Package evaluation to test SimilaritySearch on Julia 1.14.0-DEV.1555 (0c48c4942b*) started at 2026-01-13T23:36:57.705 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 9.62s ################################################################################ # Installation # Installing SimilaritySearch... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [053f045d] + SimilaritySearch v0.13.7 Updating `~/.julia/environments/v1.14/Manifest.toml` [7d9f7c33] + Accessors v0.1.43 [79e6a3ab] + Adapt v4.4.0 [4fba245c] + ArrayInterface v7.22.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [2a0fbf3d] + CPUSummary v0.2.7 [fb6a15b2] + CloseOpenIntervals v0.1.13 [f70d9fcc] + CommonWorldInvalidations v1.0.0 [34da2185] + Compat v4.18.1 [a33af91c] + CompositionsBase v0.1.2 [187b0558] + ConstructionBase v1.6.0 [adafc99b] + CpuId v0.3.1 [9a962f9c] + DataAPI v1.16.0 ⌅ [864edb3b] + DataStructures v0.18.22 [b4f34e82] + Distances v0.10.12 [ffbed154] + DocStringExtensions v0.9.5 [615f187c] + IfElse v0.1.1 [3587e190] + InverseFunctions v0.1.17 [92d709cd] + IrrationalConstants v0.2.6 [10f19ff3] + LayoutPointers v0.1.17 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.16 [d125e4d3] + ManualMemory v0.1.8 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [d96e819e] + Parameters v0.12.3 [f517fe37] + Polyester v0.7.18 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [92933f4c] + ProgressMeter v1.11.0 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [431bcebd] + SciMLPublic v1.0.1 ⌅ [0e966ebe] + SearchModels v0.4.1 [053f045d] + SimilaritySearch v0.13.7 [a2af1166] + SortingAlgorithms v1.2.2 [aedffcd0] + Static v1.3.1 [0d7ed370] + StaticArrayInterface v1.8.0 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.33.21 [7792a7ef] + StrideArraysCore v0.5.8 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.15.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.5s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling packages... 5560.8 ms ✓ SearchModels 9685.4 ms ✓ SimilaritySearch 2 dependencies successfully precompiled in 17 seconds. 88 already precompiled. Precompilation completed after 33.67s ################################################################################ # Testing # Testing SimilaritySearch Status `/tmp/jl_7mSW0L/Project.toml` [7d9f7c33] Accessors v0.1.43 [4c88cf16] Aqua v0.8.14 [b4f34e82] Distances v0.10.12 [f517fe37] Polyester v0.7.18 [92933f4c] ProgressMeter v1.11.0 ⌅ [0e966ebe] SearchModels v0.4.1 [053f045d] SimilaritySearch v0.13.7 [10745b16] Statistics v1.11.1 ⌅ [2913bbd2] StatsBase v0.33.21 [7792a7ef] StrideArraysCore v0.5.8 [ade2ca70] Dates v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_7mSW0L/Manifest.toml` [7d9f7c33] Accessors v0.1.43 [79e6a3ab] Adapt v4.4.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.22.