Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1491 (0e7d18362a*) started at 2026-01-11T11:03:26.760 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 9.78s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.14.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.17.0+0 [e37daf67] + LibGit2_jll v1.9.2+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.12.2 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.13s ################################################################################ # Precompilation # ERROR: LoadError: MethodError: no method matching setindex!(::Base.ScopedValues.ScopedValue{IO}, ::Nothing) The function `setindex!` exists, but no method is defined for this combination of argument types. Stacktrace: [1] top-level scope @ /PkgEval.jl/scripts/precompile.jl:10 [2] include(mod::Module, _path::String) @ Base ./Base.jl:309 [3] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [4] _start() @ Base ./client.jl:585 in expression starting at /PkgEval.jl/scripts/precompile.jl:6 caused by: MethodError: no method matching setindex!(::Base.ScopedValues.ScopedValue{IO}, ::Base.DevNull) The function `setindex!` exists, but no method is defined for this combination of argument types. Stacktrace: [1] top-level scope @ /PkgEval.jl/scripts/precompile.jl:7 [2] include(mod::Module, _path::String) @ Base ./Base.jl:309 [3] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [4] _start() @ Base ./client.jl:585 Precompilation failed after 13.32s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_U2G0Mg/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.16 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_U2G0Mg/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.16 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.17.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443558531181326e-15 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.0569008315563939e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.691850745534255e-16 Converged after 6 iterations. d = 1.6184142622847344e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.485546236472086e-16 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2585248453105973e-15 Converged after 6 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 8.64442489944963e-16 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2785653431858247e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.741771048821297e-15 Converged after 5 iterations. d = 2.1647144989062977e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.6708853471768988e-15 Converged after 5 iterations. d = 1.8174569082716346e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5394136982922497e-15 Converged after 5 iterations. d = 1.6288904732141786e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:03:00 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:05 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010603168719169052 Iteration 10: d = 1.0898864773754892e-5 Iteration 20: d = 1.8385602266113616e-7 Iteration 30: d = 3.2497494781615738e-9 Iteration 40: d = 5.7687508663752095e-11 Iteration 50: d = 1.0252811398597105e-12 Iteration 60: d = 1.8198352616161394e-14 Converged after 66 iterations. d = 1.6588373644783145e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:01 Bin 1 progress: 92%|██████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010456491099815417 Iteration 10: d = 8.427933569814223e-6 Iteration 20: d = 1.3225270322732336e-7 Iteration 30: d = 2.224936192941676e-9 Iteration 40: d = 3.776745366361493e-11 Iteration 50: d = 6.437731634523548e-13 Iteration 60: d = 1.0995130473601163e-14 Converged after 64 iterations. d = 2.1909119532741277e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▎ | ETA: 0:00:01 Bin 1 progress: 88%|█████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011120854330507052 Iteration 10: d = 1.0210093924884252e-5 Iteration 20: d = 1.4891047041620447e-7 Iteration 30: d = 2.465292898438104e-9 Iteration 40: d = 4.215359788532075e-11 Iteration 50: d = 7.310783709465939e-13 Iteration 60: d = 1.2750240244167374e-14 Converged after 65 iterations. d = 1.7441516913413298e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011044868740917079 Iteration 10: d = 8.205923599582089e-6 Iteration 20: d = 1.266336249616881e-7 Iteration 30: d = 2.2429348426584264e-9 Iteration 40: d = 3.965154521473417e-11 Iteration 50: d = 6.993280077932935e-13 Iteration 60: d = 1.2353761617196791e-14 Converged after 65 iterations. d = 1.6230178914808592e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 88%|█████████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014587380651710287 Iteration 10: d = 1.5381081891423998e-5 Iteration 20: d = 2.0907707244337896e-7 Iteration 30: d = 3.1348689065716067e-9 Iteration 40: d = 4.7901333070630934e-11 Iteration 50: d = 7.368729475862336e-13 Iteration 60: d = 1.1366346846525651e-14 Converged after 64 iterations. d = 2.159492929708599e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015497094260096824 Iteration 10: d = 1.4170027227666922e-5 Iteration 20: d = 1.6284853820016847e-7 Iteration 30: d = 2.1858925902950458e-9 Iteration 40: d = 3.15197019956532e-11 Iteration 50: d = 4.737891030414775e-13 Iteration 60: d = 7.276281606485622e-15 Converged after 63 iterations. d = 2.0549842857442462e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:01 Bin 1 progress: 86%|████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015342286115359368 Iteration 10: d = 1.771018499660369e-5 Iteration 20: d = 2.462385094751511e-7 Iteration 30: d = 3.6868523513926366e-9 Iteration 40: d = 5.652510961975593e-11 Iteration 50: d = 8.770723072970402e-13 Iteration 60: d = 1.3659473888227715e-14 Converged after 65 iterations. d = 1.7339641532567733e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 45%|███████████████ | ETA: 0:00:01 Bin 1 progress: 90%|█████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013504356122947937 Iteration 10: d = 9.4234819254828e-6 Iteration 20: d = 9.442972170172734e-8 Iteration 30: d = 1.1500183283014096e-9 Iteration 40: d = 1.5271346362765913e-11 Iteration 50: d = 2.1658273212763892e-13 Iteration 60: d = 3.205737984392712e-15 Converged after 61 iterations. d = 2.127939336069779e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 91%|██████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013927000019479656 Iteration 10: d = 1.1033996982637339e-5 Iteration 20: d = 1.4821448884482256e-7 Iteration 30: d = 2.3092502070642198e-9 Iteration 40: d = 3.6360579039005924e-11 Iteration 50: d = 5.723679862078972e-13 Iteration 60: d = 9.007501315349385e-15 Converged after 64 iterations. d = 1.6991698644712634e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 79%|██████████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012774284247147188 Iteration 10: d = 1.1677307473249608e-5 Iteration 20: d = 1.5638618080951997e-7 Iteration 30: d = 2.3721974415020122e-9 Iteration 40: d = 3.655963127897076e-11 Iteration 50: d = 5.653379537694173e-13 Iteration 60: d = 8.755152663950649e-15 Converged after 64 iterations. d = 1.6374987315928414e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.005748518068363096 Iteration 10: d = 5.418578579734353e-5 Iteration 20: d = 5.217253096939471e-7 Iteration 30: d = 6.331743298687181e-9 Iteration 40: d = 8.556559886607353e-11 Iteration 50: d = 1.211193576433929e-12 Iteration 60: d = 1.7490792498698278e-14 Converged after 65 iterations. d = 2.1424514116231753e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0033112999369541746 Iteration 10: d = 4.152146238308639e-5 Iteration 20: d = 5.659870880653079e-7 Iteration 30: d = 8.66781705928129e-9 Iteration 40: d = 1.386831021256816e-10 Iteration 50: d = 2.25969150734123e-12 Iteration 60: d = 3.70960655831215e-14 Converged after 67 iterations. d = 2.1116008883871893e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0022833874197885334 Iteration 10: d = 2.938356993340702e-5 Iteration 20: d = 4.2676928263021665e-7 Iteration 30: d = 6.7387387160864695e-9 Iteration 40: d = 1.1025467915876596e-10 Iteration 50: d = 1.83583019380957e-12 Iteration 60: d = 3.085232292748746e-14 Converged after 67 iterations. d = 1.7905203808619935e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0025812599986602012 Iteration 10: d = 4.002939140112313e-5 Iteration 20: d = 6.231558744637664e-7 Iteration 30: d = 1.0484241822044027e-8 Iteration 40: d = 1.8236182117700004e-10 Iteration 50: d = 3.2242443721372395e-12 Iteration 60: d = 5.751279371430627e-14 Converged after 69 iterations. d = 1.4927805539248953e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014587380651710287 Iteration 10: d = 1.5381081891423998e-5 Iteration 20: d = 2.0907707244337896e-7 Iteration 30: d = 3.1348689065716067e-9 Iteration 40: d = 4.7901333070630934e-11 Iteration 50: d = 7.368729475862336e-13 Iteration 60: d = 1.1366346846525651e-14 Converged after 64 iterations. d = 2.159492929708599e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 89%|█████████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013512226154708672 Iteration 10: d = 1.220155986794301e-5 Iteration 20: d = 1.3991428626844308e-7 Iteration 30: d = 1.8256998276604845e-9 Iteration 40: d = 2.434691938162743e-11 Iteration 50: d = 3.2714772898925695e-13 Iteration 60: d = 4.4126536374104605e-15 Converged after 62 iterations. d = 1.8442384959772425e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015082389719130221 Iteration 10: d = 9.164844463186351e-6 Iteration 20: d = 7.908401709447989e-8 Iteration 30: d = 1.0400952571490279e-9 Iteration 40: d = 1.4260972727477598e-11 Iteration 50: d = 1.9643457700149505e-13 Iteration 60: d = 2.71139086509544e-15 Converged after 61 iterations. d = 1.8134229755978525e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.715719305283 Iteration 2: convergence error = 4829.438453249577 Iteration 3: convergence error = 1099.5410864839341 Iteration 4: convergence error = 319.7208486290592 Iteration 5: convergence error = 94.87770110413362 Iteration 6: convergence error = 28.302967157081866 Iteration 7: convergence error = 8.489155036450484 Iteration 8: convergence error = 2.545370594479209 Iteration 9: convergence error = 0.7614188252400709 Iteration 10: convergence error = 0.22746340151547884 Iteration 11: convergence error = 0.06789950717620741 Iteration 12: convergence error = 0.020259690107423012 Iteration 13: convergence error = 0.006043542072120545 Iteration 14: convergence error = 0.001802556926577381 Iteration 15: convergence error = 0.0005375901255320059 Iteration 16: convergence error = 0.00016032208668548265 Iteration 17: convergence error = 4.781054849445354e-5 Iteration 18: convergence error = 1.425763980478223e-5 Iteration 19: convergence error = 4.251741756888805e-6 Iteration 20: convergence error = 1.2678990515269106e-6 Iteration 21: convergence error = 3.7808672459505033e-7 Iteration 22: convergence error = 1.1262386578891892e-7 Iteration 23: convergence error = 3.2667230698280036e-8 Iteration 24: convergence error = 9.426003089174628e-9 Iteration 25: convergence error = 2.703473001020029e-9 Iteration 26: convergence error = 7.79891706770286e-10 Iteration 27: convergence error = 2.2464519133791327e-10 Iteration 28: convergence error = 6.502887117676437e-11 Iteration 29: convergence error = 1.750777300912887e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 89%|█████████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013512226154708672 Iteration 10: d = 1.220155986794301e-5 Iteration 20: d = 1.3991428626844308e-7 Iteration 30: d = 1.8256998276604845e-9 Iteration 40: d = 2.434691938162743e-11 Iteration 50: d = 3.2714772898925695e-13 Iteration 60: d = 4.4126536374104605e-15 Converged after 62 iterations. d = 1.8442384959772425e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8652.058267560362 Iteration 2: convergence error = 4821.984023868682 Iteration 3: convergence error = 1100.292977866776 Iteration 4: convergence error = 319.8991761388281 Iteration 5: convergence error = 94.9206397039477 Iteration 6: convergence error = 28.302346329676766 Iteration 7: convergence error = 8.503433815384824 Iteration 8: convergence error = 2.5480512532190005 Iteration 9: convergence error = 0.7617072102184466 Iteration 10: convergence error = 0.22739095216115857 Iteration 11: convergence error = 0.06782972005680676 Iteration 12: convergence error = 0.020224364190880806 Iteration 13: convergence error = 0.006028655926229476 Iteration 14: convergence error = 0.0017968164515878016 Iteration 15: convergence error = 0.0005354896927656227 Iteration 16: convergence error = 0.00015957977939251577 Iteration 17: convergence error = 4.755461873173772e-5 Iteration 18: convergence error = 1.4171004067975446e-5 Iteration 19: convergence error = 4.222833240419277e-6 Iteration 20: convergence error = 1.2583664101839531e-6 Iteration 21: convergence error = 3.749814823095221e-7 Iteration 22: convergence error = 1.1159454516018741e-7 Iteration 23: convergence error = 3.234322321077343e-8 Iteration 24: convergence error = 9.325958671979606e-9 Iteration 25: convergence error = 2.676870280993171e-9 Iteration 26: convergence error = 7.719336281297728e-10 Iteration 27: convergence error = 2.1668711269740015e-10 Iteration 28: convergence error = 6.45741238258779e-11 Iteration 29: convergence error = 2.0691004465334117e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 6:54:04 Bin 1 ray tracing: 8%|██▎ | ETA: 0:00:42 Bin 1 ray tracing: 16%|████▉ | ETA: 0:00:24 Bin 1 ray tracing: 25%|███████▌ | ETA: 0:00:17 Bin 1 ray tracing: 34%|██████████▏ | ETA: 0:00:13 Bin 1 ray tracing: 42%|████████████▊ | ETA: 0:00:10 Bin 1 ray tracing: 51%|███████████████▎ | ETA: 0:00:08 Bin 1 ray tracing: 60%|█████████████████▉ | ETA: 0:00:07 Bin 1 ray tracing: 68%|████████████████████▍ | ETA: 0:00:05 Bin 1 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:04 Bin 1 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:02 Bin 1 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 2 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 2 ray tracing: 25%|███████▋ | ETA: 0:00:09 Bin 2 ray tracing: 33%|██████████ | ETA: 0:00:08 Bin 2 ray tracing: 41%|████████████▌ | ETA: 0:00:07 Bin 2 ray tracing: 49%|██████████████▊ | ETA: 0:00:06 Bin 2 ray tracing: 58%|█████████████████▎ | ETA: 0:00:05 Bin 2 ray tracing: 66%|███████████████████▊ | ETA: 0:00:04 Bin 2 ray tracing: 74%|██████████████████████▎ | ETA: 0:00:03 Bin 2 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:02 Bin 2 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 2 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 3 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 3 ray tracing: 25%|███████▋ | ETA: 0:00:09 Bin 3 ray tracing: 34%|██████████▏ | ETA: 0:00:08 Bin 3 ray tracing: 42%|████████████▊ | ETA: 0:00:07 Bin 3 ray tracing: 51%|███████████████▎ | ETA: 0:00:06 Bin 3 ray tracing: 59%|█████████████████▊ | ETA: 0:00:05 Bin 3 ray tracing: 68%|████████████████████▍ | ETA: 0:00:04 Bin 3 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:03 Bin 3 ray tracing: 84%|█████████████████████████▍ | ETA: 0:00:02 Bin 3 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 9%|██▊ | ETA: 0:00:11 Bin 4 ray tracing: 18%|█████▍ | ETA: 0:00:09 Bin 4 ray tracing: 27%|████████▏ | ETA: 0:00:08 Bin 4 ray tracing: 36%|██████████▉ | ETA: 0:00:07 Bin 4 ray tracing: 46%|█████████████▋ | ETA: 0:00:06 Bin 4 ray tracing: 55%|████████████████▍ | ETA: 0:00:05 Bin 4 ray tracing: 63%|███████████████████ | ETA: 0:00:04 Bin 4 ray tracing: 72%|█████████████████████▊ | ETA: 0:00:03 Bin 4 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:02 Bin 4 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 4 ray tracing: 99%|██████████████████████████████| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 5 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 5 ray tracing: 28%|████████▎ | ETA: 0:00:08 Bin 5 ray tracing: 37%|███████████ | ETA: 0:00:07 Bin 5 ray tracing: 45%|█████████████▋ | ETA: 0:00:06 Bin 5 ray tracing: 54%|████████████████▏ | ETA: 0:00:05 Bin 5 ray tracing: 63%|██████████████████▉ | ETA: 0:00:04 Bin 5 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:03 Bin 5 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:02 Bin 5 ray tracing: 90%|███████████████████████████ | ETA: 0:00:01 Bin 5 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 6 ray tracing: 19%|█████▋ | ETA: 0:00:09 Bin 6 ray tracing: 28%|████████▌ | ETA: 0:00:08 Bin 6 ray tracing: 38%|███████████▍ | ETA: 0:00:07 Bin 6 ray tracing: 47%|██████████████▎ | ETA: 0:00:06 Bin 6 ray tracing: 56%|████████████████▉ | ETA: 0:00:05 Bin 6 ray tracing: 65%|███████████████████▌ | ETA: 0:00:04 Bin 6 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:03 Bin 6 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:02 Bin 6 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 7 ray tracing: 18%|█████▍ | ETA: 0:00:09 Bin 7 ray tracing: 27%|████████▏ | ETA: 0:00:08 Bin 7 ray tracing: 36%|██████████▉ | ETA: 0:00:07 Bin 7 ray tracing: 45%|█████████████▋ | ETA: 0:00:06 Bin 7 ray tracing: 54%|████████████████▍ | ETA: 0:00:05 Bin 7 ray tracing: 63%|███████████████████ | ETA: 0:00:04 Bin 7 ray tracing: 72%|█████████████████████▊ | ETA: 0:00:03 Bin 7 ray tracing: 81%|████████████████████████▌ | ETA: 0:00:02 Bin 7 ray tracing: 90%|███████████████████████████ | ETA: 0:00:01 Bin 7 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 8 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 8 ray tracing: 25%|███████▋ | ETA: 0:00:09 Bin 8 ray tracing: 34%|██████████▏ | ETA: 0:00:08 Bin 8 ray tracing: 42%|████████████▊ | ETA: 0:00:07 Bin 8 ray tracing: 51%|███████████████▎ | ETA: 0:00:06 Bin 8 ray tracing: 60%|█████████████████▉ | ETA: 0:00:05 Bin 8 ray tracing: 68%|████████████████████▌ | ETA: 0:00:04 Bin 8 ray tracing: 77%|███████████████████████ | ETA: 0:00:03 Bin 8 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 8 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 9 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 9 ray tracing: 25%|███████▋ | ETA: 0:00:09 Bin 9 ray tracing: 34%|██████████▏ | ETA: 0:00:08 Bin 9 ray tracing: 42%|████████████▊ | ETA: 0:00:07 Bin 9 ray tracing: 51%|███████████████▎ | ETA: 0:00:06 Bin 9 ray tracing: 59%|█████████████████▊ | ETA: 0:00:05 Bin 9 ray tracing: 68%|████████████████████▍ | ETA: 0:00:04 Bin 9 ray tracing: 77%|███████████████████████ | ETA: 0:00:03 Bin 9 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 9 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 8%|██▍ | ETA: 0:00:11 Bin 10 ray tracing: 17%|████▉ | ETA: 0:00:10 Bin 10 ray tracing: 26%|███████▌ | ETA: 0:00:09 Bin 10 ray tracing: 35%|██████████ | ETA: 0:00:08 Bin 10 ray tracing: 43%|████████████▌ | ETA: 0:00:07 Bin 10 ray tracing: 51%|██████████████▉ | ETA: 0:00:06 Bin 10 ray tracing: 60%|█████████████████▎ | ETA: 0:00:05 Bin 10 ray tracing: 68%|███████████████████▉ | ETA: 0:00:04 Bin 10 ray tracing: 77%|██████████████████████▍ | ETA: 0:00:03 Bin 10 ray tracing: 86%|█████████████████████████ | ETA: 0:00:02 Bin 10 ray tracing: 95%|███████████████████████████▌ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 22%|███████▍ | ETA: 0:00:04 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 1 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 1 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 24%|████████▏ | ETA: 0:00:03 Bin 2 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 2 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 2 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 20%|██████▋ | ETA: 0:00:04 Bin 3 progress: 40%|█████████████▎ | ETA: 0:00:03 Bin 3 progress: 62%|████████████████████▌ | ETA: 0:00:02 Bin 3 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 24%|████████▏ | ETA: 0:00:03 Bin 4 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 4 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 4 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 22%|███████▍ | ETA: 0:00:04 Bin 5 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 5 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 