Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1523 (e57442f29c*) started at 2026-01-12T02:57:56.857 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 9.85s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.14.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.17.0+0 [e37daf67] + LibGit2_jll v1.9.2+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.12.2 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.13s ################################################################################ # Precompilation # ERROR: LoadError: MethodError: no method matching setindex!(::Base.ScopedValues.ScopedValue{IO}, ::Nothing) The function `setindex!` exists, but no method is defined for this combination of argument types. Stacktrace: [1] top-level scope @ /PkgEval.jl/scripts/precompile.jl:10 [2] include(mod::Module, _path::String) @ Base ./Base.jl:309 [3] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [4] _start() @ Base ./client.jl:585 in expression starting at /PkgEval.jl/scripts/precompile.jl:6 caused by: MethodError: no method matching setindex!(::Base.ScopedValues.ScopedValue{IO}, ::Base.DevNull) The function `setindex!` exists, but no method is defined for this combination of argument types. Stacktrace: [1] top-level scope @ /PkgEval.jl/scripts/precompile.jl:7 [2] include(mod::Module, _path::String) @ Base ./Base.jl:309 [3] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [4] _start() @ Base ./client.jl:585 Precompilation failed after 13.36s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_HbiDQw/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.16 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_HbiDQw/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.16 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.17.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443558531181326e-15 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.0569008315563939e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.691850745534255e-16 Converged after 6 iterations. d = 1.6184142622847344e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.485546236472086e-16 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2585248453105973e-15 Converged after 6 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 8.64442489944963e-16 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2785653431858247e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.741771048821297e-15 Converged after 5 iterations. d = 2.1647144989062977e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.6708853471768988e-15 Converged after 5 iterations. d = 1.8174569082716346e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5394136982922497e-15 Converged after 5 iterations. d = 1.6288904732141786e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:02:58 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 98%|████████████████████████████████▍| ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:05 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012432419241367903 Iteration 10: d = 1.1610724965333815e-5 Iteration 20: d = 1.414507528012466e-7 Iteration 30: d = 2.1878724368854403e-9 Iteration 40: d = 3.727518180801622e-11 Iteration 50: d = 6.596753361937777e-13 Iteration 60: d = 1.184412563365468e-14 Converged after 65 iterations. d = 1.5729357827431295e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 30%|██████████ | ETA: 0:00:02 Bin 1 progress: 60%|███████████████████▊ | ETA: 0:00:01 Bin 1 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013598913856164392 Iteration 10: d = 1.8237122453251246e-5 Iteration 20: d = 2.8328042923334535e-7 Iteration 30: d = 4.874703607204226e-9 Iteration 40: d = 8.653927916968062e-11 Iteration 50: d = 1.5571707403653548e-12 Iteration 60: d = 2.8192309734741874e-14 Converged after 67 iterations. d = 1.6606013924527762e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 33%|██████████▊ | ETA: 0:00:02 Bin 1 progress: 68%|██████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013296803200425129 Iteration 10: d = 1.4788174764376512e-5 Iteration 20: d = 2.301094124169047e-7 Iteration 30: d = 4.108999966166803e-9 Iteration 40: d = 7.474064252721597e-11 Iteration 50: d = 1.3642954290571072e-12 Iteration 60: d = 2.491699741750643e-14 Converged after 67 iterations. d = 1.4691964688438365e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 72%|███████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014121944187743761 Iteration 10: d = 1.7372179331268675e-5 Iteration 20: d = 2.877212611769318e-7 Iteration 30: d = 5.170155587529952e-9 Iteration 40: d = 9.362501103155417e-11 Iteration 50: d = 1.6980310095448742e-12 Iteration 60: d = 3.08265718081983e-14 Converged after 67 iterations. d = 1.842609115792885e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 75%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012386739448399216 Iteration 10: d = 9.91890519867476e-6 Iteration 20: d = 1.027170971672045e-7 Iteration 30: d = 1.3422401111977013e-9 Iteration 40: d = 1.9294026400505326e-11 Iteration 50: d = 2.893843927309195e-13 Iteration 60: d = 4.397918659851927e-15 Converged after 62 iterations. d = 1.9197552491799526e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 34%|███████████▏ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014751301425038217 Iteration 10: d = 1.654349853033699e-5 Iteration 20: d = 2.162771209012147e-7 Iteration 30: d = 3.180532751107659e-9 Iteration 40: d = 4.8105490373596114e-11 Iteration 50: d = 7.344004621662765e-13 Iteration 60: d = 1.1256011417958983e-14 Converged after 64 iterations. d = 2.071968608810484e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 75%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001138249179740573 Iteration 10: d = 7.90486747631423e-6 Iteration 20: d = 9.898658277958554e-8 Iteration 30: d = 1.5041036857433864e-9 Iteration 40: d = 2.3265844183168447e-11 Iteration 50: d = 3.6126048219504203e-13 Iteration 60: d = 5.611837530853003e-15 Converged after 63 iterations. d = 1.5934885850619386e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011548138866844038 Iteration 10: d = 8.91654871033434e-6 Iteration 20: d = 1.1911404148615874e-7 Iteration 30: d = 1.808044789211835e-9 Iteration 40: d = 2.7862128843639124e-11 Iteration 50: d = 4.310958316042505e-13 Iteration 60: d = 6.685169044436221e-15 Converged after 63 iterations. d = 1.957337115015393e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013041537177997573 Iteration 10: d = 9.162148338073099e-6 Iteration 20: d = 9.845547523167667e-8 Iteration 30: d = 1.4097508217161174e-9 Iteration 40: d = 2.1312819376183348e-11 Iteration 50: d = 3.2547095908075203e-13 Iteration 60: d = 5.012729327323582e-15 Converged after 62 iterations. d = 2.1693876642321713e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 79%|██████████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001251940872341065 Iteration 10: d = 9.030263796745791e-6 Iteration 20: d = 8.425621653999829e-8 Iteration 30: d = 1.1292800133677084e-9 Iteration 40: d = 1.711839781579526e-11 Iteration 50: d = 2.668719866922092e-13 Iteration 60: d = 4.175702711543503e-15 Converged after 62 iterations. d = 1.814663172602116e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0058585627586759835 Iteration 10: d = 5.781508128356516e-5 Iteration 20: d = 6.936284901061925e-7 Iteration 30: d = 9.344949957216034e-9 Iteration 40: d = 1.2942128828356353e-10 Iteration 50: d = 1.813417823263805e-12 Iteration 60: d = 2.5583159998020375e-14 Converged after 66 iterations. d = 2.000491752011871e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0035267715618230162 Iteration 10: d = 4.3671685973299156e-5 Iteration 20: d = 6.637308684369382e-7 Iteration 30: d = 1.085007187312467e-8 Iteration 40: d = 1.785996223050586e-10 Iteration 50: d = 2.9420730195630617e-12 Iteration 60: d = 4.84836212961851e-14 Converged after 68 iterations. d = 1.7952204524615185e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0024599054955371223 Iteration 10: d = 1.7159183965974703e-5 Iteration 20: d = 2.109918548200181e-7 Iteration 30: d = 3.4453940280876244e-9 Iteration 40: d = 5.812406640869027e-11 Iteration 50: d = 9.796940966390549e-13 Iteration 60: d = 1.6461256916792906e-14 Converged after 65 iterations. d = 2.1598069322093336e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0024780142493501436 Iteration 10: d = 2.766048981469e-5 Iteration 20: d = 4.5610031138238384e-7 Iteration 30: d = 8.23353645792141e-9 Iteration 40: d = 1.5099878844367245e-10 Iteration 50: d = 2.786687772991687e-12 Iteration 60: d = 5.1593138928243957e-14 Converged after 68 iterations. d = 2.1390937354409684e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:01 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012386739448399216 Iteration 10: d = 9.91890519867476e-6 Iteration 20: d = 1.027170971672045e-7 Iteration 30: d = 1.3422401111977013e-9 Iteration 40: d = 1.9294026400505326e-11 Iteration 50: d = 2.893843927309195e-13 Iteration 60: d = 4.397918659851927e-15 Converged after 62 iterations. d = 1.9197552491799526e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010146835935859748 Iteration 10: d = 1.1923674719027263e-5 Iteration 20: d = 1.4005236438253041e-7 Iteration 30: d = 1.8351178477408838e-9 Iteration 40: d = 2.4894943161095897e-11 Iteration 50: d = 3.428712996697012e-13 Iteration 60: d = 4.763603536745216e-15 Converged after 62 iterations. d = 1.99591608795495e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001476986842282241 Iteration 10: d = 9.178155495568144e-6 Iteration 20: d = 6.756127623171931e-8 Iteration 30: d = 7.615917738401622e-10 Iteration 40: d = 1.0023111800303759e-11 Iteration 50: d = 1.3872428418185496e-13 Converged after 60 iterations. d = 1.9381418262665947e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.839156064685 Iteration 2: convergence error = 4838.976916578424 Iteration 3: convergence error = 1096.392283696885 Iteration 4: convergence error = 321.43659692970755 Iteration 5: convergence error = 95.47150138184111 Iteration 6: convergence error = 28.52533407182591 Iteration 7: convergence error = 8.59655939244658 Iteration 8: convergence error = 2.5803714825151474 Iteration 9: convergence error = 0.7726940432057745 Iteration 10: convergence error = 0.2310670918550386 Iteration 11: convergence error = 0.06904465887464539 Iteration 12: convergence error = 0.02062195762914598 Iteration 13: convergence error = 0.0061577262051741855 Iteration 14: convergence error = 0.001838435679928807 Iteration 15: convergence error = 0.0005488336200869526 Iteration 16: convergence error = 0.0001638371477383771 Iteration 17: convergence error = 4.890712625638116e-5 Iteration 18: convergence error = 1.4599058886233252e-5 Iteration 19: convergence error = 4.357866146165179e-6 Iteration 20: convergence error = 1.3008293535676785e-6 Iteration 21: convergence error = 3.8829330151202157e-7 Iteration 22: convergence error = 1.1578140401979908e-7 Iteration 23: convergence error = 3.3651986086624674e-8 Iteration 24: convergence error = 9.719315130496398e-9 Iteration 25: convergence error = 2.804199539241381e-9 Iteration 26: convergence error = 8.019469532882795e-10 Iteration 27: convergence error = 2.2714630176778883e-10 Iteration 28: convergence error = 6.571099220309407e-11 Iteration 29: convergence error = 1.8417267710901797e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010146835935859748 Iteration 10: d = 1.1923674719027263e-5 Iteration 20: d = 1.4005236438253041e-7 Iteration 30: d = 1.8351178477408838e-9 Iteration 40: d = 2.4894943161095897e-11 Iteration 50: d = 3.428712996697012e-13 Iteration 60: d = 4.763603536745216e-15 Converged after 62 iterations. d = 1.99591608795495e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.819030998025 Iteration 2: convergence error = 4821.740968450209 Iteration 3: convergence error = 1094.855870933046 Iteration 4: convergence error = 318.30478365750696 Iteration 5: convergence error = 94.26604292464344 Iteration 6: convergence error = 28.436275563734625 Iteration 7: convergence error = 8.554974351293595 Iteration 8: convergence error = 2.563538182958837 Iteration 9: convergence error = 0.766361439798402 Iteration 10: convergence error = 0.22878854004625282 Iteration 11: convergence error = 0.0682490100502946 Iteration 12: convergence error = 0.020350060972532447 Iteration 13: convergence error = 0.006066317240083663 Iteration 14: convergence error = 0.0018080962483963958 Iteration 15: convergence error = 0.0005388671957007318 Iteration 16: convergence error = 0.00016059094173215271 Iteration 17: convergence error = 4.78572990232351e-5 Iteration 18: convergence error = 1.426160770279239e-5 Iteration 19: convergence error = 4.249954827173497e-6 Iteration 20: convergence error = 1.2664770565606887e-6 Iteration 21: convergence error = 3.774066499317996e-7 Iteration 22: convergence error = 1.123223682952812e-7 Iteration 23: convergence error = 3.255786396039184e-8 Iteration 24: convergence error = 9.39030542213004e-9 Iteration 25: convergence error = 2.7027908799936995e-9 Iteration 26: convergence error = 7.712515071034431e-10 Iteration 27: convergence error = 2.212345862062648e-10 Iteration 28: convergence error = 6.480149750132114e-11 Iteration 29: convergence error = 1.864464138634503e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 6:45:18 Bin 1 ray tracing: 8%|██▍ | ETA: 0:00:41 Bin 1 ray tracing: 16%|████▊ | ETA: 0:00:24 Bin 1 ray tracing: 24%|███████ | ETA: 0:00:18 Bin 1 ray tracing: 31%|█████████▎ | ETA: 0:00:15 Bin 1 ray tracing: 38%|███████████▌ | ETA: 0:00:12 Bin 1 ray tracing: 46%|█████████████▊ | ETA: 0:00:10 Bin 1 ray tracing: 54%|████████████████▏ | ETA: 0:00:08 Bin 1 ray tracing: 61%|██████████████████▎ | ETA: 0:00:07 Bin 1 ray tracing: 68%|████████████████████▌ | ETA: 0:00:05 Bin 1 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:04 Bin 1 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:03 Bin 1 ray tracing: 91%|███████████████████████████▏ | ETA: 0:00:02 Bin 1 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 2 ray tracing: 15%|████▌ | ETA: 0:00:12 Bin 2 ray tracing: 22%|██████▊ | ETA: 0:00:11 Bin 2 ray tracing: 30%|█████████ | ETA: 0:00:10 Bin 2 ray tracing: 37%|███████████▎ | ETA: 0:00:09 Bin 2 ray tracing: 45%|█████████████▍ | ETA: 0:00:08 Bin 2 ray tracing: 52%|███████████████▌ | ETA: 0:00:07 Bin 2 ray tracing: 59%|█████████████████▋ | ETA: 0:00:06 Bin 2 ray tracing: 66%|███████████████████▉ | ETA: 0:00:05 Bin 2 ray tracing: 73%|██████████████████████ | ETA: 0:00:04 Bin 2 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:03 Bin 2 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:02 Bin 2 ray tracing: 96%|████████████████████████████▋ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 3 ray tracing: 15%|████▋ | ETA: 0:00:11 Bin 3 ray tracing: 23%|██████▉ | ETA: 0:00:10 Bin 3 ray tracing: 31%|█████████▏ | ETA: 0:00:09 Bin 3 ray tracing: 38%|███████████▍ | ETA: 0:00:08 Bin 3 ray tracing: 46%|█████████████▊ | ETA: 0:00:07 Bin 3 ray tracing: 53%|████████████████ | ETA: 0:00:06 Bin 3 ray tracing: 61%|██████████████████▍ | ETA: 0:00:05 Bin 3 ray tracing: 69%|████████████████████▌ | ETA: 0:00:04 Bin 3 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:03 Bin 3 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:02 Bin 3 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 3 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 4 ray tracing: 16%|████▉ | ETA: 0:00:10 Bin 4 ray tracing: 25%|███████▍ | ETA: 0:00:09 Bin 4 ray tracing: 33%|██████████ | ETA: 0:00:08 Bin 4 ray tracing: 41%|████████████▍ | ETA: 0:00:07 Bin 4 ray tracing: 50%|██████████████▉ | ETA: 0:00:06 Bin 4 ray tracing: 58%|█████████████████▍ | ETA: 0:00:05 Bin 4 ray tracing: 67%|████████████████████ | ETA: 0:00:04 Bin 4 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:03 Bin 4 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:02 Bin 4 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 4 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 5 ray tracing: 15%|████▋ | ETA: 0:00:11 Bin 5 ray tracing: 23%|███████ | ETA: 0:00:10 Bin 5 ray tracing: 31%|█████████▍ | ETA: 0:00:09 Bin 5 ray tracing: 39%|███████████▊ | ETA: 0:00:08 Bin 5 ray tracing: 47%|██████████████▏ | ETA: 0:00:07 Bin 5 ray tracing: 55%|████████████████▌ | ETA: 0:00:06 Bin 5 ray tracing: 63%|██████████████████▉ | ETA: 0:00:05 Bin 5 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:04 Bin 5 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:03 Bin 5 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 5 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 6 ray tracing: 16%|████▊ | ETA: 0:00:11 Bin 6 ray tracing: 24%|███████▏ | ETA: 0:00:10 Bin 6 ray tracing: 32%|█████████▋ | ETA: 0:00:09 Bin 6 ray tracing: 40%|████████████ | ETA: 0:00:08 Bin 6 ray tracing: 48%|██████████████▍ | ETA: 0:00:07 Bin 6 ray tracing: 56%|████████████████▉ | ETA: 0:00:06 Bin 6 ray tracing: 64%|███████████████████▎ | ETA: 0:00:05 Bin 6 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:04 Bin 6 ray tracing: 80%|████████████████████████ | ETA: 0:00:03 Bin 6 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:02 Bin 6 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 8%|██▌ | ETA: 0:00:12 Bin 7 ray tracing: 16%|████▉ | ETA: 0:00:11 Bin 7 ray tracing: 24%|███████▎ | ETA: 0:00:10 Bin 7 ray tracing: 32%|█████████▋ | ETA: 0:00:09 Bin 7 ray tracing: 40%|████████████ | ETA: 0:00:08 Bin 7 ray tracing: 48%|██████████████▎ | ETA: 0:00:07 Bin 7 ray tracing: 55%|████████████████▌ | ETA: 0:00:06 Bin 7 ray tracing: 63%|██████████████████▉ | ETA: 0:00:05 Bin 7 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:04 Bin 7 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:03 Bin 7 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 7 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 8%|██▍ | ETA: 0:00:14 Bin 8 ray tracing: 15%|████▍ | ETA: 0:00:14 Bin 8 ray tracing: 23%|██████▉ | ETA: 0:00:12 Bin 8 ray tracing: 31%|█████████▍ | ETA: 0:00:10 Bin 8 ray tracing: 39%|███████████▉ | ETA: 0:00:08 Bin 8 ray tracing: 48%|██████████████▍ | ETA: 0:00:07 Bin 8 ray tracing: 56%|████████████████▉ | ETA: 0:00:06 Bin 8 ray tracing: 65%|███████████████████▍ | ETA: 0:00:05 Bin 8 ray tracing: 73%|█████████████████████▊ | ETA: 0:00:04 Bin 8 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:02 Bin 8 ray tracing: 89%|██████████████████████████▉ | ETA: 0:00:01 Bin 8 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 9 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 9 ray tracing: 25%|███████▋ | ETA: 0:00:09 Bin 9 ray tracing: 34%|██████████▏ | ETA: 0:00:08 Bin 9 ray tracing: 42%|████████████▌ | ETA: 0:00:07 Bin 9 ray tracing: 50%|███████████████ | ETA: 0:00:06 Bin 9 ray tracing: 58%|█████████████████▌ | ETA: 0:00:05 Bin 9 ray tracing: 67%|████████████████████ | ETA: 0:00:04 Bin 9 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:03 Bin 9 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:02 Bin 9 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 9 ray tracing: 99%|██████████████████████████████| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 9%|██▌ | ETA: 0:00:11 Bin 10 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 10 ray tracing: 26%|███████▌ | ETA: 0:00:09 Bin 10 ray tracing: 34%|█████████▉ | ETA: 0:00:08 Bin 10 ray tracing: 43%|████████████▍ | ETA: 0:00:07 Bin 10 ray tracing: 51%|██████████████▉ | ETA: 0:00:06 Bin 10 ray tracing: 60%|█████████████████▍ | ETA: 0:00:05 Bin 10 ray tracing: 68%|███████████████████▊ | ETA: 0:00:04 Bin 10 ray tracing: 77%|██████████████████████▎ | ETA: 0:00:03 Bin 10 ray tracing: 85%|████████████████████████▋ | ETA: 0:00:02 Bin 10 ray tracing: 93%|███████████████████████████ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 24%|████████▏ | ETA: 0:00:03 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 1 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 1 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 24%|████████▏ | ETA: 0:00:03 Bin 2 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 2 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 2 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 24%|████████▏ | ETA: 0:00:03 Bin 3 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 3 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 3 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 22%|███████▍ | ETA: 0:00:04 Bin 4 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 4 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 4 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 22%|███████▍ | ETA: 0:00:04 Bin 5 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 5 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 5 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 24%|████████▏ | ETA: 0:00:03 Bin 6 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 6 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 24%|████████▏ | ETA: 0:00:03 Bin 7 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 7 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 7 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 24%|████████▏ | ETA: 0:00:03 Bin 8 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 8 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 8 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 24%|████████▏ | ETA: 0:00:03 Bin 9 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 9 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 9 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 24%|███████▉ | ETA: 0:00:03 Bin 10 progress: 49%|███████████████▋ | ETA: 0:00:02 Bin 10 progress: 73%|███████████████████████▌ | ETA: 0:00:01 Bin 10 progress: 98%|███████████████████████████████▎| ETA: 0:00:00 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:04 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010146835935859748 Iteration 10: d = 1.1923674719027263e-5 Iteration 20: d = 1.4005236438253041e-7 Iteration 30: d = 1.8351178477408838e-9 Iteration 40: d = 2.4894943161095897e-11 Iteration 50: d = 3.428712996697012e-13 Iteration 60: d = 4.763603536745216e-15 Converged after 62 iterations. d = 1.99591608795495e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014852530384675444 Iteration 10: d = 9.203019320050015e-6 Iteration 20: d = 6.654812566766935e-8 Iteration 30: d = 7.38634579927316e-10 Iteration 40: d = 9.653594374405619e-12 Iteration 50: d = 1.3315027482811188e-13 Converged after 60 iterations. d = 1.8859939838337597e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015129181254863128 Iteration 10: d = 1.5243125060026757e-5 Iteration 20: d = 1.688146795088077e-7 Iteration 30: d = 2.1799250673679457e-9 Iteration 40: d = 2.9509496048790864e-11 Iteration 50: d = 4.074784498052408e-13 Iteration 60: d = 5.6799524476267726e-15 Converged after 63 iterations. d = 1.568103203219101e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012725910977060073 Iteration 10: d = 1.1351479654405733e-5 Iteration 20: d = 1.2994647171434514e-7 Iteration 30: d = 1.7196121571282888e-9 Iteration 40: d = 2.326479134439161e-11 Iteration 50: d = 3.1708888928334726e-13 Iteration 60: d = 4.398225625695444e-15 Converged after 62 iterations. d = 1.8268387707843373e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015398296055849246 Iteration 10: d = 1.4036248517828433e-5 Iteration 20: d = 1.419667202807455e-7 Iteration 30: d = 1.7694911767188201e-9 Iteration 40: d = 2.3860230206178366e-11 Iteration 50: d = 3.312737959554577e-13 Iteration 60: d = 4.654335534422968e-15 Converged after 62 iterations. d = 1.9759922823806575e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013348983242786154 Iteration 10: d = 9.505675590828296e-6 Iteration 20: d = 8.577977509011306e-8 Iteration 30: d = 1.0260221916692296e-9 Iteration 40: d = 1.3241509988111525e-11 Iteration 50: d = 1.7511168411653298e-13 Iteration 60: d = 2.3288608738739235e-15 Converged after 61 iterations. d = 1.5437507129600796e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012988153592470646 Iteration 10: d = 1.0795305558844639e-5 Iteration 20: d = 1.0011176332821188e-7 Iteration 30: d = 1.3018053347454152e-9 Iteration 40: d = 1.820492477186654e-11 Iteration 50: d = 2.5673718087321627e-13 Iteration 60: d = 3.624536029715612e-15 Converged after 62 iterations. d = 1.5513887320707616e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001416097133109478 Iteration 10: d = 8.900275155086718e-6 Iteration 20: d = 8.955209587669122e-8 Iteration 30: d = 1.1290816556063646e-9 Iteration 40: d = 1.4722661133691457e-11 Iteration 50: d = 1.94079118415439e-13 Iteration 60: d = 2.5638244358991964e-15 Converged after 61 iterations. d = 1.6525085701192771e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001242846540262796 Iteration 10: d = 1.3401653121128829e-5 Iteration 20: d = 1.7722994707594516e-7 Iteration 30: d = 2.5034427416358216e-9 Iteration 40: d = 3.567647910682815e-11 Iteration 50: d = 5.096609620301564e-13 Iteration 60: d = 7.28342830748378e-15 Converged after 63 iterations. d = 2.036934267952495e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001493833464329588 Iteration 10: d = 1.5885534951610283e-5 Iteration 20: d = 1.8606196819027013e-7 Iteration 30: d = 2.533531565991496e-9 Iteration 40: d = 3.5338546960051105e-11 Iteration 50: d = 4.950850421991572e-13 Iteration 60: d = 6.944925535808796e-15 Converged after 63 iterations. d = 1.9520531014157912e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.25173184358 Iteration 2: convergence error = 4820.014358381566 Iteration 3: convergence error = 1092.3019164977688 Iteration 4: convergence error = 323.081970171432 Iteration 5: convergence error = 96.23063824045789 Iteration 6: convergence error = 29.223832983652073 Iteration 7: convergence error = 8.8404425471374 Iteration 8: convergence error = 2.663600202695534 Iteration 9: convergence error = 0.8006283671959409 Iteration 10: convergence error = 0.24032436399079415 Iteration 11: convergence error = 0.07208181611963482 Iteration 12: convergence error = 0.021610312318443903 Iteration 13: convergence error = 0.006477190484474704 Iteration 14: convergence error = 0.0019411073774335819 Iteration 15: convergence error = 0.0005816696607325866 Iteration 16: convergence error = 0.00017429402055313403 Iteration 17: convergence error = 5.222476306698809e-5 Iteration 18: convergence error = 1.5648168982806965e-5 Iteration 19: convergence error = 4.688632998295361e-6 Iteration 20: convergence error = 1.404841441399185e-6 Iteration 21: convergence error = 4.20926880906336e-7 Iteration 22: convergence error = 1.259952568943845e-7 Iteration 23: convergence error = 3.683203431137372e-8 Iteration 24: convergence error = 1.0682242645998485e-8 Iteration 25: convergence error = 3.0838691600365564e-9 Iteration 26: convergence error = 8.87666828930378e-10 Iteration 27: convergence error = 2.576143742771819e-10 Iteration 28: convergence error = 7.412381819449365e-11 Iteration 29: convergence error = 2.114575181622058e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.3105712379095 K, F = -7448.317439116784, relative_change = 0.032689428762090585 Iter 2: T = 936.6956887758171 K, F = -6313.751155803207, relative_change = 0.03164948608275126 Iter 3: T = 908.12402668497 K, F = -5350.498902735553, relative_change = 0.03050260872684043 Iter 5: T = 856.9721997109978 K, F = -3838.7441713017433, relative_change = 0.027893458319417967 Iter 10: T = 761.8371940099262 K, F = -1662.2109580696974, relative_change = 0.019974809999651472 Iter 15: T = 706.1334836703874 K, F = -711.6747194096333, relative_change = 0.011969862509168143 Iter 20: T = 677.4846588473811 K, F = -301.6287656048568, relative_change = 0.0061299048033403945 Iter 25: T = 664.1247779962106 K, F = -126.97923965764807, relative_change = 0.0028317893599539064 Iter 30: T = 658.2432570645257 K, F = -53.26316252064774, relative_change = 0.0012387339057242173 Iter 35: T = 655.7270649242755 K, F = -22.304166962615643, relative_change = 0.0005282314462998324 Iter 40: T = 654.664475249466 K, F = -9.333003113535337, relative_change = 0.0002227446426468813 Iter 45: T = 654.2182564807782 K, F = -3.9040775943280757, relative_change = 9.347879307591938e-5 Iter 50: T = 654.0313198365094 K, F = -1.6328904889648552, relative_change = 3.915096252774906e-5 Iter 55: T = 653.9530840967989 K, F = -0.6829220791099238, relative_change = 1.638339342410258e-5 Iter 60: T = 653.9203550634231 