843.8974095116647 K, F = -72.71751396653949, relative_change = 0.0006276322680013506 Iter 30: T = 842.2712218131828 K, F = -30.431234682079598, relative_change = 0.00026507342375172425 Iter 35: T = 841.5877954011481 K, F = -12.730215558259353, relative_change = 0.00011131647540440928 Iter 40: T = 841.3013898289948 K, F = -5.324544184664838, relative_change = 4.6634754798750264e-5 Iter 45: T = 841.1815082916671 K, F = -2.226895864063109, relative_change = 1.95173926944244e-5 Iter 50: T = 841.1313543046964 K, F = -0.9313333279047755, relative_change = 8.164889685599566e-6 Iter 55: T = 841.1103761412598 K, F = -0.3894980236020342, relative_change = 3.4150888444438625e-6 Iter 60: T = 841.101602268697 K, F = -0.16289330286492398, relative_change = 1.4283069425753432e-6 Iter 65: T = 841.097932833489 K, F = -0.06812402566608378, relative_change = 5.973483149299546e-7 Iter 70: T = 841.0963982149109 K, F = -0.02849029877639908, relative_change = 2.4982052431842985e-7 Iter 75: T = 841.0957564161293 K, F = -0.011914986281991835, relative_change = 1.0447833341238246e-7 Iter 80: T = 841.0954880076956 K, F = -0.0049829900970819185, relative_change = 4.369415788335563e-8 Iter 85: T = 841.0953757559926 K, F = -0.0020839460610186933, relative_change = 1.8273431071940238e-8 Iter 90: T = 841.0953288109739 K, F = -0.0008715311466194198, relative_change = 7.642169279218334e-9 Iter 95: T = 841.0953091780038 K, F = -0.0003644847372761273, relative_change = 3.1960468450641477e-9 Iter 100: T = 841.0953009672608 K, F = -0.0001524318721675133, relative_change = 1.3366250406338807e-9 Iter 105: T = 841.0952975334297 K, F = -6.374882838344753e-5, relative_change = 5.589925569572312e-10 Iter 110: T = 841.0952960973607 K, F = -2.6660520867194393e-5, relative_change = 2.3377736075203174e-10 Iter 115: T = 841.0952954967794 K, F = -1.114974956606396e-5, relative_change = 9.77684962888198e-11 Iter 120: T = 841.0952952456091 K, F = -4.662956076373348e-6, relative_change = 4.088793221720531e-11 Iter 125: T = 841.0952951405667 K, F = -1.950105149584047e-6, relative_change = 1.7099832362573685e-11 Iter 130: T = 841.0952950966367 K, F = -8.155567043921508e-7, relative_change = 7.151349215052086e-12 Iter 135: T = 841.0952950782647 K, F = -3.41076028087528e-7, relative_change = 2.990783807986039e-12 Iter 140: T = 841.0952950705812 K, F = -1.4263975334216639e-7, relative_change = 1.2507612073515535e-12 Iter 145: T = 841.0952950673679 K, F = -5.965288529807822e-8, relative_change = 5.230765834248606e-13 Converged in 150 iterations to T = 841.095295066024 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 10%|███ | ETA: 0:00:12 Bin 1 ray tracing: 18%|█████▍ | ETA: 0:00:11 Bin 1 ray tracing: 25%|███████▌ | ETA: 0:00:10 Bin 1 ray tracing: 32%|█████████▋ | ETA: 0:00:10 Bin 1 ray tracing: 38%|███████████▌ | ETA: 0:00:09 Bin 1 ray tracing: 45%|█████████████▍ | ETA: 0:00:08 Bin 1 ray tracing: 51%|███████████████▎ | ETA: 0:00:07 Bin 1 ray tracing: 57%|█████████████████▏ | ETA: 0:00:06 Bin 1 ray tracing: 63%|███████████████████ | ETA: 0:00:06 Bin 1 ray tracing: 69%|████████████████████▉ | ETA: 0:00:05 Bin 1 ray tracing: 76%|██████████████████████▋ | ETA: 0:00:04 Bin 1 ray tracing: 82%|████████████████████████▊ | ETA: 0:00:03 Bin 1 ray tracing: 90%|███████████████████████████ | ETA: 0:00:02 Bin 1 ray tracing: 97%|█████████████████████████████▎| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 2 ray tracing: 12%|███▋ | ETA: 0:00:14 Bin 2 ray tracing: 18%|█████▌ | ETA: 0:00:13 Bin 2 ray tracing: 25%|███████▍ | ETA: 0:00:12 Bin 2 ray tracing: 31%|█████████▎ | ETA: 0:00:11 Bin 2 ray tracing: 37%|███████████▏ | ETA: 0:00:10 Bin 2 ray tracing: 44%|█████████████▏ | ETA: 0:00:09 Bin 2 ray tracing: 51%|███████████████▎ | ETA: 0:00:08 Bin 2 ray tracing: 58%|█████████████████▎ | ETA: 0:00:07 Bin 2 ray tracing: 64%|███████████████████▏ | ETA: 0:00:06 Bin 2 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:05 Bin 2 ray tracing: 77%|███████████████████████▎ | ETA: 0:00:04 Bin 2 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 2 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 3 ray tracing: 18%|█████▍ | ETA: 0:00:09 Bin 3 ray tracing: 28%|████████▍ | ETA: 0:00:08 Bin 3 ray tracing: 37%|███████████▏ | ETA: 0:00:08 Bin 3 ray tracing: 44%|█████████████▏ | ETA: 0:00:07 Bin 3 ray tracing: 50%|███████████████▏ | ETA: 0:00:06 Bin 3 ray tracing: 59%|█████████████████▋ | ETA: 0:00:05 Bin 3 ray tracing: 67%|████████████████████▏ | ETA: 0:00:04 Bin 3 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:03 Bin 3 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:02 Bin 3 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 4 ray tracing: 19%|█████▋ | ETA: 0:00:10 Bin 4 ray tracing: 26%|███████▉ | ETA: 0:00:09 Bin 4 ray tracing: 35%|██████████▍ | ETA: 0:00:08 Bin 4 ray tracing: 43%|█████████████ | ETA: 0:00:07 Bin 4 ray tracing: 52%|███████████████▋ | ETA: 0:00:06 Bin 4 ray tracing: 61%|██████████████████▍ | ETA: 0:00:05 Bin 4 ray tracing: 70%|████████████████████▉ | ETA: 0:00:04 Bin 4 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 4 ray tracing: 86%|█████████████████████████▋ | ETA: 0:00:02 Bin 4 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 5 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 5 ray tracing: 28%|████████▎ | ETA: 0:00:08 Bin 5 ray tracing: 37%|███████████▏ | ETA: 0:00:07 Bin 5 ray tracing: 48%|██████████████▎ | ETA: 0:00:06 Bin 5 ray tracing: 58%|█████████████████▍ | ETA: 0:00:04 Bin 5 ray tracing: 68%|████████████████████▌ | ETA: 0:00:03 Bin 5 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:02 Bin 5 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:01 Bin 5 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 10%|██▉ | ETA: 0:00:12 Bin 6 ray tracing: 18%|█████▌ | ETA: 0:00:10 Bin 6 ray tracing: 28%|████████▌ | ETA: 0:00:08 Bin 6 ray tracing: 39%|███████████▋ | ETA: 0:00:07 Bin 6 ray tracing: 49%|██████████████▋ | ETA: 0:00:05 Bin 6 ray tracing: 59%|█████████████████▊ | ETA: 0:00:04 Bin 6 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:03 Bin 6 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:02 Bin 6 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 9%|██▉ | ETA: 0:00:10 Bin 7 ray tracing: 18%|█████▌ | ETA: 0:00:10 Bin 7 ray tracing: 26%|███████▉ | ETA: 0:00:09 Bin 7 ray tracing: 34%|██████████▍ | ETA: 0:00:08 Bin 7 ray tracing: 42%|████████████▊ | ETA: 0:00:07 Bin 7 ray tracing: 51%|███████████████▏ | ETA: 0:00:06 Bin 7 ray tracing: 58%|█████████████████▍ | ETA: 0:00:05 Bin 7 ray tracing: 65%|███████████████████▌ | ETA: 0:00:05 Bin 7 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:03 Bin 7 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:02 Bin 7 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 7 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 8 ray tracing: 14%|████▏ | ETA: 0:00:12 Bin 8 ray tracing: 21%|██████▎ | ETA: 0:00:12 Bin 8 ray tracing: 28%|████████▎ | ETA: 0:00:11 Bin 8 ray tracing: 34%|██████████▍ | ETA: 0:00:10 Bin 8 ray tracing: 42%|████████████▌ | ETA: 0:00:09 Bin 8 ray tracing: 49%|██████████████▋ | ETA: 0:00:07 Bin 8 ray tracing: 56%|████████████████▊ | ETA: 0:00:06 Bin 8 ray tracing: 63%|███████████████████ | ETA: 0:00:05 Bin 8 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:04 Bin 8 ray tracing: 77%|███████████████████████▎ | ETA: 0:00:03 Bin 8 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:02 Bin 8 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 8 ray tracing: 98%|█████████████████████████████▎| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 9 ray tracing: 14%|████▍ | ETA: 0:00:12 Bin 9 ray tracing: 23%|██████▊ | ETA: 0:00:10 Bin 9 ray tracing: 32%|█████████▌ | ETA: 0:00:09 Bin 9 ray tracing: 41%|████████████▎ | ETA: 0:00:08 Bin 9 ray tracing: 49%|██████████████▌ | ETA: 0:00:07 Bin 9 ray tracing: 56%|████████████████▊ | ETA: 0:00:06 Bin 9 ray tracing: 63%|███████████████████ | ETA: 0:00:05 Bin 9 ray tracing: 73%|██████████████████████ | ETA: 0:00:03 Bin 9 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:02 Bin 9 ray tracing: 90%|██████████████████████████▉ | ETA: 0:00:01 Bin 9 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 7%|█▉ | ETA: 0:00:14 Bin 10 ray tracing: 14%|████ | ETA: 0:00:13 Bin 10 ray tracing: 21%|██████▏ | ETA: 0:00:11 Bin 10 ray tracing: 29%|████████▌ | ETA: 0:00:10 Bin 10 ray tracing: 37%|██████████▉ | ETA: 0:00:09 Bin 10 ray tracing: 45%|█████████████ | ETA: 0:00:08 Bin 10 ray tracing: 53%|███████████████▌ | ETA: 0:00:06 Bin 10 ray tracing: 62%|█████████████████▉ | ETA: 0:00:05 Bin 10 ray tracing: 72%|█████████████████████ | ETA: 0:00:03 Bin 10 ray tracing: 83%|████████████████████████▏ | ETA: 0:00:02 Bin 10 ray tracing: 94%|███████████████████████████▎ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2579747265265 K, F = -7460.301604267572, relative_change = 0.03274202527347347 Iter 2: T = 936.5883948634194 K, F = -6323.999933833097, relative_change = 0.031707756011811014 Iter 3: T = 907.9600662960856 K, F = -5359.2688210173665, relative_change = 0.030566606125317787 Iter 5: T = 856.6899786443254 K, F = -3845.176010892348, relative_change = 0.027968400144493904 Iter 10: T = 761.2511994589712 K, F = -1665.1855268707302, relative_change = 0.02006485745901464 Iter 15: T = 705.2887715880242 K, F = -713.0343618015779, relative_change = 0.012046539011478957 Iter 20: T = 676.4705834999095 K, F = -302.23282095480454, relative_change = 0.0061778943587150695 Iter 25: T = 663.020652933574 K, F = -127.24034109689728, relative_change = 0.002856277417016356 Iter 30: T = 657.0969095651725 K, F = -53.374086628288715, relative_change = 0.0012499408793879418 Iter 35: T = 654.5621383082698 K, F = -22.350880662956556, relative_change = 0.0005331050131729074 Iter 40: T = 653.4916069535727 K, F = -9.35259771209521, relative_change = 0.00022481691586650836 Iter 45: T = 653.042036026224 K, F = -3.912282628908775, relative_change = 9.435151478959124e-5 Iter 50: T = 652.8536920105113 K, F = -1.6363237504728039, relative_change = 3.951701542505388e-5 Iter 55: T = 652.7748667319086 K, F = -0.6843582287670584, relative_change = 1.6536668910669722e-5 Iter 60: T = 652.7418909781968 K, F = -0.28621170049209543, relative_change = 6.917614729199847e-6 Iter 65: T = 652.7280983600684 K, F = -0.11969801126143365, relative_change = 2.893340937651922e-6 Iter 70: T = 652.7223298138334 K, F = -0.05005928823012051, relative_change = 1.2100842842539896e-6 Iter 75: T = 652.719917284925 K, F = -0.02093541848026953, relative_change = 5.060812406344635e-7 Iter 80: T = 652.7189083270822 K, F = -0.008755446631009522, relative_change = 2.1165088757265699e-7 Iter 85: T = 652.7184863672113 K, F = -0.003661633146817389, relative_change = 8.851522068980189e-8 Iter 90: T = 652.7183098982654 K, F = -0.001531338851679609, relative_change = 3.701817343445233e-8 Iter 95: T = 652.7182360967942 K, F = -0.00064042421985816, relative_change = 1.5481451135692712e-8 Iter 100: T = 652.7182052321288 K, F = -0.00026783306254318795, relative_change = 6.474529343535168e-9 Iter 105: T = 652.7181923241554 K, F = -0.00011201098506641305, relative_change = 2.7077257415716636e-9 Iter 110: T = 652.7181869258866 K, F = -4.6844331517137405e-5, relative_change = 1.1324032836150844e-9 Iter 115: T = 652.7181846682661 K, F = -1.959085899522206e-5, relative_change = 4.735845875448119e-10 Iter 120: T = 652.7181837241022 K, F = -8.193131246059249e-6, relative_change = 1.9805873287811814e-10 Iter 125: T = 652.7181833292415 K, F = -3.4264647086890143e-6, relative_change = 8.283051253884877e-11 Iter 130: T = 652.7181831641061 K, F = -1.4329882752073253e-6, relative_change = 3.4640705079950557e-11 Iter 135: T = 652.7181830950447 K, F = -5.992939433041578e-7, relative_change = 1.4487183960841641e-11 Iter 140: T = 652.7181830661623 K, F = -2.5063252129253755e-7, relative_change = 6.058728748834838e-12 Iter 145: T = 652.7181830540832 K, F = -1.0481722162447582e-7, relative_change = 2.5338256616104414e-12 Iter 150: T = 652.7181830490316 K, F = -4.383554780273968e-8, relative_change = 1.0596697202617835e-12 Iter 155: T = 652.7181830469191 K, F = -1.8332802720344432e-8, relative_change = 4.4317265106396256e-13 Converged in 159 iterations to T = 652.7181830461565 K Iter 1: T = 970.3617060930134 K, F = -6753.11346000281, relative_change = 0.029638293906986586 Iter 2: T = 942.8880758039987 K, F = -5719.702843634739, relative_change = 0.028312772563575603 Iter 3: T = 917.5342434530323 K, F = -4842.682341632274, relative_change = 0.026889546067646687 Iter 5: T = 872.9694131320362 K, F = -3467.317982102221, relative_change = 0.02379517769691221 Iter 10: T = 793.8839422875818 K, F = -1492.3750371302565, relative_change = 0.015489465841949343 Iter 15: T = 750.806032759589 K, F = -635.2517330076142, relative_change = 0.008478764037704131 Iter 20: T = 729.8996361328702 K, F = -268.1385603688648, relative_change = 0.0040783859352193945 Iter 25: T = 720.4910146803528 K, F = -112.62589671469877, relative_change = 0.0018206861342498675 Iter 30: T = 716.4232806319359 K, F = -47.191563614751175, relative_change = 0.0007836078585146161 Iter 35: T = 714.6974207382174 K, F = -19.752215559547636, relative_change = 0.00033176052446228524 Iter 40: T = 713.9712149707316 K, F = -8.263464709737011, relative_change = 0.00013946682204073793 Iter 45: T = 713.6667235895509 K, F = -3.4563806741343983, relative_change = 5.845368893907268e-5 Iter 50: T = 713.5392439961241 K, F = -1.4455874696806414, relative_change = 2.446831402885983e-5 Iter 55: T = 713.4859063839426 K, F = -0.6045773107070763, relative_change = 1.023684371985204e-5 Iter 60: T = 713.4635957348474 K, F = -0.25284414002899047, relative_change = 4.28185324480019e-6 Iter 65: T = 713.454264416147 K, F = -0.10574290922626062, relative_change = 1.7908416391151853e-6 Iter 70: T = 713.4503618179917 K, F = -0.044223029723797214, relative_change = 7.489722590739251e-7 Iter 75: T = 713.4487296822317 K, F = -0.018494613546186867, relative_change = 3.132327985972688e-7 Iter 80: T = 713.4480470996117 K, F = -0.007734670771767149, relative_change = 1.3099833646391912e-7 Iter 85: T = 713.4477616347168 K, F = -0.003234732128010065, relative_change = 5.4785180575113357e-8 Iter 90: T = 713.4476422497676 K, F = -0.0013528036826587764, relative_change = 2.2911836328609083e-8 Iter 95: T = 713.447592321535 K, F = -0.0005657586703309292, relative_change = 9.582007013509532e-9 Iter 100: T = 713.4475714409482 K, F = -0.00023660703454198018, relative_change = 4.007310359060664e-9 Iter 105: T = 713.4475627084367 K, F = -9.895188727981896e-5, relative_change = 1.675905142975719e-9 Iter 