5 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 24%|████████▏ | ETA: 0:00:03 Bin 6 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 6 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 6 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 24%|████████▏ | ETA: 0:00:03 Bin 7 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 7 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 7 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 24%|████████▏ | ETA: 0:00:03 Bin 8 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 8 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 27%|████████▊ | ETA: 0:00:03 Bin 9 progress: 56%|██████████████████▍ | ETA: 0:00:02 Bin 9 progress: 82%|███████████████████████████▏ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 27%|████████▌ | ETA: 0:00:03 Bin 10 progress: 53%|█████████████████▏ | ETA: 0:00:02 Bin 10 progress: 80%|█████████████████████████▋ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:03 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013512226154708672 Iteration 10: d = 1.220155986794301e-5 Iteration 20: d = 1.3991428626844308e-7 Iteration 30: d = 1.8256998276604845e-9 Iteration 40: d = 2.434691938162743e-11 Iteration 50: d = 3.2714772898925695e-13 Iteration 60: d = 4.4126536374104605e-15 Converged after 62 iterations. d = 1.8442384959772425e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015250555028317556 Iteration 10: d = 9.24251976824654e-6 Iteration 20: d = 8.066513800710151e-8 Iteration 30: d = 1.0682613773723772e-9 Iteration 40: d = 1.4705414873427995e-11 Iteration 50: d = 2.0316630607939427e-13 Iteration 60: d = 2.819043510242031e-15 Converged after 61 iterations. d = 1.816165300865004e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013268337869345543 Iteration 10: d = 1.0635069425466587e-5 Iteration 20: d = 1.0666167187268099e-7 Iteration 30: d = 1.4186127110488842e-9 Iteration 40: d = 2.006271255856317e-11 Iteration 50: d = 2.87474387892351e-13 Iteration 60: d = 4.138009750899021e-15 Converged after 62 iterations. d = 1.779448916696784e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001635771789754743 Iteration 10: d = 1.5566725125598987e-5 Iteration 20: d = 1.7241842133634513e-7 Iteration 30: d = 2.2360562678872318e-9 Iteration 40: d = 2.982506679629222e-11 Iteration 50: d = 4.0119989964006924e-13 Iteration 60: d = 5.419037889836492e-15 Converged after 63 iterations. d = 1.458655663396437e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014294454351736008 Iteration 10: d = 1.2318532794226787e-5 Iteration 20: d = 1.4877447756137274e-7 Iteration 30: d = 2.056227525082976e-9 Iteration 40: d = 2.881075843318359e-11 Iteration 50: d = 4.051210953199407e-13 Iteration 60: d = 5.680945175700932e-15 Converged after 63 iterations. d = 1.6344095747686724e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013753032744308717 Iteration 10: d = 1.0927174609805558e-5 Iteration 20: d = 9.845445413547838e-8 Iteration 30: d = 1.243978796097148e-9 Iteration 40: d = 1.7249393904922485e-11 Iteration 50: d = 2.4318671203937366e-13 Iteration 60: d = 3.4233368792003127e-15 Converged after 62 iterations. d = 1.4656367985551165e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011195964354455848 Iteration 10: d = 1.0002792565218935e-5 Iteration 20: d = 8.520683281638038e-8 Iteration 30: d = 8.525536025782557e-10 Iteration 40: d = 9.483027082283047e-12 Iteration 50: d = 1.1430150821798853e-13 Converged after 60 iterations. d = 1.4317385580471395e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016258103972965252 Iteration 10: d = 1.7376451731235132e-5 Iteration 20: d = 2.0672438737268808e-7 Iteration 30: d = 2.7977179938329507e-9 Iteration 40: d = 3.89564393576563e-11 Iteration 50: d = 5.47239453581803e-13 Iteration 60: d = 7.67704908523968e-15 Converged after 63 iterations. d = 2.1552481738596736e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012916736853970801 Iteration 10: d = 1.029917282010359e-5 Iteration 20: d = 1.1630658022200602e-7 Iteration 30: d = 1.6252808074472022e-9 Iteration 40: d = 2.3059112363753983e-11 Iteration 50: d = 3.262366113330882e-13 Iteration 60: d = 4.613211738020094e-15 Converged after 62 iterations. d = 1.9855422987190373e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014953271668856445 Iteration 10: d = 1.1608028669896421e-5 Iteration 20: d = 9.541778589906351e-8 Iteration 30: d = 1.020704111520815e-9 Iteration 40: d = 1.25408972958628e-11 Iteration 50: d = 1.6431612883024406e-13 Converged after 60 iterations. d = 2.181207018487177e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8650.641536931458 Iteration 2: convergence error = 4807.519418708859 Iteration 3: convergence error = 1093.3098062661759 Iteration 4: convergence error = 323.2764996981148 Iteration 5: convergence error = 96.29425598480611 Iteration 6: convergence error = 28.85035778537099 Iteration 7: convergence error = 8.656370415438914 Iteration 8: convergence error = 2.607432034940075 Iteration 9: convergence error = 0.784073943078738 Iteration 10: convergence error = 0.23547345428096378 Iteration 11: convergence error = 0.07066571536824995 Iteration 12: convergence error = 0.021198006797249036 Iteration 13: convergence error = 0.006357385982255437 Iteration 14: convergence error = 0.0019063534712131514 Iteration 15: convergence error = 0.0005716030811981909 Iteration 16: convergence error = 0.00017138240718850284 Iteration 17: convergence error = 5.138385336067586e-5 Iteration 18: convergence error = 1.5405666090373415e-5 Iteration 19: convergence error = 4.618812909029657e-6 Iteration 20: convergence error = 1.3847752597939689e-6 Iteration 21: convergence error = 4.1516955207043793e-7 Iteration 22: convergence error = 1.243479346157983e-7 Iteration 23: convergence error = 3.640525392256677e-8 Iteration 24: convergence error = 1.0557187124504708e-8 Iteration 25: convergence error = 3.0547653295798227e-9 Iteration 26: convergence error = 8.797087502898648e-10 Iteration 27: convergence error = 2.523847797419876e-10 Iteration 28: convergence error = 7.23048287909478e-11 Iteration 29: convergence error = 2.2282620193436742e-11 Iteration 30: convergence error = 6.366462912410498e-12 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.3338887729439 K, F = -7443.00451657848, relative_change = 0.03266611122705613 Iter 2: T = 936.743249257119 K, F = -6309.207670477199, relative_change = 0.03162366156180962 Iter 3: T = 908.1966958199263 K, F = -5346.611121968186, relative_change = 0.03047425584313689 Iter 5: T = 857.0972440096941 K, F = -3835.893075306223, relative_change = 0.027860283517764328 Iter 10: T = 762.096585105066 K, F = -1660.892795725069, relative_change = 0.019935048440808456 Iter 15: T = 706.507039479898 K, F = -711.0724757510635, relative_change = 0.01193609451741003 Iter 20: T = 677.9328018078086 K, F = -301.36131779667846, relative_change = 0.006108812681556559 Iter 25: T = 664.6125263827356 K, F = -126.86366802540611, relative_change = 0.002821038965274901 Iter 30: T = 658.7495624943883 K, F = -53.21407109265577, relative_change = 0.0012338167736695672 Iter 35: T = 656.2415332835184 K, F = -22.283494351013687, relative_change = 0.0005260936823071121 Iter 40: T = 655.1824323569618 K, F = -9.324331998248574, relative_change = 0.00022183575100412416 Iter 45: T = 654.7376860857397 K, F = -3.9004466993054216, relative_change = 9.309603826880015e-5 Iter 50: T = 654.5513676389247 K, F = -1.6313712086081056, relative_change = 3.8990423652124474e-5 Iter 55: T = 654.473390855289 K, F = -0.6822865582680021, relative_change = 1.6316172340796762e-5 Iter 60: T = 654.4407701937829 K, F = -0.28534522290766684, relative_change = 6.825353213173784e-6 Iter 65: T = 654.4271261217258 K, F = -0.11933562594720076, relative_change = 2.854747806794634e-6 Iter 70: T = 654.4214197066276 K, F = -0.04990773190811221, relative_change = 1.1939427304864291e-6 Iter 75: T = 654.4190331629964 K, F = -0.02087203538671545, relative_change = 4.993303972220894e-7 Iter 80: T = 654.418035072733 K, F = -0.00872893898791871, relative_change = 2.0882755997908656e-7 Iter 85: T = 654.4176176578534 K, F = -0.003650547321597364, relative_change = 8.733446365735759e-8 Iter 90: T = 654.4174430896838 K, F = -0.0015267026244455972, relative_change = 3.6524365378968454e-8 Iter 95: T = 654.4173700831412 K, F = -0.0006384852940050645, relative_change = 1.5274934476594908e-8 Iter 100: T = 654.4173395509247 K, F = -0.0002670221805995965, relative_change = 6.3881615704547555e-9 Iter 105: T = 654.4173267819855 K, F = -0.00011167186486588099, relative_change = 2.6716057082074307e-9 Iter 110: T = 654.4173214418624 K, F = -4.670250795435482e-5, relative_change = 1.117297466427435e-9 Iter 115: T = 654.4173192085592 K, F = -1.9531546894435703e-5, relative_change = 4.672671591097075e-10 Iter 120: T = 654.4173182745651 K, F = -8.168326567414841e-6, relative_change = 1.9541671719093657e-10 Iter 125: T = 654.4173178839575 K, F = -3.416090928687332e-6, relative_change = 8.17255861769663e-11 Iter 130: T = 654.4173177206007 K, F = -1.4286500148452674e-6, relative_change = 3.4178615991520844e-11 Iter 135: T = 654.417317652283 K, F = -5.974781872031265e-7, relative_change = 1.4293897960787252e-11 Iter 140: T = 654.4173176237117 K, F = -2.4987259600317557e-7, relative_change = 5.977880812566894e-12 Iter 145: T = 654.4173176117629 K, F = -1.0449971366011113e-7, relative_change = 2.5000213839130978e-12 Iter 150: T = 654.4173176067658 K, F = -4.37024422206278e-8, relative_change = 1.0455247795236114e-12 Iter 155: T = 654.417317604676 K, F = -1.8277929170196217e-8, relative_change = 4.372759712062059e-13 Converged in 159 iterations to T = 654.4173176039217 K Iter 1: T = 970.3720605876016 K, F = -6750.754178561222, relative_change = 0.029627939412398392 Iter 2: T = 942.9089850020845 K, F = -5717.688478125088, relative_change = 0.028301593482490627 Iter 3: T = 917.5658448643993 K, F = -4840.962079779684, relative_change = 0.026877610183796394 Iter 5: T = 873.0224903554483 K, F = -3466.063010548338, relative_change = 0.0237820598862644 Iter 10: T = 793.9867321415674 K, F = -1491.8070934886866, relative_change = 0.015476378500485976 Iter 15: T = 750.9450268001608 K, F = -634.9995340122962, relative_change = 0.008469444051976886 Iter 20: T = 730.0594752044724 K, F = -268.0292426944662, relative_change = 0.0040732389032974384 Iter 25: T = 720.6610827599437 K, F = -112.57934984077431, relative_change = 0.0018182344718160688 Iter 30: T = 716.5979506291651 K, F = -47.1719373491956, relative_change = 0.0007825220736366075 Iter 35: T = 714.8740774521477 K, F = -19.74397844851096, relative_change = 0.0003312951677369043 Iter 40: T = 714.1487138642765 K, F = -8.260014655084648, relative_change = 0.000139270179396977 Iter 45: T = 713.8445767048005 K, F = -3.4549369041697213, relative_change = 5.837109241636995e-5 Iter 50: T = 713.7172456055665 K, F = -1.44498350712625, relative_change = 2.4433708222784574e-5 Iter 55: T = 713.6639701576086 K, F = -0.6043246982079254, relative_change = 1.0222360125681547e-5 Iter 60: T = 713.6416855172229 K, F = -0.25273848953898365, relative_change = 4.275794101472406e-6 Iter 65: T = 713.6323650775807 K, F = -0.10569872406779246, relative_change = 1.7883072951127197e-6 Iter 70: T = 713.628467029511 K, F = -0.044204550812266596, relative_change = 7.479123070405989e-7 Iter 75: T = 713.6268367967094 K, F = -0.018486885417979826, relative_change = 3.127895036538501e-7 Iter 80: T = 713.6261550099395 K, F = -0.00773143877182092, relative_change = 1.3081294341921625e-7 Iter 85: T = 713.6258698778804 K, F = -0.0032333804658848386, relative_change = 5.470764666768516e-8 Iter 90: T = 713.6257506321274 K, F = -0.001352238401382988, relative_change = 2.2879410669106087e-8 Iter 95: T = 713.6257007621084 K, F = -0.0005655222629188383, relative_change = 9.568446205652628e-9 Iter 100: T = 713.6256799058672 K, F = -0.00023650816604525726, relative_change = 4.001639064065943e-9 Iter 105: T = 713.6256711835373 K, F = -9.89105392837919e-5, relative_change = 1.6735333392388647e-9 Iter 110: T = 713.6256675357548 K, F = -4.136556976575001e-5, relative_change = 6.998916625633451e-10 Iter 115: T = 713.6256660102085 K, F = -1.7299576615226187e-5, relative_change = 2.927030772372439e-10 Iter 120: T = 713.6256653722068 K, F = -7.234888887985846e-6, relative_change = 1.2241191198478258e-10 Iter 125: T = 713.6256651053868 K, F = -3.0257165701819133e-6, relative_change = 5.119411740440154e-11 Iter 130: T = 713.6256649937995 K, F = -1.2653898142644948e-6, relative_change = 2.1409974549639863e-11 Iter 135: T = 713.6256649471325 K, F = -5.292017980496055e-7, relative_change = 8.953918313289909e-12 Iter 140: T = 713.6256649276156 K, F = -2.213184262522816e-7, relative_change = 3.744634121521046e-12 Iter 145: T = 713.6256649194536 K, F = -9.255725896828437e-8, relative_change = 1.5660380204894866e-12 Iter 150: T = 713.6256649160401 K, F = -3.8709553451532486e-8, relative_change = 6.549527626290518e-13 Iter 155: T = 713.6256649146126 K, F = -1.6188952622897546e-8, relative_change = 2.7391169102000606e-13 Converged in 157 iterations to T = 713.6256649143105 K Iter 1: T = 974.3016879300433 K, F = -5855.384850545269, relative_change = 0.025698312069956722 Iter 2: T = 950.793376098702 K, F = -4954.017239921385, relative_change = 0.02412837021896778 Iter 3: T = 929.4012603696241 K, F = -4189.599576547119, relative_change = 0.022499226716170485 Iter 5: T = 892.6161049003488 K, F = -2992.357453522537, relative_change = 0.019147027760579877 Iter 10: T = 830.5701943773549 K, F = -1279.7658084870516, relative_change = 0.011278104259775856 Iter 15: T = 799.0208739044745 K, F = -541.955180140064, relative_change = 0.005702952172630867 Iter 20: T = 784.4159597995488 K, F = -228.04331012978156, relative_change = 0.0026156578843331752 Iter 25: T = 778.0110170969378 K, F = -95.63373161857623, relative_change = 0.0011402051035597515 Iter 30: T = 775.2757976117681 K, F = -40.04286573814631, relative_change = 0.0004854588396970484 Iter 35: T = 774.1216183621337 K, F = -16.754873883509898, relative_change = 0.0002045710755309776 Iter 40: T = 773.6371001451469 K, F = -7.00857912730885, relative_change = 8.58275665500538e-5 Iter 45: T = 773.4341471836453 K, F = -2.9313329302487006, relative_change = 3.594217353867751e-5 Iter 50: T = 773.3492134131527 K, F = -1.2259642162619229, relative_change = 1.5039868532426587e-5 Iter 55: T = 773.3136832166485 K, F = -0.5127208865422663, relative_change = 6.291326918894308e-6 Iter 60: T = 773.2988223353799 K, F = -0.21442739916733655, relative_change = 2.6313659942977943e-6 Iter 65: T = 773.2926070349308 K, F = -0.08967634421749882, relative_change = 1.1005138047177357e-6 Iter 70: T = 773.2900076691578 K, F = -0.03750376097501429, relative_change = 4.6025590813209627e-7 Iter 75: T = 773.2889205740962 K, F = -0.01568452822243216, relative_change = 1.9248589772554094e-7 Iter 80: T = 773.2884659363407 K, F = -0.006559458323716849, relative_change = 8.050014259128945e-8 Iter 85: T = 773.2882758011189 K, F = -0.002743244036824577, relative_change = 3.366616323371136e-8 Iter 90: T = 773.2881962842489 K, F = -0.0011472574568449634, relative_change = 1.407959889996236e-8 Iter 95: T = 773.2881630293357 K, F = -0.0004797967777762091, relative_change = 5.8882577118710706e-9 Iter 100: T = 773.2881491217323 K, F = -0.00020065674512592668, relative_change = 2.4625399394657946e-9 Iter 105: T = 773.2881433054063 K, F = -8.391704788568433e-5, relative_change = 1.0298636574182582e-9 Iter 110: T = 773.2881408729492 K, F = -3.509511179911051e-5, relative_change = 4.3070128951013225e-10 Iter 115: T = 773.2881398556664 K, F = -1.4677193557188772e-5, relative_change = 1.8012440784491253e-10 Iter 120: T = 773.2881394302267 K, F = -6.138179125980692e-6, relative_change = 7.533019707762412e-11 Iter 125: T = 773.2881392523028 K, F = -2.5670605128258472e-6, relative_change = 3.150399663879253e-11 Iter 130: T = 773.2881391778927 K, F = -1.0735748859902472e-6, relative_change = 1.3175341775637706e-11 Iter 135: T = 773.2881391467736 K, F = -4.489801737062038e-7, relative_change = 5.510064847261703e-12 Iter 140: T = 773.2881391337593 K, F = -1.8776932009245684e-7, relative_change = 2.3043804397376352e-12 Iter 145: T = 773.2881391283165 K, F = -7.852721173318145e-8, relative_change = 9.637174519353904e-13 Iter 150: T = 773.2881391260403 K, F = -3.284241245626873e-8, relative_change = 4.0305526389696133e-13 Converged in 154 iterations to T = 773.2881391252187 K Iter 1: T = 970.4401256004329 K, F = -6735.245500641066, relative_change = 0.02955987439956708 Iter 2: T = 943.0464134272147 K, F = -5704.447371330163, relative_change = 0.02822813221605935 Iter 3: T = 917.7735206219098 K, F = -4829.654499158565, relative_change = 0.026799203565663645 Iter 5: T = 873.3711949334416 K, F = -3457.814395268132, relative_change = 0.023695956361936575 Iter 10: T = 794.6614983026151 K, F = -1488.0750428778363, relative_change = 0.015390659276979888 Iter 15: T = 751.8568478479308 K, F = -633.3427643255025, relative_change = 0.008408514852008374 Iter 20: T = 731.1076074049788 K, F = -267.311258983403, relative_change = 0.004039631125906346 Iter 25: T = 721.7760545515257 K, F = -112.27367414241212, relative_change = 0.0018022363724388094 Iter 30: T = 717.7429815579618 K, F = -47.04305836096961, relative_change = 0.0007754389635611927 Iter 35: T = 716.0320831658311 K, F = -19.689889589718618, relative_change = 0.00032825980624491053 Iter 40: T = 715.3122192549573 K, F = -8.23736018473831, relative_change = 0.0001379876174448237 Iter 45: T = 715.0103951941132 K, F = -3.4454565656952525, relative_change = 5.7832385704031266e-5 Iter 50: T = 714.884033762252 K, F = -1.4410176691033505, relative_change = 2.4208006233957208e-5 Iter 55: T = 714.8311642445755 K, F = -0.6026659539692392, relative_change = 1.0127897284781877e-5 Iter 60: T = 714.8090494397956 K, F = -0.2520447507934, relative_change = 4.236276084543913e-6 Iter 65: T = 714.7998000398065 K, F = -0.105408588624742, relative_change = 1.7717781964364928e-6 Iter 70: T = 714.7959317035328 K, F = -0.04408321172226626, relative_change = 7.409992571161608e-7 Iter 75: T = 714.7943138969379 K, F = -0.01843613979022307, relative_change = 3.0989831655647547e-7 Iter 80: T = 714.7936373070221 K, F = -0.007710216313609797, relative_change = 1.2960380270612772e-7 Iter 85: T = 714.793354348361 K, F = -0.003224504974605802, relative_change = 5.420196752033474e-8 Iter 90: T = 714.7932360115512 K, F = -0.0013485265657630086, relative_change = 2.266792928123091e-8 Iter 95: T = 714.7931865216633 K, F = -0.0005639699268620291, relative_change = 9.480002068635148e-9 Iter 100: T = 714.7931658243976 K, F = -0.0002358589624291696, relative_change = 3.9646506905541224e-9 Iter 105: T = 714.7931571685533 K, F = -9.863903627116422e-5, relative_change = 1.6580643863925457e-9 Iter 110: T = 714.7931535485757 K, F = -4.125202330562683e-5, relative_change = 6.934223502640426e-10 Iter 115: T = 714.7931520346577 K, F = -1.72520888830352e-5, relative_change = 2.899975124187739e-10 Iter 120: T = 714.7931514015193 K, F = -7.215029897644776e-6, relative_change = 1.2128042843701555e-10 Iter 125: T = 714.7931511367332 K, F = -3.017411747352483e-6, relative_change = 5.0720924975610164e-11 Iter 130: T = 714.7931510259964 K, F = -1.261917461969908e-6, relative_change = 2.1212093781154707e-11 Iter 135: T = 714.793150979685 K, F = -5.277487132859804e-7, relative_change = 8.871146917234869e-12 Iter 140: T = 714.7931509603171 K, F = -2.2071159899716974e-7, relative_change = 3.710032771284686e-12 Iter 145: T = 714.7931509522172 K, F = -9.230440978225118e-8, relative_change = 1.5515830921469154e-12 Iter 150: T = 714.7931509488296 K, F = -3.860394404142653e-8, relative_change = 6.489097000621516e-13 Iter 155: T = 714.793150947413 K, F = -1.6144195869038924e-8, relative_change = 2.7137448152912645e-13 Converged in 157 iterations to T = 714.7931509471132 K Iter 1: T = 969.3282319896666 K, F = -6988.591517538048, relative_change = 0.030671768010333396 Iter 2: T = 940.7975656857935 K, F = -5920.810608890313, relative_change = 0.029433442008916216 Iter 3: T = 914.3688879999125 K, F = -5014.485210925236, relative_change = 0.028091779411244393 Iter 5: T = 867.631478046172 K, F = -3592.7608888952113, relative_change = 0.02513042344790444 Iter 10: T = 783.4328999673864 K, F = -1549.3334770423044, relative_change = 0.016861592833210506 Iter 15: T = 736.5412244314695 K, F = -660.6462876561272, relative_change = 0.009482319225853124 Iter 20: T = 713.3979934257768 K, F = -279.1807274939509, relative_change = 0.0046424709912878705 Iter 25: T = 702.8795447925396 K, F = -117.33613855568501, relative_change = 0.0020918970923695063 Iter 30: T = 698.3097493750721 K, F = -49.17936722578956, relative_change = 0.0009042461994407863 Iter 35: T = 696.3665983262943 K, F = -20.586822197863658, relative_change = 0.00038356405720634435 Iter 40: T = 695.5481815884359 K, F = -8.613092936911592, relative_change = 0.0001613749987380417 Iter 45: T = 695.2048882720928 K, F = -3.602702685692104, relative_change = 6.76590351009194e-5 Iter 50: T = 695.0611392605916 K, F = -1.506799215269377, relative_change = 2.8325674460558445e-5 Iter 55: T = 695.0009902163599 K, F = -0.6301799698694392, relative_change = 1.1851365624410097e-5 Iter 60: T = 694.9758296547706 K, F = -0.26355203370044444, relative_change = 4.9572980147438895e-6 Iter 65: T = 694.9653062428332 K, F = -0.11022117548148797, relative_change = 2.0733613757392727e-6 Iter 70: T = 694.9609050575482 K, F = -0.046095911162678416, relative_change = 8.671325007989272e-7 Iter 75: T = 694.9590643997868 K, F = -0.019277877906421992, relative_change = 3.6265006712650227e-7 Iter 80: T = 694.9582946095668 K, F = -0.008062241801087389, relative_change = 1.5166544595154705e-7 Iter 85: T = 694.9579726732009 K, F = -0.003371726334859604, relative_change = 6.342845063294182e-8 Iter 90: T = 694.95783803541 K, F = -0.0014100963126072452, relative_change = 2.6526561757483974e-8 Iter 95: T = 694.9577817282503 K, F = -0.0005897191345105579, relative_change = 1.1093729510369053e-8 Iter 100: T = 694.9577581799189 K, F = -0.00024662758761384573, relative_change = 4.639530970026746e-9 Iter 105: T = 694.9577483317247 K, F = -0.00010314260422950028, relative_change = 1.9403074228967414e-9 Iter 110: T = 694.9577442130919 K, F = -4.313546842416027e-5, relative_change = 8.114597508988789e-10 Iter 115: T = 694.9577424906306 K, F = -1.8039767766375725e-5, relative_change = 3.393621575352893e-10 Iter 120: T = 694.9577417702767 K, F = -7.5444469146424e-6, relative_change = 1.4192531900388148e-10 Iter 125: T = 694.9577414690161 K, F = -3.1551781444205673e-6, relative_change = 5.93548699661583e-11 Iter 130: T = 694.9577413430253 K, F = -1.3195328707471532e-6, relative_change = 2.482290965578898e-11 Iter 135: T = 694.9577412903344 K, F = -5.518450201247305e-7, relative_change = 1.0381248839781999e-11 Iter 140: T = 694.9577412682985 K, F = -2.307873313567299e-7, relative_change = 4.341546319841048e-12 Iter 145: T = 694.9577412590829 K, F = -9.651981935920873e-8, relative_change = 1.815720404121447e-12 Iter 150: T = 694.9577412552287 K, F = -4.036595402379106e-8, relative_change = 7.593599619368557e-13 Iter 155: T = 694.957741253617 K, F = -1.6882961029196508e-8, relative_change = 3.1760043716785667e-13 Converged in 158 iterations to T = 694.957741253145 K Iter 1: T = 963.6293209764337 K, F = -8287.093812967032, relative_change = 0.03637067902356624 Iter 2: T = 929.1407227280287 K, F = -7031.748759226125, relative_change = 0.035790316356769034 Iter 3: T = 896.5009408617425 K, F = -5965.632787587153, relative_change = 0.035128997220628996 Iter 5: T = 836.6497191319585 K, F = -4291.4097562327115, relative_change = 0.033534483197495274 Iter 10: T = 717.438030189836 K, F = -1875.0105999885807, relative_change = 0.02774987460306355 Iter 15: T = 638.3305247748848 K, F = -811.7181864985746, relative_change = 0.019802642092825715 Iter 20: T = 592.1399602383163 K, F = -347.45614727924453, relative_change = 0.011823833440198828 Iter 25: T = 568.4410661479938 K, F = -147.2363093325863, relative_change = 0.00603882317135577 Iter 30: T = 557.406829327366 K, F = -61.97701796107629, relative_change = 0.0027854092730584816 Iter 35: T = 552.5531633808524 K, F = -25.99580355182666, relative_change = 0.0012175301098317347 Iter 40: T = 550.4775030313735 K, F = -10.885605243394238, relative_change = 0.0005190149069528009 Iter 45: T = 549.6010988605765 K, F = -4.554951857383535, relative_change = 0.00021882650565649458 Iter 50: T = 549.2330925798872 K, F = -1.9053687789406142, relative_change = 9.182884260414561e-5 Iter 55: T = 549.0789265914187 K, F = -0.7969240185801224, relative_change = 3.845893525759522e-5 Iter 60: T = 549.0144066813583 K, F = -0.33329645737163, relative_change = 1.609362874000458e-5 Iter 65: T = 548.9874156545595 K, F = -0.1393908889245521, relative_change = 6.732235744420523e-6 Iter 70: T = 548.9761262796286 K, F = -0.05829534203205461, relative_change = 2.815796730892432e-6 Iter 75: T = 548.9714046823867 K, F = -0.024379879524254966, relative_change = 1.1776514841429456e-6 Iter 80: T = 548.969430011034 K, F = -0.01019596924161173, relative_change = 4.925169512860538e-7 Iter 85: T = 548.9686041723712 K, F = -0.004264078282142314, relative_change = 2.0597805141587554e-7 Iter 90: T = 548.9682587954645 K, F = -0.0017832888422855686, relative_change = 8.614275741396489e-8 Iter 95: T = 548.9681143544875 K, F = -0.000745792757875452, relative_change = 3.6025978279725114e-8 Iter 100: T = 548.9680539475056 K, F = -0.00031189944912513035, relative_change = 1.506650278843451e-8 Iter 105: T = 548.9680286845773 K, F = -0.00013044007642315503, relative_change = 6.300992872021762e-9 Iter 110: T = 548.9680181193178 K, F = -5.455159788003705e-5, relative_change = 2.6351507168622192e-9 Iter 115: T = 548.9680137007999 K, F = -2.2814129339271405e-5, relative_change = 1.1020515241160494e-9 Iter 120: T = 548.9680118529229 K, F = -9.541141606894676e-6, relative_change = 4.6089112855562123e-10 Iter 125: T = 548.9680110801187 K, F = -3.990219183513943e-6, relative_change = 1.9275016667508e-10 Iter 130: T = 548.9680107569227 K, F = -1.6687574705409602e-6, relative_change = 8.061042932617797e-11 Iter 135: T = 548.9680106217584 K, F = -6.978946600066926e-7, relative_change = 3.3712261503940704e-11 Iter 140: T = 548.9680105652309 K, F = -2.918671313523191e-7, relative_change = 1.4098834143943203e-11 Iter 145: T = 548.9680105415906 K, F = -1.220632004916844e-7, relative_change = 5.896343350449335e-12 Iter 150: T = 548.968010531704 K, F = -5.1048681476428825e-8, relative_change = 2.4659402046324453e-12 Iter 155: T = 548.9680105275692 K, F = -2.1349644746537777e-8, relative_change = 1.0313086609554127e-12 Iter 160: T = 548.9680105258399 K, F = -8.92841811594991e-9, relative_change = 4.3129312178562946e-13 Converged in 164 iterations to T = 548.9680105252157 K Iter 1: T = 966.9377493178695 K, F = -7533.265268243081, relative_change = 0.033062250682130506 Iter 2: T = 935.9347499267706 K, F = -6386.404078300015, relative_change = 0.03206307687642778 Iter 3: T = 906.9605233013843 K, F = -5412.674827647854, relative_change = 0.030957528425622875 Iter 5: T = 854.9668191803958 K, F = -3884.3570208026704, relative_change = 0.0284280027109549 Iter 10: T = 757.6563612216282 K, F = -1683.3331310147114, relative_change = 0.020624041652079744 Iter 15: T = 700.0819370777234 K, F = -721.3484158343658, relative_change = 0.012529065672273104 Iter 20: T = 670.197868503867 K, F = -305.9345733751078, relative_change = 0.006482981954368597 Iter 25: T = 656.1773936932242 K, F = -128.842689781833, relative_change = 0.003012884385870146 Iter 30: T = 649.9851632305797 K, F = -54.05531770298711, relative_change = 0.0013218217930573164 Iter 35: T = 647.3320473950965 K, F = -22.637866641036556, relative_change = 0.0005644049056781111 Iter 40: T = 646.2108911742991 K, F = -9.472995164384344, relative_change = 0.00023813338996822936 Iter 45: T = 645.7399447316692 K, F = -3.9627010001977734, relative_change = 9.996099238050221e-5 Iter 50: T = 645.5426251857256 K, F = -1.6574210493637345, relative_change = 4.1870082966680764e-5 Iter 55: T = 645.4600398991468 K, F = -0.693183428150679, relative_change = 1.7521998794316118e-5 Iter 60: T = 645.425490555042 K, F = -0.2899028643963646, relative_change = 7.329910199648372e-6 Iter 65: T = 645.4110396482812 K, F = -0.12124176309902823, relative_change = 3.0658061084631103e-6 Iter 70: T = 645.4049957638762 K, F = -0.050704914707730975, relative_change = 1.2822179754229465e-6 Iter 75: T = 645.402468079309 K, F = -0.021205429109994733, relative_change = 5.362495831399903e-7 Iter 80: T = 645.401410960954 K, F = -0.008868368637843405, relative_change = 2.2426785358053217e-7 Iter 85: T = 645.4009688596 K, F = -0.003708858537967319, relative_change = 9.379182239698802e-8 Iter 90: T = 645.4007839672132 K, F = -0.0015510890846506808, relative_change = 3.922491755426211e-8 Iter 95: T = 645.400706642953 K, F = -0.0006486840047057463, relative_change = 1.640433896993058e-8 Iter 100: T = 645.400674305014 K, F = -0.00027128740246329386, relative_change = 6.8604922236738525e-9 Iter 105: T = 645.4006607809001 K, F = -0.00011345563292813887, relative_change = 2.869140100208918e-9 Iter 110: T = 645.4006551249539 K, F = -4.744850128762801e-5, relative_change = 1.1999087211949976e-9 Iter 115: T = 645.4006527595695 K, F = -1.9843530313867763e-5, relative_change = 5.018161765329679e-10 Iter 120: T = 645.4006517703376 K, F = -8.29880137082073e-6, relative_change = 2.098655198057836e-10 Iter 125: T = 645.4006513566289 K, F = -3.4706582478505332e-6, relative_change = 8.77682772402877e-11 Iter 130: T = 645.400651183611 K, F = -1.4514704794188482e-6, relative_change = 3.6705735485543596e-11 Iter 135: T = 645.4006511112528 K, F = -6.070215623488195e-7, relative_change = 1.5350758578577113e-11 Iter 140: T = 645.4006510809918 K, F = -2.538636780791137e-7, relative_change = 6.4198708524502886e-12 Iter 145: T = 645.4006510683363 K, F = -1.0616834383858631e-7, relative_change = 2.684854569520116e-12 Iter 150: T = 645.4006510630436 K, F = -4.4400483067974506e-8, relative_change = 1.1228284773834859e-12 Iter 155: T = 645.4006510608301 K, F = -1.8568725446144185e-8, relative_change = 4.695780829246193e-13 Converged in 160 iterations to T = 645.4006510599045 K Iter 1: T = 965.2688369904259 K, F = -7913.528529596569, relative_change = 0.03473116300957409 Iter 2: T = 932.5169029630329 K, F = -6711.8040537285, relative_change = 0.03393037542733598 Iter 3: T = 901.7148136855186 K, F = -5691.338166243608, relative_change = 0.03303113238981717 Iter 5: T = 845.846770518875 K, F = -4089.170933960184, relative_change = 0.030919375790481544 Iter 10: T = 738.116902884084 K, F = -1779.0141399517452, relative_change = 0.023877324839201568 Iter 15: T = 670.9599173513191 K, F = -765.7971600492167, relative_change = 0.015571298045330806 Iter 20: T = 634.3314101376342 K, F = -326.0062342338483, relative_change = 0.008537043568338662 Iter 25: T = 616.5377145489969 K, F = -137.61574969073772, relative_change = 0.004110584288274325 Iter 30: T = 608.5254294346742 K, F = -57.80457896695879, relative_change = 0.0018360274348259646 Iter 35: T = 605.0604374188906 K, F = -24.221183870232487, relative_change = 0.0007904031684408107 Iter 40: T = 603.59012766826 K, F = -10.137944029037001, relative_change = 0.00033467312265667216 Iter 45: T = 602.9714191023526 K, F = -4.241286012035706, relative_change = 0.00014069761467795636 Iter 50: T = 602.7119944497792 K, F = -1.7740158853313015, relative_change = 5.89706696004523e-5 Iter 55: T = 602.6033816440404 K, F = -0.7419600866852859, relative_change = 2.468491667316582e-5 Iter 60: T = 602.557937737201 K, F = -0.3103045257470893, relative_change = 1.0327498785336236e-5 Iter 65: T = 602.5389289232174 K, F = -0.12977445053836623, relative_change = 4.319778398494685e-6 Iter 70: T = 602.530978575189 K, F = -0.05427346854483284, relative_change = 1.8067045123272155e-6 Iter 75: T = 602.5276535336174 K, F = -0.022697855293374758, relative_change = 7.556066730937675e-7 Iter 80: T = 602.5262629420939 K, F = -0.009492521599821002, relative_change = 3.1600745467389095e-7 Iter 85: T = 602.5256813767136 K, F = -0.003969887199488431, relative_change = 1.321587421177339e-7 Iter 90: T = 602.5254381585319 K, F = -0.00166025446499396, relative_change = 5.527047806266475e-8 Iter 95: T = 602.5253364416798 K, F = -0.0006943382845888135, relative_change = 2.3114793894502512e-8 Iter 100: T = 602.5252939024593 K, F = -0.00029038057035007947, relative_change = 9.666886357448324e-9 Iter 105: T = 602.5252761120462 K, F = -0.00012144062469165995, relative_change = 4.042807966398693e-9 Iter 110: T = 602.5252686718823 K, F = -5.07879198860528e-5, relative_change = 1.6907506833442516e-9 Iter 115: T = 602.5252655603168 K, F = -2.1240115151255345e-5, relative_change = 7.070921622663683e-10 Iter 120: T = 602.525264259023 K, F = -8.88286982558828e-6, relative_change = 2.9571439005679533e-10 Iter 125: T = 602.5252637148062 K, F = -3.714921530395543e-6, relative_change = 1.2367126624204974e-10 Iter 130: T = 602.5252634872083 K, F = -1.5536244029612511e-6, relative_change = 5.1720795702473684e-11 Iter 135: T = 602.5252633920242 K, F = -6.497447594955297e-7, relative_change = 2.1630270434632383e-11 Iter 140: T = 602.525263352217 K, F = -2.717311830546798e-7, relative_change = 9.046042912924058e-12 Iter 145: T = 602.5252633355693 K, F = -1.1364183027939845e-7, relative_change = 3.783183298984999e-12 Iter 150: T = 602.5252633286069 K, F = -4.7525928359437586e-8, relative_change = 1.5821577143382935e-12 Iter 155: T = 602.525263325695 K, F = -1.987543657433477e-8, relative_change = 6.616614632926839e-13 Iter 160: T = 602.5252633244774 K, F = -8.311919486025943e-9, relative_change = 2.767072204617417e-13 Converged in 162 iterations to T = 602.5252633242196 K Iter 1: T = 979.9830963148249 K, F = -4560.870545658186, relative_change = 0.020016903685175065 Iter 2: T = 962.0167306883868 K, F = -3852.7479875938798, relative_change = 0.018333342374985524 Iter 3: T = 945.981138535529 K, F = -3253.0517937642153, relative_change = 0.016668724816649813 Iter 5: T = 919.1826160360163 K, F = -2315.975751007397, relative_change = 0.013485776732063973 Iter 10: T = 876.5719573401472 K, F = -983.3838046481217, relative_change = 0.007104156105649138 Iter 15: T = 856.3675053740909 K, F = -414.4361505906613, relative_change = 0.0033367976979052595 Iter 20: T = 847.3926948926236 K, F = -173.93533905374153, relative_change = 0.0014716588353950641 Iter 25: T = 843.5368942824392 K, F = -72.85403360525669, relative_change = 0.0006298804467360014 Iter 30: T = 841.905548404042 K, F = -30.488437883013017, relative_change = 0.0002660323118154914 Iter 35: T = 841.2199420914833 K, F = -12.754157958033964, relative_change = 0.00011172083135146767 Iter 40: T = 840.932620837005 K, F = -5.334560584044533, relative_change = 4.680445037357959e-5 Iter 45: T = 840.8123556429713 K, F = -2.231085438339044, relative_change = 1.95884648380804e-5 Iter 50: T = 840.7620410821619 K, F = -0.9330855623238129, relative_change = 8.194631023508526e-6 Iter 55: T = 840.740995743115 K, F = -0.3902308472346505, relative_change = 3.4275301982534325e-6 Iter 60: T = 840.7321937731105 K, F = -0.1631997816534272, relative_change = 1.433510620080706e-6 Iter 65: T = 840.7285125865523 K, F = -0.06825219931474091, relative_change = 5.995246520523511e-7 Iter 70: T = 840.7269730533028 K, F = -0.028543902623930473, relative_change = 2.5073071146043383e-7 Iter 75: T = 840.7263291991268 K, F = -0.011937404070127666, relative_change = 1.048589875299349e-7 Iter 80: T = 840.7260599310991 K, F = -0.004992365487329176, relative_change = 4.385335250519222e-8 Iter 85: T = 840.7259473199028 K, F = -0.0020878669617101497, relative_change = 1.8340008254780483e-8 Iter 90: T = 840.7259002245397 K, F = -0.0008731709142448807, relative_change = 7.67001266840826e-9 Iter 95: T = 840.7258805286937 K, F = -0.00036517050834383724, relative_change = 3.2076912914210296e-9 Iter 100: T = 840.7258722916552 K, F = -0.00015271866864652317, relative_change = 1.3414948773622113e-9 Iter 105: T = 840.7258688468271 K, F = -6.386876991038015e-5, relative_change = 5.610291792685131e-10 Iter 110: T = 840.7258674061588 K, F = -2.6710678455277304e-5, relative_change = 2.346290707455736e-10 Iter 115: T = 840.7258668036543 K, F = -1.1170726143427956e-5, relative_change = 9.812469226183918e-11 Iter 120: T = 840.7258665516797 K, F = -4.671731739014362e-6, relative_change = 4.1036924009144006e-11 Iter 125: T = 840.7258664463009 K, F = -1.9537749866849197e-6, relative_change = 1.7162140333922548e-11 Iter 130: T = 840.7258664022302 K, F = -8.170919039152125e-7, relative_change = 7.177410919769472e-12 Iter 135: T = 840.7258663837993 K, F = -3.4171640739266707e-7, relative_change = 3.0016685545265585e-12 Iter 140: T = 840.7258663760913 K, F = -1.42909379219347e-7, relative_change = 1.255329215946673e-12 Iter 145: T = 840.7258663728677 K, F = -5.976858052925138e-8, relative_change = 5.250127440567808e-13 Converged in 150 iterations to T = 840.7258663715196 K Iter 1: T = 976.4042616355184 K, F = -5376.311431688823, relative_change = 0.023595738364481568 Iter 2: T = 954.9708376149931 K, F = -4546.06724534047, relative_change = 0.02195138311320296 Iter 3: T = 935.6083634025148 K, F = -3842.2947656753267, relative_change = 0.020275461249513575 Iter 5: T = 902.6763355716676 K, F = -2740.917542137889, relative_change = 0.016922031100817275 Iter 10: T = 848.4217313600041 K, F = -1168.8372008360784, relative_change = 0.00952784280473537 Iter 15: T = 821.6240308114438 K, F = -493.9620877753523, relative_change = 0.004668554575749545 Iter 20: T = 809.4390739445231 K, F = -207.61200970140044, relative_change = 0.0021045652565569294 Iter 25: T = 804.1440427201494 K, F = -87.01808229967168, relative_change = 0.0009099077236298345 Iter 30: T = 801.8922754708889 K, F = -36.42658705492019, relative_change = 0.00038600019934488777 Iter 35: T = 800.9438329366506 K, F = -15.240156022572377, relative_change = 0.00016240617177208213 Iter 40: T = 800.545991344826 K, F = -6.37469150058601, relative_change = 6.809247271330619e-5 Iter 45: T = 800.3793997049693 K, F = -2.6661607534953378, relative_change = 2.850732819609916e-5 Iter 50: T = 800.3096923610436 K, F = -1.1150532901142558, relative_change = 1.1927402871410541e-5 Iter 55: T = 800.280533487041 K, F = -0.46633438019726126, relative_change = 4.989109514326903e-6 Iter 60: T = 800.2683377725946 K, F = -0.19502761766517174, relative_change = 2.086667392075467e-6 Iter 65: T = 800.263237182351 K, F = -0.08156305559271848, relative_change = 8.72697597371185e-7 Iter 70: T = 800.2611040201721 K, F = -0.034110674827885545, relative_change = 3.649775202332768e-7 Iter 75: T = 800.2602119002524 K, F = -0.014265496983120407, relative_change = 1.526388256913912e-7 Iter 80: T = 800.259838803995 K, F = -0.005966002148185656, relative_change = 6.38355315966007e-8 Iter 85: T = 800.2596827705001 K, F = -0.0024950535125636275, relative_change = 2.6696808221052874e-8 Iter 90: T = 800.259617515397 K, F = -0.0010434612037202307, relative_change = 1.1164928654600139e-8 Iter 95: T = 800.259590224928 K, F = -0.00043638794310263407, relative_change = 4.669307324695707e-9 Iter 100: T = 800.259578811727 K, F = -0.00018250265092634166, relative_change = 1.9527602356599327e-9 Iter 105: T = 800.2595740385898 K, F = -7.632478946351107e-5, relative_change = 8.166676885818662e-10 Iter 110: T = 800.2595720424068 K, F = -3.191993815665484e-5, relative_change = 3.4154018120327773e-10 Iter 115: T = 800.2595712075793 K, F = -1.3349299392451108e-5, relative_change = 1.428361838830758e-10 Iter 120: T = 800.2595708584444 K, F = -5.582836972606309e-6, relative_change = 5.973580385168477e-11 Iter 125: T = 800.2595707124319 K, F = -2.3348085708141397e-6, relative_change = 2.4982220978850562e-11 Iter 130: T = 800.2595706513679 K, F = -9.764450473737085e-7, relative_change = 1.0447865517107747e-11 Iter 135: T = 800.2595706258301 