K, F = -0.28561102976249286, relative_change = 6.8534802005855165e-6 Iter 65: T = 653.906665656117 K, F = -0.11944679382597989, relative_change = 2.866513356150691e-6 Iter 70: T = 653.9009402790296 K, F = -0.04995422439019748, relative_change = 1.1988636623541648e-6 Iter 75: T = 653.8985458048751 K, F = -0.02089147922776652, relative_change = 5.013884663966268e-7 Iter 80: T = 653.8975443979035 K, F = -0.00873707065675905, relative_change = 2.096882824920081e-7 Iter 85: T = 653.8971255959249 K, F = -0.0036539480865916407, relative_change = 8.769443043786781e-8 Iter 90: T = 653.8969504476519 K, F = -0.0015281248657274538, relative_change = 3.66749081971022e-8 Iter 95: T = 653.8968771985027 K, F = -0.0006390800921701745, relative_change = 1.5337893346850185e-8 Iter 100: T = 653.8968465648251 K, F = -0.00026727093062306473, relative_change = 6.414491693883839e-9 Iter 105: T = 653.8968337534537 K, F = -0.00011177589485805717, relative_change = 2.6826172766050236e-9 Iter 110: T = 653.896828395585 K, F = -4.674601368032105e-5, relative_change = 1.1219026156086893e-9 Iter 115: T = 653.8968261548603 K, F = -1.9549740654989378e-5, relative_change = 4.691930670949896e-10 Iter 120: T = 653.8968252177625 K, F = -8.17593587970622e-6, relative_change = 1.9622216609641149e-10 Iter 125: T = 653.8968248258569 K, F = -3.419273913063403e-6, relative_change = 8.206245076824928e-11 Iter 130: T = 653.8968246619575 K, F = -1.4299828197672504e-6, relative_change = 3.431953621448695e-11 Iter 135: T = 653.8968245934127 K, F = -5.98036627552645e-7, relative_change = 1.4352857547244145e-11 Iter 140: T = 653.8968245647465 K, F = -2.501064051418922e-7, relative_change = 6.002544727226017e-12 Iter 145: T = 653.8968245527578 K, F = -1.045978104685652e-7, relative_change = 2.5103436891433426e-12 Iter 150: T = 653.896824547744 K, F = -4.3743208666402467e-8, relative_change = 1.0498354347062927e-12 Iter 155: T = 653.8968245456473 K, F = -1.8294389281248158e-8, relative_change = 4.390646847726558e-13 Converged in 159 iterations to T = 653.8968245448905 K Iter 1: T = 970.4177550195428 K, F = -6740.34265877678, relative_change = 0.02958224498045713 Iter 2: T = 943.0012489104706 K, F = -5708.79920578755, relative_change = 0.028252271732724044 Iter 3: T = 917.7052754834087 K, F = -4833.370804878263, relative_change = 0.02682496280496812 Iter 5: T = 873.2566257262002 K, F = -3460.5252515929674, relative_change = 0.023724231446036772 Iter 10: T = 794.4399023506239 K, F = -1489.3013858459628, relative_change = 0.015418772938301718 Iter 15: T = 751.5575183149211 K, F = -633.8870849367347, relative_change = 0.008428476135752722 Iter 20: T = 730.7636132176406 K, F = -267.54711790268345, relative_change = 0.004050633723371536 Iter 25: T = 721.4101688989417 K, F = -112.37408192817686, relative_change = 0.001807471934127349 Iter 30: T = 717.3672530121435 K, F = -47.08539082402208, relative_change = 0.0007777565956412951 Iter 35: T = 715.6521064331033 K, F = -19.70765570751827, relative_change = 0.00032925291859742825 Iter 40: T = 714.9304419020324 K, F = -8.244801260973745, relative_change = 0.00013840723383585756 Iter 45: T = 714.6278605354806 K, F = -3.4485704643011683, relative_change = 5.800863225651924e-5 Iter 50: T = 714.5011816381048 K, F = -1.4423202811343985, relative_change = 2.4281847847078562e-5 Iter 55: T = 714.4481792207782 K, F = -0.6032107818534688, relative_change = 1.0158802072479126e-5 Iter 60: T = 714.4260088127 K, F = -0.2522726148148498, relative_change = 4.249204921960012e-6 Iter 65: T = 714.4167361547094 K, F = -0.10550388591441018, relative_change = 1.777185905542872e-6 Iter 70: T = 714.4128580909552 K, F = -0.04412306650698483, relative_change = 7.432609506864374e-7 Iter 75: T = 714.4112362160882 K, F = -0.01845280759451673, relative_change = 3.1084420571187434e-7 Iter 80: T = 714.410557924751 K, F = -0.0077171869995431575, relative_change = 1.2999938869491266e-7 Iter 85: T = 714.4102742545313 K, F = -0.0032274201997458674, relative_change = 5.4367406962752e-8 Iter 90: T = 714.4101556201384 K, F = -0.0013497457469360263, relative_change = 2.2737118130412596e-8 Iter 95: T = 714.4101060057977 K, F = -0.0005644798035322474, relative_change = 9.508937700356575e-9 Iter 100: T = 714.4100852564843 K, F = -0.000236072197577597, relative_change = 3.9767518978010505e-9 Iter 105: T = 714.410076578873 K, F = -9.8728213421162e-5, relative_change = 1.6631252507642538e-9 Iter 110: T = 714.4100729497922 K, F = -4.128931678704095e-5, relative_change = 6.955388395738153e-10 Iter 115: T = 714.4100714320672 K, F = -1.7267685708755032e-5, relative_change = 2.9088265769619807e-10 Iter 120: T = 714.4100707973365 K, F = -7.221551553304728e-6, relative_change = 1.216505878570757e-10 Iter 125: T = 714.4100705318846 K, F = -3.020139782150544e-6, relative_change = 5.0875740185083736e-11 Iter 130: T = 714.4100704208694 K, F = -1.263058134859385e-6, relative_change = 2.1276835573997172e-11 Iter 135: T = 714.4100703744415 K, F = -5.282264007311355e-7, relative_change = 8.898233555124081e-12 Iter 140: T = 714.4100703550248 K, F = -2.2091048257344426e-7, relative_change = 3.721345745398628e-12 Iter 145: T = 714.4100703469045 K, F = -9.238765896757428e-8, relative_change = 1.5563155611261017e-12 Iter 150: T = 714.4100703435086 K, F = -3.86379411798643e-8, relative_change = 6.508751253299301e-13 Iter 155: T = 714.4100703420883 K, F = -1.615952460731762e-8, relative_change = 2.7221514094650416e-13 Converged in 157 iterations to T = 714.4100703417877 K Iter 1: T = 974.3583795401491 K, F = -5842.467613255014, relative_change = 0.025641620459850897 Iter 2: T = 950.9063859067443 K, F = -4943.011671838524, relative_change = 0.024069166054150472 Iter 3: T = 929.5697487658712 K, F = -4180.224206792162, relative_change = 0.022438209961675042 Iter 5: T = 892.8910764535093 K, F = -2985.5599124666605, relative_change = 0.019084851866472317 Iter 10: T = 831.0658500934392 K, F = -1276.7536007861422, relative_change = 0.011227061814361254 Iter 15: T = 799.655224912412 K, F = -540.6467857804722, relative_change = 0.005671864660067879 Iter 20: T = 785.1223054134231 K, F = -227.4849246531141, relative_change = 0.002600040200244474 Iter 25: T = 778.7507109545023 K, F = -95.3979699378078, relative_change = 0.0011331117505895406 Iter 30: T = 776.0300837961286 K, F = -39.943851768189894, relative_change = 0.0004823846315888763 Iter 35: T = 774.8821268540773 K, F = -16.713390463328732, relative_change = 0.00020326581472392548 Iter 40: T = 774.4002323239106 K, F = -6.991217075009866, relative_change = 8.527820693433407e-5 Iter 45: T = 774.1983804092486 K, F = -2.9240695949286577, relative_change = 3.5711811152700405e-5 Iter 50: T = 774.1139077754121 K, F = -1.2229261965368778, relative_change = 1.4943420590483308e-5 Iter 55: T = 774.0785705484128 K, F = -0.5114502793179114, relative_change = 6.2509723880392305e-6 Iter 60: T = 774.063790389713 K, F = -0.21389600361047, relative_change = 2.6144859489942612e-6 Iter 65: T = 774.0576088519784 K, F = -0.08945410607392867, relative_change = 1.0934537911452579e-6 Iter 70: T = 774.0550236068008 K, F = -0.03741081794616086, relative_change = 4.5730322517662e-7 Iter 75: T = 774.0539424172501 K, F = -0.015645658271387086, relative_change = 1.9125103279908088e-7 Iter 80: T = 774.0534902492689 K, F = -0.0065432024341477435, relative_change = 7.998370424162954e-8 Iter 85: T = 774.0533011469395 K, F = -0.002736445626646211, relative_change = 3.345018199616868e-8 Iter 90: T = 774.0532220620381 K, F = -0.0011444142802348178, relative_change = 1.3989272873528104e-8 Iter 95: T = 774.0531889877793 K, F = -0.0004786077250779064, relative_change = 5.850482245145496e-9 Iter 100: T = 774.0531751557278 K, F = -0.0002001594670871798, relative_change = 2.446741760872017e-9 Iter 105: T = 774.0531693709984 K, F = -8.370907907107039e-5, relative_change = 1.0232566552839284e-9 Iter 110: T = 774.0531669517554 K, F = -3.5008135380931726e-5, relative_change = 4.279381453984352e-10 Iter 115: T = 774.0531659399992 K, F = -1.4640821163092177e-5, relative_change = 1.7896885470935292e-10 Iter 120: T = 774.0531655168705 K, F = -6.122965391708313e-6, relative_change = 7.484690197524864e-11 Iter 125: T = 774.0531653399132 K, F = -2.560697163866976e-6, relative_change = 3.130186724236763e-11 Iter 130: T = 774.0531652659074 K, F = -1.070914534162526e-6, relative_change = 1.3090819587941783e-11 Iter 135: T = 774.0531652349574 K, F = -4.478686581599334e-7, relative_change = 5.474729884739463e-12 Iter 140: T = 774.0531652220138 K, F = -1.8730567497016182e-7, relative_change = 2.2896176317296514e-12 Iter 145: T = 774.0531652166005 K, F = -7.833395532230725e-8, relative_change = 9.57551367856959e-13 Iter 150: T = 774.0531652143367 K, F = -3.2760669621545446e-8, relative_change = 4.0046521178950746e-13 Converged in 154 iterations to T = 774.0531652135195 K Iter 1: T = 970.3900928060094 K, F = -6746.645520443938, relative_change = 0.029609907193990596 Iter 2: T = 942.9453964055203 K, F = -5714.18051299647, relative_change = 0.028282127573179477 Iter 3: T = 917.6208730057524 K, F = -4837.966315683608, relative_change = 0.026856829140164764 Iter 5: T = 873.1149047291635 K, F = -3463.8775810250354, relative_change = 0.02375922748968705 Iter 10: T = 794.1656509613167 K, F = -1490.8181530262739, relative_change = 0.015453616867664818 Iter 15: T = 751.1869050852504 K, F = -634.560434012489, relative_change = 0.008453245700764432 Iter 20: T = 730.3375862114724 K, F = -267.83892634001245, relative_change = 0.004064297188365049 Iter 25: T = 720.9569688861184 K, F = -112.49831781717297, relative_change = 0.0018139762864346806 Iter 30: T = 716.9018324965282 K, F = -47.137771328309356, relative_change = 0.0007806364226951871 Iter 35: T = 715.1814109883347 K, F = -19.729639164990083, relative_change = 0.00033048703403494264 Iter 40: T = 714.4575105420336 K, F = -8.254008774363628, relative_change = 0.00013892869860615537 Iter 45: T = 714.1539887746227 K, F = -3.45242358312456, relative_change = 5.822766020602892e-5 Iter 50: T = 714.0269156542555 K, F = -1.4439321272568852, relative_change = 2.4373614049308473e-5 Iter 55: T = 713.9737482039487 K, F = -0.6038849497284954, relative_change = 1.0197208902938575e-5 Iter 60: T = 713.95150874835 K, F = -0.252554572923062, relative_change = 4.265272212552017e-6 Iter 65: T = 713.9422072088291 K, F = -0.10562180644702213, relative_change = 1.783906329877968e-6 Iter 70: T = 713.9383170655937 K, F = -0.04417238268279278, relative_change = 7.460716683738718e-7 Iter 75: T = 713.9366901387893 K, F = -0.018473432277038015, relative_change = 3.120197086756366e-7 Iter 80: T = 713.9360097346446 K, F = -0.007725812499867035, relative_change = 1.3049100283636518e-7 Iter 85: T = 713.935725180819 K, F = -0.00323102749019355, relative_change = 5.457300672017498e-8 Iter 90: T = 713.9356061768908 K, F = -0.001351254361276144, relative_change = 2.2823102584413206e-8 Iter 95: T = 713.9355564080058 K, F = -0.0005651107245081555, relative_change = 9.544897457758235e-9 Iter 100: T = 713.93553559406 K, F = -0.00023633605639572508, relative_change = 3.991790704288705e-9 Iter 105: T = 713.9355268894187 K, F = -9.883856180969985e-5, relative_change = 1.6694146512278846e-9 Iter 110: T = 713.9355232490336 K, F = -4.133546700002544e-5, relative_change = 6.981691622883475e-10 Iter 115: T = 713.935521726581 K, F = -1.7286986098152823e-5, relative_change = 2.9198268705103716e-10 Iter 120: T = 713.9355210898732 K, F = -7.229623953386444e-6, relative_change = 1.221106458497762e-10 Iter 125: T = 713.9355208235944 K, F = -3.0235157609803665e-6, relative_change = 5.106814204257101e-11 Iter 130: T = 713.9355207122334 K, F = -1.2644703339947938e-6, relative_change = 2.1357305791613067e-11 Iter 135: T = 713.9355206656609 K, F = -5.288163198446938e-7, relative_change = 8.93187570351719e-12 Iter 140: T = 713.9355206461837 K, F = -2.2115667230870883e-7, relative_change = 3.735406480839283e-12 Iter 145: T = 713.9355206380382 K, F = -9.249018972923295e-8, relative_change = 1.5621886988113916e-12 Iter 150: T = 713.9355206346315 K, F = -3.868057474321063e-8, relative_change = 6.533272004916981e-13 Iter 155: T = 713.9355206332068 K, F = -1.6175335071366703e-8, relative_change = 2.732065500434814e-13 Converged in 157 iterations to T = 713.9355206329053 K Iter 1: T = 969.4445946196068 K, F = -6962.078181616727, relative_change = 0.03055540538039316 Iter 2: T = 941.0332986220305 K, F = -5898.1616630259605, relative_change = 0.029306776431843876 Iter 3: T = 914.726404099663 K, F = -4995.130908113393, relative_change = 0.027955328000495997 Iter 5: T = 868.2365259843998 K, F = -3578.618375478123, relative_change = 0.02497747368286727 Iter 10: T = 784.6290625808557 K, F = -1542.8927657162806, relative_change = 0.016700304496757194 Iter 15: T = 738.1876327762772 K, F = -657.7641433613497, relative_change = 0.009361581894744777 Iter 20: T = 715.3127997334063 K, F = -277.9238247573419, relative_change = 0.004573556924797581 Iter 25: T = 704.9288148730583 K, F = -116.7990676444999, relative_change = 0.0020584932069043836 Iter 30: T = 700.4201433784164 K, F = -48.95252517983238, relative_change = 0.0008893312808794153 Iter 35: T = 698.5035049471127 K, F = -20.491543943986354, relative_change = 0.0003771487538517838 Iter 40: T = 697.6963500085606 K, F = -8.573173157325193, relative_change = 0.0001586599825891898 Iter 45: T = 697.3577975255149 K, F = -3.5859948261737755, relative_change = 6.651790175937988e-5 Iter 50: T = 697.2160366562443 K, F = -1.499809518750268, relative_change = 2.7847439749199057e-5 Iter 55: T = 697.156720036692 K, F = -0.627256397636853, relative_change = 1.1651187006603827e-5 Iter 60: T = 697.131907773167 K, F = -0.2623292912801275, relative_change = 4.873550262655572e-6 Iter 65: T = 697.121530053062 K, F = -0.10970979782343637, relative_change = 2.0383317004328015e-6 Iter 70: T = 697.1171898029885 K, F = -0.04588204478917768, relative_change = 8.524817337013253e-7 Iter 75: T = 697.1153746299606 K, F = -0.019188436063024117, relative_change = 3.56522777207937e-7 Iter 80: T = 697.1146154979181 K, F = -0.00802483608928184, relative_change = 1.491029114273598e-7 Iter 85: T = 697.1142980189567 K, F = -0.0033560828082599414, relative_change = 6.235676307353131e-8 Iter 90: T = 697.1141652453105 K, F = -0.0014035540015493453, relative_change = 2.6078368354040338e-8 Iter 95: T = 697.1141097177592 K, F = -0.0005869830625887529, relative_change = 1.0906289542186625e-8 Iter 100: T = 697.1140864954695 K, F = -0.000245483329703311, relative_change = 4.5611413118877706e-9 Iter 105: T = 697.1140767836298 K, F = -0.00010266406139891604, relative_change = 1.9075239174833002e-9 Iter 110: T = 697.1140727220222 K, F = -4.293533613008993e-5, relative_change = 7.977492973610762e-10 Iter 115: T = 697.1140710234093 K, F = -1.795606953025608e-5, relative_change = 3.3362827238398184e-10 Iter 120: T = 697.1140703130292 K, F = -7.509442617625872e-6, relative_change = 1.3952732668020207e-10 Iter 125: T = 697.1140700159398 K, F = -3.140538037738061e-6, relative_change = 5.835198428757987e-11 Iter 130: T = 697.1140698916935 K, F = -1.313411369663342e-6, relative_change = 2.4403512630580295e-11 Iter 135: T = 697.1140698397321 K, F = -5.492838582865645e-7, relative_change = 1.0205831842054886e-11 Iter 140: T = 697.1140698180013 K, F = -2.297181060928466e-7, relative_change = 4.268220022922559e-12 Iter 145: T = 697.1140698089132 K, F = -9.607150908141904e-8, relative_change = 1.785032732915779e-12 Iter 150: T = 697.1140698051124 K, F = -4.01782943582063e-8, relative_change = 7.465227856804475e-13 Iter 155: T = 697.114069803523 K, F = -1.6803085256533734e-8, relative_change = 3.1220553819522076e-13 Converged in 157 iterations to T = 697.1140698031866 K Iter 1: T = 963.5737866232887 K, F = -8299.747368157947, relative_change = 0.03642621337671132 Iter 2: T = 929.0260394566623 K, F = -7042.590841002502, relative_change = 0.03585376402537297 Iter 3: T = 896.3232659466637 K, F = -5974.933224068198, relative_change = 0.03520113766576946 Iter 5: T = 836.3339047316533 K, F = -4298.278449007564, relative_change = 0.03362615438183277 Iter 10: T = 716.7086956018674 K, F = -1878.3006266120399, relative_change = 0.02789519367505752 Iter 15: T = 637.1393556277848 K, F = -813.3216301625457, relative_change = 0.019976364626967752 Iter 20: T = 590.5493537227079 K, F = -348.2234399216349, relative_change = 0.011970971963047724 Iter 25: T = 566.5875995188998 K, F = -147.58746261677624, relative_change = 0.006130542385088411 Iter 30: T = 555.413392838624 K, F = -62.131177918376274, relative_change = 0.0028321027531200836 Iter 35: T = 550.4940730355676 K, F = -26.061769154470785, relative_change = 0.0012388750700384422 Iter 40: T = 548.3895202076677 K, F = -10.913473243964013, relative_change = 0.0005282924258792386 Iter 45: T = 547.5007655341477 K, F = -4.566657146529506, relative_change = 0.00022277049916031484 Iter 50: T = 547.12754609349 K, F = -1.9102730283600553, relative_change = 9.348966960803047e-5 Iter 55: T = 546.9711914021569 K, F = -0.7989766095079498, relative_change = 3.915552232875805e-5 Iter 60: T = 546.9057546571396 K, F = -0.33415515155341274, relative_change = 1.6385302335691374e-5 Iter 65: T = 546.878379937312 K, F = -0.1397500534299735, relative_change = 6.85427887140163e-6 Iter 70: T = 546.8669300515642 K, F = -0.05844555737585089, relative_change = 2.8668474295311128e-6 Iter 75: T = 546.8621413187666 K, F = -0.024442702854136633, relative_change = 1.1990033862863184e-6 Iter 80: T = 546.8601385691209 K, F = -0.010222242967743794, relative_change = 5.014469024325277e-7 Iter 85: T = 546.8593009875353 K, F = -0.004275066314012005, relative_change = 2.0971272149173173e-7 Iter 90: T = 546.8589506995552 K, F = -0.0017878841764463471, relative_change = 8.770465116042495e-8 Iter 95: T = 546.858804204701 K, F = -0.000747714582300385, relative_change = 3.667918263817478e-8 Iter 100: T = 546.8587429387619 K, F = -0.00031270317956832994, relative_change = 1.5339680974575497e-8 Iter 105: T = 546.8587173166072 K, F = -0.0001307762062812412, relative_change = 6.415239313095225e-9 Iter 110: T = 546.8587066011149 K, F = -5.4692171214454355e-5, relative_change = 2.6829299426994184e-9 Iter 115: T = 546.8587021197678 K, F = -2.2872919512695322e-5, relative_change = 1.12203340385006e-9 Iter 120: T = 546.858700245615 K, F = -9.565728147531427e-6, relative_change = 4.692477793594763e-10 Iter 125: T = 546.8586994618217 K, F = -4.000501540951662e-6, relative_change = 1.9624501640364507e-10 Iter 130: T = 546.8586991340302 K, F = -1.6730574256829112e-6, relative_change = 8.207200510319776e-11 Iter 135: T = 546.8586989969438 K, F = -6.996928547664538e-7, relative_change = 3.432350541832574e-11 Iter 140: T = 546.8586989396127 K, F = -2.926204942521604e-7, relative_change = 1.4354528642918073e-11 Iter 145: T = 546.8586989156361 K, F = -1.2237729246633577e-7, relative_change = 6.003230753905028e-12 Iter 150: T = 546.8586989056088 K, F = -5.117995507952777e-8, relative_change = 2.5106379962462313e-12 Iter 155: T = 546.8586989014152 K, F = -2.140413410400832e-8, relative_change = 1.0499820149652774e-12 Iter 160: T = 546.8586988996615 K, F = -8.951613311714013e-9, relative_change = 4.39122317992151e-13 Converged in 164 iterations to T = 546.8586988990284 K Iter 1: T = 966.9697511776269 K, F = -7525.973614055717, relative_change = 0.03303024882237305 Iter 2: T = 936.0001033780848 K, F = -6380.167222456269, relative_change = 0.03202752491670566 Iter 3: T = 907.0605133799071 K, F = -5407.336766394876, relative_change = 0.03091836196783832 Iter 5: T = 855.1394039987305 K, F = -3880.439762726831, relative_change = 0.028381813213948157 Iter 10: T = 758.0177289955227 K, F = -1681.516624875353, relative_change = 0.02056729905525858 Iter 15: T = 700.607310650752 K, F = -720.5147111911036, relative_change = 0.012479595589085181 Iter 20: T = 670.8325317873374 K, F = -305.56273445711463, relative_change = 0.00645145615108204 Iter 25: T = 656.8708636465294 K, F = -128.68155213123578, relative_change = 0.0029966270186966835 Iter 30: T = 650.7063845319951 K, F = -53.9867702685214, relative_change = 0.001314342928913038 Iter 35: T = 648.0655173236289 K, F = -22.608981399829574, relative_change = 0.0005611449836927258 Iter 40: T = 646.9496038443505 K, F = -9.460875673591975, relative_change = 0.00023674585308080054 Iter 45: T = 646.4808716206747 K, F = -3.957625510741812, relative_change = 9.937639261825338e-5 Iter 50: T = 646.2844819191811 K, F = -1.6552971924115045, relative_change = 4.1624835433803856e-5 Iter 55: T = 646.2022861782584 K, F = -0.6922949907568983, relative_change = 1.741929980328914e-5 Iter 60: T = 646.1678998648663 K, F = -0.2895312716161784, relative_change = 7.286936864601549e-6 Iter 65: T = 646.1535171601653 K, F = -0.12108635197363288, relative_change = 3.047830053085031e-6 Iter 70: T = 646.1475018022925 K, F = -0.0506399187667001, relative_change = 1.2746994582531203e-6 Iter 75: T = 646.1449860484943 K, F = -0.02117824683004882, relative_change = 5.331051242140855e-7 Iter 80: T = 646.14393391984 K, F = -0.00885700064850159, relative_change = 2.2295278139537843e-7 Iter 85: T = 646.1434939052579 K, F = -0.0037041043033024246, relative_change = 9.324183968205987e-8 Iter 90: T = 646.1433098855874 K, F = -0.0015491008058161615, relative_change = 3.899490754341272e-8 Iter 95: T = 646.143232926308 K, F = -0.0006478524822998155, relative_change = 1.630814591272555e-8 Iter 100: T = 646.1432007410086 K, F = -0.0002709396494053329, relative_change = 6.820263107160458e-9 Iter 105: T = 646.1431872807304 K, F = -0.0001133101984281959, relative_change = 2.8523157992863233e-9 Iter 110: T = 646.143181651481 K, F = -4.738767806894417e-5, relative_change = 1.1928725774812548e-9 Iter 115: T = 646.1431792972617 K, F = -1.98180938877357e-5, relative_change = 4.988735914074482e-10 Iter 120: T = 646.143178312699 K, F = -8.288163800385107e-6, relative_change = 2.0863490175642491e-10 Iter 125: T = 646.1431779009431 K, F = -3.466209255176267e-6, relative_change = 8.72536121428237e-11 Iter 130: T = 646.1431777287419 K, F = -1.449610186665673e-6, relative_change = 3.6490504708339866e-11 Iter 135: T = 646.1431776567252 K, F = -6.062444258825295e-7, relative_change = 1.5260768234317295e-11 Iter 140: T = 646.143177626607 K, F = -2.5353876609290893e-7, relative_change = 6.382238225093472e-12 Iter 145: T = 646.1431776140112 K, F = -1.0603181088697511e-7, relative_change = 2.6690998264681885e-12 Iter 150: T = 646.1431776087435 K, F = -4.4343443472705246e-8, relative_change = 1.1162412137689179e-12 Iter 155: T = 646.1431776065405 K, F = -1.854449932503499e-8, relative_change = 4.668138695271043e-13 Converged in 160 iterations to T = 646.1431776056191 K Iter 1: T = 965.2719161850308 K, F = -7912.826932176762, relative_change = 0.03472808381496915 Iter 2: T = 932.5232264641569 K, F = -6711.203419138873, relative_change = 0.03392690616163788 Iter 3: T = 901.7245489898351 K, F = -5690.82351484027, relative_change = 0.03302724972449319 Iter 5: T = 845.8638177502155 K, F = -4088.7920816069436, relative_change = 0.030914625332910135 Iter 10: T = 738.154278639963 K, F = -1778.835805451498, relative_change = 0.02387074077664271 Iter 15: T = 671.017072111939 K, F = -765.7132259022876, relative_change = 0.015564705203047995 Iter 20: T = 634.4032617324647 K, F = -325.96779871101876, relative_change = 0.008532333438089382 Iter 25: T = 616.6181141250747 K, F = -137.5987812395697, relative_change = 0.004107977659489843 Iter 30: T = 608.6100438233631 K, F = -57.79728754838494, relative_change = 0.0018347844779096957 Iter 35: T = 605.1469520864199 K, F = -24.218096720949053, relative_change = 0.0007898524132521971 Iter 40: T = 603.6774634774574 K, F = -10.13664603219575, relative_change = 0.0003344370222059135 Iter 45: T = 603.0591031351462 K, F = -4.240741941472042, relative_change = 0.0001405978379025461 Iter 50: T = 602.799824970133 K, F = -1.7737881311509653, relative_change = 5.892875833393258e-5 Iter 55: T = 602.6912735780969 K, F = -0.7418647990174397, relative_change = 2.4667356643904245e-5 Iter 60: T = 602.6458553816667 K, F = -0.3102646686254452, relative_change = 1.0320149321697403e-5 Iter 65: T = 602.6268573247178 K, F = -0.12975778064362262, relative_change = 4.3167037760131415e-6 Iter 70: T = 602.6189114762209 K, F = -0.054266496791078755, relative_change = 1.8054184954479286e-6 Iter 75: T = 602.615588316549 K, F = -0.022694939587623197, relative_change = 7.550688152318681e-7 Iter 80: T = 602.6141985120832 K, F = -0.009491302210467067, relative_change = 3.157825107941088e-7 Iter 85: T = 602.6136172758643 K, F = -0.0039693772351836465, relative_change = 1.3206466697417084e-7 Iter 90: T = 602.6133741953425 K, F = -0.0016600411917146451, relative_change = 5.5231134554658426e-8 Iter 95: T = 602.6132725360615 K, F = -0.000694249090830823, relative_change = 2.3098339931551607e-8 Iter 100: T = 602.613230020918 K, F = -0.0002903432676670259, relative_change = 9.660005082642584e-9 Iter 105: T = 602.6132122405741 K, F = -0.00012142502393780452, relative_change = 4.039930123384997e-9 Iter 110: T = 602.6132048046213 K, F = -5.078139528874592e-5, relative_change = 1.689547129032516e-9 Iter 115: T = 602.6132016948169 K, F = -2.1237385644745643e-5, relative_change = 7.065887934308715e-10 Iter 120: T = 602.6132003942596 K, F = -8.881727738496714e-6, relative_change = 2.9550385606723915e-10 Iter 125: T = 602.613199850351 K, F = -3.7144440109826427e-6, relative_change = 1.2358322225419936e-10 Iter 130: T = 602.6131996228819 K, F = -1.5534244871551195e-6, relative_change = 5.16839676216915e-11 Iter 135: T = 602.6131995277516 K, F = -6.496608561112893e-7, relative_change = 2.16148586269962e-11 Iter 140: T = 602.613199487967 K, F = -2.716960780801969e-7, relative_change = 9.039596989436986e-12 Iter 145: T = 602.6131994713286 K, F = -1.136263709233809e-7, relative_change = 3.780461639021091e-12 Iter 150: T = 602.6131994643703 K, F = -4.7519526313877236e-8, relative_change = 1.5810215963429703e-12 Iter 155: T = 602.6131994614602 K, F = -1.987385672697073e-8, relative_change = 6.612228514473465e-13 Iter 160: T = 602.6131994602432 K, F = -8.312149635258947e-9, relative_change = 2.76553431930348e-13 Converged in 162 iterations to T = 602.6131994599857 K Iter 1: T = 980.0891130909437 K, F = -4536.714522371531, relative_change = 0.019910886909056277 Iter 2: T = 962.2242256298973 K, F = -3832.23007081006, relative_change = 0.018227819513988008 Iter 3: T = 946.2848127542056 K, F = -3235.6328854229137, relative_change = 0.016565175196308648 Iter 5: T = 919.6603607522118 K, F = -2303.4438656663797, relative_change = 0.013390148572657112 Iter 10: T = 877.3676746648918 K, F = -977.9483097974501, relative_change = 0.007041085819059503 Iter 15: T = 857.3355054597464 K, F = -412.11611738552534, relative_change = 0.0033035997337943026 Iter 20: T = 848.4424452612358 K, F = -172.95544898714323, relative_change = 0.0014562300407681532 Iter 25: T = 844.6228337973988 K, F = -72.44241973649885, relative_change = 0.0006231241093185131 Iter 30: T = 843.0069991666096 K, F = -30.315968753825825, relative_change = 0.0002631508180812983 Iter 35: T = 842.3279478126034 K, F = -12.68197127615151, relative_change = 0.00011050576343882014 Iter 40: T = 842.0433799683767 K, F = -5.304361043006811, relative_change = 4.629453073097611e-5 Iter 45: T = 841.9242684025589 K, F = -2.2184538398029003, relative_change = 1.9374900695846958e-5 Iter 50: T = 841.8744366743674 K, F = -0.9278025636047298, relative_change = 8.10526170257767e-6 Iter 55: T = 841.8535933267314 K, F = -0.3880213792494682, relative_change = 3.3901453868965145e-6 Iter 60: T = 841.8448758433279 K, F = -0.16227574616487828, relative_change = 1.4178741845250113e-6 Iter 65: T = 841.8412299920662 K, F = -0.06786575496217462, relative_change = 5.929850174378683e-7 Iter 70: T = 841.8397052368081 K, F = -0.02838228668861853, relative_change = 2.479957073595617e-7 Iter 75: T = 841.8390675630253 K, F = -0.01186981430572387, relative_change = 1.0371516727397946e-7 Iter 80: T = 841.8388008797225 K, F = -0.0049640986316279445, relative_change = 4.337499165898527e-8 Iter 85: T = 841.8386893494908 K, F = -0.002076045422080064, relative_change = 1.8139951751752765e-8 Iter 90: T = 841.8386427062004 K, F = -0.000868227003812283, relative_change = 7.586346592453033e-9 Iter 95: T = 841.8386231994166 K, F = -0.0003631029015871423, relative_change = 3.1727010931244424e-9 Iter 100: T = 841.8386150414461 K, F = -0.00015185396996830747, relative_change = 1.3268615498183941e-9 Iter 105: T = 841.8386116296855 K, F = -6.350714377734157e-5, relative_change = 5.54909357065482e-10 Iter 110: T = 841.8386102028464 K, F = -2.65594475075126e-5, relative_change = 2.3206973550906984e-10 Iter 115: T = 841.8386096061251 K, F = -1.1107475382798881e-5, relative_change = 9.705431117233028e-11 Iter 120: T = 841.8386093565693 K, F = -4.645279663373358e-6, relative_change = 4.058927911432149e-11 Iter 125: T = 841.838609252202 K, F = -1.9427083519651944e-6, relative_change = 1.697489436511605e-11 Iter 130: T = 841.8386092085544 K, F = -8.124648218643671e-7, relative_change = 7.0991121832435314e-12 Iter 135: T = 841.8386091903005 K, F = -3.3978524327515913e-7, relative_change = 2.9689575419829963e-12 Iter 140: T = 841.8386091826665 K, F = -1.4210092436073296e-7, relative_change = 1.2416419472935158e-12 Iter 145: T = 841.8386091794738 K, F = -5.942729219832188e-8, relative_change = 5.192606532349017e-13 Converged in 150 iterations to T = 841.8386091781387 K Iter 1: T = 976.4286193396105 K, F = -5370.761505641298, relative_change = 0.023571380660389548 Iter 2: T = 955.01906635405 K, F = -4541.34396017785, relative_change = 0.02192638822901407 Iter 3: T = 935.6797724856252 K, F = -3838.276239517854, relative_change = 0.020250165205869527 Iter 5: T = 902.7912531528242 K, F = -2738.0126055885803, relative_change = 0.01689719903332976 Iter 10: T = 848.6224188014484 K, F = -1167.561245552299, relative_change = 0.009509160443081342 Iter 15: T = 821.8754252676764 K, F = -493.4121448097047, relative_change = 0.004657854854080842 Iter 20: T = 809.7157913680875 K, F = -207.37843850339362, relative_change = 0.0020993694427889073 Iter 25: T = 804.4322572316577 K, F = -86.91970348194835, relative_change = 0.0009075857893966326 Iter 30: T = 802.1854744314737 K, F = -36.38531611539977, relative_change = 0.0003850010963682238 Iter 35: T = 801.2391487263785 K, F = -15.222873221289172, relative_change = 0.0001619832737955668 Iter 40: T = 800.8421981739746 K, F = -6.367459604235765, relative_change = 6.79147146984367e-5 Iter 45: T = 800.6759801925516 K, F = -2.663135581997147, relative_change = 2.8432829902971077e-5 Iter 50: T = 800.6064292952046 K, F = -1.1137880035867487, relative_change = 1.1896219137167706e-5 Iter 55: T = 800.5773358802348 K, F = -0.46580520061533404, relative_change = 4.976063262044404e-6 Iter 60: T = 800.565167546999 K, F = -0.19480630465529225, relative_change = 2.081210446288467e-6 Iter 65: T = 800.5600784088601 K, F = -0.08147049918752192, relative_change = 8.704152892727271e-7 Iter 70: T = 800.5579500362553 K, F = -0.03407196651995181, relative_change = 3.640230058266382e-7 Iter 75: T = 800.5570599194219 K, F = -0.01424930868781149, relative_change = 1.5223963185018558e-7 Iter 80: T = 800.5566876608841 K, F = -0.005959232005661175, relative_change = 6.366858316588634e-8 Iter 85: T = 800.5565319777346 K, F = -0.0024922221576088033, relative_change = 2.6626988256136503e-8 Iter 90: T = 800.5564668691502 K, F = -0.0010422770970143214, relative_change = 1.113572908569179e-8 Iter 95: T = 800.556439639957 K, F = -0.00043589273450406196, relative_change = 4.657095701167936e-9 Iter 100: T = 800.5564282523824 K, F = -0.00018229554818594007, relative_change = 1.9476531818375425e-9 Iter 105: T = 800.5564234899624 K, F = -7.623817525737042e-5, relative_change = 8.145318429377199e-10 Iter 110: T = 800.5564214982614 K, F = -3.1883714734615154e-5, relative_change = 3.4064694154136817e-10 Iter 115: T = 800.5564206653083 K, F = -1.3334150446575599e-5, relative_change = 1.42462621685955e-10 Iter 120: T = 800.5564203169574 K, F = -5.5764999951080085e-6, relative_change = 5.957955956502264e-11 Iter 125: T = 800.556420171273 K, F = -2.332160894957802e-6, relative_change = 2.4916904724942235e-11 Iter 130: T = 800.5564201103459 K, F = -9.753368536147278e-7, relative_change = 1.0420539816781824e-11 Iter 135: T = 800.5564200848656 K, F = -4.07900329846278e-7, relative_change = 4.3580242183330245e-12 Iter 140: T = 800.5564200742093 K, F = -1.7058845369621878e-7, relative_change = 1.8225741884136004e-12 Iter 145: T = 800.5564200697527 K, F = -7.1340588769786e-8, relative_change = 7.622058402207648e-13 Iter 150: T = 800.5564200678889 K, F = -2.983559765912247e-8, relative_change = 3.187647757701624e-13 Converged in 153 iterations to T = 800.5564200673432 K Iter 1: T = 980.8096235698287 K, F = -4372.545524375192, relative_change = 0.019190376430171338 Iter 2: T = 963.6325470938187 K, F = -3692.8176375779976, relative_change = 0.017513160620805244 Iter 3: T = 948.3432601202572 K, F = -3117.3057128858186, relative_change = 0.015866304038475984 Iter 5: T = 922.890784236327 K, F = -2218.35821555804, relative_change = 0.012749029211284943 Iter 10: T = 882.7220607217157 K, F = -941.0900588216498, relative_change = 0.006623939036819159 Iter 15: T = 863.8307849292263 K, F = -396.39780033271535, relative_change = 0.0030858066083944867 Iter 20: T = 855.4764979714226 K, F = -166.31983080647288, relative_change = 0.0013554207158372768 Iter 25: T = 851.8948409773053 K, F = -69.65568068976306, relative_change = 0.0005790604641912975 Iter 30: T = 850.3808928992428 K, F = -29.148420964770704, relative_change = 0.0002443732014727308 Iter 35: T = 849.7448792188145 K, F = -12.193316672869217, relative_change = 0.00010259030002196604 Iter 40: T = 849.4783859809856 K, F = -5.09993439846868, relative_change = 4.297317283962176e-5 Iter 45: T = 849.3668467497134 K, F = -2.1329487012627935, relative_change = 1.798393528453641e-5 Iter 50: T = 849.3201841969262 K, F = -0.8920412846895212, relative_change = 7.523204599980345e-6 Iter 55: T = 849.3006666450146 K, F = -0.3730652338399437, relative_change = 3.1466628685578862e-6 Iter 60: T = 849.2925036967308 K, F = -0.156020846054449, relative_change = 1.3160365154515433e-6 Iter 65: T = 849.2890897711887 K, F = -0.06524987027862461, relative_change = 5.50393473709566e-7 Iter 70: T = 849.2876620122244 K, F = -0.027288290592194064, relative_change = 2.3018309778215078e-7 Iter 75: T = 849.2870649038329 K, F = -0.011412291742057601, relative_change = 9.626566570024665e-8 Iter 80: T = 849.2868151855281 K, F = -0.0047727571750284525, relative_change = 4.0259511436427755e-8 Iter 85: T = 849.286710750273 K, F = -0.001996024131673657, relative_change = 1.6837019035094716e-8 Iter 90: T = 849.2866670741885 K, F = -0.0008347611436396729, relative_change = 7.0414442809854844e-9 Iter 95: T = 849.286648808326 K, F = -0.0003491070816101782, relative_change = 2.944816410914891e-9 Iter 100: T = 849.2866411693238 K, F = -0.00014600075207860108, relative_change = 1.2315574555430023e-9 Iter 105: T = 849.2866379746018 K, F = -6.105926111987792e-5, relative_change = 5.15052070200807e-10 Iter 110: T = 849.2866366385308 K, F = -2.553571106900243e-5, relative_change = 2.1540091883575499e-10 Iter 115: T = 849.28663607977 K, F = -1.0679339013774936e-5, relative_change = 9.008323430334926e-11 Iter 120: T = 849.2866358460896 K, F = -4.466227495614206e-6, relative_change = 3.7673887676718856e-11 Iter 125: T = 849.2866357483616 K, F = -1.8678295885532492e-6, relative_change = 1.57556690128441e-11 Iter 130: T = 849.2866357074906 K, F = -7.811494189269297e-7, relative_change = 6.589215511111597e-12 Iter 135: T = 849.2866356903979 K, F = -3.266877222074527e-7, relative_change = 2.7557030121361445e-12 Iter 140: T = 849.2866356832495 K, F = -1.3662474729336793e-7, relative_change = 1.152468250474009e-12 Iter 145: T = 849.2866356802599 K, F = -5.713900197434896e-8, relative_change = 4.819835860257001e-13 Converged in 150 iterations to T = 849.2866356790096 K Iter 1: T = 967.3076029620038 K, F = -7448.993763605441, relative_change = 0.032692397037996215 Iter 2: T = 936.689634157738 K, F = -6314.329536454497, relative_change = 0.031652773854469914 Iter 3: T = 908.1147752029125 K, F = -5350.993817192194, relative_change = 0.030506218829377554 Iter 5: T = 856.9562786325083 K, F = -3839.107124353149, relative_change = 0.02789768356587362 Iter 10: T = 761.804156565344 K, F = -1662.3787816817805, relative_change = 0.019979878560266087 Iter 15: T = 706.0858899036309 K, F = -711.7514068994184, relative_change = 0.011974170978416004 Iter 20: T = 677.4275485027578 K, F = -301.66282643127147, relative_change = 0.0061325978110664935 Iter 25: T = 664.0626120986113 K, F = -126.99395969194192, relative_change = 0.0028331625006158185 Iter 30: T = 658.178721821534 K, F = -53.26941546650842, relative_change = 0.0012393620903523282 Iter 35: T = 655.6614873270131 K, F = -22.30680016479186, relative_change = 0.0005285045787224765 Iter 40: T = 654.5984521387105 K, F = -9.334107619628218, relative_change = 0.00022286077200401957 Iter 45: T = 654.1520453278919 K, F = -3.904540091067351, relative_change = 9.352769855512505e-5 Iter 50: T = 653.9650297373233 K, F = -1.6330840124493218, relative_change = 3.917147509442071e-5 Iter 55: T = 653.8867609277545 K, F = -0.6830030307898902, relative_change = 1.6391982501568577e-5 Iter 60: T = 653.8540180547803 K, F = -0.285644887845808, relative_change = 6.857074090268913e-6 Iter 65: T = 653.8403228579452 K, F = -0.1194609542289784, relative_change = 2.8680166848835226e-6 Iter 70: T = 653.8345950593203 K, F = -0.049960146536452366, relative_change = 1.1994924285830297e-6 Iter 75: T = 653.8321995723995 K, F = -0.02089395595654958, relative_change = 5.01651433763137e-7 Iter 80: T = 653.8311977418681 K, F = -0.008738106457943706, relative_change = 2.0979826032072095e-7 Iter 85: T = 653.8307787627502 K, F = -0.0036543812704808443, relative_change = 8.774042475468615e-8 Iter 90: T = 653.8306035403953 K, F = -0.001528306029015658, relative_change = 3.669414363480966e-8 Iter 95: T = 653.830530260264 K, F = -0.0006391558572578226, relative_change = 1.534593785592394e-8 Iter 100: T = 653.8304996136293 K, F = -0.0002673026161993386, relative_change = 6.41785599826909e-9 Iter 105: T = 653.8304867968392 K, F = -0.00011178914658238615, relative_change = 2.6840242796521094e-9 Iter 110: T = 653.8304814367042 K, F = -4.6751556319779564e-5, relative_change = 1.1224910557757876e-9 Iter 115: T = 653.8304791950317 K, F = -1.9552058625471602e-5, relative_change = 4.694391591421397e-10 Iter 120: T = 653.8304782575375 K, F = -8.176904884360514e-6, relative_change = 1.9632507517663996e-10 Iter 125: T = 653.8304778654664 K, F = -3.419680459970653e-6, relative_change = 8.210551972845497e-11 Iter 130: T = 653.8304777014974 K, F = -1.4301516724768426e-6, relative_change = 3.4337520091113806e-11 Iter 135: T = 653.8304776329236 K, F = -5.981065552829179e-7, relative_change = 1.4360362095959271e-11 Iter 140: T = 653.8304776042453 K, F = -2.5013468030188335e-7, relative_change = 6.005659946233272e-12 Iter 145: T = 653.8304775922517 K, F = -1.0461030969244334e-7, relative_change = 2.5116627017877095e-12 Iter 150: T = 653.8304775872357 K, F = -4.374838424858751e-8, relative_change = 1.0503858109943535e-12 Iter 155: T = 653.830477585138 K, F = -1.8296275827722752e-8, relative_change = 4.3928818981224426e-13 Converged in 159 iterations to T = 653.8304775843809 K Iter 1: T = 973.5499467059093 K, F = -6026.669803554702, relative_change = 0.026450053294090673 Iter 2: T = 949.2928787667681 K, F = -5099.984634088794, relative_change = 0.024916100115065513 Iter 3: T = 927.1610917416996 K, F = -4313.976636206149, relative_change = 0.02331397139923781 Iter 5: T = 888.9498912687573 K, F = -3082.5900902879716, relative_change = 0.019983462431471647 Iter 10: T = 823.917746553803 K, F = -1319.825945107401, relative_change = 0.01197737184528167 Iter 15: T = 790.4668203587581 K, F = -559.3866124032863, relative_change = 0.00613464592983439 Iter 20: T = 774.8662167818705 K, F = -235.49108344820655, relative_change = 0.002834217560850675 Iter 25: T = 767.9979324331117 K, F = -98.78019712489619, relative_change = 0.0012398468640581236 Iter 30: T = 765.0595273307456 K, F = -41.364662276393, relative_change = 0.0005287157429463413 Iter 35: T = 763.818625226335 K, F = -17.308726573304256, relative_change = 0.00022295062293791506 Iter 40: T = 763.297524717136 K, F = -7.240394761137429, relative_change = 9.356554958609585e-5 Iter 45: T = 763.07921712563 K, F = -3.0283140070850623, relative_change = 3.91873531975286e-5 Iter 50: T = 762.9878521176895 K, F = -1.2665286460731089, relative_change = 1.639863139804318e-5 Iter 55: T = 762.9496305927015 K, F = -0.5296864282423344, relative_change = 6.8598562241026585e-6 Iter 60: T = 762.9336438667174 K, F = -0.22152276850312713, relative_change = 2.8691804665051227e-6 Iter 65: T = 762.9269576722495 K, F = -0.0926437434044306, relative_change = 1.1999791814353975e-6 Iter 70: T = 762.9241613638233 K, F = -0.038744768173391675, relative_change = 5.018550075831833e-7 Iter 75: T = 762.9229919033916 K, F = -0.016203533201622378, relative_change = 2.0988339870756901e-7 Iter 80: T = 762.9225028191746 K, F = -0.0067765125711727325, relative_change = 8.777603089865487e-8 Iter 85: T = 762.9222982779822 K, F = -0.0028340187434252595, relative_change = 3.6709034583204186e-8 Iter 90: T = 762.9222127363547 K, F = -0.0011852205269367033, relative_change = 1.5352165415145836e-8 Iter 95: T = 762.9221769618146 K, F = -0.0004956733872309993, relative_change = 6.420460461696805e-9 Iter 100: T = 762.9221620004728 K, F = -0.000207296531417267, relative_change = 2.68511350895059e-9 Iter 105: T = 762.9221557434607 K, F = -8.669388673387957e-5, relative_change = 1.1229466017152846e-9 Iter 110: T = 762.9221531267034 K, F = -3.6256417991542556e-5, relative_change = 4.696296771631803e-10 Iter 115: T = 762.9221520323443 K, F = -1.5162867774809463e-5, relative_change = 1.9640475096701842e-10 Iter 120: T = 762.9221515746702 K, F = -6.341293214529031e-6, relative_change = 8.213882338503665e-11 Iter 125: T = 762.9221513832655 K, F = -2.6520044941191756e-6, relative_change = 3.435143615814649e-11 Iter 130: T = 762.9221513032177 K, F = -1.1091003737639937e-6, relative_change = 1.4366186326549601e-11 Iter 135: T = 762.9221512697408 K, F = -4.6383950580430877e-7, relative_change = 6.008116961296331e-12 Iter 140: T = 762.9221512557402 K, F = -1.9398233619405403e-7, relative_change = 2.512654807960492e-12 Iter 145: T = 762.922151249885 K, F = -8.112403993010275e-8, relative_change = 1.0508003614055247e-12 Iter 150: T = 762.9221512474364 K, F = -3.3926831899400156e-8, relative_change = 4.3945453471616556e-13 Converged in 154 iterations to T = 762.9221512465526 K Iter 1: T = 970.0131289428261 K, F = -6832.537095255443, relative_change = 0.029986871057173823 Iter 2: T = 942.1837670763098 K, F = -5787.521554161977, relative_change = 0.02868967546536854 Iter 3: T = 916.4691033277513 K, F = -4900.605957315527, relative_change = 0.02729262023729575 Iter 5: T = 871.1779596218605 K, F = -3509.5871339589485, relative_change = 0.02423975674759276 Iter 10: T = 790.4017700046347 K, F = -1511.5255631872024, relative_change = 0.015937450105117483 Iter 15: T = 746.0827085313825 K, F = -643.7669719746849, relative_change = 0.00880061386856036 Iter 20: T = 724.4573466316758 K, F = -271.8333546173206, relative_change = 0.004257153022656566 Iter 25: T = 714.6946511665031 K, F = -114.20004516680515, relative_change = 0.0019060942812870233 Iter 30: T = 710.4673395299931 K, F = -47.85548438541291, relative_change = 0.0008214861222648632 Iter 35: T = 708.6725321226804 K, F = -20.030897294747614, relative_change = 0.00034800472684419747 Iter 40: T = 707.9170889567317 K, F = -8.380194900482476, relative_change = 0.00014633281906155658 Iter 45: T = 707.6002984737493 K, F = -3.5052307475980946, relative_change = 6.133795644544887e-5 Iter 50: T = 707.4676626213246 K, F = -1.4660227892278828, relative_change = 2.567680339048577e-5 Iter 55: T = 707.4121663846516 K, F = -0.6131245924079258, relative_change = 1.0742643485014723e-5 Iter 60: T = 707.3889525850402 K, F = -0.25641888804295426, relative_change = 4.493453906846656e-6 Iter 65: T = 707.3792434901144 K, F = -0.10723794175482759, relative_change = 1.879347663485554e-6 Iter 70: T = 707.3751828895527 K, F = -0.04484827546689907, relative_change = 7.859886521423791e-7 Iter 75: T = 707.3734846732219 K, F = -0.01875609970789993, relative_change = 3.2871386648915907e-7 Iter 80: T = 707.3727744545546 K, F = -0.007844027570025336, relative_change = 1.37472768711087e-7 Iter 85: T = 707.3724774318711 K, F = -0.003280466474118393, relative_change = 5.7492876766835634e-8 Iter 90: T = 707.3723532133056 K, F = -0.0013719303386812154, relative_change = 2.4044229216680117e-8 Iter 95: T = 707.372301263595 K, F = -0.0005737576664018862, relative_change = 1.0055587576550305e-8 Iter 100: T = 707.3722795376016 K, F = -0.00023995231141415996, relative_change = 4.205367484827955e-9 Iter 105: T = 707.3722704515309 K, F = -0.00010035092269544688, relative_change = 1.7587350198766231e-9 Iter 110: T = 707.3722666516275 K, F = -4.1967953755994714e-5, relative_change = 7.355239980704554e-10 Iter 115: T = 707.3722650624625 K, F = -1.7551499032153473e-5, relative_change = 3.076049157268877e-10 Iter 120: T = 707.3722643978547 K, F = -7.340246624298885e-6, relative_change = 1.2864405201207577e-10 Iter 125: T = 707.3722641199078 K, F = -3.0697772529508782e-6, relative_change = 5.380045188476329e-11 Iter 130: T = 707.372264003667 K, F = -1.2838183905961031e-6, relative_change = 2.2500006975973344e-11 Iter 135: T = 707.3722639550538 K, F = -5.369080682271488e-7, relative_change = 9.409769616176608e-12 Iter 140: T = 707.372263934723 K, F = -2.2453979009462444e-7, relative_change = 3.935250408362851e-12 Iter 145: T = 707.3722639262205 K, F = -9.390366706441e-8, relative_change = 1.64574146981882e-12 Iter 150: T = 707.3722639226647 K, F = -3.927203984233074e-8, relative_change = 6.882758319769943e-13 Iter 155: T = 707.3722639211777 K, F = -1.6424459348129972e-8, relative_change = 2.8785259100635294e-13 Converged in 157 iterations to T = 707.372263920863 K Iter 1: T = 973.4131351808014 K, F = -6057.842439691898, relative_change = 0.026586864819198586 Iter 2: T = 949.0194048812319 K, F = -5126.555958082405, relative_change = 0.025059997053603164 Iter 3: T = 926.7521953441427 K, F = -4336.623975594802, relative_change = 0.02346338696823165 Iter 5: T = 888.2786197452233 K, F = -3099.031106445098, relative_change = 0.020138118821934316 Iter 10: T = 822.6907033942291 K, F = -1327.1406031064153, relative_change = 0.012109288310301223 Iter 15: T = 788.8806687938485 K, F = -562.5758778058234, relative_change = 0.006217315411498142 Iter 20: T = 773.0902081987524 K, F = -236.85553840524798, relative_change = 0.002876433721930698 Iter 25: T = 766.1331170809627 K, F = -99.35703652705699, relative_change = 0.0012591742241057835 Iter 30: T = 763.1556736574912 K, F = -41.607063355184835, relative_change = 0.000537122004184639 Iter 35: T = 761.8980915651658 K, F = -17.41031036282355, relative_change = 0.00022652527619367485 Iter 40: T = 761.3699517230941 K, F = -7.282915274085761, relative_change = 9.507103240675516e-5 Iter 45: T = 761.1486889531278 K, F = -3.0461030906903215, relative_change = 3.9818818346639263e-5 Iter 50: T = 761.056086077936 K, F = -1.2739693921051538, relative_change = 1.666304302801673e-5 Iter 55: T = 761.01734651572 K, F = -0.5327984364522402, relative_change = 6.970493309111149e-6 Iter 60: T = 761.0011430797504 K, F = -0.2228242823816965, relative_change = 2.9154601888810755e-6 Iter 65: T = 760.9943662439706 K, F = -0.0931880581539235, relative_change = 1.219335658588776e-6 Iter 70: T = 760.9915320264096 K, F = -0.03897240816946712, relative_change = 5.099504226490082e-7 Iter 75: T = 760.9903467116005 K, F = -0.01629873515422775, relative_change = 2.132690513541772e-7 Iter 80: T = 760.9898509968368 K, F = -0.006816327197238015, relative_change = 8.919196060230194e-8 Iter 85: T = 760.9896436826607 K, F = -0.00285066970167025, relative_change = 3.7301194933295696e-8 Iter 90: T = 760.9895569813366 K, F = -0.001192184159754639, relative_change = 1.5599814259879364e-8 Iter 95: T = 760.989520721797 K, F = -0.0004985856620647322, relative_change = 6.524030219409587e-9 Iter 100: T = 760.9895055576227 K, F = -0.0002085144806566186, relative_change = 2.7284276415410595e-9 Iter 105: T = 760.9894992157836 K, F = -8.720324710775884e-5, relative_change = 1.141061083778347e-9 Iter 110: T = 760.9894965635506 K, F = -3.6469438874475735e-5, relative_change = 4.772053738550898e-10 Iter 115: T = 760.989495454355 K, F = -1.52519551482877e-5, relative_change = 1.9957299135094768e-10 Iter 120: T = 760.9894949904763 K, F = -6.378548636720716e-6, relative_change = 8.346379354160173e-11 Iter 125: T = 760.9894947964766 K, F = -2.6675841477974416e-6, relative_change = 3.490554129431614e-11 Iter 130: T = 760.9894947153437 K, F = -1.11561658810988e-6, relative_change = 1.459792784299361e-11 Iter 135: T = 760.9894946814129 K, F = -4.6656567598279963e-7, relative_change = 6.105047330821433e-12 Iter 140: T = 760.9894946672226 K, F = -1.9512229199047937e-7, relative_change = 2.5531900208833906e-12 Iter 145: T = 760.9894946612881 K, F = -8.160169540083473e-8, relative_change = 1.067764386462204e-12 Iter 150: T = 760.9894946588062 K, F = -3.4126658055022574e-8, relative_change = 4.4654991445581767e-13 Converged in 155 iterations to T = 760.9894946577682 K Iter 1: T = 964.2941310520395 K, F = -8135.616204842632, relative_change = 0.035705868947960545 Iter 2: T = 930.5119621356652 K, F = -6901.980895854912, relative_change = 0.035033054571760355 Iter 3: T = 898.6224519640202 K, F = -5854.343853965423, relative_change = 0.034270929842163136 Iter 5: T = 840.4083152257693 K, F = -4209.277787778869, relative_change = 0.03245308088519312 Iter 10: T = 726.0168852953733 K, F = -1835.826462443027, relative_change = 0.026086283825315137 Iter 15: T = 652.1243444169882 K, F = -792.7828746334725, relative_change = 0.0178944207211936 Iter 20: T = 610.2821794468562 K, F = -338.49847460561375, relative_change = 0.010273602625326256 Iter 25: T = 589.3574033645684 K, F = -143.1772423142557, relative_change = 0.005101390122087245 Iter 30: T = 579.7711220261327 K, F = -60.205900020252436, relative_change = 0.0023162828905621243 Iter 35: T = 575.5895327647282 K, F = -25.240263430244507, relative_change = 0.0010048473042485455 Iter 40: T = 573.8081904030174 K, F = -10.566863506165493, relative_change = 0.0004269138168868124 Iter 45: T = 573.0573265918176 K, F = -4.421153041746459, relative_change = 0.00017973526996325936 Iter 50: T = 572.7422624291594 K, F = -1.8493245354937629, relative_change = 7.537846949204265e-5 Iter 55: T = 572.610315156528 K, F = -0.7734701832588061, relative_change = 3.156123839395546e-5 Iter 60: T = 572.5551010257203 K, F = -0.3234850732266211, relative_change = 1.3205780239794411e-5 Iter 65: T = 572.5320041781345 K, F = -0.1352871764931256, relative_change = 5.523951533584961e-6 Iter 70: T = 572.5223438139966 K, F = -0.05657903748050375, relative_change = 2.310381340898962e-6 Iter 75: T = 572.5183035617492 K, F = -0.023662085944178568, relative_change = 9.66263850080873e-7 Iter 80: T = 572.5166138498194 K, F = -0.009895776855307348, relative_change = 4.0410916532185375e-7 Iter 85: T = 572.5159071868305 K, F = -0.004138533797455823, relative_change = 1.6900434305119456e-7 Iter 90: T = 572.5156116510058 K, F = -0.0017307845615957551, relative_change = 7.067982067689757e-8 Iter 95: T = 572.515488054233 K, F = -0.0007238348260721339, relative_change = 2.9559177626416956e-8 Iter 100: T = 572.5154363645582 K, F = -0.0003027163778055453, relative_change = 1.2362006780956134e-8 Iter 105: T = 572.5154147473141 K, F = -0.00012659960620864386, relative_change = 5.169939872753254e-9 Iter 110: T = 572.5154057067235 K, F = -5.2945467548748404e-5, relative_change = 2.162130772264608e-9 Iter 115: T = 572.5154019258405 K, F = -2.214242658377108e-5, relative_change = 9.04228928576914e-10 Iter 120: T = 572.5154003446299 K, F = -9.260226856655507e-6, relative_change = 3.781593262777673e-10 Iter 125: T = 572.5153996833488 K, F = -3.872737464438725e-6, relative_change = 1.581507473981232e-10 Iter 130: T = 572.5153994067932 K, F = -1.6196252122790966e-6, relative_change = 6.614053773794351e-11 Iter 135: T = 572.5153992911343 K, F = -6.773462066789193e-7, relative_change = 2.7660746478839217e-11 Iter 140: T = 572.5153992427644 K, F = -2.832736354374532e-7, relative_change = 1.1568028490990736e-11 Iter 145: T = 572.5153992225355 K, F = -1.1846845721086297e-7, relative_change = 4.83788929532098e-12 Iter 150: T = 572.5153992140755 K, F = -4.954453874939091e-8, relative_change = 2.0232473631992055e-12 Iter 155: T = 572.5153992105375 K, F = -2.0719935822643976e-8, relative_change = 8.461387789298971e-13 Iter 160: T = 572.5153992090578 K, F = -8.665117179340598e-9, relative_change = 3.53856871578203e-13 Converged in 163 iterations to T = 572.5153992086247 K Iter 1: T = 963.4761438201887 K, F = -8321.995373726559, relative_change = 0.03652385617981129 Iter 2: T = 928.8243469132575 K, F = -7061.654598151249, relative_change = 0.03596539170086414 Iter 3: T = 896.0106992630398 K, F = -5991.2871379872695, relative_change = 0.03532815193665695 Iter 5: T = 835.7779308970079 K, F = -4310.3582294932085, relative_change = 0.03378784199297901 Iter 10: T = 715.4214533660197 K, F = -1884.0917397062701, relative_change = 0.02815319295920896 Iter 15: T = 635.0295790706356 K, F = -816.1494525151097, relative_change = 0.020287700211097406 Iter 20: T = 587.7221066560006 K, F = -349.5802979752853, relative_change = 0.012237286932603033 Iter 25: T = 563.2846542936431 K, F = -148.2099378898976, relative_change = 0.006297800027390208 Iter 30: T = 551.8558817561194 K, F = -62.40486961729097, relative_change = 0.00291762319301017 Iter 35: T = 546.8168374293352 K, F = -26.178974322676538, relative_change = 0.0012780523488183735 Iter 40: T = 544.659530923389 K, F = -10.963005729880662, relative_change = 0.0005453370049886193 Iter 45: T = 543.7482134516555 K, F = -4.587465315402447, relative_change = 0.00023001936107237258 Iter 50: T = 543.3654679748207 K, F = -1.918991752155443, relative_change = 9.654271992981005e-5 Iter 55: T = 543.2051134545975 K, F = -0.8026257857656937, relative_change = 4.043613237334397e-5 Iter 60: T = 543.138001134056 K, F = -0.3356817893682447, relative_change = 1.6921533430133272e-5 Iter 65: T = 543.109925177923 K, F = -0.14038860065995634, relative_change = 7.078653531290653e-6 Iter 70: T = 543.0981819408952 K, F = -0.05871262103719399, relative_change = 2.9607039641710743e-6 Iter 75: T = 543.0932705100628 K, F = -0.024554394792674572, relative_change = 1.2382588739302157e-6 Iter 80: T = 543.091216444005 K, F = -0.010268954347142978, relative_change = 5.17864639578614e-7 Iter 85: T = 543.0903574008235 K, F = -0.004294601654018376, relative_change = 2.16578924268042e-7 Iter 90: T = 543.0899981372671 K, F = -0.0017960541037032596, relative_change = 9.057619824093192e-8 Iter 95: T = 543.0898478887057 K, F = -0.0007511313462155444, relative_change = 3.78801012669353e-8 Iter 100: T = 543.089785052919 K, F = -0.0003141321116326701, relative_change = 1.5841920077436276e-8 Iter 105: T = 543.0897587742348 K, F = -0.00013137380252287167, relative_change = 6.625281791340354e-9 Iter 110: T = 543.089747784174 K, F = -5.49420939126577e-5, relative_change = 2.7707722731343188e-9 Iter 115: T = 543.089743187999 K, F = -2.2977439427362967e-5, relative_change = 1.1587700814482384e-9 Iter 120: T = 543.0897412658237 K, F = -9.609439578922574e-6, relative_change = 4.846114949566258e-10 Iter 125: T = 543.089740461947 K, F = -4.018782076953276e-6, relative_change = 2.0267030017164634e-10 Iter 130: T = 543.0897401257562 K, F = -1.68070213693583e-6, relative_change = 8.475911384924497e-11 Iter 135: T = 543.0897399851572 K, F = -7.028894700444877e-7, relative_change = 3.544726181938571e-11 Iter 140: T = 543.089739926357 K, F = -2.939568494453315e-7, relative_change = 1.4824472204146033e-11 Iter 145: T = 543.0897399017659 K, F = -1.2293557513642916e-7, relative_change = 6.199736527120789e-12 Iter 150: T = 543.0897398914818 K, F = -5.141297471089601e-8, relative_change = 2.592796242731874e-12 Iter 155: T = 543.0897398871808 K, F = -2.1501445873761682e-8, relative_change = 1.0843346137892122e-12 Iter 160: T = 543.0897398853822 K, F = -8.992188355039232e-9, relative_change = 4.534830422326945e-13 Converged in 165 iterations to T = 543.0897398846299 