110: T = 713.447559056396 K, F = -4.1382861844629915e-5, relative_change = 7.008835767892916e-10 Iter 115: T = 713.447557529069 K, F = -1.7306805876748932e-5, relative_change = 2.931178654311289e-10 Iter 120: T = 713.4475568903225 K, F = -7.237912669655344e-6, relative_change = 1.225853884338041e-10 Iter 125: T = 713.4475566231911 K, F = -3.026980660680856e-6, relative_change = 5.126665900354563e-11 Iter 130: T = 713.4475565114736 K, F = -1.2659195819386682e-6, relative_change = 2.1440331094466904e-11 Iter 135: T = 713.4475564647521 K, F = -5.294230909225206e-7, relative_change = 8.966609351749484e-12 Iter 140: T = 713.4475564452125 K, F = -2.2141101829742382e-7, relative_change = 3.749942421373295e-12 Iter 145: T = 713.4475564370408 K, F = -9.259695532559675e-8, relative_change = 1.568274485861208e-12 Iter 150: T = 713.4475564336234 K, F = -3.8725348483481525e-8, relative_change = 6.558744374538297e-13 Iter 155: T = 713.4475564321942 K, F = -1.6196716745575657e-8, relative_change = 2.7431676925350504e-13 Converged in 157 iterations to T = 713.4475564318917 K Iter 1: T = 974.3696164416402 K, F = -5839.9072745611975, relative_change = 0.025630383558359726 Iter 2: T = 950.9287832297193 K, F = -4940.83028665675, relative_change = 0.02405743448520689 Iter 3: T = 929.603137537741 K, F = -4178.365977908525, relative_change = 0.022426122826515283 Iter 5: T = 892.9455538797831 K, F = -2984.2126848662238, relative_change = 0.019072542757553858 Iter 10: T = 831.1639959454387 K, F = -1276.1566934630546, relative_change = 0.011216971940859827 Iter 15: T = 799.7807859972415 K, F = -540.3875478736701, relative_change = 0.005665726137724251 Iter 20: T = 785.2620873709924 K, F = -227.37429946134853, relative_change = 0.0025969582562239612 Iter 25: T = 778.8970776532245 K, F = -95.35126394306909, relative_change = 0.0011317123914059103 Iter 30: T = 776.1793313093968 K, F = -39.92423685125074, relative_change = 0.0004817782407077809 Iter 35: T = 775.032602681042 K, F = -16.70517257072083, relative_change = 0.00020300836546220948 Iter 40: T = 774.5512260626041 K, F = -6.9877776549061545, relative_change = 8.516985404799979e-5 Iter 45: T = 774.3495914899185 K, F = -2.922630731660638, relative_change = 3.5666376117678425e-5 Iter 50: T = 774.2652098819798 K, F = -1.222324366701089, relative_change = 1.4924397967640687e-5 Iter 55: T = 774.2299107460323 K, F = -0.5111985728827373, relative_change = 6.2430131965266624e-6 Iter 60: T = 774.2151465214795 K, F = -0.2137907345224127, relative_change = 2.6111566719843477e-6 Iter 65: T = 774.208971648298 K, F = -0.0894100808556042, relative_change = 1.0920613343703804e-6 Iter 70: T = 774.2063891904387 K, F = -0.037392405999699396, relative_change = 4.56720863300702e-7 Iter 75: T = 774.2053091665996 K, F = -0.015637958163939536, relative_change = 1.9100747865830575e-7 Iter 80: T = 774.2048574861365 K, F = -0.006539982157212076, relative_change = 7.988184641217927e-8 Iter 85: T = 774.2046685876936 K, F = -0.0027350988671853704, relative_change = 3.3407583719744786e-8 Iter 90: T = 774.2045895880601 K, F = -0.0011438510512179478, relative_change = 1.39714577707839e-8 Iter 95: T = 774.2045565494614 K, F = -0.00047837217523138964, relative_change = 5.8430317442316e-9 Iter 100: T = 774.2045427323233 K, F = -0.00020006095739011354, relative_change = 2.4436258726306566e-9 Iter 105: T = 774.2045369538309 K, F = -8.366788111036083e-5, relative_change = 1.0219535531681682e-9 Iter 110: T = 774.2045345371963 K, F = -3.4990906279008804e-5, relative_change = 4.2739317713433085e-10 Iter 115: T = 774.2045335265309 K, F = -1.4633613914072363e-5, relative_change = 1.787409200749293e-10 Iter 120: T = 774.2045331038586 K, F = -6.119951840966031e-6, relative_change = 7.475158440937126e-11 Iter 125: T = 774.2045329270919 K, F = -2.5594376993343104e-6, relative_change = 3.1262014539006335e-11 Iter 130: T = 774.2045328531659 K, F = -1.0703865929162504e-6, relative_change = 1.3074137828797979e-11 Iter 135: T = 774.2045328222492 K, F = -4.4764699658195184e-7, relative_change = 5.467742749960422e-12 Iter 140: T = 774.2045328093196 K, F = -1.8721224781526047e-7, relative_change = 2.2866866495097322e-12 Iter 145: T = 774.2045328039122 K, F = -7.829374903955966e-8, relative_change = 9.56311741160486e-13 Iter 150: T = 774.2045328016508 K, F = -3.274371418449107e-8, relative_change = 3.9994506213319463e-13 Converged in 154 iterations to T = 774.2045328008345 K Iter 1: T = 970.3505738604529 K, F = -6755.649949781212, relative_change = 0.02964942613954711 Iter 2: T = 942.8655953001067 K, F = -5721.8685227644155, relative_change = 0.028324792400544002 Iter 3: T = 917.5002659426148 K, F = -4844.531837539563, relative_change = 0.026902380873721835 Iter 5: T = 872.912340370527 K, F = -3468.667256772189, relative_change = 0.02380928645984756 Iter 10: T = 793.7733904265145 K, F = -1492.985698624304, relative_change = 0.015503550139683266 Iter 15: T = 750.6565153897067 K, F = -635.5229223634333, relative_change = 0.008488799184736454 Iter 20: T = 729.7276758782584 K, F = -268.25611662576364, relative_change = 0.004083929775490892 Iter 25: T = 720.3080390262271 K, F = -112.67595324436091, relative_change = 0.0018233272683912483 Iter 30: T = 716.2353487593165 K, F = -47.21267005799553, relative_change = 0.0007847776508693228 Iter 35: T = 714.5073490920298 K, F = -19.76107396376913, relative_change = 0.00033226190374692434 Iter 40: T = 713.7802362450055 K, F = -8.267175000274758, relative_change = 0.00013967868969710988 Iter 45: T = 713.4753633418698 K, F = -3.457933349012467, relative_change = 5.854268104633868e-5 Iter 50: T = 713.3477238090654 K, F = -1.4462369900566716, relative_change = 2.4505599519133363e-5 Iter 55: T = 713.2943192412538 K, F = -0.6048489782198845, relative_change = 1.0252448861786665e-5 Iter 60: T = 713.2719805787685 K, F = -0.2529577599356188, relative_change = 4.2883815854005414e-6 Iter 65: T = 713.2626375424785 K, F = -0.10579042735569921, relative_change = 1.7935722337014481e-6 Iter 70: T = 713.2587300435276 K, F = -0.044242902535336026, relative_change = 7.501142901164307e-7 Iter 75: T = 713.2570958581338 K, F = -0.018502924622601502, relative_change = 3.137104207885056e-7 Iter 80: T = 713.2564124183211 K, F = -0.007738146568221138, relative_change = 1.3119808572068933e-7 Iter 85: T = 713.2561265949362 K, F = -0.003236185747767295, relative_change = 5.486871842921904e-8 Iter 90: T = 713.2560070600618 K, F = -0.0013534116038851352, relative_change = 2.2946772915363724e-8 Iter 95: T = 713.2559570691287 K, F = -0.0005660129099397393, relative_change = 9.59661791610144e-9 Iter 100: T = 713.2559361623197 K, F = -0.0002367133602694249, relative_change = 4.013420809446061e-9 Iter 105: T = 713.2559274188419 K, F = -9.899635479104774e-5, relative_change = 1.6784606205350375e-9 Iter 110: T = 713.2559237622149 K, F = -4.1401457660183993e-5, relative_change = 7.019522906497302e-10 Iter 115: T = 713.2559222329699 K, F = -1.7314583723226917e-5, relative_change = 2.935648288036679e-10 Iter 120: T = 713.2559215934212 K, F = -7.241165742799538e-6, relative_change = 1.227723186811243e-10 Iter 125: T = 713.2559213259544 K, F = -3.028342627553471e-6, relative_change = 5.134486076073309e-11 Iter 130: T = 713.2559212140966 K, F = -1.2664887878433007e-6, relative_change = 2.1473029479472342e-11 Iter 135: T = 713.2559211673163 K, F = -5.2965983865505e-7, relative_change = 8.980262156486783e-12 Iter 140: T = 713.2559211477522 K, F = -2.2150977252444193e-7, relative_change = 3.7556478376842396e-12 Iter 145: T = 713.2559211395703 K, F = -9.263826372674089e-8, relative_change = 1.5706607022621028e-12 Iter 150: T = 713.2559211361486 K, F = -3.874287146654609e-8, relative_change = 6.568765784102245e-13 Iter 155: T = 713.2559211347175 K, F = -1.6201298524975982e-8, relative_change = 2.746893334991945e-13 Converged in 157 iterations to T = 713.2559211344146 K Iter 1: T = 969.3650194841957 K, F = -6980.209451915655, relative_change = 0.030634980515804315 Iter 2: T = 940.8721012888518 K, F = -5913.6501014805135, relative_change = 0.029393383939627937 Iter 3: T = 914.4819458128952 K, F = -5008.366154274582, relative_change = 0.02804861090025529 Iter 5: T = 867.8228728303939 K, F = -3588.289290902804, relative_change = 0.025081996300038767 Iter 10: T = 783.8116090458565 K, F = -1547.2965025792398, relative_change = 0.016810407333292334 Iter 15: T = 737.0628803460066 K, F = -659.7344577724919, relative_change = 0.009443920830344614 Iter 20: T = 714.0049902988395 K, F = -278.782969814435, relative_change = 0.004620522472625042 Iter 25: T = 703.529335348903 K, F = -117.1661504174877, relative_change = 0.0020812500240685455 Iter 30: T = 698.9790018548922 K, F = -49.10756383213579, relative_change = 0.0008994905295167166 Iter 35: T = 697.0442942287979 K, F = -20.556662244778366, relative_change = 0.00038151818984448623 Iter 40: T = 696.2294643426699 K, F = -8.600456295243179, relative_change = 0.00016050910940654126 Iter 45: T = 695.8876810272407 K, F = -3.5974137635544405, relative_change = 6.729508746630785e-5 Iter 50: T = 695.7445652684924 K, F = -1.5045866002049006, relative_change = 2.817314671049726e-5 Iter 55: T = 695.6846813656733 K, F = -0.6292545008791668, relative_change = 1.1787520511425824e-5 Iter 60: T = 695.659631743258 K, F = -0.2631649692998748, relative_change = 4.930587389458862e-6 Iter 65: T = 695.6491547368355 K, F = -0.11005929664067354, relative_change = 2.0621889521440346e-6 Iter 70: T = 695.6447729605403 K, F = -0.04602821081865194, relative_change = 8.624597587533655e-7 Iter 75: T = 695.6429404201388 K, F = -0.01924956469564465, relative_change = 3.606958179463488e-7 Iter 80: T = 695.642174024746 K, F = -0.008050400857977369, relative_change = 1.508481464055364e-7 Iter 85: T = 695.6418535081461 K, F = -0.003366774307790865, relative_change = 6.308664459849313e-8 Iter 90: T = 695.64171946412 K, F = -0.0014080253163554213, relative_change = 2.6383614133425043e-8 Iter 95: T = 695.64166340528 K, F = -0.0005888530191153762, relative_change = 1.1033947059060862e-8 Iter 100: T = 695.6416399607989 K, F = -0.00024626536754712713, relative_change = 4.614529221719738e-9 Iter 105: T = 695.6416301560361 K, F = -0.00010299111843603548, relative_change = 1.9298513722278985e-9 Iter 110: T = 695.641626055567 K, F = -4.307211541254574e-5, relative_change = 8.070869083539051e-10 Iter 115: T = 695.6416243407018 K, F = -1.8013272651495882e-5, relative_change = 3.375333801234888e-10 Iter 120: T = 695.6416236235247 K, F = -7.5333647150399585e-6, relative_change = 1.4116047192792837e-10 Iter 125: T = 695.6416233235926 K, F = -3.150542162599912e-6, relative_change = 5.903497789327772e-11 Iter 130: T = 695.6416231981576 K, F = -1.3175953904598359e-6, relative_change = 2.4689152152361375e-11 Iter 135: T = 695.6416231456991 K, F = -5.510345775228132e-7, relative_change = 1.032530671332228e-11 Iter 140: T = 695.6416231237603 K, F = -2.3044883445955122e-7, relative_change = 4.318158959418968e-12 Iter 145: T = 695.6416231145852 K, F = -9.637474074342123e-8, relative_change = 1.8058735302567288e-12 Iter 150: T = 695.6416231107481 K, F = -4.030496092433111e-8, relative_change = 7.552358793573342e-13 Iter 155: T = 695.6416231091433 K, F = -1.6855687179351264e-8, relative_change = 3.158425026911391e-13 Converged in 158 iterations to T = 695.6416231086736 K Iter 1: T = 963.5621704521577 K, F = -8302.394123799957, relative_change = 0.036437829547842235 Iter 2: T = 929.002048358856 K, F = -7044.858728704241, relative_change = 0.035867039152319695 Iter 3: T = 896.286092594304 K, F = -5976.8786830784975, relative_change = 0.0352162364144911 Iter 5: T = 836.2678092926939 K, F = -4299.715333987645, relative_change = 0.0336453557538542 Iter 10: T = 716.5558855073441 K, F = -1878.989140017456, relative_change = 0.027925719551924157 Iter 15: T = 636.8893988662445 K, F = -813.6574687427968, relative_change = 0.020013006287299802 Iter 20: T = 590.2150653932937 K, F = -348.3843366029287, relative_change = 0.012002139634600133 Iter 25: T = 566.1976349171998 K, F = -147.6611743600258, relative_change = 0.006150033656137783 Iter 30: T = 554.993717836502 K, F = -62.163559453171, relative_change = 0.0028420441178277963 Iter 35: T = 550.0604462198578 K, F = -26.07562997769462, relative_change = 0.0012434237066590113 Iter 40: T = 547.9497502758311 K, F = -10.919329820694346, relative_change = 0.0005302702855487141 Iter 45: T = 547.0583690172399 K, F = -4.56911722567997, relative_change = 0.00022361146128594808 Iter 50: T = 546.6840407799285 K, F = -1.9113037746252746, relative_change = 9.384382764523737e-5 Iter 55: T = 546.5272205494045 K, F = -0.7994080161206651, relative_change = 3.9304068602523966e-5 Iter 60: T = 546.4615887892116 K, F = -0.3343356298904722, relative_change = 1.64475021643931e-5 Iter 65: T = 546.4341324554294 K, F = -0.13982554194508778, relative_change = 6.880304893540876e-6 Iter 70: T = 546.4226484278993 K, F = -0.05847712938035354, relative_change = 2.8777341522375193e-6 Iter 75: T = 546.417845414877 K, F = -0.024455906958830265, relative_change = 1.2035567512254102e-6 Iter 80: T = 546.4158366927692 K, F = -0.010227765137251682, relative_change = 5.033512453092944e-7 Iter 85: T = 546.4149966133759 K, F = -0.004277375760558533, relative_change = 2.105091528756788e-7 Iter 90: T = 546.4146452807736 K, F = -0.0017888500167411447, relative_change = 8.803773048070667e-8 Iter 95: T = 546.4144983490443 K, F = -0.0007481185083379749, relative_change = 3.681848075905515e-8 Iter 100: T = 546.4144369003985 K, F = -0.00031287210656760767, relative_change = 1.5397937191503204e-8 Iter 105: T = 546.4144112018338 K, F = -0.0001308468535832219, relative_change = 6.43960277063173e-9 Iter 110: T = 546.4144004543858 K, F = -5.472171738735154e-5, relative_change = 2.6931190643813005e-9 Iter 115: T = 546.4143959596745 K, F = -2.2885275899636737e-5, relative_change = 1.1262946079767244e-9 Iter 120: T = 546.4143940799325 K, F = -9.570895980109961e-6, relative_change = 4.710298778886172e-10 Iter 125: T = 546.4143932938019 K, F = -4.002663245378235e-6, relative_change = 1.9699033366695732e-10 Iter 130: T = 546.4143929650328 K, F = -1.6739620002925726e-6, relative_change = 8.2383731458996e-11 Iter 135: T = 546.4143928275375 K, F = -7.000709298377039e-7, relative_change = 3.44538618827738e-11 Iter 140: T = 546.4143927700354 K, F = -2.9277825752682674e-7, relative_change = 1.4409028031632259e-11 Iter 145: T = 546.4143927459872 K, F = -1.2244299069097409e-7, relative_change = 6.026009241315143e-12 Iter 150: T = 546.41439273593 K, F = -5.1207295598265645e-8, relative_change = 