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 [2a0fbf3d] CPUSummary v0.2.7 [fb6a15b2] CloseOpenIntervals v0.1.13 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.18.1 [a33af91c] CompositionsBase v0.1.2 [187b0558] ConstructionBase v1.6.0 [adafc99b] CpuId v0.3.1 [9a962f9c] DataAPI v1.16.0 ⌅ [864edb3b] DataStructures v0.18.22 [b4f34e82] Distances v0.10.12 [ffbed154] DocStringExtensions v0.9.5 [615f187c] IfElse v0.1.1 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.6 [10f19ff3] LayoutPointers v0.1.17 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 [d125e4d3] ManualMemory v0.1.8 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [d96e819e] Parameters v0.12.3 [f517fe37] Polyester v0.7.18 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [92933f4c] ProgressMeter v1.11.0 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [431bcebd] SciMLPublic v1.0.1 ⌅ [0e966ebe] SearchModels v0.4.1 [053f045d] SimilaritySearch v0.13.7 [a2af1166] SortingAlgorithms v1.2.2 [aedffcd0] Static v1.3.1 [0d7ed370] StaticArrayInterface v1.8.0 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.33.21 [7792a7ef] StrideArraysCore v0.5.8 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.18.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Test Summary: | Pass Total Time test database abstractions | 56 56 9.0s Test Summary: | Pass Total Time heap | 16 16 0.1s Test Summary: | Pass Total Time KnnHeap | 30005 30005 2.4s Test Summary: | Pass Total Time XKnn | 25005 25005 1.8s Test Summary: | Pass Total Time XKnn pop ops | 9603 9603 0.8s [ Info: (MatrixDatabase{Matrix{Float32}}, SubDatabase{MatrixDatabase{Matrix{Float32}}, Vector{Int64}}) 5.545409 seconds (1000 allocations: 78.125 KiB) 5.168216 seconds (1000 allocations: 78.125 KiB) 1.957179 seconds (1000 allocations: 78.125 KiB) 2.006829 seconds (1000 allocations: 78.125 KiB) 1.912809 seconds (1000 allocations: 78.125 KiB) 1.906945 seconds (1000 allocations: 78.125 KiB) 2.113739 seconds (1000 allocations: 78.125 KiB) 1.905642 seconds (1000 allocations: 78.125 KiB) 10.849588 seconds (1000 allocations: 78.125 KiB) 10.742435 seconds (1000 allocations: 78.125 KiB) 22.893309 seconds (1000 allocations: 78.125 KiB) 22.928387 seconds (1000 allocations: 78.125 KiB) 15.194630 seconds (6.23 k allocations: 358.125 KiB) 14.612152 seconds (1000 allocations: 78.125 KiB) 11.587233 seconds (1.00 k allocations: 78.141 KiB) 11.940485 seconds (1000 allocations: 78.125 KiB) Test Summary: | Pass Total Time indexing vectors with ExhaustiveSearch | 8000 8000 2m31.7s [ Info: (VectorDatabase{Vector{Vector{Int64}}}, SubDatabase{VectorDatabase{Vector{Vector{Int64}}}, Vector{Int64}}) 2.339783 seconds (1000 allocations: 78.125 KiB) 2.342162 seconds (1000 allocations: 78.125 KiB) 16.104990 seconds (1000 allocations: 78.125 KiB) 16.164128 seconds (1000 allocations: 78.125 KiB) 16.015272 seconds (1000 allocations: 78.125 KiB) 15.935742 seconds (1000 allocations: 78.125 KiB) 2.600810 seconds (1000 allocations: 78.125 KiB) 2.573447 seconds (1000 allocations: 78.125 KiB) Test Summary: | Pass Total Time indexing sequences with ExhaustiveSearch | 4000 4000 1m16.8s [ Info: (VectorDatabase{Vector{Vector{Int64}}}, SubDatabase{VectorDatabase{Vector{Vector{Int64}}}, Vector{Int64}}) 8.669791 seconds (1000 allocations: 78.125 KiB) 8.616701 seconds (1000 allocations: 78.125 KiB) 8.619344 seconds (1000 allocations: 78.125 KiB) 8.568359 seconds (1000 allocations: 78.125 KiB) 8.536101 seconds (1000 allocations: 78.125 KiB) 8.618758 seconds (1000 allocations: 78.125 KiB) Test Summary: | Pass Total Time indexing sets with ExhaustiveSearch | 3000 3000 54.4s 0.041698 seconds (1.00 k allocations: 78.141 KiB) 0.042058 seconds (1000 allocations: 78.125 