Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1555 (0c48c4942b*) started at 2026-01-13T22:08:35.408 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 9.04s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.14.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.18.0+0 [e37daf67] + LibGit2_jll v1.9.2+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.12.2 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.0s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling packages... 1592.4 ms ✓ Measurements 5393.2 ms ✓ StatsBase 6109.2 ms ✓ RayTraceHeatTransfer 3 dependencies successfully precompiled in 15 seconds. 58 already precompiled. Precompilation completed after 30.93s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_cogmoo/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.16 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_cogmoo/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.16 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.18.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443558531181326e-15 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.0569008315563939e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.691850745534255e-16 Converged after 6 iterations. d = 1.6184142622847344e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.485546236472086e-16 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2585248453105973e-15 Converged after 6 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 8.64442489944963e-16 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2785653431858247e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.741771048821297e-15 Converged after 5 iterations. d = 2.1647144989062977e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.6708853471768988e-15 Converged after 5 iterations. d = 1.8174569082716346e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5394136982922497e-15 Converged after 5 iterations. d = 1.6288904732141786e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:02:58 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:05 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012171283570476213 Iteration 10: d = 1.5128504134061289e-5 Iteration 20: d = 2.435090240479364e-7 Iteration 30: d = 4.162797209211864e-9 Iteration 40: d = 7.257118493240173e-11 Iteration 50: d = 1.2772075445713905e-12 Iteration 60: d = 2.2561374765839454e-14 Converged after 66 iterations. d = 1.9980404056241447e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 86%|████████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011445617422832003 Iteration 10: d = 9.135682612876422e-6 Iteration 20: d = 1.3575170769499237e-7 Iteration 30: d = 2.2896637770875703e-9 Iteration 40: d = 3.939975794614628e-11 Iteration 50: d = 6.842812243729169e-13 Iteration 60: d = 1.1959225304887392e-14 Converged after 65 iterations. d = 1.5552451938160543e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 89%|█████████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001170080337655813 Iteration 10: d = 1.191994162204267e-5 Iteration 20: d = 1.5978955847003676e-7 Iteration 30: d = 2.3482557963246908e-9 Iteration 40: d = 3.6527854214270976e-11 Iteration 50: d = 5.91701290103751e-13 Iteration 60: d = 9.813308665915275e-15 Converged after 64 iterations. d = 1.9105527681358844e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▍ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001092492456964221 Iteration 10: d = 1.2018888401939187e-5 Iteration 20: d = 1.60822382659606e-7 Iteration 30: d = 2.4246011247864836e-9 Iteration 40: d = 3.9138135236629796e-11 Iteration 50: d = 6.565764403682921e-13 Iteration 60: d = 1.124957864703904e-14 Converged after 64 iterations. d = 2.1852510194539288e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 90%|█████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001281169813466054 Iteration 10: d = 1.6718243613929974e-5 Iteration 20: d = 2.2870336710055932e-7 Iteration 30: d = 3.4163919880934595e-9 Iteration 40: d = 5.21619316558253e-11 Iteration 50: d = 8.030747737173821e-13 Iteration 60: d = 1.239035366045221e-14 Converged after 65 iterations. d = 1.5362823881110627e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 86%|████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010631362193660432 Iteration 10: d = 1.1891529097053703e-5 Iteration 20: d = 1.5459382994318329e-7 Iteration 30: d = 2.270347128790395e-9 Iteration 40: d = 3.4220084407338516e-11 Iteration 50: d = 5.204830329931791e-13 Iteration 60: d = 7.960809744093908e-15 Converged after 64 iterations. d = 1.4716990474274199e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 45%|███████████████ | ETA: 0:00:01 Bin 1 progress: 91%|██████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012045095139683894 Iteration 10: d = 1.5751218195166307e-5 Iteration 20: d = 2.1030201313550607e-7 Iteration 30: d = 3.086677218812086e-9 Iteration 40: d = 4.642649416796883e-11 Iteration 50: d = 7.039983349594704e-13 Iteration 60: d = 1.0715095773838318e-14 Converged after 64 iterations. d = 2.064799572029353e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 88%|█████████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001139631339615285 Iteration 10: d = 1.0024919843496405e-5 Iteration 20: d = 1.1214868252208899e-7 Iteration 30: d = 1.5995622710614049e-9 Iteration 40: d = 2.4227092119341578e-11 Iteration 50: d = 3.721177241128572e-13 Iteration 60: d = 5.725163656639668e-15 Converged after 63 iterations. d = 1.643946640343453e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:01 Bin 1 progress: 86%|████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010558375082335562 Iteration 10: d = 8.480359750156926e-6 Iteration 20: d = 9.958581491928221e-8 Iteration 30: d = 1.4867656832425263e-9 Iteration 40: d = 2.2876633806423524e-11 Iteration 50: d = 3.535027355372361e-13 Iteration 60: d = 5.501091274496824e-15 Converged after 63 iterations. d = 1.5956117873539022e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0009213055472115099 Iteration 10: d = 7.5854963075757985e-6 Iteration 20: d = 8.78888515647886e-8 Iteration 30: d = 1.2863167756424118e-9 Iteration 40: d = 1.9545034888919602e-11 Iteration 50: d = 2.998338436871044e-13 Iteration 60: d = 4.619859728102799e-15 Converged after 62 iterations. d = 2.03352798204933e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.004385861286983293 Iteration 10: d = 2.8962069467127453e-5 Iteration 20: d = 2.639562635842238e-7 Iteration 30: d = 3.5084041369829466e-9 Iteration 40: d = 4.9848933994551975e-11 Iteration 50: d = 7.186779688691002e-13 Iteration 60: d = 1.0457170702528796e-14 Converged after 64 iterations. d = 1.9117034369734954e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0035252713523908773 Iteration 10: d = 4.128749350058447e-5 Iteration 20: d = 5.482181085014666e-7 Iteration 30: d = 8.13414916358945e-9 Iteration 40: d = 1.2630487003418556e-10 Iteration 50: d = 2.006686219194671e-12 Iteration 60: d = 3.223961462151224e-14 Converged after 67 iterations. d = 1.7878277884670868e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0024585453429352257 Iteration 10: d = 2.13386264480672e-5 Iteration 20: d = 2.8726450452893054e-7 Iteration 30: d = 4.6597864341016744e-9 Iteration 40: d = 7.813878166855201e-11 Iteration 50: d = 1.3213245650515023e-12 Iteration 60: d = 2.2370107039095997e-14 Converged after 66 iterations. d = 1.968337241201915e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0023251910912893354 Iteration 10: d = 2.4931567696126618e-5 Iteration 20: d = 3.346653106280539e-7 Iteration 30: d = 5.2514923128973645e-9 Iteration 40: d = 8.664970011120058e-11 Iteration 50: d = 1.4637882346146302e-12 Iteration 60: d = 2.5049042280173758e-14 Converged after 66 iterations. d = 2.2059626798807656e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 88%|█████████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001281169813466054 Iteration 10: d = 1.6718243613929974e-5 Iteration 20: d = 2.2870336710055932e-7 Iteration 30: d = 3.4163919880934595e-9 Iteration 40: d = 5.21619316558253e-11 Iteration 50: d = 8.030747737173821e-13 Iteration 60: d = 1.239035366045221e-14 Converged after 65 iterations. d = 1.5362823881110627e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001432162001458616 Iteration 10: d = 1.2323702905117406e-5 Iteration 20: d = 1.0956587685809618e-7 Iteration 30: d = 1.2911771337846153e-9 Iteration 40: d = 1.7063754798154285e-11 Iteration 50: d = 2.336620334035392e-13 Iteration 60: d = 3.211206185802715e-15 Converged after 61 iterations. d = 2.1240408614907964e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:01 Bin 1 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015708317902496073 Iteration 10: d = 2.0230815122006802e-5 Iteration 20: d = 2.558124243145251e-7 Iteration 30: d = 3.528866277679335e-9 Iteration 40: d = 4.925773509409222e-11 Iteration 50: d = 6.892638259671378e-13 Iteration 60: d = 9.62808706862029e-15 Converged after 64 iterations. d = 1.7402545868733023e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.672328474302 Iteration 2: convergence error = 4823.656011123975 Iteration 3: convergence error = 1101.4884861171997 Iteration 4: convergence error = 320.49563298659905 Iteration 5: convergence error = 95.03513473086105 Iteration 6: convergence error = 28.63447124423351 Iteration 7: convergence error = 8.630217906885491 Iteration 8: convergence error = 2.590671719059401 Iteration 9: convergence error = 0.7758268698644315 Iteration 10: convergence error = 0.23201540744867089 Iteration 11: convergence error = 0.06933069568663086 Iteration 12: convergence error = 0.020708013020566796 Iteration 13: convergence error = 0.0061835700839765195 Iteration 14: convergence error = 0.0018461875774846703 Iteration 15: convergence error = 0.0005511569158898055 Iteration 16: convergence error = 0.0001645330776227638 Iteration 17: convergence error = 4.9115512183561805e-5 Iteration 18: convergence error = 1.4661446584796067e-5 Iteration 19: convergence error = 4.376538072392577e-6 Iteration 20: convergence error = 1.3064181985100731e-6 Iteration 21: convergence error = 3.8997245610516984e-7 Iteration 22: convergence error = 1.1628412721620407e-7 Iteration 23: convergence error = 3.380023372301366e-8 Iteration 24: convergence error = 9.762516128830612e-9 Iteration 25: convergence error = 2.8107933758292347e-9 Iteration 26: convergence error = 8.101324056042358e-10 Iteration 27: convergence error = 2.3237589630298316e-10 Iteration 28: convergence error = 6.775735528208315e-11 Iteration 29: convergence error = 1.9099388737231493e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:01 Bin 1 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001432162001458616 Iteration 10: d = 1.2323702905117406e-5 Iteration 20: d = 1.0956587685809618e-7 Iteration 30: d = 1.2911771337846153e-9 Iteration 40: d = 1.7063754798154285e-11 Iteration 50: d = 2.336620334035392e-13 Iteration 60: d = 3.211206185802715e-15 Converged after 61 iterations. d = 2.1240408614907964e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.741681990765 Iteration 2: convergence error = 4820.903273040437 Iteration 3: convergence error = 1095.4997213833174 Iteration 4: convergence error = 318.8234630327745 Iteration 5: convergence error = 94.48120405333384 Iteration 6: convergence error = 28.223972723696534 Iteration 7: convergence error = 8.491540211988195 Iteration 8: convergence error = 2.5445510231170374 Iteration 9: convergence error = 0.7606673046675496 Iteration 10: convergence error = 0.22707867880740196 Iteration 11: convergence error = 0.06773517280839769 Iteration 12: convergence error = 0.020195582613723673 Iteration 13: convergence error = 0.006019866254519002 Iteration 14: convergence error = 0.0017941275868906814 Iteration 15: convergence error = 0.0005346665404886153 Iteration 16: convergence error = 0.00015932775113469688 Iteration 17: convergence error = 4.747747038891248e-5 Iteration 18: convergence error = 1.4147390174912289e-5 Iteration 19: convergence error = 4.21561435359763e-6 Iteration 20: convergence error = 1.2561592939164257e-6 Iteration 21: convergence error = 3.742993612831924e-7 Iteration 22: convergence error = 1.1139377420477103e-7 Iteration 23: convergence error = 3.2285925044561736e-8 Iteration 24: convergence error = 9.298673830926418e-9 Iteration 25: convergence error = 2.6725501811597496e-9 Iteration 26: convergence error = 7.648850441910326e-10 Iteration 27: convergence error = 2.191882231272757e-10 Iteration 28: convergence error = 6.116351869422942e-11 Iteration 29: convergence error = 1.9326762412674725e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 6:24:46 Bin 1 ray tracing: 8%|██▌ | ETA: 0:00:36 Bin 1 ray tracing: 17%|█████ | ETA: 0:00:22 Bin 1 ray tracing: 25%|███████▍ | ETA: 0:00:16 Bin 1 ray tracing: 33%|██████████ | ETA: 0:00:13 Bin 1 ray tracing: 42%|████████████▋ | ETA: 0:00:10 Bin 1 ray tracing: 50%|███████████████▏ | ETA: 0:00:08 Bin 1 ray tracing: 59%|█████████████████▋ | ETA: 0:00:07 Bin 1 ray tracing: 67%|████████████████████▏ | ETA: 0:00:05 Bin 1 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:04 Bin 1 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:02 Bin 1 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 2 ray tracing: 18%|█████▍ | ETA: 0:00:09 Bin 2 ray tracing: 27%|████████ | ETA: 0:00:08 Bin 2 ray tracing: 35%|██████████▋ | ETA: 0:00:07 Bin 2 ray tracing: 44%|█████████████▏ | ETA: 0:00:07 Bin 2 ray tracing: 52%|███████████████▋ | ETA: 0:00:06 Bin 2 ray tracing: 61%|██████████████████▎ | ETA: 0:00:05 Bin 2 ray tracing: 70%|████████████████████▉ | ETA: 0:00:04 Bin 2 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:03 Bin 2 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:01 Bin 2 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 3 ray tracing: 17%|█████▎ | ETA: 0:00:10 Bin 3 ray tracing: 26%|███████▉ | ETA: 0:00:08 Bin 3 ray tracing: 35%|██████████▌ | ETA: 0:00:08 Bin 3 ray tracing: 44%|█████████████▏ | ETA: 0:00:07 Bin 3 ray tracing: 52%|███████████████▋ | ETA: 0:00:06 Bin 3 ray tracing: 61%|██████████████████▎ | ETA: 0:00:05 Bin 3 ray tracing: 69%|████████████████████▊ | ETA: 0:00:04 Bin 3 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 3 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 3 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 4 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 4 ray tracing: 27%|████████▎ | ETA: 0:00:08 Bin 4 ray tracing: 36%|██████████▉ | ETA: 0:00:07 Bin 4 ray tracing: 45%|█████████████▌ | ETA: 0:00:06 Bin 4 ray tracing: 54%|████████████████▎ | ETA: 0:00:05 Bin 4 ray tracing: 63%|███████████████████ | ETA: 0:00:04 Bin 4 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:03 Bin 4 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:02 Bin 4 ray tracing: 90%|██████████████████████████▉ | ETA: 0:00:01 Bin 4 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 9%|██▉ | ETA: 0:00:10 Bin 5 ray tracing: 19%|█████▋ | ETA: 0:00:09 Bin 5 ray tracing: 28%|████████▍ | ETA: 0:00:08 Bin 5 ray tracing: 37%|███████████ | ETA: 0:00:07 Bin 5 ray tracing: 45%|█████████████▋ | ETA: 0:00:06 Bin 5 ray tracing: 54%|████████████████▍ | ETA: 0:00:05 Bin 5 ray tracing: 63%|███████████████████ | ETA: 0:00:04 Bin 5 ray tracing: 72%|█████████████████████▊ | ETA: 0:00:03 Bin 5 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:02 Bin 5 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 6 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 6 ray tracing: 28%|████████▍ | ETA: 0:00:08 Bin 6 ray tracing: 38%|███████████▍ | ETA: 0:00:07 Bin 6 ray tracing: 48%|██████████████▍ | ETA: 0:00:06 Bin 6 ray tracing: 57%|█████████████████ | ETA: 0:00:05 Bin 6 ray tracing: 66%|███████████████████▊ | ETA: 0:00:04 Bin 6 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:03 Bin 6 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:02 Bin 6 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 7 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 7 ray tracing: 28%|████████▎ | ETA: 0:00:08 Bin 7 ray tracing: 37%|███████████ | ETA: 0:00:07 Bin 7 ray tracing: 46%|█████████████▊ | ETA: 0:00:06 Bin 7 ray tracing: 55%|████████████████▍ | ETA: 0:00:05 Bin 7 ray tracing: 63%|███████████████████ | ETA: 0:00:04 Bin 7 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:03 Bin 7 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:02 Bin 7 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 8 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 8 ray tracing: 27%|████████▎ | ETA: 0:00:08 Bin 8 ray tracing: 37%|███████████ | ETA: 0:00:07 Bin 8 ray tracing: 45%|█████████████▋ | ETA: 0:00:06 Bin 8 ray tracing: 54%|████████████████▏ | ETA: 0:00:05 Bin 8 ray tracing: 63%|██████████████████▊ | ETA: 0:00:04 Bin 8 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:03 Bin 8 ray tracing: 80%|████████████████████████▏ | ETA: 0:00:02 Bin 8 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:01 Bin 8 ray tracing: 98%|█████████████████████████████▎| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 9 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 9 ray tracing: 27%|████████▎ | ETA: 0:00:08 Bin 9 ray tracing: 36%|██████████▉ | ETA: 0:00:07 Bin 9 ray tracing: 45%|█████████████▋ | ETA: 0:00:06 Bin 9 ray tracing: 54%|████████████████▎ | ETA: 0:00:05 Bin 9 ray tracing: 63%|███████████████████ | ETA: 0:00:04 Bin 9 ray tracing: 72%|█████████████████████▊ | ETA: 0:00:03 Bin 9 ray tracing: 81%|████████████████████████▌ | ETA: 0:00:02 Bin 9 ray tracing: 90%|███████████████████████████▏ | ETA: 0:00:01 Bin 9 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 10 ray tracing: 18%|█████▍ | ETA: 0:00:09 Bin 10 ray tracing: 27%|████████ | ETA: 0:00:08 Bin 10 ray tracing: 36%|██████████▌ | ETA: 0:00:07 Bin 10 ray tracing: 45%|█████████████▏ | ETA: 0:00:06 Bin 10 ray tracing: 54%|███████████████▊ | ETA: 0:00:05 Bin 10 ray tracing: 63%|██████████████████▎ | ETA: 0:00:04 Bin 10 ray tracing: 72%|████████████████████▉ | ETA: 0:00:03 Bin 10 ray tracing: 81%|███████████████████████▌ | ETA: 0:00:02 Bin 10 ray tracing: 90%|██████████████████████████▏ | ETA: 0:00:01 Bin 10 ray tracing: 99%|████████████████████████████▉| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 24%|████████▏ | ETA: 0:00:03 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 1 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 1 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 22%|███████▍ | ETA: 0:00:04 Bin 2 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 2 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 27%|████████▊ | ETA: 0:00:03 Bin 3 progress: 53%|█████████████████▋ | ETA: 0:00:02 Bin 3 progress: 82%|███████████████████████████▏ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 27%|████████▊ | ETA: 0:00:03 Bin 4 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 4 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 24%|████████▏ | ETA: 0:00:03 Bin 5 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 5 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 5 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 24%|████████▏ | ETA: 0:00:03 Bin 6 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 6 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 6 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 24%|████████▏ | ETA: 0:00:03 Bin 7 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 7 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 24%|████████▏ | ETA: 0:00:03 Bin 8 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 8 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 24%|████████▏ | ETA: 0:00:03 Bin 9 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 9 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 24%|███████▉ | ETA: 0:00:03 Bin 10 progress: 51%|████████████████▍ | ETA: 0:00:02 Bin 10 progress: 76%|████████████████████████▏ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:04 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001432162001458616 Iteration 10: d = 1.2323702905117406e-5 Iteration 20: d = 1.0956587685809618e-7 Iteration 30: d = 1.2911771337846153e-9 Iteration 40: d = 1.7063754798154285e-11 Iteration 50: d = 2.336620334035392e-13 Iteration 60: d = 3.211206185802715e-15 Converged after 61 iterations. d = 2.1240408614907964e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015729470324365325 Iteration 10: d = 2.0436665274214755e-5 Iteration 20: d = 2.5851299529739244e-7 Iteration 30: d = 3.561100310823032e-9 Iteration 40: d = 4.9629962841512575e-11 Iteration 50: d = 6.934327581021205e-13 Iteration 60: d = 9.706491801268612e-15 Converged after 64 iterations. d = 1.773952304404366e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013177206719181252 Iteration 10: d = 1.4083923446333126e-5 Iteration 20: d = 1.5956363180339344e-7 Iteration 30: d = 2.082348865392295e-9 Iteration 40: d = 2.8297060135562082e-11 Iteration 50: d = 3.8990430276930324e-13 Iteration 60: d = 5.4464512498603935e-15 Converged after 63 iterations. d = 1.4828121864737666e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014080544748792433 Iteration 10: d = 1.1467274861176419e-5 Iteration 20: d = 1.2273571265232544e-7 Iteration 30: d = 1.6432980586994783e-9 Iteration 40: d = 2.282675218683779e-11 Iteration 50: d = 3.1913126263198796e-13 Iteration 60: d = 4.507877423895172e-15 Converged after 62 iterations. d = 1.840502686396015e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001397407220196469 Iteration 10: d = 1.498016015531306e-5 Iteration 20: d = 1.7875998593952865e-7 Iteration 30: d = 2.3775779951654004e-9 Iteration 40: d = 3.249235063378398e-11 Iteration 50: d = 4.4876583067339653e-13 Iteration 60: d = 6.218460130214181e-15 Converged after 63 iterations. d = 1.7600293576645318e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012426705853932022 Iteration 10: d = 1.1074415728099799e-5 Iteration 20: d = 1.2517928071116436e-7 Iteration 30: d = 1.7053318422739698e-9 Iteration 40: d = 2.3884047562784168e-11 Iteration 50: d = 3.3633695915778256e-13 Iteration 60: d = 4.782790860660365e-15 Converged after 62 iterations. d = 2.013140369756803e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010116072279548402 Iteration 10: d = 7.666677828340285e-6 Iteration 20: d = 8.191134010407892e-8 Iteration 30: d = 1.0483558443979714e-9 Iteration 40: d = 1.3775204046480717e-11 Iteration 50: d = 1.822288942999488e-13 Iteration 60: d = 2.390824778621306e-15 Converged after 61 iterations. d = 1.5627225039538695e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013117331942192143 Iteration 10: d = 1.3434368486106413e-5 Iteration 20: d = 1.4548097983699903e-7 Iteration 30: d = 1.8023641391586678e-9 Iteration 40: d = 2.3294260416842003e-11 Iteration 50: d = 3.066943912435147e-13 Iteration 60: d = 4.075704619205661e-15 Converged after 62 iterations. d = 1.7161371552652709e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014478954424253898 Iteration 10: d = 2.0160006538110497e-5 Iteration 20: d = 2.540559279616479e-7 Iteration 30: d = 3.4700036455402373e-9 Iteration 40: d = 4.843887948664141e-11 Iteration 50: d = 6.806553502213568e-13 Iteration 60: d = 9.533429036277819e-15 Converged after 64 iterations. d = 1.7478301912766276e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014120317856975287 Iteration 10: d = 1.1511692376380593e-5 Iteration 20: d = 1.2665146873835456e-7 Iteration 30: d = 1.6584271164371108e-9 Iteration 40: d = 2.2572287765366143e-11 Iteration 50: d = 3.114587025300737e-13 Iteration 60: d = 4.3151597851918215e-15 Converged after 62 iterations. d = 1.8210299121746043e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8652.339472542199 Iteration 2: convergence error = 4817.79656196136 Iteration 3: convergence error = 1104.5071234849227 Iteration 4: convergence error = 320.88118187410555 Iteration 5: convergence error = 95.58355691635143 Iteration 6: convergence error = 28.984000226098033 Iteration 7: convergence error = 8.76937672198028 Iteration 8: convergence error = 2.642554969869934 Iteration 9: convergence error = 0.7944260593885701 Iteration 10: convergence error = 0.2385058365828172 Iteration 11: convergence error = 0.07155092444872935 Iteration 12: convergence error = 0.0214558584173119 Iteration 13: convergence error = 0.006432378345834877 Iteration 14: convergence error = 0.0019281358122498204 Iteration 15: convergence error = 0.0005779224986781628 Iteration 16: convergence error = 0.00017321361178801453 Iteration 17: convergence error = 5.191384548197675e-5 Iteration 18: convergence error = 1.555886319692945e-5 Iteration 19: convergence error = 4.663037088903366e-6 Iteration 20: convergence error = 1.3975225101603428e-6 Iteration 21: convergence error = 4.188320872344775e-7 Iteration 22: convergence error = 1.2539180715975817e-7 Iteration 23: convergence error = 3.661989467218518e-8 Iteration 24: convergence error = 1.0606299838400446e-8 Iteration 25: convergence error = 3.071590981562622e-9 Iteration 26: convergence error = 8.813003660179675e-10 Iteration 27: convergence error = 2.5852386897895485e-10 Iteration 28: convergence error = 7.139533408917487e-11 Iteration 29: convergence error = 2.0463630789890885e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.3288769391432 K, F = -7444.146467677451, relative_change = 0.03267112306085681 Iter 2: T = 936.733026992642 K, F = -6310.184235274736, relative_change = 0.0316292118181293 Iter 3: T = 908.1810774260025 K, F = -5347.44674633066, relative_change = 0.03048034898300189 Iter 5: T = 857.0703709347874 K, F = -3836.505868647091, relative_change = 0.02786741151771782 Iter 10: T = 762.0408525295741 K, F = -1661.176091041108, relative_change = 0.01994358651266964 Iter 15: T = 706.4267959774762 K, F = -711.2018939463196, relative_change = 0.011943340969730926 Iter 20: T = 677.8365522245966 K, F = -301.4187846940137, relative_change = 0.006113336777475915 Iter 25: T = 664.5077803329983 K, F = -126.88849942229527, relative_change = 0.0028233442004035165 Iter 30: T = 658.6408361163842 K, F = -53.22461837756621, relative_change = 0.0012348710236706445 Iter 35: T = 656.1310561660349 K, F = -22.28793578803082, relative_change = 0.0005265519982648545 Iter 40: T = 655.071207018546 K, F = -9.326194943700246, relative_change = 0.00022203060346631575 Iter 45: T = 654.6261449501437 K, F = -3.901226776534227, relative_change = 9.317809412811639e-5 Iter 50: T = 654.4396939232886 K, F = -1.6316976169853925, relative_change = 3.902484018556527e-5 Iter 55: T = 654.3616616034889 K, F = -0.6824230960828819, relative_change = 1.633058325594746e-5 Iter 60: T = 654.3290177003914 K, F = -0.2854023298929558, relative_change = 6.831383096593777e-6 Iter 65: T = 654.3153639056744 K, F = -0.11935950968710529, relative_change = 2.8572701126988942e-6 Iter 70: T = 654.3096534239628 K, F = -0.04991772053504834, relative_change = 1.19499768285192e-6 Iter 75: T = 654.3072651795411 K, F = -0.020876212777750758, relative_change = 4.997716073196984e-7 Iter 80: T = 654.3062663779721 K, F = -0.008730686027420886, relative_change = 2.0901208217798028e-7 Iter 85: T = 654.3058486656133 K, F = -0.003651277954072829, relative_change = 8.741163351903972e-8 Iter 90: T = 654.3056739730341 K, F = -0.0015270081841465277, relative_change = 3.655663883233976e-8 Iter 95: T = 654.3056009144618 K, F = -0.000638613082925843, relative_change = 1.528843163985417e-8 Iter 100: T = 654.3055703604857 K, F = -0.00026707562205163793, relative_change = 6.393806214384928e-9 Iter 105: T = 654.3055575824466 K, F = -0.00011169421564183324, relative_change = 2.6739663882337265e-9 Iter 110: T = 654.3055522385177 K, F = -4.67118561613411e-5, relative_change = 1.1182847513332973e-9 Iter 115: T = 654.3055500036228 K, F = -1.953545571342641e-5, relative_change = 4.676800364019342e-10 Iter 120: T = 654.305549068963 K, F = -8.169960975523693e-6, relative_change = 1.9558938007243225e-10 Iter 125: T = 654.3055486780771 K, F = -3.416775499920366e-6, relative_change = 8.179782079485947e-11 Iter 130: T = 654.305548514604 K, F = -1.4289354363650197e-6, relative_change = 3.420880443943965e-11 Iter 135: T = 654.3055484462376 K, F = -5.975983618511371e-7, relative_change = 1.4306542467775033e-11 