K, F = -4.0836005377187234e-7, relative_change = 4.369412222931556e-12 Iter 140: T = 800.2595706151499 K, F = -1.7078031522288484e-7, relative_change = 1.8273324972066404e-12 Iter 145: T = 800.2595706106833 K, F = -7.142141833504922e-8, relative_change = 7.642021186889418e-13 Iter 150: T = 800.2595706088154 K, F = -2.987020131239859e-8, relative_change = 3.1960820242702855e-13 Converged in 153 iterations to T = 800.2595706082685 K Iter 1: T = 980.7480941871722 K, F = -4386.56505274302, relative_change = 0.019251905812827798 Iter 2: T = 963.5124068130251 K, F = -3704.7208997678126, relative_change = 0.017574020766700352 Iter 3: T = 948.1678401665564 K, F = -3127.406743687416, relative_change = 0.015925655485042864 Iter 5: T = 922.6160262959389 K, F = -2225.6186128352906, relative_change = 0.012803187262079819 Iter 10: T = 882.2684017522407 K, F = -944.2320971256786, relative_change = 0.006658798315274474 Iter 15: T = 863.2816861967424 K, F = -397.7368117437941, relative_change = 0.003103889228474621 Iter 20: T = 854.8825003009919 K, F = -166.88489637467367, relative_change = 0.0013637635579374918 Iter 25: T = 851.2810494228447 K, F = -69.8929482400327, relative_change = 0.0005827017736694851 Iter 30: T = 849.7586329419366 K, F = -29.247820318576323, relative_change = 0.0002459239528569618 Iter 35: T = 849.1190433887282 K, F = -12.234916998513782, relative_change = 0.00010324382341814697 Iter 40: T = 848.8510486067574 K, F = -5.11733748427531, relative_change = 4.324736262298037e-5 Iter 45: T = 848.7388803443399 K, F = -2.1402278143786564, relative_change = 1.809875892014779e-5 Iter 50: T = 848.6919545361086 K, F = -0.8950856603761135, relative_change = 7.571252224282253e-6 Iter 55: T = 848.672326854871 K, F = -0.37433845674354704, relative_change = 3.166761685613525e-6 Iter 60: T = 848.6641178434569 K, F = -0.15655332808667954, relative_change = 1.3244429077007602e-6 Iter 65: T = 848.660684652761 K, F = -0.06547256150379321, relative_change = 5.539092720218204e-7 Iter 70: T = 848.6592488367039 K, F = -0.027381422877061246, relative_change = 2.3165347193866916e-7 Iter 75: T = 848.6586483587092 K, F = -0.011451240802654139, relative_change = 9.688059815773555e-8 Iter 80: T = 848.6583972311907 K, F = -0.0047890461396884465, relative_change = 4.051668428832632e-8 Iter 85: T = 848.6582922065849 K, F = -0.0020028363730937304, relative_change = 1.6944571937256312e-8 Iter 90: T = 848.6582482840266 K, F = -0.0008376101059746066, relative_change = 7.086424225261724e-9 Iter 95: T = 848.6582299150858 K, F = -0.0003502985505166034, relative_change = 2.9636275548414344e-9 Iter 100: T = 848.658222232975 K, F = -0.00014649903923658059, relative_change = 1.2394245066431593e-9 Iter 105: T = 848.6582190202245 K, F = -6.126764862002254e-5, relative_change = 5.183421470100624e-10 Iter 110: T = 848.6582176766137 K, F = -2.5622863297769527e-5, relative_change = 2.167768859026935e-10 Iter 115: T = 848.6582171146996 K, F = -1.071578437850107e-5, relative_change = 9.065865699332656e-11 Iter 120: T = 848.6582168797005 K, F = -4.481466998385031e-6, relative_change = 3.791451615845154e-11 Iter 125: T = 848.6582167814212 K, F = -1.874204055729578e-6, relative_change = 1.585631223436057e-11 Iter 130: T = 848.6582167403194 K, F = -7.838128439630054e-7, relative_change = 6.631284972439923e-12 Iter 135: T = 848.6582167231302 K, F = -3.277983045002486e-7, relative_change = 2.7732691388966455e-12 Iter 140: T = 848.6582167159415 K, F = -1.3709039281550872e-7, relative_change = 1.1598246556809563e-12 Iter 145: T = 848.6582167129351 K, F = -5.733262153917451e-8, relative_change = 4.85050678398514e-13 Converged in 150 iterations to T = 848.6582167116778 K Iter 1: T = 967.3118303123642 K, F = -7448.030557804564, relative_change = 0.032688169687635764 Iter 2: T = 936.698256987766 K, F = -6313.505820289232, relative_change = 0.03164809151017266 Iter 3: T = 908.1279508934599 K, F = -5350.288971916031, relative_change = 0.030501077461361364 Iter 5: T = 856.9789528492682 K, F = -3838.590215923104, relative_change = 0.027891666214341835 Iter 10: T = 761.851206542235 K, F = -1662.1397727978585, relative_change = 0.019972660510249596 Iter 15: T = 706.1536690629398 K, F = -711.6421919134027, relative_change = 0.011968035630112573 Iter 20: T = 677.5088794647736 K, F = -301.6143188266672, relative_change = 0.006128763039940047 Iter 25: T = 664.1511421152081 K, F = -126.9729963035726, relative_change = 0.0028312072224180905 Iter 30: T = 658.2706257218043 K, F = -53.26051041783121, relative_change = 0.0012384675977318736 Iter 35: T = 655.754875503377 K, F = -22.303050129444063, relative_change = 0.0005281156581772558 Iter 40: T = 654.6924747091987 K, F = -9.332534654605203, relative_change = 0.0002226954126135864 Iter 45: T = 654.2463356628831 K, F = -3.9038814337236594, relative_change = 9.34580609181279e-5 Iter 50: T = 654.0594324886513 K, F = -1.6328084090944888, relative_change = 3.9142266788275695e-5 Iter 55: T = 653.9812107692139 K, F = -0.6828877447614603, relative_change = 1.6379752322160644e-5 Iter 60: T = 653.948487603263 K, F = -0.2855966694040754, relative_change = 6.851956670709614e-6 Iter 65: T = 653.9348006504803 K, F = -0.11944078792093127, relative_change = 2.865876061688627e-6 Iter 70: T = 653.9290763000259 K, F = -0.04995171260895598, relative_change = 1.1985971144062914e-6 Iter 75: T = 653.9266822552429 K, F = -0.020890428764264946, relative_change = 5.012769887096347e-7 Iter 80: T = 653.9256810278433 K, F = -0.008736631340051093, relative_change = 2.096416604856068e-7 Iter 85: T = 653.9252623009645 K, F = -0.003653764358626299, relative_change = 8.76749324245135e-8 Iter 90: T = 653.9250871840993 K, F = -0.0015280480296577248, relative_change = 3.666675390151924e-8 Iter 95: T = 653.9250139480852 K, F = -0.000639047958050365, relative_change = 1.533448311073331e-8 Iter 100: T = 653.9249833199008 K, F = -0.00026725749215944505, relative_change = 6.413065501576341e-9 Iter 105: T = 653.9249705108268 K, F = -0.00011177027518077809, relative_change = 2.6820208366061634e-9 Iter 110: T = 653.924965153919 K, F = -4.6743664946058416e-5, relative_change = 1.121653212819659e-9 Iter 115: T = 653.9249629135959 K, F = -1.9548758919962772e-5, relative_change = 4.69088776675291e-10 Iter 120: T = 653.924961976666 K, F = -8.1755237640313e-6, relative_change = 1.9617851358296495e-10 Iter 125: T = 653.9249615848308 K, F = -3.419101844148731e-6, relative_change = 8.204420155176456e-11 Iter 130: T = 653.9249614209607 K, F = -1.429908932704116e-6, relative_change = 3.431185795655115e-11 Iter 135: T = 653.9249613524282 K, F = -5.980054052501238e-7, relative_change = 1.4349638681973305e-11 Iter 140: T = 653.9249613237671 K, F = -2.500928850679429e-7, relative_change = 6.0011874590081535e-12 Iter 145: T = 653.9249613117807 K, F = -1.0459206722934766e-7, relative_change = 2.5097739268062526e-12 Iter 150: T = 653.924961306768 K, F = -4.3742338529106917e-8, relative_change = 1.049633912495111e-12 Iter 155: T = 653.9249613046715 K, F = -1.8293673520464182e-8, relative_change = 4.389719607402561e-13 Converged in 159 iterations to T = 653.9249613039146 K Iter 1: T = 973.5428254365182 K, F = -6028.29239155955, relative_change = 0.026457174563481813 Iter 2: T = 949.2786469910803 K, F = -5101.3676682208925, relative_change = 0.024923586114004078 Iter 3: T = 927.1398171605362 K, F = -4315.155379944503, relative_change = 0.023321740039889634 Iter 5: T = 888.9149814407368 K, F = -3083.4457252196353, relative_change = 0.019991493858074756 Iter 10: T = 823.8540032639522 K, F = -1320.2065001618882, relative_change = 0.011984201904295208 Iter 15: T = 790.384487230067 K, F = -559.5524877683409, relative_change = 0.00613891649281079 Iter 20: T = 774.7740698056377 K, F = -235.56203513594875, relative_change = 0.0028363955062194555 Iter 25: T = 767.9011985947151 K, F = -98.81018961807052, relative_change = 0.0012408433256375483 Iter 30: T = 764.9607779175367 K, F = -41.37726519067641, relative_change = 0.0005291490193543656 Iter 35: T = 763.719014755717 K, F = -17.314008003899296, relative_change = 0.00022313484506684974 Iter 40: T = 763.197550886353 K, F = -7.2426054199203005, relative_change = 9.364313153380026e-5 Iter 45: T = 762.97909075735 K, F = -3.0292388652417364, relative_change = 3.921989372500461e-5 Iter 50: T = 762.887661855192 K, F = -1.2669154913844516, relative_change = 1.6412256874590753e-5 Iter 55: T = 762.8494135911412 K, F = -0.5298482218260105, relative_change = 6.865557475261231e-6 Iter 60: T = 762.8334156794566 K, F = -0.2215904343054247, relative_change = 2.87156530779037e-6 Iter 65: T = 762.826724806452 K, F = -0.09267204236500937, relative_change = 1.2009766397591923e-6 Iter 70: T = 762.8239265413108 K, F = -0.03875660318993801, relative_change = 5.02272172150767e-7 Iter 75: T = 762.8227562625409 K, F = -0.016208482755668996, relative_change = 2.1005786463067524e-7 Iter 80: T = 762.8222668360823 K, F = -0.0067785825357581375, relative_change = 8.784899511245947e-8 Iter 85: T = 762.82206215176 K, F = -0.002834884427448392, relative_change = 3.673954916994467e-8 Iter 90: T = 762.8219765502738 K, F = -0.0011855825693889432, relative_change = 1.5364927033262407e-8 Iter 95: T = 762.8219407506998 K, F = -0.0004958247976654118, relative_change = 6.425797524685058e-9 Iter 100: T = 762.8219257788886 K, F = -0.00020735985449993333, relative_change = 2.6873455513985544e-9 Iter 105: T = 762.821919517498 K, F = -8.67203671376382e-5, relative_change = 1.1238800418369748e-9 Iter 110: T = 762.8219168989098 K, F = -3.6267494304076386e-5, relative_change = 4.700200774898209e-10 Iter 115: T = 762.8219158037848 K, F = -1.5167498705559446e-5, relative_change = 1.965680040057681e-10 Iter 120: T = 762.8219153457904 K, F = -6.343228548977287e-6, relative_change = 8.220707992756697e-11 Iter 125: T = 762.8219151542517 K, F = -2.6528140650849963e-6, relative_change = 3.4379984334206635e-11 Iter 130: T = 762.8219150741479 K, F = -1.1094375030884507e-6, relative_change = 1.437810681760329e-11 Iter 135: T = 762.8219150406476 K, F = -4.63979567322248e-7, relative_change = 6.013090203791026e-12 Iter 140: T = 762.8219150266373 K, F = -1.9404145146229013e-7, relative_change = 2.514741667942781e-12 Iter 145: T = 762.821915020778 K, F = -8.114941441039747e-8, relative_change = 1.051681546476706e-12 Iter 150: T = 762.8219150183277 K, F = -3.393803438278553e-8, relative_change = 4.3983070911772654e-13 Converged in 154 iterations to T = 762.8219150174433 K Iter 1: T = 969.9379211846843 K, F = -6849.673254489116, relative_change = 0.030062078815315692 Iter 2: T = 942.0317022545838 K, F = -5802.155516401177, relative_change = 0.028771139183851917 Iter 3: T = 916.238960735469 K, F = -4913.1064461712185, relative_change = 0.02737990818927269 Iter 5: T = 870.7902534724238 K, F = -3518.712435782547, relative_change = 0.024336441409241363 Iter 10: T = 789.644845652804 K, F = -1515.66541150023, relative_change = 0.016036029417945793 Iter 15: T = 745.0521664970922 K, F = -645.6107016429435, relative_change = 0.008872180994365673 Iter 20: T = 723.2671553937627 K, F = -272.63435493410344, relative_change = 0.00429717600366347 Iter 25: T = 713.4254999692912 K, F = -114.5415520859135, relative_change = 0.001925284380245211 Iter 30: T = 709.1625262241422 K, F = -47.99957011184371, relative_change = 0.0008300110638204113 Iter 35: T = 707.3522957260694 K, F = -20.091386868330577, relative_change = 0.0003516633415227305 Iter 40: T = 706.5903096283047 K, F = -8.405533590026332, relative_change = 0.00014787970073197688 Iter 45: T = 706.2707662871773 K, F = -3.5158349600614067, relative_change = 6.198785569951693e-5 Iter 50: T = 706.1369762443279 K, F = -1.4704588734016542, relative_change = 2.5949121963461376e-5 Iter 55: T = 706.0809968004627 K, F = -0.614980039263115, relative_change = 1.085662202167781e-5 Iter 60: T = 706.0575808283446 K, F = -0.2571948971870411, relative_change = 4.541137137255644e-6 Iter 65: T = 706.0477871668016 K, F = -0.10756248488912645, relative_change = 1.8992921672702965e-6 Iter 70: T = 706.0436911967312 K, F = -0.044984004477778394, relative_change = 7.943301728884138e-7 Iter 75: T = 706.0419781879702 K, F = -0.018812863411525105, relative_change = 3.3220247599801927e-7 Iter 80: T = 706.0412617828481 K, F = -0.007867766864557257, relative_change = 1.389317618794735e-7 Iter 85: T = 706.0409621729007 K, F = -0.0032903945382458666, relative_change = 5.810304778340104e-8 Iter 90: T = 706.0408368723079 K, F = -0.0013760823731012728, relative_change = 2.4299410452676076e-8 Iter 95: T = 706.0407844700801 K, F = -0.0005754940962731103, relative_change = 1.0162307484905073e-8 Iter 100: T = 706.0407625548385 K, F = -0.00024067850598175067, relative_change = 4.249999018390275e-9 Iter 105: T = 706.0407533896221 K, F = -0.00010065462666308811, relative_change = 1.7774004754125772e-9 Iter 110: T = 706.040749556619 K, F = -4.20949681751992e-5, relative_change = 7.433301464761663e-10 Iter 115: T = 706.0407479536113 K, F = -1.7604618863020782e-5, relative_change = 3.1086955583619685e-10 Iter 120: T = 706.0407472832143 K, F = -7.362461493465311e-6, relative_change = 1.3000935507267758e-10 Iter 125: T = 706.0407470028462 K, F = -3.0790694330873336e-6, relative_change = 5.437146697905536e-11 Iter 130: T = 706.040746885593 K, F = -1.2877034221148165e-6, relative_change = 2.2738793544999555e-11 Iter 135: T = 706.0407468365562 K, F = -5.38532581306761e-7, relative_change = 9.509628519529996e-12 Iter 140: T = 706.0407468160485 K, F = -2.2521978471079507e-7, relative_change = 3.977023048349931e-12 Iter 145: T = 706.0407468074719 K, F = -9.418874269417898e-8, relative_change = 1.663223331345104e-12 Iter 150: T = 706.0407468038851 K, F = -3.9390986694698427e-8, relative_change = 6.955821496591713e-13 Iter 155: T = 706.040746802385 K, F = -1.6473501562863646e-8, relative_change = 2.908958264599281e-13 Converged in 157 iterations to T = 706.0407468020676 K Iter 1: T = 973.4505457017669 K, F = -6049.318416903306, relative_change = 0.026549454298233036 Iter 2: T = 949.0941972115636 K, F = -5119.2899515576155, relative_change = 0.025020632632800792 Iter 3: T = 926.8640432061143 K, F = -4330.430802939096, relative_change = 0.023422494912266268 Iter 5: T = 888.4623009043605 K, F = -3094.534787120359, relative_change = 0.020095753301016213 Iter 10: T = 823.0267429436351 K, F = -1325.1396944816115, relative_change = 0.012073069171688116 Iter 15: T = 789.3153188280461 K, F = -561.7032569213899, relative_change = 0.006194578162472318 Iter 20: T = 773.5770511912611 K, F = -236.4821492775088, relative_change = 0.0028648109872116876 Iter 25: T = 766.644388402035 K, F = -99.1991690301069, relative_change = 0.001253850491773996 Iter 30: T = 763.6776864209988 K, F = -41.54072133356661, relative_change = 0.0005348059820793503 Iter 35: T = 762.4246944253304 K, F = -17.38250774406353, relative_change = 0.00022554032388254032 Iter 40: T = 761.8984918123435 K, F = -7.271277689996106, relative_change = 9.465619810983738e-5 Iter 45: T = 761.6780423279431 K, F = -3.041234321401166, relative_change = 3.964481579162132e-5 Iter 50: T = 761.5857801256388 K, F = -1.2719329004300304, relative_change = 1.6590182906857766e-5 Iter 55: T = 761.5471831327849 K, F = -0.5319466963081093, relative_change = 6.940006543153883e-6 Iter 60: T = 761.531039337811 K, F = -0.22246806485840498, relative_change = 2.9027074954639605e-6 Iter 65: T = 761.5242874475447 K, F = -0.09303908204691258, relative_change = 1.2140018463780696e-6 Iter 70: T = 761.5214636630091 K, F = -0.038910104286346, relative_change = 5.077196740884252e-7 Iter 75: T = 761.5202827115057 K, F = -0.016272678875467572, relative_change = 2.1233611088217227e-7 Iter 80: T = 761.5197888215442 K, F = -0.006805430140248592, relative_change = 8.880179115459987e-8 Iter 85: T = 761.519582270525 K, F = -0.002846112420179625, relative_change = 3.713802095104822e-8 Iter 90: T = 761.5194958883627 K, F = -0.0011902782506501008, relative_change = 1.5531572881981615e-8 Iter 95: T = 761.5194597623004 K, F = -0.0004977885860424358, relative_change = 6.49549081990376e-9 Iter 100: T = 761.5194446539479 K, F = -0.00020818113095655288, relative_change = 2.716492082492523e-9 Iter 105: T = 761.5194383354542 K, F = -8.70638366496923e-5, relative_change = 1.1360694948038857e-9 Iter 110: T = 761.5194356929846 K, F = -3.6411137273373306e-5, relative_change = 4.75117851482349e-10 Iter 115: T = 761.5194345878723 K, F = -1.522757364624816e-5, relative_change = 1.9869997659684145e-10 Iter 120: T = 761.5194341257011 K, F = -6.368352931329646e-6, relative_change = 8.309870051975643e-11 Iter 125: T = 761.5194339324155 K, F = -2.6633201085646263e-6, relative_change = 3.475285411217066e-11 Iter 130: T = 761.5194338515811 K, F = -1.1138312414615825e-6, relative_change = 1.4534045132305697e-11 Iter 135: T = 761.5194338177753 K, F = -4.658170492666258e-7, relative_change = 6.078305013231291e-12 Iter 140: T = 761.5194338036373 K, F = -1.948099311865903e-7, relative_change = 2.5420155473648134e-12 Iter 145: T = 761.5194337977247 K, F = -8.147266861158187e-8, relative_change = 1.063112075663288e-12 Iter 150: T = 761.5194337952519 K, F = -3.4072743293478425e-8, relative_change = 4.4460486521590277e-13 Converged in 154 iterations to T = 761.5194337943593 K Iter 1: T = 964.439212393386 K, F = -8102.559283208837, relative_change = 0.03556078760661399 Iter 2: T = 930.8108029598745 K, F = -6873.667658372898, relative_change = 0.03486835562197645 Iter 3: T = 899.0840943969225 K, F = -5830.0690543170385, relative_change = 0.03408502400494776 Iter 5: T = 841.2231938793863 K, F = -4191.37710503483, relative_change = 0.03222095210151095 Iter 10: T = 727.8528804112989 K, F = -1827.3233683786518, relative_change = 0.02574096763913161 Iter 15: T = 655.0269129654389 K, F = -788.710745251903, relative_change = 0.01751606670311973 Iter 20: T = 614.0392094942949 K, F = -336.5946296934434, relative_change = 0.00997996175205372 Iter 25: T = 593.6415494372119 K, F = -142.32301900251355, relative_change = 0.004929580678835927 Iter 30: T = 584.3245733034181 K, F = -59.83539299731561, relative_change = 0.0022318765443419568 Iter 35: T = 580.2665959571083 K, F = -25.082679280503704, relative_change = 0.0009669193854026262 Iter 40: T = 578.5391063263089 K, F = -10.50047255310031, relative_change = 0.00041055417451291284 Iter 45: T = 577.8111611398525 K, F = -4.39330021794763, relative_change = 0.00017280339737439266 Iter 50: T = 577.5057527268048 K, F = -1.837660719684454, relative_change = 7.24634946187429e-5 Iter 55: T = 577.3778561189076 K, F = -0.7685895254198865, relative_change = 3.0339348665317923e-5 Iter 60: T = 577.3243382217072 K, F = -0.3214434488569392, relative_change = 1.269427821644403e-5 Iter 65: T = 577.3019511441875 K, F = -0.13443326166396977, relative_change = 5.309948935279664e-6 Iter 70: T = 577.2925876817346 K, F = -0.05622190555563675, relative_change = 2.2208677902581054e-6 Iter 75: T = 577.2886716091034 K, F = -0.023512726563300418, relative_change = 9.288255712195805e-7 Iter 80: T = 577.2870338326337 K, F = -0.009833312533890415, relative_change = 3.884515677231332e-7 Iter 85: T = 577.2863488900351 K, F = -0.004112410393638188, relative_change = 1.6245606785658448e-7 Iter 90: T = 577.286062438 K, F = -0.0017198594280822266, relative_change = 6.794123962882062e-8 Iter 95: T = 577.2859426401876 K, F = -0.0007192658032882382, relative_change = 2.8413867889690522e-8 Iter 100: T = 577.2858925392854 K, F = -0.0003008055573959778, relative_change = 1.1883024134845675e-8 Iter 105: T = 577.2858715864852 K, F = -0.00012580047745841538, relative_change = 4.969623503866252e-9 Iter 110: T = 577.2858628237733 K, F = -5.2611262612078935e-5, relative_change = 2.078356071630698e-9 Iter 115: T = 577.2858591591024 K, F = -2.2002659390507606e-5, relative_change = 8.691933979142037e-10 Iter 120: T = 577.2858576264931 K, F = -9.20177489499574e-6, relative_change = 3.6350706280377227e-10 Iter 125: T = 577.2858569855376 K, F = -3.848292117913932e-6, relative_change = 1.5202299425397153e-10 Iter 130: T = 577.2858567174824 K, F = -1.6094018441825675e-6, relative_change = 6.357783670123255e-11 Iter 135: T = 577.2858566053785 K, F = -6.730712358016255e-7, relative_change = 2.65890171011889e-11 Iter 140: T = 577.2858565584953 K, F = -2.8148675706995974e-7, relative_change = 1.1119857456798389e-11 Iter 145: T = 577.2858565388882 K, F = -1.177211765290842e-7, relative_change = 4.650459284435699e-12 Iter 150: T = 577.2858565306883 K, F = -4.9232975252166966e-8, relative_change = 1.9449002603261448e-12 Iter 155: T = 577.2858565272589 K, F = -2.058965370421717e-8, relative_change = 8.133740170157024e-13 Iter 160: T = 577.2858565258249 K, F = -8.611776958211692e-9, relative_change = 3.401997779492559e-13 Converged in 163 iterations to T = 577.2858565254049 K Iter 1: T = 963.626301344227 K, F = -8287.781839037734, relative_change = 0.03637369865577291 Iter 2: T = 929.1344874723134 K, F = -7032.338279952754, relative_change = 0.035793765512417766 Iter 3: T = 896.4912817571892 K, F = -5966.138474833607, relative_change = 0.03513291795241525 Iter 5: T = 836.6325543628226 K, F = -4291.783204088859, relative_change = 0.033539462372445865 Iter 10: T = 717.3984248730409 K, F = -1875.1894242548112, relative_change = 0.027757750006087552 Iter 15: T = 638.2659176305073 K, F = -811.8052823353021, relative_change = 0.01981202678665235 Iter 20: T = 592.0537913148336 K, F = -347.49778714140365, relative_change = 0.011831755498549692 Iter 25: T = 568.3407436894205 K, F = -147.25535048681397, relative_change = 0.006043748978289506 Iter 30: T = 557.2989828371117 K, F = -61.98537296999638, relative_change = 0.0027879133126391697 Iter 35: T = 552.4417908333991 K, F = -25.999377763613204, relative_change = 0.001218673965451272 Iter 40: T = 550.3645794119564 K, F = -10.887115035476715, relative_change = 0.0005195119214421017 Iter 45: T = 549.4875123356848 K, F = -4.55558597693707, relative_change = 0.00021903776387780034 Iter 50: T = 549.1192262640045 K, F = -1.905634454777944, relative_change = 9.191779886196588e-5 Iter 55: T = 548.9649428114777 K, F = -0.7970352117001549, relative_change = 3.8496244537759595e-5 Iter 60: T = 548.9003736970922 K, F = -0.3333429744421402, relative_change = 1.6109250649352735e-5 Iter 65: T = 548.8733620785331 K, F = -0.13941034550678782, relative_change = 6.7387722924623e-6 Iter 70: T = 548.8620640894447 K, F = -0.058303479460294516, relative_change = 2.8185309671810033e-6 Iter 75: T = 548.8573388892328 K, F = -0.024383282773089404, relative_change = 1.1787950747944525e-6 Iter 80: T = 548.8553627110005 K, F = -0.010197392534977645, relative_change = 4.929952321227108e-7 Iter 85: T = 548.8545362421296 K, F = -0.0042646735237215905, relative_change = 2.0617807728699906e-7 Iter 90: T = 548.85419060166 K, F = -0.0017835377801966867, relative_change = 8.622641117615388e-8 Iter 95: T = 548.8540460504573 K, F = -0.0007458968658925758, relative_change = 3.6060963334286336e-8 Iter 100: T = 548.8539855973778 K, F = -0.00031194298883716054, relative_change = 1.5081133995823318e-8 Iter 105: T = 548.8539603151709 K, F = -0.00013045828524704817, relative_change = 6.3071118202688134e-9 Iter 110: T = 548.8539497418487 K, F = -5.455921254138296e-5, relative_change = 2.63770971106055e-9 Iter 115: T = 548.853945319959 K, F = -2.2817314048073634e-5, relative_change = 1.103121734166571e-9 Iter 120: T = 548.853943470672 K, F = -9.542473698276321e-6, relative_change = 4.6133871326658383e-10 Iter 125: T = 548.853942697278 K, F = -3.990776300727417e-6, relative_change = 1.929373529419379e-10 Iter 130: T = 548.8539423738354 K, F = -1.6689907521849623e-6, relative_change = 8.068872681635384e-11 Iter 135: T = 548.8539422385678 K, F = -6.979918471539115e-7, relative_change = 3.3744988381388587e-11 Iter 140: T = 548.8539421819974 K, F = -2.9190880979079736e-7, relative_change = 1.411257085568363e-11 Iter 145: T = 548.8539421583389 K, F = -1.2208006588965148e-7, relative_change = 5.902060926227345e-12 Iter 150: T = 548.8539421484446 K, F = -5.1055863758975306e-8, relative_change = 2.4683376141431153e-12 Iter 155: T = 548.8539421443066 K, F = -2.1352051376988257e-8, relative_change = 1.032282438774001e-12 Iter 160: T = 548.8539421425762 K, F = -8.929830513926262e-9, relative_change = 4.317199812860742e-13 Converged in 164 iterations to T = 548.8539421419515 K Iter 1: T = 969.2877255328244 K, F = -6997.820952261118, relative_change = 0.03071227446717554 Iter 2: T = 940.7154846139105 K, F = -5928.695155127221, relative_change = 0.029477563953683172 Iter 3: T = 914.2443678644651 K, F = -5021.223167432376, relative_change = 0.028139344129441787 Iter 5: T = 867.4206148524894 K, F = -3597.6850799992367, relative_change = 0.025183824321663294 Iter 10: T = 783.0153174338873 K, F = -1551.5772066593315, relative_change = 0.01691816285394414 Iter 15: T = 735.9655926171758 K, F = -661.6510009316187, relative_change = 0.009524845940111923 Iter 20: T = 712.7278648400977 K, F = -279.6191205634452, relative_change = 0.004666813749603337 Iter 25: T = 702.1619888339072 K, F = -117.52352267023075, relative_change = 0.0021037145953938124 Iter 30: T = 697.5706143547039 K, F = -49.25852491029563, relative_change = 0.0009095265550350644 Iter 35: T = 695.6180994327503 K, F = -20.62007237981878, relative_change = 0.0003858360009100063 Iter 40: T = 694.7957044672476 K, F = -8.627024556668111, relative_change = 0.0001623366372025755 Iter 45: T = 694.4507363233761 K, F = -3.608533643543815, relative_change = 6.806323921297091e-5 Iter 50: T = 694.3062849240267 K, F = -1.5092385969921196, relative_change = 2.849507543019471e-5 Iter 55: T = 694.2458417896889 K, F = -0.6312002895472493, relative_change = 1.1922273890619012e-5 Iter 60: T = 694.2205581760054 K, F = -0.2639787682730657, relative_change = 4.986963685616003e-6 Iter 65: T = 694.2099832916947 K, F = -0.11039964529793278, relative_change = 2.0857698360418907e-6 Iter 70: T = 694.2055605782085 K, F = -0.0461705501270242, relative_change = 8.723222033783677e-7 Iter 75: T = 694.2037109167743 K, F = -0.019309092944746253, relative_change = 3.6482052154281825e-7 Iter 80: T = 694.2029373610545 K, F = -0.008075296326086612, relative_change = 1.525731661985877e-7 Iter 85: T = 694.2026138499017 K, F = -0.0033771858968781876, relative_change = 6.380807187475813e-8 Iter 90: T = 694.2024785535144 K, F = -0.0014123795675073936, relative_change = 2.668532421208603e-8 Iter 95: T = 694.2024219709216 K, F = -0.0005906740174055347, relative_change = 1.116012588793335e-8 Iter 100: T = 694.2023983074007 K, F = -0.00024702693206168913, relative_change = 4.667298756505911e-9 Iter 105: T = 694.2023884110328 K, F = -0.00010330961412519102, relative_change = 1.9519202309001834e-9 Iter 110: T = 694.2023842722533 K, F = -4.320531317425491e-5, relative_change = 8.163163513401477e-10 Iter 115: T = 694.2023825413663 K, F = -1.806897754697001e-5, relative_change = 3.4139324344667044e-10 Iter 120: T = 694.2023818174887 K, F = -7.55666126983634e-6, relative_change = 1.4277471465326934e-10 Iter 125: T = 694.2023815147544 K, F = -3.1602853330925385e-6, relative_change = 5.971007849631999e-11 Iter 130: T = 694.2023813881474 K, F = -1.3216687124728566e-6, relative_change = 2.49714612190363e-11 Iter 135: T = 694.2023813351988 K, F = -5.527369802971194e-7, relative_change = 1.0443350850762107e-11 Iter 140: T = 694.2023813130551 K, F = -2.311610990402002e-7, relative_change = 4.367532021095329e-12 Iter 145: T = 694.2023813037944 K, F = -9.667457134820978e-8, relative_change = 1.826558567894508e-12 Iter 150: T = 694.2023812999213 K, F = -4.043046242241388e-8, relative_change = 7.638886473834478e-13 Iter 155: T = 694.2023812983016 K, F = -1.6908711986118874e-8, relative_change = 3.194713182665834e-13 Converged in 158 iterations to T = 694.2023812978274 K Iter 1: T = 966.5222186950505 K, F = -7627.944315924059, relative_change = 0.033477781304949515 Iter 2: T = 935.0855335507657 K, F = -6467.396519509834, relative_change = 0.032525569031127854 Iter 3: T = 905.6601642976191 K, F = -5482.005659987171, relative_change = 0.031468104464637325 Iter 5: T = 852.7181500150756 K, F = -3935.255167994707, relative_change = 0.02903304246087661 Iter 10: T = 752.9205020546467 K, F = -1706.9797153701074, relative_change = 0.021378831333986638 Iter 15: T = 693.1548991150195 K, F = -732.2330867224989, relative_change = 0.013198267718113818 Iter 20: T = 661.7918244117578 K, F = -310.80315048418316, relative_change = 0.006915104803811107 Iter 25: T = 646.9685050832176 K, F = -130.95655131649613, relative_change = 0.0032374764520467602 Iter 30: T = 640.3955821085864 K, F = -54.95545458979622, relative_change = 0.0014255438040023777 Iter 35: T = 637.5740552829407 K, F = -23.0173532377546, relative_change = 0.0006096954025448448 Iter 40: T = 636.3807415591538 K, F = -9.632250372402886, relative_change = 0.00025742529727065805 Iter 45: T = 635.8793068791986 K, F = -4.029400881779091, relative_change = 0.00010809172325032422 Iter 50: T = 635.6691816776689 K, F = -1.6853328822987605, relative_change = 4.528149862762609e-5 Iter 55: T = 635.5812312223397 K, F = -0.7048594963350401, relative_change = 1.8950632599866028e-5 Iter 60: T = 635.5444364018764 K, F = -0.2947864619067955, relative_change = 7.92772156595228e-6 Iter 65: T = 635.5290461126999 K, F = -0.1232842340014011, relative_change = 3.31587740315512e-6 Iter 70: T = 635.5226093153163 K, F = -0.05155911654130013, relative_change = 1.3868111764780246e-6 Iter 75: T = 635.519917300747 K, F = -0.021562669336249396, relative_change = 5.799935279492665e-7 Iter 80: T = 635.5187914560305 K, F = -0.009017771258439722, relative_change = 2.4256241184094207e-7 Iter 85: T = 635.518320612213 K, F = -0.003771340585096039, relative_change = 1.0144288081154295e-7 Iter 90: T = 635.518123699336 K, F = -0.0015772198374248703, relative_change = 4.2424691272675346e-8 Iter 95: T = 635.5180413479547 K, F = -0.0006596122009747685, relative_change = 1.7742524273617807e-8 Iter 100: T = 635.5180069076123 K, F = -0.0002758577057816458, relative_change = 7.420137614911148e-9 Iter 105: T = 635.5179925042478 K, F = -0.0001153669880041841, relative_change = 3.103190527713026e-9 Iter 110: T = 635.5179864805883 K, F = -4.824785233714657e-5, relative_change = 1.2977914020441721e-9 Iter 115: T = 635.517983961422 K, F = -2.017782867375084e-5, relative_change = 5.427518903003578e-10 Iter 120: T = 635.5179829078766 K, F = -8.438608781802248e-6, relative_change = 2.2698532027559202e-10 Iter 125: T = 635.5179824672713 K, F = -3.5291267343473542e-6, relative_change = 9.492796566901052e-11 Iter 130: T = 635.5179822830048 K, F = -1.475922825788789e-6, relative_change = 3.970000571710986e-11 Iter 135: T = 635.5179822059424 K, F = -6.172482535093948e-7, relative_change = 1.6603008490128712e-11 Iter 140: T = 635.517982173714 K, F = -2.5814054932515873e-7, relative_change = 6.943575309867859e-12 Iter 145: T = 635.5179821602356 K, F = -1.0795708843547303e-7, relative_change = 2.9038761086590903e-12 Iter 150: T = 635.5179821545988 K, F = -4.514859569537677e-8, relative_change = 1.2144263084976854e-12 Iter 155: T = 635.5179821522415 K, F = -1.8881808172555026e-8, relative_change = 5.078909818563963e-13 Converged in 160 iterations to T = 635.5179821512556 K Iter 1: T = 966.481130154779 K, F = -7637.3063789102225, relative_change = 0.03351886984522106 Iter 2: T = 935.0014976850391 K, F = -6475.406180670067, relative_change = 0.03257138860507133 Iter 3: T = 905.5313767663662 K, F = -5488.863092370508, relative_change = 0.03151879541544879 Iter 5: T = 852.49501287812 K, F = -3940.2915471638757, relative_change = 0.029093408274236923 Iter 10: T = 752.4477383558932 K, F = -1709.3240766846977, relative_change = 0.02145533006280473 Iter 15: T = 692.4590398985072 K, F = -733.3155289986307, relative_change = 0.013267269552019805 Iter 20: T = 660.9433780476658 K, F = -311.288788162788, relative_change = 0.006960268789872459 Iter 25: T = 646.0364758514825 K, F = -131.1678409645558, relative_change = 0.003261140141517983 Iter 30: T = 639.4237221221797 K, F = -55.045524858289, relative_change = 0.0014365162133174447 Iter 35: T = 636.5845331413578 K, F = -23.055344911364497, relative_change = 0.000614495242508441 Iter 40: T = 635.3836439187963 K, F = -9.64819746639433, relative_change = 0.00025947144071624664 Iter 45: T = 634.8790069694018 K, F = -4.036080534438759, relative_change = 0.00010895437456286828 Iter 50: T = 634.6675364957179 K, F = -1.6881282209046746, relative_change = 4.564349253731301e-5 Iter 55: T = 634.5790223683397 K, F = -0.7060288608900138, relative_change = 1.9102237448652853e-5 Iter 60: T = 634.541991627109 K, F = -0.295275560257259, relative_change = 7.991162129382021e-6 Iter 65: T = 634.5265026404193 K, F = -0.1234887905938537, relative_change = 3.342415585890851e-6 Iter 70: T = 634.5200245608476 K, F = -0.05164466627147557, relative_change = 1.3979109129106961e-6 Iter 75: T = 634.5173152805752 K, F = -0.021598447555528366, relative_change = 5.846357716893031e-7 Iter 80: T = 634.5161822149607 K, F = -0.00903273418946443, relative_change = 2.44503888837521e-7 Iter 85: T = 634.5157083512469 K, F = -0.003777598269562754, relative_change = 1.0225483580734235e-7 Iter 90: T = 634.5155101754079 K, F = -0.001579836877299512, relative_change = 4.2764261623284223e-8 Iter 95: T = 634.5154272958399 K, F = -0.0006607066782676196, relative_change = 1.7884536829434043e-8 Iter 100: T = 634.5153926346034 K, F = -0.00027631542877099013, relative_change = 7.479528980378434e-9 Iter 105: T = 634.5153781388582 K, F = -0.0001155584129101106, relative_change = 3.128028703072298e-9 Iter 110: T = 634.5153720765642 K, F = -4.83279087229449e-5, relative_change = 1.3081790301051797e-9 Iter 115: T = 634.5153695412403 K, F = -2.0211308780326842e-5, relative_change = 5.470961090404439e-10 Iter 120: T = 634.5153684809376 K, F = -8.452610091802537e-6, relative_change = 2.2880211170457852e-10 Iter 125: T = 634.5153680375064 K, F = -3.5349834024978044e-6, relative_change = 9.568780071940507e-11 Iter 130: T = 634.5153678520581 K, F = -1.4783732192880095e-6, relative_change = 4.0017806616297696e-11 Iter 135: T = 634.5153677745014 K, F = -6.182737426474461e-7, relative_change = 1.6735935662791686e-11 Iter 140: T = 634.5153677420664 K, F = -2.585696346479871e-7, relative_change = 6.999172813555859e-12 Iter 145: T = 634.5153677285016 K, F = -1.0813748740901019e-7, relative_change = 2.927153310584264e-12 Iter 150: T = 634.5153677228286 K, F = -4.52237940984368e-8, relative_change = 1.2241543778187075e-12 Iter 155: T = 634.5153677204561 K, F = -1.8913327848313344e-8, relative_change = 5.119613147594291e-13 Converged in 160 iterations to T = 634.5153677194638 K Iter 1: T = 976.3336826683036 K, F = -5392.392916506643, relative_change = 0.023666317331696357 Iter 2: T = 954.831068482967 K, F = -4559.753801953011, relative_change = 0.022023837307927698 Iter 3: T = 935.4013843391891 K, F = -3853.9394924458825, relative_change = 0.020348818534620693 Iter 5: T = 902.3431436839721 K, F = -2749.3359073172123, relative_change = 0.016994102792368994 Iter 10: T = 847.8394615203123 K, F = -1172.53554815453, relative_change = 0.009582168146160669 Iter 15: T = 820.8943159855614 K, F = -495.5563421018746, relative_change = 0.00469970753017289 Iter 20: T = 808.6356670283077 K, F = -208.28918306118354, relative_change = 0.002119703652041612 Iter 25: T = 803.3071647697883 K, F = -87.30331696256296, relative_change = 0.0009166750517264312 Iter 30: T = 801.0408838071562 K, F = -36.54624846860681, relative_change = 0.00038891252362948406 Iter 35: T = 800.0862769974665 K, F = -15.290266417724805, relative_change = 0.00016363896906493382 Iter 40: T = 799.6858405812395 K, F = -6.395660009299304, relative_change = 6.861067160636179e-5 Iter 45: T = 799.5181607830594 K, F = -2.674932095598393, relative_change = 2.8724507444005738e-5 Iter 50: T = 799.4479978367496 K, F = -1.1187219312129157, relative_change = 1.2018310870201283e-5 Iter 55: T = 799.4186483330312 K, F = -0.46786871291140375, relative_change = 5.027142513653045e-6 Iter 60: T = 799.4063728789727 K, F = -0.19566930498330815, relative_change = 2.102575729193392e-6 Iter 65: T = 799.4012389378739 K, F = -0.08183141882363765, relative_change = 8.793510881964475e-7 Iter 70: T = 799.39909182748 K, F = -0.0342229078745685, relative_change = 3.6776016552177825e-7 Iter 75: T = 799.3981938741647 K, F = -0.014312434245388417, relative_change = 1.5380257449733553e-7 Iter 80: T = 799.3978183382964 K, F = -0.005985631881740283, relative_change = 6.432222756454169e-8 Iter 85: T = 799.3976612845247 K, F = -0.002503262902599057, relative_change = 2.6900350685317607e-8 Iter 90: T = 799.3975956027291 K, F = -0.0010468944711465866, relative_change = 1.1250052638159547e-8 Iter 95: T = 799.397568133812 K, F = -0.00043782377507273207, relative_change = 4.704907187312813e-9 Iter 100: T = 799.3975566459818 K, F = -0.00018310313060099226, relative_change = 1.967648499640051e-9 Iter 105: T = 799.3975518416339 K, F = -7.657591569953937e-5, relative_change = 8.228941223001049e-10 Iter 110: T = 799.3975498323982 K, F = -3.202496316501158e-5, relative_change = 3.4414416112421557e-10 Iter 115: T = 799.3975489921119 K, F = -1.3393222441870911e-5, relative_change = 1.4392520301511152e-10 Iter 120: T = 799.397548640694 K, F = -5.601204023597539e-6, relative_change = 6.019122219551932e-11 Iter 125: T = 799.3975484937268 K, F = -2.342489760498445e-6, relative_change = 2.51726809440075e-11 Iter 130: T = 799.3975484322634 K, F = -9.79654954713638e-7, relative_change = 1.0527491746219146e-11 Iter 135: T = 799.3975484065587 K, F = -4.09702626824604e-7, relative_change = 4.402714447783739e-12 Iter 140: T = 799.3975483958087 K, F = -1.7134161556242589e-7, relative_change = 1.8412579197705486e-12 Iter 145: T = 799.397548391313 K, F = -7.165824023047662e-8, relative_change = 7.700481982244858e-13 Iter 150: T = 799.3975483894328 K, F = -2.99669269399061e-8, relative_change = 3.2202825554239045e-13 Converged in 153 iterations to T = 799.3975483888823 K Iter 1: T = 965.2440241996757 K, F = -7919.182147572069, relative_change = 0.034755975800324336 Iter 2: T = 932.465944510209 K, F = -6716.644127470601, relative_change = 0.033958334750266175 Iter 3: T = 901.6363568494629 K, F = -5695.485403186874, relative_change = 0.033062427472286784 Iter 5: T = 845.7093700555452 K, F = -4092.22393680734, relative_change = 0.030957677353951885 Iter 10: T = 737.8155323343577 K, F = -1780.4514514048215, relative_change = 0.0239304664477915 Iter 15: T = 670.4988438495759 K, F = -766.473804268814, relative_change = 0.015624579536648036 Iter 20: T = 633.7515434558356 K, F = -326.31617229640744, relative_change = 0.008575153006562258 Iter 25: T = 615.8887001920556 K, F = -137.75260897929766, relative_change = 0.004131690033530039 Iter 30: T = 607.8423040124878 K, F = -57.863394847215645, relative_change = 0.0018460955017890568 Iter 35: T = 604.361929213409 K, F = -24.24608759993674, relative_change = 0.0007948651402177189 Iter 40: T = 602.8849716137948 K, F = -10.148415100809622, relative_change = 0.00033658605349627695 Iter 45: T = 602.2634437502891 K, F = -4.245675130838802, relative_change = 0.0001415060522964157 Iter 50: T = 602.0028330782504 K, F = -1.7758532290585087, relative_change = 5.9310258894288026e-5 Iter 55: T = 601.8937230396008 K, F = -0.7427287949749661, relative_change = 2.4827199020753312e-5 Iter 60: T = 601.8480709690406 K, F = -0.3106260628915899, relative_change = 1.0387048888197053e-5 Iter 65: T = 601.8289750608549 K, F = -0.1299089306886129, relative_change = 4.344691001959218e-6 Iter 70: T = 601.8209882824028 K, F = -0.05432971140875348, relative_change = 1.817124667231872e-6 Iter 75: T = 601.8176480040404 K, F = -0.022721377021207634, relative_change = 7.599647523813186e-7 Iter 80: T = 601.8162510401074 K, F = -0.009502358717811077, relative_change = 3.178300985074587e-7 Iter 85: T = 601.815666809674 K, F = -0.003974001207763034, relative_change = 1.3292100103567976e-7 Iter 90: T = 601.8154224769293 K, F = -0.0016619749940011141, relative_change = 