KiB) 0.019017 seconds (1000 allocations: 78.125 KiB) 0.019139 seconds (1000 allocations: 78.125 KiB) Test Summary: | Pass Total Time Normalized Cosine and Normalized Angle distances | 2000 2000 2.0s 0.022120 seconds (1000 allocations: 78.125 KiB) 0.022003 seconds (1000 allocations: 78.125 KiB) Test Summary: | Pass Total Time Binary hamming distance | 1000 1000 0.9s ExhaustiveSearch allknn: 3.569330 seconds (1.99 M allocations: 119.967 MiB, 1.29% gc time, 99.97% compilation time) ParallelExhaustiveSearch allknn: 0.956954 seconds (527.93 k allocations: 28.782 MiB, 99.87% compilation time) Test Summary: | Pass Total Time allknn | 3 3 5.0s quantile(length.(hsp_knns), 0:0.1:1) = [2.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 5.0, 5.0, 6.0] Test Summary: | Total Time HSP | 0 2.2s [ Info: neardup> starting: 1:100, current elements: 0, n: 100, ϵ: 0.1, timestamp: 2026-01-13T23:43:41.134 LOG add_vertex! sp=1 ep=1 n=1 BeamSearch BeamSearch(bsize=4, Δ=1.0, maxvisits=1000000) 2026-01-13T23:43:41.376 LOG n.size quantiles:[0.0, 0.0, 0.0, 0.0, 0.0] LOG add_vertex! sp=2 ep=2 n=2 BeamSearch BeamSearch(bsize=4, Δ=1.0, maxvisits=1000000) 2026-01-13T23:43:42.914 LOG n.size quantiles:[1.0, 1.0, 1.0, 1.0, 1.0] [ Info: neardup> finished current elements: 11, n: 100, ϵ: 0.1, timestamp: 2026-01-13T23:43:43.215 D.map = UInt32[0x00000001, 0x00000002, 0x00000004, 0x00000005, 0x00000006, 0x00000008, 0x00000010, 0x0000001b, 0x0000001f, 0x00000034, 0x00000045] D.nn = Int32[1, 2, 2, 4, 5, 6, 4, 8, 2, 1, 2, 1, 5, 1, 5, 16, 5, 5, 5, 5, 8, 8, 2, 5, 5, 16, 27, 6, 5, 6, 31, 5, 8, 5, 1, 1, 31, 31, 2, 2, 1, 16, 2, 16, 16, 27, 8, 2, 2, 6, 6, 52, 6, 2, 2, 8, 5, 5, 6, 5, 31, 8, 5, 5, 6, 5, 8, 5, 69, 31, 16, 5, 8, 8, 5, 1, 31, 5, 1, 6, 4, 1, 31, 69, 6, 5, 2, 2, 5, 52, 16, 5, 2, 8, 2, 69, 6, 6, 31, 69] D.dist = Float32[0.0, 0.0, 0.050947726, 0.0, 0.0, 0.0, 0.0043767095, 0.0, 0.02181673, 0.024885416, 0.024941027, 0.04164505, 0.0258767, 0.0023363829, 0.060239017, 0.0, 0.012741029, 0.017519355, 0.0044630766, 0.027545393, 0.009991765, 0.059532702, 0.036773503, 0.058048964, 0.03477627, 0.097821295, 0.0, 0.042369187, 0.04229629, 0.026313305, 0.0, 0.053219676, 0.01877153, 0.060661614, 0.039514244, 0.030047238, 0.056149483, 0.029477239, 0.025764465, 0.0782966, 0.03530073, 0.032752156, 0.062471986, 0.022053361, 0.091206014, 0.040149093, 0.042733133, 0.08063084, 0.037446916, 0.0152234435, 0.02974248, 0.0, 0.00983417, 0.05455768, 0.07259405, 0.03754753, 0.028217793, 0.016475499, 0.020447016, 0.05816251, 0.0068175793, 0.08570349, 0.04561019, 0.04371828, 0.032452285, 0.09560001, 0.0432117, 0.037543178, 0.0, 0.032962203, 0.011254907, 0.006579578, 0.057574987, 0.079272985, 0.038486302, 0.021151781, 0.0155285, 0.038734853, 0.034365237, 0.019698799, 0.042434692, 0.0019392967, 0.047139943, 0.04901707, 0.026217401, 0.02533096, 0.059050977, 0.016624272, 0.015347779, 0.06557143, 0.016860068, 0.010094702, 0.03004688, 0.036822855, 0.059731483, 0.035277545, 0.020911932, 0.005034983, 0.008402765, 0.020487666] Test Summary: | Pass Total Time neardup single block | 3 3 13.8s [ Info: neardup> starting: 1:16, current elements: 0, n: 100, ϵ: 0.1, timestamp: 2026-01-13T23:43:44.204 LOG add_vertex! sp=1 ep=1 n=1 BeamSearch BeamSearch(bsize=4, Δ=1.0, maxvisits=1000000) 