Iter 140: T = 654.3055484176459 K, F = -2.499221298801757e-7, relative_change = 5.98315155087735e-12 Iter 145: T = 654.3055484056887 K, F = -1.0452159082685597e-7, relative_change = 2.502253476353268e-12 Iter 150: T = 654.3055484006878 K, F = -4.371183143225821e-8, relative_change = 1.0464640013402136e-12 Iter 155: T = 654.3055483985964 K, F = -1.8280207569887352e-8, relative_change = 4.3762932214018246e-13 Converged in 159 iterations to T = 654.3055483978416 K Iter 1: T = 970.3919347120883 K, F = -6746.2258403917685, relative_change = 0.02960806528791175 Iter 2: T = 942.9491155375017 K, F = -5713.822192785231, relative_change = 0.02828013938793583 Iter 3: T = 917.6264934913747 K, F = -4837.660316059858, relative_change = 0.026854706822321484 Iter 5: T = 873.1243430687305 K, F = -3463.6543559398856, relative_change = 0.023756896132994337 Iter 10: T = 794.1839203595853 K, F = -1490.7171464289713, relative_change = 0.015451294002704011 Iter 15: T = 751.211599094543 K, F = -634.5155892531249, relative_change = 0.00845159341953475 Iter 20: T = 730.3659763248567 K, F = -267.819490632106, relative_change = 0.004063385387597094 Iter 25: T = 720.9871718928028 K, F = -112.4900428310363, relative_change = 0.0018135421425230253 Iter 30: T = 716.9328509152407 K, F = -47.134282348923065, relative_change = 0.0007804441852352335 Iter 35: T = 715.2127813958355 K, F = -19.728174870190365, relative_change = 0.000330404649489904 Iter 40: T = 714.4890301526808 K, F = -8.253395469354478, relative_change = 0.0001388938871044015 Iter 45: T = 714.1855711390799 K, F = -3.452166929593485, relative_change = 5.821303841336875e-5 Iter 50: T = 714.0585243256867 K, F = -1.4438247632505037, relative_change = 2.4367487933164676e-5 Iter 55: T = 714.0053678882488 K, F = -0.6038400438360597, relative_change = 1.0194644941299299e-5 Iter 60: T = 713.9831330402858 K, F = -0.2525357918710244, relative_change = 4.26419959241586e-6 Iter 65: T = 713.9738334280697 K, F = -0.10561395183434019, relative_change = 1.7834576877080658e-6 Iter 70: T = 713.9699440909151 K, F = -0.04416909776320588, relative_change = 7.458840304298873e-7 Iter 75: T = 713.9683175012336 K, F = -0.018472058480093145, relative_change = 3.1194123442785736e-7 Iter 80: T = 713.9676372380794 K, F = -0.007725237960134468, relative_change = 1.3045818363910808e-7 Iter 85: T = 713.967352743218 K, F = -0.0032307872095392876, relative_change = 5.455928126498689e-8 Iter 90: T = 713.9672337639495 K, F = -0.0013511538711632465, relative_change = 2.2817362394150928e-8 Iter 95: T = 713.9671840053775 K, F = -0.0005650686991026665, relative_change = 9.542496852836787e-9 Iter 100: T = 713.9671631957448 K, F = -0.00023631848128335964, relative_change = 3.990786749347979e-9 Iter 105: T = 713.9671544929073 K, F = -9.883121354159474e-5, relative_change = 1.6689948165367935e-9 Iter 110: T = 713.9671508532765 K, F = -4.13323937041854e-5, relative_change = 6.979935796560629e-10 Iter 115: T = 713.9671493311394 K, F = -1.7285700822711192e-5, relative_change = 2.919092565247359e-10 Iter 120: T = 713.9671486945634 K, F = -7.229085646209832e-6, relative_change = 1.2207992299185382e-10 Iter 125: T = 713.9671484283399 K, F = -3.0232904248972403e-6, relative_change = 5.1055289834920674e-11 Iter 130: T = 713.9671483170019 K, F = -1.264377002874184e-6, relative_change = 2.1351946163912545e-11 Iter 135: T = 713.9671482704391 K, F = -5.287773425788345e-7, relative_change = 8.929635171535356e-12 Iter 140: T = 713.967148250966 K, F = -2.2114166486897346e-7, relative_change = 3.734491306173723e-12 Iter 145: T = 713.9671482428221 K, F = -9.248360000047029e-8, relative_change = 1.5618006692171677e-12 Iter 150: T = 713.9671482394162 K, F = -3.867924636136166e-8, relative_change = 6.531890286824385e-13 Iter 155: T = 713.9671482379919 K, F = -1.6177271855433162e-8, relative_change = 2.731908577370355e-13 Converged in 157 iterations to T = 713.9671482376904 K Iter 1: T = 974.4341160428831 K, F = -5825.2109790630575, relative_change = 0.02556588395711689 Iter 2: T = 951.0573276634618 K, F = -4928.309430712514, relative_change = 0.0239901169248394 Iter 3: T = 929.7947405887693 K, F = -4167.700244277994, relative_change = 0.02235678802552318 Iter 5: T = 893.2580937202662 K, F = -2976.4803906777433, relative_change = 0.019001983464907238 Iter 10: T = 831.726722329564 K, F = -1272.731384951789, relative_change = 0.0111592301031407 Iter 15: T = 800.500393581912 K, F = -538.9001663054431, relative_change = 0.00563063959646357 Iter 20: T = 786.0630095426795 K, F = -226.7396502498646, relative_change = 0.0025793546005482967 Iter 25: T = 779.7356358055606 K, F = -95.0833288188717, relative_change = 0.0011237220927184936 Iter 30: T = 777.0343520036325 K, F = -39.811715976498775, relative_change = 0.0004783162803022806 Iter 35: T = 775.8946420395719 K, F = -16.658031161134385, relative_change = 0.0002015386495267796 Iter 40: T = 775.4162246964438 K, F = -6.968047731270884, relative_change = 8.455131015608134e-5 Iter 45: T = 775.2158319667044 K, F = -2.914376837511443, relative_change = 3.5407008363289534e-5 Iter 50: T = 775.1319704568817 K, F = -1.2188720332004666, relative_change = 1.4815807063668106e-5 Iter 55: T = 775.0968889626392 K, F = -0.5097546858990174, relative_change = 6.1975781328772666e-6 Iter 60: T = 775.0822157812819 K, F = -0.21318686976754486, relative_change = 2.59215150209946e-6 Iter 65: T = 775.0760789874471 K, F = -0.0891575349582775, relative_change = 1.0841125009340363e-6 Iter 70: T = 775.0735124555243 K, F = -0.037286787863423876, relative_change = 4.533964535296321e-7 Iter 75: T = 775.072439092224 K, F = -0.015593787322389474, relative_change = 1.8961715106491874e-7 Iter 80: T = 775.0719901972994 K, F = -0.00652150937077034, relative_change = 7.93003913614103e-8 Iter 85: T = 775.0718024638057 K, F = -0.0027273733263537547, relative_change = 3.3164411686963924e-8 Iter 90: T = 775.0717239513684 K, F = -0.0011406201356572998, relative_change = 1.386976019608827e-8 Iter 95: T = 775.0716911165212 K, F = -0.0004770209694833216, relative_change = 5.800500607439479e-9 Iter 100: T = 775.0716773845945 K, F = -0.00019949586901080174, relative_change = 2.4258388645790178e-9 Iter 105: T = 775.0716716417384 K, F = -8.343155403700564e-5, relative_change = 1.0145148090470641e-9 Iter 110: T = 775.0716692400074 K, F = -3.4892071606673625e-5, relative_change = 4.242822070635231e-10 Iter 115: T = 775.0716682355747 K, F = -1.4592281153413822e-5, relative_change = 1.7743988840372467e-10 Iter 120: T = 775.071667815509 K, F = -6.102665388252326e-6, relative_change = 7.420747015950152e-11 Iter 125: T = 775.0716676398325 K, F = -2.5522077500284013e-6, relative_change = 3.103445275240734e-11 Iter 130: T = 775.0716675663625 K, F = -1.0673618165979448e-6, relative_change = 1.2978955134633552e-11 Iter 135: T = 775.0716675356365 K, F = -4.463838699786393e-7, relative_change = 5.427959040952581e-12 Iter 140: T = 775.0716675227866 K, F = -1.8668370793673006e-7, relative_change = 2.27004510808646e-12 Iter 145: T = 775.0716675174126 K, F = -7.807448620944513e-8, relative_change = 9.493737158468713e-13 Iter 150: T = 775.0716675151651 K, F = -3.2653052373099456e-8, relative_change = 3.970560828598789e-13 Converged in 154 iterations to T = 775.0716675143539 K Iter 1: T = 970.3313368082127 K, F = -6760.033130433308, relative_change = 0.02966866319178733 Iter 2: T = 942.8267459354566 K, F = -5725.61095422635, relative_change = 0.0283455659210482 Iter 3: T = 917.4415450522933 K, F = -4847.727915269418, relative_change = 0.02692456593175721 Iter 5: T = 872.8136941791838 K, F = -3470.998970181839, relative_change = 0.023833680934680853 Iter 10: T = 793.5822502188563 K, F = -1494.0410962234498, relative_change = 0.015527922643158571 Iter 15: T = 750.39793807686 K, F = -635.99166704157, relative_change = 0.008506177466658304 Iter 20: T = 729.4302373703929 K, F = -268.4593272555245, relative_change = 0.004093534827376169 Iter 25: T = 719.9915210576486 K, F = -112.7624863860432, relative_change = 0.0018279043334061282 Iter 30: T = 715.9102450084205 K, F = -47.249157796876226, relative_change = 0.0007868051248873696 Iter 35: T = 714.1785383121235 K, F = -19.7763880791926, relative_change = 0.00033313093368369097 Iter 40: T = 713.4498539593724 K, F = -8.273589256209412, relative_change = 0.00014004592322271515 Iter 45: T = 713.1443200654486 K, F = -3.46061757894131, relative_change = 5.869693385302733e-5 Iter 50: T = 713.0164034345796 K, F = -1.4473598673874672, relative_change = 2.457022787230171e-5 Iter 55: T = 712.9628828645951 K, F = -0.6053186315259662, relative_change = 1.0279497888560607e-5 Iter 60: T = 712.9404956682226 K, F = -0.2531541837613448, relative_change = 4.299697431020795e-6 Iter 65: T = 712.9311323309126 K, F = -0.10587257575595166, relative_change = 1.7983052887780458e-6 Iter 70: T = 712.9272163412086 K, F = -0.04427725826025952, relative_change = 7.520938210746609e-7 Iter 75: T = 712.9255786047709 K, F = -0.018517292645554684, relative_change = 3.14538303639393e-7 Iter 80: T = 712.9248936798504 K, F = -0.007744155455060575, relative_change = 1.3154431959536572e-7 Iter 85: T = 712.9246072353722 K, F = -0.003238698738787793, relative_change = 5.501351818492068e-8 Iter 90: T = 712.9244874407487 K, F = -0.0013544625683290512, relative_change = 2.3007330028602775e-8 Iter 95: T = 712.9244373411851 K, F = -0.0005664524345677657, relative_change = 9.621943620136443e-9 Iter 100: T = 712.9244163889457 K, F = -0.00023689717554176148, relative_change = 4.0240123383347615e-9 Iter 105: T = 712.9244076264682 K, F = -9.907322797186868e-5, relative_change = 1.6828901154074032e-9 Iter 110: T = 712.9244039618955 K, F = -4.143360696906573e-5, relative_change = 7.038047588414603e-10 Iter 115: T = 712.9244024293273 K, F = -1.7328030078589407e-5, relative_change = 2.943395723328039e-10 Iter 120: T = 712.9244017883891 K, F = -7.2467907171747115e-6, relative_change = 1.2309635197622622e-10 Iter 125: T = 712.924401520341 K, F = -3.030694963768177e-6, relative_change = 5.14803737572074e-11 Iter 130: T = 712.9244014082401 K, F = -1.2674735224704747e-6, relative_change = 2.1529718923565156e-11 Iter 135: T = 712.9244013613582 K, F = -5.300718108891544e-7, relative_change = 9.003972784439478e-12 Iter 140: T = 712.9244013417515 K, F = -2.216820812472875e-7, relative_change = 3.765564185089688e-12 Iter 145: T = 712.9244013335518 K, F = -9.270969192343159e-8, relative_change = 1.5747970858648793e-12 Iter 150: T = 712.9244013301227 K, F = -3.877338705660094e-8, relative_change = 6.586174075270769e-13 Iter 155: T = 712.9244013286886 K, F = -1.6217062026591123e-8, relative_change = 2.7546830856354584e-13 Converged in 157 iterations to T = 712.9244013283851 K Iter 1: T = 969.2849550250493 K, F = -6998.452215093138, relative_change = 0.03071504497495077 Iter 2: T = 940.7098701402776 K, F = -5929.234438191004, relative_change = 0.02948058229587728 Iter 3: T = 914.2358498361788 K, F = -5021.684033084704, relative_change = 0.028142598631553727 Iter 5: T = 867.4061879184377 K, F = -3598.0218992928417, relative_change = 0.02518747975894159 Iter 10: T = 782.9867335789178 K, F = -1551.7307022380032, relative_change = 0.01692204012886553 Iter 15: T = 735.9261736508192 K, F = -661.7197470374109, relative_change = 0.009527764122253306 Iter 20: T = 712.6819622463514 K, F = -279.64912154088165, relative_change = 0.0046684854800893285 Iter 25: T = 702.1128305033083 K, F = -117.53634725802726, relative_change = 0.00210452650615173 Iter 30: T = 697.5199743121854 K, F = -49.263942709145525, relative_change = 0.0009098894102171489 Iter 35: T = 695.5668163510043 K, F = -20.622348171080844, relative_change = 0.00038599213808392536 Iter 40: T = 694.7441481773627 K, F = -8.627978107221699, relative_change = 0.00016240272740428957 Iter 45: T = 694.3990650108141 K, F = -3.6089327452503377, relative_change = 6.809101925800423e-5 Iter 50: T = 694.2545653729062 K, F = -1.5094055614795219, relative_change = 2.8506718058560153e-5 Iter 55: T = 694.1941020409854 K, F = -0.6312701257936526, relative_change = 1.1927147303833554e-5 Iter 60: T = 694.1688099762904 K, F = -0.2640079763229001, relative_change = 4.9890025627447035e-6 Iter 65: T = 694.158231556941 K, F = -0.11041186074906284, relative_change = 2.0866226513308843e-6 Iter 70: T = 694.1538073649325 K, F = -0.04617565882548691, relative_change = 8.726788840837714e-7 Iter 75: T = 694.1519570851406 K, F = -0.01931122947178554, relative_change = 3.6496969371479455e-7 Iter 80: T = 694.1511832708123 K, F = -0.00807618984813907, relative_change = 1.526355524792618e-7 Iter 85: T = 694.1508596515057 K, F = -0.0033775595787185475, relative_change = 6.38341626858635e-8 Iter 90: T = 694.1507243098872 K, F = -0.0014125358459645687, relative_change = 2.669623572636254e-8 Iter 95: T = 694.150667708378 K, F = -0.0005907393763679991, relative_change = 1.1164689244456866e-8 Iter 100: T = 694.150644036946 K, F = -0.0002470542642492024, relative_change = 4.669207175003539e-9 Iter 105: T = 694.1506341372697 K, F = -0.00010332104447430268, relative_change = 1.9527183487869315e-9 Iter 110: T = 694.1506299971065 K, F = -4.3210094559209544e-5, relative_change = 8.166501541283178e-10 Iter 115: T = 694.1506282656409 K, F = -1.8070976935957717e-5, relative_change = 3.415328391618812e-10 Iter 120: T = 694.1506275415213 K, F = -7.557498193810908e-6, relative_change = 1.4283310952473644e-10 Iter 125: T = 694.1506272386858 K, F = -3.1606364878644655e-6, relative_change = 5.973452153073963e-11 Iter 130: T = 694.1506271120364 K, F = -1.3218152172811415e-6, relative_change = 2.4981676927446243e-11 Iter 135: T = 694.1506270590702 K, F = -5.527993506282414e-7, relative_change = 1.0447643972899214e-11 Iter 140: T = 694.1506270369191 K, F = -2.3118856218307116e-7, relative_change = 4.369353520254976e-12 Iter 145: T = 694.1506270276552 K, F = -9.668592981793012e-8, relative_change = 1.827317942751043e-12 Iter 150: T = 694.1506270237809 K, F = -4.04351341298792e-8, relative_change = 7.642047426567182e-13 Iter 155: T = 694.1506270221606 K, F = -1.6910012612392222e-8, relative_change = 3.195911702780663e-13 Converged in 158 iterations to T = 694.1506270216862 K Iter 1: T = 963.594301655728 K, F = -8295.072998501813, relative_change = 0.036405698344272 Iter 2: T = 929.0684072644511 K, F = -7038.58561410612, relative_change = 0.03583032229637678 Iter 3: T = 896.3889093378464 K, F = -5971.497463178132, relative_change = 0.03517447980265118 Iter 5: T = 836.4506036018205 K, F = -4295.740932394912, relative_change = 0.0335922656606715 Iter 10: T = 716.9783543677357 K, F = -1877.0849439973597, relative_change = 0.027841392222335004 Iter 15: T = 637.5801213094763 K, F = -812.7288907742458, relative_change = 0.019911910643245545 Iter 20: T = 591.1383920519282 K, F = -347.93962480819545, relative_change = 0.011916259689248468 Iter 25: T = 567.2743762293651 K, F = -147.4575035628713, relative_change = 0.006096380259032745 Iter 30: T = 556.1522717191126 K, F = -62.074105083299585, relative_change = 0.002814694314073372 Iter 35: T = 551.2574052663564 K, F = -26.037343243165854, relative_change = 0.0012309134080937705 Iter 40: T = 549.1636166858628 K, F = -10.903153391769573, relative_change = 0.0005248311829041003 Iter 45: T = 548.2794639074027 K, F = -4.56232238942749, relative_change = 0.00022129894577642883 Iter 50: T = 547.9081870331851 K, F = -1.9084568373345965, relative_change = 9.28699703163902e-5 Iter 55: T = 547.7526479306333 K, F = -0.7982164686839118, relative_change = 3.889560270859531e-5 Iter 60: T = 547.6875528342076 K, F = -0.3338371484961183, relative_change = 1.6276468552614827e-5 Iter 65: T = 547.6603210939774 K, F = -0.1396170427068642, relative_change = 6.808740114237864e-6 Iter 70: T = 547.6489310211726 K, F = -0.05838992754562655, relative_change = 2.8477985228410677e-6 Iter 75: T = 547.6441673058661 K, F = -0.024419437242473946, relative_change = 1.1910361966982187e-6 Iter 80: T = 547.6421750193592 K, F = -0.010212512914671651, relative_change = 4.981148045349399e-7 Iter 85: T = 547.6413418136752 K, F = -0.00427099707247558, relative_change = 2.083191766442575e-7 Iter 90: T = 547.6409933557654 K, F = -0.0017861823678423372, relative_change = 8.712185025549283e-8 Iter 95: T = 547.6408476262714 K, F = -0.0007470028652286909, relative_change = 3.6435447682023486e-8 Iter 100: T = 547.6407866804155 K, F = -0.00031240553069949994, relative_change = 1.5237747979339936e-8 Iter 105: T = 547.6407611921236 K, F = -0.000130651726048453, relative_change = 6.3726097014483435e-9 Iter 110: T = 547.6407505326143 K, F = -5.464011273337288e-5, relative_change = 2.6651017578640875e-9 Iter 115: T = 547.6407460746799 K, F = -2.2851147310321007e-5, relative_change = 1.1145774080537496e-9 Iter 120: T = 547.6407442103186 K, F = -9.556622955875227e-6, relative_change = 4.661296026800649e-10 Iter 125: T = 547.6407434306203 K, F = -3.996693589441991e-6, relative_change = 1.949409552003848e-10 Iter 130: T = 547.6407431045411 K, F = -1.6714641872805913e-6, relative_change = 8.152659664381915e-11 Iter 135: T = 547.640742968171 K, F = -6.990263891892834e-7, relative_change = 3.4095401490534626e-11 Iter 140: T = 547.6407429111395 K, F = -2.923418504496844e-7, relative_change = 1.4259136597217466e-11 Iter 145: T = 547.6407428872881 K, F = -1.2226030648987418e-7, relative_change = 5.963314552249901e-12 Iter 150: T = 547.6407428773132 K, F = -5.113029505343647e-8, relative_change = 2.4939086227849588e-12 Iter 155: T = 547.6407428731417 K, F = -2.138391522188421e-8, relative_change = 1.0430123766537753e-12 Iter 160: T = 547.640742871397 K, F = -8.943099066849314e-9, relative_change = 4.3620463866037683e-13 Converged in 164 iterations to T = 547.6407428707673 K Iter 1: T = 966.9587460269416 K, F = -7528.481148107955, relative_change = 0.03304125397305831 Iter 2: T = 935.9776296975379 K, F = -6382.312009066806, relative_change = 0.032039749841138034 Iter 3: T = 907.0261302117102 K, F = -5409.172454671152, relative_change = 0.03093182846173718 Iter 5: T = 855.0800631933918 K, F = -3881.7868300492983, relative_change = 0.028397690844168755 Iter 10: T = 757.893511384262 K, F = -1682.141231248585, relative_change = 0.020586790440673925 Iter 15: T = 700.4267672837792 K, F = -720.8013425634529, relative_change = 0.012496575807221145 Iter 20: T = 670.6144760510252 K, F = -305.6905578408437, relative_change = 0.006462270719202988 Iter 25: T = 656.632631179735 K, F = -128.73694009087856, relative_change = 0.0030022019774672715 Iter 30: T = 650.4586325357822 K, F = -54.01033107327809, relative_change = 0.0013169071306701628 Iter 35: T = 647.8135641134164 K, F = -22.618909494922537, relative_change = 0.0005622625929386566 Iter 40: T = 646.6958524822652 K, F = -9.465041204654355, relative_change = 0.0002372215307088382 Iter 45: T = 646.226360841884 K, F = -3.959369975748123, relative_change = 9.957680319428271e-5 Iter 50: T = 646.0296522316947 K, F = -1.656027168928939, relative_change = 4.1708909886063556e-5 Iter 55: T = 645.947322888777 K, F = -0.6926003493601651, relative_change = 1.7454506435640852e-5 Iter 60: T = 645.9128806610215 K, F = -0.2896589891355227, relative_change = 7.301668701805897e-6 Iter 65: T = 645.8984745651912 K, F = -0.1211397672234864, relative_change = 3.0539924839280807e-6 Iter 70: T = 645.892449423631 K, F = -0.050662258057288245, relative_change = 1.2772769054571755e-6 Iter 75: T = 645.8899295779612 K, F = -0.021187589456634015, relative_change = 5.341830862601463e-7 Iter 80: T = 645.8888757379996 K, F = -0.008860907857730915, relative_change = 2.234036054712622e-7 Iter 85: T = 645.8884350077216 K, F = -0.003705738346373333, relative_change = 9.343038099049533e-8 Iter 90: T = 645.8882506887375 K, F = -0.0015497841825540815, relative_change = 3.907375800062459e-8 Iter 95: T = 645.8881736042813 K, F = -0.0006481382786602263, relative_change = 1.6341122155235357e-8 Iter 100: T = 645.8881413666315 K, F = -0.00027105917366171406, relative_change = 6.834054192621113e-9 Iter 105: T = 645.8881278844598 K, F = -0.00011336018458807384, relative_change = 2.8580833892697527e-9 Iter 110: T = 645.8881222460542 K, F = -4.7408583671304516e-5, relative_change = 1.1952846726892652e-9 Iter 115: T = 645.8881198880056 K, F = -1.982683549556219e-5, relative_change = 4.998823240958454e-10 Iter 120: T = 645.8881189018414 K, F = -8.291819495243047e-6, relative_change = 2.0905676204978943e-10 Iter 125: T = 645.8881184894158 K, F = -3.4677380945646874e-6, relative_change = 8.743003876365571e-11 Iter 130: T = 645.8881183169345 K, F = -1.4502494760648688e-6, relative_change = 3.6564286175265044e-11 Iter 135: T = 645.8881182448008 K, F = -6.065116590070474e-7, relative_change = 1.5291621370231216e-11 Iter 140: T = 645.8881182146336 K, F = -2.5365060291049346e-7, relative_change = 6.395143313898903e-12 Iter 145: T = 645.8881182020173 K, F = -1.0607960920783199e-7, relative_change = 2.6745227326305713e-12 Iter 150: T = 645.888118196741 K, F = -4.4363597795360477e-8, relative_change = 1.1185132722078843e-12 Iter 155: T = 645.8881181945344 K, F = -1.8552763048074183e-8, relative_change = 4.677598918252457e-13 Converged in 160 iterations to T = 645.8881181936116 K Iter 1: T = 965.1958312586363 K, F = -7930.162955031215, relative_change = 0.03480416874136372 Iter 2: T = 932.3669578169355 K, F = -6726.044998096171, relative_change = 0.03401265564822346 Iter 3: T = 901.483933812434 K, F = -5703.540774106327, relative_change = 0.0331232501812502 Iter 5: T = 845.4423480457012 K, F = -4098.154338522427, relative_change = 0.031032177907476553 Iter 10: T = 737.2292287896571 K, F = -1783.2443858666531, relative_change = 0.02403411972689632 Iter 15: T = 669.6007210097399 K, F = -767.7894821173257, relative_change = 0.015728860236562132 Iter 20: T = 632.6208313157099 K, F = -326.9192618235605, relative_change = 0.008649964146274275 Iter 25: T = 614.6223165223847 K, F = -138.01906097009265, relative_change = 0.00417320299198095 Iter 30: T = 606.5089099289831 K, F = -57.97793901201606, relative_change = 0.001865918722521614 Iter 35: T = 602.9982975040163 K, F = -24.294594871803795, relative_change = 0.0008036545887422209 Iter 40: T = 601.508268745532 K, F = -10.168811901223696, relative_change = 0.0003403550399198138 Iter 45: T = 600.8811968481473 K, F = -4.254225019390325, relative_change = 0.00014309903262752478 Iter 50: T = 600.61825379863 K, F = -1.7794323690801788, relative_change = 5.997942535297971e-5 Iter 55: T = 600.5081659011223 K, F = -0.744226243874203, relative_change = 2.5107573207373773e-5 Iter 60: T = 600.4621044518609 K, F = -0.31125242071282366, relative_change = 1.0504395993474173e-5 Iter 65: T = 600.4428372619309 K, F = -0.13017089970275547, relative_change = 4.393782940104544e-6 Iter 70: T = 600.4347788383387 K, F = -0.054439273248410136, relative_change = 1.837658297464168e-6 Iter 75: T = 600.4314085948369 K, F = -0.022767197662638683, relative_change = 7.68552650754012e-7 Iter 80: T = 600.4299990987248 K, F = -0.009521521557797341, relative_change = 3.21421745715269e-7 Iter 85: T = 600.4294096271145 K, F = -0.003982015354458968, relative_change = 1.34423085773111e-7 Iter 90: T = 600.4291631024346 K, F = -0.001665326607845019, relative_change = 5.62174575202421e-8 Iter 95: T = 600.4290600027623 K, F = -0.0006964595166578103, relative_change = 2.3510832719316827e-8 Iter 100: T = 600.4290168852293 K, F = -0.0002912676942764536, relative_change = 9.83251461732493e-9 Iter 105: T = 600.4289988529588 K, F = -0.00012181162931723666, relative_change = 4.112075663073329e-9 Iter 110: T = 600.4289913116473 K, F = -5.094307866798653e-5, relative_change = 1.7197192722334309e-9 Iter 115: T = 600.4289881577807 K, F = -2.130500412717007e-5, relative_change = 7.192071634999399e-10 Iter 120: T = 600.428986838796 K, F = -8.910007476325976e-6, relative_change = 3.0078103869781604e-10 Iter 125: T = 600.4289862871809 K, F = -3.726271495696487e-6, relative_change = 1.2579022170585506e-10 Iter 130: T = 600.4289860564888 K, F = -1.558371198584485e-6, relative_change = 5.260697164845147e-11 Iter 135: T = 600.4289859600106 K, F = -6.517286434970515e-7, relative_change = 2.2000836725103746e-11 Iter 140: T = 600.4289859196623 K, F = -2.7256021317700885e-7, relative_change = 9.20099616553443e-12 Iter 145: T = 600.4289859027882 K, F = -1.139887613188506e-7, relative_change = 3.847994333890412e-12 Iter 150: T = 600.4289858957313 K, F = -4.7671971370455424e-8, relative_change = 1.6092944041740972e-12 Iter 155: T = 600.4289858927799 K, F = -1.9936297335210185e-8, relative_change = 6.730028320611706e-13 Iter 160: T = 600.4289858915456 K, F = -8.336997259217327e-9, relative_change = 2.814375544291729e-13 Converged in 162 iterations to T = 600.4289858912844 K Iter 1: T = 980.0555193259951 K, F = -4544.36889367099, relative_change = 0.01994448067400488 Iter 2: T = 962.1584838464133 K, F = -3838.7314996702053, relative_change = 0.01826124655865405 Iter 3: T = 946.1886089076376 K, F = -3241.1522272090483, relative_change = 0.016597967182010558 Iter 5: T = 919.5090443060878 K, F = -2307.41452869403, relative_change = 0.013420414166696877 Iter 10: T = 877.1157554692059 K, F = -979.6703259553103, relative_change = 0.007061022966968118 Iter 15: T = 857.0291202422708 K, F = -412.8510673949585, relative_change = 0.003314086256623857 Iter 20: T = 848.1102264540211 K, F = -173.2658492969194, relative_change = 0.0014611018714759368 Iter 25: T = 844.2791813878599 K, F = -72.57280422261407, relative_change = 0.0006252571485717462 Iter 30: T = 842.6584465884469 K, F = -30.370600286185425, relative_change = 0.00026406046673840865 Iter 35: T = 841.9773245360034 K, F = -12.704837129820493, relative_change = 0.00011088933214832828 Iter 40: T = 841.6918869096615 K, F = -5.313927034215118, relative_change = 4.645549842668456e-5 Iter 45: T = 841.5724109237417 K, F = -2.2224550157813465, relative_change = 1.9442316692382613e-5 Iter 50: T = 841.5224266738066 K, F = -0.9294760019655434, relative_change = 8.133472937139829e-6 Iter 55: T = 841.5015195192889 K, F = -0.38872124844035394, relative_change = 3.4019466478419752e-6 Iter 60: T = 841.4927753475044 K, F = -0.1625684428422729, relative_change = 1.4228101351449781e-6 Iter 65: T = 841.4891183342166 K, F = -0.06798816473731795, relative_change = 5.95049382308242e-7 Iter 70: T = 841.4875889107561 K, F = -0.02843348000886703, relative_change = 2.488590653653494e-7 Iter 75: T = 841.4869492846562 K, F = -0.01189122397723441, relative_change = 1.0407623667541411e-7 Iter 80: T = 841.4866817848679 K, F = -0.004973052416442636, relative_change = 4.352599569827753e-8 Iter 85: T = 841.4865699131716 K, F = -0.002079790003839621, relative_change = 1.8203103543160857e-8 Iter 90: T = 841.4865231270765 K, F = -0.0008697930322756342, relative_change = 7.612757436943066e-9 Iter 95: T = 841.48650356057 K, F = -0.00036375783456832345, relative_change = 3.183746436428589e-9 Iter 100: T = 841.4864953776229 K, F = -0.0001521278699936346, relative_change = 1.3314808379966141e-9 Iter 105: T = 841.4864919554166 K, F = -6.362169355433878e-5, relative_change = 5.568412118854041e-10 Iter 110: T = 841.486490524209 K, F = -2.6607351039098504e-5, relative_change = 2.328776379553487e-10 Iter 115: T = 841.486489925661 K, F = -1.1127512767439285e-5, relative_change = 9.739221670610852e-11 Iter 120: T = 841.486489675341 K, F = -4.653657726727545e-6, relative_change = 4.073057941264824e-11 Iter 125: T = 841.4864895706542 K, F = -1.946213754822068e-6, relative_change = 1.703400176735098e-11 Iter 130: T = 841.4864895268729 K, F = -8.139307998700218e-7, relative_change = 7.123831415007886e-12 Iter 135: T = 841.4864895085631 K, F = -3.4039622587300755e-7, relative_change = 2.979277019695921e-12 Iter 140: T = 841.4864895009057 K, F = -1.4235760503744643e-7, relative_change = 1.2459678135315663e-12 Iter 145: T = 841.4864894977032 K, F = -5.9534819074613665e-8, relative_change = 5.210713423650644e-13 Converged in 150 iterations to T = 841.486489496364 K Iter 1: T = 976.3970589980848 K, F = -5377.952559479543, relative_change = 0.023602941001915158 Iter 2: T = 954.9565755245239 K, F = -4547.463945087742, relative_change = 0.021958775147849892 Iter 3: T = 935.5872453822504 K, F = -3843.4830758970184, relative_change = 0.02028294337010521 Iter 5: T = 902.6423471445954 K, F = -2741.776573833688, relative_change = 0.016929378015014193 Iter 10: T = 848.3623618987435 K, F = -1169.2145426402597, relative_change = 0.009533373702577069 Iter 15: T = 821.5496496845307 K, F = -494.12473234623303, relative_change = 0.004671723564510465 Iter 20: T = 809.3571940557732 K, F = -207.68109007361076, relative_change = 0.0021061044777155613 Iter 25: T = 804.0587578025608 K, F = -87.04717899365032, relative_change = 0.0009105956533557481 Iter 30: T = 801.80551424645 K, F = -36.43879350578545, relative_change = 0.00038629622203281277 Iter 35: T = 800.8564447276897 K, F = -15.245267665223972, relative_change = 0.00016253147410439568 Iter 40: T = 800.4583392155378 K, F = -6.376830442993188, relative_change = 6.814514188098726e-5 Iter 45: T = 800.2916368998532 K, F = -2.6670554940646922, relative_change = 2.852940189665901e-5 Iter 50: T = 800.2218832171122 K, F = -1.1154275179715971, relative_change = 1.193664256565095e-5 Iter 55: T = 800.1927049544043 K, F = -0.46649089317381043, relative_change = 4.992975101986531e-6 Iter 60: T = 800.1805011297494 K, F = -0.195093074380015, relative_change = 2.088284278426615e-6 Iter 65: T = 800.1753971474363 K, F = -0.08159043056785886, relative_change = 8.733738425305626e-7 Iter 70: T = 800.173262566604 K, F = -0.03412212340629295, relative_change = 3.652603417564007e-7 Iter 75: T = 800.1723698533779 K, F = -0.014270284923046717, relative_change = 1.5275710639397182e-7 Iter 80: T = 800.1719965089909 K, F = -0.005968004523160042, relative_change = 6.388499823721582e-8 Iter 85: T = 800.1718403717251 K, F = -0.002495890929089861, relative_change = 2.6717495793676435e-8 Iter 90: T = 800.1717750732238 K, F = -0.0010438114232677043, relative_change = 1.1173580472314096e-8 Iter 95: T = 800.171747764605 K, F = -0.00043653440752100536, relative_change = 4.672925602491179e-9 Iter 100: T = 800.1717363438134 K, F = -0.0001825639024352066, relative_change = 1.954273425088023e-9 Iter 105: T = 800.171731567502 K, F = -7.63504060647957e-5, relative_change = 8.173005277462682e-10 Iter 110: T = 800.1717295699914 K, F = -3.193065127371497e-5, relative_change = 3.4180484155282765e-10 Iter 115: T = 800.1717287346087 K, F = -1.3353780818348149e-5, relative_change = 1.4294687948293006e-10 Iter 120: T = 800.1717283852416 K, F = -5.584710953132621e-6, relative_change = 5.978209587857904e-11 Iter 125: T = 800.1717282391321 K, F = -2.3355937912583613e-6, relative_change = 2.5001596905474816e-11 Iter 130: T = 800.1717281780273 K, F = -9.767717638053952e-7, relative_change = 1.04559508625145e-11 Iter 135: T = 800.1717281524726 K, F = -4.0849708582424427e-7, relative_change = 4.3727978385328385e-12 Iter 140: T = 800.1717281417854 K, F = -1.7083841252762966e-7, relative_change = 1.82875684309807e-12 Iter 145: T = 800.1717281373159 K, F = -7.144906954970054e-8, relative_change = 7.648336983601251e-13 Iter 150: T = 800.1717281354466 K, F = -2.988132263848087e-8, relative_change = 3.198676014925298e-13 Converged in 153 iterations to T = 800.1717281348994 K Iter 1: T = 980.8312131784395 K, F = -4367.626311516203, relative_change = 0.019168786821560542 Iter 2: T = 963.6746966946009 K, F = -3688.641080731751, relative_change = 0.017491813324580004 Iter 3: T = 948.4047958773003 K, F = -3113.761599454932, relative_change = 0.01584549316245018 Iter 5: T = 922.9871432928883 K, F = -2215.8109154472313, relative_change = 0.012730051971544318 Iter 10: T = 882.8810851967487 K, F = -939.9878137231058, relative_change = 0.0066117405367097 Iter 15: T = 864.0232117134026 K, F = -395.9281071042347, relative_change = 0.0030794838837925826 Iter 20: T = 855.6846312972878 K, F = -166.12162826313968, relative_change = 0.0013525047285115365 Iter 25: T = 852.1098970554638 K, F = -69.57245842369308, relative_change = 0.0005777879817619161 Iter 30: T = 850.5989104407172 K, F = -29.11355668334601, relative_change = 0.0002438313217441007 Iter 35: T = 849.9641472165118 K, F = -12.178725434049062, relative_change = 0.0001023619465251183 Iter 40: T = 849.6981790481341 K, F = -5.0938303078730955, relative_change = 4.287736703548631e-5 Iter 45: T = 849.5868597787942 K, F = -2.1303955715932967, relative_change = 1.7943814507029895e-5 Iter 50: T = 849.5402892818518 K, F = -0.8909734782867704, relative_change = 7.506416215102455e-6 Iter 55: T = 849.5208102401969 K, F = -0.37261865446150044, relative_change = 3.139640121015272e-6 Iter 60: T = 849.5126633993576 K, F = -0.15583407947794248, relative_change = 1.3130992308635644e-6 Iter 65: T = 849.5092562104902 K, F = -0.06517176196470964, relative_change = 5.491650159299885e-7 Iter 70: T = 849.5078312689446 K, F = -0.027255624708963255, relative_change = 2.2966933326503937e-7 Iter 75: T = 849.507235338842 K, F = -0.011398630472772675, relative_change = 9.605080172548295e-8 Iter 80: T = 849.5069861133135 K, F = -0.004767043865392173, relative_change = 4.016965246974069e-8 Iter 85: T = 849.5068818841437 K, F = -0.0019936347560995937, relative_change = 1.6799438886850875e-8 Iter 90: T = 849.5068382942466 K, F = -0.0008337618776064204, relative_change = 7.025727801041907e-9 Iter 95: T = 849.5068200644287 K, F = -0.0003486891769324263, relative_change = 2.9382435925659184e-9 Iter 100: T = 849.5068124405008 K, F = -0.00014582597968981759, relative_change = 1.2288086270172282e-9 Iter 105: T = 849.5068092520829 K, F = -6.0986165705267936e-5, relative_change = 5.139024476019575e-10 Iter 110: T = 849.5068079186485 K, F = -2.5505141524773123e-5, relative_change = 2.1492013151502294e-10 Iter 115: T = 849.5068073609903 K, F = -1.066655439219133e-5, relative_change = 8.988216268945042e-11 Iter 120: T = 849.506807127771 K, F = -4.46088288486024e-6, relative_change = 3.758981457153815e-11 Iter 125: T = 849.5068070302359 K, F = -1.8655946758538988e-6, relative_change = 1.5720510889747354e-11 Iter 130: T = 849.5068069894455 K, F = -7.802131427592229e-7, relative_change = 6.574498399155506e-12 Iter 135: T = 849.5068069723865 K, F = -3.2629199653300134e-7, relative_change = 2.7495130388114975e-12 Iter 140: T = 849.5068069652523 K, F = -1.3645949459295537e-7, relative_change = 1.1498815896638542e-12 Iter 145: T = 849.5068069622686 K, F = -5.7067125691645515e-8, relative_change = 4.808785010137457e-13 Converged in 150 iterations to T = 849.5068069610207 K Iter 1: T = 967.3453929748819 K, F = -7440.38327322358, relative_change = 0.0326546070251181 Iter 2: T = 936.7667128807867 K, F = -6306.966065834696, relative_change = 0.03161092234083667 Iter 3: T = 908.2325443433532 K, F = -5344.693042079227, relative_change = 0.030460271639759697 Iter 5: T = 857.1589209154056 K, F = -3834.486499296713, relative_change = 0.02784392710680398 Iter 10: T = 762.2244716099334 K, F = -1660.2425762272524, relative_change = 0.01991546706670223 Iter 15: T = 706.691131824701 K, F = -710.7754642486938, relative_change = 0.01191948487872496 Iter 20: T = 678.1535818622226 K, F = -301.2294448385917, relative_change = 0.006098447452064563 Iter 25: T = 664.8527757442275 K, F = -126.80668923019958, relative_change = 0.0028157587225372616 Iter 30: T = 658.9989312282812 K, F = -53.18986975291639, relative_change = 0.0012314022625653082 Iter 35: T = 656.4949128680272 K, F = -22.273303367817366, relative_change = 0.0005250440751940546 Iter 40: T = 655.4375260215484 K, F = -9.320057451857414, relative_change = 0.00022138952238675964 Iter 45: T = 654.9935031921901 K, F = -3.898656809247937, relative_change = 9.290812529309326e-5 Iter 50: T = 654.8074884637441 K, F = -1.63062226422264, relative_change = 3.891160800104651e-5 Iter 55: T = 654.7296389037298 K, F = -0.6819732722448659, relative_change = 1.6283170654042706e-5 Iter 60: T = 654.697071484583 K, F = -0.28521419095330275, relative_change = 6.811544501206774e-6 Iter 65: T = 654.6834496854048 K, F = -0.1192808247195859, relative_change = 2.848971611365145e-6 Iter 70: T = 654.6777525861904 K, F = -0.04988481301244585, relative_change = 1.1915268418780174e-6 Iter 75: T = 654.6753699387655 K, F = -0.02086245036450929, relative_change = 4.983200061521887e-7 Iter 80: T = 654.6743734779759 K, F = -0.008724930406397158, relative_change = 2.0840499581015165e-7 Iter 85: T = 654.6739567445676 K, F = -0.0036488708821882376, relative_change = 8.715774110802838e-8 Iter 90: T = 654.6737824613984 K, F = -0.0015260015166059238, relative_change = 3.645045768514078e-8 Iter 95: T = 654.6737095740467 K, F = -0.0006381920832063126, relative_change = 1.5244025383549196e-8 Iter 100: T = 654.6736790916772 K, F = -0.0002668995548036346, relative_change = 6.375234975923996e-9 Iter 105: T = 654.6736663435847 K, F = -0.00011162058269331698, relative_change = 2.666199684429624e-9 Iter 110: T = 654.6736610121799 K, F = -4.668106065847111e-5, relative_change = 1.1150365910920095e-9 Iter 115: T = 654.6736587825228 K, F = -1.952257782850131e-5, relative_change = 4.663216447341562e-10 Iter 120: T = 654.6736578500535 K, F = -8.164575627911397e-6, relative_change = 1.9502129250698374e-10 Iter 125: T = 654.6736574600837 K, F = -3.4145234117377576e-6, relative_change = 8.156024284526253e-11 Iter 130: T = 654.6736572969936 K, F = -1.4279943631456682e-6, relative_change = 3.410946510941902e-11 Iter 135: T = 654.6736572287874 K, F = -5.972040322821393e-7, relative_change = 1.426497935717561e-11 Iter 140: T = 654.6736572002628 K, F = -2.4975786527825505e-7, relative_change = 5.9657848919922346e-12 Iter 145: T = 654.6736571883334 K, F = -1.0445244363888051e-7, relative_change = 2.4949797258729896e-12 Iter 150: T = 654.6736571833444 K, F = -4.368175032798405e-8, relative_change = 1.0433942727056757e-12 Iter 155: T = 654.673657181258 K, F = -1.8269143975402358e-8, relative_change = 4.363817852611943e-13 Converged in 159 iterations to T = 654.673657180505 K Iter 1: T = 973.6627192009652 K, F = -6000.974483281888, relative_change = 0.02633728079903481 Iter 2: T = 949.5182094328654 K, F = -5078.083592131988, relative_change = 0.024797611423300527 Iter 3: T = 927.4978622494742 K, F = -4295.311330006659, relative_change = 0.023191074130683276 Iter 5: T = 889.5022712521064 K, F = -3069.042403082312, relative_change = 0.01985654930847639 Iter 10: T = 824.9253466900385 K, F = -1313.8021682889687, relative_change = 0.011869738876490388 Iter 15: T = 791.7673275764923 K, F = -556.7617146555082, relative_change = 0.006067486685688402 Iter 20: T = 776.3211470308343 K, F = -234.36851369864266, relative_change = 0.0028000080123822945 Iter 25: T = 769.5249861057273 K, F = -98.30571324588331, relative_change = 0.001224204356366414 Iter 30: T = 766.6182629986307 K, F = -41.16529191187376, relative_change = 0.0005219159350559899 Iter 35: T = 765.3908934823462 K, F = -17.225179203348098, relative_change = 0.00022005978226922955 Iter 40: T = 764.8755032652441 K, F = -7.205424462858042, relative_change = 9.234818075869973e-5 Iter 45: T = 764.6595927724018 K, F = -3.013683774054106, relative_change = 3.8676757306778696e-5 Iter 50: T = 764.569231838944 K, F = -1.2604091900650536, relative_change = 1.6184834819446647e-5 Iter 55: T = 764.5314305066488 K, F = -0.5271270379863909, relative_change = 6.770398532778287e-6 Iter 60: T = 764.5156195587115 K, F = -0.22045237281969687, relative_change = 2.8317602451260197e-6 Iter 65: T = 764.5090068851981 K, F = -0.09219608622967956, relative_change = 1.1843282077970065e-6 Iter 70: T = 764.5062413255957 K, F = -0.03855755173737052, relative_change = 4.953093403385172e-7 Iter 75: T = 764.5050847249487 K, F = -0.016125236902703288, relative_change = 2.0714587997416955e-7 Iter 80: T = 764.5046010188927 K, F = -0.0067437680973960745, relative_change = 8.663116043007931e-8 Iter 85: T = 764.5043987269194 K, F = -0.002820324609826619, relative_change = 3.6230234792290885e-8 Iter 90: T = 764.5043141259436 K, F = -0.0011794934775856136, relative_change = 1.515192541858419e-8 Iter 95: T = 764.5042787447952 K, F = -0.0004932782653412904, relative_change = 6.336717647024364e-9 Iter 100: T = 764.5042639479747 K, F = -0.00020629486263623598, relative_change = 2.6500912545121014e-9 Iter 105: T = 764.5042577597674 K, F = -8.627497469493317e-5, relative_change = 1.1082998471799816e-9 Iter 110: T = 764.5042551717851 K, F = -3.6081224446760096e-5, relative_change = 4.635042354556671e-10 Iter 115: T = 764.50425408946 K, F = -1.5089600401974046e-5, relative_change = 1.9384302645029965e-10 Iter 120: T = 764.5042536368188 K, F = -6.3106511840604895e-6, relative_change = 8.106746999601182e-11 Iter 125: T = 764.5042534475189 K, F = -2.639190530118185e-6, relative_change = 3.3903394931216115e-11 Iter 130: T = 764.5042533683512 K, F = -1.1037411797865104e-6, relative_change = 1.4178806990839989e-11 Iter 135: T = 764.5042533352424 K, F = -4.6159663802392004e-7, relative_change = 5.929732222890573e-12 Iter 140: T = 764.5042533213959 K, F = -1.9304704557132624e-7, relative_change = 2.479908197896171e-12 Iter 145: T = 764.5042533156052 K, F = -8.073421775556255e-8, relative_change = 1.03712257225921e-12 Iter 150: T = 764.5042533131834 K, F = -3.376552359934948e-8, relative_change = 4.3375643764321657e-13 Converged in 154 iterations to T = 764.5042533123093 K Iter 1: T = 969.9680602573462 K, F = -6842.8060381134355, relative_change = 0.030031939742653765 Iter 2: T = 942.092645857573 K, F = -5796.290971075192, relative_change = 0.028738486906855026 Iter 3: T = 916.3312032099711 K, F = -4908.096815731262, relative_change = 0.027344914282980644 Iter 5: T = 870.9456753292736 K, F = -3515.0552906486264, relative_change = 0.02429766281953964 Iter 10: T = 789.9484208861858 K, F = -1514.0060472086527, relative_change = 0.015996440892327886 Iter 15: T = 745.4656462644715 K, F = -644.8715557641003, relative_change = 0.008843407781244983 Iter 20: T = 723.7448121275544 K, F = -272.31319240741794, relative_change = 0.004281072995346816 Iter 25: T = 713.9349124065275 K, F = -114.40461348415295, relative_change = 0.0019175603298590006 Iter 30: T = 709.6862843970649 K, F = -47.9417919188619, relative_change = 0.0008265791321275376 Iter 35: T = 707.8822587738229 K, F = -20.067130211895734, relative_change = 0.0003501903552816782 Iter 40: T = 707.1229050880038 K, F = -8.395372559509157, relative_change = 0.00014725689305152085 Iter 45: T = 706.8044693233398 K, F = -3.5115825672398775, relative_change = 6.172618857137375e-5 Iter 50: T = 706.6711436577019 K, F = -1.4686799579728318, relative_change = 2.583947843054562e-5 Iter 55: T = 706.615358628183 K, F = -0.6142359855617576, relative_change = 1.0810730766499249e-5 Iter 60: T = 706.5920239985878 K, F = -0.2568837092887836, relative_change = 4.521938385641127e-6 Iter 65: T = 706.5822643617806 K, F = -0.10743233963784399, relative_change = 1.8912618861764264e-6 Iter 70: T = 706.5781826223667 K, F = -0.04492957569677758, relative_change = 7.909716150739714e-7 Iter 75: T = 706.5764755652298 K, F = -0.018790100560093892, relative_change = 3.3079785230127804e-7 Iter 80: T = 706.5757616491817 K, F = -0.007858247153217812, relative_change = 1.3834432540180564e-7 Iter 85: T = 706.5754630802007 K, F = -0.0032864132787008282, relative_change = 5.7857373771746366e-8 Iter 90: T = 706.5753382149536 K, F = -0.0013744173621054179, relative_change = 2.4196666456962216e-8 Iter 95: T = 706.5752859947928 K, F = -0.0005747977705421459, relative_change = 1.0119338718670753e-8 Iter 100: T = 706.5752641556937 K, F = -0.00024038729432340755, relative_change = 4.232028963162473e-9 Iter 105: T = 706.575255022321 K, F = -0.00010053283795219414, relative_change = 1.7698851736081159e-9 Iter 110: T = 706.5752512026353 K, F = -4.2044033049304375e-5, relative_change = 7.401871285410256e-10 Iter 115: T = 706.5752496051971 K, F = -1.7583315875202565e-5, relative_change = 3.095550850872676e-10 Iter 120: T = 706.5752489371293 K, F = -7.353552723854406e-6, relative_change = 1.2945963466333213e-10 Iter 125: T = 706.5752486577355 K, F = -3.0753439324016085e-6, relative_change = 5.414157178894417e-11 Iter 130: T = 706.5752485408897 K, F = -1.2861457849844271e-6, relative_change = 2.264265588962252e-11 Iter 135: T = 706.5752484920233 K, F = -5.378811316347765e-7, relative_change = 9.469422144305936e-12 Iter 140: T = 706.5752484715869 K, F = -2.2494878004764018e-7, relative_change = 3.960233654110468e-12 Iter 145: T = 706.5752484630401 K, F = -9.407785639403698e-8, relative_change = 1.6562450035994394e-12 Iter 150: T = 706.5752484594657 K, F = -3.934443493225359e-8, relative_change = 6.926605927820451e-13 Iter 155: T = 706.5752484579709 K, F = -1.6454630324957975e-8, relative_change = 2.8968452627759673e-13 Converged in 157 iterations to T = 706.5752484576545 K Iter 1: T = 973.4263747571767 K, F = -6054.825789620682, relative_change = 0.02657362524282322 Iter 2: T = 949.0458749125073 K, F = -5123.984503151858, relative_change = 0.025046064578588413 Iter 3: T = 926.791781459514 K, F = -4334.4321823539685, relative_change = 0.02344891226153309 Iter 5: T = 888.3436352314338 K, F = -3097.439808679922, relative_change = 0.02012311917047842 Iter 10: T = 822.8096717341439 K, F = -1326.432417472917, relative_change = 0.012096457639164209 Iter 15: T = 789.0345711779881 K, F = -562.2670116449746, relative_change = 0.006209257295411306 Iter 20: T = 773.2626056993403 K, F = -236.72337143484071, relative_change = 0.002872313591278639 Iter 25: T = 766.314172295396 K, F = -99.30115572191839, relative_change = 0.0012572867917766942 Iter 30: T = 763.3405360434283 K, F = -41.583579865005994, relative_change = 0.000536300856121142 Iter 35: T = 762.084580904334 K, F = -17.400468860518238, relative_change = 0.00022617605213570704 Iter 40: T = 761.5571277194261 K, F = -7.278795823738169, relative_change = 9.492394756457529e-5 Iter 45: T = 761.3361532227879 K, F = -3.044379651554048, relative_change = 3.975712324231417e-5 Iter 50: T = 761.2436711011679 K, F = -1.2732485178308512, relative_change = 1.663720938064193e-5 Iter 55: T = 761.204982073577 K, F = -0.5324969387133018, relative_change = 6.959683761645608e-6 Iter 60: T = 761.1887997777496 K, F = -0.22269818901348737, relative_change = 2.910938525701486e-6 Iter 65: T = 761.1820317840724 K, F = -0.09313532380542144, relative_change = 1.2174444733825201e-6 Iter 70: T = 761.1792012645666 K, F = -0.03895035392947588, relative_change = 5.091594763645368e-7 Iter 75: T = 761.1780174963602 K, F = -0.016289511788848077, relative_change = 2.1293826291232065e-7 Iter 80: T = 761.1775224284098 K, F = -0.006812469871962268, relative_change = 8.90536199999072e-8 Iter 85: T = 761.1773153847397 K, F = -0.002849056520950799, relative_change = 3.724333907188339e-8 Iter 90: T = 761.1772287965447 K, F = -0.001191509507691979, relative_change = 1.557561821275539e-8 Iter 95: T = 761.177192584317 K, F = -0.000498303515212184, relative_change = 6.513911147952446e-9 Iter 100: T = 761.1771774399291 K, F = -0.00020839648184511894, relative_change = 2.7241957028926076e-9 Iter 105: T = 761.1771711063649 K, F = -8.715389806979168e-5, relative_change = 1.1392912294676307e-9 Iter 110: T = 761.1771684575926 K, F = -3.644880049746835e-5, relative_change = 4.764651993664833e-10 Iter 115: T = 761.1771673498445 K, F = -1.5243324846259121e-5, relative_change = 1.9926345347661843e-10 Iter 120: T = 761.177166886571 K, F = -6.374941445730364e-6, relative_change = 8.333436862891886e-11 Iter 125: T = 761.1771666928244 K, F = -2.666075909374399e-6, relative_change = 3.4851418602839536e-11 Iter 130: T = 761.1771666117972 K, F = -1.11498415089617e-6, relative_change = 1.4575271192194634e-11 Iter 135: T = 761.1771665779108 K, F = -4.663005932492581e-7, relative_change = 6.095564317813042e-12 Iter 140: T = 761.1771665637391 K, F = -1.950129898675712e-7, relative_change = 2.5492444999244446e-12 Iter 145: T = 761.1771665578124 K, F = -8.155776498597334e-8, relative_change = 1.0661376145533585e-12 Iter 150: T = 761.1771665553337 K, F = -3.410794402469719e-8, relative_change = 4.4586511274098734e-13 Converged in 154 iterations to T = 761.177166554439 K Iter 1: T = 964.3390904221801 K, F = -8125.37216958867, relative_change = 0.03566090957781984 Iter 2: T = 930.6045856224121 K, F = -6893.206655693854, relative_change = 0.034981994544055414 Iter 3: T = 898.7655616405037 K, F = -5846.820867454096, relative_change = 0.03421326788392476 Iter 5: T = 840.6610421920043 K, F = -4203.729656495152, relative_change = 0.03238100015853528 Iter 10: T = 726.5871935737714 K, F = -1833.1896318265865, relative_change = 0.025978622279019252 Iter 15: T = 653.027751523332 K, F = -791.5187630976066, relative_change = 0.01777582840739979 Iter 20: T = 611.4536622270226 K, F = -337.90667718550907, relative_change = 0.010181092008507009 Iter 25: T = 590.6948745988375 K, F = -142.91142530767547, relative_change = 0.005047069548638294 Iter 30: T = 581.1935919331105 K, F = -60.0905318347924, relative_change = 0.002289544441259492 Iter 35: T = 577.0510632101633 K, F = -25.191179510129338, relative_change = 0.0009928213153735438 Iter 40: T = 575.2867471548757 K, F = -10.546181281491359, relative_change = 0.0004217244682145058 Iter 45: T = 574.5431311016254 K, F = -4.412475750540584, relative_change = 0.0001775360657353519 Iter 50: T = 574.231120768066 K, F = -1.8456906866204013, relative_change = 7.445359693720198e-5 Iter 55: T = 574.1004546555454 K, F = -0.7719496031335329, relative_change = 3.117354128073181e-5 Iter 60: T = 574.0457770256717 K, F = -0.3228489975697555, relative_change = 1.3043482095021956e-5 Iter 65: T = 574.0229046725967 K, F = -0.13502113564641982, relative_change = 5.456048745163118e-6 Iter 70: T = 574.0133382163443 K, F = -0.05646777140069262, relative_change = 2.281978725363151e-6 Iter 75: T = 574.0093372412748 K, F = -0.02361555233195725, relative_change = 9.5438468712668e-7 Iter 80: T = 574.0076639561906 K, F = -0.009876315800844748, relative_change = 3.9914100881562503e-7 Iter 85: T = 574.0069641632207 K, F = -0.004130394926613601, relative_change = 1.6692657463683371e-7 Iter 90: T = 574.0066715005402 K, F = -0.0017273807840711974, relative_change = 6.981086855599822e-8 Iter 95: T = 574.006549105354 K, F = -0.0007224113253572195, relative_change = 2.9195770695084185e-8 Iter 100: T = 574.0064979181979 K, F = -0.00030212105191790295, relative_change = 1.2210025492663654e-8 Iter 105: T = 574.0064765111131 K, F = -0.00012635063326377205, relative_change = 5.106379437286239e-9 Iter 110: T = 574.0064675584138 K, F = -5.2841344762522e-5, relative_change = 2.1355490621617754e-9 Iter 115: T = 574.0064638142878 K, F = -2.2098881559740047e-5, relative_change = 8.931121542681759e-10 Iter 120: T = 574.0064622484497 K, F = -9.24201650531753e-6, relative_change = 3.7351018673646183e-10 Iter 125: T = 574.0064615935974 K, F = -3.865121189328136e-6, relative_change = 1.562064019465396e-10 Iter 130: T = 574.0064613197303 K, F = -1.6164400429286019e-6, relative_change = 6.532739111490235e-11 Iter 135: T = 574.0064612051958 K, F = -6.760144625750364e-7, relative_change = 2.7320692426000013e-11 Iter 140: T = 574.0064611572961 K, F = -2.827168132935043e-7, relative_change = 1.1425819313535783e-11 Iter 145: T = 574.006461137264 K, F = -1.1823563839108431e-7, relative_change = 4.778417757203059e-12 Iter 150: T = 574.0064611288861 K, F = -4.944705223053347e-8, relative_change = 1.998371012761946e-12 Iter 155: T = 574.0064611253825 K, F = -2.067946502926077e-8, relative_change = 8.357473622984084e-13 Iter 160: T = 574.0064611239173 K, F = -8.648713301084854e-9, relative_change = 3.4953222041852083e-13 Converged in 163 iterations to T = 574.0064611234884 K Iter 1: T = 963.5975713180513 K, F = -8294.328002831196, relative_change = 0.03640242868194869 Iter 2: T = 929.075159528472 K, F = -7037.947269588632, relative_change = 0.035826586551435675 Iter 3: T = 896.3993706159978 K, F = -5970.949883353089, relative_change = 0.03517023200691101 Iter 5: T = 836.469199319379 K, F = -4295.336521289976, relative_change = 0.033586867149905116 Iter 10: T = 717.0213068979286 K, F = -1876.8912233504868, relative_change = 0.027832830304635087 Iter 15: T = 637.6502903987956 K, F = -812.6344649963781, relative_change = 0.019901668343736533 Iter 20: T = 591.2321148183087 K, F = -347.89443069590203, relative_change = 0.011907578645153216 Iter 25: T = 567.3836072857357 K, F = -147.43681682637984, relative_change = 0.0060909660696577255 Iter 30: T = 556.2697636185981 K, F = -62.06502241370001, relative_change = 0.0028119371660926887 Iter 35: T = 551.3787726886485 K, F = -26.033456523676808, relative_change = 0.0012296528498653692 Iter 40: T = 549.2866897682849 K, F = -10.901511357174828, relative_change = 0.0005242832492683067 Iter 45: T = 548.4032661264436 K, F = -4.561632684482326, relative_change = 0.00022106600549137698 Iter 50: T = 548.0322970265684 K, F = -1.9081678653491931, relative_change = 9.277187731608015e-5 Iter 55: T = 547.8768871414643 K, F = -0.7980955240957079, relative_change = 3.8854460157187945e-5 Iter 60: T = 547.8118461736357 K, F = -0.33378655171295435, relative_change = 1.6259241386396838e-5 Iter 65: T = 547.7846370861091 K, F = -0.139595879671997, relative_change = 6.8015318542938465e-6 Iter 70: T = 547.773256489645 K, F = -0.05838107641188245, relative_change = 2.8447833031194227e-6 Iter 75: T = 547.7684967379312 K, F = -0.024415735505398994, relative_change = 1.1897750839656275e-6 Iter 80: T = 547.7665061091291 K, F = -0.010210964788381044, relative_change = 4.975873725488187e-7 Iter 85: T = 547.7656735967315 K, F = -0.004270349625209724, relative_change = 2.080985948821873e-7 Iter 90: T = 547.7653254287649 K, F = -0.0017859115969738881, relative_change = 8.702959971901556e-8 Iter 95: T = 547.7651798205289 K, F = -0.0007468896249613333, relative_change = 3.639686727328682e-8 Iter 100: T = 547.7651189253849 K, F = -0.0003123581721356239, relative_change = 1.52216131676505e-8 Iter 105: T = 547.7650934583012 K, F = -0.00013063192025236647, relative_change = 6.365861933315362e-9 Iter 110: T = 547.7650828076614 K, F = -5.463182968359903e-5, relative_change = 2.662279758667949e-9 Iter 115: T = 547.7650783534365 K, F = -2.2847683362497984e-5, relative_change = 1.1133972201835439e-9 Iter 120: T = 547.7650764906264 K, F = -9.555174157876989e-6, relative_change = 4.656360274782978e-10 Iter 125: T = 547.7650757115769 K, F = -3.996087954150074e-6, relative_change = 1.9473454929018141e-10 Iter 130: T = 547.7650753857691 K, F = -1.6712117413553162e-6, relative_change = 8.144031609836575e-11 Iter 135: T = 547.7650752495125 K, F = -6.989209386243367e-7, relative_change = 3.4059324039083205e-11 Iter 140: T = 547.7650751925283 K, F = -2.9229718401246885e-7, relative_change = 1.4244020976847331e-11 Iter 145: T = 547.7650751686967 K, F = -1.222418139490422e-7, relative_change = 5.957002180439778e-12 Iter 150: T = 547.7650751587302 K, F = -5.112257808748133e-8, relative_change = 2.4912695527420677e-12 Iter 155: T = 547.765075154562 K, F = -2.1380496179057573e-8, relative_change = 1.0418993162705346e-12 Iter 160: T = 547.7650751528189 K, F = -8.942242807341572e-9, relative_change = 4.357670930088828e-13 Converged in 164 iterations to T = 547.7650751521898 K Iter 1: T = 969.3275763489504 K, F = -6988.740905898912, relative_change = 0.03067242365104961 Iter 2: T = 940.7962372021373 K, F = -5920.93822743744, relative_change = 0.029434156051021138 Iter 3: T = 914.3668727822193 K, F = -5014.594269473956, relative_change = 0.02809254902901935 Iter 5: T = 867.6280659972733 K, F = -3592.8405876898714, relative_change = 0.02513128714671134 Iter 10: T = 783.4261458602875 K, F = -1549.369787285755, relative_change = 0.01686250672438304 Iter 15: T = 736.5319175746145 K, F = -660.6625441432394, relative_change = 0.009483005503864423 Iter 20: T = 713.3871614591261 K, F = -279.18781980636453, relative_change = 0.004642863536382803 Iter 25: T = 702.8679477376731 K, F = -117.33916980200792, relative_change = 0.002092087583234585 Iter 30: T = 698.2978042932691 K, F = -49.1806476797524, relative_change = 0.0009043312997164775 Iter 35: T = 696.3545022402506 K, F = -20.587360042720068, relative_change = 0.00038360066974447895 Iter 40: T = 695.5360213514624 K, F = -8.613318288799755, relative_change = 0.00016139049506977762 Iter 45: T = 695.1927010282164 K, F = -3.6027970044459936, relative_change = 6.76655485555685e-5 Iter 50: T = 695.0489406906763 K, F = -1.5068386734736778, relative_change = 2.832840421679428e-5 Iter 55: T = 694.9887869042437 K, F = -0.6301964740342848, relative_change = 1.1852508249382186e-5 Iter 60: T = 694.9636243584432 K, F = -0.26355893633810346, relative_change = 4.957776050700167e-6 Iter 65: T = 694.9531001165159 K, F = -0.11022406231662085, relative_change = 2.0735613269732714e-6 Iter 70: T = 694.9486985840896 K, F = -0.04609711848315545, relative_change = 8.672161281843128e-7 Iter 75: T = 694.9468577811444 K, F = -0.019278382826586227, relative_change = 3.626850420841318e-7 Iter 80: T = 694.946087930206 K, F = -0.008062452965502231, relative_change = 1.5168007306933586e-7 Iter 85: T = 694.9457659684465 K, F = -0.003371814646496274, relative_change = 6.343456789891614e-8 Iter 90: T = 694.9456313200358 K, F = -0.0014101332451880166, relative_change = 2.652912006848006e-8 Iter 95: T = 694.9455750084348 K, F = -0.0005897345804803944, relative_change = 1.1094799433513421e-8 Iter 100: T = 694.9455514582459 K, F = -0.000246634046916383, relative_change = 4.639978417539884e-9 Iter 105: T = 694.9455416092748 K, F = -0.00010314530354516016, relative_change = 1.9404945124050845e-9 Iter 110: T = 694.9455374903174 K, F = -4.313659861221453e-5, relative_change = 8.115380184643785e-10 Iter 115: T = 694.9455357677202 K, F = -1.804024163010176e-5, relative_change = 3.3939491264721976e-10 Iter 120: T = 694.9455350473095 K, F = -7.544645938217798e-6, relative_change = 1.4193903353939006e-10 Iter 125: T = 694.945534746025 K, F = -3.1552609245366625e-6, relative_change = 5.936059700948033e-11 Iter 130: T = 694.9455346200243 K, F = -1.319567497048979e-6, relative_change = 2.4825304898755142e-11 Iter 135: T = 694.9455345673293 K, F = -5.518596551956634e-7, relative_change = 1.0382253455877336e-11 Iter 140: T = 694.9455345452916 K, F = -2.3079415012450255e-7, relative_change = 4.3419795966758966e-12 Iter 145: T = 694.9455345360752 K, F = -9.652110255498059e-8, relative_change = 1.8158720996297745e-12 Iter 150: T = 694.9455345322208 K, F = -4.03662712145092e-8, relative_change = 7.594192743985499e-13 Iter 155: T = 694.9455345306088 K, F = -1.688280193423708e-8, relative_change = 3.1761975553109626e-13 Converged in 158 iterations to T = 694.9455345301368 K Iter 1: T = 966.459615223576 K, F = -7642.208576450795, relative_change = 0.033540384776424 Iter 2: T = 934.9574899507086 K, F = -6479.600297429525, relative_change = 0.03259538709807323 Iter 3: T = 905.4639257968702 K, F = -5492.453939319705, relative_change = 0.031545353099843465 Iter 5: T = 852.3781164086449 K, F = -3942.928963901898, relative_change = 0.029125056208555343 Iter 10: T = 752.199862192221 K, F = -1710.5520861631358, relative_change = 0.02149552373451808 Iter 15: T = 692.0938690249587 K, F = -733.8827735079583, relative_change = 0.013303612538102647 Iter 20: T = 660.4978320638362 K, F = -311.54339337721626, relative_change = 0.006984102742384392 Iter 25: T = 645.5468451636636 K, F = -131.27864670993637, relative_change = 0.0032736425668363576 Iter 30: T = 638.9130680563804 K, F = -55.09276750271654, relative_change = 0.0014423167494161658 Iter 35: T = 636.0645534560146 K, F = -23.07527334639206, relative_change = 0.0006170333399858753 Iter 40: T = 634.8596637551286 K, F = -9.656562744142532, relative_change = 0.0002605535412754623 Iter 45: T = 634.3533356360045 K, F = -4.039584490750557, relative_change = 0.00010941060899849734 Iter 50: T = 634.1411546827582 K, F = -1.6895945847775171, relative_change = 4.583494588876993e-5 Iter 55: T = 634.0523428593623 K, F = -0.7066422814334219, relative_change = 1.918241975567103e-5 Iter 60: T = 634.0151875190531 K, F = -0.29553212976180987, relative_change = 8.024715337965762e-6 Iter 65: T = 633.9996464062 K, F = -0.12359609622289286, relative_change = 3.356451440535333e-6 Iter 70: T = 633.99314652381 K, F = -0.05168954367476403, relative_change = 1.4037814875927624e-6 Iter 75: T = 633.9904281248079 K, F = -0.021617215981344806, relative_change = 5.870910233235062e-7 Iter 80: T = 633.989291245539 K, F = -0.009040583397320778, relative_change = 2.4553072314401347e-7 Iter 85: T = 633.9888157868929 K, F = -0.0037808809067200744, relative_change = 1.0268427345115669e-7 Iter 90: T = 633.9886169440315 K, F = -0.001581209716289278, relative_change = 4.29438581499477e-8 Iter 95: T = 633.9885337855061 K, F = -0.0006612808156066796, relative_change = 1.7959646329204162e-8 Iter 100: T = 633.9884990076062 K, F = -0.00027655553921251963, relative_change = 7.510940669377982e-9 Iter 105: T = 633.9884844630711 K, F = -0.00011565882985559162, relative_change = 3.141165446520999e-9 Iter 110: T = 633.9884783803725 K, F = -4.8369903821510185e-5, relative_change = 1.3136729609463712e-9 Iter 115: T = 633.9884758365152 K, F = -2.0228871926653014e-5, relative_change = 5.493937446352435e-10 Iter 120: T = 633.9884747726437 K, F = -8.459956200468355e-6, relative_change = 2.2976303722771587e-10 Iter 125: T = 633.9884743277199 K, F = -3.538055090346326e-6, relative_change = 9.608965659988382e-11 Iter 130: T = 633.9884741416474 K, F = -1.4796558142626814e-6, relative_change = 4.018581272664046e-11 Iter 135: T = 633.9884740638297 K, F = -6.188090734271512e-7, relative_change = 1.680616891652799e-11 Iter 140: T = 633.9884740312855 K, F = -2.5879409437656875e-7, relative_change = 7.028560912443495e-12 Iter 145: T = 633.9884740176752 K, F = -1.082321390288854e-7, relative_change = 2.9394649972940056e-12 Iter 150: T = 633.9884740119832 K, F = -4.526420427364286e-8, relative_change = 1.2293256447876057e-12 Iter 155: T = 633.9884740096027 K, F = -1.893033552136103e-8, relative_change = 5.141269419113547e-13 Converged in 160 iterations to T = 633.9884740086071 K Iter 1: T = 966.4947293595923 K, F = -7634.207787157334, relative_change = 0.03350527064040778 Iter 2: T = 935.029312570473 K, F = -6472.755178555889, relative_change = 0.032556221811957976 Iter 3: T = 905.5740060845934 K, F = -5486.593429200658, relative_change = 0.03150201399024014 Iter 5: T = 852.5688809856514 K, F = -3938.624571500504, relative_change = 0.02907341800053191 Iter 10: T = 752.6043008162709 K, F = -1708.5480321724833, relative_change = 0.021429973045161647 Iter 15: T = 692.6895729576389 K, F = -732.9571443789473, relative_change = 0.01324437314437898 Iter 20: T = 661.2245452525867 K, F = -311.127968235939, relative_change = 0.0069452695889424465 Iter 25: T = 646.3453948327867 K, F = -131.0978628604616, relative_change = 0.0032532772850657594 Iter 30: T = 639.7458701633727 K, F = -55.01569196143778, relative_change = 0.0014328694213729897 Iter 35: T = 636.912548231223 K, F = -23.042760978616414, relative_change = 0.0006128997816840183 Iter 40: T = 635.7141756212152 K, F = -9.642915256531225, relative_change = 0.0002587912709867764 Iter 45: T = 635.2106025098344 K, F = -4.033867997167265, relative_change = 0.00010866760980280358 Iter 50: T = 634.9995789595324 K, F = -1.6872023035126775, relative_change = 4.552315651316054e-5 Iter 55: T = 634.9112520950117 K, F = -0.7056415245820692, relative_change = 1.905183993371686e-5 Iter 60: T = 634.8742997314331 K, F = -0.29511355292399166, relative_change = 7.97007275256918e-6 Iter 65: T = 634.8588435340836 K, F = -0.1234210339259808, relative_change = 3.3335935629521306e-6 Iter 70: T = 634.8523791693075 K, F = -0.05161632905191743, relative_change = 1.3942210537630788e-6 Iter 75: T = 634.8496756250593 K, F = -0.02158659649265321, relative_change = 5.830925614147891e-7 Iter 80: T = 634.8485449583768 K, F = -0.009027777916436885, relative_change = 2.4385848814195746e-7 Iter 85: T = 634.8480720979351 K, F = -0.003775525494749632, relative_change = 1.0198491949709539e-7 Iter 90: T = 634.8478743416783 K, F = -0.0015789700184900557, relative_change = 4.265137906418304e-8 Iter 95: T = 634.8477916375848 K, F = -0.0006603441478143512, relative_change = 1.783732794168199e-8 Iter 100: T = 634.8477570497338 K, F = -0.00027616381327166817, relative_change = 7.459785623929149e-9 Iter 105: T = 634.8477425846794 K, F = -0.00011549500573992955, relative_change = 3.1197718003318715e-9 Iter 110: T = 634.8477365352205 K, F = -4.830139010192358e-5, relative_change = 1.304725867822685e-9 Iter 115: T = 634.8477340052646 K, F = -2.02002181877714e-5, relative_change = 5.456519501754931e-10 Iter 120: T = 634.8477329472067 K, F = -8.447972487723998e-6, relative_change = 2.2819816383582018e-10 Iter 125: T = 634.8477325047144 K, F = -3.5330425076085525e-6, relative_change = 9.543518481353705e-11 Iter 130: T = 634.8477323196588 K, F = -1.4775612229844803e-6, relative_change = 3.9912151716505904e-11 Iter 135: T = 634.8477322422663 K, F = -6.179332964761919e-7, relative_change = 1.6691726278615188e-11 Iter 140: T = 634.8477322098998 K, F = -2.584265094141003e-7, relative_change = 6.980663744652845e-12 Iter 145: T = 634.8477321963638 K, F = -1.0807779726729194e-7, relative_change = 2.9194170627959077e-12 Iter 150: T = 634.8477321907029 K, F = -4.519926882773362e-8, relative_change = 1.2209308478118015e-12 Iter 155: T = 634.8477321883355 K, F = -1.8903082710242103e-8, relative_change = 5.106134988166247e-13 Converged in 160 iterations to T = 634.8477321873453 K Iter 1: T = 976.5514842763106 K, F = -5342.766612939441, relative_change = 0.023448515723689396 Iter 2: T = 955.2622837064813 K, F = -4517.519745845146, relative_change = 0.021800387294076937 Iter 3: T = 936.0398013960242 K, F = -3818.007726227038, relative_change = 0.020122727169623517 Iter 5: T = 903.3703637277227 K, F = -2723.3622733306925, relative_change = 0.01677225934217779 Iter 10: T = 849.632689928397 K, F = -1161.1281335437577, relative_change = 0.009415435385623363 Iter 15: T = 823.1400907511405 K, F = -490.6401066041396, relative_change = 0.004604282446223688 Iter 20: T = 811.1073461231956 K, F = -206.20127025705278, relative_change = 0.0020733820583714343 Iter 25: T = 805.8813864176929 K, F = -86.42392232631275, relative_change = 0.0008959781832191261 Iter 30: T = 803.6595573867708 K, F = -36.177337404272826, relative_change = 0.0003800075653544327 Iter 35: T = 802.7238279118077 K, F = -15.135780338331504, relative_change = 0.00015986982185965573 Iter 40: T = 802.3313374099189 K, F = -6.33101626351023, relative_change = 6.702639607835424e-5 Iter 45: T = 802.1669897147445 K, F = -2.6478910211034252, relative_change = 2.806054221220401e-5 Iter 50: T = 802.0982218779529 K, F = -1.1074119294841962, relative_change = 1.1740386847717865e-5 Iter 55: T = 802.0694561031838 K, F = -0.4631385423560197, relative_change = 4.910868329935633e-6 Iter 60: T = 802.0574248201052 K, F = -0.19369105744275295, relative_change = 2.053940946413497e-6 Iter 65: T = 802.0523930027222 K, F = -0.08100408617949806, relative_change = 8.590101239097474e-7 Iter 70: T = 802.0502886031717 K, F = -0.03387690645241592, relative_change = 3.5925310093731275e-7 Iter 75: T = 802.0494085123012 K, F = -0.014167732136749489, relative_change = 1.502447781772553e-7 Iter 80: T = 802.0490404467661 K, F = -0.005925115701186812, relative_change = 6.283430761596243e-8 Iter 85: T = 802.0488865171848 K, F = -0.002477954307314789, relative_change = 2.627808355698752e-8 Iter 90: T = 802.0488221419645 K, F = -0.0010363101138246567, relative_change = 1.0989812882581394e-8 Iter 95: T = 802.0487952194728 K, F = -0.0004333972685814924, relative_change = 4.596071758074775e-9 Iter 100: T = 802.0487839601644 K, F = -0.00018125191126072693, relative_change = 1.922132201823562e-9 Iter 105: T = 802.048779251387 K, F = -7.580171381627032e-5, relative_change = 8.038586635528678e-10 Iter 110: T = 802.04877728212 K, F = -3.1701179533660806e-5, relative_change = 3.361832711678776e-10 Iter 115: T = 802.0487764585491 K, F = -1.3257812469191776e-5, relative_change = 1.4059586588824657e-10 Iter 120: T = 802.0487761141219 K, F = -5.544573913107698e-6, relative_change = 5.879885340814265e-11 Iter 125: T = 802.0487759700783 K, F = -2.3188071862634274e-6, relative_change = 2.4590384415493896e-11 Iter 130: T = 802.0487759098377 K, F = -9.697522556084692e-7, relative_change = 1.0283986052397576e-11 Iter 135: T = 802.0487758846443 K, F = -4.055633220367838e-7, relative_change = 4.300900073903018e-12 Iter 140: T = 802.0487758741081 K, F = -1.696098010928182e-7, relative_change = 1.7986705563927763e-12 Iter 145: T = 802.0487758697017 K, F = -7.093291909399113e-8, relative_change = 7.522262996279908e-13 Iter 150: T = 802.0487758678589 K, F = -2.9666377576731406e-8, relative_change = 3.1460469572083336e-13 Converged in 152 iterations to T = 802.048775867469 K Iter 1: T = 965.2626201703455 K, F = -7914.945037965604, relative_change = 0.03473737982965446 Iter 2: T = 932.5041357683814 K, F = -6713.016723508278, relative_change = 0.03393738006365879 Iter 3: T = 901.695157694216 K, F = -5692.3772408377645, relative_change = 0.033038972045715216 Iter 5: T = 845.8123500356664 K, F = -4089.9358387794114, relative_change = 0.030928968635817542 Iter 10: T = 738.0414263622782 K, F = -1779.3742143095612, relative_change = 0.02389062506618859 Iter 15: T = 670.8444808414943 K, F = -765.9666448854992, relative_change = 0.015584621754350873 Iter 20: T = 634.1862708217852 K, F = -326.08385269265443, relative_change = 0.008546566053126304 Iter 25: T = 616.3752948893624 K, F = -137.65001891923458, relative_change = 0.004115855415784498 Iter 30: T = 608.3544879121775 K, F = -57.81930517508792, relative_change = 0.0018385412676273992 Iter 35: T = 604.8856534570988 K, F = -24.227418986731585, relative_change = 0.0007915171163507739 Iter 40: T = 603.4136832676623 K, F = -10.1405656152499, relative_change = 0.00033515066784069685 Iter 45: T = 602.7942705447342 K, F = -4.242384884443488, relative_change = 0.00014089942899151892 Iter 50: T = 602.5345496718489 K, F = -1.7744758866139472, relative_change = 5.9055442166562604e-5 Iter 55: T = 602.4258126778512 K, F = -0.7421525418853545, relative_change = 2.4720434847680413e-5 Iter 60: T = 602.3803167804235 K, F = -0.3103850263271862, relative_change = 1.0342364349932725e-5 Iter 65: T = 602.3612862139727 K, F = -0.12980811920706897, relative_change = 4.325997357651121e-6 Iter 70: T = 602.3533267671609 K, F = -0.05428754959766424, relative_change = 1.8093057056749159e-6 Iter 75: T = 602.3499979200822 K, F = -0.022703744230506973, relative_change = 7.566945845151964e-7 Iter 80: T = 602.3486057370001 K, F = -0.009494984437063314, relative_change = 3.1646244296763777e-7 Iter 85: T = 602.3480235060019 K, F = -0.003970917189691003, relative_change = 1.3234902553223355e-7 Iter 90: T = 602.3477800094495 K, F = -0.0016606852190018673, relative_change = 5.535005716758895e-8 Iter 95: T = 602.3476781761791 K, F = -0.0006945184317802555, relative_change = 2.314807490568417e-8 Iter 100: T = 602.347635588271 K, F = -0.0002904559091172487, relative_change = 9.680804852125041e-9 Iter 105: T = 602.3476177774962 K, F = -0.00012147213229490861, relative_change = 4.0486288498582555e-9 Iter 110: T = 602.3476103288167 K, F = -5.0801096119656997e-5, relative_change = 1.6931850258796781e-9 Iter 115: T = 602.3476072136899 K, F = -2.124562439148603e-5, relative_change = 7.081101928611238e-10 Iter 120: T = 602.3476059109067 K, F = -8.885174245520933e-6, relative_change = 2.961401556128624e-10 Iter 125: T = 602.3476053660672 K, F = -3.715886048027972e-6, relative_change = 1.23849352509464e-10 Iter 130: T = 602.3476051382089 K, F = -1.5540281815829005e-6, relative_change = 5.179528702697217e-11 Iter 135: T = 602.3476050429158 K, F = -6.499135796755873e-7, relative_change = 2.1661422119829584e-11 Iter 140: T = 602.347605003063 K, F = -2.718014568414695e-7, relative_change = 9.059059966436091e-12 Iter 145: T = 602.3476049863962 K, F = -1.1367047475507874e-7, relative_change = 3.7886023839665465e-12 Iter 150: T = 602.3476049794259 K, F = -4.753889509823139e-8, relative_change = 1.5844569286640593e-12 Iter 155: T = 602.3476049765108 K, F = -1.9880761648050083e-8, relative_change = 6.626197448638086e-13 Iter 160: T = 602.3476049752917 K, F = -8.314426647171302e-9, relative_change = 2.7711731377408993e-13 Converged in 162 iterations to T = 602.3476049750337 K Iter 1: T = 964.582289985799 K, F = -8069.958917675624, relative_change = 0.03541771001420106 Iter 2: T = 931.1053748066082 K, F = -6845.74755777924, relative_change = 0.03470612671074819 Iter 3: T = 899.5388949588702 K, F = -5806.133638042269, relative_change = 0.03390215619182139 Iter 5: T = 842.0249587301329 K, F = -4173.7316494235, relative_change = 0.031993362020425464 Iter 10: T = 729.6512566911715 K, F = -1818.9540769759215, relative_change = 0.025406302464815105 Iter 15: T = 657.8539890351136 K, F = -784.7146598823342, relative_change = 0.01715492322433322 Iter 20: T = 617.6797692829796 K, F = -334.7332965573389, relative_change = 0.00970371591318906 Iter 25: T = 597.7787141267454 K, F = -141.4903818305827, relative_change = 0.004769565747658728 Iter 30: T = 588.7138185039653 K, F = -59.474889255110725, relative_change = 0.0021536945762087936 Iter 35: T = 584.7711645880497 K, F = -24.929483438010372, relative_change = 0.0009318796251358842 Iter 40: T = 583.0938403987363 K, F = -10.435955697748405, relative_change = 0.0003954576627630792 Iter 45: T = 582.3872304580052 K, F = -4.366238201694929, relative_change = 0.00016640988482106658 Iter 50: T = 582.090808172442 K, F = -1.82632887824326, relative_change = 6.977546886866219e-5 Iter 55: T = 581.9666808693463 K, F = -0.7638479230763426, relative_change = 2.921268917013428e-5 Iter 60: T = 581.9147413063409 K, F = -0.31946001770916743, relative_change = 1.2222658310825063e-5 Iter 65: T = 581.8930146513999 K, F = -0.1336036906840727, relative_change = 5.112635269724908e-6 Iter 70: T = 581.8839274458259 K, F = -0.05587495570090048, relative_change = 2.1383354577435756e-6 Iter 75: T = 581.8801269176646 K, F = -0.023367625653617607, relative_change = 8.943072198504745e-7 Iter 80: T = 581.8785374651164 K, F = -0.009772629191685867, relative_change = 3.7401517089434367e-7 Iter 85: T = 581.8778727324816 K, F = -0.004087031824081211, relative_change = 1.564185225916722e-7 Iter 90: T = 581.8775947325512 K, F = -0.0017092457959493323, relative_change = 6.541625360063761e-8 Iter 95: T = 581.8774784695197 K, F = -0.0007148270538024359, relative_change = 2.7357886399504684e-8 Iter 100: T = 581.8774298469068 K, F = -0.00029894921944723096, relative_change = 1.1441399699477892e-8 Iter 105: T = 581.8774095123451 K, F = -0.0001250241351813397, relative_change = 4.784930843206459e-9 Iter 110: T = 581.8774010081879 K, F = -5.228658705858091e-5, relative_change = 2.001115385825346e-9 Iter 115: T = 581.8773974516477 K, F = -2.186687544319943e-5, relative_change = 8.368903886120865e-10 Iter 120: T = 581.87739596426 K, F = -9.144988735609871e-6, relative_change = 3.4999757006058846e-10 Iter 125: T = 581.8773953422167 K, F = -3.824543730934771e-6, relative_change = 1.4637317310387393e-10 Iter 130: T = 581.8773950820707 K, F = -1.5994701965671432e-6, relative_change = 6.121502195445245e-11 Iter 135: T = 581.8773949732746 K, F = -6.689180217511748e-7, relative_change = 2.5600871783395306e-11 Iter 140: T = 581.8773949277747 K, F = -2.797493240391802e-7, relative_change = 1.07065833869084e-11 Iter 145: T = 581.8773949087462 K, F = -1.1699399438125369e-7, relative_change = 4.477601370825736e-12 Iter 150: T = 581.8773949007882 K, F = -4.892840022030498e-8, relative_change = 1.8725907519584343e-12 Iter 155: T = 581.87739489746 K, F = -2.0462102845453245e-8, relative_change = 7.831268625692799e-13 Iter 160: T = 581.8773948960682 K, F = -8.557233754924454e-9, relative_change = 3.2750297823526586e-13 Converged in 163 iterations to T = 581.8773948956606 K Iter 1: T = 964.3177224330108 K, F = -8130.240886247114, relative_change = 0.0356822775669892 Iter 2: T = 930.5605658831593 K, F = -6897.376792326078, relative_change = 0.03500625962227568 Iter 3: T = 898.6975511375712 K, F = -5850.396291846728, relative_change = 0.03424066730718175 Iter 5: T = 840.5409506386881 K, F = -4206.366437228344, relative_change = 0.03241524180078337 Iter 10: T = 726.3162931380078 K, F = -1834.4426447171518, relative_change = 0.026029717494062223 Iter 15: T = 652.5988296593713 K, F = -792.1193136976283, relative_change = 0.0178320396365282 Iter 20: T = 610.8977049432464 K, F = -338.18773716250666, relative_change = 0.010224886926627104 Iter 25: T = 590.0603291467193 K, F = -143.03763585237155, relative_change = 0.005072762971049452 Iter 30: T = 580.518825786565 K, F = -60.1453004477013, relative_change = 0.0023021856305028327 Iter 35: T = 576.3578192223633 K, F = -25.214479286532683, relative_change = 0.0009985055827919046 Iter 40: T = 574.5854498254212 K, F = -10.555998644231048, relative_change = 0.00042417704798839405 Iter 45: T = 573.8384058232804 K, F = -4.416594594288086, relative_change = 0.0001785754047813845 Iter 50: T = 573.524951165386 K, F = -1.847415552280442, relative_change = 7.489068174302939e-5 Iter 55: T = 573.3936791278029 K, F = -0.7726713693924869, relative_change = 3.135676136620933e-5 Iter 60: T = 573.3387477607511 K, F = -0.3231509201254626, relative_change = 1.3120181621975304e-5 Iter 65: T = 573.3157692335831 K, F = -0.13514741574318706, relative_change = 5.488138482330444e-6 Iter 70: T = 573.3061583638749 K, F = -0.056520585427608155, relative_change = 2.2954013252058715e-6 Iter 75: T = 573.3021388127866 K, F = -0.023637640170609348, relative_change = 9.59998579025825e-7 Iter 80: T = 573.300457758678 K, F = -0.009885553266144542, relative_change = 4.0148887550212814e-7 Iter 85: T = 573.2997547165547 K, F = -0.004134258156534343, relative_change = 1.6790849276960096e-7 Iter 90: T = 573.2994606950299 K, F = -0.0017289964354916254, relative_change = 7.022152060753857e-8 Iter 95: T = 573.2993377315572 K, F = -0.0007230870101474496, relative_change = 2.9367510650281853e-8 Iter 100: T = 573.2992863067365 K, F = -0.0003024036316996992, relative_change = 1.2281849269275985e-8 Iter 105: T = 573.2992648002576 K, F = -0.00012646881165978563, relative_change = 5.136417015731e-9 Iter 110: T = 573.2992558059904 K, F = -5.289076790043756e-5, relative_change = 2.1481111188201344e-9 Iter 115: T = 573.2992520444802 K, F = -2.2119550792454312e-5, relative_change = 8.983657521149413e-10 Iter 120: T = 573.2992504713718 K, F = -9.25066060575297e-6, relative_change = 3.757073034253422e-10 Iter 125: T = 573.299249813479 K, F = -3.868736738354972e-6, relative_change = 1.5712528191414546e-10 Iter 130: T = 573.2992495383404 K, F = -1.6179526124426857e-6, relative_change = 6.571169819188624e-11 Iter 135: T = 573.2992494232741 K, F = -6.766462599117062e-7, relative_change = 2.7481382652700625e-11 Iter 140: T = 573.299249375152 K, F = -2.8298168791573985e-7, relative_change = 1.1493048159967789e-11 Iter 145: T = 573.2992493550269 K, F = -1.1834711927116714e-7, relative_change = 4.8065624020494864e-12 Iter 150: T = 573.2992493466102 K, F = -4.9493440734682537e-8, relative_change = 2.0101318296978195e-12 Iter 155: T = 573.2992493430903 K, F = -2.0698782354777734e-8, relative_change = 8.406625328714764e-13 Iter 160: T = 573.2992493416182 K, F = -8.656388272854088e-9, relative_change = 3.5157146765136685e-13 Converged in 163 iterations to T = 573.2992493411872 K Iter 1: T = 980.023643702867 K, F = -4551.631784722271, relative_change = 0.019976356297132968 Iter 2: T = 962.0960978971134 K, F = -3844.9005247337336, relative_change = 0.01829297274708317 Iter 3: T = 946.0973064564914 K, F = -3246.389477389048, relative_change = 0.016629099188315056 Iter 5: T = 919.365408965345 K, F = -2311.182407254635, relative_change = 0.013449162961051517 Iter 10: T = 876.8765307709468 K, F = -981.3045623399976, relative_change = 0.007079981615249644 Iter 15: T = 856.7381075929446 K, F = -413.5486033892815, relative_change = 0.003324064696891723 Iter 20: T = 847.7946408368208 K, F = -173.5604596056054, relative_change = 0.0014657391947425244 Iter 25: T = 843.9527180546995 K, F = -72.69655835645885, relative_change = 0.00062728781919308 Iter 30: T = 842.3273209350513 K, F = -30.42245409991414, relative_change = 0.00026492651621013303 Iter 35: T = 841.6442286223556 K, F = -12.726540453549578, relative_change = 0.00011125452666011664 Iter 40: T = 841.3579633896115 K, F = -5.32300669121353, relative_change = 4.6608757032750084e-5 Iter 45: T = 841.2381406520867 K, F = -2.226252774634201, relative_change = 1.9506504306043034e-5 Iter 50: T = 841.1880112748626 K, F = -0.9310643642402061, relative_change = 8.160333261552552e-6 Iter 55: T = 841.1670434068365 K, F = -0.389385536988369, relative_change = 3.413182808692988e-6 Iter 60: T = 841.1582738405181 K, F = -0.16284625912751283, relative_change = 1.4275097308202729e-6 Iter 65: T = 841.1546062063348 K, F = -0.06810435132943993, relative_change = 5.970148966325011e-7 Iter 70: T = 841.1530723409844 K, F = -0.02848207071972797, relative_change = 2.496810822170114e-7 Iter 75: T = 841.1524308572149 K, F = -0.011911545209356333, relative_change = 1.044200166199689e-7 Iter 80: T = 841.1521625805236 K, F = -0.004981551000301732, relative_change = 4.366976903676466e-8 Iter 85: T = 841.1520503839168 K, F = -0.0020833442142060843, relative_change = 1.8263231357527648e-8 Iter 90: T = 841.1520034619401 K, F = -0.0008712794480580932, relative_change = 7.637903642979945e-9 Iter 95: T = 841.1519838386062 K, F = -0.0003643794721905902, relative_change = 3.194262889377611e-9 Iter 100: T = 841.1519756318932 K, F = -0.0001523878452913685, relative_change = 1.3358789360229286e-9 Iter 105: T = 841.1519721997478 K, F = -6.373041930074486e-5, relative_change = 5.586805576191071e-10 Iter 110: T = 841.1519707643836 K, F = -2.6652821731865117e-5, relative_change = 2.336468768233701e-10 Iter 115: T = 841.1519701640971 K, F = -1.1146529575567499e-5, relative_change = 9.771392529468333e-11 Iter 120: T = 841.1519699130502 K, F = -4.661612742040688e-6, relative_change = 4.08651389464067e-11 Iter 125: T = 841.1519698080592 K, F = -1.9495430914062695e-6, relative_change = 1.709029766483671e-11 Iter 130: T = 841.1519697641509 K, F = -8.153222519347025e-7, relative_change = 7.14736701292462e-12 Iter 135: T = 841.1519697457877 K, F = -3.409754743000093e-7, relative_change = 2.989096460569448e-12 Iter 140: T = 841.1519697381082 K, F = -1.4260075453798038e-7, relative_change = 1.2500823162064212e-12 Iter 145: T = 841.1519697348965 K, F = -5.963900107097686e-8, relative_change = 5.228139278641943e-13 Converged in 150 iterations to T = 841.1519697335532 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 7%|██ | ETA: 0:00:14 Bin 1 ray tracing: 13%|████ | ETA: 0:00:13 Bin 1 ray tracing: 20%|██████ | ETA: 0:00:12 Bin 1 ray tracing: 27%|████████ | ETA: 0:00:11 Bin 1 ray tracing: 33%|██████████ | ETA: 0:00:10 Bin 1 ray tracing: 40%|████████████ | ETA: 0:00:09 Bin 1 ray tracing: 46%|█████████████▉ | ETA: 0:00:08 Bin 1 ray tracing: 53%|███████████████▉ | ETA: 0:00:07 Bin 1 ray tracing: 60%|█████████████████▉ | ETA: 0:00:06 Bin 1 ray tracing: 66%|███████████████████▉ | ETA: 0:00:05 Bin 1 ray tracing: 73%|█████████████████████▊ | ETA: 0:00:04 Bin 1 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:03 Bin 1 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:02 Bin 1 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 10%|██▉ | ETA: 0:00:10 Bin 2 ray tracing: 19%|█████▋ | ETA: 0:00:09 Bin 2 ray tracing: 28%|████████▍ | ETA: 0:00:08 Bin 2 ray tracing: 37%|███████████▏ | ETA: 0:00:08 Bin 2 ray tracing: 47%|██████████████▏ | ETA: 0:00:06 Bin 2 ray tracing: 57%|█████████████████ | ETA: 0:00:05 Bin 2 ray tracing: 64%|███████████████████▎ | ETA: 0:00:04 Bin 2 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:04 Bin 2 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 2 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 2 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 2 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 7%|██▏ | ETA: 0:00:14 Bin 3 ray tracing: 13%|████ | ETA: 0:00:14 Bin 3 ray tracing: 20%|█████▉ | ETA: 0:00:13 Bin 3 ray tracing: 26%|███████▉ | ETA: 0:00:12 Bin 3 ray tracing: 32%|█████████▊ | ETA: 0:00:11 Bin 3 ray tracing: 39%|███████████▊ | ETA: 0:00:10 Bin 3 ray tracing: 46%|█████████████▊ | ETA: 0:00:08 Bin 3 ray tracing: 