K Iter 1: T = 969.3901585265645 K, F = -6974.481497198516, relative_change = 0.03060984147343549 Iter 2: T = 940.9230306308559 K, F = -5908.756988778503, relative_change = 0.029366017021441065 Iter 3: T = 914.5591884371477 K, F = -5004.184797500149, relative_change = 0.028019127320150928 Iter 5: T = 867.953604598651 K, F = -3585.233857947072, relative_change = 0.025048941956159254 Iter 10: T = 784.0701112373133 K, F = -1545.9049312234267, relative_change = 0.0167755332299757 Iter 15: T = 737.4187443794631 K, F = -659.1116995699603, relative_change = 0.00941780262116875 Iter 20: T = 714.418912085559 K, F = -278.5113688326369, relative_change = 0.00460561016698436 Iter 25: T = 703.9723490173989 K, F = -117.05009202696534, relative_change = 0.0020740205612352946 Iter 30: T = 699.4352412887974 K, F = -49.05854353409759, relative_change = 0.0008962623049400424 Iter 35: T = 697.5062706228899 K, F = -20.53607256765168, relative_change = 0.00038012959701311456 Iter 40: T = 696.6938776807115 K, F = -8.591829582685353, relative_change = 0.00015992143538619874 Iter 45: T = 696.3531202441055 K, F = -3.593803169850664, relative_change = 6.704808394140496e-5 Iter 50: T = 696.2104347051204 K, F = -1.5030761153219823, relative_change = 2.806963035414414e-5 Iter 55: T = 696.1507309333155 K, F = -0.6286227119672682, relative_change = 1.1744190775755707e-5 Iter 60: T = 696.1257566802685 K, F = -0.26290073256409285, relative_change = 4.912459731023817e-6 Iter 65: T = 696.1153112005908 K, F = -0.10994878704496552, relative_change = 2.054606586100014e-6 Iter 70: T = 696.110942610272 K, F = -0.04598199392427704, relative_change = 8.592885193053304e-7 Iter 75: T = 696.1091155845983 K, F = -0.019230236157025127, relative_change = 3.593695321436284e-7 Iter 80: T = 696.1083514955649 K, F = -0.00804231741911654, relative_change = 1.5029347163819483e-7 Iter 85: T = 696.1080319435179 K, F = -0.003363393714270746, relative_change = 6.285467189101364e-8 Iter 90: T = 696.1078983028802 K, F = -0.0014066115091628806, relative_change = 2.628660014570977e-8 Iter 95: T = 696.1078424127425 K, F = -0.0005882617472370288, relative_change = 1.0993374603470504e-8 Iter 100: T = 696.1078190388147 K, F = -0.0002460180913099741, relative_change = 4.597561344214238e-9 Iter 105: T = 696.1078092635581 K, F = -0.00010288770544597536, relative_change = 1.9227552187768504e-9 Iter 110: T = 696.1078051754289 K, F = -4.302886723794863e-5, relative_change = 8.041192190509716e-10 Iter 115: T = 696.1078034657245 K, F = -1.7995186840535915e-5, relative_change = 3.362922774164378e-10 Iter 120: T = 696.1078027507056 K, F = -7.5258026075442075e-6, relative_change = 1.406414578010197e-10 Iter 125: T = 696.1078024516761 K, F = -3.1473798319803237e-6, relative_change = 5.881792438787043e-11 Iter 130: T = 696.1078023266184 K, F = -1.3162724314952357e-6, relative_change = 2.459836961179026e-11 Iter 135: T = 696.1078022743177 K, F = -5.504799315270148e-7, relative_change = 1.028731476890111e-11 Iter 140: T = 696.107802252445 K, F = -2.3021637030051778e-7, relative_change = 4.302260865387059e-12 Iter 145: T = 696.1078022432977 K, F = -9.627989772109657e-8, relative_change = 1.7992692508102073e-12 Iter 150: T = 696.1078022394721 K, F = -4.0264901746134285e-8, relative_change = 7.524665201709581e-13 Iter 155: T = 696.1078022378722 K, F = -1.6839296623771816e-8, relative_change = 3.146911176548767e-13 Converged in 157 iterations to T = 696.1078022375335 K Iter 1: T = 966.4563218542345 K, F = -7642.958973788062, relative_change = 0.03354367814576551 Iter 2: T = 934.9507532484538 K, F = -6480.242310420184, relative_change = 0.03259906101636792 Iter 3: T = 905.4535999334435 K, F = -5493.003611499184, relative_change = 0.031549419274248904 Iter 5: T = 852.3602192025987 K, F = -3943.332698087725, relative_change = 0.029129903040306476 Iter 10: T = 752.161899068595 K, F = -1710.7400892049327, relative_change = 0.021501684673905914 Iter 15: T = 692.0379221271479 K, F = -733.9696312254977, relative_change = 0.013309188628771708 Iter 20: T = 660.4295527360231 K, F = -311.58238586096996, relative_change = 0.006987762406638088 Iter 25: T = 645.4717981390398 K, F = -131.29561849188605, relative_change = 0.0032755631889810344 Iter 30: T = 638.8347926834366 K, F = -55.1000039733896, relative_change = 0.0014432080357270408 Iter 35: T = 635.9848458442706 K, F = -23.078326007574162, relative_change = 0.0006174233748653581 Iter 40: T = 634.7793417079198 K, F = -9.657844163818574, relative_change = 0.00026071983762836665 Iter 45: T = 634.2727538343568 K, F = -4.040121240809041, relative_change = 0.00010948072411131414 Iter 50: T = 634.0604637541136 K, F = -1.689819208789612, relative_change = 4.5864369103030726e-5 Iter 55: T = 633.9716062055118 K, F = -0.7067362479600761, relative_change = 1.9194742492832015e-5 Iter 60: T = 633.9344317271243 K, F = -0.29557143225251803, relative_change = 8.029871936500328e-6 Iter 65: T = 633.918882607828 K, F = -0.12361253379224979, relative_change = 3.3586085311250386e-6 Iter 70: T = 633.9123793765808 K, F = -0.051696418203038386, relative_change = 1.4046837030452501e-6 Iter 75: T = 633.9096595769648 K, F = -0.02162009101470297, relative_change = 5.87468357086075e-7 Iter 80: T = 633.9085221119283 K, F = -0.009041785774951017, relative_change = 2.456885315195066e-7 Iter 85: T = 633.9080464083047 K, F = -0.003781383756946366, relative_change = 1.0275027132506877e-7 Iter 90: T = 633.9078474629904 K, F = -0.0015814200157016622, relative_change = 4.2971459372971575e-8 Iter 95: T = 633.9077642616179 K, F = -0.000661368766517012, relative_change = 1.7971189537306496e-8 Iter 100: T = 633.9077294657986 K, F = -0.00027659232196158845, relative_change = 7.515768196514489e-9 Iter 105: T = 633.9077149137695 K, F = -0.00011567421256197807, relative_change = 3.1431843689025697e-9 Iter 110: T = 633.9077088279367 K, F = -4.8376337205058295e-5, relative_change = 1.3145173026044335e-9 Iter 115: T = 633.9077062827687 K, F = -2.0231561544348242e-5, relative_change = 5.497468339613501e-10 Iter 120: T = 633.9077052183491 K, F = -8.461079607779975e-6, relative_change = 2.2991066474336902e-10 Iter 125: T = 633.907704773196 K, F = -3.5385239912644195e-6, relative_change = 9.615137115763197e-11 Iter 130: T = 633.9077045870278 K, F = -1.479853270369702e-6, relative_change = 4.021165932699018e-11 Iter 135: T = 633.90770450917 K, F = -6.188921268246439e-7, relative_change = 1.6816991168566547e-11 Iter 140: T = 633.907704476609 K, F = -2.588286233118353e-7, relative_change = 7.033081347801876e-12 Iter 145: T = 633.9077044629915 K, F = -1.0824572804768451e-7, relative_change = 2.9413323814347e-12 Iter 150: T = 633.9077044572966 K, F = -4.527021935096798e-8, relative_change = 1.230115631341052e-12 Iter 155: T = 633.9077044549149 K, F = -1.893207302039457e-8, relative_change = 5.144361854300625e-13 Converged in 160 iterations to T = 633.9077044539188 K Iter 1: T = 966.5494496099896 K, F = -7621.7397260518965, relative_change = 0.03345055039001041 Iter 2: T = 935.1412209588324 K, F = -6462.088312016419, relative_change = 0.03249521135605701 Iter 3: T = 905.7454962232316 K, F = -5477.461166618138, relative_change = 0.03143452996913165 Iter 5: T = 852.8659532722883 K, F = -3931.917715262948, relative_change = 0.028993089511814472 Iter 10: T = 753.2333713873943 K, F = -1705.4266344315263, relative_change = 0.021328321282343955 Iter 15: T = 693.614967934635 K, F = -731.5163332316278, relative_change = 0.013152828056707363 Iter 20: T = 662.3523656373933 K, F = -310.48173082243574, relative_change = 0.006885425718773251 Iter 25: T = 647.5840043146192 K, F = -130.8167540308489, relative_change = 0.003221945794876184 Iter 30: T = 641.0372506758794 K, F = -54.895870838828095, relative_change = 0.0014183470973325666 Iter 35: T = 638.2273237801091 K, F = -22.992222788346474, relative_change = 0.0006065481357849751 Iter 40: T = 637.0389845706752 K, F = -9.621702175255697, relative_change = 0.00025608380331484633 Iter 45: T = 636.5396525375079 K, F = -4.0249826946863045, relative_change = 0.00010752618114899005 Iter 50: T = 636.3304106304154 K, F = -1.6834839461216258, relative_change = 4.5044185784633694e-5 Iter 55: T = 636.2428302727412 K, F = -0.7040860391455257, relative_change = 1.885124572998281e-5 Iter 60: T = 636.2061903530912 K, F = -0.29446295610538703, relative_change = 7.886132300107727e-6 Iter 65: T = 636.1908648665652 K, F = -0.12314893357720902, relative_change = 3.2984799893778406e-6 Iter 70: T = 636.1844551741477 K, F = -0.051502531164814236, relative_change = 1.3795346204807735e-6 Iter 75: T = 636.18177449585 K, F = -0.02153900445827328, relative_change = 5.769502541433545e-7 Iter 80: T = 636.1806533922116 K, F = -0.009007874289169937, relative_change = 2.4128965544274415e-7 Iter 85: T = 636.1801845311895 K, F = -0.0037672015472703935, relative_change = 1.009105948448941e-7 Iter 90: T = 636.1799884475448 K, F = -0.0015754888418674229, relative_change = 4.2202082237451356e-8 Iter 95: T = 636.179906442959 K, F = -0.0006588882781388694, relative_change = 1.7649426403554463e-8 Iter 100: T = 636.1798721476506 K, F = -0.0002755549511595512, relative_change = 7.381202914378825e-9 Iter 105: T = 636.1798578049411 K, F = -0.00011524037282817368, relative_change = 3.086907578674548e-9 Iter 110: T = 636.1798518066483 K, F = -4.819489991714221e-5, relative_change = 1.2909816658428492e-9 Iter 115: T = 636.1798492980906 K, F = -2.0155682077693804e-5, relative_change = 5.399039433236824e-10 Iter 120: T = 636.1798482489819 K, F = -8.429347769678408e-6, relative_change = 2.257943005195562e-10 Iter 125: T = 636.1798478102321 K, F = -3.525254248237797e-6, relative_change = 9.44298825362635e-11 Iter 130: T = 636.1798476267417 K, F = -1.4743030326558326e-6, relative_change = 3.9491694097613975e-11 Iter 135: T = 636.1798475500038 K, F = -6.165721140871661e-7, relative_change = 1.6515924333933945e-11 Iter 140: T = 636.1798475179111 K, F = -2.578578369716311e-7, relative_change = 6.907157213334667e-12 Iter 145: T = 636.1798475044894 K, F = -1.0783885295850837e-7, relative_change = 2.888645619279207e-12 Iter 150: T = 636.1798474988764 K, F = -4.5098782930352854e-8, relative_change = 1.2080469902826578e-12 Iter 155: T = 636.1798474965289 K, F = -1.8859373007718006e-8, relative_change = 5.051801250640476e-13 Converged in 160 iterations to T = 636.1798474955473 K Iter 1: T = 976.4574694420784 K, F = -5364.187982350443, relative_change = 0.023542530557921597 Iter 2: T = 955.076185236449 K, F = -4535.749618803898, relative_change = 0.021896790054610486 Iter 3: T = 935.7643372384259 K, F = -3833.5167035810496, relative_change = 0.020220217294227683 Iter 5: T = 902.9273182808279 K, F = -2734.5721302659804, relative_change = 0.01686781410683478 Iter 10: T = 848.8599468845614 K, F = -1166.0502196347816, relative_change = 0.009487076037042243 Iter 15: T = 822.172894806809 K, F = -492.7609418804504, relative_change = 0.004645215755792906 Iter 20: T = 810.0431822981534 K, F = -207.10187468975, relative_change = 0.002093234221742401 Iter 25: T = 804.7732299670876 K, F = -86.80321943165403, relative_change = 0.0009048445436813112 Iter 30: T = 802.5323348196356 K, F = -36.336450410037344, relative_change = 0.0003838216622693141 Iter 35: T = 801.5885094104797 K, F = -15.202410104942697, relative_change = 0.00016148406270331516 Iter 40: T = 801.1926112906245 K, F = -6.358896940168532, relative_change = 6.770488277592314e-5 Iter 45: T = 801.0268346445002 K, F = -2.659553740823143, relative_change = 2.834488998302344e-5 Iter 50: T = 800.9574685286524 K, F = -1.112289888954375, relative_change = 1.1859409056874774e-5 Iter 55: T = 800.9284524282609 K, F = -0.46517864565722156, relative_change = 4.960663147335272e-6 Iter 60: T = 800.9163164353361 K, F = -0.19454426742344721, relative_change = 2.074768937144041e-6 Iter 65: T = 800.9112408234265 K, F = -0.0813609113038587, relative_change = 8.677211987401118e-7 Iter 70: T = 800.9091181078493 K, F = -0.034026135420728854, relative_change = 3.6289627446840195e-7 Iter 75: T = 800.9082303568869 K, F = -0.01423014155173774, relative_change = 1.5176841401229135e-7 Iter 80: T = 800.9078590877905 K, F = -0.005951216077110133, relative_change = 6.347151331406867e-8 Iter 85: T = 800.9077038184383 K, F = -0.002488869799925575, relative_change = 2.6544571128381038e-8 Iter 90: T = 800.9076388829092 K, F = -0.0010408751036972141, relative_change = 1.1101261260246702e-8 Iter 95: T = 800.9076117260896 K, F = -0.00043530640250544206, relative_change = 4.642680822578242e-9 Iter 100: T = 800.9076003687824 K, F = -0.00018205033427953765, relative_change = 1.9416246761007876e-9 Iter 105: T = 800.9075956190209 K, F = -7.613562387409623e-5, relative_change = 8.120106497107473e-10 Iter 110: T = 800.9075936326137 K, F = -3.1840826334117445e-5, relative_change = 3.395925464138641e-10 Iter 115: T = 800.9075928018747 K, F = -1.3316214249159408e-5, relative_change = 1.4202166364482777e-10 Iter 120: T = 800.9075924544496 K, F = -5.568999786098594e-6, relative_change = 5.939515550697061e-11 Iter 125: T = 800.9075923091523 K, F = -2.3290209115733873e-6, relative_change = 2.4839749444178905e-11 Iter 130: T = 800.9075922483871 K, F = -9.740239166333708e-7, relative_change = 1.0388275146145392e-11 Iter 135: T = 800.9075922229746 K, F = -4.073493055090083e-7, relative_change = 4.344510021360115e-12 Iter 140: T = 800.9075922123467 K, F = -1.7035900268247417e-7, relative_change = 1.816932996865801e-12 Iter 145: T = 800.9075922079019 K, F = -7.124430279059624e-8, relative_change = 7.598431696833944e-13 Iter 150: T = 800.907592206043 K, F = -2.9794443134889548e-8, relative_change = 3.1776722101355877e-13 Converged in 153 iterations to T = 800.9075922054988 K Iter 1: T = 965.2812775599594 K, F = -7910.6939339943265, relative_change = 0.0347187224400406 Iter 2: T = 932.5424507896848 K, F = -6709.377374331538, relative_change = 0.033916359439843134 Iter 3: T = 901.7541449854173 K, F = -5689.258881979147, relative_change = 0.0330154469409899 Iter 5: T = 845.915639683346 K, F = -4087.6403159278284, relative_change = 0.030900186576934677 Iter 10: T = 738.2678767509473 K, F = -1778.2936753246286, relative_change = 0.02385073831257879 Iter 15: T = 671.1907487693882 K, F = -765.4580970252554, relative_change = 0.015544687611966573 Iter 20: T = 634.6215589117336 K, F = -325.8509832757728, relative_change = 0.00851803950468496 Iter 25: T = 616.862354331764 K, F = -137.5472144938142, relative_change = 0.004100069867739217 Iter 30: T = 608.867073287283 K, F = -57.775130231900214, relative_change = 0.0018310143385419652 Iter 35: T = 605.4097470877309 K, F = -24.20871565826032, relative_change = 0.0007881819948313004 Iter 40: T = 603.9427497464817 K, F = -10.132701792642548, relative_change = 0.00033372096400631084 Iter 45: T = 603.3254458610802 K, F = -4.2390886750836785, relative_change = 0.00014029523401517196 Iter 50: T = 603.0666121130416 K, F = -1.7730960562478186, relative_change = 5.880165027211414e-5 Iter 55: T = 602.9582470384934 K, F = -0.7415752493488559, relative_change = 2.4614100906661995e-5 Iter 60: T = 602.9129068424344 K, F = -0.3101435552351725, relative_change = 1.0297860026632407e-5 Iter 65: T = 602.8939414202125 K, F = -0.12970712603143367, relative_change = 4.3073791315748375e-6 Iter 70: T = 602.886009222405 K, F = -0.054245311807581076, relative_change = 1.8015182937814497e-6 Iter 75: T = 602.8826917720443 K, F = -0.022686079665121484, relative_change = 7.534376126215424e-7 Iter 80: T = 602.8813043553561 K, F = -0.009487596867321701, relative_change = 3.1510030638950017e-7 Iter 85: T = 602.8807241177471 K, F = -0.003967827613634234, relative_change = 1.3177935815807192e-7 Iter 90: T = 602.8804814548583 K, F = -0.0016593931205791113, relative_change = 5.511181449946259e-8 Iter 95: T = 602.8803799702368 K, F = -0.0006939780603871237, relative_change = 2.3048438798512415e-8 Iter 100: T = 602.880337528138 K, F = -0.0002902299197660163, relative_change = 9.63913582733434e-9 Iter 105: T = 602.8803197783424 K, F = -0.00012137761995201224, relative_change = 4.0312023310860296e-9 Iter 110: T = 602.8803123551652 K, F = -5.076157084804578e-5, relative_change = 1.6858970773090402e-9 Iter 115: T = 602.8803092507038 K, F = -2.1229095149399857e-5, relative_change = 7.050623088645769e-10 Iter 120: T = 602.8803079523809 K, F = -8.878261019695799e-6, relative_change = 2.9486547746742553e-10 Iter 125: T = 602.8803074094068 K, F = -3.7129947670910823e-6, relative_change = 1.233162639730974e-10 Iter 130: T = 602.8803071823285 K, F = -1.5528186967372903e-6, relative_change = 5.157233248745448e-11 Iter 135: T = 602.8803070873615 K, F = -6.494062737005812e-7, relative_change = 2.1568130498565478e-11 Iter 140: T = 602.8803070476455 K, F = -2.715902379102353e-7, relative_change = 9.020075617443724e-12 Iter 145: T = 602.8803070310356 K, F = -1.1358277351991575e-7, relative_change = 3.77231970488435e-12 Iter 150: T = 602.8803070240891 K, F = -4.7500953059831375e-8, relative_change = 1.5776052625339266e-12 Iter 155: T = 602.8803070211841 K, F = -1.9865666500695767e-8, relative_change = 6.597800253920167e-13 Iter 160: T = 602.8803070199691 K, F = -8.307572019194964e-9, relative_change = 2.7591171318772945e-13 Converged in 162 iterations to T = 602.8803070197121 K Iter 1: T = 964.5135242346771 K, F = -8085.627259481863, relative_change = 0.03548647576532295 Iter 2: T = 930.9638156456475 K, F = -6859.166217309716, relative_change = 0.03478407274345958 Iter 3: T = 899.3203670521344 K, F = -5817.636933786153, relative_change = 0.033989987646907166 Iter 5: T = 841.6398454983279 K, F = -4182.2113939276505, relative_change = 0.0321025815241452 Iter 10: T = 728.7884315676937 K, F = -1822.9744994215732, relative_change = 0.025566428952218393 Iter 15: T = 656.4995688576954 K, F = -786.6328327950796, relative_change = 0.01732704555589247 Iter 20: T = 615.9378894760274 K, F = -335.6259208049431, relative_change = 0.009834888826240673 Iter 25: T = 595.8009330204958 K, F = -141.88938189524004, relative_change = 0.004845353401046471 Iter 30: T = 586.6164884271111 K, F = -59.647566388457186, relative_change = 0.002190672302012931 Iter 35: T = 582.6191882594436 K, F = -25.00284656727685, relative_change = 0.0009484414645179517 Iter 40: T = 580.918102203569 K, F = -10.466848820293574, relative_change = 0.00040259107990631127 Iter 45: T = 580.2013880880463 K, F = -4.379195980349554, relative_change = 0.00016943057650170465 Iter 50: T = 579.9007103589497 K, F = -1.8317546707669328, relative_change = 7.104539200585794e-5 Iter 55: T = 579.7747981287798 K, F = -0.7661182300310494, relative_change = 2.974495316506165e-5 Iter 60: T = 579.7221111664244 K, F = -0.32040969318026463, relative_change = 1.2445462068987192e-5 Iter 65: T = 579.7000717787271 K, F = -0.13400089236214582, relative_change = 5.205850283064545e-6 Iter 70: T = 579.6908537563287 K, F = -0.05604107649349352, relative_change = 2.1773253572745495e-6 Iter 75: T = 579.6869985140668 K, F = -0.023437100456461024, relative_change = 9.106143579053908e-7 Iter 80: T = 579.6853861785636 K, F = -0.009801684576593639, relative_change = 3.8083520254447376e-7 Iter 85: T = 579.6847118758526 K, F = -0.004099183167339648, relative_change = 1.5927077484021605e-7 Iter 90: T = 579.6844298735755 K, F = -0.0017143276379849581, relative_change = 6.660910539236785e-8 Iter 95: T = 579.6843119367102 K, F = -0.0007169523409023548, relative_change = 2.785675225361515e-8 Iter 100: T = 579.6842626140792 K, F = -0.00029983803923505636, relative_change = 1.165003150437351e-8 Iter 105: T = 579.6842419867615 K, F = -0.0001253958501526431, relative_change = 4.872183182658785e-9 Iter 110: T = 579.6842333601701 K, F = -5.244204183774137e-5, relative_change = 2.0376053282281614e-9 Iter 115: T = 579.6842297524264 K, F = -2.1931887441095643e-5, relative_change = 8.521508786876399e-10 Iter 120: T = 579.6842282436251 K, F = -9.172177511673762e-6, relative_change = 3.5637968888443975e-10 Iter 125: T = 579.6842276126263 K, F = -3.835914942018626e-6, relative_change = 1.4904227256487136e-10 Iter 130: T = 579.684227348735 K, F = -1.6042262809268237e-6, relative_change = 6.233129116517977e-11 Iter 135: T = 579.6842272383724 K, F = -6.709055525022656e-7, relative_change = 2.606765010176661e-11 Iter 140: T = 579.6842271922175 K, F = -2.8058032203182037e-7, relative_change = 1.0901787346460094e-11 Iter 145: T = 579.684227172915 K, F = -1.1734193466894638e-7, relative_change = 4.559253512585201e-12 Iter 150: T = 579.6842271648426 K, F = -4.90743343184441e-8, relative_change = 1.9067550894334477e-12 Iter 155: T = 579.6842271614664 K, F = -2.0522890054053278e-8, relative_change = 7.974051121632184e-13 Iter 160: T = 579.6842271600547 K, F = -8.58324761265905e-9, relative_change = 3.334971588967156e-13 Converged in 163 iterations to T = 579.6842271596412 K Iter 1: T = 964.3210873137872 K, F = -8129.474194961395, relative_change = 0.035678912686212844 Iter 2: T = 930.5674980105949 K, F = -6896.720105433659, relative_change = 0.03500243824099734 Iter 3: T = 898.7082616395304 K, F = -5849.8332530832895, relative_change = 0.03423635194564013 Iter 5: T = 840.5598645553864 K, F = -4205.9512037475415, relative_change = 0.032409847697260394 Iter 10: T = 726.358970868232 K, F = -1834.245304755596, relative_change = 0.02602166256642923 Iter 15: T = 652.666426452258 K, F = -792.0247134726628, relative_change = 0.017823169611996224 Iter 20: T = 610.9853511433635 K, F = -338.14345317810705, relative_change = 0.010217969723178498 Iter 25: T = 590.1603869518718 K, F = -143.01774610985203, relative_change = 0.005068702166561283 Iter 30: T = 580.6252384124374 K, F = -60.136668352253146, relative_change = 0.0023001869950989946 Iter 35: T = 576.4671519567632 K, F = -25.210806790025515, relative_change = 0.0009976067185112532 Iter 40: T = 574.6960553803959 K, F = -10.554451197207005, relative_change = 0.00042378918751801093 Iter 45: T = 573.9495531848626 K, F = -4.415945360443233, relative_change = 0.0001784110343634288 Iter 50: T = 573.6363268147852 K, F = -1.84714366857589, relative_change = 7.48215562792768e-5 Iter 55: T = 573.5051505495898 K, F = -0.7725576000231003, relative_change = 3.132778473310417e-5 Iter 60: T = 573.4502592883142 K, F = -0.3231033291409183, relative_change = 1.310805140502293e-5 Iter 65: T = 573.4272975430789 K, F = -0.13512751065105502, relative_change = 5.483063407146714e-6 Iter 70: T = 573.4176936933889 K, F = -0.05651226053557415, relative_change = 2.293278505342428e-6 Iter 75: T = 573.4136770784382 K, F = -0.02363415854087303, relative_change = 9.591107269326479e-7 Iter 80: T = 573.411997252307 K, F = -0.009884097196606545, relative_change = 4.0111755405802864e-7 Iter 85: T = 573.411294723747 K, F = -0.004133649209593915, relative_change = 1.6775319978879677e-7 Iter 90: T = 573.411000917002 K, F = -0.001728741766443831, relative_change = 7.015657489517923e-8 Iter 95: T = 573.410878043353 K, F = -0.0007229805043331705, relative_change = 2.9340349513476596e-8 Iter 100: T = 573.4108266560978 K, F = -0.0003023590903050155, relative_change = 1.2270490172230032e-8 Iter 105: T = 573.4108051653292 K, F = -0.0001264501846297561, relative_change = 5.131666532891169e-9 Iter 110: T = 573.4107961776322 K, F = -5.2882977853441204e-5, relative_change = 2.1461244098273827e-9 Iter 115: T = 573.4107924188697 K, F = -2.2116292873075594e-5, relative_change = 8.975348854713472e-10 Iter 120: T = 573.4107908469105 K, F = -9.24929789997142e-6, relative_change = 3.7535981673476823e-10 Iter 125: T = 573.4107901894984 K, F = -3.868167869180983e-6, relative_change = 1.5698000065549246e-10 Iter 130: T = 573.4107899145607 K, F = -1.6177141612394585e-6, relative_change = 6.565091776258384e-11 Iter 135: T = 573.4107897995785 K, F = -6.765481782022853e-7, relative_change = 2.745603019136346e-11 Iter 140: T = 573.4107897514915 K, F = -2.8294032039521966e-7, relative_change = 1.148243130721144e-11 Iter 145: T = 573.410789731381 K, F = -1.1832943674905394e-7, relative_change = 4.802106774393319e-12 Iter 150: T = 573.4107897229705 K, F = -4.9486560238509725e-8, relative_change = 2.008289337870656e-12 Iter 155: T = 573.4107897194532 K, F = -2.069598287190999e-8, relative_change = 8.398951460619042e-13 Iter 160: T = 573.4107897179821 K, F = -8.65523602788798e-9, relative_change = 3.512512922398419e-13 Converged in 163 iterations to T = 573.4107897175514 K Iter 1: T = 980.0905900589706 K, F = -4536.37799380163, relative_change = 0.019909409941029323 Iter 2: T = 962.2271158414352 K, F = -3831.944234697901, relative_change = 0.018226350093271143 Iter 3: T = 946.2890419388783 K, F = -3235.39022937591, relative_change = 0.016563733904567394 Iter 5: T = 919.6670120246908 K, F = -2303.2693006093755, relative_change = 0.01338881870121775 Iter 10: T = 877.3787457226555 K, F = -977.8726076705765, relative_change = 0.007040210291515859 Iter 15: T = 857.3489684815164 K, F = -412.08380924227686, relative_change = 0.003303139387306079 Iter 20: T = 848.457042569946 K, F = -172.94180418380122, relative_change = 0.001456016210845423 Iter 25: T = 844.6379330758357 K, F = -72.43668825650796, relative_change = 0.0006230304954629418 Iter 30: T = 843.0223135676188 K, F = -30.31356725510013, relative_change = 0.0002631108972302976 Iter 35: T = 842.3433531177054 K, F = -12.680966138383619, relative_change = 0.0001104889303880432 Iter 40: T = 842.0588234567831 K, F = -5.303940541251723, relative_change = 4.628746664985326e-5 Iter 45: T = 841.9397278888985 K, F = -2.218277956205408, relative_change = 1.9371942146830073e-5 Iter 50: T = 841.8899028563561 K, F = -0.9277290026525136, relative_change = 8.104023654747832e-6 Iter 55: T = 841.8690623098172 K, F = -0.3879906144246533, relative_change = 3.3896274897337916e-6 Iter 60: T = 841.8603459980229 K, F = -0.1622628798134662, relative_change = 1.4176575708500639e-6 Iter 65: T = 841.8567006367697 K, F = -0.0678603740761996, relative_change = 5.928944230011263e-7 Iter 70: T = 841.8551760864436 K, F = -0.02838003633287145, relative_change = 2.479578189761213e-7 Iter 75: T = 841.8545384983668 K, F = -0.01186887317941654, relative_change = 1.03699321777536e-7 Iter 80: T = 841.8542718509074 K, F = -0.004963705040291089, relative_change = 4.3368364853407425e-8 Iter 85: T = 841.854160335666 K, F = -0.0020758808218115377, relative_change = 1.813718037678822e-8 Iter 90: T = 841.8541136986447 K, F = -0.00086815816799235, relative_change = 7.585187587007424e-9 Iter 95: T = 841.8540941944825 K, F = -0.00036307411374791876, relative_change = 3.172216384171288e-9 Iter 100: T = 841.8540860376087 K, F = -0.00015184193226414067, relative_change = 1.3266588537020906e-9 Iter 105: T = 841.8540826263065 K, F = -6.35021112391776e-5, relative_change = 5.548246026207318e-10 Iter 110: T = 841.8540811996592 K, F = -2.6557340534250073e-5, relative_change = 2.320342700413768e-10 Iter 115: T = 841.8540806030182 K, F = -1.110659855796392e-5, relative_change = 9.70395169807183e-11 Iter 120: T = 841.8540803534959 K, F = -4.6449132080628175e-6, relative_change = 4.0583094131971916e-11 Iter 125: T = 841.8540802491426 K, F = -1.9425560491281857e-6, relative_change = 1.6972316061381703e-11 Iter 130: T = 841.8540802055008 K, F = -8.124014672095115e-7, relative_change = 7.098036877649703e-12 Iter 135: T = 841.8540801872493 K, F = -3.397567165386306e-7, relative_change = 2.968490088961623e-12 Iter 140: T = 841.8540801796163 K, F = -1.4208969623119572e-7, relative_change = 1.2414525879611958e-12 Iter 145: T = 841.854080176424 K, F = -5.942217784493664e-8, relative_change = 5.191778040624932e-13 Converged in 150 iterations to T = 841.8540801750889 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 1 ray tracing: 12%|███▊ | ETA: 0:00:14 Bin 1 ray tracing: 19%|█████▌ | ETA: 0:00:13 Bin 1 ray tracing: 25%|███████▍ | ETA: 0:00:12 Bin 1 ray tracing: 31%|█████████▎ | ETA: 0:00:11 Bin 1 ray tracing: 37%|███████████▏ | ETA: 0:00:10 Bin 1 ray tracing: 43%|████████████▉ | ETA: 0:00:09 Bin 1 ray tracing: 49%|██████████████▋ | ETA: 0:00:09 Bin 1 ray tracing: 55%|████████████████▍ | ETA: 0:00:08 Bin 1 ray tracing: 60%|██████████████████▏ | ETA: 0:00:07 Bin 1 ray tracing: 66%|███████████████████▉ | ETA: 0:00:06 Bin 1 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:05 Bin 1 ray tracing: 77%|███████████████████████▎ | ETA: 0:00:04 Bin 1 ray tracing: 83%|█████████████████████████ | ETA: 0:00:03 Bin 1 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:02 