2026-01-13T23:43:44.204 LOG n.size quantiles:[0.0, 0.0, 0.0, 0.0, 0.0] [ Info: neardup> range: 17:32, current elements: 7, n: 100, ϵ: 0.1, timestamp: 2026-01-13T23:43:44.205 [ Info: neardup> range: 33:48, current elements: 9, n: 100, ϵ: 0.1, timestamp: 2026-01-13T23:43:44.205 [ Info: neardup> range: 49:64, current elements: 9, n: 100, ϵ: 0.1, timestamp: 2026-01-13T23:43:44.205 [ Info: neardup> range: 65:80, current elements: 10, n: 100, ϵ: 0.1, timestamp: 2026-01-13T23:43:44.206 [ Info: neardup> range: 81:96, current elements: 11, n: 100, ϵ: 0.1, timestamp: 2026-01-13T23:43:44.206 [ Info: neardup> range: 97:100, current elements: 11, n: 100, ϵ: 0.1, timestamp: 2026-01-13T23:43:44.206 [ Info: neardup> finished current elements: 11, n: 100, ϵ: 0.1, timestamp: 2026-01-13T23:43:44.206 D.map = UInt32[0x00000001, 0x00000002, 0x00000004, 0x00000005, 0x00000006, 0x00000008, 0x00000010, 0x0000001b, 0x0000001f, 0x00000034, 0x00000045] D.nn = Int32[1, 2, 2, 4, 5, 6, 4, 8, 2, 1, 2, 1, 5, 1, 5, 16, 5, 5, 5, 5, 8, 8, 2, 5, 5, 16, 27, 6, 5, 6, 31, 5, 8, 5, 1, 1, 31, 31, 2, 2, 1, 16, 2, 16, 16, 27, 8, 2, 2, 6, 6, 52, 6, 2, 2, 8, 5, 5, 6, 5, 31, 8, 5, 5, 6, 5, 8, 5, 69, 31, 16, 5, 8, 8, 5, 1, 31, 5, 1, 6, 4, 1, 31, 69, 6, 5, 2, 2, 5, 52, 16, 5, 2, 8, 2, 69, 6, 6, 31, 69] D.dist = Float32[0.0, 0.0, 0.050947726, 0.0, 0.0, 0.0, 0.0043767095, 0.0, 0.02181673, 0.024885416, 0.024941027, 0.04164505, 0.0258767, 0.0023363829, 0.060239017, 0.0, 0.012741029, 0.017519355, 0.0044630766, 0.027545393, 0.009991765, 0.059532702, 0.036773503, 0.058048964, 0.03477627, 0.097821295, 0.0, 0.042369187, 0.04229629, 0.026313305, 0.0, 0.053219676, 0.01877153, 0.060661614, 0.039514244, 0.030047238, 0.056149483, 0.029477239, 0.025764465, 0.0782966, 0.03530073, 0.032752156, 0.062471986, 0.022053361, 0.091206014, 0.040149093, 0.042733133, 0.08063084, 0.037446916, 0.0152234435, 0.02974248, 0.0, 0.00983417, 0.05455768, 0.07259405, 0.03754753, 0.028217793, 0.016475499, 0.020447016, 0.05816251, 0.0068175793, 0.08570349, 0.04561019, 0.04371828, 0.032452285, 0.09560001, 0.0432117, 0.037543178, 0.0, 0.032962203, 0.011254907, 0.006579578, 0.057574987, 0.079272985, 0.038486302, 0.021151781, 0.0155285, 0.038734853, 0.034365237, 0.019698799, 0.042434692, 0.0019392967, 0.047139943, 0.04901707, 0.026217401, 0.02533096, 0.059050977, 0.016624272, 0.015347779, 0.06557143, 0.016860068, 0.010094702, 0.03004688, 0.036822855, 0.059731483, 0.035277545, 0.020911932, 0.005034983, 0.008402765, 0.020487666] Test Summary: | Pass Total Time neardup small block | 3 3 0.0s [ Info: neardup> starting: 1:16, current elements: 0, n: 100, ϵ: 0.1, timestamp: 2026-01-13T23:43:44.281 LOG add_vertex! sp=1 ep=1 n=1 BeamSearch BeamSearch(bsize=4, Δ=1.0, maxvisits=1000000) 2026-01-13T23:43:44.281 LOG n.size quantiles:[0.0, 0.0, 0.0, 0.0, 0.0] [ Info: neardup> range: 17:32, current elements: 16, n: 100, ϵ: 0.1, timestamp: 2026-01-13T23:43:44.282 [ Info: neardup> range: 33:48, current elements: 17, n: 100, ϵ: 0.1, timestamp: 2026-01-13T23:43:44.282 [ Info: neardup> range: 49:64, current elements: 17, n: 100, ϵ: 0.1, timestamp: 2026-01-13T23:43:44.282 [ Info: neardup> range: 65:80, current elements: 18, n: 100, ϵ: 0.1, timestamp: 2026-01-13T23:43:44.282 [ Info: neardup> range: 