2.5201576242427677e-12 Iter 155: T = 546.414392731724 K, F = -2.1415262674295832e-8, relative_change = 1.0539482094343206e-12 Iter 160: T = 546.414392729965 K, F = -8.956445779473299e-9, relative_change = 4.4078982993966567e-13 Converged in 164 iterations to T = 546.41439272933 K Iter 1: T = 966.9148097089789 K, F = -7538.492079950006, relative_change = 0.033085190291021103 Iter 2: T = 935.887898930325 K, F = -6390.8748527094485, relative_change = 0.03208856712825849 Iter 3: T = 906.8888345691056 K, F = -5416.5013870568155, relative_change = 0.03098561739537821 Iter 5: T = 854.843054592351 K, F = -3887.1652252793665, relative_change = 0.028461147912095638 Iter 10: T = 757.3970329445309 K, F = -1684.6356433866806, relative_change = 0.02066483555985512 Iter 15: T = 699.7046392204777 K, F = -721.9464272189814, relative_change = 0.012564702612802799 Iter 20: T = 669.7418385413398 K, F = -306.20138160952587, relative_change = 0.006505727626562956 Iter 25: T = 655.6789557716689 K, F = -128.95833801187334, relative_change = 0.0030246247083712324 Iter 30: T = 649.4667014313754 K, F = -54.10451987112416, relative_change = 0.001327225126355784 Iter 35: T = 646.8047452981313 K, F = -22.658601097965608, relative_change = 0.0005667606157469579 Iter 40: T = 645.6798047475721 K, F = -9.481695006350694, relative_change = 0.0002391361509222303 Iter 45: T = 645.2072599509728 K, F = -3.9663444208778706, relative_change = 0.000100383493369012 Iter 50: T = 645.0092691741224 K, F = -1.6589456584536224, relative_change = 4.2047330648585286e-5 Iter 55: T = 644.9264026819927 K, F = -0.6938211933997708, relative_change = 1.7596222896689545e-5 Iter 60: T = 644.8917356486969 K, F = -0.2901696126661729, relative_change = 7.3609685963798345e-6 Iter 65: T = 644.8772355079135 K, F = -0.12135332517533431, relative_change = 3.0787980743834015e-6 Iter 70: T = 644.8711710306281 K, F = -0.050751572134003775, relative_change = 1.2876518909307852e-6 Iter 75: T = 644.8686347334134 K, F = -0.0212249419492202, relative_change = 5.385222025070984e-7 Iter 80: T = 644.867574013066 K, F = -0.008876529164992653, relative_change = 2.252183060371209e-7 Iter 85: T = 644.8671304053017 K, F = -0.0037122713722677614, relative_change = 9.418931574695924e-8 Iter 90: T = 644.8669448829139 K, F = -0.001552516373813817, relative_change = 3.9391154515295803e-8 Iter 95: T = 644.8668672951792 K, F = -0.0006492809154932666, relative_change = 1.647386136982537e-8 Iter 100: T = 644.8668348470519 K, F = -0.0002715370362993408, relative_change = 6.889567300770285e-9 Iter 105: T = 644.866821276856 K, F = -0.00011356003154877614, relative_change = 2.8812996159960285e-9 Iter 110: T = 644.8668156016377 K, F = -4.74921609748824e-5, relative_change = 1.2049939494294307e-9 Iter 115: T = 644.8668132281936 K, F = -1.986178905200031e-5, relative_change = 5.039428731100745e-10 Iter 120: T = 644.8668122355909 K, F = -8.30643848576118e-6, relative_change = 2.1075495744836775e-10 Iter 125: T = 644.8668118204725 K, F = -3.4738518226440362e-6, relative_change = 8.8140241640521e-11 Iter 130: T = 644.8668116468651 K, F = -1.4528065553909286e-6, relative_change = 3.6861307721454246e-11 Iter 135: T = 644.8668115742605 K, F = -6.075812450379026e-7, relative_change = 1.5415844021370853e-11 Iter 140: T = 644.8668115438962 K, F = -2.5409745191273814e-7, relative_change = 6.447082950278234e-12 Iter 145: T = 644.8668115311975 K, F = -1.0626604957097996e-7, relative_change = 2.6962333989952652e-12 Iter 150: T = 644.8668115258869 K, F = -4.4441485547164206e-8, relative_change = 1.1275907791969935e-12 Iter 155: T = 644.8668115236659 K, F = -1.8586452488200678e-8, relative_change = 4.715844258126757e-13 Converged in 160 iterations to T = 644.8668115227371 K Iter 1: T = 965.2126953666419 K, F = -7926.320451980232, relative_change = 0.03478730463335813 Iter 2: T = 932.4015979382914 K, F = -6722.755333859498, relative_change = 0.033993644702204284 Iter 3: T = 901.5372769581697 K, F = -5700.721913577872, relative_change = 0.03310196062337111 Iter 5: T = 845.5358099791987 K, F = -4096.0790182496, relative_change = 0.031006091635991287 Iter 10: T = 737.4345382868797 K, F = -1782.2668616925644, relative_change = 0.02399778240793715 Iter 15: T = 669.9153915928889 K, F = -767.3288686815185, relative_change = 0.015692249469896932 Iter 20: T = 633.0171730337026 K, F = -326.7080560136684, relative_change = 0.008623665577522727 Iter 25: T = 615.0663408401297 K, F = -137.925725705336, relative_change = 0.004158597560899513 Iter 30: T = 606.9764979691475 K, F = -57.937810084804234, relative_change = 0.0018589412813562198 Iter 35: T = 603.4765211827722 K, F = -24.277599951037974, relative_change = 0.0008005602174997888 Iter 40: T = 601.9910905587235 K, F = -10.161665512300607, relative_change = 0.000339028029738767 Iter 45: T = 601.3659690259856 K, F = -4.251229374459491, relative_change = 0.00014253814393761464 Iter 50: T = 601.1038465136629 K, F = -1.7781783307722332, relative_change = 5.974380791563252e-5 Iter 55: T = 600.9941026329155 K, F = -0.743701575287371, relative_change = 2.500885114353509e-5 Iter 60: T = 600.9481852061543 K, F = -0.31103296042287565, relative_change = 1.0463076992789144e-5 Iter 65: T = 600.928978274525 K, F = -0.13007911220522894, relative_change = 4.376497194366225e-6 Iter 70: T = 600.9209450562885 K, F = -0.05440088546767968, relative_change = 1.8304282042338297e-6 Iter 75: T = 600.9175853547747 K, F = -0.022751143232819737, relative_change = 7.655287666119875e-7 Iter 80: T = 600.9161802675892 K, F = -0.009514807368025457, relative_change = 3.2015709101982244e-7 Iter 85: T = 600.9155926398695 K, F = -0.003979207393826456, relative_change = 1.3389418678559308e-7 Iter 90: T = 600.915346886331 K, F = -0.001664152285478726, relative_change = 5.5996264769249785e-8 Iter 95: T = 600.9152441091599 K, F = -0.0006959684006395128, relative_change = 2.3418327101029454e-8 Iter 100: T = 600.9152011265008 K, F = -0.0002910623038997473, relative_change = 9.79382764282605e-9 Iter 105: T = 600.9151831506363 K, F = -0.0001217257324470089, relative_change = 4.0958962981356564e-9 Iter 110: T = 600.9151756329144 K, F = -5.0907154956980616e-5, relative_change = 1.712952847064574e-9 Iter 115: T = 600.9151724889133 K, F = -2.128998014272465e-5, relative_change = 7.16377354787542e-10 Iter 120: T = 600.9151711740544 K, F = -8.903723867970115e-6, relative_change = 2.995975654266348e-10 Iter 125: T = 600.9151706241648 K, F = -3.723644019459904e-6, relative_change = 1.2529529263807437e-10 Iter 130: T = 600.9151703941944 K, F = -1.5572728379043e-6, relative_change = 5.2400002599162075e-11 Iter 135: T = 600.915170298018 K, F = -6.512693264126845e-7, relative_change = 2.1914280909637528e-11 Iter 140: T = 600.9151702577958 K, F = -2.7236872923719346e-7, relative_change = 9.164817999772893e-12 Iter 145: T = 600.9151702409745 K, F = -1.1390728460458632e-7, relative_change = 3.832817134743014e-12 Iter 150: T = 600.9151702339395 K, F = -4.7637435940384165e-8, relative_change = 1.6029315541277694e-12 Iter 155: T = 600.9151702309975 K, F = -1.9922303140518238e-8, relative_change = 6.703569935112316e-13 Iter 160: T = 600.9151702297672 K, F = -8.33275898282082e-9, relative_change = 2.803854162860918e-13 Converged in 162 iterations to T = 600.9151702295068 K Iter 1: T = 980.1027488857675 K, F = -4533.60759354994, relative_change = 0.019897251114232486 Iter 2: T = 962.2509083795752 K, F = -3829.591158087307, relative_change = 0.01821425409375414 Iter 3: T = 946.3238563047212 K, F = -3233.3926301603947, relative_change = 0.01655187013715067 Iter 5: T = 919.7217626211553 K, F = -2301.8322540324175, relative_change = 0.013377873284437233 Iter 10: T = 877.4698708143704 K, F = -977.2494290960217, relative_change = 0.007033005955957985 Iter 15: T = 857.4597763973852 K, F = -411.8178531362726, relative_change = 0.0032993519156500634 Iter 20: T = 848.5771834685094 K, F = -172.82948298522018, relative_change = 0.0014542570597407577 Iter 25: T = 844.7622040508203 K, F = -72.38950807891189, relative_change = 0.0006222603704678549 Iter 30: T = 843.1483544843982 K, F = -30.293798723066324, relative_change = 0.000262782488275938 Iter 35: T = 842.4701419511156 K, F = -12.67269210362044, relative_change = 0.00011035045406169482 Iter 40: T = 842.1859264436838 K, F = -5.300479080375718, relative_change = 4.622935444891794e-5 Iter 45: T = 842.0669624987656 K, F = -2.2168301284275547, relative_change = 1.934760386157987e-5 Iter 50: T = 842.0171925546342 K, F = -0.9271234681592833, relative_change = 8.093838949894302e-6 Iter 55: T = 841.9963750540995 K, F = -0.38773736643023027, relative_change = 3.385367049312316e-6 Iter 60: T = 841.9876683817097 K, F = -0.1621569673881842, relative_change = 1.4158756156897254e-6 Iter 65: T = 841.9840270519961 K, F = -0.06781608004463457, relative_change = 5.921491551712811e-7 Iter 70: T = 841.9825041877475 K, F = -0.028361512005647294, relative_change = 2.4764613330654284e-7 Iter 75: T = 841.9818673048154 K, F = -0.011861126076886386, relative_change = 1.0356897008569728e-7 Iter 80: T = 841.9816009522572 K, F = -0.0049604651110324305, relative_change = 4.331385006546092e-8 Iter 85: T = 841.9814895603472 K, F = -0.0020745258423437996, relative_change = 1.8114381591587125e-8 Iter 90: T = 841.9814429749044 K, F = -0.0008675914982829713, relative_change = 7.575652847916437e-9 Iter 95: T = 841.9814234923133 K, F = -0.00036283712735141194, relative_change = 3.168228855886041e-9 Iter 100: T = 841.9814153444605 K, F = -0.0001517428203674509, relative_change = 1.3249912097527921e-9 Iter 105: T = 841.9814119369311 K, F = -6.346065903461984e-5, relative_change = 5.541271527879856e-10 Iter 110: T = 841.9814105118614 K, F = -2.6540003136732437e-5, relative_change = 2.3174257430312653e-10 Iter 115: T = 841.9814099158806 K, F = -1.1099348815379884e-5, relative_change = 9.691753474864037e-11 Iter 120: T = 841.9814096666341 K, F = -4.641882049183366e-6, relative_change = 4.053208642398251e-11 Iter 125: T = 841.9814095623963 K, F = -1.9412883369707146e-6, relative_change = 1.6950983644272008e-11 Iter 130: T = 841.9814095188027 K, F = -8.118697840675537e-7, relative_change = 7.089102207184336e-12 Iter 135: T = 841.9814095005714 K, F = -3.395334786659987e-7, relative_change = 2.9647458009990163e-12 Iter 140: T = 841.9814094929469 K, F = -1.419989525963672e-7, relative_change = 1.2399095374292105e-12 Iter 145: T = 841.9814094897582 K, F = -5.938534752836233e-8, relative_change = 5.185422669601871e-13 Converged in 150 iterations to T = 841.9814094884247 K Iter 1: T = 976.4430041988778 K, F = -5367.4839017736895, relative_change = 0.02355699580112216 Iter 2: T = 955.0475468846372 K, F = -4538.554572292709, relative_change = 0.021911629477846 Iter 3: T = 935.7219390338594 K, F = -3835.903082598499, relative_change = 0.020235231129400767 Iter 5: T = 902.8591025570179 K, F = -2736.2971295953994, relative_change = 0.016882543845580873 Iter 10: T = 848.7408753703127 K, F = -1166.8078025123195, relative_change = 0.00949814310107057 Iter 15: T = 822.023784985367 K, F = -493.08742774830193, relative_change = 0.00465154831009556 Iter 20: T = 809.8790798388011 K, F = -207.24053025029718, relative_change = 0.0020963078258495805 Iter 25: T = 804.6023225187424 K, F = -86.86161842704928, relative_change = 0.0009062177773577376 Iter 30: T = 802.3584775204542 K, F = -36.360949035790135, relative_change = 0.00038441248990889106 Iter 35: T = 801.4133994200571 K, F = -15.212669192511687, relative_change = 0.00016173413601774914 Iter 40: T = 801.0169740161134 K, F = -6.363189789244463, relative_change = 6.780999494407755e-5 Iter 45: T = 800.8509762550326 K, F = -2.661349478662995, relative_change = 2.8388942100794715e-5 Iter 50: T = 800.7815175612371 K, F = -1.1130409610217995, relative_change = 1.1877848474177881e-5 Iter 55: T = 800.7524627252457 K, F = -0.4654927657493094, relative_change = 4.968377584730823e-6 Iter 60: T = 800.7403105294107 K, F = -0.19467563843361013, relative_change = 2.077995706163028e-6 Iter 65: T = 800.7352281406876 K, F = -0.08141585262185547, relative_change = 8.69070759415612e-7 Iter 70: T = 800.7331025908672 K, F = -0.03404911260032606, relative_change = 3.634606920892534e-7 Iter 75: T = 800.7322136545733 K, F = -0.014239750893396463, relative_change = 1.5200446286027858e-7 Iter 80: T = 800.7318418897543 K, F = -0.005955234820130162, relative_change = 6.357023222305133e-8 Iter 85: T = 800.7316864130844 K, F = -0.00249055048504776, relative_change = 2.6585856620044655e-8 Iter 90: T = 800.7316213908523 K, F = -0.001041577985255615, relative_change = 1.1118527348526248e-8 Iter 95: T = 800.7315941977728 K, F = -0.0004356003565859634, relative_change = 4.649901715866763e-9 Iter 100: T = 800.7315828253012 K, F = -0.00018217327456304666, relative_change = 1.9446445955573323e-9 Iter 105: T = 800.7315780691976 K, F = -7.61870391047248e-5, relative_change = 8.132736176138651e-10 Iter 110: T = 800.7315760801381 K, F = -3.186232938934275e-5, relative_change = 3.4012074099549046e-10 Iter 115: T = 800.7315752482898 K, F = -1.3325206416392454e-5, relative_change = 1.422425538100994e-10 Iter 120: T = 800.7315749004009 K, F = -5.572761176297902e-6, relative_change = 5.948754250853336e-11 Iter 125: T = 800.7315747549095 K, F = -2.330593178778706e-6, relative_change = 2.48783783346586e-11 Iter 130: T = 800.7315746940633 K, F = -9.746821970635366e-7, relative_change = 1.0404438099352417e-11 Iter 135: T = 800.7315746686168 K, F = -4.076240800454656e-7, relative_change = 4.3512639525555745e-12 Iter 140: T = 800.7315746579746 K, F = -1.7047275857606792e-7, relative_change = 1.8197452153684267e-12 Iter 145: T = 800.731574653524 K, F = -7.129363155389257e-8, relative_change = 7.610379863242387e-13 Iter 150: T = 800.7315746516626 K, F = -2.981510394128861e-8, relative_change = 3.182672304836239e-13 Converged in 153 iterations to T = 800.7315746511176 K Iter 1: T = 980.8571383585728 K, F = -4361.7192345616195, relative_change = 0.01914286164142725 Iter 2: T = 963.725306850699 K, F = -3683.625862919236, relative_change = 0.0174661842564997 Iter 3: T = 948.4786780415037 K, F = -3109.5058796416542, relative_change = 0.01582051306613376 Iter 5: T = 923.1028194647305 K, F = -2212.752243800822, relative_change = 0.012707281516201062 Iter 10: T = 883.0719372166576 K, F = -938.6643846340311, relative_change = 0.006597114957191791 Iter 15: T = 864.2541150765592 K, F = -395.36418916692645, relative_change = 0.003071906587917161 Iter 20: T = 855.9343627275084 K, F = -165.88367062199572, relative_change = 0.0013490109283191484 Iter 25: T = 852.3679260166455 K, F = -69.47254479250496, relative_change = 0.0005762635072695061 Iter 30: T = 850.8604887779434 K, F = -29.071700113929992, relative_change = 0.00024318216104594908 Iter 35: T = 850.2272242156408 K, F = -12.161207854487518, relative_change = 0.000102088388853683 Iter 40: T = 849.9618853324313 K, F = -5.086502020518489, relative_change = 4.276259669980475e-5 Iter 45: T = 849.8508296819097 K, F = -2.127330404044443, relative_change = 1.7895752074598745e-5 Iter 50: T = 849.8043695113732 K, F = -0.889691520292661, relative_change = 7.4863047029265856e-6 Iter 55: T = 849.7849366231704 K, F = -0.3720825123634469, relative_change = 3.1312272812660153e-6 Iter 60: T = 849.7768090866412 K, F = -0.15560985635936886, relative_change = 1.309580537018832e-6 Iter 65: T = 849.7734099714838 K, F = -0.06507798881192173, relative_change = 5.476933959961422e-7 Iter 70: T = 849.7719884065333 K, F = -0.02721640759270505, relative_change = 2.2905387371621638e-7 Iter 75: T = 849.7713938885756 K, F = -0.011382229390869858, relative_change = 9.579340731573967e-8 Iter 80: T = 849.7711452536254 K, F = -0.004760184734134532, relative_change = 4.006200672366051e-8 Iter 85: T = 849.7710412714429 K, F = -0.0019907661885907313, relative_change = 1.6754420122978607e-8 Iter 90: T = 849.7709977848389 K, F = -0.0008325622085034734, relative_change = 7.006900407757438e-9 Iter 95: T = 849.7709795982194 K, F = -0.00034818746031750614, relative_change = 2.930369744584509e-9 Iter 100: T = 849.7709719923575 K, F = -0.00014561615280395124, relative_change = 1.2255156641627315e-9 Iter 105: T = 849.7709688114952 K, F = -6.089841657241912e-5, relative_change = 5.125253162183003e-10 Iter 110: T = 849.7709674812205 K, F = -2.5468443226817072e-5, relative_change = 2.1434419399366619e-10 Iter 115: T = 849.7709669248837 K, F = -1.0651207060341505e-5, relative_change = 8.964130155867686e-11 Iter 120: T = 849.7709666922171 K, F = -4.4544612540775574e-6, relative_change = 3.7489056669033996e-11 Iter 125: T = 849.7709665949131 K, F = -1.8629088796018323e-6, relative_change = 1.5678371100609808e-11 Iter 130: T = 849.7709665542195 K, F = -7.790896869863673e-7, relative_change = 6.5568731620550515e-12 Iter 135: T = 849.7709665372008 K, F = -3.258229666069923e-7, relative_change = 2.7421488195975143e-12 Iter 140: T = 849.7709665300835 K, F = -1.3626218020590386e-7, relative_change = 1.1467920156561645e-12 Iter 145: T = 849.7709665271069 K, F = -5.698717053803648e-8, relative_change = 4.796080032639522e-13 Converged in 150 iterations to T = 849.7709665258621 K Iter 1: T = 967.2990263349312 K, F = -7450.94795624241, relative_change = 0.03270097366506881 Iter 2: T = 936.6721394252024 K, F = -6316.000732241629, relative_change = 0.031662274101291334 Iter 3: T = 908.0880426149043 K, F = -5352.42384789492, relative_change = 0.030516651032066574 Iter 5: T = 856.9102717351889 K, F = -3840.155870003069, relative_change = 0.02790989486500037 Iter 10: T = 761.7086749656459 K, F = -1662.8637270461331, relative_change = 0.019994532704372434 Iter 15: T = 705.948319083417 K, F = -711.9730193998441, relative_change = 0.01198663256497014 Iter 20: T = 677.2624524612473 K, F = -301.76126222405964, relative_change = 0.006140389290405915 Iter 25: T = 663.882890730372 K, F = -127.03650238244681, relative_change = 0.0028371360055182643 Iter 30: T = 657.9921453839293 K, F = -53.28748763427471, relative_change = 0.0012411800466460394 Iter 35: T = 655.4718949628885 K, F = -22.314410681337826, relative_change = 0.00052929505016063 Iter 40: T = 654.407570706263 K, F = -9.337299892003882, relative_change = 0.00022319686710969893 Iter 45: T = 653.9606198008961 K, F = -3.905876813714593, relative_change = 9.366923906407767e-5 Iter 50: T = 653.7733757805397 K, F = -1.6336433405591912, relative_change = 3.923084201604301e-5 Iter 55: T = 653.6950112837317 K, F = -0.683237000150601, relative_change = 1.641684081082572e-5 Iter 60: T = 653.6622283660164 K, F = -0.2857427456718943, relative_change = 6.8674754481179195e-6 Iter 65: T = 653.6485164172319 K, F = -0.11950188112146948, relative_change = 2.8723675872198373e-6 Iter 70: T = 653.6427816119087 K, F = -0.04997726292839877, relative_change = 1.2013121906477994e-6 Iter 75: T = 653.6403831945574 K, F = -0.020901114284179845, relative_change = 5.0241250845132e-7 Iter 80: T = 653.6393801384596 K, F = -0.00874110016465418, relative_change = 2.1011655582699003e-7 Iter 85: T = 653.6389606467907 K, F = -0.003655633277134196, relative_change = 8.787354063811955e-8 Iter 90: T = 653.6387852100798 K, F = -0.0015288296329422635, relative_change = 3.6749814428093716e-8 Iter 95: T = 653.6387118403024 K, F = -0.0006393748351318784, relative_change = 1.536922008309822e-8 Iter 100: T = 653.6386811561766 K, F = -0.00026739419608501347, relative_change = 6.427592925565019e-9 Iter 105: T = 653.6386683237072 K, F = -0.00011182744647081355, relative_change = 2.6880963817779162e-9 Iter 110: T = 653.638662957015 K, F = -4.676757349103555e-5, relative_change = 1.1241940504550243e-9 Iter 115: T = 653.6386607126001 K, F = -1.9558757839266416e-5, relative_change = 4.701513872826324e-10 Iter 120: T = 653.638659773959 K, F = -8.179705917821245e-6, relative_change = 1.9662292169699266e-10 Iter 125: T = 653.6386593814082 K, F = -3.420851233393307e-6, relative_change = 8.223006705636276e-11 Iter 130: T = 653.6386592172387 K, F = -1.4306413366194093e-6, relative_change = 3.4389608070678683e-11 Iter 135: T = 653.638659148581 K, F = -5.983114376717502e-7, relative_change = 1.4382148292070009e-11 Iter 140: T = 653.6386591198675 K, F = -2.502203097498601e-7, relative_change = 6.014769858431455e-12 Iter 145: T = 653.6386591078592 K, F = -1.0464430572065808e-7, relative_change = 2.515428969732165e-12 Iter 150: T = 653.6386591028373 K, F = -4.3764193824458175e-8, relative_change = 1.0519991530252005e-12 Iter 155: T = 653.638659100737 K, F = -1.8302822646365513e-8, relative_change = 4.3996135286926937e-13 Converged in 159 iterations to T = 653.6386590999789 K Iter 1: T = 973.4587432469034 K, F = -6047.450598446101, relative_change = 0.02654125675309665 Iter 2: T = 949.1105847959946 K, F = -5117.697814099039, relative_change = 0.02501200859288317 Iter 3: T = 926.8885480511761 K, F = -4329.073765563326, relative_change = 0.02341353800157533 Iter 5: T = 888.5025373002433 K, F = -3093.549595188068, relative_change = 0.020086477587993534 Iter 10: T = 823.100325919055 K, F = -1324.7013225074268, relative_change = 0.012065147534647198 Iter 15: T = 789.4104679543476 K, F = -561.5120981376473, relative_change = 0.006189609187639634 Iter 20: T = 773.6836090179922 K, F = -236.40035947360045, relative_change = 0.0028622721484521958 Iter 25: T = 766.7562844509679 K, F = -99.16458991280918, relative_change = 0.0012526878554748174 Iter 30: T = 763.7919294435578 K, F = -41.52619010515529, relative_change = 0.0005343002437982642 Iter 35: T = 762.5399403121296 K, F = -17.376418042173388, relative_change = 0.00022532525423715202 Iter 40: T = 762.0141609428119 K, F = -7.268728678730172, relative_change = 9.456561850341587e-5 Iter 45: T = 761.7938891422725 K, F = -3.040167903255231, relative_change = 3.96068224076963e-5 Iter 50: T = 761.7017013686916 K, F = -1.271486843057919, relative_change = 1.6574273982940574e-5 Iter 55: T = 761.663135523711 K, F = -0.5317601377870262, relative_change = 6.933349801997177e-6 Iter 60: T = 761.6470047588068 K, F = -0.22239004175431998, relative_change = 2.899922964918167e-6 Iter 65: T = 761.6402583185113 K, F = -0.0930064514867236, relative_change = 1.2128372171722895e-6 Iter 70: T = 761.6374368133305 K, F = -0.0388964577336941, relative_change = 5.072325938490043e-7 Iter 75: T = 761.6362568151001 K, F = -0.016266971712410094, relative_change = 2.1213240488088318e-7 Iter 80: T = 761.6357633238123 K, F = -0.006803043336696235, relative_change = 8.871659833688395e-8 Iter 85: T = 761.6355569395236 K, F = -0.0028451142304413146, relative_change = 3.710239220336113e-8 Iter 90: T = 761.6354706270901 K, F = -0.001189860795045905, relative_change = 1.5516672488161886e-8 Iter 95: T = 761.6354345301892 K, F = -0.0004976140003303264, relative_change = 6.4892592840524386e-9 Iter 100: T = 761.6354194340324 K, F = -0.00020810811915750183, relative_change = 2.713886005774189e-9 Iter 105: T = 761.6354131206391 K, F = -8.703330322601399e-5, relative_change = 1.134979615113586e-9 Iter 110: T = 761.6354104803025 K, F = -3.6398366210277366e-5, relative_change = 4.746620296220367e-10 Iter 115: T = 761.6354093760822 K, F = -1.5222231635414474e-5, relative_change = 1.985093334018404e-10 Iter 120: T = 761.6354089142841 K, F = -6.366119392198222e-6, relative_change = 8.301897847947056e-11 Iter 125: T = 761.6354087211546 K, F = -2.6623876204778796e-6, relative_change = 3.4719534337698075e-11 Iter 130: T = 761.6354086403857 K, F = -1.1134432579273934e-6, relative_change = 1.4520136417727422e-11 Iter 135: T = 761.6354086066071 K, F = -4.656569122518661e-7, relative_change = 6.072515903296675e-12 Iter 140: T = 761.6354085924803 K, F = -1.9474205403824385e-7, relative_change = 2.5395826609198805e-12 Iter 145: T = 761.6354085865725 K, F = -8.144380447827615e-8, relative_change = 1.0620883851795026e-12 Iter 150: T = 761.6354085841016 K, F = -3.4059268405606247e-8, relative_change = 4.4415844291155577e-13 Converged in 154 iterations to T = 761.6354085832098 K Iter 1: T = 969.9832642222516 K, F = -6839.341800247056, relative_change = 0.030016735777748455 Iter 2: T = 942.1233871962087 K, F = -5793.332576386613, relative_change = 0.02872201825913094 Iter 3: T = 916.3777286833266 K, F = -4905.569723210354, relative_change = 0.027327268235535464 Iter 5: T = 871.0240536570884 K, F = -3513.2105246785736, relative_change = 0.02427811720301557 Iter 10: T = 790.1014395135693 K, F = -1513.1691386073228, relative_change = 0.01597651245783855 Iter 15: T = 745.6739783247896 K, F = -644.4988292813694, relative_change = 0.008828940189451873 Iter 20: T = 723.9854179681455 K, F = -272.15126320169514, relative_change = 0.004272982249038653 Iter 25: T = 714.1914802656872 K, F = -114.33557492870558, relative_change = 0.0019136810208529931 Iter 30: T = 709.9500614511987 K, F = -47.91266376266007, relative_change = 0.000824855805448033 Iter 35: T = 708.1491536450695 K, F = -20.054901731606456, relative_change = 0.00034945076286969765 Iter 40: T = 707.3911226288893 K, F = -8.39025012888645, relative_change = 0.00014694418959325728 Iter 45: T = 707.0732433610924 K, F = -3.509438835972109, relative_change = 6.159481090244126e-5 Iter 50: T = 706.9401510177909 K, F = -1.4677831660386251, relative_change = 2.578442901113662e-5 Iter 55: T = 706.8844636697497 K, F = -0.6138608912898804, relative_change = 1.078768991401538e-5 Iter 60: T = 706.8611699098047 K, F = -0.2567268324773094, relative_change = 4.512299182524875e-6 Iter 65: T = 706.8514273683389 K, F = -0.10736673049909878, relative_change = 1.8872300888370934e-6 Iter 70: T = 706.8473527789548 K, F = -0.044902136929130365, relative_change = 7.892853700012742e-7 Iter 75: T = 706.8456487121426 K, F = -0.01877862529963026, relative_change = 3.3009262714865334e-7 Iter 80: T = 706.8449360467009 K, F = -0.007853448054775947, relative_change = 1.3804938878263698e-7 Iter 85: T = 706.8446380007414 K, F = -0.003284406235021353, relative_change = 5.7734027187181726e-8 Iter 90: T = 706.8445133542286 K, F = -0.001373577993429853, relative_change = 2.4145081370230757e-8 Iter 95: T = 706.8444612255452 K, F = -0.0005744467348963722, relative_change = 1.0097765174902811e-8 Iter 100: T = 706.8444394247032 K, F = -0.00024024048759241357, relative_change = 4.223006656796173e-9 Iter 105: T = 706.84443030733 K, F = -0.0001004714418624264, relative_change = 1.766111941045915e-9 Iter 110: T = 706.8444264943355 K, F = -4.201835763173456e-5, relative_change = 7.386091379488366e-10 Iter 115: T = 706.8444248996957 K, F = -1.7572579048108494e-5, relative_change = 3.088951670940604e-10 Iter 120: T = 706.8444242327982 K, F = -7.349062748018831e-6, relative_change = 1.2918365423291254e-10 Iter 125: T = 706.8444239538937 K, F = -3.0734658107434143e-6, relative_change = 5.4026147136202376e-11 Iter 130: T = 706.8444238372525 K, F = -1.2853600781514984e-6, relative_change = 2.259437945170292e-11 Iter 135: T = 706.8444237884718 K, F = -5.37552147572562e-7, relative_change = 9.449225479905939e-12 Iter 140: T = 706.8444237680711 K, F = -2.2481081984881968e-7, relative_change = 3.951780561120663e-12 Iter 145: T = 706.8444237595393 K, F = -9.40174971209018e-8, relative_change = 1.6526629714655165e-12 Iter 150: T = 706.8444237559713 K, F = -3.9320571132428483e-8, relative_change = 6.91186788831833e-13 Iter 155: T = 706.8444237544791 K, F = -1.644450631221872e-8, relative_change = 2.8906562607397003e-13 Converged in 157 iterations to T = 706.8444237541632 K Iter 1: T = 973.5386041626982 K, F = -6029.254212814892, relative_change = 0.026461395837301754 Iter 2: T = 949.2702106680509 K, F = -5102.187491643209, relative_change = 0.024928023799857018 Iter 3: T = 927.1272057554376 K, F = -4315.854108273823, relative_change = 0.023326345506017906 Iter 5: T = 888.894286342964 K, F = -3083.9529274559313, relative_change = 0.019996255613041202 Iter 10: T = 823.8162116312996 K, F = -1320.4320913008712, relative_change = 0.011988252435935041 Iter 15: T = 790.3356708247719 K, F = -559.6508204614337, relative_change = 0.006141449627869444 Iter 20: T = 774.7194325198955 K, F = -235.60409679374652, relative_change = 0.0028376875278368647 Iter 25: T = 767.8438405202938 K, F = -98.82796996384258, relative_change = 0.0012414344891701963 Iter 30: T = 764.9022242261495 K, F = -41.38473656430604, relative_change = 0.0005294060725569755 Iter 35: T = 763.6599502872027 K, F = -17.317138995143168, relative_change = 0.0002232441411186078 Iter 40: T = 763.1382708721728 K, F = -7.24391596611061, relative_change = 9.368915987740448e-5 Iter 45: T = 762.9197202575191 K, F = -3.0297871496481714, relative_change = 3.923919962686506e-5 Iter 50: T = 762.8282534530996 K, F = -1.2671448252362487, relative_change = 1.642034071179076e-5 Iter 55: T = 762.7899893273409 K, F = -0.5299441380683781, relative_change = 6.868939962616385e-6 Iter 60: T = 762.7739847802574 K, F = -0.22163054868748133, relative_change = 2.872980207151735e-6 Iter 65: T = 762.7672911319272 K, F = -0.09268881886313007, relative_change = 1.2015684205126644e-6 Iter 70: T = 762.7644917060554 K, F = -0.03876361935608463, relative_change = 5.025196712159893e-7 Iter 75: T = 762.7633209418442 K, F = -0.016211417007224838, relative_change = 2.1016137333392408e-7 Iter 80: T = 762.7628313123664 K, F = -0.0067798096731018775, relative_change = 8.789228393678662e-8 Iter 85: T = 762.7626265431388 K, F = -0.0028353976320872887, relative_change = 3.6757653135429334e-8 Iter 90: T = 762.7625409061441 K, F = -0.0011857971963671332, relative_change = 1.5372498318862215e-8 Iter 95: T = 762.7625050917201 K, F = -0.0004959145567065004, relative_change = 6.428963921394075e-9 Iter 100: T = 762.7624901136984 K, F = -0.00020739739131525603, relative_change = 2.688669757290396e-9 Iter 105: T = 762.7624838497105 K, F = -8.673606632869646e-5, relative_change = 1.1244338515722034e-9 Iter 110: T = 762.762481230036 K, F = -3.6274057594654074e-5, relative_change = 4.702516575481642e-10 Iter 115: T = 762.7624801344567 K, F = -1.5170242746997964e-5, relative_change = 1.9666484311424464e-10 Iter 120: T = 762.7624796762724 K, F = -6.344376056066636e-6, relative_change = 8.224757811073971e-11 Iter 125: T = 762.7624794846544 K, F = -2.6532945704982325e-6, relative_change = 3.43969289919693e-11 Iter 130: T = 762.7624794045173 K, F = -1.1096393992549025e-6, relative_change = 1.4385205497476163e-11 Iter 135: T = 762.762479371003 K, F = -4.640639228448151e-7, relative_change = 6.01605791932647e-12 Iter 140: T = 762.7624793569869 K, F = -1.9407674578530987e-7, relative_change = 2.515983005926139e-12 Iter 145: T = 762.7624793511252 K, F = -8.116376126743319e-8, relative_change = 1.0521953221499078e-12 Iter 150: T = 762.7624793486739 K, F = -3.394337966255989e-8, relative_change = 4.4003708972739463e-13 Converged in 154 iterations to T = 762.762479347789 K Iter 1: T = 964.3623721688127 K, F = -8120.067401471786, relative_change = 0.03563762783118729 Iter 2: T = 930.652544279628 K, F = -6888.663086606343, relative_change = 0.034955561168746735 Iter 3: T = 898.8396515251478 K, F = -5842.925325205363, relative_change = 0.03418342640335767 Iter 5: T = 840.7918423280967 K, F = -4200.856922785546, relative_change = 0.0323437255553562 Iter 10: T = 726.88204394153 K, F = -1831.8248131344587, relative_change = 0.025923101736039414 Iter 15: T = 653.4941781719465 K, F = -790.8649349657812, relative_change = 0.017714894962489222 Iter 20: T = 612.0577378123295 K, F = -337.6008659319028, relative_change = 0.010133727359307983 Iter 25: T = 591.3839617940333 K, F = -142.7741670585121, relative_change = 0.005019326611002555 Iter 30: T = 581.9261420286653 K, F = -60.03098632884358, relative_change = 0.002275906955518599 Iter 35: T = 577.803569983114 K, F = -25.165851149319636, relative_change = 0.0009866916294609075 Iter 40: T = 576.0479496618535 K, F = -10.535509858945854, relative_change = 0.00041908019699312733 Iter 45: T = 575.3080345978831 K, F = -4.407998712572767, relative_change = 0.00017641558228999855 Iter 50: T = 574.9975835595787 K, F = -1.8438158404347695, relative_change = 7.398240346290248e-5 Iter 55: T = 574.8675715922826 K, F = -0.7711650817212413, relative_change = 3.097602609649772e-5 Iter 60: T = 574.8131678900471 K, F = -0.3225208245403636, relative_change = 1.2960798849566015e-5 Iter 65: T = 574.790410159198 K, F = -0.1348838763227844, relative_change = 5.421455611042968e-6 Iter 70: T = 574.7808916502532 K, F = -0.05641036556054643, relative_change = 2.267509011498397e-6 Iter 75: T = 574.7769107292315 K, F = -0.023591544113024027, relative_change = 9.483328510534222e-7 Iter 80: T = 574.775245831324 K, F = -0.009866275205298314, relative_change = 3.9660998367869303e-7 Iter 85: T = 574.7745495460299 K, F = -0.004126195817382716, relative_change = 1.6586805658794018e-7 Iter 90: T = 574.7742583503116 K, F = -0.0017256246649638984, relative_change = 6.936818140055474e-8 Iter 95: T = 574.7741365686284 K, F = -0.0007216768951935348, relative_change = 2.9010633246690673e-8 Iter 100: T = 574.7740856380467 K, F = -0.0003018139050096069, relative_change = 1.2132598755823512e-8 Iter 105: T = 574.7740643382645 K, F = -0.0001262221810625075, relative_change = 5.0739986517510496e-9 Iter 110: T = 574.7740554304403 K, F = -5.2787623412986484e-5, relative_change = 2.1220069843087648e-9 Iter 115: T = 574.7740517050817 K, F = -2.2076414137872646e-5, relative_change = 8.874486746279872e-10 Iter 120: T = 574.7740501470922 K, F = -9.232619593291247e-6, relative_change = 3.711416209161899e-10 Iter 125: T = 574.7740494955225 K, F = -3.861191968601574e-6, relative_change = 1.552158668673884e-10 Iter 130: T = 574.7740492230282 K, F = -1.6147970497426556e-6, relative_change = 6.49131476742417e-11 Iter 135: T = 574.7740491090678 K, F = -6.753271277748496e-7, relative_change = 2.714744222627653e-11 Iter 140: T = 574.7740490614083 K, F = -2.8243010180561967e-7, relative_change = 1.1353393873009745e-11 Iter 145: T = 574.7740490414765 K, F = -1.1811620520552069e-7, relative_change = 4.748147566890247e-12 Iter 150: T = 574.7740490331407 K, F = -4.939697173522717e-8, relative_change = 1.9857064554728608e-12 Iter 155: T = 574.7740490296546 K, F = -2.0658808275175744e-8, relative_change = 8.304624254187291e-13 Iter 160: T = 574.7740490281967 K, F = -8.639826631906544e-9, relative_change = 3.4731196903738366e-13 Converged in 163 iterations to T = 574.7740490277698 K Iter 1: T = 963.5235387957458 K, F = -8311.196383461602, relative_change = 0.03647646120425414 Iter 2: T = 928.922254963788 K, F = -7052.401093753677, relative_change = 0.03591119722430864 Iter 3: T = 896.1624437252839 K, F = -5983.348850039191, relative_change = 0.03526647258524466 Iter 5: T = 836.0479067458649 K, F = -4304.494336411556, relative_change = 0.0337092792480151 Iter 10: T = 716.0470523023819 K, F = -1881.2797524753987, relative_change = 0.028027562790114847 Iter 15: T = 636.0561196415867 K, F = -814.7754752963164, relative_change = 0.020135630817225723 Iter 20: T = 589.0993530358538 K, F = -348.9204382419331, relative_change = 0.01210678439841312 Iter 25: T = 564.8949991550506 K, F = -147.90697489836094, relative_change = 0.006215636562499183 Iter 30: T = 553.5911715042556 K, F = -62.27159392524697, relative_change = 0.0028755521803722705 Iter 35: T = 548.6109414158959 K, F = -26.1218857162907, relative_change = 0.0012587659412539658 Iter 40: T = 546.4795606785204 K, F = -10.938876432967726, relative_change = 0.0005369435665418262 Iter 45: T = 545.5793337047307 K, F = -4.5773282802132105, relative_change = 0.00022644924487083925 Iter 50: T = 545.2012710126916 K, F = -1.9147441914369479, relative_change = 9.503898446219008e-5 Iter 55: T = 545.0428827830372 K, F = -0.8008479749112946, relative_change = 3.980537130684817e-5 Iter 60: T = 544.9765941762166 K, F = -0.33493803689706964, relative_change = 1.6657411557577555e-5 Iter 65: T = 544.9488629501815 K, F = -0.140077510595719, relative_change = 6.968136802170183e-6 Iter 70: T = 544.9372639259676 K, F = -0.05858251177640472, relative_change = 2.914474431758315e-6 Iter 75: T = 544.9324128141044 K, F = -0.024499980202255245, relative_change = 1.2189233615695844e-6 Iter 80: T = 544.9303839754629 K, F = -0.010246197280518676, relative_change = 5.097779878215966e-7 Iter 85: T = 544.9295354829158 K, F = -0.00428508433582378, relative_change = 2.1319693577954004e-7 Iter 90: T = 544.9291806318008 K, F = -0.0017920738408637171, relative_change = 8.916180081916673e-8 Iter 95: T = 544.929032228582 K, F = -0.0007494667515239029, relative_change = 3.7288581718260976e-8 Iter 100: T = 544.9289701645406 K, F = -0.00031343595751073816, relative_change = 1.559453922231724e-8 Iter 105: T = 544.92894420861 K, F = -0.00013108266234782007, relative_change = 6.521824104472636e-9 Iter 110: T = 544.9289333535286 K, F = -5.482033553638743e-5, relative_change = 2.727505020265595e-9 Iter 115: T = 544.9289288138036 K, F = -2.292651966201431e-5, relative_change = 1.1406752502273166e-9 Iter 120: T = 544.9289269152363 K, F = -9.588143592781373e-6, relative_change = 4.770439837602076e-10 Iter 125: T = 544.9289261212328 K, F = -4.009876517441224e-6, relative_change = 1.9950551042814977e-10 Iter 130: T = 544.9289257891712 K, F = -1.6769786813086718e-6, relative_change = 8.34356088789783e-11 Iter 135: T = 544.928925650299 K, F = -7.013325711291429e-7, relative_change = 3.4893771055068665e-11 Iter 140: T = 544.9289255922209 K, F = -2.933059568555052e-7, relative_change = 1.4593006704820988e-11 Iter 145: T = 544.9289255679321 K, F = -1.2266443394359783e-7, relative_change = 6.102988587591825e-12 Iter 150: T = 544.9289255577742 K, F = -5.130010483078706e-8, relative_change = 2.5523613021872455e-12 Iter 155: T = 544.928925553526 K, F = -2.1454440141122078e-8, relative_change = 1.0674341301825545e-12 Iter 160: T = 544.9289255517493 K, F = -8.972903253745557e-9, relative_change = 4.46433610806021e-13 Converged in 165 iterations to T = 544.9289255510064 K Iter 1: T = 969.288949432523 K, F = -6997.542085550562, relative_change = 0.030711050567476934 Iter 2: T = 940.7179648478609 K, F = -5928.456921656322, relative_change = 0.02947623059294058 Iter 3: T = 914.248130737717 K, F = -5021.01957586815, relative_change = 0.02813790647064423 Iter 5: T = 867.4269879086629 K, F = -3597.5362875380147, relative_change = 0.025182209617607854 Iter 10: T = 783.0279437174785 K, F = -1551.5093997437737, relative_change = 0.016916450358459456 Iter 15: T = 735.9830043961023 K, F = -661.6206327516436, relative_change = 0.009523557192055948 Iter 20: T = 712.7481399940144 K, F = -279.60586799735717, relative_change = 0.004666075522715627 Iter 25: T = 702.183701757033 K, F = -117.51785761192204, relative_change = 0.0021033560743520282 Iter 30: T = 697.5929816026193 K, F = -49.256131693336776, relative_change = 0.0009093663295607011 Iter 35: T = 695.6407506440647 K, F = -20.61906709106734, relative_change = 0.0003857670561961364 Iter 40: T = 694.8184763255508 K, F = -8.626603343658434, relative_change = 0.000162307454184319 Iter 45: T = 694.4735589748656 K, F = -3.6083573479362236, relative_change = 6.805097257836779e-5 Iter 50: T = 694.3291288772983 K, F = -1.5091648436077745, relative_change = 2.8489934481770395e-5 Iter 55: T = 694.2686946620571 K, F = -0.6311694407159998, relative_change = 1.1920121974509487e-5 Iter 60: T = 694.2434147802744 K, F = -0.263965866174176, relative_change = 4.986063394210882e-6 Iter 65: T = 694.2328414570092 K, F = -0.1103942493542664, relative_change = 2.0853932649015307e-6 Iter 70: T = 694.2284193964267 K, F = -0.046168293455334686, relative_change = 8.721647065824399e-7 Iter 75: T = 694.2265700080545 K, F = -0.019308149174212086, relative_change = 3.6475465272157844e-7 Iter 80: T = 694.2257965665343 K, F = -0.008074901629458231, relative_change = 1.5254561876121386e-7 Iter 85: T = 694.2254731031413 K, F = -0.003377020830740207, relative_change = 6.379655116834788e-8 Iter 90: T = 694.2253378267278 K, F = -0.0014123105340438924, relative_change = 2.6680506090164213e-8 Iter 95: T = 694.2252812524882 K, F = -0.0005906451471677787, relative_change = 1.1158110897404091e-8 Iter 100: T = 694.2252575924608 K, F = -0.00024701485770883824, relative_change = 4.666456054152869e-9 Iter 105: T = 694.225247697554 K, F = -0.00010330456465013071, relative_change = 1.951567805750543e-9 Iter 110: T = 694.2252435593856 K, F = -4.32032029016316e-5, relative_change = 8.161689908527472e-10 Iter 115: T = 694.2252418287541 K, F = -1.8068094975509652e-5, relative_change = 3.41331614959109e-10 Iter 120: T = 694.2252411049833 K, F = -7.556293098787137e-6, relative_change = 1.427489584713727e-10 Iter 125: T = 694.2252408022937 K, F = -3.1601313309481682e-6, relative_change = 5.969930641447152e-11 Iter 130: T = 694.2252406757053 K, F = -1.3216043603936356e-6, relative_change = 2.4966957216510822e-11 Iter 135: T = 694.2252406227645 K, F = -5.527106692326811e-7, relative_change = 1.0441478592535471e-11 Iter 140: T = 694.2252406006241 K, F = -2.311505175045525e-7, relative_change = 4.366756994024481e-12 Iter 145: T = 694.2252405913647 K, F = -9.66703206373154e-8, relative_change = 1.8262377404198494e-12 Iter 150: T = 694.2252405874922 K, F = -4.042736279075143e-8, relative_change = 7.637295003196388e-13 Iter 155: T = 694.2252405858728 K, F = -1.6906938737903943e-8, relative_change = 3.1939575037854035e-13 Converged in 158 iterations to T = 694.2252405853988 K Iter 1: T = 966.4581174899193 K, F = -7642.549836489184, relative_change = 0.03354188251008068 Iter 2: T = 934.9544262932166 K, F = -6479.892267115307, relative_change = 0.03259705788236751 Iter 3: T = 905.4592299081323 K, F = -5492.703914819526, relative_change = 0.03154720225457713 Iter 5: T = 852.36997736544 K, F = -3943.112570589717, relative_change = 0.029127260336194852 Iter 10: T = 752.1825982619289 K, F = -1710.6375838741073, relative_change = 0.02149832528496202 Iter 15: T = 692.0684275270764 K, F = -733.9222730982469, relative_change = 0.013306147963815976 Iter 20: T = 660.4667830771525 K, F = -311.5611254539329, relative_change = 0.006985766683415684 Iter 25: T = 645.5127190582266 K, F = -131.2863646677969, relative_change = 0.003274515787326969 Iter 30: T = 638.8774741245948 K, F = -55.096058289720325, relative_change = 0.001442721970333415 Iter 35: T = 636.0283083377398 K, F = -23.07666154192126, relative_change = 0.0006172106669261029 Iter 40: T = 634.8231392768112 K, F = -9.657145468293038, relative_change = 0.00026062914662911555 Iter 45: T = 634.3166930576152 K, F = -4.0398285771342675, relative_change = 0.0001094424862482942 Iter 50: T = 634.104462488679 K, F = -1.6896967322350467, relative_change = 4.584832289915465e-5 Iter 55: T = 634.015629875864 K, F = -0.7066850125777884, relative_change = 1.9188022180348514e-5 Iter 60: T = 633.9784658342386 K, F = -0.29555000251240404, relative_change = 8.027059740127997e-6 Iter 65: T = 633.9629210811772 K, F = -0.12360357118357929, relative_change = 3.357432142752867e-6 Iter 70: T = 633.9564196761963 K, F = -0.05169266985663479, relative_change = 1.4041916718908415e-6 Iter 75: T = 633.9537006403915 K, F = -0.021618523398379108, relative_change = 5.872625747823112e-7 Iter 80: T = 633.9525634947976 K, F = -0.009041130177156576, relative_change = 2.456024693384082e-7 Iter 85: T = 633.95208792477 K, F = -0.0037811095767882885, relative_change = 1.0271427879256496e-7 Iter 90: T = 633.9518890353274 K, F = -0.001581305349182438, relative_change = 4.295640678982987e-8 Iter 95: T = 633.9518058573212 K, F = -0.0006613208112281055, relative_change = 1.796489434882555e-8 Iter 100: T = 633.9517710712742 K, F = -0.0002765722663818915, relative_change = 7.513135469237903e-9 Iter 105: T = 633.9517565233318 K, F = -0.00011566582584709995, relative_change = 3.142083351535784e-9 Iter 110: T = 633.9517504392082 K, F = -4.8372829996645716e-5, relative_change = 1.3140568498152876e-9 Iter 115: T = 633.9517478947549 K, F = -2.0230095086559707e-5, relative_change = 5.495542752147034e-10 Iter 120: T = 633.9517468306342 K, F = -8.460467445237096e-6, relative_change = 2.298301650144302e-10 Iter 125: T = 633.9517463856063 K, F = -3.5382687290641535e-6, relative_change = 9.611772562778111e-11 Iter 130: T = 633.9517461994902 K, F = -1.479746453314501e-6, relative_change = 4.0197586641414966e-11 Iter 135: T = 633.9517461216542 K, F = -6.188470068058116e-7, relative_change = 1.6811093638831117e-11 Iter 140: T = 633.9517460891024 K, F = -2.58809772391011e-7, relative_change = 7.0306154372962114e-12 Iter 145: T = 633.9517460754887 K, F = -1.082366162252768e-7, relative_change = 2.940267741676542e-12 Iter 150: T = 633.9517460697953 K, F = -4.526480890110207e-8, relative_change = 1.2296269237921098e-12 Iter 155: T = 633.9517460674142 K, F = -1.8930151002294338e-8, relative_change = 5.142410607574841e-13 Converged in 160 iterations to T = 633.9517460664185 K Iter 1: T = 966.5281301349679 K, F = -7626.59738871565, relative_change = 0.03347186986503212 Iter 2: T = 935.0976229133016 K, F = -6466.244177584047, relative_change = 0.03251897822909433 Iter 3: T = 905.6786900125467 K, F = -5481.019103387363, relative_change = 0.03146081455014307 Iter 5: T = 852.7502412628085 K, F = -3934.5306316917918, relative_change = 0.029024365613107485 Iter 10: T = 752.9884518493708 K, F = -1706.642522223083, relative_change = 0.02136785358862847 Iter 15: T = 693.2548479799086 K, F = -732.0774478483858, relative_change = 0.013188383829802114 Iter 20: T = 661.9136284078298 K, F = -310.7333458288814, relative_change = 0.006908644874974627 Iter 25: T = 647.1022690058875 K, F = -130.92618766575544, relative_change = 0.003234094730097225 Iter 30: T = 640.5350423665175 K, F = -54.94251245025721, relative_change = 0.0014239764493833285 Iter 35: T = 637.7160408152463 K, F = -23.01189453803163, relative_change = 0.0006090099052452776 Iter 40: T = 636.523810086015 K, F = -9.629959125545497, relative_change = 0.0002571330989683857 Iter 45: T = 636.0228331804736 K, F = -4.028441172377178, relative_change = 0.00010796853734205378 Iter 50: T = 635.8129002857917 K, F = -1.6849312594504902, relative_change = 4.5229806985636345e-5 Iter 55: T = 635.7250304067572 K, F = -0.7046914871090733, relative_change = 1.892898402279479e-5 Iter 60: T = 635.6882693107826 K, F = -0.29471619043131225, relative_change = 7.91866252707812e-6 Iter 65: T = 635.6728931302329 K, F = -0.12325484422824973, relative_change = 3.3120878693538475e-6 Iter 70: T = 635.6664622340581 K, F = -0.05154682514327874, relative_change = 1.3852261845521651e-6 Iter 75: T = 635.6637726875867 K, F = -0.02155752888377266, relative_change = 5.793306367641975e-7 Iter 80: T = 635.6626478750832 K, F = -0.00901562145280771, relative_change = 2.422851778363603e-7 Iter 85: T = 635.6621774629537 K, F = -0.0037704415089796495, relative_change = 1.0132693735297229e-7 Iter 90: T = 635.6619807306147 K, F = -0.0015768438328450096, relative_change = 4.237620218097944e-8 Iter 95: T = 635.6618984547365 K, F = -0.000659454950717786, relative_change = 1.7722245513175156e-8 Iter 100: T = 635.6618640459704 K, F = -0.00027579194133603435, relative_change = 7.411656776886665e-9 Iter 105: T = 635.6618496558117 K, F = -0.00011533948462222332, relative_change = 3.0996437417210013e-9 Iter 110: T = 635.661843637675 K, F = -4.823635002298987e-5, relative_change = 1.2963080917287792e-9 Iter 115: T = 635.6618411208183 K, F = -2.0173017723057463e-5, relative_change = 5.421315375123114e-10 Iter 120: T = 635.6618400682387 K, F = -8.436596391603324e-6, relative_change = 2.267258707645315e-10 Iter 125: T = 635.6618396280375 K, F = -3.5282859737195693e-6, relative_change = 9.481948349828574e-11 Iter 130: T = 635.6618394439399 K, F = -1.4755711694736107e-6, relative_change = 3.965463610078958e-11 Iter 135: T = 635.6618393669482 K, F = -6.171018003819917e-7, relative_change = 1.6584050875791336e-11 Iter 140: T = 635.6618393347493 K, F = -2.580788849848581e-7, relative_change = 6.935635833405795e-12 Iter 145: T = 635.6618393212833 K, F = -1.0793087662497314e-7, relative_change = 2.900544364838226e-12 Iter 150: T = 635.6618393156517 K, F = -4.513810986095379e-8, relative_change = 1.2130457409058705e-12 Iter 155: T = 635.6618393132966 K, F = -1.887695222357877e-8, relative_change = 5.073009606968044e-13 Converged in 160 iterations to T = 635.6618393123117 K Iter 1: T = 976.5244558680828 K, F = -5348.925061464813, relative_change = 0.023475544131917256 Iter 2: T = 955.2087878624274 K, F = -4522.760573821124, relative_change = 0.02182809439903564 Iter 3: T = 935.9606251865633 K, F = -3822.4662453584388, relative_change = 0.02015073868712802 Iter 5: T = 903.243047747357 K, F = -2726.584732518248, relative_change = 0.01679969870807851 Iter 10: T = 849.4107363868061 K, F = -1162.5428838536186, relative_change = 0.00943598040634939 Iter 15: T = 822.8623712518489 K, F = -491.2496300648929, relative_change = 0.0046160107487791275 Iter 20: T = 810.8018331813254 K, F = -206.46008523909606, relative_change = 0.0020790674090899607 Iter 25: T = 805.5632676174064 K, F = -86.53292093101113, relative_change = 0.0008985167965850813 Iter 30: T = 803.3359759909521 K, F = -36.2230610468106, relative_change = 0.0003810995075108205 Iter 35: T = 802.3979270952849 K, F = -15.15492733786241, relative_change = 0.00016033194502443056 Iter 40: T = 802.0044603611465 K, F = -6.3390281464873555, relative_change = 6.722062904076469e-5 Iter 45: T = 801.8397032967097 K, F = -2.6512424548956446, relative_change = 2.8141942913316166e-5 Iter 50: T = 801.7707640642315 K, F = -1.108813673758008, relative_change = 1.177445942228983e-5 Iter 55: T = 801.74192657601 K, F = -0.4637247921137162, relative_change = 4.9251231097267665e-6 Iter 60: T = 801.7298652956065 K, F = -0.19393623821685257, relative_change = 2.0599033793175574e-6 Iter 65: T = 801.7248209319512 K, F = -0.08110662442971894, relative_change = 8.615038444115758e-7 Iter 70: T = 801.7227112852191 K, F = -0.03391978929699402, relative_change = 3.602960325657258e-7 Iter 75: T = 801.7218289998831 K, F = -0.014185666278046627, relative_change = 1.506809495455102e-7 Iter 80: T = 801.7214600165908 K, F = -0.005932615975274169, relative_change = 6.301672052687357e-8 Iter 85: T = 801.7213057031915 K, F = -0.0024810910136547903, relative_change = 2.6354370979978902e-8 Iter 90: T = 801.7212411674536 K, F = -0.0010376219211645221, relative_change = 1.1021717211311867e-8 Iter 95: T = 801.7212141778318 K, F = -0.00043394588376632903, relative_change = 4.609414551628928e-9 Iter 100: T = 801.7212028904487 K, F = -0.0001814813511549218, relative_change = 1.927712344399684e-9 Iter 105: T = 801.7211981699302 K, F = -7.58976694983371e-5, relative_change = 8.06192358463684e-10 Iter 110: T = 801.7211961957529 K, F = -3.174131228989019e-5, relative_change = 3.3715928150202335e-10 Iter 115: T = 801.7211953701284 K, F = -1.3274595840551129e-5, relative_change = 1.4100403842473074e-10 Iter 120: T = 801.7211950248422 K, F = -5.551592243024928e-6, relative_change = 5.896954882557195e-11 Iter 125: T = 801.7211948804395 K, F = -2.3217411613263295e-6, relative_change = 2.4661758806692527e-11 Iter 130: T = 801.7211948200487 K, F = -9.709813542091439e-7, relative_change = 1.0313857707639661e-11 Iter 135: T = 801.7211947947924 K, F = -4.060753064916156e-7, relative_change = 4.31337111903672e-12 Iter 140: T = 801.72119478423 K, F = -1.6982589534642045e-7, relative_change = 1.8039070600636902e-12 Iter 145: T = 801.7211947798127 K, F = -7.102452492802058e-8, relative_change = 7.544293624793627e-13 Iter 150: T = 801.7211947779653 K, F = -2.9704013471132384e-8, relative_change = 3.1551889955000105e-13 Converged in 153 iterations to T = 801.7211947774243 K Iter 1: T = 965.149030390287 K, F = -7940.826577403736, relative_change = 0.03485096960971308 Iter 2: T = 932.2708151949167 K, F = -6735.174547209947, relative_change = 0.03406542840547114 Iter 3: T = 901.3358638827683 K, F = -5711.363904865715, relative_change = 0.033182365904783344 Iter 5: T = 845.1828438205915 K, F = -4103.914285853085, relative_change = 0.03110466436353092 Iter 10: T = 736.6586390878089 K, F = -1785.958292560795, relative_change = 0.024135336535076202 Iter 15: T = 668.7252349122872 K, F = -769.0690109268448, relative_change = 0.015831144469747146 Iter 20: T = 631.5170889636562 K, F = -327.5063464753145, relative_change = 0.008723633232020533 Iter 25: T = 613.3850617733971 K, F = -138.27862959773176, relative_change = 0.004214187543882607 Iter 30: T = 605.2056039378417 K, F = -58.089569604134546, relative_change = 0.001885516073761484 Iter 35: T = 601.6651626402149 K, F = -24.34187754991303, relative_change = 0.000812349344977379 Iter 40: T = 600.1622347097364 K, F = -10.188695500531534, relative_change = 0.00034408444680383935 Iter 45: T = 599.5296908605587 K, F = -4.262560096164848, relative_change = 0.0001446754693534872 Iter 50: T = 599.2644456040977 K, F = -1.7829216399618504, relative_change = 6.0641675059915056e-5 Iter 55: T = 599.1533924696064 K, F = -0.7456861027836024, relative_change = 2.5385055102490277e-5 Iter 60: T = 599.1069269209839 K, F = -0.3118630569655596, relative_change = 1.062053357603096e-5 Iter 65: T = 599.087490657318 K, F = -0.13042629359603825, relative_change = 4.442369053457026e-6 Iter 70: T = 599.0793615120231 K, F = -0.054546085263850685, relative_change = 1.8579803878514917e-6 Iter 75: T = 599.075961689578 K, F = -0.02281186829011922, relative_change = 7.770520810316144e-7 Iter 80: T = 599.0745398227994 K, F = -0.009540203446276208, relative_change = 3.249763945400523e-7 Iter 85: T = 599.0739451775587 K, F = -0.003989828359974246, relative_change = 1.3590969731056592e-7 Iter 90: T = 599.0736964891927 K, F = -0.0016685941035305407, relative_change = 5.683917885226365e-8 Iter 95: T = 599.0735924846388 K, F = -0.0006978260215986243, relative_change = 2.3770844418865503e-8 Iter 100: T = 599.0735489886732 K, F = -0.0002918391830741274, relative_change = 9.941254695970422e-9 Iter 105: T = 599.0735307981375 K, F = -0.0001220506325259052, relative_change = 4.157552068119961e-9 Iter 110: T = 599.0735231906377 K, F = -5.104303187208892e-5, relative_change = 1.7387380234013692e-9 Iter 115: T = 599.0735200090903 K, F = -2.134680548726564e-5, relative_change = 7.271610238658782e-10 Iter 120: T = 599.0735186785292 K, F = -8.927488961474328e-6, relative_change = 3.0410742657932473e-10 Iter 125: T = 599.0735181220726 K, F = -3.7335820279316145e-6, relative_change = 1.2718134207254933e-10 Iter 130: T = 599.0735178893559 K, F = -1.5614281509979122e-6, relative_change = 5.3188741180827565e-11 Iter 135: T = 599.073517792031 K, F = -6.530082782285618e-7, relative_change = 2.2244179666098195e-11 Iter 140: T = 599.0735177513286 K, F = -2.730962463393105e-7, relative_change = 9.30279473355678e-12 Iter 145: T = 599.0735177343064 K, F = -1.1421260914801223e-7, relative_change = 3.890556802862583e-12 Iter 150: T = 599.0735177271874 K, F = -4.7765317534587126e-8, relative_change = 1.6270855072119435e-12 Iter 155: T = 599.0735177242101 K, F = -1.997557513844228e-8, relative_change = 6.804512245358116e-13 Iter 160: T = 599.073517722965 K, F = -8.35385194353222e-9, relative_change = 2.845669646669753e-13 Converged in 162 iterations to T = 599.0735177227015 K Iter 1: T = 964.5191506153487 K, F = -8084.345283293763, relative_change = 0.03548084938465132 Iter 2: T = 930.975399167619 K, F = -6858.06829097237, relative_change = 0.03477769355468921 Iter 3: T = 899.3382509099036 K, F = -5816.695704189409, relative_change = 0.0339827972747744 Iter 5: T = 841.6713712423549 K, F = -4181.517516562614, relative_change = 0.03209363381641351 Iter 10: T = 728.8591320385717 K, F = -1822.6454106831234, relative_change = 0.02555327766952747 Iter 15: T = 656.6106859722169 K, F = -786.4757214331511, relative_change = 0.017312862670630997 Iter 20: T = 616.0809502896795 K, F = -335.55275103292763, relative_change = 0.00982404677462649 Iter 25: T = 595.9634856509973 K, F = -141.85665460589203, relative_change = 0.00483907592989226 Iter 30: T = 586.78893245988 K, F = -59.633397613452175, relative_change = 0.0021876059317500903 Iter 35: T = 582.7961568141079 K, F = -24.996825772117774, relative_change = 0.0009470673328923678 Iter 40: T = 581.097038782618 K, F = -10.464313265393173, relative_change = 0.0004019990804897739 Iter 45: T = 580.3811616386182 K, F = -4.378132432735871, relative_change = 0.0001691798648478319 Iter 50: T = 580.0808364265922 K, F = -1.831309326375211, relative_change = 7.093998624767431e-5 Iter 55: T = 579.9550720618129 K, F = -0.7659318840279916, relative_change = 2.9700773555345247e-5 Iter 60: T = 579.9024470155124 K, F = -0.3203317439450743, relative_change = 1.2426968505530836e-5 Iter 65: T = 579.8804335353337 K, F = -0.1339682900655393, relative_change = 5.198113056045739e-6 Iter 70: T = 579.8712263501292 K, F = -0.056027441300035175, relative_change = 2.174089031986049e-6 Iter 75: T = 579.867375640524 K, F = -0.023431397963997513, relative_change = 9.092607962550496e-7 Iter 80: T = 579.8657652007042 K, F = -0.009799299710025355, relative_change = 3.802691108435509e-7 Iter 85: T = 579.8650916908033 K, F = -0.004098185784075559, relative_change = 1.5903402569274712e-7 Iter 90: T = 579.8648100200911 K, F = -0.001713910520196038, relative_change = 6.651009359193726e-8 Iter 95: T = 579.8646922218907 K, F = -0.0007167778980816109, relative_change = 2.781534428550949e-8 Iter 100: T = 579.864642957251 K, F = -0.00029976508591306184, relative_change = 1.1632714212250966e-8 Iter 105: T = 579.864622354186 K, F = -0.00012536534079110595, relative_change = 4.864940904620679e-9 Iter 110: T = 579.8646137377374 K, F = -5.242928322579665e-5, relative_change = 2.0345765504243965e-9 Iter 115: T = 579.8646101342355 K, F = -2.192655240729202e-5, relative_change = 8.508842374837548e-10 Iter 120: T = 579.8646086272079 K, F = -9.169945672182767e-6, relative_change = 3.558499385882039e-10 Iter 125: T = 579.8646079969511 K, F = -3.834981374795099e-6, relative_change = 1.4882071743448277e-10 Iter 130: T = 579.86460773337 K, F = -1.6038350014735414e-6, relative_change = 6.223860111839939e-11 Iter 135: T = 579.8646076231373 K, F = -6.707430152408378e-7, relative_change = 2.602892877256994e-11 Iter 140: T = 579.8646075770367 K, F = -2.8051242700888324e-7, relative_change = 1.0885596747626068e-11 Iter 145: T = 579.8646075577569 K, F = -1.173140620203128e-7, relative_change = 4.5525026673446666e-12 Iter 150: T = 579.8646075496938 K, F = -4.906199901899555e-8, relative_change = 1.90390544464611e-12 Iter 155: T = 579.8646075463217 K, F = -2.0518145127379483e-8, relative_change = 7.962294444629862e-13 Iter 160: T = 579.8646075449116 K, F = -8.580851917905363e-9, relative_change = 3.329895033530574e-13 Converged in 163 iterations to T = 579.8646075444987 K Iter 1: T = 964.3377549348992 K, F = -8125.676461636014, relative_change = 0.035662245065100795 Iter 2: T = 930.6018345054762 K, F = -6893.467285522958, relative_change = 0.03498351097090506 Iter 3: T = 898.7613113252797 K, F = -5847.04432678948, relative_change = 0.034214980026464926 Iter 5: T = 840.6535377486615 K, F = -4203.894448603159, relative_change = 0.032383139371991033 Iter 10: T = 726.5702704967648 K, F = -1833.2679337014824, relative_change = 0.025981811813192125 Iter 15: T = 653.0009676135674 K, F = -791.5562840533082, relative_change = 0.017779333521629265 Iter 20: T = 611.4189584005784 K, F = -337.9242324145697, relative_change = 0.010183820054757872 Iter 25: T = 590.655274950974 K, F = -142.91930678814768, relative_change = 0.005048668865260761 Iter 30: T = 581.1514878242881 K, F = -60.09395152928784, relative_change = 0.0022903309928224754 Iter 35: T = 577.0078088009988 K, F = -25.19263423011015, relative_change = 0.0009931749309282953 Iter 40: T = 575.2429914569954 K, F = -10.54679421015081, relative_change = 0.00042187702920954497 Iter 45: T = 574.4991620377999 K, F = -4.412732899628874, relative_change = 0.00017760071475967436 Iter 50: T = 574.187061806964 K, F = -1.845798373465286, relative_change = 7.448078409657623e-5 Iter 55: T = 574.0563579809342 K, F = -0.7719946643580342, relative_change = 3.11849377002941e-5 Iter 60: T = 574.001664558209 K, F = -0.32286784714512473, relative_change = 1.3048252847352816e-5 Iter 65: T = 573.9787855967643 K, F = -0.1350290195406759, relative_change = 5.458044742077951e-6 Iter 70: T = 573.9692163761805 K, F = -0.05647106867412521, relative_change = 2.2828136170254264e-6 Iter 75: T = 573.9652142449243 K, F = -0.023616931315852047, relative_change = 9.54733873665012e-7 Iter 80: T = 573.9635404762897 K, F = -0.009876892513056845, relative_change = 3.99287047161023e-7 Iter 85: T = 573.9628404810896 K, F = -0.004130636115303399, relative_change = 1.66987650377835e-7 Iter 90: T = 573.9625477338335 K, F = -0.0017274816528619619, relative_change = 6.983641132036878e-8 Iter 95: T = 573.9624253032769 K, F = -0.000722453510166754, relative_change = 2.9206453017711825e-8 Iter 100: T = 573.9623741013282 K, F = -0.0003021386948673932, relative_change = 1.2214493002114437e-8 Iter 105: T = 573.9623526880571 K, F = -0.00012635801271104752, relative_change = 5.108247842382682e-9 Iter 110: T = 573.9623437327704 K, F = -5.284442980585391e-5, relative_change = 2.1363304059468656e-9 Iter 115: T = 573.9623399875625 K, F = -2.2100171631955767e-5, relative_change = 8.934389163467896e-10 Iter 120: T = 573.9623384212717 K, F = -9.242555557231746e-6, relative_change = 3.736468234785993e-10 Iter 125: T = 573.9623377662302 K, F = -3.865346649645218e-6, relative_change = 1.5626354596277163e-10 Iter 130: T = 573.9623374922841 K, F = -1.616534111958945e-6, relative_change = 6.535128048649198e-11 Iter 135: T = 573.9623373777165 K, F = -6.760533637351074e-7, relative_change = 2.7330665472772452e-11 Iter 140: T = 573.962337329803 K, F = -2.827335164323763e-7, relative_change = 1.143000770816768e-11 Iter 145: T = 573.9623373097651 K, F = -1.1824301199281351e-7, relative_change = 4.780185086626305e-12 Iter 150: T = 573.9623373013849 K, F = -4.9450859240796063e-8, relative_change = 1.9991393647390187e-12 Iter 155: T = 573.9623372978803 K, F = -2.0681517665099847e-8, relative_change = 8.360873142106972e-13 Iter 160: T = 573.9623372964145 K, F = -8.648824600943072e-9, relative_change = 3.496441919237124e-13 Converged in 163 iterations to T = 573.9623372959853 K Iter 1: T = 980.1779920240867 K, F = -4516.463372909204, relative_change = 0.01982200797591327 Iter 2: T = 962.3981245575125 K, F = -3815.029829771145, relative_change = 0.018139427339986008 Iter 3: T = 946.5392404025822 K, F = -3221.0313856582998, relative_change = 0.016478506919599234 Iter 5: T = 920.0603965615085 K, F = -2292.9402240293934, relative_change = 0.013310236942717468 Iter 10: T = 878.0331892972215 K, F = -973.3938964320492, relative_change = 0.006988551904427668 Iter 15: T = 858.1445625083612 K, F = -410.17257047653914, relative_change = 0.0032760019570949156 Iter 20: T = 849.3195358907512 K, F = -172.134666963517, relative_change = 0.0014434165690821582 Iter 25: T = 845.5300246384347 K, F = -72.09765983550403, relative_change = 0.0006175155443988653 Iter 30: T = 843.9270882260805 K, F = -30.171515388802046, relative_change = 0.00026075929916045113 Iter 35: T = 843.2534869967191 K, F = -12.621511170506606, relative_change = 0.00010949739114674908 Iter 40: T = 842.9712083735416 K, F = -5.279067464460621, relative_change = 4.587136837293143e-5 Iter 45: T = 842.8530559309427 K, F = -2.2078742834291143, relative_change = 1.919767474901864e-5 Iter 50: T = 842.8036256252135 K, F = -0.9233778077139734, relative_change = 8.031099130670577e-6 Iter 55: T = 842.7829502107608 K, F = -0.38617084816024094, relative_change = 3.359121914085422e-6 Iter 60: T = 842.7743029683841 K, F = -0.16150182403540891, relative_change = 1.404898433188589e-6 Iter 65: T = 842.7706864943966 K, F = -0.06754209009704937, relative_change = 5.87558164573137e-7 Iter 70: T = 842.7691740253517 K, F = -0.028246925932728262, relative_change = 2.457260909217059e-7 Iter 75: T = 842.7685414898602 K, F = -0.011813204775991792, relative_change = 1.0276597924984174e-7 Iter 80: T = 842.768276955461 K, F = -0.004940423842576536, relative_change = 4.2978028612458996e-8 Iter 85: T = 842.7681663239281 K, F = -0.0020661443421439163, relative_change = 1.7973936849353982e-8 Iter 90: T = 842.7681200564845 K, F = -0.0008640862534650129, relative_change = 7.51691713646467e-9 Iter 95: T = 842.7681007068843 K, F = -0.00036137119193946354, relative_change = 3.143664873004694e-9 Iter 100: T = 842.76809261465 K, F = -0.0001511297489553698, relative_change = 1.314718260268045e-9 Iter 105: T = 842.7680892303808 K, F = -6.320426527928191e-5, relative_change = 5.498308827523362e-10 Iter 110: T = 842.768087815039 K, F = -2.6432778308382865e-5, relative_change = 2.2994584120054615e-10 Iter 115: T = 842.7680872231263 K, F = -1.1054504437391088e-5, relative_change = 9.616610485494575e-11 Iter 120: T = 842.7680869755814 K, F = -4.623126330649541e-6, relative_change = 4.021781841155049e-11 Iter 125: T = 842.7680868720549 K, F = -1.9334460361619676e-6, relative_change = 1.6819566690371836e-11 Iter 130: T = 842.768086828759 K, F = -8.085905010002392e-7, relative_change = 7.034146082038387e-12 Iter 135: T = 842.7680868106522 K, F = -3.381647044609082e-7, relative_change = 2.941785648320391e-12 Iter 140: T = 842.7680868030798 K, F = -1.414251438180969e-7, relative_change = 1.2302953351585464e-12 Iter 145: T = 842.7680867999128 K, F = -5.9145289554862757e-8, relative_change = 5.145207695941536e-13 Converged in 150 iterations to T = 842.7680867985883 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001729584957697491 Iteration 10: d = 1.6381895345412165e-5 Iteration 20: d = 2.0404191361184421e-7 Iteration 30: d = 2.8302755411206964e-9 Iteration 40: d = 3.9805322859126486e-11 Iteration 50: d = 5.619606045898452e-13 Iteration 60: d = 7.965364609476625e-15 Converged after 63 iterations. d = 2.2119498967548057e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.92303342049 Iteration 2: convergence error = 4826.418153681387 Iteration 3: convergence error = 1100.6175367210014 Iteration 4: convergence error = 321.44454711061417 Iteration 5: convergence error = 95.40662274800775 Iteration 6: convergence error = 28.46168382195424 Iteration 7: convergence error = 8.49863469247498 Iteration 8: convergence error = 2.545310009394143 Iteration 9: convergence error = 0.7615062290544756 Iteration 10: convergence error = 0.22751411289095813 Iteration 11: convergence error = 0.06792067694846082 Iteration 12: convergence error = 0.020267555753662236 Iteration 13: convergence error = 0.006046302595677844 Iteration 14: convergence error = 0.0018034947133855894 Iteration 15: convergence error = 0.0005379022081797302 Iteration 16: convergence error = 0.0001604244964710233 Iteration 17: convergence error = 4.7843819857007475e-5 Iteration 18: convergence error = 1.4268351151258685e-5 Iteration 19: convergence error = 4.255179192114156e-6 Iteration 20: convergence error = 1.268985215574503e-6 Iteration 21: convergence error = 3.784500677284086e-7 Iteration 22: convergence error = 1.1272322808508761e-7 Iteration 23: convergence error = 3.271452442277223e-8 Iteration 24: convergence error = 9.433733794139698e-9 Iteration 25: convergence error = 2.710294211283326e-9 Iteration 26: convergence error = 7.812559488229454e-10 Iteration 27: convergence error = 2.2009771782904863e-10 Iteration 28: convergence error = 6.389200279954821e-11 Iteration 29: convergence error = 1.77351466845721e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 50%|████████████████▌ | ETA: 0:00:01 Bin 1 progress: 97%|████████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0022326847156339423 Iteration 10: d = 1.955744121937793e-5 Iteration 20: d = 2.0097238626417857e-7 Iteration 30: d = 2.5126605916909754e-9 Iteration 40: d = 3.2572081989386236e-11 Iteration 50: d = 4.2610495920007044e-13 Iteration 60: d = 5.579644319096848e-15 Converged after 63 iterations. d = 1.5535927781742234e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12282.702758618738 Iteration 2: convergence error = 8319.851325532436 Iteration 3: convergence error = 1946.0528563474377 Iteration 4: convergence error = 477.28182782759063 Iteration 5: convergence error = 121.4082965270336 Iteration 6: convergence error = 32.36809908674013 Iteration 7: convergence error = 8.807721491426491 Iteration 8: convergence error = 2.4107370718322727 Iteration 9: convergence error = 0.6606863444028477 Iteration 10: convergence error = 0.18109875110781104 Iteration 11: convergence error = 0.04963862573140432 Iteration 12: convergence error = 0.013605162270550863 Iteration 13: convergence error = 0.0037288530129444553 Iteration 14: convergence error = 0.0010219755693015031 Iteration 15: convergence error = 0.0002800933984872245 Iteration 16: convergence error = 7.676513291698939e-5 Iteration 17: convergence error = 2.103897963934287e-5 Iteration 18: convergence error = 5.766137974205776e-6 Iteration 19: convergence error = 1.5803216228960082e-6 Iteration 20: convergence error = 4.331182026362512e-7 Iteration 21: convergence error = 1.1957376955251675e-7 Iteration 22: convergence error = 3.209697752026841e-8 Iteration 23: convergence error = 8.575398169341497e-9 Iteration 24: convergence error = 2.286014932906255e-9 Iteration 25: convergence error = 6.107256922405213e-10 Iteration 26: convergence error = 1.646185410209e-10 Iteration 27: convergence error = 4.4565240386873484e-11 Iteration 28: convergence error = 1.2278178473934531e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0022326847156339423 Iteration 10: d = 1.955744121937793e-5 Iteration 20: d = 2.0097238626417857e-7 Iteration 30: d = 2.5126605916909754e-9 Iteration 40: d = 3.2572081989386236e-11 Iteration 50: d = 4.2610495920007044e-13 Iteration 60: d = 5.579644319096848e-15 Converged after 63 iterations. d = 1.5535927781742234e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10995.106244623094 Iteration 2: convergence error = 5740.619240094936 Iteration 3: convergence error = 2013.7038325753674 Iteration 4: convergence error = 893.191085817492 Iteration 5: convergence error = 408.9520308265969 Iteration 6: convergence error = 192.78078661024028 Iteration 7: convergence error = 90.97809273297617 Iteration 8: convergence error = 42.960585349977464 Iteration 9: convergence error = 20.287723446427663 Iteration 10: convergence error = 9.578943005690235 Iteration 11: convergence error = 4.5216500707269915 Iteration 12: convergence error = 2.1339374448411945 Iteration 13: convergence error = 1.0069144579865679 Iteration 14: convergence error = 0.47506159264776215 Iteration 15: convergence error = 0.22411454424673138 Iteration 16: convergence error = 0.10563104235779974 Iteration 17: convergence error = 0.049345233992426074 Iteration 18: convergence error = 0.022520976329360565 Iteration 19: convergence error = 0.010240751289074979 Iteration 20: convergence error = 0.004646831326226675 Iteration 21: convergence error = 0.0021059580199107586 Iteration 22: convergence error = 0.0009537441014799697 Iteration 23: convergence error = 0.0004317487018852262 Iteration 24: convergence error = 0.00019539860022632638 Iteration 25: convergence error = 8.841919179758406e-5 Iteration 26: convergence error = 4.0006646486290265e-5 Iteration 27: convergence error = 1.8100627585226903e-5 Iteration 28: convergence error = 8.189178061002167e-6 Iteration 29: convergence error = 3.704915798152797e-6 Iteration 30: convergence error = 1.6761368897277862e-6 Iteration 31: convergence error = 7.582971193187404e-7 Iteration 32: convergence error = 3.4305139706702903e-7 Iteration 33: convergence error = 1.5519935914198868e-7 Iteration 34: convergence error = 7.021571946097538e-8 Iteration 35: convergence error = 3.1765921448823065e-8 Iteration 36: convergence error = 1.4372744772117585e-8 Iteration 37: convergence error = 6.5006133809220046e-9 Iteration 38: convergence error = 2.9399416234809905e-9 Iteration 39: convergence error = 1.3328644854482263e-9 Iteration 40: convergence error = 6.039044819772243e-10 Iteration 41: convergence error = 2.7284841053187847e-10 Iteration 42: convergence error = 1.227817847393453e-10 Iteration 43: convergence error = 5.411493475548923e-11 Iteration 44: convergence error = 3.001332515850663e-11 Iteration 45: convergence error = 1.1823431123048067e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▌ | ETA: 0:00:01 Bin 1 progress: 91%|█████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0022326847156339423 Iteration 10: d = 1.955744121937793e-5 Iteration 20: d = 2.0097238626417857e-7 Iteration 30: d = 2.5126605916909754e-9 Iteration 40: d = 3.2572081989386236e-11 Iteration 50: d = 4.2610495920007044e-13 Iteration 60: d = 5.579644319096848e-15 Converged after 63 iterations. d = 1.5535927781742234e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.797869480688 Iteration 2: convergence error = 7363.250358092509 Iteration 3: convergence error = 1729.9125077101266 Iteration 4: convergence error = 503.69706861451505 Iteration 5: convergence error = 156.35829964470486 Iteration 6: convergence error = 48.54770797495485 