5.558926516410248e-8 Iter 95: T = 601.8153202939524 K, F = -0.000695057830390533, relative_change = 2.3248114689399306e-8 Iter 100: T = 601.8152775597928 K, F = -0.00029068149189059866, relative_change = 9.722642707819184e-9 Iter 105: T = 601.8152596878538 K, F = -0.00012156647358979589, relative_change = 4.06612594212557e-9 Iter 110: T = 601.8152522135948 K, F = -5.084055113563357e-5, relative_change = 1.7005025316884367e-9 Iter 115: T = 601.8152490877704 K, F = -2.126212626696322e-5, relative_change = 7.111705052857533e-10 Iter 120: T = 601.8152477805132 K, F = -8.892074768618308e-6, relative_change = 2.974199895266965e-10 Iter 125: T = 601.8152472338027 K, F = -3.718771884819727e-6, relative_change = 1.2438459286490494e-10 Iter 130: T = 601.8152470051617 K, F = -1.5552346808167528e-6, relative_change = 5.201911784972308e-11 Iter 135: T = 601.8152469095413 K, F = -6.504171409238424e-7, relative_change = 2.1754997074153923e-11 Iter 140: T = 601.8152468695519 K, F = -2.720123537525154e-7, relative_change = 9.098204197826743e-12 Iter 145: T = 601.8152468528277 K, F = -1.1375848657513288e-7, relative_change = 3.804966671384698e-12 Iter 150: T = 601.8152468458336 K, F = -4.7576307615759816e-8, relative_change = 1.5913209667743582e-12 Iter 155: T = 601.8152468429084 K, F = -1.9896689906762077e-8, relative_change = 6.654997288667854e-13 Iter 160: T = 601.8152468416852 K, F = -8.320824695928764e-9, relative_change = 2.7831295582790685e-13 Converged in 162 iterations to T = 601.8152468414262 K Iter 1: T = 964.5463476558663 K, F = -8078.148411740774, relative_change = 0.03545365234413377 Iter 2: T = 931.0313890287916 K, F = -6852.76113290078, relative_change = 0.034746861784844124 Iter 3: T = 899.4246885921382 K, F = -5812.14603729013, relative_change = 0.03394805031184187 Iter 5: T = 841.8237216030839 K, F = -4178.163595164783, relative_change = 0.03205041071997316 Iter 10: T = 729.2006239929585 K, F = -1821.0549988672683, relative_change = 0.025489831861906544 Iter 15: T = 657.1470552652346 K, F = -785.7166913494481, relative_change = 0.01724455689862353 Iter 20: T = 616.7711196842033 K, F = -335.19940199662625, relative_change = 0.009771914839194547 Iter 25: T = 596.7473939631246 K, F = -141.6986612022697, relative_change = 0.004808925334787543 Iter 30: T = 587.6203760967394 K, F = -59.56501002697836, relative_change = 0.0021728870567023946 Iter 35: T = 583.6493361645053 K, F = -24.967768308228838, relative_change = 0.0009404732424799915 Iter 40: T = 581.9596709125575 K, F = -10.452076731006898, relative_change = 0.00039915859005484254 Iter 45: T = 581.247813604392 K, F = -4.372999868317071, relative_change = 0.0001679769822512188 Iter 50: T = 580.9491814214523 K, F = -1.8291601597189362, relative_change = 7.043427431434584e-5 Iter 55: T = 580.8241271986254 K, F = -0.7650326084947321, relative_change = 2.9488812241544083e-5 Iter 60: T = 580.7717995102726 K, F = -0.31995557411721964, relative_change = 1.2338241955425265e-5 Iter 65: T = 580.7499104532187 K, F = -0.13381095698961135, relative_change = 5.160992232239543e-6 Iter 70: T = 580.7407553145355 K, F = -0.05596164021541544, relative_change = 2.1585621543156245e-6 Iter 75: T = 580.7369263733814 K, F = -0.023403878724328864, relative_change = 9.027668322082783e-7 Iter 80: T = 580.7353250377332 K, F = -0.00978779075786651, relative_change = 3.7755318082888885e-7 Iter 85: T = 580.734655335366 K, F = -0.004093372589776323, relative_change = 1.578981779301298e-7 Iter 90: T = 580.7343752570205 K, F = -0.0017118975825499705, relative_change = 6.603506614892987e-8 Iter 95: T = 580.7342581247685 K, F = -0.0007159360626273759, relative_change = 2.761668170692441e-8 Iter 100: T = 580.734209138637 K, F = -0.00029941302008740234, relative_change = 1.1549631073205963e-8 Iter 105: T = 580.7341886520474 K, F = -0.00012521810258286914, relative_change = 4.8301945285854405e-9 Iter 110: T = 580.7341800843102 K, F = -5.236770642247368e-5, relative_change = 2.020045197823604e-9 Iter 115: T = 580.73417650118 K, F = -2.1900800531438058e-5, relative_change = 8.448070626709373e-10 Iter 120: T = 580.7341750026721 K, F = -9.159176279416315e-6, relative_change = 3.5330840500779956e-10 Iter 125: T = 580.7341743759782 K, F = -3.830476841271135e-6, relative_change = 1.4775779271802667e-10 Iter 130: T = 580.7341741138874 K, F = -1.6019516865251049e-6, relative_change = 6.179409393633266e-11 Iter 135: T = 580.7341740042779 K, F = -6.699552312361412e-7, relative_change = 2.5843024404279208e-11 Iter 140: T = 580.7341739584377 K, F = -2.8018306152954864e-7, relative_change = 1.0807853065248625e-11 Iter 145: T = 580.734173939267 K, F = -1.1717583942028043e-7, relative_change = 4.51997079529747e-12 Iter 150: T = 580.7341739312495 K, F = -4.900474381841491e-8, relative_change = 1.8903215202100088e-12 Iter 155: T = 580.7341739278966 K, F = -2.0494533847781327e-8, relative_change = 7.905613898065165e-13 Iter 160: T = 580.7341739264941 K, F = -8.570236742500015e-9, relative_change = 3.3059050381538945e-13 Converged in 163 iterations to T = 580.7341739260836 K Iter 1: T = 964.3470655352216 K, F = -8123.555032495878, relative_change = 0.03565293446477835 Iter 2: T = 930.6210141785106 K, F = -6891.650259510634, relative_change = 0.03497293926849127 Iter 3: T = 898.7909423553555 K, F = -5845.486445499297, relative_change = 0.034203044352326996 Iter 5: T = 840.7058530242869 K, F = -4202.74558391625, relative_change = 0.03236822785680359 Iter 10: T = 726.6882305929507 K, F = -1832.722067218135, relative_change = 0.02595958614951778 Iter 15: T = 653.1876316695648 K, F = -791.2947360063674, relative_change = 0.017754919245988755 Iter 20: T = 611.6607831030481 K, F = -337.8018728957313, relative_change = 0.010164826136406766 Iter 25: T = 590.9311878932725 K, F = -142.86437783878833, relative_change = 0.005037536886295223 Iter 30: T = 581.4448353929225 K, F = -60.07011964447165, relative_change = 0.002284857096024531 Iter 35: T = 577.3091633399105 K, F = -25.18249653004991, relative_change = 0.0009907141769977174 Iter 40: T = 575.5478351956414 K, F = -10.542522861790099, relative_change = 0.00042081541697019855 Iter 45: T = 574.805490872991 K, F = -4.410940900031778, relative_change = 0.00017715085391107984 Iter 50: T = 574.4940163514054 K, F = -1.8450479357354113, relative_change = 7.429160312816361e-5 Iter 55: T = 574.3635750206527 K, F = -0.7716806463078155, relative_change = 3.1105636284077375e-5 Iter 60: T = 574.3089915198897 K, F = -0.3227364902023866, relative_change = 1.3015055840745134e-5 Iter 65: T = 574.2861585542265 K, F = -0.13497407909947606, relative_change = 5.444155718332272e-6 Iter 70: T = 574.2766085740216 K, F = -0.05644809098130768, relative_change = 2.2770040747113875e-6 Iter 75: T = 574.2726144900902 K, F = -0.023607321604711184, relative_change = 9.523040810618124e-7 Iter 80: T = 574.2709440870774 K, F = -0.009872873588434694, relative_change = 3.9827084869396847e-7 Iter 85: T = 574.2702454994442 K, F = -0.004128955348103036, relative_change = 1.66562658767344e-7 Iter 90: T = 574.2699533408534 K, F = -0.0017267787350877528, relative_change = 6.96586738308127e-8 Iter 95: T = 574.2698311564843 K, F = -0.000722159540907541, relative_change = 2.9132120895352624e-8 Iter 100: T = 574.2697800574944 K, F = -0.00030201575325061736, relative_change = 1.218340638715262e-8 Iter 105: T = 574.2697586872819 K, F = -0.00012630659691387214, relative_change = 5.095247038107195e-9 Iter 110: T = 574.2697497500028 K, F = -5.282292781544351e-5, relative_change = 2.130893342183866e-9 Iter 115: T = 574.2697460123258 K, F = -2.2091178644323417e-5, relative_change = 8.911650470666501e-10 Iter 120: T = 574.2697444491846 K, F = -9.238794461463584e-6, relative_change = 3.726958592994816e-10 Iter 125: T = 574.2697437954604 K, F = -3.863774538870324e-6, relative_change = 1.5586587467818963e-10 Iter 130: T = 574.269743522065 K, F = -1.6158766593110663e-6, relative_change = 6.518497052886533e-11 Iter 135: T = 574.2697434077279 K, F = -6.75779097181195e-7, relative_change = 2.7261140460012555e-11 Iter 140: T = 574.2697433599108 K, F = -2.8261938517237795e-7, relative_change = 1.1400954529516949e-11 Iter 145: T = 574.269743339913 K, F = -1.1819495976395089e-7, relative_change = 4.76802170271651e-12 Iter 150: T = 574.2697433315498 K, F = -4.943090758935398e-8, relative_change = 1.994058297054721e-12 Iter 155: T = 574.2697433280521 K, F = -2.0672818068501186e-8, relative_change = 8.339479569473071e-13 Iter 160: T = 574.2697433265894 K, F = -8.646018678781786e-9, relative_change = 3.4878310199865867e-13 Converged in 163 iterations to T = 574.2697433261611 K Iter 1: T = 979.9731748166154 K, F = -4563.131168463021, relative_change = 0.020026825183384653 Iter 2: T = 961.9973088466705 K, F = -3854.6682014131807, relative_change = 0.01834322247984867 Iter 3: T = 945.9527089847205 K, F = -3254.6820354174524, relative_change = 0.01667842489204644 Iter 5: T = 919.1378747019902 K, F = -2317.148699871775, relative_change = 0.013494743206555705 Iter 10: T = 876.4973858774229 K, F = -983.8926426033556, relative_change = 0.007110081276404994 Iter 15: T = 856.2767514182749 K, F = -414.6533657037964, relative_change = 0.0033399201541813154 Iter 20: T = 847.2942568147226 K, F = -174.02708848855173, relative_change = 0.001473110855223156 Iter 25: T = 843.4350534662323 K, F = -72.89257525417068, relative_change = 0.0006305164627931982 Iter 30: T = 841.8022489023208 K, F = -30.504587340660688, relative_change = 0.00026630359621321884 Iter 35: T = 841.1160261186711 K, F = -12.760917329843904, relative_change = 0.00011183523215878825 Iter 40: T = 840.8284459084991 K, F = -5.337388397348784, relative_change = 4.6852461211619e-5 Iter 45: T = 840.7080722155598 K, F = -2.2322682325248606, relative_change = 1.9608572874270607e-5 Iter 50: T = 840.657712244054 K, F = -0.9335802505492148, relative_change = 8.203045582567557e-6 Iter 55: T = 840.6366479075562 K, F = -0.39043773693107264, relative_change = 3.431050166608401e-6 Iter 60: T = 840.6278379915136 K, F = -0.16328630630266527, relative_change = 1.43498287023305e-6 Iter 65: T = 840.6241534816392 K, F = -0.06828838511360469, relative_change = 6.001403921590755e-7 Iter 70: T = 840.6226125585061 K, F = -0.028559035985323833, relative_change = 2.509882261441997e-7 Iter 75: T = 840.6219681230585 K, F = -0.011943733029032622, relative_change = 1.0496668410199732e-7 Iter 80: T = 840.621698611935 K, F = -0.004995012334784388, relative_change = 4.3898392648651564e-8 Iter 85: T = 840.621585899073 K, F = -0.002088973905727043, relative_change = 1.8358844612154128e-8 Iter 90: T = 840.621538761192 K, F = -0.000873633850532407, relative_change = 7.67789025420587e-9 Iter 95: T = 840.6215190475644 K, F = -0.00036536411199272756, relative_change = 3.2109857765048465e-9 Iter 100: T = 840.6215108030894 K, F = -0.0001527996344365956, relative_change = 1.342872656721319e-9 Iter 105: T = 840.6215073551516 K, F = -6.390263337285873e-5, relative_change = 5.616054059368118e-10 Iter 110: T = 840.6215059131827 K, F = -2.672484371579742e-5, relative_change = 2.348700833440949e-10 Iter 115: T = 840.6215053101341 K, F = -1.1176649063804334e-5, relative_change = 9.822547641459496e-11 Iter 120: T = 840.621505057932 K, F = -4.674209033828092e-6, relative_change = 4.107907542269578e-11 Iter 125: T = 840.621504952458 K, F = -1.9548094689625373e-6, relative_change = 1.717975492309532e-11 Iter 130: T = 840.6215049083476 K, F = -8.175258023879195e-7, relative_change = 7.18478867369835e-12 Iter 135: T = 840.6215048899 K, F = -3.4189961306552163e-7, relative_change = 3.0047693425412764e-12 Iter 140: T = 840.6215048821849 K, F = -1.4298318173899816e-7, relative_change = 1.2566012495743568e-12 Iter 145: T = 840.6215048789585 K, F = -5.979612627271536e-8, relative_change = 5.255155612114847e-13 Converged in 150 iterations to T = 840.6215048776091 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 6%|█▉ | ETA: 0:00:20 Bin 1 ray tracing: 13%|███▉ | ETA: 0:00:16 Bin 1 ray tracing: 19%|█████▊ | ETA: 0:00:14 Bin 1 ray tracing: 26%|███████▊ | ETA: 0:00:13 Bin 1 ray tracing: 33%|█████████▉ | ETA: 0:00:11 Bin 1 ray tracing: 40%|████████████ | ETA: 0:00:10 Bin 1 ray tracing: 47%|██████████████ | ETA: 0:00:08 Bin 1 ray tracing: 54%|████████████████▏ | ETA: 0:00:07 Bin 1 ray tracing: 61%|██████████████████▎ | ETA: 0:00:06 Bin 1 ray tracing: 67%|████████████████████▏ | ETA: 0:00:05 Bin 1 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:04 Bin 1 ray tracing: 80%|████████████████████████▏ | ETA: 0:00:03 Bin 1 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 1 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 1 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 7%|██ | ETA: 0:00:14 Bin 2 ray tracing: 13%|████ | ETA: 0:00:13 Bin 2 ray tracing: 20%|██████ | ETA: 0:00:12 Bin 2 ray tracing: 27%|████████▏ | ETA: 0:00:11 Bin 2 ray tracing: 34%|██████████▏ | ETA: 0:00:10 Bin 2 ray tracing: 40%|████████████▏ | ETA: 0:00:09 Bin 2 ray tracing: 47%|██████████████▏ | ETA: 0:00:08 Bin 2 ray tracing: 54%|████████████████▏ | ETA: 0:00:07 Bin 2 ray tracing: 61%|██████████████████▎ | ETA: 0:00:06 Bin 2 ray tracing: 68%|████████████████████▎ | ETA: 0:00:05 Bin 2 ray tracing: 74%|██████████████████████▎ | ETA: 0:00:04 Bin 2 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:03 Bin 2 ray tracing: 88%|██████████████████████████▎ | ETA: 0:00:02 Bin 2 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 3 ray tracing: 12%|███▊ | ETA: 0:00:14 Bin 3 ray tracing: 19%|█████▋ | ETA: 0:00:13 Bin 3 ray tracing: 25%|███████▌ | ETA: 0:00:12 Bin 3 ray tracing: 31%|█████████▎ | ETA: 0:00:11 Bin 3 ray tracing: 37%|███████████▏ | ETA: 0:00:10 Bin 3 ray tracing: 43%|█████████████ | ETA: 0:00:09 Bin 3 ray tracing: 50%|███████████████ | ETA: 0:00:08 Bin 3 ray tracing: 56%|█████████████████ | ETA: 0:00:07 Bin 3 ray tracing: 63%|██████████████████▉ | ETA: 0:00:06 Bin 3 ray tracing: 70%|████████████████████▉ | ETA: 0:00:05 Bin 3 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:04 Bin 3 ray tracing: 82%|████████████████████████▊ | ETA: 0:00:03 Bin 3 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:02 Bin 3 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 7%|██▎ | ETA: 0:00:14 Bin 4 ray tracing: 14%|████▍ | ETA: 0:00:12 Bin 4 ray tracing: 22%|██████▌ | ETA: 0:00:11 Bin 4 ray tracing: 29%|████████▊ | ETA: 0:00:10 Bin 4 ray tracing: 36%|███████████ | ETA: 0:00:09 Bin 4 ray tracing: 43%|█████████████ | ETA: 0:00:08 Bin 4 ray tracing: 50%|███████████████▏ | ETA: 0:00:07 Bin 4 ray tracing: 57%|█████████████████▏ | ETA: 0:00:06 Bin 4 ray tracing: 64%|███████████████████▎ | ETA: 0:00:05 Bin 4 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:04 Bin 4 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 4 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 4 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 4 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 5 ray tracing: 14%|████▎ | ETA: 0:00:13 Bin 5 ray tracing: 21%|██████▎ | ETA: 0:00:12 Bin 5 ray tracing: 28%|████████▍ | ETA: 0:00:11 Bin 5 ray tracing: 35%|██████████▍ | ETA: 0:00:10 Bin 5 ray tracing: 42%|████████████▌ | ETA: 0:00:09 Bin 5 ray tracing: 48%|██████████████▌ | ETA: 0:00:08 Bin 5 ray tracing: 55%|████████████████▋ | ETA: 0:00:07 Bin 5 ray tracing: 62%|██████████████████▋ | ETA: 0:00:06 Bin 5 ray tracing: 69%|████████████████████▊ | ETA: 0:00:05 Bin 5 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:03 Bin 5 ray tracing: 83%|█████████████████████████ | ETA: 0:00:02 Bin 5 ray tracing: 91%|███████████████████████████▏ | ETA: 0:00:01 Bin 5 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 7%|██▏ | ETA: 0:00:14 Bin 6 ray tracing: 14%|████▏ | ETA: 0:00:13 Bin 6 ray tracing: 21%|██████▎ | ETA: 0:00:11 Bin 6 ray tracing: 28%|████████▍ | ETA: 0:00:10 Bin 6 ray tracing: 35%|██████████▌ | ETA: 0:00:09 Bin 6 ray tracing: 42%|████████████▋ | ETA: 0:00:08 Bin 6 ray tracing: 50%|██████████████▉ | ETA: 0:00:07 Bin 6 ray tracing: 57%|█████████████████▏ | ETA: 0:00:06 Bin 6 ray tracing: 65%|███████████████████▍ | ETA: 0:00:05 Bin 6 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:04 Bin 6 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:03 Bin 6 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 6 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 7 ray tracing: 15%|████▋ | ETA: 0:00:11 Bin 7 ray tracing: 23%|██████▉ | ETA: 0:00:10 Bin 7 ray tracing: 31%|█████████▏ | ETA: 0:00:09 Bin 7 ray tracing: 38%|███████████▌ | ETA: 0:00:08 Bin 7 ray tracing: 46%|█████████████▊ | ETA: 0:00:07 Bin 7 ray tracing: 53%|████████████████ | ETA: 0:00:06 Bin 7 ray tracing: 61%|██████████████████▎ | ETA: 0:00:05 Bin 7 ray tracing: 68%|████████████████████▌ | ETA: 0:00:04 Bin 7 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:03 Bin 7 ray tracing: 83%|█████████████████████████ | ETA: 0:00:02 Bin 7 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 7 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 8 ray tracing: 16%|████▋ | ETA: 0:00:11 Bin 8 ray tracing: 23%|███████ | ETA: 0:00:10 Bin 8 ray tracing: 31%|█████████▎ | ETA: 0:00:09 Bin 8 ray tracing: 39%|███████████▋ | ETA: 0:00:08 Bin 8 ray tracing: 46%|█████████████▉ | ETA: 0:00:07 Bin 8 ray tracing: 54%|████████████████▏ | ETA: 0:00:06 Bin 8 ray tracing: 61%|██████████████████▍ | ETA: 0:00:05 Bin 8 ray tracing: 68%|████████████████████▌ | ETA: 0:00:04 Bin 8 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:03 Bin 8 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:02 Bin 8 ray tracing: 90%|███████████████████████████▏ | ETA: 0:00:01 Bin 8 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 9 ray tracing: 15%|████▌ | ETA: 0:00:12 Bin 9 ray tracing: 22%|██████▊ | ETA: 0:00:10 Bin 9 ray tracing: 30%|█████████ | ETA: 0:00:10 Bin 9 ray tracing: 37%|███████████▏ | ETA: 0:00:09 Bin 9 ray tracing: 45%|█████████████▍ | ETA: 0:00:08 Bin 9 ray tracing: 52%|███████████████▌ | ETA: 0:00:07 Bin 9 ray tracing: 59%|█████████████████▊ | ETA: 0:00:06 Bin 9 ray tracing: 67%|████████████████████ | ETA: 0:00:05 Bin 9 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:04 Bin 9 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:03 Bin 9 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:02 Bin 9 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 10 ray tracing: 15%|████▎ | ETA: 0:00:12 Bin 10 ray tracing: 22%|██████▍ | ETA: 0:00:11 Bin 10 ray tracing: 29%|████████▌ | ETA: 0:00:10 Bin 10 ray tracing: 37%|██████████▊ | ETA: 0:00:09 Bin 10 ray tracing: 44%|████████████▉ | ETA: 0:00:08 Bin 10 ray tracing: 52%|███████████████▏ | ETA: 0:00:06 Bin 10 ray tracing: 60%|█████████████████▍ | ETA: 0:00:05 Bin 10 ray tracing: 67%|███████████████████▌ | ETA: 0:00:04 Bin 10 ray tracing: 75%|█████████████████████▊ | ETA: 0:00:03 Bin 10 ray tracing: 83%|████████████████████████ | ETA: 0:00:02 Bin 10 ray tracing: 90%|██████████████████████████▏ | ETA: 0:00:01 Bin 10 ray tracing: 98%|████████████████████████████▍| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2819355607136 K, F = -7454.842105405427, relative_change = 0.032718064439286466 Iter 2: T = 936.6372759273152 K, F = -6319.330971752933, relative_change = 0.03168120741925605 Iter 3: T = 908.0347674282202 K, F = -5355.273534874493, relative_change = 0.03053744414643026 Iter 5: T = 856.8185751620924 K, F = -3842.245801123268, relative_change = 0.027934240663398894 Iter 10: T = 761.5183089096523 K, F = -1663.8302210785748, relative_change = 0.020023773682019907 Iter 15: T = 705.673949205541 K, F = -712.4147600771358, relative_change = 0.012011520754483931 Iter 20: T = 676.9331094809501 K, F = -301.95750283085056, relative_change = 0.006155960914071945 Iter 25: T = 663.5243251656811 K, F = -127.12132301820776, relative_change = 0.0028450803487211347 Iter 30: T = 657.6198795629697 K, F = -53.32352125482772, relative_change = 0.0012448154371662269 Iter 35: T = 655.0936009582771 K, F = -22.329585429279348, relative_change = 0.0005308759023030107 Iter 40: T = 654.0267000054916 K, F = -9.343665084160437, relative_change = 0.0002238690437285573 Iter 