81:96, current elements: 18, n: 100, ϵ: 0.1, timestamp: 2026-01-13T23:43:44.282 [ Info: neardup> range: 97:100, current elements: 18, n: 100, ϵ: 0.1, timestamp: 2026-01-13T23:43:44.282 [ Info: neardup> finished current elements: 18, n: 100, ϵ: 0.1, timestamp: 2026-01-13T23:43:44.282 D.map = UInt32[0x00000001, 0x00000002, 0x00000003, 0x00000004, 0x00000005, 0x00000006, 0x00000007, 0x00000008, 0x00000009, 0x0000000a, 0x0000000b, 0x0000000c, 0x0000000d, 0x0000000e, 0x0000000f, 0x00000010, 0x0000001b, 0x00000034] D.nn = Int32[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 5, 13, 5, 13, 8, 8, 9, 5, 5, 16, 27, 6, 15, 6, 3, 5, 8, 5, 14, 12, 3, 8, 11, 11, 10, 16, 2, 16, 12, 27, 8, 2, 11, 6, 13, 52, 6, 2, 9, 3, 13, 5, 6, 5, 3, 8, 15, 11, 6, 11, 8, 5, 11, 8, 16, 5, 8, 8, 13, 1, 3, 5, 12, 6, 7, 14, 3, 1, 9, 5, 11, 9, 5, 52, 16, 5, 9, 8, 9, 11, 6, 6, 3, 9] D.dist = Float32[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.012741029, 0.012912214, 0.0044630766, 0.023736417, 0.009991765, 0.059532702, 0.012228608, 0.058048964, 0.03477627, 0.097821295, 0.0, 0.042369187, 0.027194202, 0.026313305, 0.017520547, 0.053219676, 0.01877153, 0.060661614, 0.030195296, 0.0043771863, 0.0784502, 0.040100217, 0.018838525, 0.02287525, 0.003652811, 0.032752156, 0.062471986, 0.022053361, 0.06656754, 0.040149093, 0.042733133, 0.08063084, 0.007757187, 0.0152234435, 0.005957842, 0.0, 0.00983417, 0.05455768, 0.05340904, 0.027481377, 0.023223042, 0.016475499, 0.020447016, 0.05816251, 0.005277157, 0.08570349, 0.043078065, 0.019095004, 0.032452285, 0.08597571, 0.0432117, 0.037543178, 0.098890185, 0.04334843, 0.011254907, 0.006579578, 0.057574987, 0.079272985, 0.0031550527, 0.021151781, 0.027703285, 0.038734853, 0.019060135, 0.019698799, 0.030362546, 0.0011105537, 0.0669409, 0.09867883, 0.008352995, 0.02533096, 0.02694267, 0.0113841295, 0.015347779, 0.06557143, 0.016860068, 0.010094702, 0.019189775, 0.036822855, 0.02565968, 0.07933134, 0.020911932, 0.005034983, 0.03770423, 0.09911561] Test Summary: | Pass Total Time neardup small block with filterblocks=false | 3 3 0.1s [ Info: neardup> starting: 1:16, current elements: 0, n: 100, ϵ: 0.1, timestamp: 2026-01-13T23:43:50.011 LOG append_items! ExhaustiveSearch{SimilaritySearch.DistanceWithIdentifiers{CosineDistance, MatrixDatabase{Matrix{Float32}}}, VectorDatabase{Vector{UInt32}}} sp=0 ep=7 n=7 2026-01-13T23:43:50.012 [ Info: neardup> range: 17:32, current elements: 7, n: 100, ϵ: 0.1, timestamp: 2026-01-13T23:43:50.017 [ Info: neardup> range: 33:48, current elements: 9, n: 100, ϵ: 0.1, timestamp: 2026-01-13T23:43:50.017 [ Info: neardup> range: 49:64, current elements: 9, n: 100, ϵ: 0.1, timestamp: 2026-01-13T23:43:50.017 [ Info: neardup> range: 65:80, current elements: 10, n: 100, ϵ: 0.1, timestamp: 2026-01-13T23:43:50.017 [ Info: neardup> range: 81:96, current elements: 11, n: 100, ϵ: 0.1, timestamp: 2026-01-13T23:43:50.017 [ Info: neardup> range: 97:100, current elements: 11, n: 100, ϵ: 0.1, timestamp: 2026-01-13T23:43:50.018 [ Info: neardup> finished current elements: 11, n: 100, ϵ: 0.1, timestamp: 2026-01-13T23:43:50.018 D.map = UInt32[0x00000001, 0x00000002, 0x00000004, 0x00000005, 0x00000006, 0x00000008, 0x00000010, 0x0000001b, 0x0000001f, 0x00000034, 0x00000045] D.nn = Int32[1, 2, 2, 4, 5, 6, 4, 8, 2, 1, 2, 1, 5, 1, 5, 16, 5, 5, 5, 5, 8, 8, 2, 5, 5, 16, 27, 6, 5, 6, 31, 5, 8, 5, 1, 1, 31, 31, 2, 2, 1, 16, 2, 16, 16, 27, 8, 2, 2, 6, 6, 52, 6, 2, 2, 8, 5, 5, 6, 5, 31, 8, 5, 5, 6, 5, 8, 5, 69, 31, 16, 5, 8, 8, 5, 1, 31, 5, 1, 6, 4, 1, 31, 69, 6, 5, 2, 2, 5, 52, 16, 5, 2, 8, 2, 69, 6, 6, 31, 69] D.dist = Float32[0.0, 0.0, 0.050947726, 0.0, 0.0, 0.0, 0.0043767095, 0.0, 0.02181673, 0.024885416, 0.024941027, 0.04164505, 0.0258767, 0.0023363829, 0.060239017, 0.0, 0.012741029, 0.017519355, 0.0044630766, 0.027545393, 0.009991765, 0.059532702, 0.036773503, 0.058048964, 0.03477627, 0.097821295, 0.0, 0.042369187, 0.04229629, 0.026313305, 0.0, 0.053219676, 0.01877153, 0.060661614, 0.039514244, 0.030047238, 0.056149483, 0.029477239, 0.025764465, 0.0782966, 0.03530073, 0.032752156, 0.062471986, 0.022053361, 0.091206014, 0.040149093, 0.042733133, 0.08063084, 0.037446916, 0.0152234435, 0.02974248, 0.0, 0.00983417, 0.05455768, 0.07259405, 0.03754753, 0.028217793, 0.016475499, 0.020447016, 0.05816251, 0.0068175793, 0.08570349, 0.04561019, 0.04371828, 0.032452285, 0.09560001, 0.0432117, 0.037543178, 0.0, 0.032962203, 0.011254907, 0.006579578, 0.057574987, 0.079272985, 0.038486302, 0.021151781, 0.0155285, 0.038734853, 0.034365237, 0.019698799, 0.042434692, 0.0019392967, 0.047139943, 0.04901707, 0.026217401, 0.02533096, 0.059050977, 0.016624272, 0.015347779, 0.06557143, 0.016860068, 0.010094702, 0.03004688, 0.036822855, 0.059731483, 0.035277545, 0.020911932, 0.005034983, 0.008402765, 0.020487666] Test Summary: | Pass Total Time neardup small block with filterblocks=false | 3 3 5.7s computing farthest point 1, dmax: Inf, imax: 10, n: 30 computing farthest point 2, dmax: 1.3429077, imax: 27, n: 30 computing farthest point 3, dmax: 0.9737635, imax: 22, n: 30 computing farthest point 4, dmax: 0.8940783, imax: 6, n: 30 computing farthest point 5, dmax: 0.80701435, imax: 11, n: 30 computing farthest point 6, dmax: 0.79146826, imax: 16, n: 30 computing farthest point 7, dmax: 0.6820661, imax: 18, n: 30 computing farthest point 8, dmax: 0.5979905, imax: 26, n: 30 computing farthest point 9, dmax: 0.55834323, imax: 24, n: 30 computing farthest point 10, dmax: 0.55212915, imax: 5, n: 30 Test Summary: | Pass Total Time farthest first traversal | 3 3 1.1s Test Summary: | Pass Total Time AdjacencyList | 15 15 1.2s LOG add_vertex! sp=1 ep=1 n=1 BeamSearch BeamSearch(bsize=4, Δ=1.0, maxvisits=1000000) 2026-01-13T23:43:55.384 LOG n.size quantiles:[0.0, 0.0, 0.0, 0.0, 0.0] LOG add_vertex! sp=295 ep=299 n=294 BeamSearch BeamSearch(bsize=2, Δ=0.9047619, maxvisits=112) 2026-01-13T23:44:04.444 LOG n.size quantiles:[3.0, 4.0, 4.0, 4.0, 6.0] (i, j, d) = (54, 314, -1.1920929f-7) (i, j, d, :parallel) = (54, 314, -1.1920929f-7, :parallel) [ Info: NOTE: the exact method will be faster on small datasets due to the preprocessing step of the approximation method [ Info: ("closestpair computation time", :approx => 13.831811373, :exact => 0.803122465) Test Summary: | Pass Total Time closestpair | 4 4 15.1s 1.884445 seconds (1.00 k allocations: 140.711 KiB) SEARCH Exhaustive 1: 0.001627 seconds SEARCH Exhaustive 2: 0.001670 seconds SEARCH Exhaustive 3: 0.001555 seconds