Bin 1 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 6%|█▊ | ETA: 0:00:17 Bin 2 ray tracing: 11%|███▍ | ETA: 0:00:16 Bin 2 ray tracing: 17%|█████▏ | ETA: 0:00:15 Bin 2 ray tracing: 22%|██████▊ | ETA: 0:00:14 Bin 2 ray tracing: 28%|████████▎ | ETA: 0:00:13 Bin 2 ray tracing: 33%|██████████ | ETA: 0:00:12 Bin 2 ray tracing: 39%|███████████▋ | ETA: 0:00:11 Bin 2 ray tracing: 45%|█████████████▍ | ETA: 0:00:10 Bin 2 ray tracing: 50%|███████████████▏ | ETA: 0:00:09 Bin 2 ray tracing: 56%|████████████████▊ | ETA: 0:00:08 Bin 2 ray tracing: 62%|██████████████████▌ | ETA: 0:00:07 Bin 2 ray tracing: 67%|████████████████████▏ | ETA: 0:00:06 Bin 2 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:05 Bin 2 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:04 Bin 2 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 2 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 10%|███ | ETA: 0:00:09 Bin 3 ray tracing: 20%|██████ | ETA: 0:00:08 Bin 3 ray tracing: 29%|████████▉ | ETA: 0:00:07 Bin 3 ray tracing: 39%|███████████▊ | ETA: 0:00:06 Bin 3 ray tracing: 49%|██████████████▋ | ETA: 0:00:05 Bin 3 ray tracing: 58%|█████████████████▍ | ETA: 0:00:04 Bin 3 ray tracing: 67%|████████████████████ | ETA: 0:00:04 Bin 3 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:03 Bin 3 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:03 Bin 3 ray tracing: 86%|█████████████████████████▋ | ETA: 0:00:02 Bin 3 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 3 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 7%|██▏ | ETA: 0:00:14 Bin 4 ray tracing: 14%|████▏ | ETA: 0:00:13 Bin 4 ray tracing: 21%|██████▎ | ETA: 0:00:12 Bin 4 ray tracing: 28%|████████▎ | ETA: 0:00:11 Bin 4 ray tracing: 35%|██████████▍ | ETA: 0:00:10 Bin 4 ray tracing: 41%|████████████▍ | ETA: 0:00:09 Bin 4 ray tracing: 48%|██████████████▍ | ETA: 0:00:08 Bin 4 ray tracing: 55%|████████████████▌ | ETA: 0:00:07 Bin 4 ray tracing: 62%|██████████████████▋ | ETA: 0:00:06 Bin 4 ray tracing: 69%|████████████████████▊ | ETA: 0:00:05 Bin 4 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:03 Bin 4 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:02 Bin 4 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 4 ray tracing: 98%|█████████████████████████████▎| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 5 ray tracing: 14%|████▎ | ETA: 0:00:12 Bin 5 ray tracing: 21%|██████▍ | ETA: 0:00:11 Bin 5 ray tracing: 29%|████████▋ | ETA: 0:00:10 Bin 5 ray tracing: 36%|██████████▊ | ETA: 0:00:09 Bin 5 ray tracing: 43%|█████████████ | ETA: 0:00:08 Bin 5 ray tracing: 51%|███████████████▎ | ETA: 0:00:07 Bin 5 ray tracing: 58%|█████████████████▍ | ETA: 0:00:06 Bin 5 ray tracing: 65%|███████████████████▋ | ETA: 0:00:05 Bin 5 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:04 Bin 5 ray tracing: 80%|████████████████████████▏ | ETA: 0:00:03 Bin 5 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:02 Bin 5 ray tracing: 96%|████████████████████████████▋ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 6 ray tracing: 15%|████▌ | ETA: 0:00:11 Bin 6 ray tracing: 23%|██████▊ | ETA: 0:00:10 Bin 6 ray tracing: 30%|█████████ | ETA: 0:00:09 Bin 6 ray tracing: 38%|███████████▍ | ETA: 0:00:08 Bin 6 ray tracing: 46%|█████████████▊ | ETA: 0:00:07 Bin 6 ray tracing: 53%|████████████████ | ETA: 0:00:06 Bin 6 ray tracing: 61%|██████████████████▎ | ETA: 0:00:05 Bin 6 ray tracing: 69%|████████████████████▋ | ETA: 0:00:04 Bin 6 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:03 Bin 6 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 6 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 7 ray tracing: 16%|████▋ | ETA: 0:00:11 Bin 7 ray tracing: 23%|███████ | ETA: 0:00:10 Bin 7 ray tracing: 31%|█████████▎ | ETA: 0:00:09 Bin 7 ray tracing: 38%|███████████▌ | ETA: 0:00:08 Bin 7 ray tracing: 48%|██████████████▎ | ETA: 0:00:07 Bin 7 ray tracing: 59%|█████████████████▊ | ETA: 0:00:05 Bin 7 ray tracing: 70%|█████████████████████ | ETA: 0:00:03 Bin 7 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:02 Bin 7 ray tracing: 93%|███████████████████████████▊ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 12%|███▋ | ETA: 0:00:07 Bin 8 ray tracing: 25%|███████▍ | ETA: 0:00:06 Bin 8 ray tracing: 37%|███████████ | ETA: 0:00:05 Bin 8 ray tracing: 48%|██████████████▍ | ETA: 0:00:04 Bin 8 ray tracing: 59%|█████████████████▉ | ETA: 0:00:03 Bin 8 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:02 Bin 8 ray tracing: 83%|████████████████████████▊ | ETA: 0:00:02 Bin 8 ray tracing: 94%|████████████████████████████▍ | ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:08 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 12%|███▌ | ETA: 0:00:07 Bin 9 ray tracing: 24%|███████▏ | ETA: 0:00:06 Bin 9 ray tracing: 35%|██████████▋ | ETA: 0:00:06 Bin 9 ray tracing: 47%|██████████████▎ | ETA: 0:00:04 Bin 9 ray tracing: 60%|█████████████████▉ | ETA: 0:00:03 Bin 9 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:02 Bin 9 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:01 Bin 9 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:08 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 11%|███▎ | ETA: 0:00:08 Bin 10 ray tracing: 23%|██████▋ | ETA: 0:00:07 Bin 10 ray tracing: 35%|██████████▏ | ETA: 0:00:06 Bin 10 ray tracing: 47%|█████████████▌ | ETA: 0:00:05 Bin 10 ray tracing: 58%|████████████████▉ | ETA: 0:00:04 Bin 10 ray tracing: 70%|████████████████████▏ | ETA: 0:00:03 Bin 10 ray tracing: 81%|███████████████████████▌ | ETA: 0:00:02 Bin 10 ray tracing: 93%|██████████████████████████▉ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:08 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2956255410642 K, F = -7451.722830359999, relative_change = 0.032704374458935814 Iter 2: T = 936.6652022974184 K, F = -6316.663394872051, relative_change = 0.03166604131649239 Iter 3: T = 908.0774421997129 K, F = -5352.990885964336, relative_change = 0.030520788033532677 Iter 5: T = 856.8920274704896 K, F = -3840.5717247809175, relative_change = 0.02791473800334047 Iter 10: T = 761.6708055805019 K, F = -1663.0560296310464, relative_change = 0.020000347007956196 Iter 15: T = 705.8937482855627 K, F = -712.0609049947635, relative_change = 0.011991578993329793 Iter 20: T = 677.196955972458 K, F = -301.80030185529705, relative_change = 0.006143482969907447 Iter 25: T = 663.8115877488276 K, F = -127.05337554910852, relative_change = 0.002838714010874308 Iter 30: T = 657.9181205252394 K, F = -53.29465553058192, relative_change = 0.001241902079566579 Iter 35: T = 655.3966725361753 K, F = -22.31742924345535, relative_change = 0.0005296090122282027 Iter 40: T = 654.3318364027906 K, F = -9.338566049970721, relative_change = 0.00022333036078963029 Iter 45: T = 653.8846694405215 K, F = -3.906407001961977, relative_change = 9.372545797852959e-5 Iter 50: T = 653.697334711595 K, F = -1.633865188697807, relative_change = 3.9254422220793105e-5 Iter 55: T = 653.618932217694 K, F = -0.6833298002148362, relative_change = 1.6426714403105068e-5 Iter 60: T = 653.58613339833 K, F = -0.2857815593601182, relative_change = 6.871606816064672e-6 Iter 65: T = 653.5724147973938 K, F = -0.1195181140988445, relative_change = 2.8740957445558657e-6 Iter 70: T = 653.5666772097302 K, F = -0.04998405186286703, relative_change = 1.2020349913838633e-6 Iter 75: T = 653.564277628713 K, F = -0.02090395351690033, relative_change = 5.027148036707553e-7 Iter 80: T = 653.5632740859459 K, F = -0.008742287568420604, relative_change = 2.102429812626059e-7 Iter 85: T = 653.5628543907444 K, F = -0.0036561298636496042, relative_change = 8.792641359917683e-8 Iter 90: T = 653.5626788689136 K, F = -0.0015290373121952805, relative_change = 3.677192661017247e-8 Iter 95: T = 653.5626054635378 K, F = -0.0006394616895465943, relative_change = 1.5378467683205063e-8 Iter 100: T = 653.5625747645242 K, F = -0.00026743051897154535, relative_change = 6.43146036810672e-9 Iter 105: T = 653.5625619258287 K, F = -0.0001118426375006365, relative_change = 2.68971380151699e-9 Iter 110: T = 653.5625565565327 K, F = -4.6773927785570546e-5, relative_change = 1.124870504204239e-9 Iter 115: T = 653.5625543110289 K, F = -1.9561414765389973e-5, relative_change = 4.704342759262805e-10 Iter 120: T = 653.5625533719324 K, F = -8.180817133107698e-6, relative_change = 1.9674123047767388e-10 Iter 125: T = 653.5625529791911 K, F = -3.421316496832194e-6, relative_change = 8.227955819254728e-11 Iter 130: T = 653.5625528149419 K, F = -1.43083593046045e-6, relative_change = 3.441030622398628e-11 Iter 135: T = 653.5625527462508 K, F = -5.983919960650397e-7, relative_change = 1.4390784714399616e-11 Iter 140: T = 653.5625527175234 K, F = -2.502547572502678e-7, relative_change = 6.018399911393815e-12 Iter 145: T = 653.5625527055093 K, F = -1.0465880007082262e-7, relative_change = 2.5169492082743414e-12 Iter 150: T = 653.562552700485 K, F = -4.377012502443378e-8, relative_change = 1.0526318040699844e-12 Iter 155: T = 653.5625526983836 K, F = -1.8304542326319506e-8, relative_change = 4.402076393697322e-13 Converged in 159 iterations to T = 653.562552697625 K Iter 1: T = 970.2837032123028 K, F = -6770.886490572621, relative_change = 0.029716296787697213 Iter 2: T = 942.7305389990559 K, F = -5734.877894930382, relative_change = 0.028397018441129275 Iter 3: T = 917.2961109704548 K, F = -4855.642153937286, relative_change = 0.02697953124082094 Iter 5: T = 872.5693146364079 K, F = -3476.773157613629, relative_change = 0.023894160523909982 Iter 10: T = 793.1084084003929 K, F = -1496.6551935678754, relative_change = 0.015588459083550521 Iter 15: T = 749.7565500435032 K, F = -637.1529777594529, relative_change = 0.008549411567080818 Iter 20: T = 728.6921917974248 K, F = -268.96287462732005, relative_change = 0.004117455574517763 Iter 25: T = 719.2059890344123 K, F = -112.97693490534216, relative_change = 0.0018393094653591801 Iter 30: T = 715.1033370927895 K, F = -47.33958728254192, relative_change = 0.0007918584706964486 Iter 35: T = 713.362399709985 K, F = -19.814342735133405, relative_change = 0.0003352971748838531 Iter 40: T = 712.6298019817788 K, F = -8.289486569678216, relative_change = 0.00014096137403291558 Iter 45: T = 712.3226220393163 K, F = -3.4672702950387304, relative_change = 5.9081467599504173e-5 Iter 50: T = 712.1940153503788 K, F = -1.4501428619398993, relative_change = 2.473133995874874e-5 Iter 55: T = 712.1402058984953 K, F = -0.6064826443051528, relative_change = 1.0346928671823565e-5 Iter 60: T = 712.1176978372367 K, F = -0.2536410107723032, relative_change = 4.327906854756926e-6 Iter 65: T = 712.1082839438585 K, F = -0.10607617664415725, relative_change = 1.8101043927055787e-6 Iter 70: T = 712.1043468094409 K, F = -0.04436240728356844, relative_change = 7.570286246443249e-7 Iter 75: T = 712.1027002297583 K, F = -0.018552903107726393, relative_change = 3.166021459668162e-7 Iter 80: T = 712.1020116064394 K, F = -0.00775904819796136, relative_change = 1.3240745160605665e-7 Iter 85: T = 712.1017236152384 K, F = -0.003244927063418057, relative_change = 5.53744917490169e-8 Iter 90: T = 712.1016031737555 K, F = -0.001357067327563688, relative_change = 2.3158293723813978e-8 Iter 95: T = 712.1015528036675 K, F = -0.0005675417767913027, relative_change = 9.685078497476117e-9 Iter 100: T = 712.1015317382913 K, F = -0.00023735275124947552, relative_change = 4.050416101891894e-9 Iter 105: T = 712.1015229284988 K, F = -9.926375548141575e-5, relative_change = 1.6939324912055222e-9 Iter 110: T = 712.1015192441382 K, F = -4.151328839518964e-5, relative_change = 7.084228218105712e-10 Iter 115: T = 712.1015177032947 K, F = -1.7361353985223538e-5, relative_change = 2.96270904638745e-10 Iter 120: T = 712.1015170588954 K, F = -7.260725321645012e-6, relative_change = 1.2390402675253368e-10 Iter 125: T = 712.1015167894 K, F = -3.036522107646711e-6, relative_change = 5.181814494714992e-11 Iter 130: T = 712.1015166766938 K, F = -1.2699104599001032e-6, relative_change = 2.1670978177593704e-11 Iter 135: T = 712.1015166295588 K, F = -5.310924986456911e-7, relative_change = 9.063075165919154e-12 Iter 140: T = 712.1015166098463 K, F = -2.2210965444635633e-7, relative_change = 3.7902935905180275e-12 Iter 145: T = 712.1015166016022 K, F = -9.288834279530533e-8, relative_change = 1.5851363653142144e-12 Iter 150: T = 712.1015165981545 K, F = -3.884652888253015e-8, relative_change = 6.6291467525739e-13 Iter 155: T = 712.1015165967126 K, F = -1.6246969658517685e-8, relative_change = 2.772539767392275e-13 Converged in 157 iterations to T = 712.1015165964075 K Iter 1: T = 974.4808288809045 K, F = -5814.5674144845125, relative_change = 0.025519171119095543 Iter 2: T = 951.1504072082461 K, F = -4919.241664272191, relative_change = 0.023941385998789803 Iter 3: T = 929.933455258297 K, F = -4159.976246053095, relative_change = 0.022306621317887645 Iter 5: T = 893.4842763902994 K, F = -2970.881210939296, relative_change = 0.018950982565614113 Iter 10: T = 832.1336011789358 K, F = -1270.2516429840923, relative_change = 0.011117595493259969 Iter 15: T = 801.0203816093128 K, F = -537.8236303675842, relative_change = 0.005605385553736902 Iter 20: T = 786.6415577674801 K, F = -226.28037248035918, relative_change = 0.002566696858621465 Iter 25: T = 780.3412720606383 K, F = -94.88944647523893, relative_change = 0.0011179795360126644 Iter 30: T = 777.6518336611471 K, F = -39.73029682748192, relative_change = 0.00047582873943993785 Iter 35: T = 776.5171732643504 K, F = -16.623920555322744, relative_change = 0.00020048270513429227 Iter 40: T = 776.0408848558685 K, F = -6.953771634936382, relative_change = 8.410692347102076e-5 Iter 45: T = 775.8413855016386 K, F = -2.9084045352391685, relative_change = 3.5220671278027276e-5 Iter 50: T = 775.757898144291 K, F = -1.2163740176783013, relative_change = 1.4737792847877039e-5 Iter 55: T = 775.7229732183265 K, F = -0.5087099286675333, relative_change = 6.164936627662527e-6 Iter 60: T = 775.7083655320138 K, F = -0.21274992978945217, relative_change = 2.5784978049603478e-6 Iter 65: T = 775.7022561318443 K, F = -0.08897479968772537, relative_change = 1.078401901677218e-6 Iter 70: T = 775.6997010567788 K, F = -0.037210365484682706, relative_change = 4.5100813225592133e-7 Iter 75: T = 775.6986324849606 K, F = -0.015561826515944954, relative_change = 1.8861831249463995e-7 Iter 80: T = 775.6981855939063 K, F = -0.006508142972042608, relative_change = 7.888266270035658e-8 Iter 85: T = 775.6979986984577 K, F = -0.0027217833375915435, relative_change = 3.2989712147141713e-8 Iter 90: T = 775.6979205365013 K, F = -0.0011382823352021898, relative_change = 1.3796698685567718e-8 Iter 95: T = 775.6978878482295 K, F = -0.0004760432736353737, relative_change = 5.769945401324303e-9 Iter 100: T = 775.6978741776023 K, F = -0.00019908698441661876, relative_change = 2.413060303982809e-9 Iter 105: T = 775.6978684603826 K, F = -8.326055407914534e-5, relative_change = 1.0091706676617079e-9 Iter 110: T = 775.6978660693729 K, F = -3.482055928671901e-5, relative_change = 4.220472463592044e-10 Iter 115: T = 775.6978650694241 K, F = -1.4562372282589386e-5, relative_change = 1.7650518216664085e-10 Iter 120: T = 775.6978646512335 K, F = -6.09015816199765e-6, relative_change = 7.381657725173394e-11 Iter 125: T = 775.6978644763414 K, F = -2.5469779449949215e-6, relative_change = 3.0870987162562646e-11 Iter 130: T = 775.6978644031992 K, F = -1.0651764286162546e-6, relative_change = 1.2910613510830766e-11 Iter 135: T = 775.6978643726104 K, F = -4.454687092536602e-7, relative_change = 5.399363131696238e-12 Iter 140: T = 775.6978643598178 K, F = -1.8630121600970995e-7, relative_change = 2.258088831597826e-12 Iter 145: T = 775.6978643544677 K, F = -7.791390865818926e-8, relative_change = 9.443659614320396e-13 Iter 150: T = 775.6978643522302 K, F = -3.258369396519356e-8, relative_change = 3.949350251938071e-13 Converged in 154 iterations to T = 775.6978643514227 K Iter 1: T = 970.3790306833436 K, F = -6749.166035616144, relative_change = 0.029620969316656427 Iter 2: T = 942.923059563796 K, F = -5716.332520481004, relative_change = 0.028294068865248448 Iter 3: T = 917.5871160037022 K, F = -4839.804102596177, relative_change = 0.02686957679432973 Iter 5: T = 873.058214657982 K, F = -3465.2182509345707, relative_change = 0.02377323252815745 Iter 10: T = 794.0559039554681 K, F = -1491.4248137395919, relative_change = 0.015467575831520924 Iter 15: T = 751.0385481863009 K, F = -634.8297909499355, relative_change = 0.008463177954210047 Iter 20: T = 730.1670121554822 K, F = -267.95566975985963, relative_change = 0.004069779336311523 Iter 25: T = 720.7754962297787 K, F = -112.54802374543843, relative_change = 0.0018165868238613585 Iter 30: T = 716.7154575115675 K, F = -47.15872902702506, relative_change = 0.0007817924158779111 Iter 35: T = 714.9929197568653 K, F = -19.738434970396437, relative_change = 0.00033098245252019017 Iter 40: T = 714.2681222523075 K, F = -8.257692815079864, relative_change = 0.00013913803905109073 Iter 45: T = 713.9642231864759 K, F = -3.453965267600937, relative_change = 5.8315589312502104e-5 Iter 50: T = 713.8369918988019 K, F = -1.444577049135405, relative_change = 2.4410453908311164e-5 Iter 55: T = 713.7837582349736 K, F = -0.6041546937110338, relative_change = 1.0212627488625655e-5 Iter 60: T = 713.7614910765199 K, F = -0.25266738831900326, relative_change = 4.271722500195203e-6 Iter 65: T = 713.7521779493098 K, F = -0.10566898810984071, relative_change = 1.7866042760468558e-6 Iter 70: T = 713.7482829596103 K, F = -0.044192114779206926, relative_change = 7.472000444729893e-7 Iter 75: T = 713.7466540058948 K, F = -0.018481684505836427, relative_change = 3.1249162005545145e-7 Iter 80: T = 713.7459727540606 K, F = -0.007729263684182475, relative_change = 1.3068836371081296e-7 Iter 85: T = 713.7456878457192 K, F = -0.0032324708168277594, relative_change = 5.4655545718536494e-8 Iter 90: T = 713.745568693528 K, F = -0.0013518579744351555, relative_change = 2.2857621380091953e-8 Iter 95: T = 713.7455188626376 K, F = -0.0005653631622906108, relative_change = 9.55933363258356e-9 Iter 100: T = 713.7454980227604 K, F = -0.00023644162968983196, relative_change = 3.997828100233655e-9 Iter 105: T = 713.7454893072743 K, F = -9.888271335389831e-5, relative_change = 1.6719395547009137e-9 Iter 110: T = 713.7454856623539 K, F = -4.135393196769144e-5, relative_change = 6.992251116010055e-10 Iter 115: T = 713.7454841380045 K, F = -1.729470805700295e-5, relative_change = 2.924242924149895e-10 Iter 120: T = 713.7454835005034 K, F = -7.232852530902889e-6, relative_change = 1.2229531631956005e-10 Iter 125: T = 713.7454832338929 K, F = -3.024866610523702e-6, relative_change = 5.114538393197317e-11 Iter 130: T = 713.7454831223931 K, F = -1.265035481923249e-6, relative_change = 2.138961276294236e-11 Iter 135: T = 713.7454830757625 K, F = -5.290523730216989e-7, relative_change = 8.945381813769884e-12 Iter 140: T = 713.745483056261 K, F = -2.212542389301575e-7, relative_change = 3.741035380105213e-12 Iter 145: T = 713.7454830481054 K, F = -9.253150823340661e-8, relative_change = 1.5645514760229099e-12 Iter 150: T = 713.7454830446945 K, F = -3.869674192191752e-8, relative_change = 6.542965293494844e-13 Iter 155: T = 713.7454830432681 K, F = -1.6183233642053096e-8, relative_change = 2.736311399836634e-13 Converged in 157 iterations to T = 713.7454830429663 K Iter 1: T = 969.3467589858279 K, F = -6984.370123838971, relative_change = 0.030653241014172092 Iter 2: T = 940.8351045917598 K, F = -5917.204401552598, relative_change = 0.029413266336082163 Iter 3: T = 914.4258299760236 K, F = -5011.403485618545, relative_change = 0.02807003531952131 Iter 5: T = 867.7278816217326 K, F = -3590.50883430903, relative_change = 0.025106026036882986 Iter 10: T = 783.6236897332374 K, F = -1548.3075219630516, relative_change = 0.016835792050795342 Iter 15: T = 736.8040755504784 K, F = -660.1869941055912, relative_change = 0.00946295442276571 Iter 20: T = 713.7038809825444 K, F = -278.98036216905956, relative_change = 0.004631398381439505 Iter 25: T = 703.2070172534152 K, F = -117.25050601412968, relative_change = 0.002086524887121698 Iter 30: T = 698.6470393737774 K, F = -49.14319517236489, relative_change = 0.000901846422721303 Iter 35: T = 696.7081478045145 K, F = -20.571628536714297, relative_change = 0.0003825316459891654 Iter 40: T = 695.8915405751861 K, F = -8.60672696101507, relative_change = 0.000160938035886375 Iter 45: T = 695.5490090366828 K, F = -3.6000382751252844, relative_change = 6.747537114382506e-5 Iter 50: T = 695.4055794950185 K, F = -1.505684561180299, relative_change = 2.824870204414847e-5 Iter 55: T = 695.3455642122562 K, F = -0.6297137441428747, relative_change = 1.1819146448527216e-5 Iter 60: T = 695.3204596185245 K, F = -0.26335704132189247, relative_change = 4.943818600022859e-6 Iter 65: T = 695.309959617776 K, F = -0.11013962537852934, relative_change = 2.067723253809397e-6 Iter 70: T = 695.305568224163 K, F = -0.046061805592432226, relative_change = 8.647744187316482e-7 Iter 75: T = 695.3037316615415 K, F = -0.019263614490333203, relative_change = 3.6166386244664593e-7 Iter 80: T = 695.3029635839835 K, F = -0.008056276660182604, relative_change = 1.512529987324193e-7 Iter 85: T = 695.3026423638776 K, F = -0.003369231639789083, relative_change = 6.325595946488802e-8 Iter 90: T = 695.3025080256359 K, F = -0.001409052999701066, relative_change = 2.6454423723992064e-8 Iter 95: T = 695.3024518437514 K, F = -0.0005892828078293277, relative_change = 1.1063560485049934e-8 Iter 100: T = 695.3024283478118 K, F = -0.0002464451103242338, relative_change = 4.626913914279141e-9 Iter 105: T = 695.3024185215282 K, F = -0.00010306628984002586, relative_change = 1.9350308148281157e-9 Iter 110: T = 695.302414412059 K, F = -4.310355294112611e-5, relative_change = 8.092530122715646e-10 Iter 115: T = 695.3024126934298 K, F = -1.802642022197265e-5, relative_change = 3.3843927104352166e-10 Iter 120: T = 695.3024119746785 K, F = -7.538863242784188e-6, relative_change = 1.4153932736085182e-10 Iter 125: T = 695.3024116740883 K, F = -3.152843245368686e-6, relative_change = 5.919344850423402e-11 Iter 130: T = 695.3024115483778 K, F = -1.3185570044704775e-6, relative_change = 2.4755412856587857e-11 Iter 135: T = 695.3024114958042 K, F = -5.514364963543628e-7, relative_change = 1.0353013248630137e-11 Iter 140: T = 695.3024114738173 K, F = -2.3061675824553873e-7, relative_change = 4.329743079423168e-12 Iter 145: T = 695.3024114646221 K, F = -9.644646292716885e-8, relative_change = 1.8107461426347753e-12 Iter 150: T = 695.3024114607765 K, F = -4.0334395601249184e-8, relative_change = 7.572631389037312e-13 Iter 155: T = 695.3024114591683 K, F = -1.6868530239300128e-8, relative_change = 3.167003240641089e-13 Converged in 158 iterations to T = 695.3024114586974 K Iter 1: T = 963.4874352454556 K, F = -8319.422611738595, relative_change = 0.03651256475454447 Iter 2: T = 928.847674031428 K, F = -7059.45001353371, relative_change = 0.035952478410061245 Iter 3: T = 896.0468556847703 K, F = -5989.395871595871, relative_change = 0.03531345263997277 Iter 5: T = 835.8422692167564 K, F = -4308.96112908232, relative_change = 0.033769111245137595 Iter 10: T = 715.5706310728256 K, F = -1883.4216321741271, relative_change = 0.028123193953946194 Iter 15: T = 635.2745691388011 K, F = -815.8218777458234, relative_change = 0.02025130675802749 Iter 20: T = 588.0510742562296 K, F = -349.42287581321915, relative_change = 0.012205980964358171 Iter 25: T = 563.6695383264189 K, F = -148.13761770404057, relative_change = 0.00627805446856523 Iter 30: T = 552.2707739056018 K, F = -62.37304352238622, relative_change = 0.0029075020608978486 Iter 35: T = 547.2458641455933 K, F = -26.165339013094297, relative_change = 0.0012734101776697311 Iter 40: T = 545.0947901595173 K, F = -10.957242070518785, relative_change = 0.0005433162657408494 Iter 45: T = 544.1861391862758 K, F = -4.585043833920834, relative_change = 0.0002291597616635841 Iter 50: T = 543.8045196602982 K, F = -1.9179771008104642, relative_change = 9.61806407210784e-5 Iter 55: T = 543.6446379357179 K, F = -0.8022011019041664, relative_change = 4.028425091586594e-5 Iter 60: T = 543.5777236796084 K, F = -0.33550412109905836, relative_change = 1.6857934840211398e-5 Iter 65: T = 543.549730615214 K, F = -0.140314287092838, relative_change = 7.052041838655947e-6 Iter 70: T = 543.5380220547993 K, F = -0.058681540366356116, relative_change = 2.949572186015216e-6 Iter 75: T = 543.5331251279423 K, F = -0.024541396160891044, relative_change = 1.2336030026423383e-6 Iter 80: T = 543.5310771279355 K, F = -0.010263518107788444, relative_change = 5.159174236308318e-7 Iter 85: T = 543.5302206217038 K, F = -0.004292328143179841, relative_change = 2.1576456215208903e-7 Iter 90: T = 543.52986241914 K, F = -0.0017951032924475863, relative_change = 9.023561997748339e-8 Iter 95: T = 543.5297126143 K, F = -0.0007507337054618035, relative_change = 3.773766697718003e-8 Iter 100: T = 543.5296499640832 K, F = -0.00031396581343220986, relative_change = 1.5782352284496663e-8 Iter 105: T = 543.5296237630067 K, F = -0.0001313042546806642, relative_change = 6.600369819752273e-9 Iter 110: T = 543.5296128054022 K, F = -5.4913007627221955e-5, relative_change = 2.760353759467442e-9 Iter 115: T = 543.5296082228009 K, F = -2.2965275510850036e-5, relative_change = 1.1544129501786707e-9 Iter 120: T = 543.5296063063024 K, F = -9.604352772113467e-6, relative_change = 4.827893050573956e-10 Iter 125: T = 543.5296055047997 K, F = -4.016655227367938e-6, relative_change = 2.0190826446116582e-10 Iter 130: T = 543.5296051696018 K, F = -1.6798130531847644e-6, relative_change = 8.444044110945861e-11 Iter 135: T = 543.529605029418 K, F = -7.025180056852154e-7, relative_change = 3.531400726275432e-11 Iter 140: T = 543.5296049707914 K, F = -2.9380074553775337e-7, relative_change = 1.4768705688804395e-11 Iter 145: T = 543.5296049462731 K, F = -1.2287095688123806e-7, relative_change = 6.176447908425441e-12 Iter 150: T = 543.5296049360193 K, F = -5.13857959794084e-8, relative_change = 2.5830489172072374e-12 Iter 155: T = 543.529604931731 K, F = -2.1490481894037572e-8, relative_change = 1.0802784102242026e-12 Iter 160: T = 543.5296049299377 K, F = -8.988102040419221e-9, relative_change = 4.518117663058734e-13 Converged in 165 iterations to T = 543.5296049291877 K Iter 1: T = 966.8743643356706 K, F = -7547.707596731789, relative_change = 0.033125635664329425 Iter 2: T = 935.805286145684 K, F = -6398.757513090847, relative_change = 0.032133521516349135 Iter 3: T = 906.7624105041357 K, F = -5423.248338533986, relative_change = 0.031035169464758698 Iter 5: T = 854.624736103517 K, F = -3892.116908317961, relative_change = 0.02851965953319124 Iter 10: T = 756.9392088795588 K, F = -1686.9329547835166, relative_change = 0.020737004773790105 Iter 15: T = 699.0379875037563 K, F = -723.0016013231283, relative_change = 0.012627895424128337 Iter 20: T = 668.9355699208978 K, F = -306.67234280361134, relative_change = 0.0065461340426407645 Iter 25: T = 654.797394119203 K, F = -129.1625299736011, relative_change = 0.003045502953615285 Iter 30: T = 648.549565266554 K, F = -54.19140460958632, relative_change = 0.0013368391343168999 Iter 35: T = 645.8718985563489 K, F = -22.695217824460155, relative_change = 0.0005709530644614197 Iter 40: T = 644.7402317446154 K, F = -9.497059217728125, relative_change = 0.00024092094425252366 Iter 45: T = 644.2648458695977 K, F = -3.972778899565524, relative_change = 0.0001011355268261007 Iter 50: T = 644.0656619484239 K, F = -1.6616382142954162, relative_change = 4.2362829624178816e-5 Iter 55: T = 643.9822955950675 K, F = -0.6949475294181452, relative_change = 1.7728342018628212e-5 Iter 60: T = 643.9474193606376 K, F = -0.2906407083398772, relative_change = 7.416252812350919e-6 Iter 65: T = 643.9328317026223 K, F = -0.12155035149849708, relative_change = 3.1019239176914577e-6 Iter 70: T = 643.9267306198929 K, F = -0.05083397238068771, relative_change = 1.2973243262050904e-6 Iter 75: T = 643.9241790130235 K, F = -0.021259402976244013, relative_change = 5.425674933753576e-7 Iter 80: T = 643.923111889852 K, F = -0.00889094122355405, relative_change = 2.2691012348748385e-7 Iter 85: T = 643.9226656043251 K, F = -0.0037182986746112645, relative_change = 9.489685897775675e-8 Iter 90: T = 643.9224789620605 K, F = -0.0015550370641256306, relative_change = 