53%|███████████████▊ | ETA: 0:00:07 Bin 3 ray tracing: 59%|█████████████████▊ | ETA: 0:00:06 Bin 3 ray tracing: 66%|███████████████████▉ | ETA: 0:00:05 Bin 3 ray tracing: 73%|█████████████████████▊ | ETA: 0:00:04 Bin 3 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:03 Bin 3 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:02 Bin 3 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 3 ray tracing: 97%|█████████████████████████████▎| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 4 ray tracing: 14%|████▏ | ETA: 0:00:12 Bin 4 ray tracing: 21%|██████▎ | ETA: 0:00:11 Bin 4 ray tracing: 29%|████████▉ | ETA: 0:00:10 Bin 4 ray tracing: 40%|████████████ | ETA: 0:00:08 Bin 4 ray tracing: 51%|███████████████▏ | ETA: 0:00:06 Bin 4 ray tracing: 61%|██████████████████▍ | ETA: 0:00:04 Bin 4 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:03 Bin 4 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:03 Bin 4 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 4 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 4 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 5 ray tracing: 15%|████▌ | ETA: 0:00:12 Bin 5 ray tracing: 22%|██████▋ | ETA: 0:00:11 Bin 5 ray tracing: 29%|████████▊ | ETA: 0:00:10 Bin 5 ray tracing: 36%|██████████▉ | ETA: 0:00:09 Bin 5 ray tracing: 43%|████████████▉ | ETA: 0:00:08 Bin 5 ray tracing: 50%|██████████████▉ | ETA: 0:00:07 Bin 5 ray tracing: 57%|█████████████████ | ETA: 0:00:06 Bin 5 ray tracing: 64%|███████████████████▏ | ETA: 0:00:05 Bin 5 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:04 Bin 5 ray tracing: 79%|███████████████████████▌ | ETA: 0:00:03 Bin 5 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 5 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 5 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 7%|██▎ | ETA: 0:00:13 Bin 6 ray tracing: 16%|████▊ | ETA: 0:00:11 Bin 6 ray tracing: 25%|███████▍ | ETA: 0:00:09 Bin 6 ray tracing: 33%|██████████ | ETA: 0:00:08 Bin 6 ray tracing: 41%|████████████▍ | ETA: 0:00:08 Bin 6 ray tracing: 48%|██████████████▌ | ETA: 0:00:07 Bin 6 ray tracing: 56%|████████████████▊ | ETA: 0:00:06 Bin 6 ray tracing: 63%|███████████████████ | ETA: 0:00:05 Bin 6 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:04 Bin 6 ray tracing: 79%|███████████████████████▌ | ETA: 0:00:03 Bin 6 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 6 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 7%|██ | ETA: 0:00:14 Bin 7 ray tracing: 14%|████ | ETA: 0:00:13 Bin 7 ray tracing: 20%|██████▏ | ETA: 0:00:12 Bin 7 ray tracing: 27%|████████▏ | ETA: 0:00:11 Bin 7 ray tracing: 34%|██████████▏ | ETA: 0:00:10 Bin 7 ray tracing: 41%|████████████▎ | ETA: 0:00:09 Bin 7 ray tracing: 48%|██████████████▍ | ETA: 0:00:08 Bin 7 ray tracing: 55%|████████████████▌ | ETA: 0:00:07 Bin 7 ray tracing: 62%|██████████████████▊ | ETA: 0:00:06 Bin 7 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:04 Bin 7 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 7 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:02 Bin 7 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 7%|██▏ | ETA: 0:00:14 Bin 8 ray tracing: 14%|████▍ | ETA: 0:00:12 Bin 8 ray tracing: 23%|██████▉ | ETA: 0:00:10 Bin 8 ray tracing: 31%|█████████▍ | ETA: 0:00:09 Bin 8 ray tracing: 39%|███████████▋ | ETA: 0:00:08 Bin 8 ray tracing: 47%|██████████████▏ | ETA: 0:00:07 Bin 8 ray tracing: 55%|████████████████▋ | ETA: 0:00:06 Bin 8 ray tracing: 62%|██████████████████▊ | ETA: 0:00:05 Bin 8 ray tracing: 70%|████████████████████▉ | ETA: 0:00:04 Bin 8 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:03 Bin 8 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:02 Bin 8 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 9 ray tracing: 16%|████▉ | ETA: 0:00:11 Bin 9 ray tracing: 25%|███████▌ | ETA: 0:00:09 Bin 9 ray tracing: 34%|██████████▏ | ETA: 0:00:08 Bin 9 ray tracing: 41%|████████████▍ | ETA: 0:00:07 Bin 9 ray tracing: 49%|██████████████▋ | ETA: 0:00:07 Bin 9 ray tracing: 56%|████████████████▉ | ETA: 0:00:06 Bin 9 ray tracing: 63%|██████████████████▉ | ETA: 0:00:05 Bin 9 ray tracing: 70%|█████████████████████ | ETA: 0:00:04 Bin 9 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:03 Bin 9 ray tracing: 84%|█████████████████████████▍ | ETA: 0:00:02 Bin 9 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 9 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 7%|██▏ | ETA: 0:00:14 Bin 10 ray tracing: 14%|████ | ETA: 0:00:13 Bin 10 ray tracing: 21%|██████ | ETA: 0:00:12 Bin 10 ray tracing: 28%|████████ | ETA: 0:00:11 Bin 10 ray tracing: 35%|██████████ | ETA: 0:00:10 Bin 10 ray tracing: 43%|████████████▍ | ETA: 0:00:08 Bin 10 ray tracing: 51%|██████████████▊ | ETA: 0:00:07 Bin 10 ray tracing: 59%|█████████████████▎ | ETA: 0:00:06 Bin 10 ray tracing: 68%|███████████████████▉ | ETA: 0:00:04 Bin 10 ray tracing: 78%|██████████████████████▌ | ETA: 0:00:03 Bin 10 ray tracing: 87%|█████████████████████████▎ | ETA: 0:00:02 Bin 10 ray tracing: 96%|███████████████████████████▉ | ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2659805235666 K, F = -7458.477475796514, relative_change = 0.0327340194764334 Iter 2: T = 936.6047274419636 K, F = -6322.439933080277, relative_change = 0.031698885000593556 Iter 3: T = 907.985026833215 K, F = -5357.93390290606, relative_change = 0.030556861149862283 Iter 5: T = 856.7329505565283 K, F = -3844.1969455624803, relative_change = 0.027956983228831722 Iter 10: T = 761.340474836802 K, F = -1664.7326522098392, relative_change = 0.02005111900913983 Iter 15: T = 705.4175345586218 K, F = -712.8273023546244, relative_change = 0.012034822345121264 Iter 20: T = 676.625226255969 K, F = -302.14080641171535, relative_change = 0.006170552603948257 Iter 25: T = 663.1890665392528 K, F = -127.20056152167986, relative_change = 0.002852528518154173 Iter 30: T = 657.27178272236 K, F = -53.35718557974061, relative_change = 0.0012482246202658398 Iter 35: T = 654.7398544155834 K, F = -22.343762811382874, relative_change = 0.0005323585530855962 Iter 40: T = 653.6705383905262 K, F = -9.34961199664234, relative_change = 0.00022449949551134725 Iter 45: T = 653.221480469051 K, F = -3.91103238252718, relative_change = 9.421783201687705e-5 Iter 50: T = 653.0333518372638 K, F = -1.635800603882107, relative_change = 3.946094310607377e-5 Iter 55: T = 652.9546167822008 K, F = -0.6841393937733344, relative_change = 1.6513189917418732e-5 Iter 60: T = 652.9216787868854 K, F = -0.28612017253367117, relative_change = 6.9077904758593094e-6 Iter 65: T = 652.9079019642918 K, F = -0.11965973168040744, relative_change = 2.8892314324418517e-6 Iter 70: T = 652.9021400247292 K, F = -0.0500432789902997, relative_change = 1.208365485243713e-6 Iter 75: T = 652.8997302589485 K, F = -0.020928723177911945, relative_change = 5.053623912442591e-7 Iter 80: T = 652.8987224567028 K, F = -0.00875264656638236, relative_change = 2.1135025140588623e-7 Iter 85: T = 652.8983009801209 K, F = -0.003660462125439634, relative_change = 8.83894902377357e-8 Iter 90: T = 652.8981247132928 K, F = -0.001530849116033406, relative_change = 3.6965591306269214e-8 Iter 95: T = 652.8980509963498 K, F = -0.0006402194067856026, relative_change = 1.545946064281865e-8 Iter 100: T = 652.8980201670352 K, F = -0.00026774740648050077, relative_change = 6.465332633438109e-9 Iter 105: T = 652.898007273846 K, F = -0.00011197516438860022, relative_change = 2.7038796081661308e-9 Iter 110: T = 652.89800188176 K, F = -4.682935110761344e-5, relative_change = 1.130794790019923e-9 Iter 115: T = 652.8979996267252 K, F = -1.9584592973687087e-5, relative_change = 4.729118712874598e-10 Iter 120: T = 652.8979986836428 K, F = -8.190511118444377e-6, relative_change = 1.9777740449679383e-10 Iter 125: T = 652.8979982892344 K, F = -3.4253690948116144e-6, relative_change = 8.271286140351142e-11 Iter 130: T = 652.8979981242882 K, F = -1.4325302165607567e-6, relative_change = 3.45915053594446e-11 Iter 135: T = 652.8979980553056 K, F = -5.991013407036228e-7, relative_change = 1.4466582979295637e-11 Iter 140: T = 652.8979980264563 K, F = -2.505511574324437e-7, relative_change = 6.0500934717664865e-12 Iter 145: T = 652.8979980143912 K, F = -1.0478392958868099e-7, relative_change = 2.5302320488271e-12 Iter 150: T = 652.8979980093454 K, F = -4.38219801557338e-8, relative_change = 1.0581754193837765e-12 Iter 155: T = 652.8979980072352 K, F = -1.8326211326247233e-8, relative_change = 4.425255610825804e-13 Converged in 159 iterations to T = 652.8979980064736 K Iter 1: T = 970.3886389696224 K, F = -6746.976778447656, relative_change = 0.029611361030377526 Iter 2: T = 942.9424608385667 K, F = -5714.463339260873, relative_change = 0.028283696890967915 Iter 3: T = 917.6164366459956 K, F = -4838.207844960722, relative_change = 0.026858504356722362 Iter 5: T = 873.1074547686185 K, F = -3464.0537758147984, relative_change = 0.02376106776792004 Iter 10: T = 794.1512299014101 K, F = -1490.897879804397, relative_change = 0.015455450608498475 Iter 15: T = 751.1674121732203 K, F = -634.5958314124119, relative_change = 0.008454550165437114 Iter 20: T = 730.3151752842022 K, F = -267.85426770508263, relative_change = 0.004065017085597138 Iter 25: T = 720.9331266629173 K, F = -112.50484962168647, relative_change = 0.0018143190667336737 Iter 30: T = 716.877346487886 K, F = -47.140525337581465, relative_change = 0.0007807882065323091 Iter 35: T = 715.156647074949 K, F = -19.73079500041557, relative_change = 0.000330552082283142 Iter 40: T = 714.4326288283335 K, F = -8.254492884527728, relative_change = 0.00013895618473751384 Iter 45: T = 714.1290575148615 K, F = -3.4526261717340323, relative_change = 5.8239205151948614e-5 Iter 50: T = 714.0019636243188 K, F = -1.4440168746845603, relative_change = 2.4378451055961657e-5 Iter 55: T = 713.9487874790069 K, F = -0.6039203960456624, relative_change = 1.0199233334236412e-5 Iter 60: T = 713.9265443855347 K, F = -0.2525693976840808, relative_change = 4.266119123006244e-6 Iter 65: T = 713.9172413243462 K, F = -0.10562800645762116, relative_change = 1.7842605649969511e-6 Iter 70: T = 713.9133505446847 K, F = -0.044174975621494084, relative_change = 7.462198219533855e-7 Iter 75: T = 713.9117233517114 K, F = -0.0184745166796364, relative_change = 3.1208166972916815e-7 Iter 80: T = 713.9110428362501 K, F = -0.007726266010156024, relative_change = 1.305169159329168e-7 Iter 85: T = 713.9107582358703 K, F = -0.0032312171539590206, relative_change = 5.4583843934641016e-8 Iter 90: T = 713.9106392124725 K, F = -0.001351333678644595, relative_change = 2.2827634805734228e-8 Iter 95: T = 713.9105894354451 K, F = -0.0005651438964408007, relative_change = 9.546792895933297e-9 Iter 100: T = 713.9105686180941 K, F = -0.0002363499293907001, relative_change = 3.992583401027552e-9 Iter 105: T = 713.9105599120287 K, F = -9.88443647002013e-5, relative_change = 1.6697461840508022e-9 Iter 110: T = 713.9105562710481 K, F = -4.133789416738143e-5, relative_change = 6.98307818842993e-10 Iter 115: T = 713.9105547483464 K, F = -1.728800113942608e-5, relative_change = 2.920406743880258e-10 Iter 120: T = 713.9105541115343 K, F = -7.230046862538586e-6, relative_change = 1.2213486993269653e-10 Iter 125: T = 713.910553845212 K, F = -3.0236914836390127e-6, relative_change = 5.107825353667311e-11 Iter 130: T = 713.9105537338329 K, F = -1.2645445517378562e-6, relative_change = 2.136154684416671e-11 Iter 135: T = 713.9105536872527 K, F = -5.288469989706002e-7, relative_change = 8.933643286740232e-12 Iter 140: T = 713.9105536677723 K, F = -2.2117033682267362e-7, relative_change = 3.736159794580762e-12 Iter 145: T = 713.9105536596254 K, F = -9.249567023417171e-8, relative_change = 1.5624997876526337e-12 Iter 150: T = 713.9105536562183 K, F = -3.868269216056319e-8, relative_change = 6.534543523503863e-13 Iter 155: T = 713.9105536547935 K, F = -1.6178821948820143e-8, relative_change = 2.733036670399369e-13 Converged in 157 iterations to T = 713.9105536544919 K Iter 1: T = 974.3933773671711 K, F = -5834.4933250765425, relative_change = 0.025606622632828983 Iter 2: T = 950.9761406747872 K, F = -4936.217694313001, relative_change = 0.024032631210669442 Iter 3: T = 929.6737314237652 K, F = -4174.43674983557, relative_change = 0.022400571728231167 Iter 5: T = 893.060721636743 K, F = -2981.3640430250457, relative_change = 0.019046530743511182 Iter 10: T = 831.3714225285804 K, F = -1274.8946646464035, relative_change = 0.01119566609655065 Iter 15: T = 800.0461011562454 K, F = -539.8394867755412, relative_change = 0.005652771289087311 Iter 20: T = 785.5574198033049 K, F = -227.14043510025616, relative_change = 0.0025904561369612883 Iter 25: T = 779.2063064561505 K, F = -95.25252871716033, relative_change = 0.001128760553388523 Iter 30: T = 776.4946392160605 K, F = -39.88277190050843, relative_change = 0.0004804991947551305 Iter 35: T = 775.3505024783464 K, F = -16.687800441716067, relative_change = 0.00020246534986092642 Iter 40: T = 774.8702186982376 K, F = -6.980506943311935, relative_change = 8.494131747422628e-5 Iter 45: T = 774.6690427326198 K, F = -2.919589070420619, relative_change = 3.557054560466602e-5 Iter 50: T = 774.5848531952523 K, F = -1.221052138925869, relative_change = 1.4884275984933867e-5 Iter 55: T = 774.549634433805 K, F = -0.5106664825019471, relative_change = 6.226225908494572e-6 Iter 60: T = 774.5349038312811 K, F = -0.2135682028048127, relative_change = 2.6041346634835358e-6 Iter 65: T = 774.5287430207123 K, F = -0.08931701453044971, relative_change = 1.08912440791488e-6 Iter 70: T = 774.5261664442645 K, F = -0.03735348439221575, relative_change = 4.554925638301263e-7 Iter 75: T = 774.525088880147 K, F = -0.015621680653008174, relative_change = 1.9049378182259841e-7 Iter 80: T = 774.5246382283768 K, F = -0.0065331747022331355, relative_change = 7.966701097540356e-8 Iter 85: T = 774.524449760147 K, F = -0.002732251909161376, relative_change = 3.331773677294566e-8 Iter 90: T = 774.524370940434 K, F = -0.0011426604175152066, relative_change = 1.3933882644698764e-8 Iter 95: T = 774.5243379770801 K, F = -0.00047787423730472067, relative_change = 5.827317362829481e-9 Iter 100: T = 774.5243241914104 K, F = -0.0001998527125064431, relative_change = 2.437053913723712e-9 Iter 105: T = 774.5243184260785 K, F = -8.358079007464436e-5, relative_change = 1.0192050747172326e-9 Iter 110: T = 774.5243160149478 K, F = -3.495448339407847e-5, relative_change = 4.262437260474516e-10 Iter 115: T = 774.5243150065841 K, F = -1.4618380621667093e-5, relative_change = 1.782601960765604e-10 Iter 120: T = 774.5243145848744 K, F = -6.113581845101912e-6, relative_change = 7.455054902920364e-11 Iter 125: T = 774.5243144085103 K, F = -2.5567729282638396e-6, relative_change = 3.1177929825939385e-11 Iter 130: T = 774.524314334753 K, F = -1.0692751938323752e-6, relative_change = 1.3039009684632797e-11 Iter 135: T = 774.5243143039066 K, F = -4.4718218128458886e-7, relative_change = 5.453051587938256e-12 Iter 140: T = 774.5243142910064 K, F = -1.8701890924788245e-7, relative_change = 2.280555448788105e-12 Iter 145: T = 774.5243142856112 K, F = -7.821346748038138e-8, relative_change = 9.537546238198391e-13 Iter 150: T = 774.524314283355 K, F = -3.270946147271303e-8, relative_change = 3.9886737064195325e-13 Converged in 154 iterations to T = 774.5243142825406 K Iter 1: T = 970.2897548069113 K, F = -6769.507628984523, relative_change = 0.02971024519308872 Iter 2: T = 942.7427624112598 K, F = -5733.700566526732, relative_change = 0.02839048053344987 Iter 3: T = 917.3145902078489 K, F = -4854.636667647767, relative_change = 0.026972545658556012 Iter 5: T = 872.6003710803669 K, F = -3476.039534923806, relative_change = 0.023886470943407272 Iter 10: T = 793.1686511803023 K, F = -1496.3230241445451, relative_change = 0.015580753457674386 Iter 15: T = 749.838123269977 K, F = -637.005389197041, relative_change = 0.008543902795043181 Iter 20: T = 728.7860791128994 K, F = -268.8988723122893, relative_change = 0.0041144056675915365 Iter 25: T = 719.3059285478303 K, F = -112.94967605391034, relative_change = 0.0018378548088535298 Iter 30: T = 715.2060015361926 K, F = -47.328092291466454, relative_change = 0.0007912138445032899 Iter 35: T = 713.4662409590069 K, F = -19.809518039659693, relative_change = 0.0003350208208254483 Iter 40: T = 712.7341421605481 K, F = -8.287465732703392, relative_change = 0.00014084458370283836 Iter 45: T = 712.4271720820132 K, F = -3.466424611900116, relative_change = 5.903240938423911e-5 Iter 50: T = 712.2986533730556 K, F = -1.4497890915187421, relative_change = 2.471078542265584e-5 Iter 55: T = 712.2448807527086 K, F = -0.6063346765424, relative_change = 1.0338325893898405e-5 Iter 60: T = 712.222388101363 K, F = -0.2535791259547899, relative_change = 4.324307910486506e-6 Iter 65: T = 712.2129806537364 K, F = -0.10605029516148534, relative_change = 1.8085990683085654e-6 Iter 70: T = 712.2090462152087 K, F = -0.04435158324908928, relative_change = 7.563990445140836e-7 Iter 75: T = 712.2074007630144 K, F = -0.01854837635093154, relative_change = 3.1633884181830854e-7 Iter 80: T = 712.2067126112307 K, F = -0.007757155051934861, relative_change = 1.3229733358872424e-7 Iter 85: T = 712.2064248172325 K, F = -0.003244135327911346, relative_change = 5.5328438910491377e-8 Iter 90: T = 712.2063044582222 K, F = -0.0013567362137253403, relative_change = 2.3139033834844746e-8 Iter 95: T = 712.2062541226253 K, F = -0.0005674033007012635, relative_change = 9.677023770735561e-9 Iter 100: T = 712.2062330716738 K, F = -0.00023729483858536682, relative_change = 4.047047512725031e-9 Iter 105: T = 712.2062242679137 K, F = -9.923953435231336e-5, relative_change = 1.6925236835996937e-9 Iter 110: T = 712.2062205860761 K, F = -4.150316009066124e-5, relative_change = 7.078336631171064e-10 Iter 115: T = 712.2062190462876 K, F = -1.7357116360861014e-5, relative_change = 2.9602447993083713e-10 Iter 120: T = 712.2062184023297 K, F = -7.258954349498303e-6, relative_change = 1.2380099036772225e-10 Iter 125: T = 712.2062181330188 K, F = -3.0357813431969305e-6, relative_change = 5.177505180622086e-11 Iter 130: T = 712.2062180203898 K, F = -1.2696004861867394e-6, relative_change = 2.165295308317281e-11 Iter 135: T = 712.2062179732869 K, F = -5.309626882610274e-7, relative_change = 9.055533852214128e-12 Iter 140: T = 712.206217953588 K, F = -2.2205433292121768e-7, relative_change = 3.78712209637445e-12 Iter 145: T = 712.2062179453496 K, F = -9.286595992197277e-8, relative_change = 1.5838228608926692e-12 Iter 150: T = 712.2062179419042 K, F = -3.8836865057234604e-8, relative_change = 6.623601885572576e-13 Iter 155: T = 712.2062179404634 K, F = -1.6241828104668343e-8, relative_change = 2.770033139948896e-13 Converged in 157 iterations to T = 712.2062179401584 K Iter 1: T = 969.3661660187435 K, F = -6979.948212928307, relative_change = 0.030633833981256534 Iter 2: T = 940.874424151946 K, F = -5913.426936325407, relative_change = 0.02939213567130691 Iter 3: T = 914.4854689626723 K, F = -5008.175449419486, relative_change = 0.02804726593887307 Iter 5: T = 867.8288362592436 K, F = -3588.149934768049, relative_change = 0.025080488082267812 Iter 10: T = 783.8234038940858 K, F = -1547.2330288978133, relative_change = 0.016808814971394647 Iter 15: T = 737.0791213253052 K, F = -659.7060490411072, relative_change = 0.0094427274945077 Iter 20: T = 714.02388375359 K, F = -278.77057900729756, relative_change = 0.004619840834903516 Iter 25: T = 703.5495582869714 K, F = -117.1608554173245, relative_change = 0.0020809194897200953 Iter 30: T = 698.9998292877099 K, F = -49.105327296694895, relative_change = 0.0008993429173550279 Iter 35: T = 697.0653838909332 K, F = -20.555722837233485, relative_change = 0.00038145469267256133 Iter 40: T = 696.2506653975704 K, F = -8.600062698182168, relative_change = 0.00016048223586145898 Iter 45: T = 695.9089289756388 K, F = -3.597249028511236, relative_change = 6.728379222737971e-5 Iter 50: T = 695.7658328825752 K, F = -1.5045176835605014, relative_change = 2.816841298744116e-5 Iter 55: T = 695.7059572137042 K, F = -0.6292256751787961, relative_change = 1.1785539073043213e-5 Iter 60: T = 695.6809110364924 K, F = -0.26315291335822244, relative_change = 4.9297584238298215e-6 Iter 65: T = 695.670435471187 K, F = -0.11005425458277224, relative_change = 2.0618422155788312e-6 Iter 70: T = 695.6660542976352 K, F = -0.04602610214926739, relative_change = 8.623147400730128e-7 Iter 75: T = 695.6642220093171 K, F = -0.019248682820952046, relative_change = 3.6063516776719196e-7 Iter 80: T = 695.6634557193502 K, F = -0.008050032046921451, relative_change = 1.5082278149343587e-7 Iter 85: T = 695.663135246841 K, F = -0.003366620065570869, relative_change = 6.30760366222551e-8 Iter 90: T = 695.663001221254 K, F = -0.0014079608093198193, relative_change = 2.6379177722167682e-8 Iter 95: T = 695.6629451701257 K, F = -0.0005888260409770973, relative_change = 1.1032091687582077e-8 Iter 100: T = 695.6629217288696 K, F = -0.0002462540856866813, relative_change = 4.6137532964288065e-9 Iter 105: T = 695.6629119254554 K, F = -0.000102986398445859, relative_change = 1.929526837583647e-9 Iter 110: T = 695.6629078255505 K, F = -4.3070142232704e-5, relative_change = 8.069511986297486e-10 Iter 115: T = 695.6629061109213 K, F = -1.801244877774888e-5, relative_change = 3.3747664968222944e-10 Iter 120: T = 695.6629053938428 K, F = -7.533020650929423e-6, relative_change = 1.4113675575747026e-10 Iter 125: T = 695.6629050939521 K, F = -3.1503985856717875e-6, relative_change = 5.902506540751003e-11 Iter 130: T = 695.6629049685341 K, F = -1.3175330804138241e-6, relative_change = 2.4684964203713112e-11 Iter 135: T = 695.6629049160829 K, F = -5.510078129322693e-7, relative_change = 1.0323542038739418e-11 Iter 140: T = 695.6629048941471 K, F = -2.304377152428927e-7, relative_change = 4.317422339836464e-12 Iter 145: T = 695.6629048849734 K, F = -9.637228737258141e-8, relative_change = 1.805606630108606e-12 Iter 150: T = 695.6629048811367 K, F = -4.0302942538872344e-8, relative_change = 7.551056662341799e-13 Iter 155: T = 695.6629048795323 K, F = -1.6854969975277356e-8, relative_change = 3.1579042449327726e-13 Converged in 158 iterations to T = 695.6629048790626 K Iter 1: T = 963.5958092326994 K, F = -8294.7294956548, relative_change = 0.03640419076730057 Iter 2: T = 929.0715206097233 K, F = -7038.291285872737, relative_change = 0.03582859980521023 Iter 3: T = 896.3937328577963 K, F = -5971.244984627135, relative_change = 0.035172521196733614 Iter 5: T = 836.459177844776 K, F = -4295.554465865341, relative_change = 0.033589776423602294 Iter 10: T = 716.9981598004335 K, F = -1876.9956220763518, relative_change = 0.027837444050594327 Iter 15: T = 637.612477612141 K, F = -812.6853513933107, relative_change = 0.019907187088083204 Iter 20: T = 591.1816111424055 K, F = -347.9187853286848, relative_change = 0.011912255705987434 Iter 25: T = 567.3247482389457 K, F = -147.44796443078806, relative_change = 0.00609388284523826 Iter 30: T = 556.2064541072147 K, F = -62.06991678244842, relative_change = 0.0028134224567859397 Iter 35: T = 551.3133753232471 K, F = -26.035550940468333, relative_change = 0.0012303319055655415 Iter 40: T = 549.2203735265001 K, F = -10.90239618898614, relative_change = 0.0005245784153548116 Iter 45: T = 548.3365570849184 K, F = -4.5620043404563875, relative_change = 0.00022119148747570336 Iter 50: T = 547.9654221815385 K, F = -1.9083235813512376, relative_change = 9.282471868554467e-5 Iter 55: T = 547.8099426847672 K, F = -0.7981606965130537, relative_change = 3.887662307625636e-5 Iter 60: T = 547.7448725569417 K, F = -0.33381381638325003, relative_change = 1.6268521418018812e-5 Iter 65: T = 547.71765126602 K, F = -0.13960728362055233, relative_change = 6.805414841815469e-6 Iter 70: T = 547.7062655644912 K, F = -0.058385845949434995, relative_change = 2.846407559227151e-6 Iter 75: T = 547.7015036775231 K, F = -0.024417730229788825, relative_change = 1.1904544274889716e-6 Iter 80: T = 547.6995121556874 K, F = -0.01021179901450553, relative_change = 4.978714926752797e-7 Iter 85: T = 547.6986792698048 K, F = -0.004270698510171367, relative_change = 2.0821741916442572e-7 Iter 90: T = 547.6983309456409 K, F = -0.001786057505652805, relative_change = 8.707929380296972e-8 Iter 95: T = 547.6981852720811 K, F = -0.0007469506462341458, relative_change = 3.641765001226932e-8 Iter 100: T = 547.6981243496177 K, F = -0.000312383692492757, relative_change = 1.5230304792704213e-8 Iter 105: T = 547.6980988711089 K, F = -0.00013064259295783587, relative_change = 6.3694968660093464e-9 Iter 110: T = 547.6980882156909 K, F = -5.463629333046782e-5, relative_change = 2.663799940683336e-9 Iter 115: T = 547.6980837594676 K, F = -2.2849550377956884e-5, relative_change = 1.1140329914220227e-9 Iter 120: T = 547.6980818958218 K, F = -9.555955391482573e-6, relative_change = 4.659019353569079e-10 Iter 125: T = 547.6980811164228 K, F = -3.996414138285331e-6, relative_change = 1.9484572895651011e-10 Iter 130: T = 547.6980807904689 K, F = -1.671348456744326e-6, relative_change = 8.14868274530488e-11 Iter 135: T = 547.698080654151 K, F = -6.989775033494627e-7, relative_change = 3.4078745845400215e-11 Iter 140: T = 547.6980805971414 K, F = -2.92321203465562e-7, relative_change = 1.4252161128683006e-11 Iter 145: T = 547.6980805732992 K, F = -1.2225245099584114e-7, relative_change = 5.960435335083443e-12 Iter 150: T = 547.6980805633281 K, F = -5.11272983394484e-8, relative_change = 2.4927185766327195e-12 Iter 155: T = 547.698080559158 K, F = -2.1381860282332354e-8, relative_change = 1.042475586658237e-12 Iter 160: T = 547.6980805574141 K, F = -8.94185564481731e-9, relative_change = 4.3596142179396397e-13 Converged in 164 iterations to T = 547.6980805567846 K Iter 1: T = 966.8534241190647 K, F = -7552.478845004727, relative_change = 0.0331465758809353 Iter 2: T = 935.7625097943832 K, F = -6402.838753039484, relative_change = 0.0321568022091969 Iter 3: T = 906.6969415999732 K, F = -5426.741636921217, relative_change = 0.031060838503560714 Iter 5: T = 854.511650441083 K, F = -3894.680832324496, relative_change = 0.028549989800319676 Iter 10: T = 756.7018750070016 K, F = -1688.1227788747153, relative_change = 0.020774492839012507 Iter 15: T = 698.692115189718 K, F = -723.5483137612002, relative_change = 0.01266079500052879 Iter 20: T = 668.5170066451852 K, F = -306.91645359646697, relative_change = 0.0065672075032377625 Iter 25: T = 654.3395840087546 K, F = -129.2683947896401, relative_change = 0.003056403036588437 Iter 30: T = 648.0731999884894 K, F = -54.23645668440269, relative_change = 0.001341860977813041 Iter 35: T = 645.3873363877094 K, F = -22.71420576278495, relative_change = 0.0005731434826623534 Iter 40: T = 644.2521597243788 K, F = -9.505026686500175, relative_change = 0.00024185353411328544 Iter 45: T = 643.775291252359 K, F = -3.976115686618967, relative_change = 0.00010152849588328408 Iter 50: T = 643.575484682056 K, F = -1.663034524664427, relative_change = 4.252769403020106e-5 Iter 55: T = 643.4918574706332 K, F = -0.6955316279389832, relative_change = 1.7797381557093683e-5 Iter 60: T = 643.4568720618308 K, F = -0.29088501067613487, relative_change = 7.4451419591967034e-6 Iter 65: T = 643.4422387317119 K, F = -0.12165252609060134, relative_change = 3.1140085018289733e-6 Iter 70: T = 643.4361185459002 K, F = -0.050876703790942834, relative_change = 1.3023787330786367e-6 Iter 75: T = 643.4335589494626 K, F = -0.021277273896496918, relative_change = 5.446813922709956e-7 Iter 80: T = 643.4324884848832 K, F = -0.00889841508002881, relative_change = 2.2779419623812892e-7 Iter 85: T = 643.4320408019263 K, F = -0.0037214243356554766, relative_change = 9.526659140125512e-8 Iter 90: T = 643.4318535752376 K, F = -0.0015563442539009431, relative_change = 3.9841685373165833e-8 Iter 95: T = 643.4317752747428 K, F = -0.0006508817807953649, relative_change = 1.6662278981742516e-8 Iter 100: T = 643.4317425285305 K, F = -0.0002722065382326222, relative_change = 6.96836585920066e-9 Iter 105: T = 643.4317288336719 K, F = -0.0001138400260127792, relative_change = 2.914254140310583e-9 Iter 110: T = 643.431723106318 K, F = -4.760925834929042e-5, relative_change = 1.218775934976186e-9 Iter 