typeof(seq) = ExhaustiveSearch{SqL2Distance, MatrixDatabase{Matrix{Float32}}} typeof(ectx) = GenericContext{KnnSorted} typeof(q) = SubArray{Float32, 1, Matrix{Float32}, Tuple{Base.Slice{Base.OneTo{Int64}}, Int64}, true} typeof(res) = KnnSorted{Vector{IdWeight}} [ Info: ===================== minrecall ============================== LOG add_vertex! sp=1 ep=1 n=1 BeamSearch BeamSearch(bsize=4, Δ=1.0, maxvisits=1000000) 2026-01-13T23:44:19.302 LOG n.size quantiles:[0.0, 0.0, 0.0, 0.0, 0.0] LOG add_vertex! sp=295 ep=299 n=294 BeamSearch BeamSearch(bsize=8, Δ=1.2733874, maxvisits=210) 2026-01-13T23:44:23.336 LOG n.size quantiles:[3.0, 4.0, 4.0, 5.0, 5.0] LOG add_vertex! sp=31140 ep=31144 n=31139 BeamSearch BeamSearch(bsize=8, Δ=1.05, maxvisits=428) 2026-01-13T23:44:24.336 LOG n.size quantiles:[4.0, 5.0, 6.0, 8.0, 9.0] LOG add_vertex! sp=51435 ep=51439 n=51434 BeamSearch BeamSearch(bsize=16, Δ=1.05, maxvisits=422) 2026-01-13T23:44:25.336 LOG n.size quantiles:[4.0, 5.0, 5.0, 6.0, 8.0] LOG add_vertex! sp=69105 ep=69109 n=69104 BeamSearch BeamSearch(bsize=16, Δ=1.025, maxvisits=556) 2026-01-13T23:44:26.336 LOG n.size quantiles:[4.0, 6.0, 6.0, 7.0, 9.0] LOG add_vertex! sp=85145 ep=85149 n=85144 BeamSearch BeamSearch(bsize=16, Δ=1.025, maxvisits=556) 2026-01-13T23:44:27.336 LOG n.size quantiles:[5.0, 6.0, 6.0, 6.0, 7.0] LOG add_vertex! sp=98475 ep=98479 n=98474 BeamSearch BeamSearch(bsize=10, Δ=1.1025, maxvisits=498) 2026-01-13T23:44:28.336 LOG n.size quantiles:[6.0, 6.0, 6.0, 7.0, 11.0] quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [1.0, 6.0, 7.0, 9.0, 10.0, 11.0, 12.0, 14.0, 17.0, 23.0, 86.0] [ Info: minrecall: queries per second: 19313.220339663923, recall: 0.900875 graph.algo = Base.RefValue{BeamSearch}(BeamSearch BeamSearch(bsize=10, Δ=1.2, maxvisits=758)) quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [1.0, 6.0, 7.0, 9.0, 10.0, 11.0, 12.0, 14.0, 17.0, 23.0, 86.0] [ Info: ===================== rebuild ============================== (graph.algo, length(B.queries), B.ksearch) = (Base.RefValue{BeamSearch}(BeamSearch BeamSearch(bsize=15, Δ=1.1851876, maxvisits=610)), 1000, 8) [ Info: rebuild: queries per second: 20327.59587617315, recall: 0.9045 graph.algo = Base.RefValue{BeamSearch}(BeamSearch BeamSearch(bsize=15, Δ=1.1851876, maxvisits=610)) quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [2.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 18.0, 19.0, 30.0] [ Info: ===================== matrixhints ============================== (graph.algo, length(B.queries), B.ksearch) = (Base.RefValue{BeamSearch}(BeamSearch BeamSearch(bsize=18, Δ=1.2155062, maxvisits=794)), 1000, 8) 1.171246 seconds (496.50 k allocations: 28.658 MiB, 94.63% compilation time) [ Info: matrixhints: queries per second: 19028.03358326148, recall: 0.903 graph.algo = Base.RefValue{BeamSearch}(BeamSearch BeamSearch(bsize=18, Δ=1.2155062, maxvisits=794)) quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [1.0, 6.0, 7.0, 9.0, 10.0, 11.0, 12.0, 14.0, 17.0, 23.0, 86.0] 1.819539 seconds (1.00 k allocations: 140.711 KiB) SEARCH Exhaustive 1: 0.001534 seconds SEARCH Exhaustive 2: 0.001535 seconds SEARCH Exhaustive 3: 0.001576 seconds typeof(seq) = ExhaustiveSearch{SqL2Distance, StrideMatrixDatabase{StrideArraysCore.StrideArray{Float32, 2, (1, 