Iteration 7: convergence error = 15.04992716880497 Iteration 8: convergence error = 4.6579864512859785 Iteration 9: convergence error = 1.440011363013582 Iteration 10: convergence error = 0.4448625023783279 Iteration 11: convergence error = 0.13737406636118976 Iteration 12: convergence error = 0.04241112205909303 Iteration 13: convergence error = 0.01309168560510443 Iteration 14: convergence error = 0.004040896431433794 Iteration 15: convergence error = 0.001247213278475101 Iteration 16: convergence error = 0.00038493979945997125 Iteration 17: convergence error = 0.0001188060773529287 Iteration 18: convergence error = 3.666745715236175e-5 Iteration 19: convergence error = 1.131674753196421e-5 Iteration 20: convergence error = 3.4926802072732244e-6 Iteration 21: convergence error = 1.0779558579088189e-6 Iteration 22: convergence error = 3.325299076095689e-7 Iteration 23: convergence error = 1.0138592188013718e-7 Iteration 24: convergence error = 3.015156835317612e-8 Iteration 25: convergence error = 8.937604434322566e-9 Iteration 26: convergence error = 2.6529960450716317e-9 Iteration 27: convergence error = 7.944436219986528e-10 Iteration 28: convergence error = 2.3010215954855084e-10 Iteration 29: convergence error = 6.866684998385608e-11 Iteration 30: convergence error = 2.000888343900442e-11 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0022326847156339423 Iteration 10: d = 1.955744121937793e-5 Iteration 20: d = 2.0097238626417857e-7 Iteration 30: d = 2.5126605916909754e-9 Iteration 40: d = 3.2572081989386236e-11 Iteration 50: d = 4.2610495920007044e-13 Iteration 60: d = 5.579644319096848e-15 Converged after 63 iterations. d = 1.5535927781742234e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.74020147913 Iteration 2: convergence error = 5533.197066793275 Iteration 3: convergence error = 935.6091000980546 Iteration 4: convergence error = 170.10862894308912 Iteration 5: convergence error = 30.84718356992221 Iteration 6: convergence error = 5.609503233135911 Iteration 7: convergence error = 1.0224087896040146 Iteration 8: convergence error = 0.18700592797040372 Iteration 9: convergence error = 0.03416454021225945 Iteration 10: convergence error = 0.006237947280624212 Iteration 11: convergence error = 0.0011386207061150344 Iteration 12: convergence error = 0.00020780227896466386 Iteration 13: convergence error = 3.792166080529569e-5 Iteration 14: convergence error = 6.919984116393607e-6 Iteration 15: convergence error = 1.2627428986888845e-6 Iteration 16: convergence error = 2.3042684915708378e-7 Iteration 17: convergence error = 4.204775905236602e-8 Iteration 18: convergence error = 7.668404577998444e-9 Iteration 19: convergence error = 1.406078808940947e-9 Iteration 20: convergence error = 2.532942744437605e-10 Iteration 21: convergence error = 4.5929482439532876e-11 Iteration 22: convergence error = 9.549694368615746e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▌ | ETA: 0:00:01 Bin 1 progress: 91%|█████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0022326847156339423 Iteration 10: d = 1.955744121937793e-5 Iteration 20: d = 2.0097238626417857e-7 Iteration 30: d = 2.5126605916909754e-9 Iteration 40: d = 3.2572081989386236e-11 Iteration 50: d = 4.2610495920007044e-13 Iteration 60: d = 5.579644319096848e-15 Converged after 63 iterations. d = 1.5535927781742234e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.48798652421 Iteration 2: convergence error = 2720.913200827599 Iteration 3: convergence error = 204.3341783354474 Iteration 4: convergence error = 19.300108316874105 Iteration 5: convergence error = 1.5951008048628996 Iteration 6: convergence error = 0.12987271530161348 Iteration 7: convergence error = 0.010595361859927216 Iteration 8: convergence error = 0.0008668474846972524 Iteration 9: convergence error = 7.098048840212022e-5 Iteration 10: convergence error = 5.8152227329720615e-6 Iteration 11: convergence error = 4.7674783944624933e-7 Iteration 12: convergence error = 3.9080688324329416e-8 Iteration 13: convergence error = 3.204449189792403e-9 Iteration 14: convergence error = 2.615666310993152e-10 Iteration 15: convergence error = 2.2396307031158358e-11 Iteration 16: convergence error = 4.433786671143025e-12 Converged after 16 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346345 Iteration 2: convergence error = 858.4060420534043 Iteration 3: convergence error = 199.12106737711986 Iteration 4: convergence error = 59.265629268140856 Iteration 5: convergence error = 17.98548291103714 Iteration 6: convergence error = 5.463033078096942 Iteration 7: convergence error = 1.660989611064906 Iteration 8: convergence error = 0.5052487627306164 Iteration 9: convergence error = 0.15371874094194027 Iteration 10: convergence error = 0.046771316975991795 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.00433023651169151 Iteration 13: convergence error = 0.0013175920927324114 Iteration 14: convergence error = 0.0004009136252989265 Iteration 15: convergence error = 0.00012198904050819692 Iteration 16: convergence error = 3.711853867116588e-5 Iteration 17: convergence error = 1.1294342129986035e-5 Iteration 18: convergence error = 3.4366162253718358e-6 Iteration 19: convergence error = 1.0456861900820513e-6 Iteration 20: convergence error = 3.181812644470483e-7 Iteration 21: convergence error = 9.681605206424138e-8 Iteration 22: convergence error = 2.9460807127179578e-8 Iteration 23: convergence error = 8.963411346485373e-9 Iteration 24: convergence error = 2.730530468397774e-9 Iteration 25: convergence error = 8.295728548546322e-10 Iteration 26: convergence error = 2.538627086323686e-10 Iteration 27: convergence error = 7.707967597525567e-11 Iteration 28: convergence error = 2.4556356947869062e-11 Iteration 29: convergence error = 8.640199666842818e-12 Converged after 29 iterations Energy conservation errors by band: [4.6852026882886333e-26, 1.7771458472818954e-26, 2.50416005753358e-26, 4.13994203059987e-26, 6.522933053091502e-26, 4.828087799349512e-20, -1.176836406102666e-14, 1.1084466677857563e-12, -1.4779288903810084e-12, -7.389644451905042e-13, -1.1368683772161603e-13, 7.993605777301127e-15, 2.220446049250313e-16, 1.5612511283791264e-16, 6.451002926288751e-18, 2.0328790734103208e-20, 1.3923104070492562e-20, 4.793511649744795e-22, 1.0481929324695398e-23, 1.318298825299594e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001729584957697491 Iteration 10: d = 1.6381895345412165e-5 Iteration 20: d = 2.0404191361184421e-7 Iteration 30: d = 2.8302755411206964e-9 Iteration 40: d = 3.9805322859126486e-11 Iteration 50: d = 5.619606045898452e-13 Iteration 60: d = 7.965364609476625e-15 Converged after 63 iterations. d = 2.2119498967548057e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.41220368207 Iteration 2: convergence error = 3613.3958627259854 Iteration 3: convergence error = 595.6232891516396 Iteration 4: convergence error = 105.13437873418275 Iteration 5: convergence error = 18.714743451084132 Iteration 6: convergence error = 3.300669332989628 Iteration 7: convergence error = 0.5799398805816054 Iteration 8: convergence error = 0.10173872409040996 Iteration 9: convergence error = 0.017836587030842566 Iteration 10: convergence error = 0.0031262522384167823 Iteration 11: convergence error = 0.000547886111689877 Iteration 12: convergence error = 9.601473107068159e-5 Iteration 13: convergence error = 1.682589368101617e-5 Iteration 14: convergence error = 2.9485911454685265e-6 Iteration 15: convergence error = 5.167094059288502e-7 Iteration 16: convergence error = 9.055338523467071e-8 Iteration 17: convergence error = 1.5877503756200895e-8 Iteration 18: convergence error = 2.7644091460388154e-9 Iteration 19: convergence error = 4.893081495538354e-10 Iteration 20: convergence error = 8.571987564209849e-11 Iteration 21: convergence error = 1.4438228390645236e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.4924275130247 Iteration 2: convergence error = 871.3046026617826 Iteration 3: convergence error = 207.75299581225215 Iteration 4: convergence error = 62.495505504907555 Iteration 5: convergence error = 18.979315309184585 Iteration 6: convergence error = 5.766215594047026 Iteration 7: convergence error = 1.7533061530645 Iteration 8: convergence error = 0.5333443699004192 Iteration 9: convergence error = 0.16226812526360845 Iteration 10: convergence error = 0.04937275062957269 Iteration 11: convergence error = 0.015022831427586425 Iteration 12: convergence error = 0.004571091655407145 Iteration 13: convergence error = 0.0013908789693459767 Iteration 14: convergence error = 0.00042321318755966786 Iteration 15: convergence error = 0.00012877429912805383 Iteration 16: convergence error = 3.918314223483321e-5 Iteration 17: convergence error = 1.192255740534165e-5 Iteration 18: convergence error = 3.6277690469432855e-6 Iteration 19: convergence error = 1.1038503089366714e-6 Iteration 20: convergence error = 3.358788944751723e-7 Iteration 21: convergence error = 1.0220196600130294e-7 Iteration 22: convergence error = 3.1098920771910343e-8 Iteration 23: convergence error = 9.464429240324534e-9 Iteration 24: convergence error = 2.8813929020543583e-9 Iteration 25: convergence error = 8.774350135354325e-10 Iteration 26: convergence error = 2.6773250283440575e-10 Iteration 27: convergence error = 8.174083632184193e-11 Iteration 28: convergence error = 2.546585164964199e-11 Iteration 29: convergence error = 8.526512829121202e-12 Converged after 29 iterations Energy conservation errors by band: [3.473512337869159e-26, 2.928251680180396e-26, 6.54312789226516e-26, 3.0090310368750274e-26, 3.4028304007613565e-26, 3.3881317890172014e-20, -1.4654943925052066e-14, 3.552713678800501e-13, -3.268496584496461e-13, 2.0463630789890885e-12, 7.815970093361102e-14, 2.220446049250313e-14, 1.6653345369377348e-15, 1.8735013540549517e-16, 3.7947076036992655e-18, -1.3976043629695956e-19, 2.2658131339052534e-20, 1.5923226791645783e-22, -7.302453845194697e-25, 1.6176561218948528e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729989 Iteration 2: convergence error = 2115.1156110176375 Iteration 3: convergence error = 714.8959934551624 Iteration 4: convergence error = 296.0190747132401 Iteration 5: convergence error = 115.88799395378715 Iteration 6: convergence error = 44.115249236190266 Iteration 7: convergence error = 16.5995810251261 Iteration 8: convergence error = 6.21598340493324 Iteration 9: convergence error = 2.323124567003333 Iteration 10: convergence error = 0.8675636398231745 Iteration 11: convergence error = 0.32389343048794217 Iteration 12: convergence error = 0.12090784413680922 Iteration 13: convergence error = 0.04513241840777482 Iteration 14: convergence error = 0.016846741615609062 Iteration 15: convergence error = 0.0062884074734483875 Iteration 16: convergence error = 0.002347277756598487 Iteration 17: convergence error = 0.0008761691049130604 Iteration 18: convergence error = 0.0003270478227932472 Iteration 19: convergence error = 0.00012207719078105583 Iteration 20: convergence error = 4.556777048492222e-5 Iteration 21: convergence error = 1.7009089560815482e-5 Iteration 22: convergence error = 6.3489862895949045e-6 Iteration 23: convergence error = 2.369887170061702e-6 Iteration 24: convergence error = 8.846072887536138e-7 Iteration 25: convergence error = 3.3019910006260034e-7 Iteration 26: convergence error = 1.2325517673161812e-7 Iteration 27: convergence error = 4.600769898388535e-8 Iteration 28: convergence error = 1.7175352695630863e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.956249075708911e-10 Iteration 32: convergence error = 3.3514879760332406e-10 Iteration 33: convergence error = 1.2505552149377763e-10 Iteration 34: convergence error = 4.8203219193965197e-11 Iteration 35: convergence error = 1.887201506178826e-11 Converged after 35 iterations Energy conservation errors by band: [-2.3022116657970009e-26, -1.308625578453032e-25, -1.0743654440386004e-25, -8.320273739547056e-26, -1.0057029908481635e-25, -6.945670167485263e-20, -9.769962616701378e-15, -1.4068746168049984e-12, -7.837286375433905e-12, -1.0373923942097463e-12, -8.881784197001252e-15, -1.5543122344752192e-15, 9.71445146547012e-16, 2.927345865710862e-18, 1.4365678785432934e-18, 4.1504614415460717e-20, 5.717472393966527e-21, 1.2904017555827232e-22, -3.9291079096268815e-24, 5.551115123125783e-17] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.362166223825 Iteration 2: convergence error = 864.8522700482426 Iteration 3: convergence error = 203.43244494690714 Iteration 4: convergence error = 60.87736397590493 Iteration 5: convergence error = 18.481426659698172 Iteration 6: convergence error = 5.614330618626127 Iteration 7: convergence error = 1.7070587705939033 Iteration 8: convergence error = 0.5192694771479864 Iteration 9: convergence error = 0.15798519284180657 Iteration 10: convergence error = 0.04806952669321163 Iteration 11: convergence error = 0.01462628739034244 Iteration 12: convergence error = 0.00445043197044015 Iteration 13: convergence error = 0.0013541649042281279 Iteration 14: convergence error = 0.00041204191563792847 Iteration 15: convergence error = 0.00012537513089228014 Iteration 16: convergence error = 3.814885076280916e-5 Iteration 17: convergence error = 1.1607843816818786e-5 Iteration 18: convergence error = 3.5320085771672893e-6 Iteration 19: convergence error = 1.074713281923323e-6 Iteration 20: convergence error = 3.270117758802371e-7 Iteration 21: convergence error = 9.950326784746721e-8 Iteration 22: convergence error = 3.0277988116722554e-8 Iteration 23: convergence error = 9.213749763148371e-9 Iteration 24: convergence error = 2.8026079235132784e-9 Iteration 25: convergence error = 8.545839591533877e-10 Iteration 26: convergence error = 2.629576556500979e-10 Iteration 27: convergence error = 8.01492205937393e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.86757334228605e-12 Converged after 29 iterations Energy conservation errors by band: [4.281305904815475e-26, 4.52364397489937e-26, 4.119747191426212e-26, 5.634360129450555e-26, 9.895471195092372e-26, -6.606856988583543e-20, 2.4424906541753444e-15, -8.526512829121202e-14, 3.126388037344441e-12, 5.684341886080801e-13, 2.984279490192421e-13, 3.552713678800501e-14, 8.326672684688674e-16, 1.3010426069826053e-16, 2.0599841277224584e-18, 3.9810548520952116e-19, 2.3002238473874594e-20, 5.438712527536157e-22, -1.2782525403358506e-23, 3.1963148993622903e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 8m27.3s Testing RayTraceHeatTransfer tests passed Testing completed after 531.68s PkgEval succeeded after 601.27s