3.968705839309026e-8 Iter 95: T = 643.9224009059792 K, F = -0.0006503350970341049, relative_change = 1.6597612019763224e-8 Iter 100: T = 643.9223682619838 K, F = -0.0002719779089557228, relative_change = 6.941321360226583e-9 Iter 105: T = 643.9223546098734 K, F = -0.00011374441138767288, relative_change = 2.9029438276787408e-9 Iter 110: T = 643.9223489003974 K, F = -4.7569271047487316e-5, relative_change = 1.2140458236078022e-9 Iter 115: T = 643.9223465126264 K, F = -1.989403692148617e-5, relative_change = 5.07728462803621e-10 Iter 120: T = 643.922345514032 K, F = -8.319924232058629e-6, relative_change = 2.1233811864563e-10 Iter 125: T = 643.9223450964079 K, F = -3.4794922321723654e-6, relative_change = 8.880235157143042e-11 Iter 130: T = 643.9223449217525 K, F = -1.455165158592564e-6, relative_change = 3.713820280438679e-11 Iter 135: T = 643.9223448487095 K, F = -6.085665387733918e-7, relative_change = 1.553161674857287e-11 Iter 140: T = 643.9223448181621 K, F = -2.5451035212675777e-7, relative_change = 6.4955218481735885e-12 Iter 145: T = 643.9223448053868 K, F = -1.0643943931798461e-7, relative_change = 2.7165091631254487e-12 Iter 150: T = 643.922344800044 K, F = -4.451479607148201e-8, relative_change = 1.1360906464976688e-12 Iter 155: T = 643.9223447978096 K, F = -1.8616787167413662e-8, relative_change = 4.751309594931671e-13 Converged in 160 iterations to T = 643.9223447968751 K Iter 1: T = 965.1709090287576 K, F = -7935.841508816237, relative_change = 0.03482909097124242 Iter 2: T = 932.3157621585519 K, F = -6730.906604940838, relative_change = 0.034040755438088724 Iter 3: T = 901.4050902437267 K, F = -5707.706665248109, relative_change = 0.033154724149744144 Iter 5: T = 845.3041817579631 K, F = -4101.221500910163, relative_change = 0.03107076120085186 Iter 10: T = 736.9255306365092 K, F = -1784.6893832131607, relative_change = 0.024087950671274585 Iter 15: T = 669.1349175723374 K, F = -768.4706237056155, relative_change = 0.015783202760939436 Iter 20: T = 632.033772724913 K, F = -327.2317192896212, relative_change = 0.008689067861942918 Iter 25: T = 613.9643785334947 K, F = -138.15718500029004, relative_change = 0.004194944645745105 Iter 30: T = 605.8159197683829 K, F = -58.03733526032564, relative_change = 0.0018763115295205976 Iter 35: T = 602.2894806927891 K, F = -24.319751824858017, relative_change = 0.0008082648891725363 Iter 40: T = 600.7926084545386 K, F = -10.179390841627916, relative_change = 0.0003423323905499591 Iter 45: T = 600.1626335949088 K, F = -4.258659604491913, relative_change = 0.00014393484454751178 Iter 50: T = 599.89846920511 K, F = -1.7812887901030026, relative_change = 6.033053985859888e-5 Iter 55: T = 599.7878692445835 K, F = -0.7450029415489781, relative_change = 2.5254689083459834e-5 Iter 60: T = 599.7415934191945 K, F = -0.3115773010477468, relative_change = 1.056596991162674e-5 Iter 65: T = 599.7222365351586 K, F = -0.13030677835401527, relative_change = 4.419542343334317e-6 Iter 70: T = 599.7141405935167 K, F = -0.05449610104052083, relative_change = 1.8484326669137538e-6 Iter 75: T = 599.7107546583107 K, F = -0.022790964024009153, relative_change = 7.730588795034607e-7 Iter 80: T = 599.7093385995295 K, F = -0.00953146098708263, relative_change = 3.2330634967826417e-7 Iter 85: T = 599.7087463832956 K, F = -0.003986172152131762, relative_change = 1.3521125758961705e-7 Iter 90: T = 599.7084987107748 K, F = -0.0016670650322830882, relative_change = 5.654708178480377e-8 Iter 95: T = 599.7083951310606 K, F = -0.0006971865459607929, relative_change = 2.364868573708618e-8 Iter 100: T = 599.7083518127681 K, F = -0.00029157174648164474, relative_change = 9.89016643185695e-9 Iter 105: T = 599.7083336965376 K, F = -0.00012193878724453544, relative_change = 4.136186336113015e-9 Iter 110: T = 599.708326120113 K, F = -5.099625724125367e-5, relative_change = 1.7298026316932276e-9 Iter 115: T = 599.7083229515616 K, F = -2.1327243607704993e-5, relative_change = 7.234241303795152e-10 Iter 120: T = 599.7083216264357 K, F = -8.91930772051186e-6, relative_change = 3.025446052881526e-10 Iter 125: T = 599.7083210722523 K, F = -3.730161377391017e-6, relative_change = 1.265277801721769e-10 Iter 130: T = 599.708320840486 K, F = -1.5599979000802122e-6, relative_change = 5.29154242306896e-11 Iter 135: T = 599.7083207435586 K, F = -6.524097101445747e-7, relative_change = 2.2129860950012073e-11 Iter 140: T = 599.7083207030224 K, F = -2.7284562875706797e-7, relative_change = 9.254975413866201e-12 Iter 145: T = 599.7083206860698 K, F = -1.14107070847691e-7, relative_change = 3.870533459511911e-12 Iter 150: T = 599.7083206789799 K, F = -4.772141215525494e-8, relative_change = 1.6187193407060131e-12 Iter 155: T = 599.7083206760149 K, F = -1.995743920124582e-8, relative_change = 6.769601184826639e-13 Iter 160: T = 599.7083206747748 K, F = -8.34560859308553e-9, relative_change = 2.8308462448870023e-13 Converged in 162 iterations to T = 599.7083206745124 K Iter 1: T = 980.1190463502534 K, F = -4529.894200763957, relative_change = 0.019880953649746676 Iter 2: T = 962.2827980079226 K, F = -3826.4371624784803, relative_change = 0.018198042787505336 Iter 3: T = 946.370516629458 K, F = -3230.715128400007, relative_change = 0.01653597197352531 Iter 5: T = 919.7951364434377 K, F = -2299.9061288481157, relative_change = 0.01336320915388138 Iter 10: T = 877.591971114456 K, F = -976.4141969425018, relative_change = 0.007023358508515212 Iter 15: T = 857.6082353977417 K, F = -411.4614092449362, relative_change = 0.003294281498846209 Iter 20: T = 848.7381388294298 K, F = -172.67894863627262, relative_change = 0.0014519023624358013 Iter 25: T = 844.9286889109195 K, F = -72.3262770868654, relative_change = 0.0006212295931685403 Iter 30: T = 843.3172089220873 K, F = -30.267304979825983, relative_change = 0.00026234294024196257 Iter 35: T = 842.6399976753157 K, F = -12.66160327700872, relative_change = 0.00011016511725627972 Iter 40: T = 842.3562027436055 K, F = -5.295840047994225, relative_change = 4.615157743424193e-5 Iter 45: T = 842.2374150095915 K, F = -2.214889757469782, relative_change = 1.9315029718323326e-5 Iter 50: T = 842.1877188152596 K, F = -0.9263119341932686, relative_change = 8.08020784408872e-6 Iter 55: T = 842.1669321676276 K, F = -0.3873979648946214, relative_change = 3.3796649211675763e-6 Iter 60: T = 842.1582384000146 K, F = -0.16201502415420221, relative_change = 1.4134906662182636e-6 Iter 65: T = 842.1546024675346 K, F = -0.06775671743471556, relative_change = 5.911516968546765e-7 Iter 70: T = 842.1530818605263 K, F = -0.028336685809380757, relative_change = 2.472289766418642e-7 Iter 75: T = 842.1524459216082 K, F = -0.011850743458740043, relative_change = 1.0339450885384145e-7 Iter 80: T = 842.1521799638493 K, F = -0.004956122969741905, relative_change = 4.324088801568908e-8 Iter 85: T = 842.1520687370495 K, F = -0.0020727099075268374, relative_change = 1.8083867956555865e-8 Iter 90: T = 842.1520222206581 K, F = -0.0008668320535365481, relative_change = 7.562891682191496e-9 Iter 95: T = 842.1520027669449 K, F = -0.0003625195210472665, relative_change = 3.162892005115763e-9 Iter 100: T = 842.1519946311693 K, F = -0.000151609994749613, relative_change = 1.3227592846887562e-9 Iter 105: T = 842.1519912286906 K, F = -6.340511008229299e-5, relative_change = 5.531937377212818e-10 Iter 110: T = 842.1519898057334 K, F = -2.6516775142981786e-5, relative_change = 2.3135223726658462e-10 Iter 115: T = 842.1519892106356 K, F = -1.1089630163940711e-5, relative_change = 9.675425249430398e-11 Iter 120: T = 842.1519889617587 K, F = -4.637815077979113e-6, relative_change = 4.0463777878470164e-11 Iter 125: T = 842.1519888576753 K, F = -1.939587706667467e-6, relative_change = 1.692241817860192e-11 Iter 130: T = 842.1519888141464 K, F = -8.111585751979788e-7, relative_change = 7.0771559207405604e-12 Iter 135: T = 842.1519887959421 K, F = -3.392348373321141e-7, relative_change = 2.95973920661267e-12 Iter 140: T = 842.1519887883288 K, F = -1.4187029995227363e-7, relative_change = 1.2377829244867109e-12 Iter 145: T = 842.1519887851449 K, F = -5.933234170640844e-8, relative_change = 5.176598587585359e-13 Converged in 150 iterations to T = 842.1519887838133 K Iter 1: T = 976.4461740033886 K, F = -5366.761658800656, relative_change = 0.023553825996611422 Iter 2: T = 955.0538225916414 K, F = -4537.939914032354, relative_change = 0.021908377523811116 Iter 3: T = 935.7312301982091 K, F = -3835.380146089917, relative_change = 0.020231940793659538 Iter 5: T = 902.8740519377466 K, F = -2735.919120830751, relative_change = 0.016879315451638583 Iter 10: T = 848.7669718366288 K, F = -1166.6417854588622, relative_change = 0.009495716932447027 Iter 15: T = 822.0564665588978 K, F = -493.01588017014313, relative_change = 0.004650159850499087 Iter 20: T = 809.9150484610319 K, F = -207.21014431340745, relative_change = 0.0020956338604221103 Iter 25: T = 804.6397831662126 K, F = -86.84882039811035, relative_change = 0.0009059166496082644 Iter 30: T = 802.3965849504059 K, F = -36.35558019527711, relative_change = 0.0003842829288560881 Iter 35: T = 801.45178151692 K, F = -15.210420925039097, relative_change = 0.00016167929769671358 Iter 40: T = 801.0554717265212 K, F = -6.362249015787557, relative_change = 6.778694493412565e-5 Iter 45: T = 800.889522447706 K, F = -2.660955944488371, relative_change = 2.8379281915196063e-5 Iter 50: T = 800.8200840528172 K, F = -1.1128763643084194, relative_change = 1.1873804893592635e-5 Iter 55: T = 800.7910377101069 K, F = -0.465423926633196, relative_change = 4.966685885043832e-6 Iter 60: T = 800.7788890669701 K, F = -0.19464684860301118, relative_change = 2.0772881076249703e-6 Iter 65: T = 800.7738081641513 K, F = -0.0814038122839087, relative_change = 8.687748140838847e-7 Iter 70: T = 800.7716832357756 K, F = -0.03404407717670843, relative_change = 3.633369209139821e-7 Iter 75: T = 800.7707945593811 K, F = -0.01423764501768332, relative_change = 1.519526997033235e-7 Iter 80: T = 800.7704229032556 K, F = -0.0059543541192159655, relative_change = 6.35485841705761e-8 Iter 85: T = 800.7702674720427 K, F = -0.0024901821652622003, relative_change = 2.657680312734356e-8 Iter 90: T = 800.7702024688214 K, F = -0.0010414239492754218, relative_change = 1.1114741064131987e-8 Iter 95: T = 800.7701752836923 K, F = -0.00043553593672340796, relative_change = 4.6483182441158865e-9 Iter 100: T = 800.7701639145457 K, F = -0.00018214633074786768, relative_change = 1.9439823402822003e-9 Iter 105: T = 800.7701591598327 K, F = -7.617577212881699e-5, relative_change = 8.129966678671455e-10 Iter 110: T = 800.7701571713549 K, F = -3.1857617481589884e-5, relative_change = 3.4000491811415265e-10 Iter 115: T = 800.7701563397497 K, F = -1.3323237036622082e-5, relative_change = 1.421941280658794e-10 Iter 120: T = 800.7701559919624 K, F = -5.571936128601074e-6, relative_change = 5.94672750252636e-11 Iter 125: T = 800.7701558465136 K, F = -2.3302488475485106e-6, relative_change = 2.486990985108486e-11 Iter 130: T = 800.7701557856852 K, F = -9.74537475162407e-7, relative_change = 1.0400888809818059e-11 Iter 135: T = 800.7701557602461 K, F = -4.0756189778612395e-7, relative_change = 4.34976190312913e-12 Iter 140: T = 800.7701557496072 K, F = -1.7044778644059733e-7, relative_change = 1.819128068659568e-12 Iter 145: T = 800.7701557451578 K, F = -7.128383394672255e-8, relative_change = 7.607867833635612e-13 Iter 150: T = 800.7701557432971 K, F = -2.981191538076189e-8, relative_change = 3.1817187646835653e-13 Converged in 153 iterations to T = 800.7701557427523 K Iter 1: T = 980.944429213799 K, F = -4341.829930163264, relative_change = 0.019055570786200935 Iter 2: T = 963.8956820962997 K, F = -3666.73999475684, relative_change = 0.017379931635029985 Iter 3: T = 948.7273528903065 K, F = -3095.1776557389367, relative_change = 0.015736484235518922 Iter 5: T = 923.4920363857801 K, F = -2202.454975368582, relative_change = 0.012630754806681023 Iter 10: T = 883.7136824798017 K, F = -934.209689379561, relative_change = 0.0065480506982397504 Iter 15: T = 865.0302452806411 K, F = -393.4662438951415, relative_change = 0.0030465144284656793 Iter 20: T = 856.7736272375738 K, F = -165.08283949377525, relative_change = 0.0013373091429285805 Iter 25: T = 853.2350054568587 K, F = -69.13630147943192, relative_change = 0.0005711588125691392 Iter 30: T = 851.7394648273014 K, F = -28.930840299400288, relative_change = 0.0002410086759266622 Iter 35: T = 851.1112231126594 K, F = -12.102256299943615, relative_change = 0.0001011725180876796 Iter 40: T = 850.847993262252 K, F = -5.061840339525969, relative_change = 4.237835287878303e-5 Iter 45: T = 850.7378211143391 K, F = -2.1170152909500266, relative_change = 1.7734843343971148e-5 Iter 50: T = 850.691730694541 K, F = -0.8853773886026978, relative_change = 7.418973375884872e-6 Iter 55: T = 850.6724524859223 K, F = -0.37027825104233947, relative_change = 3.1030619754132786e-6 Iter 60: T = 850.6643896461875 K, F = -0.15485528574380214, relative_change = 1.297800325470661e-6 Iter 65: T = 850.6610175893921 K, F = -0.06476241714752184, relative_change = 5.427665706852915e-7 Iter 70: T = 850.6596073408148 K, F = -0.027084431539031284, relative_change = 2.269933815130515e-7 Iter 75: T = 850.6590175555422 K, F = -0.011327035393450258, relative_change = 9.493167876023903e-8 Iter 80: T = 850.6587708998647 K, F = -0.00473710194185939, relative_change = 3.9701620505969134e-8 Iter 85: T = 850.6586677454391 K, F = -0.001981112688060893, relative_change = 1.6603702115537324e-8 Iter 90: T = 850.6586246050131 K, F = -0.0008285249998873923, relative_change = 6.943868311002023e-9 Iter 95: T = 850.6586065631693 K, F = -0.00034649905312167384, relative_change = 2.9040089774750144e-9 Iter 100: T = 850.6585990178545 K, F = -0.0001449100427528549, relative_change = 1.2144912924341055e-9 Iter 105: T = 850.6585958623135 K, F = -6.060310876199182e-5, relative_change = 5.079147572358235e-10 Iter 110: T = 850.6585945426286 K, F = -2.5344943599847625e-5, relative_change = 2.1241601683036642e-10 Iter 115: T = 850.6585939907208 K, F = -1.0599560490875959e-5, relative_change = 8.883493536727318e-11 Iter 120: T = 850.6585937599061 K, F = -4.432862396042125e-6, relative_change = 3.7151827690604773e-11 Iter 125: T = 850.6585936633768 K, F = -1.8538762733832925e-6, relative_change = 1.5537340380144478e-11 Iter 130: T = 850.6585936230072 K, F = -7.753145470079659e-7, relative_change = 6.4979126138110134e-12 Iter 135: T = 850.6585936061239 K, F = -3.242448693985267e-7, relative_change = 2.7174968342308747e-12 Iter 140: T = 850.6585935990631 K, F = -1.3560168432569242e-7, relative_change = 1.1364779605289294e-12 Iter 145: T = 850.6585935961103 K, F = -5.670954617009727e-8, relative_change = 4.752828085835755e-13 Converged in 150 iterations to T = 850.6585935948755 K Iter 1: T = 967.310554957609 K, F = -7448.321148598715, relative_change = 0.03268944504239098 Iter 2: T = 936.6956555678125 K, F = -6313.754328083595, relative_change = 0.03164950411518892 Iter 3: T = 908.1239759432716 K, F = -5350.501617221076, relative_change = 0.03050262852689458 Iter 5: T = 856.9721123895631 K, F = -3838.7461620057584, relative_change = 0.02789348149257732 Iter 10: T = 761.837012818026 K, F = -1662.2118785281411, relative_change = 0.019974837795210656 Iter 15: T = 706.1332226548815 K, F = -711.6751400083884, relative_change = 0.011969886134024024 Iter 20: T = 677.4843456491127 K, F = -301.62895241113216, relative_change = 0.006129919568904772 Iter 25: T = 664.1244370779738 K, F = -126.97932038866766, relative_change = 0.0028317968884454094 Iter 30: T = 658.2429031553498 K, F = -53.263196814311414, relative_change = 0.001238737349784071 Iter 35: T = 655.7267053000246 K, F = -22.304181404114434, relative_change = 0.0005282329437498801 Iter 40: T = 654.6641131825443 K, F = -9.33300917106642, relative_change = 0.00022274527932401145 Iter 45: T = 654.2178933828576 K, F = -3.904080130834776, relative_change = 9.347906119885479e-5 Iter 50: T = 654.0309563057418 K, F = -1.632891550320341, relative_change = 3.915107498723908e-5 Iter 55: T = 653.9527203847158 K, F = -0.6829225230787002, relative_change = 1.638344051341522e-5 Iter 60: T = 653.9199912754605 K, F = -0.28561121545278034, relative_change = 6.853499903958439e-6 Iter 65: T = 653.9063018364114 K, F = -0.11944687148752564, relative_change = 2.866521598112239e-6 Iter 70: T = 653.9005764460474 K, F = -0.04995425687105498, relative_change = 1.1988671095811492e-6 Iter 75: T = 653.8981819663401 K, F = -0.020891492812063706, relative_change = 5.013899081297293e-7 Iter 80: T = 653.8971805570461 K, F = -0.00873707633764842, relative_change = 2.0968888544562213e-7 Iter 85: T = 653.8967617540962 K, F = -0.003653950461410538, relative_change = 8.769468257792518e-8 Iter 90: T = 653.896586605417 K, F = -0.0015281258590109092, relative_change = 3.667501364790167e-8 Iter 95: T = 653.8965133560981 K, F = -0.0006390805080627726, relative_change = 1.5337937459432455e-8 Iter 100: T = 653.8964827223494 K, F = -0.00026727110514779273, relative_change = 6.414510156544442e-9 Iter 105: T = 653.8964699109484 K, F = -0.00011177596909828225, relative_change = 2.682625027957214e-9 Iter 110: T = 653.8964645530673 K, F = -4.6746045572976236e-5, relative_change = 1.121905877585144e-9 Iter 115: T = 653.8964623123373 K, F = -1.9549755925218903e-5, relative_change = 4.691944776687141e-10 Iter 120: T = 653.8964613752373 K, F = -8.175942189436736e-6, relative_change = 1.962227541801576e-10 Iter 125: T = 653.8964609833308 K, F = -3.419276698723994e-6, relative_change = 8.206270023643548e-11 Iter 130: T = 653.8964608194309 K, F = -1.4299823789531985e-6, relative_change = 3.431960200566741e-11 Iter 135: T = 653.8964607508859 K, F = -5.980356106438656e-7, relative_change = 1.43528650806044e-11 Iter 140: T = 653.8964607222197 K, F = -2.5010618287524267e-7, relative_change = 6.002552750191148e-12 Iter 145: T = 653.896460710231 K, F = -1.0459777155524819e-7, relative_change = 2.5103483414514777e-12 Iter 150: T = 653.8964607052172 K, F = -4.374297168929786e-8, relative_change = 1.049832083433969e-12 Iter 155: T = 653.8964607031205 K, F = -1.829426177213378e-8, relative_change = 4.3906260159544075e-13 Converged in 159 iterations to T = 653.8964607023637 K Iter 1: T = 973.6191596888842 K, F = -6010.899559545324, relative_change = 0.026380840311115757 Iter 2: T = 949.4311829763416 K, F = -5086.542933919999, relative_change = 0.02484336557250146 Iter 3: T = 927.3678111128307 K, F = -4302.5207045310435, relative_change = 0.023238516133781376 Iter 5: T = 889.2890097218338 K, F = -3074.274853140294, relative_change = 0.019905510063596435 Iter 10: T = 824.5365603844839 K, F = -1316.1283123307774, relative_change = 0.01191119582943815 Iter 15: T = 791.2657322487662 K, F = -557.7751838228214, relative_change = 0.00609332339501211 Iter 20: T = 775.760123867695 K, F = -234.80189037522373, relative_change = 0.0028131595843696403 Iter 25: T = 768.9362186459161 K, F = -98.48888127912183, relative_change = 0.0012302159466975621 Iter 30: T = 766.0173105568304 K, F = -41.24225416025554, relative_change = 0.000524528779340607 Iter 35: T = 764.7847368194832 K, F = -17.257430344872525, relative_change = 0.00022117052258631645 Iter 40: T = 764.2671506791501 K, F = -7.21892371114094, relative_change = 9.281591426391417e-5 Iter 45: T = 764.0503183836324 K, F = -3.019331331070895, relative_change = 3.887293451126789e-5 Iter 50: T = 763.9595713365383 K, F = -1.2627714181769756, relative_change = 1.6266977684925545e-5 Iter 55: T = 763.921608420928 K, F = -0.5281150116679438, relative_change = 6.804769036149247e-6 Iter 60: T = 763.9057298783672 K, F = -0.22086556600362384, relative_change = 2.846137440894058e-6 Iter 65: T = 763.8990889327291 K, F = -0.0923688904398966, relative_change = 1.1903414547074403e-6 Iter 70: T = 763.8963115488187 K, F = -0.038629820849799934, relative_change = 4.97824245031033e-7 Iter 75: T = 763.8951500030057 K, F = -0.016155460766848928, relative_change = 2.0819765943235122e-7 Iter 80: T = 763.8946642288047 K, F = -0.006756408088062216, relative_change = 8.707103000213116e-8 Iter 85: T = 763.8944610719055 K, F = -0.0028256108074001807, relative_change = 3.6414194008111896e-8 Iter 90: T = 763.8943761092069 K, F = -0.0011817042299157032, relative_change = 1.522885946036865e-8 Iter 95: T = 763.8943405767816 K, F = -0.0004942028282444166, relative_change = 6.368892394994377e-9 Iter 100: T = 763.8943257166953 K, F = -0.00020668152778269278, relative_change = 2.6635471453612082e-9 Iter 105: T = 763.8943195020294 K, F = -8.643668218599743e-5, relative_change = 1.1139272555161408e-9 Iter 110: T = 763.8943169029818 K, F = -3.6148852153194966e-5, relative_change = 4.658576810563139e-10 Iter 115: T = 763.8943158160291 K, F = -1.5117882264492621e-5, relative_change = 1.9482725459955358e-10 Iter 120: T = 763.8943153614525 K, F = -6.322478871667592e-6, relative_change = 8.147908435653122e-11 Iter 125: T = 763.8943151713432 K, F = -2.6441379219477312e-6, relative_change = 3.407554875563209e-11 Iter 130: T = 763.8943150918373 K, F = -1.1058112584505508e-6, relative_change = 1.4250816932716807e-11 Iter 135: T = 763.8943150585868 K, F = -4.624635611127914e-7, relative_change = 5.959862949913369e-12 Iter 140: T = 763.8943150446811 K, F = -1.9340865375916394e-7, relative_change = 2.4924970673541063e-12 Iter 145: T = 763.8943150388656 K, F = -8.088471492584404e-8, relative_change = 1.0423779434646656e-12 Iter 150: T = 763.8943150364336 K, F = -3.382924140815646e-8, relative_change = 4.3596438611260137e-13 Converged in 154 iterations to T = 763.8943150355557 K Iter 1: T = 970.002034815433 K, F = -6835.064902735204, relative_change = 0.029997965184566936 Iter 2: T = 942.1613378878894 K, F = -5789.680218286646, relative_change = 0.028701689200931448 Iter 3: T = 916.4351617039556 K, F = -4902.449873666569, relative_change = 0.027305489144360397 Iter 5: T = 871.1207945237849 K, F = -3510.933113078338, relative_change = 0.024254001847596754 Iter 10: T = 790.2902404758364 K, F = -1512.1360648837185, relative_change = 0.015951948216683377 Iter 15: T = 745.9309494928419 K, F = -644.0387987789243, relative_change = 0.00881112231779806 Iter 20: T = 724.2821409239252 K, F = -271.951425704981, relative_change = 0.004263023504359379 Iter 25: T = 714.5078568155512 K, F = -114.25037921054374, relative_change = 0.0019089074664616192 Iter 30: T = 710.2753129277006 K, F = -47.87671974856217, relative_change = 0.0008227355155931154 Iter 35: T = 708.4782430253978 K, F = -20.03981203560331, relative_change = 0.0003485408625604049 Iter 40: T = 707.7218401046764 K, F = -8.383929188583622, relative_change = 0.0001465594890107426 Iter 45: T = 707.4046458278518 K, F = -3.5067935359787437, relative_change = 6.1433186480487e-5 Iter 50: T = 707.2718406788165 K, F = -1.4666765528111452, relative_change = 2.5716706010494356e-5 Iter 55: T = 707.216273565676 K, F = -0.6133980368680765, relative_change = 1.0759344607215422e-5 Iter 60: T = 707.1930301116141 K, F = -0.2565332515088654, relative_change = 4.500440856100555e-6 Iter 65: T = 707.1833086125564 K, F = -0.10728577092396546, relative_change = 1.8822700986113714e-6 Iter 70: T = 707.1792428240387 K, F = -0.04486827837094998, relative_change = 7.872109210308313e-7 Iter 75: T = 707.177542437973 K, F = -0.01876446519416275, relative_change = 3.2922504650437357e-7 Iter 80: T = 707.1768313118841 K, F = -0.007847526119982406, relative_change = 1.3768655246052787e-7 Iter 85: T = 707.176533909704 K, F = -0.0032819296109162233, relative_change = 5.7582284075779965e-8 Iter 90: T = 707.1764095324281 K, F = -0.0013725422387093067, relative_change = 2.4081620463190023e-8 Iter 95: T = 707.1763575163428 K, F = -0.0005740135691627568, relative_change = 1.0071225033635849e-8 Iter 100: T = 707.1763357625907 K, F = -0.00024005933293280712, relative_change = 4.2119072568437435e-9 Iter 105: T = 707.1763266649112 K, F = -0.00010039568138064947, relative_change = 1.7614700486636502e-9 Iter 110: T = 707.1763228601528 K, F = -4.198667349220031e-5, relative_change = 7.366678394623656e-10 Iter 115: T = 707.1763212689574 K, F = -1.7559329358429743e-5, relative_change = 3.0808331033561126e-10 Iter 120: T = 707.1763206035004 K, F = -7.343521563396571e-6, relative_change = 1.2884412591886465e-10 Iter 125: T = 707.1763203251984 K, F = -3.071148338307239e-6, relative_change = 5.388415088615432e-11 Iter 130: T = 707.1763202088091 K, F = -1.2843911091353633e-6, relative_change = 2.2534998883793104e-11 Iter 135: T = 707.1763201601337 K, F = -5.371475887416821e-7, relative_change = 9.424403696504461e-12 Iter 140: T = 707.1763201397771 K, F = -2.246411843209728e-7, relative_change = 3.9413919983358665e-12 Iter 145: T = 707.1763201312639 K, F = -9.394912459104177e-8, relative_change = 1.6483634960094199e-12 Iter 150: T = 707.1763201277034 K, F = -3.929167879945794e-8, relative_change = 6.893834222877036e-13 Iter 155: T = 707.1763201262144 K, F = -1.6432033289603964e-8, relative_change = 2.883045899429092e-13 Converged in 157 iterations to T = 707.1763201258993 K Iter 1: T = 973.5062726043565 K, F = -6036.620989138315, relative_change = 0.02649372739564352 Iter 2: T = 949.2055913901494 K, F = -5108.466740149459, relative_change = 0.024962018117456037 Iter 3: T = 927.0306008277296 K, F = -4321.205917572088, relative_change = 0.023361630782161323 Iter 5: T = 888.7357389473283 K, F = -3087.8378768611165, relative_change = 0.0200327507164535 Iter 10: T = 823.5265967644451 K, F = -1322.1601743149151, relative_change = 0.012019322693888402 Iter 15: T = 789.9614845810469 K, F = -560.4041372203161, relative_change = 0.006160892825594949 Iter 20: T = 774.3005757356068 K, F = -235.92634512630644, relative_change = 0.0028476081591583204 Iter 25: T = 767.4040992661113 K, F = -98.96419513233589, relative_change = 0.0012459744868025928 Iter 30: T = 764.4533045919721 K, F = -41.441979717861926, relative_change = 0.0005313803411534815 Iter 35: T = 763.2071093951766 K, F = -17.341127741088076, relative_change = 0.0002240836066786439 Iter 40: T = 762.683775194249 K, F = -7.253957016130262, relative_change = 9.404269306807472e-5 Iter 45: T = 762.4645298979173 K, F = -3.033987960798431, relative_change = 3.938748477207199e-5 Iter 50: T = 762.3727721070438 K, F = -1.268901921763229, relative_change = 1.648243136722317e-5 Iter 55: T = 762.3343862062593 K, F = -0.5306790235831818, relative_change = 6.894920333107888e-6 Iter 60: T = 762.3183307172242 K, F = -0.22193789477065107, relative_change = 2.883847838846213e-6 Iter 65: T = 762.3116157618803 K, F = -0.09281735610072461, relative_change = 1.2061138016188967e-6 Iter 70: T = 762.3088074247266 K, F = -0.0388173754147374, relative_change = 5.044206751973738e-7 Iter 75: T = 762.3076329336351 K, F = -0.01623389847683465, relative_change = 2.1095640837634844e-7 Iter 80: T = 762.3071417455183 K, F = -0.006789211702703746, relative_change = 8.822477930500721e-8 Iter 85: T = 762.3069363244467 K, F = -0.00283932967402567, relative_change = 3.689670704478701e-8 Iter 90: T = 762.3068504148426 K, F = -0.0011874416232471319, relative_change = 1.543065238786712e-8 Iter 95: T = 762.30681448641 K, F = -0.0004966022749925969, relative_change = 6.453284649938919e-9 Iter 100: T = 762.3067994607087 K, F = -0.00020768500464718453, relative_change = 2.6988409956661738e-9 Iter 105: T = 762.3067931767807 K, F = -8.68563506413178e-5, relative_change = 1.1286875980437936e-9 Iter 110: T = 762.3067905487669 K, F = -3.6324364127149344e-5, relative_change = 4.720306536870891e-10 Iter 115: T = 762.3067894497 K, F = -1.5191281365734e-5, relative_change = 1.974088382534489e-10 Iter 120: T = 762.3067889900572 K, F = -6.3531759738610916e-6, relative_change = 8.255874284898175e-11 Iter 125: T = 762.306788797829 K, F = -2.6569726835345975e-6, relative_change = 3.452703430576511e-11 Iter 130: T = 762.3067887174369 K, F = -1.1111772375560491e-6, relative_change = 1.4439611990706905e-11 Iter 135: T = 762.306788683816 K, F = -4.647070305230372e-7, relative_change = 6.038810897777093e-12 Iter 140: T = 762.3067886697554 K, F = -1.9434706499676935e-7, relative_change = 2.525516286757297e-12 Iter 145: T = 762.3067886638751 K, F = -8.12794539450934e-8, relative_change = 1.0562165408982346e-12 Iter 150: T = 762.3067886614158 K, F = -3.399234183021349e-8, relative_change = 4.4172631535816697e-13 Converged in 154 iterations to T = 762.306788660528 K Iter 1: T = 964.2921043176958 K, F = -8136.07799819075, relative_change = 0.03570789568230417 Iter 2: T = 930.507786411677 K, F = -6902.376436795561, relative_change = 0.035035356770782206 Iter 3: T = 898.6159996097474 K, F = -5854.682994017683, relative_change = 0.03427353028921349 Iter 5: T = 840.3969181712997 K, F = -4209.5279118595145, relative_change = 0.03245633333005723 Iter 10: T = 725.9911475138655 K, F = -1835.9453670261441, relative_change = 0.026091151021367838 Iter 15: T = 652.0835355979601 K, F = -792.8399067300184, relative_change = 0.0178997956700057 Iter 20: T = 610.2292151305135 K, F = -338.525191314539, relative_change = 0.010277805734862033 Iter 25: T = 589.2968991704718 K, F = -143.18924886876678, relative_change = 0.005103862339753665 Iter 30: T = 579.7067525708376 K, F = -60.21111263831457, relative_change = 0.002317500945706633 Iter 35: T = 575.5233860455301 K, F = -25.24248150068605, relative_change = 0.0010053953866786581 Iter 40: T = 573.7412687797636 K, F = -10.567798186623572, relative_change = 0.00042715036746147005 Iter 45: T = 572.990075069688 K, F = -4.4215452014376995, relative_change = 0.0001798355267105759 Iter 50: T = 572.674871897992 K, F = -1.849488764965151, relative_change = 7.5420633853855e-5 Iter 55: T = 572.542866306285 K, F = -0.7735389052654404, relative_change = 3.157891352956144e-5 Iter 60: T = 572.487627753465 K, F = -0.32351382047342603, relative_change = 1.3213179469093761e-5 Iter 65: T = 572.4645206866472 K, F = -0.13529920014059849, relative_change = 5.52704725372388e-6 Iter 70: T = 572.4548560477149 K, F = -0.05658406612434974, relative_change = 2.3116762309692486e-6 Iter 75: T = 572.4508140075242 K, F = -0.023664189019550752, relative_change = 9.668054275544319e-7 Iter 80: T = 572.4491235478247 K, F = -0.00989665639263948, relative_change = 4.043356662960706e-7 Iter 85: T = 572.4484165721044 K, F = -0.004138901631268566, relative_change = 1.6909906964316896e-7 Iter 90: T = 572.4481209054908 K, F = -0.0017309383942730183, relative_change = 7.071943667705474e-8 Iter 95: T = 572.4479972540203 K, F = -0.0007238991610675205, relative_change = 2.9575745559463072e-8 Iter 100: T = 572.4479455414704 K, F = -0.000302743283368212, relative_change = 1.236893569043762e-8 Iter 105: T = 572.4479239146596 K, F = -0.00012661085845444564, relative_change = 5.172837627266611e-9 Iter 110: T = 572.4479148700681 K, F = -5.2950173079380214e-5, relative_change = 2.1633426360283724e-9 Iter 115: T = 572.4479110875117 K, F = -2.214439491993181e-5, relative_change = 9.047357619505679e-10 Iter 120: T = 572.4479095056015 K, F = -9.26105039772418e-6, relative_change = 3.783713047286854e-10 Iter 125: T = 572.4479088440277 K, F = -3.873081759420138e-6, relative_change = 1.5823939442722045e-10 Iter 130: T = 572.4479085673497 K, F = -1.619768952909606e-6, relative_change = 6.617760086959534e-11 Iter 135: T = 572.4479084516397 K, F = -6.77406977622752e-7, relative_change = 2.7676273553713173e-11 Iter 140: T = 572.4479084032483 K, F = -2.8330030532597306e-7, relative_change = 1.1574573351345264e-11 Iter 145: T = 572.4479083830105 K, F = -1.1847958980570894e-7, relative_change = 4.840625573969571e-12 Iter 150: T = 572.4479083745467 K, F = -4.9549703451390315e-8, relative_change = 2.024412492646343e-12 Iter 155: T = 572.4479083710071 K, F = -2.072195809388333e-8, relative_change = 8.466204218505631e-13 Iter 160: T = 572.4479083695268 K, F = -8.66594052073566e-9, relative_change = 3.5405738136557124e-13 Converged in 163 iterations to T = 572.4479083690934 K Iter 1: T = 963.5504788511137 K, F = -8305.058066219432, relative_change = 0.036449521148886305 Iter 2: T = 928.9779005330292 K, F = -7047.141356828256, relative_change = 0.0358804017816554 Iter 3: T = 896.2486747352757 K, F = -5978.83680232085, relative_change = 0.035231436376445706 Iter 5: T = 836.2012719840728 K, F = -4301.161603344617, relative_change = 0.03366469105631761 Iter 10: T = 716.4019939593003 K, F = -1879.6822418247878, relative_change = 0.027956489055147683 Iter 15: T = 636.6375383309453 K, F = -813.9956443615921, relative_change = 0.020049993082401425 Iter 20: T = 589.878049737485 K, F = -348.54641955191045, relative_change = 0.012033648132996608 Iter 25: T = 565.8043354060771 K, F = -147.73545688720918, relative_change = 0.006169760469036504 Iter 30: T = 554.5703610715009 K, F = -62.19619931407996, relative_change = 0.002852112242957974 Iter 35: T = 549.6229690645032 K, F = -26.089603032427902, relative_change = 0.0012480318273851566 Iter 40: T = 547.5060545970027 K, F = -10.925234138168987, relative_change = 0.0005322743004269241 Iter 45: T = 546.6120142889954 K, F = -4.5715974169205875, relative_change = 0.00022446359747936386 Iter 50: T = 546.2365635101722 K, F = -1.9123429580365543, relative_change = 9.420270095686088e-5 Iter 55: T = 546.0792719624101 K, F = -0.7998429558349349, relative_change = 3.94545943013897e-5 Iter 60: T = 546.0134427653524 K, F = -0.3345175866175583, relative_change = 1.651053111890537e-5 Iter 65: T = 545.9859038039173 K, F = -0.1399016488803953, relative_change = 6.9066778948441225e-6 Iter 70: T = 545.9743852105034 K, F = -0.05850896003989378, relative_change = 2.8887660258206903e-6 Iter 75: T = 545.969567739864 K, F = -0.02446921924238646, relative_change = 1.2081708270984747e-6 Iter 80: T = 545.9675529711016 K, F = -0.010233332549529212, relative_change = 5.052809794656631e-7 Iter 85: T = 545.9667103628715 K, F = -0.004279704129023315, relative_change = 2.1131620344585864e-7 Iter 90: T = 545.96635797267 K, F = -0.0017898237697521469, relative_change = 8.837525087562246e-8 Iter 95: T = 545.9662105986384 K, F = -0.000748525743505063, relative_change = 3.69596361935729e-8 Iter 100: T = 545.9661489650163 K, F = -0.000313042416554693, relative_change = 1.545697011446567e-8 Iter 105: T = 545.9661231890922 K, F = -0.00013091807926207677, relative_change = 6.46429105584993e-9 Iter 110: T = 545.9661124092916 K, F = -5.475150453776445e-5, relative_change = 2.7034439883497905e-9 Iter 115: T = 545.96610790105 K, F = -2.2897732646881552e-5, relative_change = 1.1306125854840106e-9 Iter 120: T = 545.9661060156495 K, F = -9.576105359870857e-6, relative_change = 4.728356988336032e-10 Iter 125: T = 545.9661052271525 K, F = -4.004841836213746e-6, relative_change = 1.9774554792386276e-10 Iter 130: T = 545.9661048973936 K, F = -1.6748726957283022e-6, relative_change = 8.269955054829302e-11 Iter 135: T = 545.9661047594846 K, F = -7.004514964714659e-7, relative_change = 3.458592653428035e-11 Iter 140: T = 545.9661047018093 K, F = -2.929372739657321e-7, relative_change = 1.4464252118332566e-11 Iter 145: T = 545.9661046776888 K, F = -1.2250954820047788e-7, relative_change = 6.049107266065184e-12 Iter 150: T = 545.9661046676014 K, F = -5.123508065030258e-8, relative_change = 2.529815048858651e-12 Iter 155: T = 545.9661046633827 K, F = -2.1427218110936508e-8, relative_change = 1.0580035816513894e-12 Iter 160: T = 545.9661046616184 K, F = -8.961272224272676e-9, relative_change = 4.4247732302404265e-13 Converged in 164 iterations to T = 545.9661046609815 K Iter 1: T = 969.3304476105843 K, F = -6988.086686204339, relative_change = 0.030669552389415645 Iter 2: T = 940.8020550382796 K, F = -5920.379345087994, relative_change = 0.029431029059932726 Iter 3: T = 914.375698001887 K, F = -5014.116667622442, relative_change = 0.028089178690534837 Iter 5: T = 867.6430082139176 K, F = -3592.4915621348173, relative_change = 0.025127504890384674 Iter 10: T = 783.4557230725154 K, F = -1549.210774736088, relative_change = 0.016858504927544073 Iter 15: T = 736.5726727759364 K, F = -660.5913531854669, relative_change = 0.00948000057233118 Iter 20: T = 713.4345945336486 K, F = -279.15676115146357, relative_change = 0.004641144811326121 Iter 25: T = 702.9187307550503 K, F = -117.32589542841357, relative_change = 0.0020912535535235815 Iter 30: T = 698.3501111286123 K, F = -49.175040353794415, relative_change = 0.0009039587074193033 Iter 35: T = 696.4074702359287 K, F = -20.58500473087736, relative_change = 0.0003834403707581294 Iter 40: T = 695.5892702262752 K, F = -8.612331435927624, relative_change = 0.00016132264832686825 Iter 45: T = 695.2460681502192 K, F = -3.602383967235812, relative_change = 6.763703107618469e-5 Iter 50: T = 695.1023574026544 K, F = -1.506665879575321, relative_change = 2.8316452688086918e-5 Iter 55: T = 695.0422243794899 K, F = -0.6301241996118371, relative_change = 1.1847505563405684e-5 Iter 60: T = 695.0170705213657 K, F = -0.2635287085706456, relative_change = 4.955683094938775e-6 Iter 65: T = 695.0065499134685 K, F = -0.11021142039902038, relative_change = 2.072685892676217e-6 Iter 70: T = 695.0021499009665 K, F = -0.04609183142937301, relative_change = 8.668499874620144e-7 Iter 75: T = 695.0003097336945 K, F = -0.019276171707339418, relative_change = 3.6253191350751155e-7 Iter 80: T = 694.9995401486061 K, F = -0.008061528247635397, relative_change = 1.5161603215074485e-7 Iter 85: T = 694.9992182980291 K, F = -0.0033714279188162832, relative_change = 6.34077851078172e-8 Iter 90: T = 694.9990836961163 K, F = -0.0014099715122035672, relative_change = 2.6517919185820586e-8 Iter 95: T = 694.9990274039612 K, F = -0.0005896669413286704, relative_change = 1.109011507776492e-8 Iter 100: T = 694.999003861905 K, F = -0.0002466057599770366, relative_change = 4.6380193739405776e-9 Iter 105: T = 694.9989940163349 K, F = -0.00010313347411738949, relative_change = 1.9396752264228787e-9 Iter 110: T = 694.9989898987999 K, F = -4.3131651179084685e-5, relative_change = 8.111953790232659e-10 Iter 115: T = 694.9989881767975 K, F = -1.8038170871870207e-5, relative_change = 3.3925158508660175e-10 Iter 120: T = 694.9989874566355 K, F = -7.543778755780828e-6, relative_change = 1.4187907029189244e-10 Iter 125: T = 694.9989871554552 K, F = -3.154897916024524e-6, relative_change = 5.933551322298734e-11 Iter 130: T = 694.998987029498 K, F = -1.3194169905528241e-6, relative_change = 2.4814839161510757e-11 Iter 135: T = 694.9989869768212 K, F = -5.517965558921034e-7, relative_change = 1.0377873627004147e-11 Iter 140: T = 694.9989869547911 K, F = -2.3076840716118596e-7, relative_change = 4.3401600488668974e-12 Iter 145: T = 694.9989869455779 K, F = -9.651077126360263e-8, relative_change = 1.8151193176866937e-12 Iter 150: T = 694.9989869417248 K, F = -4.036196943335568e-8, relative_change = 7.591048072778897e-13 Iter 155: T = 694.9989869401134 K, F = -1.688010087264047e-8, relative_change = 3.1747127059932466e-13 Converged in 158 iterations to T = 694.9989869396417 K Iter 1: T = 966.5394207077657 K, F = -7624.024820963564, relative_change = 0.033460579292234324 Iter 2: T = 935.1207123698221 K, F = -6464.04326850964, relative_change = 0.032506391011901746 Iter 3: T = 905.7140711296686 K, F = -5479.134845789202, relative_change = 0.03144689327394956 Iter 5: T = 852.8115258916097 K, F = -3933.146837305067, relative_change = 0.02900779884739837 Iter 10: T = 753.1181859611606 K, F = -1705.998563289842, relative_change = 0.02134690625342708 Iter 15: T = 693.4456306835684 K, F = -731.7802496657295, relative_change = 0.013169536286425141 Iter 20: T = 662.1460854849277 K, F = -310.6000670462823, relative_change = 0.006896332985043543 Iter 25: T = 647.3575237205905 K, F = -130.86821868921055, relative_change = 0.003227651602193399 Iter 30: T = 640.8011531289293 K, F = -54.91780493079217, relative_change = 0.0014209906745413553 Iter 35: T = 637.9869637818118 K, F = -23.001473676703156, relative_change = 0.0006077041426895939 Iter 40: T = 636.796796738727 K, F = -9.6255850880613, relative_change = 0.00025657652539499466 Iter 45: T = 636.2966921236441 K, F = -4.026609074172455, relative_change = 0.00010773389836127166 Iter 50: T = 636.0871256674398 K, F = -1.684164557216265, relative_change = 4.513134761912697e-5 Iter 55: T = 635.999409325117 K, F = -0.7043707559481805, relative_change = 1.8887749113088727e-5 Iter 60: T = 635.9627124904763 K, F = -0.29458204157490203, relative_change = 7.901407430717827e-6 Iter 65: T = 635.9473631936156 K, F = -0.12319873890495836, relative_change = 3.304869803014452e-6 Iter 70: T = 635.940943542066 K, F = -0.051523360759288706, relative_change = 1.382207191758006e-6 Iter 75: T = 635.9382586985014 K, F = -0.021547715715839244, relative_change = 5.780680034658082e-7 Iter 80: T = 635.937135852857 K, F = -0.00901151745413914, relative_change = 2.417571199802891e-7 Iter 85: T = 635.9366662632997 K, F = -0.0037687251649988207, relative_change = 1.0110609557969681e-7 Iter 90: T = 635.9364698749717 K, F = -0.0015761260375578012, relative_change = 4.2283843241508704e-8 Iter 95: T = 635.9363877429633 K, F = -0.0006591547609567372, relative_change = 1.768361987429615e-8 Iter 100: T = 635.9363533943654 K, F = -0.0002756663979993079, relative_change = 7.395503054292862e-9 Iter 105: T = 635.9363390293695 K, F = -0.00011528698055124353, relative_change = 3.092888051167327e-9 Iter 110: T = 635.9363330217565 K, F = -4.8214393447765236e-5, relative_change = 1.2934828146495066e-9 Iter 115: T = 635.9363305093008 K, F = -2.0163835514286355e-5, relative_change = 5.409499807146477e-10 Iter 120: T = 635.9363294585618 K, F = -8.432756777587702e-6, relative_change = 2.2623174290723713e-10 Iter 125: T = 635.9363290191302 K, F = -3.526679782150932e-6, relative_change = 9.461282205328257e-11 Iter 130: T = 635.9363288353547 K, F = -1.4749003653946602e-6, relative_change = 3.9568232623686265e-11 Iter 135: T = 635.9363287584977 K, F = -6.168222621560915e-7, relative_change = 1.654794272423501e-11 Iter 140: T = 635.936328726355 K, F = -2.5796226443830506e-7, relative_change = 6.920542658504161e-12 Iter 145: T = 635.9363287129125 K, F = -1.0788301718633875e-7, relative_change = 2.894256740484976e-12 Iter 150: T = 635.9363287072907 K, F = -4.511759182923569e-8, relative_change = 1.2104026905937039e-12 Iter 155: T = 635.9363287049397 K, F = -1.8869507234509086e-8, relative_change = 5.062260949936006e-13 Converged in 160 iterations to T = 635.9363287039564 K Iter 1: T = 966.452191929408 K, F = -7643.899981088361, relative_change = 0.033547808070592045 Iter 2: T = 934.9423052386791 K, F = -6481.047404009927, relative_change = 0.03260366829715923 Iter 3: T = 905.4406508399088 K, F = -5493.6929100662555, relative_change = 0.03155451864084684 Iter 5: T = 852.3377746012009 K, F = -3943.8389913036526, relative_change = 0.029135981914154452 Iter 10: T = 752.1142854136216 K, F = -1710.9758574730952, relative_change = 0.021509413702850824 Iter 15: T = 691.9677456829412 K, F = -734.0785621927334, relative_change = 0.013316185980695254 Iter 20: T = 660.3439003185866 K, F = -311.6312900992736, relative_change = 0.006992355930060414 Iter 25: T = 645.3776516093203 K, F = -131.3169052008676, relative_change = 0.003277974245656311 Iter 30: T = 638.7365939152044 K, F = -55.10908042567298, relative_change = 0.0014443269921973418 Iter 35: T = 635.8848492485137 K, F = -23.082154887727665, relative_change = 0.0006179130558445511 Iter 40: T = 634.6785738236572 K, F = -9.659451424214947, relative_change = 0.00026092862225080796 Iter 45: T = 634.1716598829831 K, F = -4.040794477343901, relative_change = 0.00010956875396228583 Iter 50: T = 633.9592328162703 K, F = -1.69010095109334, relative_change = 4.590131017685604e-5 Iter 55: T = 633.8703178690088 K, F = -0.7068541087033647, relative_change = 1.9210213800912874e-5 Iter 60: T = 633.8331193666576 K, F = -0.2956207287551758, relative_change = 8.036346095394884e-6 Iter 65: T = 633.8175601968987 K, F = -0.12363315118307322, relative_change = 3.36131677959137e-6 Iter 70: T = 633.8110527618412 K, F = -0.05170504081806471, relative_change = 1.4058164435006452e-6 Iter 75: T = 633.8083312040388 K, F = -0.021623697126936847, relative_change = 5.879421034423283e-7 Iter 80: T = 633.8071930036897 K, F = -0.009043293899935245, relative_change = 2.458866615429402e-7 Iter 85: T = 633.8067169925465 K, F = -0.003782014472955064, relative_change = 1.02833132279629e-7 Iter 90: T = 633.8065179186232 K, F = -0.0015816837883321222, relative_change = 4.3006112911121065e-8 Iter 95: T = 633.8064346634648 K, F = -0.0006614790778119994, relative_change = 1.7985682036782387e-8 Iter 100: T = 633.8063998451516 K, F = -0.0002766384550934031, relative_change = 7.521829126098043e-9 Iter 105: T = 633.8063852837151 K, F = -0.00011569350495022057, relative_change = 3.1457190943618446e-9 Iter 110: T = 633.8063791939483 K, F = -4.8384404872647835e-5, relative_change = 1.3155773377706052e-9 Iter 115: T = 633.806376647135 K, F = -2.023493602809623e-5, relative_change = 5.501901666280617e-10 Iter 120: T = 633.8063755820274 K, F = -8.462492174010627e-6, relative_change = 2.300961075485713e-10 Iter 125: T = 633.8063751365866 K, F = -3.5391149325048055e-6, relative_change = 9.622893068806794e-11 Iter 130: T = 633.8063749502978 K, F = -1.4800999472708298e-6, relative_change = 4.024408309787275e-11 Iter 135: T = 633.8063748723897 K, F = -6.18995640355724e-7, relative_change = 1.683056069842359e-11 Iter 140: T = 633.8063748398075 K, F = -2.5887034843519174e-7, relative_change = 7.038713731365018e-12 Iter 145: T = 633.8063748261815 K, F = -1.0826372714989319e-7, relative_change = 2.9437028519605987e-12 Iter 150: T = 633.8063748204828 K, F = -4.52772829784287e-8, relative_change = 1.2310943891096637e-12 Iter 155: T = 633.8063748180996 K, F = -1.893590301227377e-8, relative_change = 5.148693211705913e-13 Converged in 160 iterations to T = 633.8063748171029 K Iter 1: T = 976.4613906861665 K, F = -5363.294523154897, relative_change = 0.02353860931383347 Iter 2: T = 955.0839483027924 K, F = -4534.989254614828, relative_change = 0.02189276768879927 Iter 3: T = 935.7758298746918 K, F = -3832.8698097668557, relative_change = 0.02021614797569528 Iter 5: T = 902.9458080116532 K, F = -2734.1045276019076, relative_change = 0.016863822431228137 Iter 10: T = 848.8922167252754 K, F = -1165.8448659237595, relative_change = 0.009484078016573123 Iter 15: T = 822.2133019327168 K, F = -492.6724458524512, relative_change = 0.004643500716615366 Iter 20: T = 810.0876502643382 K, F = -207.06429191073616, relative_change = 0.0020924019110340497 Iter 25: T = 804.8195409601246 K, F = -86.7873904447646, relative_change = 0.0009044727047044195 Iter 30: T = 802.5794447062177 K, F = -36.32981010960135, relative_change = 0.000383661684610593 Iter 35: T = 801.6359585520229 K, F = -15.199629405865549, relative_change = 0.00016141635146132985 Iter 40: T = 801.2402032307801 K, F = -6.3577333754117795, relative_change = 6.767642216162004e-5 Iter 45: T = 801.0744864666485 K, F = -2.6590670112489723, relative_change = 2.8332962270566576e-5 Iter 50: T = 801.0051454225804 K, F = -1.1120863130540892, relative_change = 1.1854416337147736e-5 Iter 55: T = 800.9761398124839 K, F = -0.46509350432177843, relative_change = 4.958574360605858e-6 Iter 60: T = 800.9640082075966 K, F = -0.19450865969242548, relative_change = 2.073895246539174e-6 Iter 65: T = 800.9589344309693 K, F = -0.08134601961954602, relative_change = 8.673557872745832e-7 Iter 70: T = 800.9568124829556 K, F = -0.03401990752236139, relative_change = 3.6274345090219057e-7 Iter 75: T = 800.955925053002 K, F = -0.01422753696386092, relative_change = 1.517045006154657e-7 Iter 80: T = 800.9555539181564 K, F = -0.005950126807990452, relative_change = 6.344478385466579e-8 Iter 85: T = 800.9553987049495 K, F = -0.002488414253349891, relative_change = 2.6533392515171556e-8 Iter 90: T = 800.955333792901 K, F = -0.0010406845872262815, relative_change = 1.1096586211528099e-8 Iter 95: T = 800.9553066459015 K, F = -0.00043522672807538854, relative_change = 4.640725680280766e-9 Iter 100: T = 800.9552952927012 K, F = -0.00018201701768927325, relative_change = 1.940807057004978e-9 Iter 105: T = 800.955290544657 K, F = -7.612169077730879e-5, relative_change = 8.11668714811016e-10 Iter 110: T = 800.9552885589683 K, F = -3.1835001085500636e-5, relative_change = 3.3944956369497734e-10 Iter 115: T = 800.9552877285295 K, F = -1.3313779277490667e-5, relative_change = 1.4196187953779238e-10 Iter 120: T = 800.9552873812302 K, F = -5.56798374484746e-6, relative_change = 5.937017752898157e-11 Iter 125: T = 800.9552872359853 K, F = -2.3285972868825056e-6, relative_change = 2.4829317176620367e-11 Iter 130: T = 800.9552871752422 K, F = -9.738499670008949e-7, relative_change = 1.0383946532124258e-11 Iter 135: T = 800.9552871498387 K, F = -4.072765482643348e-7, relative_change = 4.342699640508111e-12 Iter 140: T = 800.9552871392146 K, F = -1.703272053399374e-7, relative_change = 1.8161612707568352e-12 Iter 145: T = 800.9552871347715 K, F = -7.123329659464162e-8, relative_change = 7.5954486665088e-13 Iter 150: T = 800.9552871329133 K, F = -2.9789431366111785e-8, relative_change = 3.176381096551816e-13 Converged in 153 iterations to T = 800.9552871323693 K Iter 1: T = 965.1946093673089 K, F = -7930.441364132485, relative_change = 0.034805390632691134 Iter 2: T = 932.3644478864982 K, F = -6726.283352308755, relative_change = 0.03401403319308949 Iter 3: T = 901.4800685802741 K, F = -5703.745017243591, relative_change = 0.03312479296720655 Iter 5: T = 845.4355752776991 K, F = -4098.304710359096, relative_change = 0.03103406867716378 Iter 10: T = 737.2143469908121 K, F = -1783.315220703559, relative_change = 0.02403675532195916 Iter 15: T = 669.577905089626 K, F = -767.8228651410459, relative_change = 0.015731517916343654 Iter 20: T = 632.5920860645828 K, F = -326.93457179812543, relative_change = 0.00865187466694879 Iter 25: T = 614.5901076927275 K, F = -138.025827625918, relative_change = 0.0041742645562209595 Iter 30: T = 606.4749889443337 K, F = -57.98084851963431, relative_change = 0.0018664259928786113 Iter 35: T = 602.9636036086982 K, F = -24.29582711726818, relative_change = 0.0008038795809504359 Iter 40: T = 601.4732406724813 K, F = -10.169330070786103, relative_change = 0.0003404515320705232 Iter 45: T = 600.8460270245658 K, F = -4.2544422288127945, relative_change = 0.00014313981796720905 Iter 50: T = 600.5830243384754 K, F = -1.7795232976636242, relative_change = 5.9996558569617595e-5 Iter 55: T = 600.4729114377251 K, F = -0.744264286915414, relative_change = 2.511475193399303e-5 Iter 60: T = 600.4268395208412 K, F = -0.31126833350483907, relative_change = 1.0507400573134022e-5 Iter 65: T = 600.4075679513054 K, F = -0.1301775551013364, relative_change = 4.395039902644785e-6 Iter 70: T = 600.3995076957738 K, F = -0.05444205669882396, relative_change = 1.8381840461795362e-6 Iter 75: T = 600.3961366860741 K, F = -0.02276836175019542, relative_change = 7.687725377617134e-7 Iter 80: T = 600.3947268695189 K, F = -0.009522008396442183, relative_change = 3.215137073162551e-7 Iter 85: T = 600.3941372638934 K, F = -0.003982218956204875, relative_change = 1.3446154558335463e-7 Iter 90: T = 600.3938906831664 K, F = -0.0016654117567180826, relative_change = 5.6233541943380306e-8 Iter 95: T = 600.3937875600545 K, F = -0.0006964951262112273, relative_change = 2.3517559404101804e-8 Iter 100: T = 600.3937444327189 K, F = -0.0002912825871688729, relative_change = 9.835327817850005e-9 Iter 105: T = 600.3937263963487 K, F = -0.00012181785806075762, relative_change = 4.113252189564687e-9 Iter 110: T = 600.3937188533228 K, F = -5.09456834005273e-5, relative_change = 1.7202113028923158e-9 Iter 115: T = 600.3937156987392 K, F = -2.1306093872630605e-5, relative_change = 7.194129506294053e-10 Iter 120: T = 600.3937143794547 K, F = -8.910463230649146e-6, relative_change = 3.008671016667335e-10 Iter 125: T = 600.3937138277141 K, F = -3.7264628053312876e-6, relative_change = 1.2582623816433213e-10 Iter 130: T = 600.3937135969695 K, F = -1.5584508566979238e-6, relative_change = 5.262202234798572e-11 Iter 135: T = 600.3937135004695 K, F = -6.517630677382868e-7, relative_change = 2.2007168589858463e-11 Iter 140: T = 600.3937134601118 K, F = -2.7257485191167774e-7, relative_change = 9.203652397966814e-12 Iter 145: T = 600.3937134432339 K, F = -1.1399312666027228e-7, relative_change = 3.849045890773968e-12 Iter 150: T = 600.3937134361754 K, F = -4.7674053871293864e-8, relative_change = 1.6097428549967353e-12 Iter 155: T = 600.3937134332234 K, F = -1.9937805961767197e-8, relative_change = 6.732119063896655e-13 Iter 160: T = 600.3937134319888 K, F = -8.338180257361216e-9, relative_change = 2.8154362810521734e-13 Converged in 162 iterations to T = 600.3937134317275 K Iter 1: T = 964.5431829997765 K, F = -8078.869481641193, relative_change = 0.03545681700022354 Iter 2: T = 931.0248742922304 K, F = -6853.378671595192, relative_change = 0.03475044901909166 Iter 3: T = 899.4146315349942 K, F = -5812.675430350385, relative_change = 0.033952092613278965 Iter 5: T = 841.8059974858588 K, F = -4178.553843782108, relative_change = 0.032055437727633855 Iter 10: T = 729.1609102675523 K, F = -1821.24002976488, relative_change = 0.025497203768119328 Iter 15: T = 657.0847072289057 K, F = -785.8049764782554, relative_change = 0.017252483573642608 Iter 20: T = 616.6909272566627 K, F = -335.2404887342915, relative_change = 0.009777957452083354 Iter 25: T = 596.6563348672186 K, F = -141.71702794643076, relative_change = 0.004812417257376376 Iter 30: T = 587.523809343887 K, F = -59.572958968338575, relative_change = 0.002174590988577573 Iter 35: T = 583.5502516814416 K, F = -24.971145531331576, relative_change = 0.0009412364491519625 Iter 40: T = 581.8594916112 K, F = -10.453498886363814, relative_change = 0.0003994873210868556 Iter 45: T = 581.1471687514012 K, F = -4.3735963776259155, relative_change = 0.00016811618683609217 Iter 50: T = 580.8483404970932 K, F = -1.829409935576499, relative_change = 7.049279727501477e-5 Iter 55: T = 580.7232040328065 K, F = -0.765137121928205, relative_change = 2.951334106188526e-5 Iter 60: T = 580.6708419076 K, F = -0.3199992923769802, relative_change = 1.2348509636883228e-5 Iter 65: T = 580.6489384411993 K, F = -0.1338292421494863, relative_change = 5.165287951256204e-6 Iter 70: T = 580.6397772750527 K, F = -0.05596928757924435, relative_change = 2.160358964405593e-6 Iter 75: T = 580.6359458129133 K, F = -0.02340707699390765, relative_change = 9.035183302063604e-7 Iter 80: T = 580.6343434229192 K, F = -0.009789128321834983, relative_change = 3.7786747513199365e-7 Iter 85: T = 580.633673279605 K, F = -0.0040939319770344484, relative_change = 1.580296211265365e-7 Iter 90: T = 580.6333930168488 K, F = -0.0017121315254409741, relative_change = 6.609003754121631e-8 Iter 95: T = 580.633275807474 K, F = -0.0007160339004603777, relative_change = 2.7639671449880304e-8 Iter 100: T = 580.6332267890886 K, F = -0.00029945393714814195, relative_change = 1.1559245670489418e-8 Iter 105: T = 580.63320628901 K, F = -0.00012523521444518515, relative_change = 4.8342154639442754e-9 Iter 110: T = 580.6331977156316 K, F = -5.2374862090309726e-5, relative_change = 2.021726773570349e-9 Iter 115: T = 580.6331941301422 K, F = -2.1903793274602457e-5, relative_change = 8.45510323856478e-10 Iter 120: T = 580.6331926306477 K, F = -9.160427984600261e-6, relative_change = 3.536025212643244e-10 Iter 125: T = 580.6331920035412 K, F = -3.831000918885774e-6, relative_change = 1.478808187921847e-10 Iter 130: T = 580.6331917412778 K, F = -1.6021705915858497e-6, relative_change = 6.184553448420655e-11 Iter 135: T = 580.633191631596 K, F = -6.700465579045911e-7, relative_change = 2.5864528882135473e-11 Iter 140: T = 580.6331915857259 K, F = -2.8022163506280506e-7, relative_change = 1.081686114301204e-11 Iter 145: T = 580.6331915665423 K, F = -1.171918160847163e-7, relative_change = 4.523732086571628e-12 Iter 150: T = 580.6331915585197 K, F = -4.9011336378246284e-8, relative_change = 1.891891109822369e-12 Iter 155: T = 580.6331915551643 K, F = -2.0496814190362755e-8, relative_change = 7.911994124834075e-13 Iter 160: T = 580.6331915537612 K, F = -8.571852783134659e-9, relative_change = 3.30882878822077e-13 Converged in 163 iterations to T = 580.6331915533503 K Iter 1: T = 964.348357886049 K, F = -8123.2605691305125, relative_change = 0.035651642113950964 Iter 2: T = 930.6236763514053 K, F = -6891.398049287669, relative_change = 0.034971471936315335 Iter 3: T = 898.7950551129436 K, F = -5845.270206336118, relative_change = 0.03420138778678906 Iter 5: T = 840.7131139864913 K, F = -4202.586119286908, relative_change = 0.03236615852046319 Iter 10: T = 726.704599838562 K, F = -1832.6463041207494, relative_change = 0.02595650312002945 Iter 15: T = 653.2135294447967 K, F = -791.2584387300288, relative_change = 0.01775153454945338 Iter 20: T = 611.6943273573295 K, F = -337.7848944169242, relative_change = 0.01016219433754619 Iter 25: T = 590.969455651428 K, F = -142.85675683550278, relative_change = 0.005035995028119178 Iter 30: T = 581.4855184181321 K, F = -60.06681336548154, relative_change = 0.002284099081447542 Iter 35: T = 577.3509554522943 K, F = -25.181090139704402, relative_change = 0.000990373450566764 Iter 40: T = 575.590110587059 K, F = -10.541930312020265, relative_change = 0.00042066842812497034 Iter 45: T = 574.8479719556286 K, F = -4.410692303594026, relative_change = 0.00017708856819789363 Iter 50: T = 574.5365840960881 K, F = -1.8449438310089092, relative_change = 7.426541019014359e-5 Iter 55: T = 574.4061791213163 K, F = -0.7716370840993132, relative_change = 3.1094656690729665e-5 Iter 60: T = 574.3516108448772 K, F = -0.322718267696644, relative_change = 1.3010459590924797e-5 Iter 65: T = 574.3287842496798 K, F = -0.13496645748265992, relative_change = 5.442232732145884e-6 Iter 70: T = 574.3192369342875 K, F = -0.05644490340024452, relative_change = 2.2761997225399953e-6 Iter 75: T = 574.3152439649187 K, F = -0.023605988497041874, relative_change = 9.519676675004271e-7 Iter 80: T = 574.313574028048 K, F = -0.009872316062229491, relative_change = 3.981301523243296e-7 Iter 85: T = 574.3128756353642 K, F = -0.004128722183063649, relative_change = 1.6650381712624641e-7 Iter 90: T = 574.3125835583041 K, F = -0.0017266812222744288, relative_change = 6.963406541452622e-8 Iter 95: T = 574.3124614080323 K, F = -0.0007221187604446455, relative_change = 2.9121829362900582e-8 Iter 100: T = 574.3124103233023 K, F = -0.00030199869877411967, relative_change = 1.2179102357758238e-8 Iter 105: T = 574.3123889590532 K, F = -0.00012629946343545306, relative_change = 5.093446996885253e-9 Iter 110: T = 574.3123800242684 K, F = -5.281994395511802e-5, relative_change = 2.1301405209690935e-9 Iter 115: T = 574.3123762876345 K, F = -2.2089931419499997e-5, relative_change = 8.908502348968868e-10 Iter 120: T = 574.3123747249296 K, F = -9.238272482114951e-6, relative_change = 3.7256418596584383e-10 Iter 125: T = 574.3123740713877 K, F = -3.863555697869447e-6, relative_change = 1.558107854142059e-10 Iter 130: T = 574.3123737980686 K, F = -1.615784899711148e-6, relative_change = 6.516192195537778e-11 Iter 135: T = 574.3123736837633 K, F = -6.757397710832613e-7, relative_change = 2.725146291134882e-11 Iter 140: T = 574.3123736359596 K, F = -2.826029512625894e-7, relative_change = 1.1396907770688462e-11 Iter 145: T = 574.3123736159675 K, F = -1.1818849521283425e-7, relative_change = 4.766345764268998e-12 Iter 150: T = 574.3123736076064 K, F = -4.942742265479083e-8, relative_change = 1.9933258833821063e-12 Iter 155: T = 574.3123736041099 K, F = -2.0671062528343498e-8, relative_change = 8.336296283083176e-13 Iter 160: T = 574.3123736026475 K, F = -8.644814586400429e-9, relative_change = 3.48631017910243e-13 Converged in 163 iterations to T = 574.3123736022194 K Iter 1: T = 980.2314487073779 K, F = -4504.2832167708675, relative_change = 0.019768551292622054 Iter 2: T = 962.5026932365212 K, F = -3804.6850576005727, relative_change = 0.018086295327736663 Iter 3: T = 946.6921983240134 K, F = -3212.2499441834566, relative_change = 0.016426442256845288 Iter 5: T = 920.3007895689698 K, F = -2286.6238245854092, relative_change = 0.013262286609975 Iter 10: T = 878.432778556664 K, F = -970.6556810542577, relative_change = 0.00695710369324905 Iter 15: T = 858.6300982205872 K, F = -409.0042467770165, relative_change = 0.0032595047101933975 Iter 20: T = 849.8457726140258 K, F = -171.64131187773916, relative_change = 0.0014357624717684953 Iter 25: T = 846.0742614832251 K, F = -71.89043997160506, relative_change = 0.0006141663677424758 Iter 30: T = 844.4790368972502 K, F = -30.0846923956621, relative_change = 0.0002593313949535606 Iter 35: T = 843.8086940369319 K, F = -12.585172187716099, relative_change = 0.00010889535823725873 Iter 40: T = 843.5277839847079 K, F = -5.263865042565173, relative_change = 4.56187322510458e-5 Iter 45: T = 843.4102049293234 K, F = -2.2015155680194853, relative_change = 1.9091868541674255e-5 Iter 50: T = 843.3610146023301 K, F = -0.9207183627484099, relative_change = 7.98682330093513e-6 Iter 55: T = 843.3404395816005 K, F = -0.3850586095279057, relative_change = 3.340600611118683e-6 Iter 60: T = 843.3318343306331 K, F = -0.16103666783429338, relative_change = 1.3971517944351352e-6 Iter 65: T = 843.3282354189263 K, F = -0.06734755539225268, relative_change = 5.843182862767895e-7 Iter 70: T = 843.3267302948069 K, F = -0.02816556904978018, relative_change = 2.443711103699172e-7 Iter 75: T = 843.3261008310808 K, F = -0.01177918033063241, relative_change = 1.0219930587358721e-7 Iter 80: T = 843.3258375813357 K, F = -0.004926194409576423, relative_change = 4.274103828916029e-8 Iter 85: T = 843.3257274870614 K, F = -0.0020601934222503893, relative_change = 1.787482453091739e-8 Iter 90: T = 843.325681444306 K, F = -0.0008615975107699736, relative_change = 7.475467185964261e-9 Iter 95: T = 843.3256621886732 K, F = -0.0003603303718178186, relative_change = 3.1263300204538512e-9 Iter 100: T = 843.325654135737 K, F = -0.00015069446347348858, relative_change = 1.3074685992093504e-9 Iter 105: T = 843.3256507679029 K, F = -6.302222489495968e-5, relative_change = 5.46798998250785e-10 Iter 110: T = 843.3256493594344 K, F = -2.6356646971370523e-5, relative_change = 2.2867787197005928e-10 Iter 115: T = 843.325648770396 K, F = -1.1022664596405107e-5, relative_change = 9.56358179576618e-11 Iter 120: T = 843.3256485240531 K, F = -4.609810509537127e-6, relative_change = 3.9996045916733314e-11 Iter 125: T = 843.3256484210297 K, F = -1.9278771132835715e-6, relative_change = 1.6726818039490632e-11 Iter 130: T = 843.325648377944 K, F = -8.062614105242005e-7, relative_change = 6.995356610884911e-12 Iter 135: T = 843.325648359925 K, F = -3.37188265753241e-7, relative_change = 2.9255426756145298e-12 Iter 140: T = 843.3256483523892 K, F = -1.410137033808212e-7, relative_change = 1.2234755743442655e-12 Iter 145: T = 843.3256483492377 K, F = -5.8973314009946876e-8, relative_change = 5.116694867287735e-13 Converged in 150 iterations to T = 843.3256483479197 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 76%|████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010146835935859748 Iteration 10: d = 1.1923674719027263e-5 Iteration 20: d = 1.4005236438253041e-7 Iteration 30: d = 1.8351178477408838e-9 Iteration 40: d = 2.4894943161095897e-11 Iteration 50: d = 3.428712996697012e-13 Iteration 60: d = 4.763603536745216e-15 Converged after 62 iterations. d = 1.99591608795495e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.819030998025 Iteration 2: convergence error = 4821.740968450209 Iteration 3: convergence error = 1094.855870933046 Iteration 4: convergence error = 318.30478365750696 Iteration 5: convergence error = 94.26604292464344 Iteration 6: convergence error = 28.436275563734625 Iteration 7: convergence error = 8.554974351293595 Iteration 8: convergence error = 2.563538182958837 Iteration 9: convergence error = 0.766361439798402 Iteration 10: convergence error = 0.22878854004625282 Iteration 11: convergence error = 0.0682490100502946 Iteration 12: convergence error = 0.020350060972532447 Iteration 13: convergence error = 0.006066317240083663 Iteration 14: convergence error = 0.0018080962483963958 Iteration 15: convergence error = 0.0005388671957007318 Iteration 16: convergence error = 0.00016059094173215271 Iteration 17: convergence error = 4.78572990232351e-5 Iteration 18: convergence error = 1.426160770279239e-5 Iteration 19: convergence error = 4.249954827173497e-6 Iteration 20: convergence error = 1.2664770565606887e-6 Iteration 21: convergence error = 3.774066499317996e-7 Iteration 22: convergence error = 1.123223682952812e-7 Iteration 23: convergence error = 3.255786396039184e-8 Iteration 24: convergence error = 9.39030542213004e-9 Iteration 25: convergence error = 2.7027908799936995e-9 Iteration 26: convergence error = 7.712515071034431e-10 Iteration 27: convergence error = 2.212345862062648e-10 Iteration 28: convergence error = 6.480149750132114e-11 Iteration 29: convergence error = 1.864464138634503e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 81%|██████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001690047045791573 Iteration 10: d = 1.2680470303755628e-5 Iteration 20: d = 1.1468831091245927e-7 Iteration 30: d = 1.3466020549915349e-9 Iteration 40: d = 1.6557850047306942e-11 Iteration 50: d = 2.0672848170392268e-13 Iteration 60: d = 2.581078448328896e-15 Converged after 61 iterations. d = 1.6942448564768013e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12279.87264995829 Iteration 2: convergence error = 8331.126936219764 Iteration 3: convergence error = 1954.884728044673 Iteration 4: convergence error = 481.08265798855814 Iteration 5: convergence error = 122.56566165447771 Iteration 6: convergence error = 32.695835257919725 Iteration 7: convergence error = 8.89830932935638 Iteration 8: convergence error = 2.435462451604735 Iteration 9: convergence error = 0.6673869785356601 Iteration 10: convergence error = 0.18290740529005234 Iteration 11: convergence error = 0.050125723649216525 Iteration 12: convergence error = 0.013736168998320863 Iteration 13: convergence error = 0.003764056622003409 Iteration 14: convergence error = 0.0010314291143913579 Iteration 15: convergence error = 0.0002826306351835228 Iteration 16: convergence error = 7.744575395918218e-5 Iteration 17: convergence error = 2.1221463384790695e-5 Iteration 18: convergence error = 5.815041276946431e-6 Iteration 19: convergence error = 1.5934190287225647e-6 Iteration 20: convergence error = 4.36623849964235e-7 Iteration 21: convergence error = 1.2050395525875501e-7 Iteration 22: convergence error = 3.2344814826501533e-8 Iteration 23: convergence error = 8.6374711827375e-9 Iteration 24: convergence error = 2.30534169531893e-9 Iteration 25: convergence error = 6.118625606177375e-10 Iteration 26: convergence error = 1.6552803572267294e-10 Iteration 27: convergence error = 4.411049303598702e-11 Iteration 28: convergence error = 1.2960299500264227e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001690047045791573 Iteration 10: d = 1.2680470303755628e-5 Iteration 20: d = 1.1468831091245927e-7 Iteration 30: d = 1.3466020549915349e-9 Iteration 40: d = 1.6557850047306942e-11 Iteration 50: d = 2.0672848170392268e-13 Iteration 60: d = 2.581078448328896e-15 Converged after 61 iterations. d = 1.6942448564768013e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10995.53567214342 Iteration 2: convergence error = 5720.907810680028 Iteration 3: convergence error = 2013.013889088391 Iteration 4: convergence error = 894.2077172264617 Iteration 5: convergence error = 410.94126025922606 Iteration 6: convergence error = 193.82276731343745 Iteration 7: convergence error = 91.49067524467773 Iteration 8: convergence error = 43.205743861827614 Iteration 9: convergence error = 20.403314700437477 Iteration 10: convergence error = 9.633017913595268 Iteration 11: convergence error = 4.546831926928007 Iteration 12: convergence error = 2.145631673644857 Iteration 13: convergence error = 1.012335427207745 Iteration 14: convergence error = 0.4775714418728967 Iteration 15: convergence error = 0.22527551978873817 Iteration 16: convergence error = 0.1061663655718803 Iteration 17: convergence error = 0.04959069648066361 Iteration 18: convergence error = 0.022640099521595403 Iteration 19: convergence error = 0.010296907993506466 Iteration 20: convergence error = 0.0046729191558370076 Iteration 21: convergence error = 0.002117983460721007 Iteration 22: convergence error = 0.0009592638430149236 Iteration 23: convergence error = 0.00043427627088021836 Iteration 24: convergence error = 0.00019655441383292782 Iteration 25: convergence error = 8.894730808606255e-5 Iteration 26: convergence error = 4.024782492706436e-5 Iteration 27: convergence error = 1.821073919927585e-5 Iteration 28: convergence error = 8.239443104685051e-6 Iteration 29: convergence error = 3.7278487070580013e-6 Iteration 30: convergence error = 1.6866092664713506e-6 Iteration 31: convergence error = 7.630669642821886e-7 Iteration 32: convergence error = 3.4523054637247697e-7 Iteration 33: convergence error = 1.5619798432453535e-7 Iteration 34: convergence error = 7.066682883305475e-8 Iteration 35: convergence error = 3.197328624082729e-8 Iteration 36: convergence error = 1.4457782526733354e-8 Iteration 37: convergence error = 6.543814379256219e-9 Iteration 38: convergence error = 2.964043233077973e-9 Iteration 39: convergence error = 1.342414179816842e-9 Iteration 40: convergence error = 6.157279131002724e-10 Iteration 41: convergence error = 2.751221472863108e-10 Iteration 42: convergence error = 1.241460267920047e-10 Iteration 43: convergence error = 6.002665031701326e-11 Iteration 44: convergence error = 2.7284841053187847e-11 Iteration 45: convergence error = 1.1368683772161603e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001690047045791573 Iteration 10: d = 1.2680470303755628e-5 Iteration 20: d = 1.1468831091245927e-7 Iteration 30: d = 1.3466020549915349e-9 Iteration 40: d = 1.6557850047306942e-11 Iteration 50: d = 2.0672848170392268e-13 Iteration 60: d = 2.581078448328896e-15 Converged after 61 iterations. d = 1.6942448564768013e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.964864515636 Iteration 2: convergence error = 7339.055567743949 Iteration 3: convergence error = 1730.4875750729993 Iteration 4: convergence error = 505.9281304658675 Iteration 5: convergence error = 157.18074470774445 Iteration 6: convergence error = 48.816656055546446 Iteration 7: convergence error = 15.134090250631289 Iteration 8: convergence error = 4.683811542032345 Iteration 9: convergence error = 1.4478590713224548 Iteration 10: convergence error = 0.4472349245888836 Iteration 11: convergence error = 0.13808911474825436 Iteration 12: convergence error = 0.04262622164787899 Iteration 13: convergence error = 0.013156300873561122 Iteration 14: convergence error = 0.004060284454226348 Iteration 15: convergence error = 0.0012530247140603024 Iteration 16: convergence error = 0.0003866800016112393 Iteration 17: convergence error = 0.00011932665302083478 Iteration 18: convergence error = 3.682302667584736e-5 Iteration 19: convergence error = 1.136317314376356e-5 Iteration 20: convergence error = 3.5065372685494367e-6 Iteration 21: convergence error = 1.0820781426446047e-6 Iteration 22: convergence error = 3.337468115205411e-7 Iteration 23: convergence error = 1.0174289855058305e-7 Iteration 24: convergence error = 3.028344508493319e-8 Iteration 25: convergence error = 8.9667082647793e-9 Iteration 26: convergence error = 2.65708877122961e-9 Iteration 27: convergence error = 7.848939276300371e-10 Iteration 28: convergence error = 2.369233698118478e-10 Iteration 29: convergence error = 6.866684998385608e-11 Iteration 30: convergence error = 2.546585164964199e-11 Iteration 31: convergence error = 5.9117155615240335e-12 Converged after 31 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001690047045791573 Iteration 10: d = 1.2680470303755628e-5 Iteration 20: d = 1.1468831091245927e-7 Iteration 30: d = 1.3466020549915349e-9 Iteration 40: d = 1.6557850047306942e-11 Iteration 50: d = 2.0672848170392268e-13 Iteration 60: d = 2.581078448328896e-15 Converged after 61 iterations. d = 1.6942448564768013e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.794243451484 Iteration 2: convergence error = 5511.685859161205 Iteration 3: convergence error = 935.1923004292273 Iteration 4: convergence error = 170.21044647106032 Iteration 5: convergence error = 30.869307576029996 Iteration 6: convergence error = 5.612564374733665 Iteration 7: convergence error = 1.0267705802707496 Iteration 8: convergence error = 0.1877837625356733 Iteration 9: convergence error = 0.03430193001986481 Iteration 10: convergence error = 0.006262084050831618 Iteration 11: convergence error = 0.0011428458574300748 Iteration 12: convergence error = 0.00020853978639934212 Iteration 13: convergence error = 3.8050060538807884e-5 Iteration 14: convergence error = 6.942321761016501e-6 Iteration 15: convergence error = 1.2665850590565242e-6 Iteration 16: convergence error = 2.3109032554202713e-7 Iteration 17: convergence error = 4.216099114273675e-8 Iteration 18: convergence error = 7.683865987928584e-9 Iteration 19: convergence error = 1.4065335562918335e-9 Iteration 20: convergence error = 2.560227585490793e-10 Iteration 21: convergence error = 4.4565240386873484e-11 Iteration 22: convergence error = 9.094947017729282e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 75%|████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001690047045791573 Iteration 10: d = 1.2680470303755628e-5 Iteration 20: d = 1.1468831091245927e-7 Iteration 30: d = 1.3466020549915349e-9 Iteration 40: d = 1.6557850047306942e-11 Iteration 50: d = 2.0672848170392268e-13 Iteration 60: d = 2.581078448328896e-15 Converged after 61 iterations. d = 1.6942448564768013e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.4982469401066 Iteration 2: convergence error = 2711.5317969773623 Iteration 3: convergence error = 204.45595608791825 Iteration 4: convergence error = 19.229601738957356 Iteration 5: convergence error = 1.5877670039071012 Iteration 6: convergence error = 0.1291973281052687 Iteration 7: convergence error = 0.010539827362969203 Iteration 8: convergence error = 0.0008652287757690857 Iteration 9: convergence error = 7.096730465836775e-5 Iteration 10: convergence error = 5.818329115734302e-6 Iteration 11: convergence error = 4.769141793521763e-7 Iteration 12: convergence error = 3.908747520068752e-8 Iteration 13: convergence error = 3.2044753060093826e-9 Iteration 14: convergence error = 2.6137118649481055e-10 Iteration 15: convergence error = 2.1600499167107046e-11 Converged after 15 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346345 Iteration 2: convergence error = 858.4060420534043 Iteration 3: convergence error = 199.12106737711986 Iteration 4: convergence error = 59.265629268140856 Iteration 5: convergence error = 17.98548291103714 Iteration 6: convergence error = 5.463033078096942 Iteration 7: convergence error = 1.660989611064906 Iteration 8: convergence error = 0.5052487627306164 Iteration 9: convergence error = 0.15371874094194027 Iteration 10: convergence error = 0.046771316975991795 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.00433023651169151 Iteration 13: convergence error = 0.0013175920927324114 Iteration 14: convergence error = 0.0004009136252989265 Iteration 15: convergence error = 0.00012198904050819692 Iteration 16: convergence error = 3.711853867116588e-5 Iteration 17: convergence error = 1.1294342129986035e-5 Iteration 18: convergence error = 3.4366162253718358e-6 Iteration 19: convergence error = 1.0456861900820513e-6 Iteration 20: convergence error = 3.181812644470483e-7 Iteration 21: convergence error = 9.681605206424138e-8 Iteration 22: convergence error = 2.9460807127179578e-8 Iteration 23: convergence error = 8.963411346485373e-9 Iteration 24: convergence error = 2.730530468397774e-9 Iteration 25: convergence error = 8.295728548546322e-10 Iteration 26: convergence error = 2.538627086323686e-10 Iteration 27: convergence error = 7.707967597525567e-11 Iteration 28: convergence error = 2.4556356947869062e-11 Iteration 29: convergence error = 8.640199666842818e-12 Converged after 29 iterations Energy conservation errors by band: [4.6852026882886333e-26, 1.7771458472818954e-26, 2.50416005753358e-26, 4.13994203059987e-26, 6.522933053091502e-26, 4.828087799349512e-20, -1.176836406102666e-14, 1.1084466677857563e-12, -1.4779288903810084e-12, -7.389644451905042e-13, -1.1368683772161603e-13, 7.993605777301127e-15, 2.220446049250313e-16, 1.5612511283791264e-16, 6.451002926288751e-18, 2.0328790734103208e-20, 1.3923104070492562e-20, 4.793511649744795e-22, 1.0481929324695398e-23, 1.318298825299594e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 73%|████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010146835935859748 Iteration 10: d = 1.1923674719027263e-5 Iteration 20: d = 1.4005236438253041e-7 Iteration 30: d = 1.8351178477408838e-9 Iteration 40: d = 2.4894943161095897e-11 Iteration 50: d = 3.428712996697012e-13 Iteration 60: d = 4.763603536745216e-15 Converged after 62 iterations. d = 1.99591608795495e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.378717144568 Iteration 2: convergence error = 3608.4098529795574 Iteration 3: convergence error = 591.5650765367527 Iteration 4: convergence error = 104.2528153521273 Iteration 5: convergence error = 18.521303117432808 Iteration 6: convergence error = 3.262421258054246 Iteration 7: convergence error = 0.5726262006121488 Iteration 8: convergence error = 0.10036017941251885 Iteration 9: convergence error = 0.01757877981299316 Iteration 10: convergence error = 0.003078289086715813 Iteration 11: convergence error = 0.0005389980526615545 Iteration 12: convergence error = 9.437302492187882e-5 Iteration 13: convergence error = 1.652348760217137e-5 Iteration 14: convergence error = 2.893033979489701e-6 Iteration 15: convergence error = 5.065287496108795e-7 Iteration 16: convergence error = 8.868551049090456e-8 Iteration 17: convergence error = 1.5536443243036047e-8 Iteration 18: convergence error = 2.698470780160278e-9 Iteration 19: convergence error = 4.786215868080035e-10 Iteration 20: convergence error = 8.344613888766617e-11 Iteration 21: convergence error = 1.4097167877480388e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.4924275130247 Iteration 2: convergence error = 871.3046026617826 Iteration 3: convergence error = 207.75299581225215 Iteration 4: convergence error = 62.495505504907555 Iteration 5: convergence error = 18.979315309184585 Iteration 6: convergence error = 5.766215594047026 Iteration 7: convergence error = 1.7533061530645 Iteration 8: convergence error = 0.5333443699004192 Iteration 9: convergence error = 0.16226812526360845 Iteration 10: convergence error = 0.04937275062957269 Iteration 11: convergence error = 0.015022831427586425 Iteration 12: convergence error = 0.004571091655407145 Iteration 13: convergence error = 0.0013908789693459767 Iteration 14: convergence error = 0.00042321318755966786 Iteration 15: convergence error = 0.00012877429912805383 Iteration 16: convergence error = 3.918314223483321e-5 Iteration 17: convergence error = 1.192255740534165e-5 Iteration 18: convergence error = 3.6277690469432855e-6 Iteration 19: convergence error = 1.1038503089366714e-6 Iteration 20: convergence error = 3.358788944751723e-7 Iteration 21: convergence error = 1.0220196600130294e-7 Iteration 22: convergence error = 3.1098920771910343e-8 Iteration 23: convergence error = 9.464429240324534e-9 Iteration 24: convergence error = 2.8813929020543583e-9 Iteration 25: convergence error = 8.774350135354325e-10 Iteration 26: convergence error = 2.6773250283440575e-10 Iteration 27: convergence error = 8.174083632184193e-11 Iteration 28: convergence error = 2.546585164964199e-11 Iteration 29: convergence error = 8.526512829121202e-12 Converged after 29 iterations Energy conservation errors by band: [3.473512337869159e-26, 2.928251680180396e-26, 6.54312789226516e-26, 3.0090310368750274e-26, 3.4028304007613565e-26, 3.3881317890172014e-20, -1.4654943925052066e-14, 3.552713678800501e-13, -3.268496584496461e-13, 2.0463630789890885e-12, 7.815970093361102e-14, 2.220446049250313e-14, 1.6653345369377348e-15, 1.8735013540549517e-16, 3.7947076036992655e-18, -1.3976043629695956e-19, 2.2658131339052534e-20, 1.5923226791645783e-22, -7.302453845194697e-25, 1.6176561218948528e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729989 Iteration 2: convergence error = 2115.1156110176375 Iteration 3: convergence error = 714.8959934551624 Iteration 4: convergence error = 296.0190747132401 Iteration 5: convergence error = 115.88799395378715 Iteration 6: convergence error = 44.115249236190266 Iteration 7: convergence error = 16.5995810251261 Iteration 8: convergence error = 6.21598340493324 Iteration 9: convergence error = 2.323124567003333 Iteration 10: convergence error = 0.8675636398231745 Iteration 11: convergence error = 0.32389343048794217 Iteration 12: convergence error = 0.12090784413680922 Iteration 13: convergence error = 0.04513241840777482 Iteration 14: convergence error = 0.016846741615609062 Iteration 15: convergence error = 0.0062884074734483875 Iteration 16: convergence error = 0.002347277756598487 Iteration 17: convergence error = 0.0008761691049130604 Iteration 18: convergence error = 0.0003270478227932472 Iteration 19: convergence error = 0.00012207719078105583 Iteration 20: convergence error = 4.556777048492222e-5 Iteration 21: convergence error = 1.7009089560815482e-5 Iteration 22: convergence error = 6.3489862895949045e-6 Iteration 23: convergence error = 2.369887170061702e-6 Iteration 24: convergence error = 8.846072887536138e-7 Iteration 25: convergence error = 3.3019910006260034e-7 Iteration 26: convergence error = 1.2325517673161812e-7 Iteration 27: convergence error = 4.600769898388535e-8 Iteration 28: convergence error = 1.7175352695630863e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.956249075708911e-10 Iteration 32: convergence error = 3.3514879760332406e-10 Iteration 33: convergence error = 1.2505552149377763e-10 Iteration 34: convergence error = 4.8203219193965197e-11 Iteration 35: convergence error = 1.887201506178826e-11 Converged after 35 iterations Energy conservation errors by band: [-2.3022116657970009e-26, -1.308625578453032e-25, -1.0743654440386004e-25, -8.320273739547056e-26, -1.0057029908481635e-25, -6.945670167485263e-20, -9.769962616701378e-15, -1.4068746168049984e-12, -7.837286375433905e-12, -1.0373923942097463e-12, -8.881784197001252e-15, -1.5543122344752192e-15, 9.71445146547012e-16, 2.927345865710862e-18, 1.4365678785432934e-18, 4.1504614415460717e-20, 5.717472393966527e-21, 1.2904017555827232e-22, -3.9291079096268815e-24, 5.551115123125783e-17] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.362166223825 Iteration 2: convergence error = 864.8522700482426 Iteration 3: convergence error = 203.43244494690714 Iteration 4: convergence error = 60.87736397590493 Iteration 5: convergence error = 18.481426659698172 Iteration 6: convergence error = 5.614330618626127 Iteration 7: convergence error = 1.7070587705939033 Iteration 8: convergence error = 0.5192694771479864 Iteration 9: convergence error = 0.15798519284180657 Iteration 10: convergence error = 0.04806952669321163 Iteration 11: convergence error = 0.01462628739034244 Iteration 12: convergence error = 0.00445043197044015 Iteration 13: convergence error = 0.0013541649042281279 Iteration 14: convergence error = 0.00041204191563792847 Iteration 15: convergence error = 0.00012537513089228014 Iteration 16: convergence error = 3.814885076280916e-5 Iteration 17: convergence error = 1.1607843816818786e-5 Iteration 18: convergence error = 3.5320085771672893e-6 Iteration 19: convergence error = 1.074713281923323e-6 Iteration 20: convergence error = 3.270117758802371e-7 Iteration 21: convergence error = 9.950326784746721e-8 Iteration 22: convergence error = 3.0277988116722554e-8 Iteration 23: convergence error = 9.213749763148371e-9 Iteration 24: convergence error = 2.8026079235132784e-9 Iteration 25: convergence error = 8.545839591533877e-10 Iteration 26: convergence error = 2.629576556500979e-10 Iteration 27: convergence error = 8.01492205937393e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.86757334228605e-12 Converged after 29 iterations Energy conservation errors by band: [4.281305904815475e-26, 4.52364397489937e-26, 4.119747191426212e-26, 5.634360129450555e-26, 9.895471195092372e-26, -6.606856988583543e-20, 2.4424906541753444e-15, -8.526512829121202e-14, 3.126388037344441e-12, 5.684341886080801e-13, 2.984279490192421e-13, 3.552713678800501e-14, 8.326672684688674e-16, 1.3010426069826053e-16, 2.0599841277224584e-18, 3.9810548520952116e-19, 2.3002238473874594e-20, 5.438712527536157e-22, -1.2782525403358506e-23, 3.1963148993622903e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 8m32.1s Testing RayTraceHeatTransfer tests passed Testing completed after 538.33s PkgEval succeeded after 585.49s