2), Tuple{Int64, Int64}, Tuple{Nothing, Nothing}, Tuple{Static.StaticInt{1}, Static.StaticInt{1}}, Matrix{Float32}}}} typeof(ectx) = GenericContext{KnnSorted} typeof(q) = StrideArraysCore.StrideArray{Float32, 1, (1,), Tuple{Int64}, Tuple{Nothing}, Tuple{Static.StaticInt{1}}, Matrix{Float32}} typeof(res) = KnnSorted{Vector{IdWeight}} [ Info: ===================== minrecall ============================== LOG add_vertex! sp=1 ep=1 n=1 BeamSearch BeamSearch(bsize=4, Δ=1.0, maxvisits=1000000) 2026-01-13T23:45:13.091 LOG n.size quantiles:[0.0, 0.0, 0.0, 0.0, 0.0] LOG add_vertex! sp=295 ep=299 n=294 BeamSearch BeamSearch(bsize=8, Δ=1.2733874, maxvisits=210) 2026-01-13T23:45:16.854 LOG n.size quantiles:[3.0, 4.0, 4.0, 5.0, 5.0] LOG add_vertex! sp=29120 ep=29124 n=29119 BeamSearch BeamSearch(bsize=8, Δ=1.05, maxvisits=428) 2026-01-13T23:45:17.854 LOG n.size quantiles:[6.0, 6.0, 6.0, 7.0, 7.0] LOG add_vertex! sp=49425 ep=49429 n=49424 BeamSearch BeamSearch(bsize=16, Δ=1.05, maxvisits=422) 2026-01-13T23:45:18.854 LOG n.size quantiles:[4.0, 5.0, 5.0, 6.0, 7.0] LOG add_vertex! sp=65930 ep=65934 n=65929 BeamSearch BeamSearch(bsize=16, Δ=1.025, maxvisits=556) 2026-01-13T23:45:19.855 LOG n.size quantiles:[4.0, 4.0, 6.0, 8.0, 9.0] LOG add_vertex! sp=82390 ep=82394 n=82389 BeamSearch BeamSearch(bsize=16, Δ=1.025, maxvisits=556) 2026-01-13T23:45:20.855 LOG n.size quantiles:[5.0, 7.0, 9.0, 9.0, 11.0] LOG add_vertex! sp=93805 ep=93809 n=93804 BeamSearch BeamSearch(bsize=10, Δ=1.1025, maxvisits=498) 2026-01-13T23:45:21.855 LOG n.size quantiles:[6.0, 6.0, 6.0, 6.0, 6.0] quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [1.0, 6.0, 7.0, 9.0, 10.0, 11.0, 12.0, 14.0, 17.0, 23.0, 86.0] [ Info: minrecall: queries per second: 21695.532319302954, recall: 0.900875 graph.algo = Base.RefValue{BeamSearch}(BeamSearch BeamSearch(bsize=10, Δ=1.2, maxvisits=758)) quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [1.0, 6.0, 7.0, 9.0, 10.0, 11.0, 12.0, 14.0, 17.0, 23.0, 86.0] [ Info: ===================== rebuild ============================== (graph.algo, length(B.queries), B.ksearch) = (Base.RefValue{BeamSearch}(BeamSearch BeamSearch(bsize=15, Δ=1.1851876, maxvisits=610)), 1000, 8) [ Info: rebuild: queries per second: 21662.221073450568, recall: 0.9045 graph.algo = Base.RefValue{BeamSearch}(BeamSearch BeamSearch(bsize=15, Δ=1.1851876, maxvisits=610)) quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [2.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 18.0, 19.0, 30.0] [ Info: ===================== matrixhints ============================== (graph.algo, length(B.queries), B.ksearch) = (Base.RefValue{BeamSearch}(BeamSearch BeamSearch(bsize=18, Δ=1.2155062, maxvisits=794)), 1000, 8) 1.084264 seconds (460.09 k allocations: 26.637 MiB, 3.34% gc time, 95.57% compilation time) [ Info: matrixhints: queries per second: 20933.288477482783, recall: 0.903 graph.algo = Base.RefValue{BeamSearch}(BeamSearch BeamSearch(bsize=18, Δ=1.2155062, maxvisits=794)) quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [1.0, 6.0, 7.0, 9.0, 10.0, 11.0, 12.0, 14.0, 17.0, 23.0, 86.0] Test Summary: | Pass Total Time vector indexing with SearchGraph | 18 18 1m44.4s Testing SimilaritySearch tests passed Testing completed after 480.01s PkgEval succeeded after 545.4s