115: T = 643.4317207110703 K, F = -1.9910760739649813e-5, relative_change = 5.097066685771134e-10 Iter 120: T = 643.4317197093491 K, F = -8.326918696843766e-6, relative_change = 2.1316543729482037e-10 Iter 125: T = 643.4317192904172 K, F = -3.482416871980476e-6, relative_change = 8.914833261684977e-11 Iter 130: T = 643.4317191152148 K, F = -1.45638710880025e-6, relative_change = 3.7282866278067335e-11 Iter 135: T = 643.4317190419432 K, F = -6.090794008595246e-7, relative_change = 1.559216346400468e-11 Iter 140: T = 643.4317190113001 K, F = -2.5472376680157893e-7, relative_change = 6.52081585000736e-12 Iter 145: T = 643.4317189984848 K, F = -1.0652836057722936e-7, relative_change = 2.7270789487589402e-12 Iter 150: T = 643.4317189931253 K, F = -4.455147273318971e-8, relative_change = 1.1404980117348918e-12 Iter 155: T = 643.4317189908838 K, F = -1.8630799292207456e-8, relative_change = 4.769402277091807e-13 Converged in 160 iterations to T = 643.4317189899464 K Iter 1: T = 965.1396077161825 K, F = -7942.973542661718, relative_change = 0.034860392283817564 Iter 2: T = 932.2514564647754 K, F = -6737.012676114486, relative_change = 0.034076055928562034 Iter 3: T = 901.3060462314212 K, F = -5712.939031192744, relative_change = 0.0331942739469707 Iter 5: T = 845.1305731241076 K, F = -4105.074068558925, relative_change = 0.03111927491862949 Iter 10: T = 736.5436130419457 K, F = -1786.5048951038941, relative_change = 0.02415578189887565 Iter 15: T = 668.5485720657744 K, F = -769.3268478529744, relative_change = 0.01585186024590929 Iter 20: T = 631.2941823299622 K, F = -327.6247176754803, relative_change = 0.008738588679889716 Iter 25: T = 613.1350614389394 K, F = -138.3309879604453, relative_change = 0.004222520550141803 Iter 30: T = 604.9421867822979 K, F = -58.11209246038409, relative_change = 0.0018895038400539182 Iter 35: T = 601.3956834951339 K, F = -24.351418539109506, relative_change = 0.0008141192618246118 Iter 40: T = 599.8901335499721 K, F = -10.192707945121839, relative_change = 0.0003448437350814891 Iter 45: T = 599.256477311872 K, F = -4.264242124843268, relative_change = 0.00014499644638971785 Iter 50: T = 598.9907640227085 K, F = -1.783625785772145, relative_change = 6.077651919221982e-5 Iter 55: T = 598.8795146547236 K, F = -0.7459807080652561, relative_change = 2.544155534696606e-5 Iter 60: T = 598.8329669517776 K, F = -0.3119862859747371, relative_change = 1.0644181374620565e-5 Iter 65: T = 598.8134963149326 K, F = -0.13047783321216125, relative_change = 4.452262122501679e-6 Iter 70: T = 598.8053527916933 K, F = -0.05456764040714018, relative_change = 1.8621183608888338e-6 Iter 75: T = 598.801946955753 K, F = -0.022820883023560112, relative_change = 7.787827310657499e-7 Iter 80: T = 598.8005225739773 K, F = -0.009543973536145112, relative_change = 3.257001906137483e-7 Iter 85: T = 598.7999268769206 K, F = -0.0039914050618773955, relative_change = 1.362124006012383e-7 Iter 90: T = 598.79967774867 K, F = -0.0016692535003562936, relative_change = 5.6965773542051296e-8 Iter 95: T = 598.7995735601506 K, F = -0.0006981017903384124, relative_change = 2.3823787958085115e-8 Iter 100: T = 598.7995299872483 K, F = -0.00029195451285435325, relative_change = 9.963396332110303e-9 Iter 105: T = 598.7995117645369 K, F = -0.0001220988657528177, relative_change = 4.166811999440173e-9 Iter 110: T = 598.7995041435807 K, F = -5.106320448194923e-5, relative_change = 1.7426106683772624e-9 Iter 115: T = 598.7995009564057 K, F = -2.1355242027620847e-5, relative_change = 7.287806142148446e-10 Iter 120: T = 598.7994996234911 K, F = -8.931017635993577e-6, relative_change = 3.0478477269809106e-10 Iter 125: T = 598.7994990660503 K, F = -3.7350579955575114e-6, relative_change = 1.2746462426048023e-10 Iter 130: T = 598.7994988329218 K, F = -1.5620455441345271e-6, relative_change = 5.3307217442603463e-11 Iter 135: T = 598.7994987354248 K, F = -6.532661578906307e-7, relative_change = 2.2293716904944228e-11 Iter 140: T = 598.7994986946503 K, F = -2.732037530650544e-7, relative_change = 9.323500163917672e-12 Iter 145: T = 598.799498677598 K, F = -1.1425766649475477e-7, relative_change = 3.899219393898537e-12 Iter 150: T = 598.7994986704664 K, F = -4.778323359211356e-8, relative_change = 1.630676670126736e-12 Iter 155: T = 598.7994986674839 K, F = -1.998350551701833e-8, relative_change = 6.819679997567543e-13 Iter 160: T = 598.7994986662367 K, F = -8.357248504342607e-9, relative_change = 2.8520401694184627e-13 Converged in 162 iterations to T = 598.7994986659727 K Iter 1: T = 980.0708962485138 K, F = -4540.8652472478725, relative_change = 0.019929103751486172 Iter 2: T = 962.1885768012326 K, F = -3835.7555765423153, relative_change = 0.018245944773720615 Iter 3: T = 946.2326469719842 K, F = -3238.6258249856246, relative_change = 0.01658295495701416 Iter 5: T = 919.5783143729946 K, F = -2305.5969919557147, relative_change = 0.01340655647786927 Iter 10: T = 877.231092263889 K, F = -978.8820658270513, relative_change = 0.007051891588344926 Iter 15: T = 857.16940226431 K, F = -412.51463423423274, relative_change = 0.003309282461332472 Iter 20: T = 848.2623414449235 K, F = -173.1237578770406, relative_change = 0.0014588699178661986 Iter 25: T = 844.4365337667961 K, F = -72.51311803368566, relative_change = 0.0006242798888639079 Iter 30: T = 842.8180436389798 K, F = -30.345591518598173, relative_change = 0.0002636437003311665 Iter 35: T = 842.1378701425689 K, F = -12.694369779800827, relative_change = 0.00011071359420470064 Iter 40: T = 841.8528309521138 K, F = -5.309547988477691, relative_change = 4.6381748345251024e-5 Iter 45: T = 841.7335219026054 K, F = -2.220623387964451, relative_change = 1.9411428867524922e-5 Iter 50: T = 841.683607521076 K, F = -0.9287099480627443, relative_change = 8.120547456341684e-6 Iter 55: T = 841.6627295957447 K, F = -0.388400867626554, relative_change = 3.396539688138054e-6 Iter 60: T = 841.6539976495972 K, F = -0.16243445437450843, relative_change = 1.4205486404764739e-6 Iter 65: T = 841.650345749504 K, F = -0.06793212891546063, relative_change = 5.941035563089302e-7 Iter 70: T = 841.6488184644928 K, F = -0.028410045118516303, relative_change = 2.4846350232482675e-7 Iter 75: T = 841.6481797327268 K, F = -0.011881423218458087, relative_change = 1.0391080620294166e-7 Iter 80: T = 841.647912606961 K, F = -0.0049689536194776895, relative_change = 4.345681046343303e-8 Iter 85: T = 841.6478008916857 K, F = -0.002078075836499549, relative_change = 1.8174169401369082e-8 Iter 90: T = 841.6477541710078 K, F = -0.0008690761486169762, relative_change = 7.600656840743308e-9 Iter 95: T = 841.6477346318597 K, F = -0.00036345802749448985, relative_change = 3.178685840994705e-9 Iter 100: T = 841.6477264603541 K, F = -0.00015200249052105264, relative_change = 1.3293644663221245e-9 Iter 105: T = 841.6477230429327 K, F = -6.35692560575496e-5, relative_change = 5.559560997816844e-10 Iter 110: T = 841.6477216137264 K, F = -2.6585422959302107e-5, relative_change = 2.325074901870979e-10 Iter 115: T = 841.6477210160151 K, F = -1.1118339928062326e-5, relative_change = 9.723739676510612e-11 Iter 120: T = 841.6477207660452 K, F = -4.649822890057109e-6, relative_change = 4.066584371522482e-11 Iter 125: T = 841.6477206615048 K, F = -1.9446118155741487e-6, relative_change = 1.7006944585950446e-11 Iter 130: T = 841.6477206177848 K, F = -8.132601472254919e-7, relative_change = 7.112509628130093e-12 Iter 135: T = 841.6477205995004 K, F = -3.4011383998056033e-7, relative_change = 2.9745253963631413e-12 Iter 140: T = 841.6477205918537 K, F = -1.4223764455145727e-7, relative_change = 1.2439643328823886e-12 Iter 145: T = 841.6477205886558 K, F = -5.948731240934535e-8, relative_change = 5.202567515157721e-13 Converged in 150 iterations to T = 841.6477205873183 K Iter 1: T = 976.3743516871154 K, F = -5383.126441884137, relative_change = 0.023625648312884506 Iter 2: T = 954.9116101449835 K, F = -4551.867269672074, relative_change = 0.02198208249227941 Iter 3: T = 935.5206614292725 K, F = -3847.229452282799, relative_change = 0.02030653780905108 Iter 5: T = 902.535173016175 K, F = -2744.4848925725423, relative_change = 0.016952552158376277 Iter 10: T = 848.1751147206504 K, F = -1170.404279896976, relative_change = 0.00955083000384512 Iter 15: T = 821.3150238533694 K, F = -494.63756661240785, relative_change = 0.004681729376932008 Iter 20: T = 809.0988953070259 K, F = -207.8989136707333, relative_change = 0.0021109654927096836 Iter 25: T = 803.7897083200547 K, F = -87.13892776147429, relative_change = 0.0009127684266062535 Iter 30: T = 801.531803334013 K, F = -36.477283589651364, relative_change = 0.0003872312290957536 Iter 35: T = 800.5807540654184 K, F = -15.261386037009057, relative_change = 0.00016292725735946145 Iter 40: T = 800.1818151964296 K, F = -6.3835751066637805, relative_change = 6.831150545788956e-5 Iter 45: T = 800.0147634083256 K, F = -2.6698768543980127, relative_change = 2.859912527530562e-5 Iter 50: T = 799.944863404848 K, F = -1.1166075604179917, relative_change = 1.1965827686580315e-5 Iter 55: T = 799.9156239197752 K, F = -0.4669844212955012, relative_change = 5.005185214979156e-6 Iter 60: T = 799.9033944860707 K, F = -0.19529947728148667, relative_change = 2.093391489073462e-6 Iter 65: T = 799.8982797928508 K, F = -0.08167675134659436, relative_change = 8.755098781857256e-7 Iter 70: T = 799.8961407324323 K, F = -0.03415822389404988, relative_change = 3.661536817056755e-7 Iter 75: T = 799.8952461457625 K, F = -0.01428538259816603, relative_change = 1.5313071609817842e-7 Iter 80: T = 799.894872017874 K, F = -0.005974318554167524, relative_change = 6.404124701825366e-8 Iter 85: T = 799.8947155529378 K, F = -0.002498531532114545, relative_change = 2.678284102233045e-8 Iter 90: T = 799.8946501174006 K, F = -0.001044915754788267, relative_change = 1.1200908646881829e-8 Iter 95: T = 799.8946227514718 K, F = -0.00043699625313509127, relative_change = 4.684354585793847e-9 Iter 100: T = 799.8946113067125 K, F = -0.00018275705131154396, relative_change = 1.959053157952308e-9 Iter 105: T = 799.8946065203772 K, F = -7.643117951416922e-5, relative_change = 8.192994294041476e-10 Iter 110: T = 799.8946045186748 K, F = -3.196443249631198e-5, relative_change = 3.4264081470353245e-10 Iter 115: T = 799.8946036815389 K, F = -1.336790839168156e-5, relative_change = 1.4329649198559052e-10 Iter 120: T = 799.8946033314387 K, F = -5.590617906725548e-6, relative_change = 5.992829336215142e-11 Iter 125: T = 799.8946031850226 K, F = -2.3380632330205486e-6, relative_change = 2.5062728626341848e-11 Iter 130: T = 799.8946031237896 K, F = -9.778048528641392e-7, relative_change = 1.0481520490840711e-11 Iter 135: T = 799.8946030981813 K, F = -4.0893085051507683e-7, relative_change = 4.383509733163077e-12 Iter 140: T = 799.8946030874715 K, F = -1.71020697159463e-7, relative_change = 1.8332461091511398e-12 Iter 145: T = 799.8946030829926 K, F = -7.152197079030032e-8, relative_change = 7.666754775966024e-13 Iter 150: T = 799.8946030811195 K, F = -2.991180025890827e-8, relative_change = 3.206377494373861e-13 Converged in 153 iterations to T = 799.8946030805711 K Iter 1: T = 980.8174363855754 K, F = -4370.765366875375, relative_change = 0.019182563614424525 Iter 2: T = 963.6478004632834 K, F = -3691.3062256800235, relative_change = 0.017505435043614355 Iter 3: T = 948.3655295550841 K, F = -3116.0231644080027, relative_change = 0.015858772158097733 Iter 5: T = 922.9256574354016 K, F = -2217.4363874079213, relative_change = 0.01274216020415971 Iter 10: T = 882.7796176516587 K, F = -940.6911654644924, relative_change = 0.006619522684993402 Iter 15: T = 863.9004345764497 K, F = -396.2278198760296, relative_change = 0.0030835172248573134 Iter 20: T = 855.5518343338059 K, F = -166.24810141244635, relative_change = 0.0013543648026160648 Iter 25: T = 851.9726838856958 K, F = -69.62556249108036, relative_change = 0.0005785996698073406 Iter 30: T = 850.4598080928954 K, F = -29.135803536579736, relative_change = 0.0002441769721895768 Iter 35: T = 849.8242471802471 K, F = -12.188036081356588, relative_change = 0.00010250760660748337 Iter 40: T = 849.557944061216 K, F = -5.097725318189191, relative_change = 4.2938478704490145e-5 Iter 45: T = 849.446484474551 K, F = -2.1320247193920387, relative_change = 1.7969406342227898e-5 Iter 50: T = 849.3998552536923 K, F = -0.8916548437604725, relative_change = 7.517125017598237e-6 Iter 55: T = 849.3803516457232 K, F = -0.37290361601037236, relative_change = 3.1441197186573097e-6 Iter 60: T = 849.3721945296857 K, F = -0.15595325491473755, relative_change = 1.3149728355304264e-6 Iter 65: T = 849.3687830433851 K, F = -0.06522160274862343, relative_change = 5.499486118481452e-7 Iter 70: T = 849.3673563045627 K, F = -0.027276468753264504, relative_change = 2.2999704804128053e-7 Iter 75: T = 849.3667596228106 K, F = -0.011407347704040394, relative_change = 9.618785691537508e-8 Iter 80: T = 849.3665100829322 K, F = -0.004770689517497484, relative_change = 4.022697076570134e-8 Iter 85: T = 849.3664057222974 K, F = -0.00199515941469941, relative_change = 1.6823410139482235e-8 Iter 90: T = 849.3663620774199 K, F = -0.0008343995069171051, relative_change = 7.035752860669276e-9 Iter 95: T = 849.3663438246085 K, F = -0.00034895584177419003, relative_change = 2.9424361985714273e-9 Iter 100: T = 849.3663361910645 K, F = -0.0001459375010008923, relative_change = 1.2305620157152413e-9 Iter 105: T = 849.3663329986251 K, F = -6.103280634484065e-5, relative_change = 5.146357449554561e-10 Iter 110: T = 849.3663316635088 K, F = -2.552464919514108e-5, relative_change = 2.1522682206946185e-10 Iter 115: T = 849.3663311051473 K, F = -1.0674713104119604e-5, relative_change = 9.001042747069075e-11 Iter 120: T = 849.3663308716339 K, F = -4.46429488598632e-6, relative_change = 3.7643455861476486e-11 Iter 125: T = 849.3663307739757 K, F = -1.8670232857509461e-6, relative_change = 1.5742958402816615e-11 Iter 130: T = 849.3663307331339 K, F = -7.808100839223897e-7, relative_change = 6.583881823177197e-12 Iter 135: T = 849.3663307160533 K, F = -3.265436359090046e-7, relative_change = 2.7534540772593785e-12 Iter 140: T = 849.36633070891 K, F = -1.365649722195883e-7, relative_change = 1.1515317961630105e-12 Iter 145: T = 849.3663307059227 K, F = -5.711399309049625e-8, relative_change = 4.8159186050205e-13 Converged in 150 iterations to T = 849.3663307046733 K Iter 1: T = 967.2888706528573 K, F = -7453.261938063487, relative_change = 0.03271112934714267 Iter 2: T = 936.6514230706397 K, F = -6317.979623993141, relative_change = 0.03167352433357302 Iter 3: T = 908.0563861900678 K, F = -5354.117182323399, relative_change = 0.03052900596342266 Iter 5: T = 856.8557866656429 K, F = -3841.3977363251674, relative_change = 0.027924359675790156 Iter 10: T = 761.5955714355603 K, F = -1663.4380153956722, relative_change = 0.02001190194317648 Iter 15: T = 705.7853200096146 K, F = -712.2354896947692, relative_change = 0.012001412655402595 Iter 20: T = 677.066807074023 K, F = -301.8778584991475, relative_change = 0.006149634954271805 Iter 25: T = 663.6698933205703 K, F = -127.08689724814788, relative_change = 0.0028418524648080685 Iter 30: T = 657.771013451599 K, F = -53.30889616986041, relative_change = 0.00124333822124294 Iter 35: T = 655.2471839076624 K, F = -22.323426349515653, relative_change = 0.0005302335119979177 Iter 40: T = 654.1813298057679 K, F = -9.341081589682979, relative_change = 0.00022359589604825867 Iter 45: T = 653.733733167864 K, F = -3.9074603553463665, relative_change = 9.383728497321143e-5 Iter 50: T = 653.5462180447895 K, F = -1.6343059465818104, relative_change = 3.930132654775213e-5 Iter 55: T = 653.4677399851133 K, F = -0.6835141712550269, relative_change = 1.644635438142308e-5 Iter 60: T = 653.4349095417205 K, F = -0.28585867267736154, relative_change = 6.879824697818673e-6 Iter 65: T = 653.4211777114708 K, F = -0.11955036505970262, relative_change = 2.8775332973003227e-6 Iter 70: T = 653.4154345904913 K, F = -0.04999753981876559, relative_change = 1.2034727458344976e-6 Iter 75: T = 653.4130326952599 K, F = -0.020909594379556806, relative_change = 5.033161122919223e-7 Iter 80: T = 653.4120281846407 K, F = -0.008744646651159649, relative_change = 2.104944596487818e-7 Iter 85: T = 653.4116080846684 K, F = -0.0036571164620294305, relative_change = 8.803158556823788e-8 Iter 90: T = 653.4114323935569 K, F = -0.001529449918692638, relative_change = 3.681591088179643e-8 Iter 95: T = 653.4113589173859 K, F = -0.0006396342465428417, relative_change = 1.539686245188077e-8 Iter 100: T = 653.411328188765 K, F = -0.00026750268461334104, relative_change = 6.439153289472461e-9 Iter 105: T = 653.4113153376871 K, F = -0.00011187281820540518, relative_change = 2.6929310778510956e-9 Iter 110: T = 653.4113099632126 K, F = -4.678654810830185e-5, relative_change = 1.1262159690020995e-9 Iter 115: T = 653.4113077155432 K, F = -1.9566692780803585e-5, relative_change = 4.709969664825175e-10 Iter 120: T = 653.4113067755411 K, F = -8.18302561661488e-6, relative_change = 1.9697658217713003e-10 Iter 125: T = 653.4113063824209 K, F = -3.422239645556324e-6, relative_change = 8.23779739042953e-11 Iter 130: T = 653.4113062180134 K, F = -1.4312221375267775e-6, relative_change = 3.445146811701535e-11 Iter 135: T = 653.4113061492561 K, F = -5.985533308439095e-7, relative_change = 1.440799472251562e-11 Iter 140: T = 653.411306120501 K, F = -2.5032173128769486e-7, relative_change = 6.0255853542652576e-12 Iter 145: T = 653.4113061084753 K, F = -1.0468796707296946e-7, relative_change = 2.519982096532307e-12 Iter 150: T = 653.411306103446 K, F = -4.3781373804119283e-8, relative_change = 1.0538773579881571e-12 Iter 155: T = 653.4113061013427 K, F = -1.83095803518718e-8, relative_change = 4.407365619391032e-13 Converged in 159 iterations to T = 653.4113061005836 K Iter 1: T = 973.5000688411416 K, F = -6038.034522488138, relative_change = 0.026499931158858445 Iter 2: T = 949.1931914992982 K, F = -5109.671611594704, relative_change = 0.0249685419855988 Iter 3: T = 927.0120619513755 K, F = -4322.232842905795, relative_change = 0.023368403552164647 Iter 5: T = 888.7053089362408 K, F = -3088.5833571872695, relative_change = 0.020039758215528454 Iter 10: T = 823.47099292904 K, F = -1322.4918059093443, relative_change = 0.012025293850799737 Iter 15: T = 789.8896267839766 K, F = -560.5487171939806, relative_change = 0.006164631976264473 Iter 20: T = 774.2201288784622 K, F = -235.98819619131547, relative_change = 0.0028495167531817933 Iter 25: T = 767.3196358947533 K, F = -98.99034246834596, relative_change = 0.0012468480868544475 Iter 30: T = 764.3670758344766 K, F = -41.45296724421253, relative_change = 0.0005317602683904446 Iter 35: T = 763.1201263792381 K, F = -17.345732285520313, relative_change = 0.00022424515896295617 Iter 40: T = 762.5964738717274 K, F = -7.2558843609574115, relative_change = 9.411073038886891e-5 Iter 45: T = 762.3770949486266 K, F = -3.0347942928889475, relative_change = 3.941602237649002e-5 Iter 50: T = 762.2852811843135 K, F = -1.2692391909122283, relative_change = 1.6494380800521678e-5 Iter 55: T = 762.2468718591477 K, F = -0.530820082574791, relative_change = 6.899920297458548e-6 Iter 60: T = 762.2308065710223 K, F = -0.22199688890173908, relative_change = 2.8859393331685672e-6 Iter 65: T = 762.2240875171033 K, F = -0.09284202842381595, relative_change = 1.206988568125846e-6 Iter 70: T = 762.2212774657929 K, F = -0.03882769372266781, relative_change = 5.047865267470146e-7 Iter 75: T = 762.220102257806 K, F = -0.016238213724229733, relative_change = 2.1110941426117883e-7 Iter 80: T = 762.2196107698724 K, F = -0.006791016391651472, relative_change = 8.828876860732234e-8 Iter 85: T = 762.2194052234133 K, F = -0.002840084415697497, relative_change = 3.692346819506923e-8 Iter 90: T = 762.2193192613707 K, F = -0.001187757265309397, relative_change = 1.5441844233853604e-8 Iter 95: T = 762.2192833110078 K, F = -0.0004967342803040564, relative_change = 6.45796521614209e-9 Iter 100: T = 762.2192682761348 K, F = -0.00020774021086744643, relative_change = 2.700798465025879e-9 Iter 105: T = 762.219261988371 K, F = -8.687943730523173e-5, relative_change = 1.1295062191017127e-9 Iter 110: T = 762.2192593587531 K, F = -3.633401774483236e-5, relative_change = 4.723729912944585e-10 Iter 115: T = 762.2192582590154 K, F = -1.5195319581606803e-5, relative_change = 1.9755202037264818e-10 Iter 120: T = 762.219257799092 K, F = -6.354863727020543e-6, relative_change = 8.261860932441909e-11 Iter 125: T = 762.2192576067466 K, F = -2.657679621820286e-6, relative_change = 3.455208547035225e-11 Iter 130: T = 762.2192575263055 K, F = -1.1114730836814246e-6, relative_change = 1.4450091233476145e-11 Iter 135: T = 762.2192574926639 K, F = -4.648307123655826e-7, relative_change = 6.043192859847139e-12 Iter 140: T = 762.2192574785947 K, F = -1.9439861476122644e-7, relative_change = 2.5273466006878404e-12 Iter 145: T = 762.2192574727109 K, F = -8.13018165013446e-8, relative_change = 1.0569924576075491e-12 Iter 150: T = 762.2192574702501 K, F = -3.4001946924711035e-8, relative_change = 4.420541015015304e-13 Converged in 154 iterations to T = 762.2192574693619 K Iter 1: T = 969.9866762681381 K, F = -6838.56436234611, relative_change = 0.030013323731861895 Iter 2: T = 942.1302859001777 K, F = -5792.668662150417, relative_change = 0.02871832268370245 Iter 3: T = 916.3881691822455 K, F = -4905.0026039227, relative_change = 0.02732330878561693 Iter 5: T = 871.0416407993057 K, F = -3512.7965365988885, relative_change = 0.024273732343677922 Iter 10: T = 790.1357683532614 K, F = -1512.9813371995729, relative_change = 0.01597204405361311 Iter 15: T = 745.7207086458168 K, F = -644.415195861413, relative_change = 0.008825697746995088 Iter 20: T = 724.0393818433046 K, F = -272.11493111556877, relative_change = 0.0042711695279221105 Iter 25: T = 714.2490210339238 K, F = -114.32008523849676, relative_change = 0.001912812007864581 Iter 30: T = 710.0092175563678 K, F = -47.90612858833274, relative_change = 0.0008244697882574166 Iter 35: T = 708.2090083171794 K, F = -20.052158176998226, relative_change = 0.00034928510309338774 Iter 40: T = 707.4512736480173 K, F = -8.389100875240395, relative_change = 0.00014687414878353892 Iter 45: T = 707.1335190635563 K, F = -3.508957875272671, relative_change = 6.156538448228763e-5 Iter 50: T = 707.0004789960365 K, F = -1.467581964771349, relative_change = 2.5772098884552703e-5 Iter 55: T = 706.9448135334628 K, F = -0.6137767364002741, relative_change = 1.0782529163313295e-5 Iter 60: T = 706.9215289303291 K, F = -0.2566916361271879, relative_change = 4.510140169431532e-6 Iter 65: T = 706.9117902190595 K, F = -0.10735201065303124, relative_change = 1.886327036794242e-6 Iter 70: T = 706.9077172316331 K, F = -0.04489598086042168, relative_change = 7.889076806622473e-7 Iter 75: T = 706.9060138348004 K, F = -0.01877605074568589, relative_change = 3.299346690195019e-7 Iter 80: T = 706.905301449556 K, F = -0.007852371344131748, relative_change = 1.3798332813113396e-7 Iter 85: T = 706.905003520779 K, F = -0.0032839559425177356, relative_change = 5.770639973319788e-8 Iter 90: T = 706.9048789232735 K, F = -0.001373389675169312, relative_change = 2.4133527209342017e-8 Iter 95: T = 706.9048268150855 K, F = -0.0005743679784370181, relative_change = 1.0092933091900089e-8 Iter 100: T = 706.9048050228148 K, F = -0.0002402075493902478, relative_change = 4.220985798342386e-9 Iter 105: T = 706.9047959090263 K, F = -0.00010045766585875526, relative_change = 1.7652667787878592e-9 Iter 110: T = 706.904792097531 K, F = -4.2012594543283655e-5, relative_change = 7.38255649360517e-10 Iter 115: T = 706.9047905035181 K, F = -1.7570169381420087e-5, relative_change = 3.087473431794309e-10 Iter 120: T = 706.9047898368829 K, F = -7.348054895328637e-6, relative_change = 1.2912183072376096e-10 Iter 125: T = 706.9047895580879 K, F = -3.073042356915856e-6, relative_change = 5.4000257403352984e-11 Iter 130: T = 706.9047894414927 K, F = -1.2851827676518823e-6, relative_change = 2.2583548242304525e-11 Iter 135: T = 706.9047893927312 K, F = -5.374791817169822e-7, relative_change = 9.444716610777101e-12 Iter 140: T = 706.9047893723385 K, F = -2.2477901506778863e-7, relative_change = 3.949872236678239e-12 Iter 145: T = 706.9047893638101 K, F = -9.400476363996546e-8, relative_change = 1.651874868863311e-12 Iter 150: T = 706.9047893602433 K, F = -3.9313352240277766e-8, relative_change = 6.908239121452024e-13 Iter 155: T = 706.9047893587517 K, F = -1.6440536709794173e-8, relative_change = 2.888971619190693e-13 Converged in 157 iterations to T = 706.904789358436 K Iter 1: T = 973.5068320784335 K, F = -6036.493512437663, relative_change = 0.026493167921566477 Iter 2: T = 949.2067096374179 K, F = -5108.358081404748, relative_change = 0.024961429792059016 Iter 3: T = 927.032272681975 K, F = -4321.113306709964, relative_change = 0.023361020028938938 Iter 5: T = 888.7384830905836 K, F = -3087.7706478014097, relative_change = 0.02003211883564968 Iter 10: T = 823.5316107683885 K, F = -1322.1302675360537, relative_change = 0.012018784346096214 Iter 15: T = 789.9679639970601 K, F = -560.3910990998527, relative_change = 0.006160555750897787 Iter 20: T = 774.3078294583181 K, F = -235.92076749940546, relative_change = 0.0028474361161485943 Iter 25: T = 767.4117150640799 K, F = -98.96183722173232, relative_change = 0.001245895742060884 Iter 30: T = 764.4610795304853 K, F = -41.44098888885673, relative_change = 0.000531346095709406 Iter 35: T = 763.2149523256553 K, F = -17.34071251468126, relative_change = 0.0002240690449593234 Iter 40: T = 762.6916468180904 K, F = -7.253783213031229, relative_change = 9.403656045503837e-5 Iter 45: T = 762.4724135673638 K, F = -3.0339152478186002, relative_change = 3.938491250909695e-5 Iter 50: T = 762.3806608221377 K, F = -1.268871507694079, relative_change = 1.6481354294733237e-5 Iter 55: T = 762.3422770329104 K, F = -0.5306663032452608, relative_change = 6.89446965710346e-6 Iter 60: T = 762.3262224272 K, F = -0.22193257483157458, relative_change = 2.883659320259999e-6 Iter 65: T = 762.3195078413161 K, F = -0.09281513121129115, relative_change = 1.2060349537764353e-6 Iter 70: T = 762.3166996586826 K, F = -0.03881644493402514, relative_change = 5.043876988352045e-7 Iter 75: T = 762.3155252322147 K, F = -0.016233509336656682, relative_change = 2.1094261703456884e-7 Iter 80: T = 762.3150340711244 K, F = -0.006789048959876309, relative_change = 8.821901156813336e-8 Iter 85: T = 762.3148286613557 K, F = -0.0028392616131135417, relative_change = 3.689429490307982e-8 Iter 90: T = 762.3147427564787 K, F = -0.001187413160287365, relative_change = 1.5429643612330783e-8 Iter 95: T = 762.3147068300229 K, F = -0.0004965903715780096, relative_change = 6.452862769524769e-9 Iter 100: T = 762.3146918051484 K, F = -0.00020768002624171888, relative_change = 2.6986645568863424e-9 Iter 105: T = 762.314685521566 K, F = -8.685426812293784e-5, relative_change = 1.1286138028682902e-9 Iter 110: T = 762.314682893697 K, F = -3.6323494222778585e-5, relative_change = 4.719998050419317e-10 Iter 115: T = 762.3146817946906 K, F = -1.5190919045116047e-5, relative_change = 1.973959562629968e-10 Iter 120: T = 762.314681335073 K, F = -6.353025522543021e-6, relative_change = 8.255336942163189e-11 Iter 125: T = 762.3146811428554 K, F = -2.6569101936324557e-6, relative_change = 3.4524792670841455e-11 Iter 130: T = 762.3146810624678 K, F = -1.1111522175699662e-6, relative_change = 1.443868898864127e-11 Iter 135: T = 762.3146810288487 K, F = -4.646974646194124e-7, relative_change = 6.038436553303462e-12 Iter 140: T = 762.3146810147887 K, F = -1.9433947795466366e-7, relative_change = 2.5253131271019686e-12 Iter 145: T = 762.3146810089087 K, F = -8.127615913622321e-8, relative_change = 1.0561299935289104e-12 Iter 150: T = 762.3146810064495 K, F = -3.398942116650261e-8, relative_change = 4.4167007322547607e-13 Converged in 154 iterations to T = 762.314681005562 K Iter 1: T = 964.3525056144151 K, F = -8122.315505276784, relative_change = 0.035647494385584844 Iter 2: T = 930.6322203702376 K, F = -6890.588595700389, relative_change = 0.034966762721991784 Iter 3: T = 898.8082545251312 K, F = -5844.576200979832, relative_change = 0.03419607138945366 Iter 5: T = 840.7364166215418 K, F = -4202.074330781141, relative_change = 0.03235951783310654 Iter 10: T = 726.757129250753 K, F = -1832.4031556883594, relative_change = 0.025946611576758972 Iter 15: T = 653.2966271987785 K, F = -791.1419556588799, relative_change = 0.017740678307799986 Iter 20: T = 611.8019495401442 K, F = -337.73041204176826, relative_change = 0.010153755343288964 Iter 25: T = 591.0922243721005 K, F = -142.83230318344502, relative_change = 0.005031051950585082 Iter 30: T = 581.6160310328372 K, F = -60.05620481972366, relative_change = 0.002281669206386608 Iter 35: T = 577.4850238214638 K, F = -25.17657766553388, relative_change = 0.0009892812810429294 Iter 40: T = 575.7257283117035 K, F = -10.540029101048724, relative_change = 0.0004201972785539188 Iter 45: T = 574.9842491019433 K, F = -4.40989467828838, relative_change = 0.0001768889230954053 Iter 50: T = 574.6731390691059 K, F = -1.8446098099448025, relative_change = 7.418145401225925e-5 Iter 55: T = 574.5428506463809 K, F = -0.7714973143961574, relative_change = 3.105946387997904e-5 Iter 60: T = 574.4883311768868 K, F = -0.3226598006525166, relative_change = 1.2995727275398164e-5 Iter 65: T = 574.4655250044586 K, F = -0.13494200347119, relative_change = 5.436069004787363e-6 Iter 70: T = 574.4559862320588 K, F = -0.05643467602080157, relative_change = 2.2736215411851633e-6 Iter 75: T = 574.451996835812 K, F = -0.023601711211577725, relative_change = 9.508893648361649e-7 Iter 80: T = 574.4503283933232 K, F = -0.00987052723750842, relative_change = 3.976791799015982e-7 Iter 85: T = 574.4496306256182 K, F = -0.004127974073647955, relative_change = 1.6631521276268738e-7 Iter 90: T = 574.4493388099335 K, F = -0.0017263683531673069, relative_change = 6.955518839126e-8 Iter 95: T = 574.4492167689723 K, F = -0.000721987914483968, relative_change = 2.9088841966353306e-8 Iter 100: T = 574.4491657299574 K, F = -0.00030194397802602024, relative_change = 1.2165306646521444e-8 Iter 105: T = 574.4491443848269 K, F = -0.00012627657865005304, relative_change = 5.087677467033324e-9 Iter 110: T = 574.4491354580376 K, F = -5.281037291171575e-5, relative_change = 2.127727620108441e-9 Iter 115: T = 574.4491317247476 K, F = -2.208592834340717e-5, relative_change = 8.898411167167978e-10 Iter 120: T = 574.4491301634412 K, F = -9.236598913331395e-6, relative_change = 3.721421834871866e-10 Iter 125: T = 574.4491295104841 K, F = -3.8628560238840315e-6, relative_change = 1.5563430830901347e-10 Iter 130: T = 574.4491292374097 K, F = -1.6154923266342713e-6, relative_change = 6.508811869992015e-11 Iter 135: T = 574.4491291232067 K, F = -6.756180481737317e-7, relative_change = 2.722062310786642e-11 Iter 140: T = 574.4491290754457 K, F = -2.825519175853053e-7, relative_change = 1.1384005031880386e-11 Iter 145: T = 574.4491290554714 K, F = -1.1816593015190335e-7, relative_change = 4.760900421999976e-12 Iter 150: T = 574.449129047118 K, F = -4.941942954861389e-8, relative_change = 1.991106765772729e-12 Iter 155: T = 574.4491290436245 K, F = -2.0667742239854903e-8, relative_change = 8.327024772257338e-13 Iter 160: T = 574.4491290421633 K, F = -8.643406379515994e-9, relative_change = 3.4824248437256315e-13 Converged in 163 iterations to T = 574.4491290417355 K Iter 1: T = 963.5062288379067 K, F = -8315.140473821264, relative_change = 0.03649377116209325 Iter 2: T = 928.8864980311805 K, F = -7055.7807034333955, relative_change = 0.03593098806271487 Iter 3: T = 896.1070284134038 K, F = -5986.248080407026, relative_change = 0.03528899352854664 Iter 5: T = 835.949328366839 K, F = -4306.63588938676, relative_change = 0.03373795481005401 Iter 10: T = 715.8187378192015 K, F = -1882.3065421934687, relative_change = 0.028073358680920688 Iter 15: T = 635.6817420912384 K, F = -815.2769873595271, relative_change = 0.02019096137434726 Iter 20: T = 588.5974294788068 K, F = -349.1611612764281, relative_change = 0.012154173952876974 Iter 25: T = 564.3084287982855 K, F = -148.0174445026351, relative_change = 0.0062454276454218735 Iter 30: T = 552.9592744972707 K, F = -62.320175207511106, relative_change = 0.0028907929952747356 Iter 35: T = 547.9577197047023 K, F = -26.14269217985952, relative_change = 0.001265749691242446 Iter 40: T = 545.816941270086 K, F = -10.94766993382556, relative_change = 0.0005399823011013145 Iter 45: T = 544.91269461172 K, F = -4.581022428430633, relative_change = 0.00022774165022117413 Iter 50: T = 544.5329347541382 K, F = -1.9162920707581053, relative_change = 9.558332714122375e-5 Iter 55: T = 544.3738339030755 K, F = -0.8014958340478087, relative_change = 4.003369938610546e-5 Iter 60: T = 544.3072467691578 K, F = -0.33520907005259404, relative_change = 1.6753019965868663e-5 Iter 65: T = 544.2793906078396 K, F = -0.14019087578232514, relative_change = 7.008142200867084e-6 Iter 70: T = 544.2677393188485 K, F = -0.05862992523023072, relative_change = 2.9312088108640485e-6 Iter 75: T = 544.2628663465457 K, F = -0.02451980956152136, relative_change = 1.2259225162109965e-6 Iter 80: T = 544.2608283651374 K, F = -0.010254490240064279, relative_change = 5.127052293598886e-7 Iter 85: T = 544.2599760488939 K, F = -0.004288552565405279, relative_change = 2.144211626505292e-7 Iter 90: T = 544.2596195986489 K, F = -0.0017935242977610566, relative_change = 8.967379049124406e-8 Iter 95: T = 544.2594705266525 K, F = -0.0007500733501624168, relative_change = 3.7502702499504096e-8 Iter 100: T = 544.2594081829201 K, F = -0.00031368964529263077, relative_change = 1.5684087239730204e-8 Iter 105: T = 544.259382110019 K, F = -0.00013118875794262963, relative_change = 6.5592741889715466e-9 Iter 110: T = 544.2593712060192 K, F = -5.486470627663609e-5, relative_change = 2.743167110770784e-9 Iter 115: T = 544.2593666458358 K, F = -2.294507470890217e-5, relative_change = 1.1472252578738424e-9 Iter 120: T = 544.2593647387127 K, F = -9.595903699421982e-6, relative_change = 4.797832833153254e-10 Iter 125: T = 544.2593639411311 K, F = -4.013121668505759e-6, relative_change = 2.006511074104271e-10 Iter 130: T = 544.2593636075729 K, F = -1.678335774218942e-6, relative_change = 8.391470792649627e-11 Iter 135: T = 544.2593634680749 K, F = -7.018995241692139e-7, relative_change = 3.509410604304668e-11 Iter 140: T = 544.2593634097352 K, F = -2.935429581074622e-7, relative_change = 1.4676783999053547e-11 Iter 145: T = 544.2593633853368 K, F = -1.2276299046765082e-7, relative_change = 6.137997334947192e-12 Iter 150: T = 544.2593633751331 K, F = -5.134091621283865e-8, relative_change = 2.5669821638901627e-12 Iter 155: T = 544.2593633708659 K, F = -2.147154837262022e-8, relative_change = 1.0735508006359927e-12 Iter 160: T = 544.2593633690813 K, F = -8.979707560863304e-9, relative_change = 4.489742460252745e-13 Converged in 165 iterations to T = 544.2593633683348 K Iter 1: T = 969.3870750781762 K, F = -6975.184063846917, relative_change = 0.030612924921823832 Iter 2: T = 940.9167840801603 K, F = -5909.357153749483, relative_change = 0.029369373421571518 Iter 3: T = 914.5497148995406 K, F = -5004.697658368542, relative_change = 0.02802274295318905 Iter 5: T = 867.9375721898873 K, F = -3585.6086125711176, relative_change = 0.025052994570668088 Iter 10: T = 784.038417181839 K, F = -1546.0755974870458, relative_change = 0.016779806211500894 Iter 15: T = 737.3751223561953 K, F = -659.1880692701397, relative_change = 0.00942100087826406 Iter 20: T = 714.3681802822667 K, F = -278.5446731109397, relative_change = 0.004607435493126809 Iter 25: T = 703.9180555128775 K, F = -117.0643227118467, relative_change = 0.002074905285895255 Iter 30: T = 699.3793287697907 K, F = -49.06455410408999, relative_change = 0.0008966573274566188 Iter 35: T = 697.449655862699 K, F = -20.53859712337878, relative_change = 0.00038029950494709733 Iter 40: T = 696.6369646303556 K, F = -8.59288732262871, relative_change = 0.00015999334168741533 Iter 45: T = 696.2960816240793 K, F = -3.594245871780549, relative_change = 6.707830642234699e-5 Iter 50: T = 696.1533434255537 K, F = -1.503261318675909, relative_change = 2.8082296207924172e-5 Iter 55: T = 696.0936176054864 K, F = -0.628700176754316, relative_change = 1.1749492424118671e-5 Iter 60: T = 696.0686341271414 K, F = -0.2629331311070917, relative_change = 4.914677755501717e-6 Iter 65: T = 696.0581847885549 K, F = -0.10996233682575884, relative_change = 2.0555343324816188e-6 Iter 70: T = 696.053814584258 K, F = -0.04598766065958659, relative_change = 8.596765387460796e-7 Iter 75: T = 696.0519868835755 K, F = -0.019232606063979585, relative_change = 3.595318108670452e-7 Iter 80: T = 696.0512225122412 K, F = -0.008043308543446037, relative_change = 1.5036133928379944e-7 Iter 85: T = 696.050902842132 K, F = -0.00336380821454485, relative_change = 6.288305508276786e-8 Iter 90: T = 696.0507691521192 K, F = -0.0014067848602387079, relative_change = 2.629847039719092e-8 Iter 95: T = 696.050713241332 K, F = -0.0005883342445599515, relative_change = 1.0998338885166272e-8 Iter 100: T = 696.0506898587684 K, F = -0.0002460484096972193, relative_change = 4.599637450731352e-9 Iter 105: T = 696.0506800799001 K, F = -0.0001029003829833286, relative_change = 1.9236234345350105e-9 Iter 110: T = 696.0506759902606 K, F = -4.3034169271316536e-5, relative_change = 8.044823198100224e-10 Iter 115: T = 696.0506742799245 K, F = -1.7997403837344272e-5, relative_change = 3.364441234528454e-10 Iter 120: T = 696.0506735646414 K, F = -7.526729251194908e-6, relative_change = 1.407049517064474e-10 Iter 125: T = 696.0506732655015 K, F = -3.1477669490964644e-6, relative_change = 5.88444705104434e-11 Iter 130: T = 696.0506731403976 K, F = -1.316433476117318e-6, relative_change = 2.4609455586561345e-11 Iter 135: T = 696.0506730880777 K, F = -5.505481682765989e-7, relative_change = 1.0291967612579155e-11 Iter 140: T = 696.0506730661969 K, F = -2.3024546680350255e-7, relative_change = 4.3042171860409164e-12 Iter 145: T = 696.0506730570462 K, F = -9.629293595825317e-8, relative_change = 1.8001036703385296e-12 Iter 150: T = 696.0506730532192 K, F = -4.027087874280966e-8, relative_change = 7.528252816594486e-13 Iter 155: T = 696.0506730516186 K, F = -1.684126482714987e-8, relative_change = 3.148312212929551e-13 Converged in 158 iterations to T = 696.05067305115 K Iter 1: T = 966.4271976347794 K, F = -7649.594954895177, relative_change = 0.03357280236522055 Iter 2: T = 934.8911754353778 K, F = -6485.919865558782, relative_change = 0.0326315549444204 Iter 3: T = 905.3622749694631 K, F = -5497.86461526489, relative_change = 0.03158538794867026 Iter 5: T = 852.201909302666 K, F = -3946.903211550276, relative_change = 0.02917279235091302 Iter 10: T = 751.8259508400005 K, F = -1712.4029685860364, relative_change = 0.021556264372011816 Iter 15: T = 691.5426013035293 K, F = -734.7380581434395, relative_change = 0.013358649842865113 Iter 20: T = 659.824834367173 K, F = -311.92742965366597, relative_change = 0.0070202574835358245 Iter 25: T = 644.8070043640557 K, F = -131.44582493756286, relative_change = 0.0032926273381558417 Iter 30: T = 638.1413306992188 K, F = -55.16405469857742, relative_change = 0.00145112928157459 Iter 35: T = 635.278663060638 K, F = -23.105346465475662, relative_change = 0.0006208902671362334 Iter 40: T = 634.0677012164185 K, F = -9.669186770717795, relative_change = 0.00026219808089720213 Iter 45: T = 633.5588060005005 K, F = -4.04487236900189, relative_change = 0.00011010400811872233 Iter 50: T = 633.3455465545987 K, F = -1.6918075099179277, relative_change = 4.612592779596674e-5 Iter 55: T = 633.2562828304524 K, F = -0.7075680111668909, relative_change = 1.9304286392650562e-5 Iter 60: T = 633.2189383486881 K, F = -0.2959193261684656, relative_change = 8.075711994373008e-6 Iter 65: T = 633.2033181081543 K, F = -0.12375803428914939, relative_change = 3.377784202127467e-6 Iter 70: T = 633.1967851289927 K, F = -0.051757269491398916, relative_change = 1.41270403940033e-6 Iter 75: T = 633.1940528877153 K, F = -0.02164553996729085, relative_change = 5.908227047610648e-7 Iter 80: T = 633.1929102193 K, F = -0.009052428868551232, relative_change = 2.470913855207585e-7 Iter 85: T = 633.192432339539 K, F = -0.003785834832032209, relative_change = 1.0333696611499166e-7 Iter 90: T = 633.192232484134 K, F = -0.00158328150752568, relative_change = 4.321682287138107e-8 Iter 95: T = 633.1921489021502 K, F = -0.0006621472638890791, relative_change = 1.807380359468603e-8 Iter 100: T = 633.1921139471546 K, F = -0.0002769178981397724, relative_change = 7.558682624284494e-9 Iter 105: T = 633.192099328556 K, F = -0.00011581037258578952, relative_change = 3.1611317039302783e-9 Iter 110: T = 633.192093214883 K, F = -4.843327987874568e-5, relative_change = 1.3220230638205495e-9 Iter 115: T = 633.1920906580721 K, F = -2.025537621147544e-5, relative_change = 5.528858483211318e-10 Iter 120: T = 633.1920895887832 K, F = -8.471040867374935e-6, relative_change = 2.3122348382370736e-10 Iter 125: T = 633.1920891415938 K, F = -3.542690023672357e-6, relative_change = 9.67004108420989e-11 Iter 130: T = 633.1920889545738 K, F = -1.481595233832067e-6, relative_change = 4.044126555170944e-11 Iter 135: T = 633.1920888763598 K, F = -6.196201489672148e-7, relative_change = 1.6913001896947077e-11 Iter 140: T = 633.1920888436498 K, F = -2.591325803935618e-7, relative_change = 7.073220314316985e-12 Iter 145: T = 633.1920888299701 K, F = -1.0837185221435064e-7, relative_change = 2.9580918983531757e-12 Iter 150: T = 633.1920888242491 K, F = -4.532271491441975e-8, relative_change = 1.2371178776229254e-12 Iter 155: T = 633.1920888218565 K, F = -1.8954831315642906e-8, relative_change = 5.173864966520349e-13 Converged in 160 iterations to T = 633.1920888208558 K Iter 1: T = 966.5268937815912 K, F = -7626.879093008593, relative_change = 0.033473106218408766 Iter 2: T = 935.0950944923844 K, F = -6466.48518486918, relative_change = 0.032520356641322266 Iter 3: T = 905.6748154987274 K, F = -5481.225437076233, relative_change = 0.03146233914276685 Iter 5: T = 852.7435297526921 K, F = -3934.682164413523, relative_change = 0.029026180173294933 Iter 10: T = 752.9742418224606 K, F = -1706.7130428748717, relative_change = 0.02137014895400859 Iter 15: T = 693.2339475082364 K, F = -732.1099971509832, relative_change = 0.013190450104085157 Iter 20: T = 661.8881590485202 K, F = -310.7479438503327, relative_change = 0.006909995159535952 Iter 25: T = 647.0742996260697 K, F = -130.93253737845646, relative_change = 0.003234801532246226 Iter 30: T = 640.5058823276307 K, F = -54.94521890711632, relative_change = 0.001424304022631424 Iter 35: T = 637.6863529520786 K, F = -23.013036053706273, relative_change = 0.0006091531696757989 Iter 40: T = 636.4938958615681 K, F = -9.630438266752511, relative_change = 0.0002571941659736478 Iter 45: T = 635.9928232751238 K, F = -4.02864186478735, relative_change = 0.00010799428207526791 Iter 50: T = 635.7828501858515 K, F = -1.6850152459384216, relative_change = 4.5240610051713925e-5 Iter 55: T = 635.6949634653558 K, F = -0.7047266208231777, relative_change = 1.893350836852346e-5 Iter 60: T = 635.6581953205406 K, F = -0.2947308854440728, relative_change = 7.920555779123311e-6 Iter 65: T = 635.6428161911117 K, F = -0.1232609901529827, relative_change = 3.312879845449595e-6 Iter 70: T = 635.6363840615106 K, F = -0.05154939549349802, relative_change = 1.3855574325994074e-6 Iter 75: T = 635.6336939991759 K, F = -0.021558603844967605, relative_change = 5.79469174662829e-7 Iter 80: T = 635.6325689709269 K, F = -0.009016071015666316, relative_change = 2.423431170775329e-7 Iter 85: T = 635.6320984685692 K, F = -0.00377062952137458, relative_change = 1.0135116840681685e-7 Iter 90: T = 635.6319016984955 K, F = -0.0015769224627260048, relative_change = 4.238633595068778e-8 Iter 95: T = 635.6318194068363 K, F = -0.0006594878355166145, relative_change = 1.772648360473192e-8 Iter 100: T = 635.6317849914702 K, F = -0.0002758056932984365, relative_change = 7.413429175397096e-9 Iter 105: T = 635.6317705985512 K, F = -0.00011534523488171411, relative_change = 3.100384953891931e-9 Iter 110: T = 635.6317645792603 K, F = -4.823875480952644e-5, relative_change = 1.2966180744463341e-9 Iter 115: T = 635.6317620619209 K, F = -2.017402236842436e-5, relative_change = 5.422611473635355e-10 Iter 120: T = 635.6317610091394 K, F = -8.437016862761215e-6, relative_change = 2.2678008365669134e-10 Iter 125: T = 635.6317605688537 K, F = -3.528461391177906e-6, relative_change = 9.484214446001716e-11 Iter 130: T = 635.631760384721 K, F = -1.4756451839903484e-6, relative_change = 3.966413073264286e-11 Iter 135: T = 635.6317603077144 K, F = -6.171323925774352e-7, relative_change = 1.6588011927411225e-11 Iter 140: T = 635.6317602755094 K, F = -2.580917222161361e-7, relative_change = 6.9372935516148705e-12 Iter 145: T = 635.6317602620409 K, F = -1.0793712784673559e-7, relative_change = 2.9012613602518443e-12 Iter 150: T = 635.6317602564081 K, F = -4.514062862392976e-8, relative_change = 1.2133430286895673e-12 Iter 155: T = 635.6317602540526 K, F = -1.887889089502437e-8, relative_change = 5.074490842409269e-13 Converged in 160 iterations to T = 635.6317602530673 K Iter 1: T = 976.4092804819115 K, F = -5375.167882764007, relative_change = 0.023590719518088502 Iter 2: T = 954.9807753403014 K, F = -4545.094018723963, relative_change = 0.021946232558373406 Iter 3: T = 935.6230779971645 K, F = -3841.4667488707096, relative_change = 0.02027024820079646 Iter 5: T = 902.7000170493477 K, F = -2740.3189723049663, relative_change = 0.016916912802746195 Iter 10: T = 848.4630934761499 K, F = -1168.5742768998493, relative_change = 0.009523990585915385 Iter 15: T = 821.6758484406975 K, F = -493.84876268514375, relative_change = 0.004666347767691197 Iter 20: T = 809.4961138735064 K, F = -207.56387747469964, relative_change = 0.0021034934746505156 Iter 25: T = 804.2034538620611 K, F = -86.99780909771842, relative_change = 0.0009094287282080713 Iter 30: T = 801.9527146672319 K, F = -36.41808219935072, relative_change = 0.00038579408685775863 Iter 35: T = 801.0047087411247 K, F = -15.236594485098916, relative_change = 0.00016231892787673267 Iter 40: T = 800.6070509325543 K, F = -6.373201193001161, relative_change = 6.805580102469967e-5 Iter 45: T = 800.4405363626472 K, F = -2.665537343360039, relative_change = 2.8491959076371993e-5 Iter 50: T = 800.370861287081 K, F = -1.1147925470266817, relative_change = 1.1920969610087905e-5 Iter 55: T = 800.341715914535 K, F = -0.46622532985811715, relative_change = 4.986418047626363e-6 Iter 60: T = 800.3295258476866 K, F = -0.19498201072821286, relative_change = 2.085541613572328e-6 Iter 65: T = 800.3244276195333 K, F = -0.08154398209039615, relative_change = 8.72226752749298e-7 Iter 70: T = 800.3222954452432 K, F = -0.03410269803864818, relative_change = 3.647806020476677e-7 Iter 75: T = 800.3214037384765 K, F = -0.014262160990747286, relative_change = 1.525564712216166e-7 Iter 80: T = 800.3210308150055 K, F = -0.005964606996591293, relative_change = 6.380108982061101e-8 Iter 85: T = 800.3208748537725 K, F = -0.002494470045014352, relative_change = 2.6682404247878627e-8 Iter 90: T = 800.32080962889 K, F = -0.0010432171913052901, relative_change = 1.1158904743530314e-8 Iter 95: T = 800.3207823510595 K, F = -0.0004362858938334879, relative_change = 4.666788048423746e-9 Iter 100: T = 800.320770943144 K, F = -0.0001824599696812479, relative_change = 1.9517066117630437e-9 Iter 105: T = 800.3207661722174 K, F = -7.630693841065295e-5, relative_change = 8.162270371232868e-10 Iter 110: T = 800.3207641769588 K, F = -3.191247326683744e-5, relative_change = 3.4135590227562084e-10 Iter 115: T = 800.3207633425179 K, F = -1.3346177358930511e-5, relative_change = 1.4275911487056458e-10 Iter 120: T = 800.3207629935448 K, F = -5.5815317963059385e-6, relative_change = 5.970357796748714e-11 Iter 125: T = 800.3207628476 K, F = -2.3342617941901622e-6, relative_change = 2.496873371557209e-11 Iter 130: T = 800.3207627865642 K, F = -9.762157304749053e-7, relative_change = 1.0442218046278716e-11 Iter 135: T = 800.3207627610382 K, F = -4.082643553227072e-7, relative_change = 4.367052574922741e-12 Iter 140: T = 800.320762750363 K, F = -1.707406793727273e-7, relative_change = 1.826349799645636e-12 Iter 145: T = 800.3207627458985 K, F = -7.140588675902393e-8, relative_change = 7.638023197426557e-13 Iter 150: T = 800.3207627440313 K, F = -2.9861453199053756e-8, relative_change = 3.194169032806663e-13 Converged in 153 iterations to T = 800.3207627434846 K Iter 1: T = 965.2015396764457 K, F = -7928.8622866032465, relative_change = 0.03479846032355437 Iter 2: T = 932.3786835457478 K, F = -6724.931459650311, relative_change = 0.03400622023634644 Iter 3: T = 901.5019909172568 K, F = -5702.586597311145, relative_change = 0.03311604305567118 Iter 5: T = 845.4739872477127 K, F = -4097.451840653272, relative_change = 0.03102334585833466 Iter 10: T = 737.2987425350125 K, F = -1782.913475149662, relative_change = 0.024021811745192263 Iter 15: T = 669.7072827502589 K, F = -767.6335401944455, relative_change = 0.015716453154220444 Iter 20: T = 632.7550724182021 K, F = -326.8477494541892, relative_change = 0.008641047660083006 Iter 25: T = 614.7727230793041 K, F = -137.9874558192423, relative_change = 0.004168249553234917 Iter 30: T = 606.6673066277765 K, F = -57.964349922148884, relative_change = 0.001863551946131716 Iter 35: T = 603.1603009455304 K, F = -24.2888396521228, relative_change = 0.0008026048883829789 Iter 40: T = 601.6718315664989 K, F = -10.166391798367833, relative_change = 0.0003399048651528732 Iter 45: T = 601.045421114495 K, F = -4.253210548927595, relative_change = 0.00014290875420933658 Iter 50: T = 600.7827563436042 K, F = -1.7790076901886689, relative_change = 5.9899492964662265e-5 Iter 55: T = 600.6727851170144 K, F = -0.7440485652136267, relative_change = 2.5074082012552163e-5 Iter 60: T = 600.6267725120608 K, F = -0.3111781006114172, relative_change = 1.0490378619324418e-5 Iter 65: T = 600.607525758359 K, F = -0.13013981591335028, relative_change = 4.387918788818957e-6 Iter 70: T = 600.5994758830087 K, F = -0.05442627324536853, relative_change = 1.8352055037798609e-6 Iter 75: T = 600.5961092147579 K, F = -0.022761760837808953, relative_change = 7.675268044435095e-7 Iter 80: T = 600.5947012139065 K, F = -0.009519247801158648, relative_change = 3.2099271428275285e-7 Iter 85: T = 600.5941123676406 K, F = -0.003981064440546578, relative_change = 1.3424365792063193e-7 Iter 90: T = 600.5938661044886 K, F = -0.0016649289252079202, relative_change = 5.6142418378725744e-8 Iter 95: T = 600.5937631141906 K, F = -0.0006962932008798828, relative_change = 2.347945039633393e-8 Iter 100: T = 600.5937200423991 K, F = -0.00029119813817324314, relative_change = 9.819390116890737e-9 Iter 105: T = 600.5937020292583 K, F = -0.00012178254006650624, relative_change = 4.106586836697453e-9 Iter 110: T = 600.5936944959474 K, F = -5.093091373903347e-5, relative_change = 1.7174237975116747e-9 Iter 115: T = 600.5936913454266 K, F = -2.129991700061673e-5, relative_change = 7.182471817196985e-10 Iter 120: T = 600.5936900278411 K, F = -8.907880835351545e-6, relative_change = 3.0037959170103653e-10 Iter 125: T = 600.5936894768112 K, F = -3.7253820746596666e-6, relative_change = 1.2562233061803662e-10 Iter 130: T = 600.5936892463639 K, F = -1.5579996900938475e-6, relative_change = 5.2536773036140877e-11 Iter 135: T = 600.593689149988 K, F = -6.515747369428837e-7, relative_change = 2.1971528181075367e-11 Iter 140: T = 600.5936891096825 K, F = -2.724965449396599e-7, relative_change = 9.188762514629482e-12 Iter 145: T = 600.5936890928263 K, F = -1.1396178295486337e-7, relative_change = 3.842866190056801e-12 Iter 150: T = 600.5936890857768 K, F = -4.7660366986335134e-8, relative_change = 1.6071388860269266e-12 Iter 155: T = 600.5936890828285 K, F = -1.9932555161972232e-8, relative_change = 6.721388550913942e-13 Iter 160: T = 600.5936890815955 K, F = -8.335487744481895e-9, relative_change = 2.8107812288652004e-13 Converged in 162 iterations to T = 600.5936890813346 K Iter 1: T = 964.5796659896588 K, F = -8070.556797692226, relative_change = 0.035420334010341226 Iter 2: T = 931.0999737207437 K, F = -6846.259584523958, relative_change = 0.03470910019087421 Iter 3: T = 899.5305582256774 K, F = -5806.572568927251, relative_change = 0.033905505730939485 Iter 5: T = 842.010271190848 K, F = -4174.05518996314, relative_change = 0.03199752409672377 Iter 10: T = 729.618383562468 K, F = -1819.1074220341234, relative_change = 0.025412388396675666 Iter 15: T = 657.802451982442 K, F = -784.7877729758839, relative_change = 0.01716144265445072 Iter 20: T = 617.6135646635998 K, F = -334.76729183388625, relative_change = 0.009708668259551348 Iter 25: T = 597.7036000273952 K, F = -141.50556763503667, relative_change = 0.004772420714558989 Iter 30: T = 588.6341957242969 K, F = -59.48145876501807, relative_change = 0.002155085873917297 Iter 35: T = 584.6894823678117 K, F = -24.932274017625332, relative_change = 0.0009325024148410663 Iter 40: T = 583.0112629678717 K, F = -10.437130708428217, relative_change = 0.0003957258397105895 Iter 45: T = 582.3042724149053 K, F = -4.366731029057044, relative_change = 0.00016652343388407701 Iter 50: T = 582.007689841709 K, F = -1.8265352359850406, relative_change = 6.982320364398908e-5 Iter 55: T = 581.8834953084123 K, F = -0.7639342685061652, relative_change = 2.92326959069697e-5 Iter 60: T = 581.83152759453 K, F = -0.31949613613506184, relative_change = 1.223103299068281e-5 Iter 65: T = 581.8097891605298 K, F = -0.13361879719638733, relative_change = 5.116138995615894e-6 Iter 70: T = 581.8006970277578 K, F = -0.055881273661761766, relative_change = 2.1398009912993196e-6 Iter 75: T = 581.796894438799 K, F = -0.023370267942082523, relative_change = 8.949201643523978e-7 Iter 80: T = 581.7953041243682 K, F = -0.009773734234226394, relative_change = 3.742715187012565e-7 Iter 85: T = 581.7946390312783 K, F = -0.004087493967137701, relative_change = 1.5652573154819018e-7 Iter 90: T = 581.7943608806003 K, F = -0.001709439069890628, relative_change = 6.54610898842155e-8 Iter 95: T = 581.7942445545242 K, F = -0.0007149078829794542, relative_change = 2.7376637494283536e-8 Iter 100: T = 581.7941959055453 K, F = -0.0002989830226778345, relative_change = 1.1449241618667954e-8 Iter 105: T = 581.794175559957 K, F = -0.0001250382725792587, relative_change = 4.788210447089422e-9 Iter 110: T = 581.7941670511882 K, F = -5.229249890104093e-5, relative_change = 2.0024869330931227e-9 Iter 115: T = 581.7941634927193 K, F = -2.1869347519465343e-5, relative_change = 8.374639735827e-10 Iter 120: T = 581.7941620045251 K, F = -9.14602243051732e-6, relative_change = 3.5023744414861765e-10 Iter 125: T = 581.7941613821446 K, F = -3.824975575494882e-6, relative_change = 1.4647347374145107e-10 Iter 130: T = 581.7941611218577 K, F = -1.5996507634064017e-6, relative_change = 6.125696751881872e-11 Iter 135: T = 581.7941610130025 K, F = -6.689934974324352e-7, relative_change = 2.5618412416318647e-11 Iter 140: T = 581.794160967478 K, F = -2.797815058519504e-7, relative_change = 1.0713942711779465e-11 Iter 145: T = 581.7941609484391 K, F = -1.1700793611790772e-7, relative_change = 4.480697609975308e-12 Iter 150: T = 581.7941609404768 K, F = -4.8934674479195195e-8, relative_change = 1.873902628084887e-12 Iter 155: T = 581.7941609371468 K, F = -2.0464990091451085e-8, relative_change = 7.836855793012541e-13 Iter 160: T = 581.7941609357541 K, F = -8.557742903203547e-9, relative_change = 3.277098925880382e-13 Converged in 163 iterations to T = 581.7941609353464 K Iter 1: T = 964.3447844794891 K, F = -8124.074773214362, relative_change = 0.035655215520510805 Iter 2: T = 930.6163152989033 K, F = -6892.09542199927, relative_change = 0.03497552921260526 Iter 3: T = 898.7836830660762 K, F = -5845.8681178944325, relative_change = 0.034205968356145575 Iter 5: T = 840.6930367396438 K, F = -4203.027047545713, relative_change = 0.03237188059076398 Iter 10: T = 726.6593357105858 K, F = -1832.8557956615375, relative_change = 0.025965029012855693 Iter 15: T = 653.1419138360034 K, F = -791.3588062716556, relative_change = 0.017760895825466052 Iter 20: T = 611.6015629250788 K, F = -337.83184394750106, relative_change = 0.010169474132046278 Iter 25: T = 590.8636257186123 K, F = -142.87783124457098, relative_change = 0.005040260298286839 Iter 30: T = 581.3730073546031 K, F = -60.07595637446689, relative_change = 0.002286196085401436 Iter 35: T = 577.2353763395474 K, F = -25.184979325373263, relative_change = 0.000991316070941109 Iter 40: T = 575.4731945708779 K, F = -10.543568935039739, relative_change = 0.0004210750769261398 Iter 45: T = 574.7304869290344 K, F = -4.411379767231388, relative_change = 0.00017726088408712056 Iter 50: T = 574.4188593328589 K, F = -1.8452317203174216, relative_change = 7.433787411369061e-5 Iter 55: T = 574.2883537850037 K, F = -0.7717575502647209, relative_change = 3.1125032244097425e-5 Iter 60: T = 574.2337433928582 K, F = -0.32276865989895215, relative_change = 1.3023175332711544e-5 Iter 65: T = 574.2108991747621 K, F = -0.13498753417108383, relative_change = 5.447552764754982e-6 Iter 70: T = 574.2013444875815 K, F = -0.05645371828417109, relative_change = 2.2784250012105123e-6 Iter 75: T = 574.1973484349488 K, F = -0.02360967505013098, relative_change = 9.528983716607668e-7 Iter 80: T = 574.1956772085689 K, F = -0.009873857834057365, relative_change = 3.9851939548006357e-7 Iter 85: T = 574.1949782765879 K, F = -0.00412936697318228, relative_change = 1.6666660531488872e-7 Iter 90: T = 574.1946859739858 K, F = -0.0017269508819056645, relative_change = 6.970214574720133e-8 Iter 95: T = 574.1945637293893 K, F = -0.000722231535717599, relative_change = 2.9150301446431715e-8 Iter 100: T = 574.1945126052113 K, F = -0.0003020458619839572, relative_change = 1.2191009702996574e-8 Iter 105: T = 574.194491224465 K, F = -0.00012631918840988465, relative_change = 5.098426823211651e-9 Iter 110: T = 574.1944822827807 K, F = -5.282819361501767e-5, relative_change = 2.132223161879647e-9 Iter 115: T = 574.1944785432613 K, F = -2.2093381956467262e-5, relative_change = 8.917212376361347e-10 Iter 120: T = 574.1944769793496 K, F = -9.239716242726015e-6, relative_change = 3.7292847814988155e-10 Iter 125: T = 574.194476325303 K, F = -3.864159085320562e-6, relative_change = 1.5596312018423015e-10 Iter 130: T = 574.1944760517729 K, F = -1.6160371817952601e-6, relative_change = 6.522562767553118e-11 Iter 135: T = 574.1944759373794 K, F = -6.758463247935609e-7, relative_change = 2.727814761025562e-11 Iter 140: T = 574.1944758895387 K, F = -2.82646885063631e-7, relative_change = 1.1408042290912941e-11 Iter 145: T = 574.1944758695311 K, F = -1.1820649592486632e-7, relative_change = 4.770987320421473e-12 Iter 150: T = 574.1944758611637 K, F = -4.9435124216401505e-8, relative_change = 1.9952740244173003e-12 Iter 155: T = 574.1944758576643 K, F = -2.0674675194065628e-8, relative_change = 8.344601744824653e-13 Iter 160: T = 574.1944758562008 K, F = -8.646204974205318e-9, relative_change = 3.4897349746732743e-13 Converged in 163 iterations to T = 574.1944758557723 K Iter 1: T = 980.2420546034543 K, F = -4501.866653261057, relative_change = 0.019757945396545695 Iter 2: T = 962.5234377221956 K, F = -3802.6326730582286, relative_change = 0.018075756695040607 Iter 3: T = 946.7225392875631 K, F = -3210.5077542699205, relative_change = 0.01641611810723814 Iter 5: T = 920.3484651717033 K, F = -2285.3707356456766, relative_change = 0.013252783243628252 Iter 10: T = 878.5119964877445 K, F = -970.1125088877515, relative_change = 0.006950877518564903 Iter 15: T = 858.7263336169169 K, F = -408.7725056623524, relative_change = 0.003256240641158026 Iter 20: T = 849.9500638006809 K, F = -171.5434568278246, relative_change = 0.001434248552054841 Iter 25: T = 846.1821147162901 K, F = -71.84933944765115, relative_change = 0.0006135040234023679 Iter 30: T = 844.5884161013407 K, F = -30.067471832267934, relative_change = 0.0002590490256341142 Iter 35: T = 843.9187179656153 K, F = -12.57796469972975, relative_change = 0.0001087763088791205 Iter 40: T = 843.6380787048147 K, F = -5.260849792518087, relative_change = 4.5568775131883296e-5 Iter 45: T = 843.5206131016273 K, F = -2.2002543804398274, relative_change = 1.907094616392084e-5 Iter 50: T = 843.4714702574582 K, F = -0.9201908885769534, relative_change = 7.978068107548166e-6 Iter 55: T = 843.4509151008735 K, F = -0.3848380081983336, relative_change = 3.3369381736915656e-6 Iter 60: T = 843.4423181584242 K, F = -0.16094440878909677, relative_change = 1.395619959970029e-6 Iter 65: T = 843.4387227216305 K, F = -0.06730897139479453, relative_change = 5.836776269326962e-7 Iter 70: T = 843.4372190507949 K, F = -0.028149432735196545, relative_change = 2.4410317412643634e-7 Iter 75: T = 843.4365901948552 K, F = -0.011772431925368698, relative_change = 1.0208725087688415e-7 Iter 80: T = 843.4363271992946 K, F = -0.004923372143900151, relative_change = 4.2694175392361766e-8 Iter 85: T = 843.4362172113237 K, F = -0.002059013118762776, relative_change = 1.7855225898003055e-8 Iter 90: T = 843.4361712130254 K, F = -0.0008611038919954517, relative_change = 7.467270784019078e-9 Iter 95: T = 843.4361519759851 K, F = -0.00036012393369744267, relative_change = 3.1229021791112906e-9 Iter 100: T = 843.4361439308246 K, F = -0.0001506081284798899, relative_change = 1.3060350339768194e-9 Iter 105: T = 843.4361405662424 K, F = -6.29861208525373e-5, relative_change = 5.461994839218772e-10 Iter 110: T = 843.4361391591339 K, F = -2.634154671876665e-5, relative_change = 2.2842713828122646e-10 Iter 115: T = 843.4361385706643 K, F = -1.1016347580383723e-5, relative_change = 9.553094157015167e-11 Iter 120: T = 843.4361383245594 K, F = -4.607169053594262e-6, relative_change = 3.995218878695363e-11 Iter 125: T = 843.4361382216352 K, F = -1.9267715858362067e-6, relative_change = 1.6708469191365512e-11 Iter 130: T = 843.4361381785911 K, F = -8.057965679153511e-7, relative_change = 6.987661242134263e-12 Iter 135: T = 843.4361381605896 K, F = -3.369937422448288e-7, relative_change = 2.922323332621393e-12 Iter 140: T = 843.4361381530612 K, F = -1.4093365430234428e-7, relative_change = 1.2221405168931186e-12 Iter 145: T = 843.4361381499127 K, F = -5.8940454294997835e-8, relative_change = 5.111165082312492e-13 Converged in 150 iterations to T = 843.436138148596 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001432162001458616 Iteration 10: d = 1.2323702905117406e-5 Iteration 20: d = 1.0956587685809618e-7 Iteration 30: d = 1.2911771337846153e-9 Iteration 40: d = 1.7063754798154285e-11 Iteration 50: d = 2.336620334035392e-13 Iteration 60: d = 3.211206185802715e-15 Converged after 61 iterations. d = 2.1240408614907964e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.741681990765 Iteration 2: convergence error = 4820.903273040437 Iteration 3: convergence error = 1095.4997213833174 Iteration 4: convergence error = 318.8234630327745 Iteration 5: convergence error = 94.48120405333384 Iteration 6: convergence error = 28.223972723696534 Iteration 7: convergence error = 8.491540211988195 Iteration 8: convergence error = 2.5445510231170374 Iteration 9: convergence error = 0.7606673046675496 Iteration 10: convergence error = 0.22707867880740196 Iteration 11: convergence error = 0.06773517280839769 Iteration 12: convergence error = 0.020195582613723673 Iteration 13: convergence error = 0.006019866254519002 Iteration 14: convergence error = 0.0017941275868906814 Iteration 15: convergence error = 0.0005346665404886153 Iteration 16: convergence error = 0.00015932775113469688 Iteration 17: convergence error = 4.747747038891248e-5 Iteration 18: convergence error = 1.4147390174912289e-5 Iteration 19: convergence error = 4.21561435359763e-6 Iteration 20: convergence error = 1.2561592939164257e-6 Iteration 21: convergence error = 3.742993612831924e-7 Iteration 22: convergence error = 1.1139377420477103e-7 Iteration 23: convergence error = 3.2285925044561736e-8 Iteration 24: convergence error = 9.298673830926418e-9 Iteration 25: convergence error = 2.6725501811597496e-9 Iteration 26: convergence error = 7.648850441910326e-10 Iteration 27: convergence error = 2.191882231272757e-10 Iteration 28: convergence error = 6.116351869422942e-11 Iteration 29: convergence error = 1.9326762412674725e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 50%|████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001958165541297295 Iteration 10: d = 1.4167992043099063e-5 Iteration 20: d = 9.887654376850877e-8 Iteration 30: d = 1.046694213516867e-9 Iteration 40: d = 1.3055620884574439e-11 Iteration 50: d = 1.6926523832795887e-13 Converged after 60 iterations. d = 2.1615899273360405e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12294.48232737879 Iteration 2: convergence error = 8320.809494082974 Iteration 3: convergence error = 1955.635810449831 Iteration 4: convergence error = 482.0609822005681 Iteration 5: convergence error = 123.0655572404371 Iteration 6: convergence error = 32.90984237477255 Iteration 7: convergence error = 8.981641599559907 Iteration 8: convergence error = 2.4656395589900058 Iteration 9: convergence error = 0.6777494250584368 Iteration 10: convergence error = 0.18633223656343034 Iteration 11: convergence error = 0.05122642762739815 Iteration 12: convergence error = 0.014082567065997864 Iteration 13: convergence error = 0.0038713143260338256 Iteration 14: convergence error = 0.0010642154611559818 Iteration 15: convergence error = 0.00029254879586915195 Iteration 16: convergence error = 8.042038234634674e-5 Iteration 17: convergence error = 2.2107192990006297e-5 Iteration 18: convergence error = 6.07716606282338e-6 Iteration 19: convergence error = 1.670584651947138e-6 Iteration 20: convergence error = 4.5923684410809074e-7 Iteration 21: convergence error = 1.2708346730505582e-7 Iteration 22: convergence error = 3.4296363082830794e-8 Iteration 23: convergence error = 9.192262950818986e-9 Iteration 24: convergence error = 2.4579094315413386e-9 Iteration 25: convergence error = 6.591562851099297e-10 Iteration 26: convergence error = 1.7553247744217515e-10 Iteration 27: convergence error = 4.843059286940843e-11 Iteration 28: convergence error = 1.3415046851150692e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 50%|████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001958165541297295 Iteration 10: d = 1.4167992043099063e-5 Iteration 20: d = 9.887654376850877e-8 Iteration 30: d = 1.046694213516867e-9 Iteration 40: d = 1.3055620884574439e-11 Iteration 50: d = 1.6926523832795887e-13 Converged after 60 iterations. d = 2.1615899273360405e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10994.908435024367 Iteration 2: convergence error = 5725.909347034246 Iteration 3: convergence error = 2022.500301950086 Iteration 4: convergence error = 901.3359242505462 Iteration 5: convergence error = 412.00790228505457 Iteration 6: convergence error = 194.572938014604 Iteration 7: convergence error = 91.97205366048638 Iteration 8: convergence error = 43.497365541804356 Iteration 9: convergence error = 20.572915424260373 Iteration 10: convergence error = 9.728673297991918 Iteration 11: convergence error = 4.599514325493601 Iteration 12: convergence error = 2.1741064089096653 Iteration 13: convergence error = 1.0274953298767286 Iteration 14: convergence error = 0.4855438112936099 Iteration 15: convergence error = 0.2294256469758693 Iteration 16: convergence error = 0.10831825717104948 Iteration 17: convergence error = 0.05071594861419726 Iteration 18: convergence error = 0.02319694324842203 Iteration 19: convergence error = 0.010569866001787886 Iteration 20: convergence error = 0.004805778426998586 Iteration 21: convergence error = 0.002182298880597955 Iteration 22: convergence error = 0.0009902604820126726 Iteration 23: convergence error = 0.00044915926537214546 Iteration 24: convergence error = 0.000203677272565983 Iteration 25: convergence error = 9.234643084710115e-5 Iteration 26: convergence error = 4.186574460618431e-5 Iteration 27: convergence error = 1.8979027117893565e-5 Iteration 28: convergence error = 8.60350155562628e-6 Iteration 29: convergence error = 3.9000246943032835e-6 Iteration 30: convergence error = 1.7678826225164812e-6 Iteration 31: convergence error = 8.013812475837767e-7 Iteration 32: convergence error = 3.6325809560366906e-7 Iteration 33: convergence error = 1.646658347453922e-7 Iteration 34: convergence error = 7.464359441655688e-8 Iteration 35: convergence error = 3.383047442184761e-8 Iteration 36: convergence error = 1.5335899661295116e-8 Iteration 37: convergence error = 6.956270226510242e-9 Iteration 38: convergence error = 3.1477611628361046e-9 Iteration 39: convergence error = 1.4301804185379297e-9 Iteration 40: convergence error = 6.471054803114384e-10 Iteration 41: convergence error = 2.9331204132176936e-10 Iteration 42: convergence error = 1.368789526168257e-10 Iteration 43: convergence error = 6.139089236967266e-11 Iteration 44: convergence error = 2.864908310584724e-11 Iteration 45: convergence error = 1.4551915228366852e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001958165541297295 Iteration 10: d = 1.4167992043099063e-5 Iteration 20: d = 9.887654376850877e-8 Iteration 30: d = 1.046694213516867e-9 Iteration 40: d = 1.3055620884574439e-11 Iteration 50: d = 1.6926523832795887e-13 Converged after 60 iterations. d = 2.1615899273360405e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.74982310411 Iteration 2: convergence error = 7342.250179261874 Iteration 3: convergence error = 1740.8523518591574 Iteration 4: convergence error = 507.17235919648783 Iteration 5: convergence error = 157.82902309109613 Iteration 6: convergence error = 49.109348094145844 Iteration 7: convergence error = 15.255299335506606 Iteration 8: convergence error = 4.731197518983663 Iteration 9: convergence error = 1.4656500272890298 Iteration 10: convergence error = 0.45372002877320483 Iteration 11: convergence error = 0.1404009157481596 Iteration 12: convergence error = 0.043436197539449495 Iteration 13: convergence error = 0.013436218105653097 Iteration 14: convergence error = 0.004155950120093621 Iteration 15: convergence error = 0.0012854214378421602 Iteration 16: convergence error = 0.0003975671579610207 Iteration 17: convergence error = 0.00012296162549318979 Iteration 18: convergence error = 3.802993433055235e-5 Iteration 19: convergence error = 1.1761952919187024e-5 Iteration 20: convergence error = 3.637745976448059e-6 Iteration 21: convergence error = 1.1250763236603234e-6 Iteration 22: convergence error = 3.478166945569683e-7 Iteration 23: convergence error = 1.0638905223459005e-7 Iteration 24: convergence error = 3.173136065015569e-8 Iteration 25: convergence error = 9.425093594472855e-9 Iteration 26: convergence error = 2.7916939870920032e-9 Iteration 27: convergence error = 8.36735125631094e-10 Iteration 28: convergence error = 2.432898327242583e-10 Iteration 29: convergence error = 7.412381819449365e-11 Iteration 30: convergence error = 2.1827872842550278e-11 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 53%|█████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001958165541297295 Iteration 10: d = 1.4167992043099063e-5 Iteration 20: d = 9.887654376850877e-8 Iteration 30: d = 1.046694213516867e-9 Iteration 40: d = 1.3055620884574439e-11 Iteration 50: d = 1.6926523832795887e-13 Converged after 60 iterations. d = 2.1615899273360405e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.730943840013 Iteration 2: convergence error = 5512.643013702813 Iteration 3: convergence error = 941.830186064871 Iteration 4: convergence error = 172.05310699838037 Iteration 5: convergence error = 31.309527450081077 Iteration 6: convergence error = 5.709472099666073 Iteration 7: convergence error = 1.0423241283249354 Iteration 8: convergence error = 0.19042850489313423 Iteration 9: convergence error = 0.03484958460876442 Iteration 10: convergence error = 0.00637871501430709 Iteration 11: convergence error = 0.0011671977572405012 Iteration 12: convergence error = 0.00021354645150495344 Iteration 13: convergence error = 3.9066772387741366e-5 Iteration 14: convergence error = 7.1467316047346685e-6 Iteration 15: convergence error = 1.3073426998744253e-6 Iteration 16: convergence error = 2.3918300939840265e-7 Iteration 17: convergence error = 4.372213879832998e-8 Iteration 18: convergence error = 7.999915396794677e-9 Iteration 19: convergence error = 1.4674697013106197e-9 Iteration 20: convergence error = 2.6830093702301383e-10 Iteration 21: convergence error = 4.661160346586257e-11 Iteration 22: convergence error = 1.0459189070388675e-11 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 62%|████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001958165541297295 Iteration 10: d = 1.4167992043099063e-5 Iteration 20: d = 9.887654376850877e-8 Iteration 30: d = 1.046694213516867e-9 Iteration 40: d = 1.3055620884574439e-11 Iteration 50: d = 1.6926523832795887e-13 Converged after 60 iterations. d = 2.1615899273360405e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.487130971084 Iteration 2: convergence error = 2711.4029960533903 Iteration 3: convergence error = 205.98445806846598 Iteration 4: convergence error = 19.474274232764916 Iteration 5: convergence error = 1.6144687924637109 Iteration 6: convergence error = 0.13183541449496985 Iteration 7: convergence error = 0.01077696740594713 Iteration 8: convergence error = 0.0008829204401757518 Iteration 9: convergence error = 7.244152639346749e-5 Iteration 10: convergence error = 5.9486114512858756e-6 Iteration 11: convergence error = 4.886944302152253e-7 Iteration 12: convergence error = 4.0156915209377766e-8 Iteration 13: convergence error = 3.3010763537013346e-9 Iteration 14: convergence error = 2.704807770141166e-10 Iteration 15: convergence error = 2.1910724534556892e-11 Converged after 15 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346345 Iteration 2: convergence error = 858.4060420534043 Iteration 3: convergence error = 199.12106737711986 Iteration 4: convergence error = 59.265629268140856 Iteration 5: convergence error = 17.98548291103714 Iteration 6: convergence error = 5.463033078096942 Iteration 7: convergence error = 1.660989611064906 Iteration 8: convergence error = 0.5052487627306164 Iteration 9: convergence error = 0.15371874094194027 Iteration 10: convergence error = 0.046771316975991795 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.00433023651169151 Iteration 13: convergence error = 0.0013175920927324114 Iteration 14: convergence error = 0.0004009136252989265 Iteration 15: convergence error = 0.00012198904050819692 Iteration 16: convergence error = 3.711853867116588e-5 Iteration 17: convergence error = 1.1294342129986035e-5 Iteration 18: convergence error = 3.4366162253718358e-6 Iteration 19: convergence error = 1.0456861900820513e-6 Iteration 20: convergence error = 3.181812644470483e-7 Iteration 21: convergence error = 9.681605206424138e-8 Iteration 22: convergence error = 2.9460807127179578e-8 Iteration 23: convergence error = 8.963411346485373e-9 Iteration 24: convergence error = 2.730530468397774e-9 Iteration 25: convergence error = 8.295728548546322e-10 Iteration 26: convergence error = 2.538627086323686e-10 Iteration 27: convergence error = 7.707967597525567e-11 Iteration 28: convergence error = 2.4556356947869062e-11 Iteration 29: convergence error = 8.640199666842818e-12 Converged after 29 iterations Energy conservation errors by band: [4.6852026882886333e-26, 1.7771458472818954e-26, 2.50416005753358e-26, 4.13994203059987e-26, 6.522933053091502e-26, 4.828087799349512e-20, -1.176836406102666e-14, 1.1084466677857563e-12, -1.4779288903810084e-12, -7.389644451905042e-13, -1.1368683772161603e-13, 7.993605777301127e-15, 2.220446049250313e-16, 1.5612511283791264e-16, 6.451002926288751e-18, 2.0328790734103208e-20, 1.3923104070492562e-20, 4.793511649744795e-22, 1.0481929324695398e-23, 1.318298825299594e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 76%|████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001432162001458616 Iteration 10: d = 1.2323702905117406e-5 Iteration 20: d = 1.0956587685809618e-7 Iteration 30: d = 1.2911771337846153e-9 Iteration 40: d = 1.7063754798154285e-11 Iteration 50: d = 2.336620334035392e-13 Iteration 60: d = 3.211206185802715e-15 Converged after 61 iterations. d = 2.1240408614907964e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.348240014327 Iteration 2: convergence error = 3608.95157996783 Iteration 3: convergence error = 593.1630377164015 Iteration 4: convergence error = 104.42730788125846 Iteration 5: convergence error = 18.562760208394366 Iteration 6: convergence error = 3.2705692688834915 Iteration 7: convergence error = 0.5741095019620843 Iteration 8: convergence error = 0.10062072295681901 Iteration 9: convergence error = 0.017623731969933942 Iteration 10: convergence error = 0.0030859713217523677 Iteration 11: convergence error = 0.0005403038180702424 Iteration 12: convergence error = 9.459420448365563e-5 Iteration 13: convergence error = 1.6560872609261423e-5 Iteration 14: convergence error = 2.8993240448471624e-6 Iteration 15: convergence error = 5.075789886177517e-7 Iteration 16: convergence error = 8.887445801519789e-8 Iteration 17: convergence error = 1.5573050404782407e-8 Iteration 18: convergence error = 2.7018813852919266e-9 Iteration 19: convergence error = 4.808953235624358e-10 Iteration 20: convergence error = 8.230927051045e-11 Iteration 21: convergence error = 1.432454155292362e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.4924275130247 Iteration 2: convergence error = 871.3046026617826 Iteration 3: convergence error = 207.75299581225215 Iteration 4: convergence error = 62.495505504907555 Iteration 5: convergence error = 18.979315309184585 Iteration 6: convergence error = 5.766215594047026 Iteration 7: convergence error = 1.7533061530645 Iteration 8: convergence error = 0.5333443699004192 Iteration 9: convergence error = 0.16226812526360845 Iteration 10: convergence error = 0.04937275062957269 Iteration 11: convergence error = 0.015022831427586425 Iteration 12: convergence error = 0.004571091655407145 Iteration 13: convergence error = 0.0013908789693459767 Iteration 14: convergence error = 0.00042321318755966786 Iteration 15: convergence error = 0.00012877429912805383 Iteration 16: convergence error = 3.918314223483321e-5 Iteration 17: convergence error = 1.192255740534165e-5 Iteration 18: convergence error = 3.6277690469432855e-6 Iteration 19: convergence error = 1.1038503089366714e-6 Iteration 20: convergence error = 3.358788944751723e-7 Iteration 21: convergence error = 1.0220196600130294e-7 Iteration 22: convergence error = 3.1098920771910343e-8 Iteration 23: convergence error = 9.464429240324534e-9 Iteration 24: convergence error = 2.8813929020543583e-9 Iteration 25: convergence error = 8.774350135354325e-10 Iteration 26: convergence error = 2.6773250283440575e-10 Iteration 27: convergence error = 8.174083632184193e-11 Iteration 28: convergence error = 2.546585164964199e-11 Iteration 29: convergence error = 8.526512829121202e-12 Converged after 29 iterations Energy conservation errors by band: [3.473512337869159e-26, 2.928251680180396e-26, 6.54312789226516e-26, 3.0090310368750274e-26, 3.4028304007613565e-26, 3.3881317890172014e-20, -1.4654943925052066e-14, 3.552713678800501e-13, -3.268496584496461e-13, 2.0463630789890885e-12, 7.815970093361102e-14, 2.220446049250313e-14, 1.6653345369377348e-15, 1.8735013540549517e-16, 3.7947076036992655e-18, -1.3976043629695956e-19, 2.2658131339052534e-20, 1.5923226791645783e-22, -7.302453845194697e-25, 1.6176561218948528e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729989 Iteration 2: convergence error = 2115.1156110176375 Iteration 3: convergence error = 714.8959934551624 Iteration 4: convergence error = 296.0190747132401 Iteration 5: convergence error = 115.88799395378715 Iteration 6: convergence error = 44.115249236190266 Iteration 7: convergence error = 16.5995810251261 Iteration 8: convergence error = 6.21598340493324 Iteration 9: convergence error = 2.323124567003333 Iteration 10: convergence error = 0.8675636398231745 Iteration 11: convergence error = 0.32389343048794217 Iteration 12: convergence error = 0.12090784413680922 Iteration 13: convergence error = 0.04513241840777482 Iteration 14: convergence error = 0.016846741615609062 Iteration 15: convergence error = 0.0062884074734483875 Iteration 16: convergence error = 0.002347277756598487 Iteration 17: convergence error = 0.0008761691049130604 Iteration 18: convergence error = 0.0003270478227932472 Iteration 19: convergence error = 0.00012207719078105583 Iteration 20: convergence error = 4.556777048492222e-5 Iteration 21: convergence error = 1.7009089560815482e-5 Iteration 22: convergence error = 6.3489862895949045e-6 Iteration 23: convergence error = 2.369887170061702e-6 Iteration 24: convergence error = 8.846072887536138e-7 Iteration 25: convergence error = 3.3019910006260034e-7 Iteration 26: convergence error = 1.2325517673161812e-7 Iteration 27: convergence error = 4.600769898388535e-8 Iteration 28: convergence error = 1.7175352695630863e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.956249075708911e-10 Iteration 32: convergence error = 3.3514879760332406e-10 Iteration 33: convergence error = 1.2505552149377763e-10 Iteration 34: convergence error = 4.8203219193965197e-11 Iteration 35: convergence error = 1.887201506178826e-11 Converged after 35 iterations Energy conservation errors by band: [-2.3022116657970009e-26, -1.308625578453032e-25, -1.0743654440386004e-25, -8.320273739547056e-26, -1.0057029908481635e-25, -6.945670167485263e-20, -9.769962616701378e-15, -1.4068746168049984e-12, -7.837286375433905e-12, -1.0373923942097463e-12, -8.881784197001252e-15, -1.5543122344752192e-15, 9.71445146547012e-16, 2.927345865710862e-18, 1.4365678785432934e-18, 4.1504614415460717e-20, 5.717472393966527e-21, 1.2904017555827232e-22, -3.9291079096268815e-24, 5.551115123125783e-17] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.362166223825 Iteration 2: convergence error = 864.8522700482426 Iteration 3: convergence error = 203.43244494690714 Iteration 4: convergence error = 60.87736397590493 Iteration 5: convergence error = 18.481426659698172 Iteration 6: convergence error = 5.614330618626127 Iteration 7: convergence error = 1.7070587705939033 Iteration 8: convergence error = 0.5192694771479864 Iteration 9: convergence error = 0.15798519284180657 Iteration 10: convergence error = 0.04806952669321163 Iteration 11: convergence error = 0.01462628739034244 Iteration 12: convergence error = 0.00445043197044015 Iteration 13: convergence error = 0.0013541649042281279 Iteration 14: convergence error = 0.00041204191563792847 Iteration 15: convergence error = 0.00012537513089228014 Iteration 16: convergence error = 3.814885076280916e-5 Iteration 17: convergence error = 1.1607843816818786e-5 Iteration 18: convergence error = 3.5320085771672893e-6 Iteration 19: convergence error = 1.074713281923323e-6 Iteration 20: convergence error = 3.270117758802371e-7 Iteration 21: convergence error = 9.950326784746721e-8 Iteration 22: convergence error = 3.0277988116722554e-8 Iteration 23: convergence error = 9.213749763148371e-9 Iteration 24: convergence error = 2.8026079235132784e-9 Iteration 25: convergence error = 8.545839591533877e-10 Iteration 26: convergence error = 2.629576556500979e-10 Iteration 27: convergence error = 8.01492205937393e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.86757334228605e-12 Converged after 29 iterations Energy conservation errors by band: [4.281305904815475e-26, 4.52364397489937e-26, 4.119747191426212e-26, 5.634360129450555e-26, 9.895471195092372e-26, -6.606856988583543e-20, 2.4424906541753444e-15, -8.526512829121202e-14, 3.126388037344441e-12, 5.684341886080801e-13, 2.984279490192421e-13, 3.552713678800501e-14, 8.326672684688674e-16, 1.3010426069826053e-16, 2.0599841277224584e-18, 3.9810548520952116e-19, 2.3002238473874594e-20, 5.438712527536157e-22, -1.2782525403358506e-23, 3.1963148993622903e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 8m49.6s Testing RayTraceHeatTransfer tests passed Testing completed after 536.95s PkgEval succeeded after 616.81s