45: T = 653.5786614959381 K, F = -3.9085421664033846, relative_change = 9.395231881599972e-5 Iter 50: T = 653.3909608574768 K, F = -1.634758612517774, relative_change = 3.934957611464098e-5 Iter 55: T = 653.31240508662 K, F = -0.6837035235612174, relative_change = 1.6466557674243977e-5 Iter 60: T = 653.2795421213257 K, F = -0.2859378694276101, relative_change = 6.888278290423873e-6 Iter 65: T = 653.2657966861498 K, F = -0.11958348737262114, relative_change = 2.8810694491660577e-6 Iter 70: T = 653.2600478747489 K, F = -0.05001139219022693, relative_change = 1.2049517394572304e-6 Iter 75: T = 653.2576435995968 K, F = -0.020915387645968064, relative_change = 5.039346682949081e-7 Iter 80: T = 653.2566380936456 K, F = -0.008747069472638647, relative_change = 2.1075315124956095e-7 Iter 85: T = 653.2562175774098 K, F = -0.0036581297149803627, relative_change = 8.813977416792956e-8 Iter 90: T = 653.2560417122114 K, F = -0.0015298736735115392, relative_change = 3.6861156773378554e-8 Iter 95: T = 653.255968163235 K, F = -0.0006398114658092147, relative_change = 1.5415784843501873e-8 Iter 100: T = 653.255937404166 K, F = -0.00026757679990729866, relative_change = 6.447066865198939e-9 Iter 105: T = 653.2559245403545 K, F = -0.00011190381442427455, relative_change = 2.6962406380249187e-9 Iter 110: T = 653.2559191605545 K, F = -4.679951137220861e-5, relative_change = 1.1276000733140867e-9 Iter 115: T = 653.2559169106579 K, F = -1.9572114062282875e-5, relative_change = 4.715758127879702e-10 Iter 120: T = 653.2559159697242 K, F = -8.185291050066823e-6, relative_change = 1.9721861900194046e-10 Iter 125: T = 653.2559155762145 K, F = -3.423184834649984e-6, relative_change = 8.247914258452066e-11 Iter 130: T = 653.2559154116442 K, F = -1.4316178943429847e-6, relative_change = 3.4493789345080705e-11 Iter 135: T = 653.2559153428189 K, F = -5.987197648216203e-7, relative_change = 1.4425716202947055e-11 Iter 140: T = 653.2559153140354 K, F = -2.5039239548441117e-7, relative_change = 6.033022207757092e-12 Iter 145: T = 653.2559153019977 K, F = -1.047170871681935e-7, relative_change = 2.5230818661667556e-12 Iter 150: T = 653.2559152969634 K, F = -4.379373497176431e-8, relative_change = 1.0551781142035727e-12 Iter 155: T = 653.2559152948579 K, F = -1.8314802285868126e-8, relative_change = 4.412818077921431e-13 Converged in 159 iterations to T = 653.255915294098 K Iter 1: T = 970.3608181187702 K, F = -6753.315785778793, relative_change = 0.029639181881229736 Iter 2: T = 942.8862826530709 K, F = -5719.875590840843, relative_change = 0.02831373129735801 Iter 3: T = 917.5315332955132 K, F = -4842.8298677365, relative_change = 0.026890569758014782 Iter 5: T = 872.9648609996549 K, F = -3467.425606865609, relative_change = 0.023796302881998906 Iter 10: T = 793.8751255748208 K, F = -1492.423744944235, relative_change = 0.015490588759953648 Iter 15: T = 750.7941095196409 K, F = -635.2733629083241, relative_change = 0.008479563926061752 Iter 20: T = 729.8859239366067 K, F = -268.14793631691475, relative_change = 0.004078827756859953 Iter 25: T = 720.4764245173275 K, F = -112.62988901399598, relative_change = 0.0018208966043909273 Iter 30: T = 716.4082954600359 K, F = -47.1932469630704, relative_change = 0.0007837010748466108 Iter 35: T = 714.6822650309143 K, F = -19.75292206075215, relative_change = 0.000331800476806442 Iter 40: T = 713.955986971815 K, F = -8.263760623167823, relative_change = 0.00013948370456599087 Iter 45: T = 713.6514651845633 K, F = -3.456504507309103, relative_change = 5.846078019099567e-5 Iter 50: T = 713.5239728445054 K, F = -1.4456392719935862, relative_change = 2.4471285084117893e-5 Iter 55: T = 713.4706298961887 K, F = -0.6045989774702349, relative_change = 1.0238087198590671e-5 Iter 60: T = 713.4483170145227 K, F = -0.25285320175083986, relative_change = 4.282373448390717e-6 Iter 65: T = 713.4389847619707 K, F = -0.10574669902042622, relative_change = 1.7910592234996502e-6 Iter 70: T = 713.435081773239 K, F = -0.04422461467329042, relative_change = 7.490632605299072e-7 Iter 75: T = 713.4334494741304 K, F = -0.018495276393638793, relative_change = 3.132708573877066e-7 Iter 80: T = 713.4327668231949 K, F = -0.007734947983440099, relative_change = 1.3101425326939092e-7 Iter 85: T = 713.4324813297295 K, F = -0.0032348480595452145, relative_change = 5.479183717050437e-8 Iter 90: T = 713.4323619328319 K, F = -0.0013528521675549854, relative_change = 2.291462021682854e-8 Iter 95: T = 713.4323119996022 K, F = -0.0005657789458560769, relative_change = 9.583171245258222e-9 Iter 100: T = 713.4322911169256 K, F = -0.0002366155145560045, relative_change = 4.007797264090075e-9 Iter 105: T = 713.4322823835402 K, F = -9.89554335695253e-5, relative_change = 1.6761087698984404e-9 Iter 110: T = 713.432278731134 K, F = -4.1384344880435187e-5, relative_change = 7.00968734906272e-10 Iter 115: T = 713.4322772036542 K, F = -1.7307427796597885e-5, relative_change = 2.931535083081222e-10 Iter 120: T = 713.4322765648438 K, F = -7.238174158819e-6, relative_change = 1.226003183365017e-10 Iter 125: T = 713.4322762976857 K, F = -3.027091206364574e-6, relative_change = 5.127292298478596e-11 Iter 130: T = 713.432276185957 K, F = -1.2659655024283012e-6, relative_change = 2.1442945498082618e-11 Iter 135: T = 713.4322761392308 K, F = -5.294437853686773e-7, relative_change = 8.967727963931807e-12 Iter 140: T = 713.4322761196893 K, F = -2.2141964495236977e-7, relative_change = 3.750409763860909e-12 Iter 145: T = 713.4322761115166 K, F = -9.259871813771525e-8, relative_change = 1.5684386844642338e-12 Iter 150: T = 713.4322761080988 K, F = -3.872546605609983e-8, relative_change = 6.559326118029739e-13 Iter 155: T = 713.4322761066694 K, F = -1.6195891960890663e-8, relative_change = 2.743262973025934e-13 Converged in 157 iterations to T = 713.4322761063669 K Iter 1: T = 974.4866915587871 K, F = -5813.231597752098, relative_change = 0.025513308441212867 Iter 2: T = 951.1620881280525 K, F = -4918.103633520216, relative_change = 0.023935271392392928 Iter 3: T = 929.9508615759713 K, F = -4159.00687776473, relative_change = 0.022300328005951373 Iter 5: T = 893.5126533212565 K, F = -2970.1785362045757, relative_change = 0.018944587672395482 Iter 10: T = 832.1846268900874 K, F = -1269.9404821526484, relative_change = 0.011112381026631833 Iter 15: T = 801.0855729628482 K, F = -537.6885601473899, relative_change = 0.005602225301253933 Iter 20: T = 786.714079203243 K, F = -226.2227520869574, relative_change = 0.002565113638207379 Iter 25: T = 780.4171831978053 K, F = -94.86512311725185, relative_change = 0.0011172614257926761 Iter 30: T = 777.7292268958835 K, F = -39.720082618961925, relative_change = 0.0004755177026600966 Iter 35: T = 776.5951982648679 K, F = -16.619641336440843, relative_change = 0.00020035067789872266 Iter 40: T = 776.119176206923 K, F = -6.951980685912924, relative_change = 8.4051361778999e-5 Iter 45: T = 775.9197886215425 K, F = -2.9076553055450116, relative_change = 3.519737372350977e-5 Iter 50: T = 775.8363480736372 K, F = -1.2160606399689668, relative_change = 1.472803883404554e-5 Iter 55: T = 775.8014427355703 K, F = -0.5085788632066053, relative_change = 6.160855509175521e-6 Iter 60: T = 775.7868432431859 K, F = -0.21269511539481434, relative_change = 2.5767907046317788e-6 Iter 65: T = 775.7807372701711 K, F = -0.08895187543396621, relative_change = 1.0776879145812256e-6 Iter 70: T = 775.7781836284453 K, F = -0.037200778250459754, relative_change = 4.507095243039216e-7 Iter 75: T = 775.7771156560775 K, F = -0.015557817012888941, relative_change = 1.8849342932232943e-7 Iter 80: T = 775.7766690157223 K, F = -0.006506466144245104, relative_change = 7.883043470410412e-8 Iter 85: T = 775.7764822251196 K, F = -0.0027210820682286307, relative_change = 3.2967869724761355e-8 Iter 90: T = 775.7764041070112 K, F = -0.0011379890565870188, relative_change = 1.3787563922082308e-8 Iter 95: T = 775.776371437077 K, F = -0.00047592062337464824, relative_change = 5.766125161151813e-9 Iter 100: T = 775.7763577741189 K, F = -0.00019903568919699133, relative_change = 2.4114626164865143e-9 Iter 105: T = 775.7763520601063 K, F = -8.323910079421903e-5, relative_change = 1.0085024833705801e-9 Iter 110: T = 775.7763496704381 K, F = -3.481158638385384e-5, relative_change = 4.217677929976088e-10 Iter 115: T = 775.7763486710503 K, F = -1.4558623235183532e-5, relative_change = 1.7638835418019395e-10 Iter 120: T = 775.7763482530943 K, F = -6.088588751507196e-6, relative_change = 7.37677000472027e-11 Iter 125: T = 775.7763480783001 K, F = -2.5463206714260167e-6, relative_change = 3.085053489098842e-11 Iter 130: T = 775.7763480051991 K, F = -1.0649018632458152e-6, relative_change = 1.2902063935209062e-11 Iter 135: T = 775.7763479746275 K, F = -4.453560906725329e-7, relative_change = 5.395814351715083e-12 Iter 140: T = 775.7763479618419 K, F = -1.8625314801568038e-7, relative_change = 2.2565929381954782e-12 Iter 145: T = 775.7763479564949 K, F = -7.789229583554658e-8, relative_change = 9.437220610805344e-13 Iter 150: T = 775.7763479542588 K, F = -3.257619141106005e-8, relative_change = 3.94684354482614e-13 Converged in 154 iterations to T = 775.7763479534516 K Iter 1: T = 970.3937959302094 K, F = -6745.80176007239, relative_change = 0.029606204069790604 Iter 2: T = 942.9528736410742 K, F = -5713.4601160081575, relative_change = 0.028278130388117995 Iter 3: T = 917.6321728352909 K, F = -4837.351108755789, relative_change = 0.026852562321604826 Iter 5: T = 873.133880112857 K, F = -3463.4287915550835, relative_change = 0.02375454049525627 Iter 10: T = 794.2023801206827 K, F = -1490.6150824914089, relative_change = 0.015448947183311933 Iter 15: T = 751.236549623619 K, F = -634.4702756658847, relative_change = 0.00844992424759802 Iter 20: T = 730.3946607902626 K, F = -267.79985193628113, relative_change = 0.004062464318685065 Iter 25: T = 721.01768774224 K, F = -112.48168146928451, relative_change = 0.0018131035988308893 Iter 30: T = 716.9641904789743 K, F = -47.130756960966615, relative_change = 0.0007802500022643241 Iter 35: T = 715.2444765293525 K, F = -19.726695296882045, relative_change = 0.0003303214316897456 Iter 40: T = 714.5208760067572 K, F = -8.252775765433189, relative_change = 0.00013885872360268773 Iter 45: T = 714.2174803850863 K, F = -3.451907598329141, relative_change = 5.819826878712373e-5 Iter 50: T = 714.0904601461565 K, F = -1.4437162790956206, relative_change = 2.436129988174284e-5 Iter 55: T = 714.0373148335636 K, F = -0.6037946694375167, relative_change = 1.0192055058462514e-5 Iter 60: T = 714.0150846400852 K, F = -0.25251681487371735, relative_change = 4.26311612833955e-6 Iter 65: T = 714.00578697477 K, F = -0.10560601527369762, relative_change = 1.7830045098891818e-6 Iter 70: T = 714.0018984518919 K, F = -0.0441657785715005, relative_change = 7.456944955166062e-7 Iter 75: T = 714.000272202761 K, F = -0.0184706703499824, relative_change = 3.1186196682503415e-7 Iter 80: T = 713.999592082031 K, F = -0.007724657426319115, relative_change = 1.3042503265198213e-7 Iter 85: T = 713.9993076467334 K, F = -0.0032305444240254833, relative_change = 5.454541708350704e-8 Iter 90: T = 713.9991886923751 K, F = -0.0013510523344993919, relative_change = 2.2811564203889605e-8 Iter 95: T = 713.9991389442209 K, F = -0.000565026234816357, relative_change = 9.540071971329213e-9 Iter 100: T = 713.999118138945 K, F = -0.00023630072158387083, relative_change = 3.989772624051548e-9 Iter 105: T = 713.9991094379296 K, F = -9.8823783600821e-5, relative_change = 1.6685706528934647e-9 Iter 110: T = 713.9991057990609 K, F = -4.13292873330251e-5, relative_change = 6.978162048598664e-10 Iter 115: T = 713.9991042772425 K, F = -1.728440153236921e-5, relative_change = 2.9183507341417734e-10 Iter 120: T = 713.9991036408 K, F = -7.228542854398334e-6, relative_change = 1.220489086413011e-10 Iter 125: T = 713.999103374632 K, F = -3.0230626163474383e-6, relative_change = 5.1042305643921267e-11 Iter 130: T = 713.9991032633174 K, F = -1.2642810146568095e-6, relative_change = 2.1346503929114626e-11 Iter 135: T = 713.9991032167643 K, F = -5.287361236616661e-7, relative_change = 8.927341005572305e-12 Iter 140: T = 713.9991031972953 K, F = -2.2112471220747665e-7, relative_change = 3.733536678410578e-12 Iter 145: T = 713.9991031891532 K, F = -9.247766052933315e-8, relative_change = 1.5614208565465767e-12 Iter 150: T = 713.999103185748 K, F = -3.867654829736722e-8, relative_change = 6.530265669183541e-13 Iter 155: T = 713.9991031843239 K, F = -1.6174868555651756e-8, relative_change = 2.7310138438781606e-13 Converged in 157 iterations to T = 713.9991031840225 K Iter 1: T = 969.3089888990465 K, F = -6992.976074040728, relative_change = 0.030691011100953434 Iter 2: T = 940.7585734264572 K, F = -5924.556238553116, relative_change = 0.029454400814973584 Iter 3: T = 914.3097374859228 K, F = -5017.686120139371, relative_change = 0.02811437141008641 Iter 5: T = 867.531320546886 K, F = -3595.1001151551745, relative_change = 0.025155781976650363 Iter 10: T = 783.2345992873356 K, F = -1550.3992796390123, relative_change = 0.016888439599530902 Iter 15: T = 736.2679259106291 K, F = -661.1234968787003, relative_change = 0.009502489717090487 Iter 20: T = 713.079872406732 K, F = -279.388935824191, relative_change = 0.004654012278122309 Iter 25: T = 702.5389332085728 K, F = -117.42512996838107, relative_change = 0.002097498776073022 Iter 30: T = 697.9589060568078 K, F = -49.216959536283426, relative_change = 0.0009067489232300548 Iter 35: T = 696.0113153730533 K, F = -20.602612692823598, relative_change = 0.0003846408405358043 Iter 40: T = 695.1910125099802 K, F = -8.61970902851713, relative_change = 0.00016183075690610278 Iter 45: T = 694.8469251463498 K, F = -3.6054717881702603, relative_change = 6.78506017631878e-5 Iter 50: T = 694.7028431294135 K, F = -1.507957668664718, relative_change = 2.8405959321019964e-5 Iter 55: T = 694.6425546559191 K, F = -0.6306645157761605, relative_change = 1.1884971408180191e-5 Iter 60: T = 694.6173357548994 K, F = -0.26375468828841564, relative_change = 4.9713575538541404e-6 Iter 65: T = 694.6067879397369 K, F = -0.11030593009860507, relative_change = 2.0792421525970853e-6 Iter 70: T = 694.6023765478607 K, F = -0.04613135691313508, relative_change = 8.695920710291972e-7 Iter 75: T = 694.6005316214286 K, F = -0.01929270180526832, relative_change = 3.6367871660529365e-7 Iter 80: T = 694.599760045973 K, F = -0.008068441344264321, relative_change = 1.520956443295123e-7 Iter 85: T = 694.5994373629953 K, F = -0.0033743190598924944, relative_change = 6.360836558601683e-8 Iter 90: T = 694.5993024129618 K, F = -0.0014111806215411082, relative_change = 2.6601804488905077e-8 Iter 95: T = 694.5992459752184 K, F = -0.000590172605413164, relative_change = 1.1125196943379858e-8 Iter 100: T = 694.5992223722751 K, F = -0.0002468172338827568, relative_change = 4.652691017890835e-9 Iter 105: T = 694.5992125012416 K, F = -0.00010322191429390504, relative_change = 1.9458110700954913e-9 Iter 110: T = 694.5992083730573 K, F = -4.31686376539675e-5, relative_change = 8.137614573365737e-10 Iter 115: T = 694.5992066466014 K, F = -1.80536389944308e-5, relative_change = 3.403247484888506e-10 Iter 120: T = 694.5992059245768 K, F = -7.550247130172494e-6, relative_change = 1.4232786914118173e-10 Iter 125: T = 694.5992056226175 K, F = -3.157603792880437e-6, relative_change = 5.952321991779669e-11 Iter 130: T = 694.5992054963347 K, F = -1.3205474151956054e-6, relative_change = 2.48933176644374e-11 Iter 135: T = 694.5992054435216 K, F = -5.522688515391394e-7, relative_change = 1.0410685602287291e-11 Iter 140: T = 694.5992054214345 K, F = -2.3096483581230842e-7, relative_change = 4.3538618636352166e-12 Iter 145: T = 694.5992054121974 K, F = -9.659195965294742e-8, relative_change = 1.8208315045634953e-12 Iter 150: T = 694.5992054083343 K, F = -4.039427548008234e-8, relative_change = 7.614626482821741e-13 Iter 155: T = 694.5992054067189 K, F = -1.6894572851811063e-8, relative_change = 3.1847547783898013e-13 Converged in 158 iterations to T = 694.5992054062459 K Iter 1: T = 963.518982394594 K, F = -8312.234563798309, relative_change = 0.036481017605405994 Iter 2: T = 928.9128430717866 K, F = -7053.290686121348, relative_change = 0.03591640637613817 Iter 3: T = 896.1478577357226 K, F = -5984.111992027077, relative_change = 0.035272399967810474 Iter 5: T = 836.0219612310168 K, F = -4305.058033635258, relative_change = 0.03371682537545861 Iter 10: T = 715.9869735021279 K, F = -1881.550003284614, relative_change = 0.0280396076168049 Iter 15: T = 635.9576348376714 K, F = -814.9074517981171, relative_change = 0.02015017191889728 Iter 20: T = 588.9673550666056 K, F = -348.9837717407195, relative_change = 0.012119228194879159 Iter 25: T = 564.7407740002449 K, F = -147.93603312676336, relative_change = 0.006223454297277182 Iter 30: T = 553.4250491566081 K, F = -62.28437120903837, relative_change = 0.0028795501777757965 Iter 35: T = 548.4392230964752 K, F = -26.127357624535627, relative_change = 0.001260597598863219 Iter 40: T = 546.3053765040257 K, F = -10.941188971928735, relative_change = 0.0005377404833706412 Iter 45: T = 545.4040948577954 K, F = -4.578299764513448, relative_change = 0.00022678816995814447 Iter 50: T = 545.0255868776817 K, F = -1.9151512492657752, relative_change = 9.518173274327423e-5 Iter 55: T = 544.8670116779866 K, F = -0.8010183470470208, relative_change = 3.986524762731941e-5 Iter 60: T = 544.8006447470756 K, F = -0.33500931234679115, relative_change = 1.6682483658567183e-5 Iter 65: T = 544.7728807420136 K, F = -0.1401073230053933, relative_change = 6.978627702657674e-6 Iter 70: T = 544.7612680052005 K, F = -0.058594980410754366, relative_change = 2.9188628050995147e-6 Iter 75: T = 544.7564111578614 K, F = -0.024505194862124907, relative_change = 1.2207587985428406e-6 Iter 80: T = 544.7543799204523 K, F = -0.010248378136379438, relative_change = 5.105456186869342e-7 Iter 85: T = 544.7535304246906 K, F = -0.004285996399561481, relative_change = 2.1351797327175827e-7 Iter 90: T = 544.7531751540151 K, F = -0.001792455276564936, relative_change = 8.929606337876387e-8 Iter 95: T = 544.7530265753306 K, F = -0.0007496262722787028, relative_change = 3.734473206379196e-8 Iter 100: T = 544.7529644379075 K, F = -0.00031350267132068677, relative_change = 1.561802200982093e-8 Iter 105: T = 544.7529384512876 K, F = -0.00013111056306006064, relative_change = 6.531644901190119e-9 Iter 110: T = 544.7529275833715 K, F = -5.4832003643978666e-5, relative_change = 2.731612180443229e-9 Iter 115: T = 544.7529230382789 K, F = -2.2931398379333334e-5, relative_change = 1.1423928627969875e-9 Iter 120: T = 544.752921137467 K, F = -9.59018510013343e-6, relative_change = 4.777623680885666e-10 Iter 125: T = 544.7529203425247 K, F = -4.010729550973924e-6, relative_change = 1.9980591003627602e-10 Iter 130: T = 544.7529200100703 K, F = -1.6773348341103667e-6, relative_change = 8.356120991936026e-11 Iter 135: T = 544.7529198710339 K, F = -7.014812354599886e-7, relative_change = 3.494628481443244e-11 Iter 140: T = 544.7529198128873 K, F = -2.9336792234380127e-7, relative_change = 1.4614958257767074e-11 Iter 145: T = 544.7529197885697 K, F = -1.2269038909829e-7, relative_change = 6.112171028638957e-12 Iter 150: T = 544.7529197783998 K, F = -5.131072824959837e-8, relative_change = 2.5561900080224575e-12 Iter 155: T = 544.7529197741466 K, F = -2.1458658933104502e-8, relative_change = 1.0690241870194428e-12 Iter 160: T = 544.7529197723679 K, F = -8.974842147235762e-9, relative_change = 4.4710731272327653e-13 Converged in 165 iterations to T = 544.7529197716239 K Iter 1: T = 966.8907778445698 K, F = -7543.967763115823, relative_change = 0.0331092221554302 Iter 2: T = 935.8388133339688 K, F = -6395.558558025545, relative_change = 0.03211527632916635 Iter 3: T = 906.8137201174042 K, F = -5420.510257172289, relative_change = 0.031015056015000486 Iter 5: T = 854.7133502833881 K, F = -3890.107347863135, relative_change = 0.028495903226128636 Iter 10: T = 757.1250945368794 K, F = -1686.0005352858923, relative_change = 0.02070767941155358 Iter 15: T = 699.3087479488057 K, F = -722.573267117153, relative_change = 0.012602194876732436 Iter 20: T = 669.2631136059917 K, F = -306.48113354429904, relative_change = 0.006529689471431105 Iter 25: T = 655.1555739975025 K, F = -129.07962019345572, relative_change = 0.003037002508490067 Iter 30: T = 648.9222237438062 K, F = -54.156124223204564, relative_change = 0.0013329240695123354 Iter 35: T = 646.2509518896369 K, F = -22.680348889304355, relative_change = 0.0005692456403899805 Iter 40: T = 645.1220230874662 K, F = -9.490820214345367, relative_change = 0.00024019403783871794 Iter 45: T = 644.6477937350897 K, F = -3.9701660147021975, relative_change = 0.00010082923535305334 Iter 50: T = 644.4490955137888 K, F = -1.6605448309597848, relative_change = 4.223433092918944e-5 Iter 55: T = 644.3659326425178 K, F = -0.6944901505966987, relative_change = 1.7674531434257888e-5 Iter 60: T = 644.3311415692314 K, F = -0.29044940729711444, relative_change = 7.393736165624795e-6 Iter 65: T = 644.3165895375654 K, F = -0.12147034366041115, relative_change = 3.0925050139257777e-6 Iter 70: T = 644.3105033561154 K, F = -0.05080051154201248, relative_change = 1.2933848479611407e-6 Iter 75: T = 644.3079579814739 K, F = -0.021245409148107797, relative_change = 5.409198900234801e-7 Iter 80: T = 644.3068934647531 K, F = -0.008885088818289366, relative_change = 2.2622106443917628e-7 Iter 85: T = 644.3064482692853 K, F = -0.0037158511253388427, relative_change = 9.46086842135945e-8 Iter 90: T = 644.3062620828982 K, F = -0.0015540134682913709, relative_change = 3.956653988564679e-8 Iter 95: T = 644.3061842174708 K, F = -0.0006499070183995093, relative_change = 1.654720971582405e-8 Iter 100: T = 644.3061516532092 K, F = -0.0002717988817971251, relative_change = 6.920242515511807e-9 Iter 105: T = 644.3061380344443 K, F = -0.00011366953981872818, relative_change = 2.8941283942451148e-9 Iter 110: T = 644.3061323389138 K, F = -4.753795882356249e-5, relative_change = 1.210359102758916e-9 Iter 115: T = 644.306129956975 K, F = -1.9880942731864693e-5, relative_change = 5.06186656431476e-10 Iter 120: T = 644.3061289608197 K, F = -8.314448380841721e-6, relative_change = 2.1169332429113834e-10 Iter 125: T = 644.3061285442157 K, F = -3.4772017231676777e-6, relative_change = 8.853267956662251e-11 Iter 130: T = 644.3061283699868 K, F = -1.4542072564460717e-6, relative_change = 3.7025423163216494e-11 Iter 135: T = 644.3061282971223 K, F = -6.081670358981661e-7, relative_change = 1.5484479100457404e-11 Iter 140: T = 644.3061282666495 K, F = -2.5434329020690427e-7, relative_change = 6.4758086676316695e-12 Iter 145: T = 644.3061282539053 K, F = -1.0636901409677435e-7, relative_change = 2.708250659806459e-12 Iter 150: T = 644.3061282485755 K, F = -4.44845434932617e-8, relative_change = 1.1326164418704837e-12 Iter 155: T = 644.3061282463466 K, F = -1.8603494023050615e-8, relative_change = 4.736616710540174e-13 Converged in 160 iterations to T = 644.3061282454144 K Iter 1: T = 965.1317666438484 K, F = -7944.760138451795, relative_change = 0.034868233356151516 Iter 2: T = 932.2353466466927 K, F = -6738.542280821548, relative_change = 0.03408490025310207 Iter 3: T = 901.2812319772493 K, F = -5714.249785052961, relative_change = 0.0332041847381 Iter 5: T = 845.0870701401265 K, F = -4106.039206851618, relative_change = 0.03113143729393875 Iter 10: T = 736.4478567754397 K, F = -1786.9598004749532, relative_change = 0.02417281263306431 Iter 15: T = 668.4014604914248 K, F = -769.5414637369497, relative_change = 0.01586913032975512 Iter 20: T = 631.1085149530466 K, F = -327.7232639423085, relative_change = 0.008751065630633178 Iter 25: T = 612.92679313804 K, F = -138.37458315164906, relative_change = 0.004229475875423863 Iter 30: T = 604.7227231176423 K, F = -58.13084711146856, relative_change = 0.0018928331499264708 Iter 35: T = 601.1711607825703 K, F = -24.359363555304874, relative_change = 0.0008155971038112528 Iter 40: T = 599.6634224803499 K, F = -10.196049260582555, relative_change = 0.0003454777566273395 Iter 45: T = 599.0288378051732 K, F = -4.265642823958185, relative_change = 0.00014526447474988514 Iter 50: T = 598.7627338753599 K, F = -1.7842121606237067, relative_change = 6.088912034363195e-5 Iter 55: T = 598.6513207214232 K, F = -0.7462260398422454, relative_change = 2.548873587327071e-5 Iter 60: T = 598.6047044483598 K, F = -0.3120889046618221, relative_change = 1.0663928499517858e-5 Iter 65: T = 598.5852051219099 K, F = -0.13052075272372535, relative_change = 4.460523348229476e-6 Iter 70: T = 598.5770495981019 K, F = -0.05458559041166183, relative_change = 1.8655737839807922e-6 Iter 75: T = 598.5736387429896 K, F = -0.02282839002687842, relative_change = 7.802279142211101e-7 Iter 80: T = 598.5722122620679 K, F = -0.009547113071872004, relative_change = 3.2630459816317593e-7 Iter 85: T = 598.5716156871113 K, F = -0.003992718055696398, relative_change = 1.3646517360832878e-7 Iter 90: T = 598.5713661917102 K, F = -0.0016698026101036323, relative_change = 5.7071486665592685e-8 Iter 95: T = 598.5712618496439 K, F = -0.0006983314346468705, relative_change = 2.3867998526158416e-8 Iter 100: T = 598.5712182125264 K, F = -0.0002920505529408479, relative_change = 9.98188573607183e-9 Iter 105: T = 598.5711999629593 K, F = -0.00012213903012242566, relative_change = 4.174544465979335e-9 Iter 110: T = 598.5711923307719 K, F = -5.1080001878811565e-5, relative_change = 1.7458444847334244e-9 Iter 115: T = 598.5711891388997 K, F = -2.136226538257402e-5, relative_change = 7.301329830586023e-10 Iter 120: T = 598.5711878040208 K, F = -8.933955185641551e-6, relative_change = 3.05350359741458e-10 Iter 125: T = 598.5711872457584 K, F = -3.7362866330270528e-6, relative_change = 1.2770116357774775e-10 Iter 130: T = 598.5711870122864 K, F = -1.5625590638612685e-6, relative_change = 5.3406130359683865e-11 Iter 135: T = 598.5711869146458 K, F = -6.53481288248603e-7, relative_change = 2.2335096126658497e-11 Iter 140: T = 598.5711868738111 K, F = -2.7329344320925486e-7, relative_change = 9.340795882933657e-12 Iter 145: T = 598.5711868567337 K, F = -1.1429524687800452e-7, relative_change = 3.906455124152103e-12 Iter 150: T = 598.5711868495915 K, F = -4.77988504887783e-8, relative_change = 1.6336992966153651e-12 Iter 155: T = 598.5711868466047 K, F = -1.9989785771112878e-8, relative_change = 6.832235214987378e-13 Iter 160: T = 598.5711868453557 K, F = -8.360311998245606e-9, relative_change = 2.857440229589946e-13 Converged in 162 iterations to T = 598.5711868450912 K Iter 1: T = 980.1934476436877 K, F = -4512.941795281039, relative_change = 0.019806552356312325 Iter 2: T = 962.4283597206085 K, F = -3812.038875169182, relative_change = 0.018124063128339814 Iter 3: T = 946.5834695497138 K, F = -3218.4924042548046, relative_change = 0.01646344895270376 Iter 5: T = 920.1299162291986 K, F = -2291.11391777933, relative_change = 0.013296364639282318 Iter 10: T = 878.148773208686 K, F = -972.602130513152, relative_change = 0.006979448035239095 Iter 15: T = 858.2850254509488 K, F = -409.83473114676724, relative_change = 0.0032712243976032672 Iter 20: T = 849.4717832467766 K, F = -171.99200233813664, relative_change = 0.0014411995417871154 Iter 25: T = 845.6874842412506 K, F = -72.0377369624917, relative_change = 0.0006165453639214399 Iter 30: T = 844.0867810287801 K, F = -30.146408205029047, relative_change = 0.0002603456522714448 Iter 35: T = 843.4141233812494 K, F = -12.611002763849967, relative_change = 0.00010932298659899894 Iter 40: T = 843.1322410820982 K, F = -5.274671266432209, relative_change = 4.579818104075107e-5 Iter 45: T = 843.0142546871281 K, F = -2.2060354854974076, relative_change = 1.9167023171361383e-5 Iter 50: T = 842.9648938771256 K, F = -0.9226087557406453, relative_change = 8.018272608869349e-6 Iter 55: T = 842.944247535829 K, F = -0.3858492136174385, relative_change = 3.353756367829932e-6 Iter 60: T = 842.9356124538053 K, F = -0.1613673112562588, relative_change = 1.4026542629122166e-6 Iter 65: T = 842.9320010657048 K, F = -0.06748583500505423, relative_change = 5.866195846876564e-7 Iter 70: T = 842.930490723688 K, F = -0.028223399339277977, relative_change = 2.453335584207577e-7 Iter 75: T = 842.9298590777536 K, F = -0.011803365665250531, relative_change = 1.0260181620476981e-7 Iter 80: T = 842.9295949153793 K, F = -0.004936309008636064, relative_change = 4.290937345512119e-8 Iter 85: T = 842.929484439432 K, F = -0.0020644234700690767, relative_change = 1.794522441157154e-8 Iter 90: T = 842.9294382370562 K, F = -0.000863366566121293, relative_change = 7.50490926231425e-9 Iter 95: T = 842.9294189146681 K, F = -0.00036107021140674433, relative_change = 3.138643046905788e-9 Iter 100: T = 842.9294108338141 K, F = -0.0001510038741114883, relative_change = 1.3126180620732935e-9 Iter 105: T = 842.9294074543044 K, F = -6.315162159231669e-5, relative_change = 5.489525432471513e-10 Iter 110: T = 842.9294060409532 K, F = -2.641076426579403e-5, relative_change = 2.295785280407917e-10 Iter 115: T = 842.9294054498728 K, F = -1.1045296097744739e-5, relative_change = 9.601247441541713e-11 Iter 120: T = 842.9294052026759 K, F = -4.619273752615172e-6, relative_change = 4.015355493281861e-11 Iter 125: T = 842.9294050992952 K, F = -1.9318348265517926e-6, relative_change = 1.6792690805661954e-11 Iter 130: T = 842.9294050560602 K, F = -8.079176063713334e-7, relative_change = 7.0229143698449855e-12 Iter 135: T = 842.9294050379788 K, F = -3.3788112729915554e-7, relative_change = 2.9370695795437135e-12 Iter 140: T = 842.9294050304169 K, F = -1.4130466463591063e-7, relative_change = 1.2283066393348204e-12 Iter 145: T = 842.9294050272545 K, F = -5.9096502136313234e-8, relative_change = 5.137029702722722e-13 Converged in 150 iterations to T = 842.9294050259319 K Iter 1: T = 976.4937845880714 K, F = -5355.913541791319, relative_change = 0.02350621541192861 Iter 2: T = 955.1480762423632 K, F = -4528.707849553341, relative_change = 0.021859543483641112 Iter 3: T = 935.8707608227704 K, F = -3827.525847575332, relative_change = 0.020182541219610068 Iter 5: T = 903.0985179220269 K, F = -2730.2417790559034, relative_change = 0.016830867359198868 Iter 10: T = 849.1586697719038 K, F = -1164.1486108453407, relative_change = 0.00945934427173179 Iter 15: T = 822.546888389377 K, F = -491.9414974314084, relative_change = 0.004629358472885435 Iter 20: T = 810.4547289890506 K, F = -206.75388134606314, relative_change = 0.0020855404542012394 Iter 25: T = 805.2018179522021 K, F = -86.65665506648394, relative_change = 0.0009014076910727527 Iter 30: T = 802.9683092044902 K, F = -36.27496671644827, relative_change = 0.0003823430838137857 Iter 35: T = 802.0276203896557 K, F = -15.17666320794757, relative_change = 0.00016085826083581199 Iter 40: T = 801.6330425044747 K, F = -6.348123338794085, relative_change = 6.744184594638128e-5 Iter 45: T = 801.4678194904791 K, F = -2.655047049146197, relative_change = 2.8234652861388737e-5 Iter 50: T = 801.3986851724407 K, F = -1.1104049539870233, relative_change = 1.1813265908554434e-5 Iter 55: T = 801.3697660585939 K, F = -0.4643903113696134, relative_change = 4.9413584119200114e-6 Iter 60: T = 801.3576706346388 K, F = -0.1942145710170673, relative_change = 2.0666942205041445e-6 Iter 65: T = 801.3526119905633 K, F = -0.0812230273517568, relative_change = 8.643440378979441e-7 Iter 70: T = 801.3504963713827 K, F = -0.03396847053491536, relative_change = 3.6148386736351835e-7 Iter 75: T = 801.3496115882613 K, F = -0.014206025376821696, relative_change = 1.5117772181502328e-7 Iter 80: T = 801.3492415603589 K, F = -0.005941130398172456, relative_change = 6.322447760247484e-8 Iter 85: T = 801.3490868100902 K, F = -0.0024846518459792355, relative_change = 2.6441257622052974e-8 Iter 90: T = 801.3490220916481 K, F = -0.0010391111015088939, relative_change = 1.105805424709967e-8 Iter 95: T = 801.3489950256171 K, F = -0.0004345686754720912, relative_change = 4.624611125098033e-9 Iter 100: T = 801.3489837062789 K, F = -0.0001817418113378988, relative_change = 1.934067747110445e-9 Iter 105: T = 801.3489789723964 K, F = -7.600659759199324e-5, relative_change = 8.088502696368124e-10 Iter 110: T = 801.34897699263 K, F = -3.178686644722539e-5, relative_change = 3.3827084244972737e-10 Iter 115: T = 801.348976164668 K, F = -1.3293646478729215e-5, relative_change = 1.4146889952730246e-10 Iter 120: T = 801.3489758184045 K, F = -5.559562343382396e-6, relative_change = 5.916399006460068e-11 Iter 125: T = 801.348975673593 K, F = -2.325077872233905e-6, relative_change = 2.4743113891755854e-11 Iter 130: T = 801.3489756130311 K, F = -9.723759091251338e-7, relative_change = 1.034787185455603e-11 Iter 135: T = 801.3489755877034 K, F = -4.066601937413594e-7, relative_change = 4.327613975549696e-12 Iter 140: T = 801.348975577111 K, F = -1.7007018882075897e-7, relative_change = 1.8098602650042405e-12 Iter 145: T = 801.3489755726812 K, F = -7.112611588588891e-8, relative_change = 7.569129654169738e-13 Iter 150: T = 801.3489755708285 K, F = -2.9745689911209183e-8, relative_change = 3.165489648758085e-13 Converged in 153 iterations to T = 801.3489755702861 K Iter 1: T = 980.8622869085891 K, F = -4360.546132542843, relative_change = 0.01913771309141083 Iter 2: T = 963.7353571588852 K, F = -3682.6298859793906, relative_change = 0.01746109517951115 Iter 3: T = 948.4933490608262 K, F = -3108.660739761499, relative_change = 0.015815553496960854 Iter 5: T = 923.1257875563372 K, F = -2212.144836311331, relative_change = 0.012702761774358714 Iter 10: T = 883.1098250940628 K, F = -938.4015829129626, relative_change = 0.006594213354210545 Iter 15: T = 864.2999492410906 K, F = -395.25221191629254, relative_change = 0.0030704037551478698 Iter 20: T = 855.9839317793599 K, F = -165.8364201390634, relative_change = 0.0013483180918256014 Iter 25: T = 852.4191408973774 K, F = -69.45270542010601, relative_change = 0.000575961217066667 Iter 30: T = 850.9124076573723 K, F = -29.063388883555703, relative_change = 0.00024305344174157902 Iter 35: T = 850.2794403415115 K, F = -12.157729489512255, relative_change = 0.00010203414692980397 Iter 40: T = 850.0142262706631 K, F = -5.085046885569689, relative_change = 4.273983977273815e-5 Iter 45: T = 849.9032229061269 K, F = -2.1267217718981506, relative_change = 1.7886222164993255e-5 Iter 50: T = 849.8567846176325 K, F = -0.8894369695209969, relative_change = 7.482316957988419e-6 Iter 55: T = 849.8373608834603 K, F = -0.3719760538214385, relative_change = 3.1295591696745343e-6 Iter 60: T = 849.8292371757279 K, F = -0.15556533371130188, relative_change = 1.308882844770173e-6 Iter 65: T = 849.825839661902 K, F = -0.06505936883429597, relative_change = 5.474016008437083e-7 Iter 70: T = 849.8244187666618 K, F = -0.027208620481862456, relative_change = 2.2893183940672945e-7 Iter 75: T = 849.8238245287876 K, F = -0.011378972724736425, relative_change = 9.574237073613017e-8 Iter 80: T = 849.823576010972 K, F = -0.004758822759972192, relative_change = 4.004066257723032e-8 Iter 85: T = 849.8234720777766 K, F = -0.001990196592225324, relative_change = 1.6745493714385682e-8 Iter 90: T = 849.8234286116597 K, F = -0.0008323239971741447, relative_change = 7.003167280896437e-9 Iter 95: T = 849.8234104336082 K, F = -0.0003480878373303131, relative_change = 2.9288085046429365e-9 Iter 100: T = 849.8234028313294 K, F = -0.00014557448944452211, relative_change = 1.2248627362973978e-9 Iter 105: T = 849.8233996519656 K, F = -6.0880988315803464e-5, relative_change = 5.122522191206927e-10 Iter 110: T = 849.8233983223178 K, F = -2.546115539381333e-5, relative_change = 2.1422998886557282e-10 Iter 115: T = 849.8233977662431 K, F = -1.0648159697534965e-5, relative_change = 8.959354378328925e-11 Iter 120: T = 849.823397533686 K, F = -4.453186089214967e-6, relative_change = 3.74690777291239e-11 Iter 125: T = 849.823397436428 K, F = -1.8623756192770458e-6, relative_change = 1.5670015912100113e-11 Iter 130: T = 849.8233973957534 K, F = -7.788664826424707e-7, relative_change = 6.55337733852427e-12 Iter 135: T = 849.8233973787429 K, F = -3.257333562878273e-7, relative_change = 2.7407182659334303e-12 Iter 140: T = 849.8233973716289 K, F = -1.3622502836874162e-7, relative_change = 1.1461964712403731e-12 Iter 145: T = 849.8233973686537 K, F = -5.696972671387357e-8, relative_change = 4.793428968963407e-13 Converged in 150 iterations to T = 849.8233973674095 K Iter 1: T = 967.3207637403038 K, F = -7445.995067750629, relative_change = 0.032679236259696105 Iter 2: T = 936.7164787453995 K, F = -6311.765112055947, relative_change = 0.03163819711319735 Iter 3: T = 908.1557930844167 K, F = -5348.7994725868275, relative_change = 0.03049021375094832 Iter 5: T = 857.0268642255519 K, F = -3837.49788304312, relative_change = 0.027878953330616196 Iter 10: T = 761.9506083416102 K, F = -1661.6347248388065, relative_change = 0.01995741754453844 Iter 15: T = 706.2968414492915 K, F = -711.4114286469555, relative_change = 0.011955085023788843 Iter 20: T = 677.6806572757761 K, F = -301.5118333634487, relative_change = 0.006120671332953125 Iter 25: T = 664.338112380305 K, F = -126.92870758186301, relative_change = 0.002827082237571068 Iter 30: T = 658.4647151609076 K, F = -53.24169745407961, relative_change = 0.0012365807014718107 Iter 35: T = 655.9520967081679 K, F = -22.2951278284347, relative_change = 0.0005272952819740343 Iter 40: T = 654.8910344274022 K, F = -9.329211635105075, relative_change = 0.0002223466155674294 Iter 45: T = 654.4454603335093 K, F = -3.902489968216387, relative_change = 9.331117354182466e-5 Iter 50: T = 654.258794343783 K, F = -1.6322261758187218, relative_change = 3.908065761890785e-5 Iter 55: T = 654.1806719784827 K, F = -0.6826441942518624, relative_change = 1.63539552038459e-5 Iter 60: T = 654.1479903917893 K, F = -0.285494804288263, relative_change = 6.841162503570705e-6 Iter 65: T = 654.13432083288 K, F = -0.11939818507160727, relative_change = 2.861360848867572e-6 Iter 70: T = 654.128603757614 K, F = -0.04993389530033243, relative_change = 1.1967086299478508e-6 Iter 75: T = 654.1262127555526 K, F = -0.020882977302775663, relative_change = 5.004871724805957e-7 Iter 80: T = 654.1252128006819 K, F = -0.00873351504187514, relative_change = 2.093113447698556e-7 Iter 85: T = 654.1247946059945 K, F = -0.003652461083546499, relative_change = 8.753678953540065e-8 Iter 90: T = 654.1246197116988 K, F = -0.0015275029827857, relative_change = 3.6608980704224325e-8 Iter 95: T = 654.1245465687662 K, F = -0.0006388200136782651, relative_change = 1.5310321660951425e-8 Iter 100: T = 654.1245159795096 K, F = -0.00026716216326033715, relative_change = 6.402960893924916e-9 Iter 105: T = 654.1245031867156 K, F = -0.0001117304074169101, relative_change = 2.677794966305131e-9 Iter 110: T = 654.1244978366162 K, F = -4.672699099861344e-5, relative_change = 1.1198858847103039e-9 Iter 115: T = 654.1244955991408 K, F = -1.9541786805965522e-5, relative_change = 4.683496860105531e-10 Iter 120: T = 654.1244946634017 K, F = -8.172608797984982e-6, relative_change = 1.9586943755440136e-10 Iter 125: T = 654.1244942720645 K, F = -3.417881958012181e-6, relative_change = 8.191492278635556e-11 Iter 130: T = 654.1244941084026 K, F = -1.429399860808367e-6, relative_change = 3.4257818381920036e-11 Iter 135: T = 654.1244940399572 K, F = -5.97792146339593e-7, relative_change = 1.4327030071250094e-11 Iter 140: T = 654.1244940113326 K, F = -2.500044481990038e-7, relative_change = 5.991750259637753e-12 Iter 145: T = 654.1244939993613 K, F = -1.0455474458437308e-7, relative_change = 2.505819086729586e-12 Iter 150: T = 654.1244939943548 K, F = -4.372592238288675e-8, relative_change = 1.0479605811428963e-12 Iter 155: T = 654.124493992261 K, F = -1.8286199332528952e-8, relative_change = 4.382575606273303e-13 Converged in 159 iterations to T = 654.1244939915053 K Iter 1: T = 973.5551013522924 K, F = -6025.495312472992, relative_change = 0.026444898647707632 Iter 2: T = 949.3031800633909 K, F = -5098.983544515755, relative_change = 0.024910681742836137 Iter 3: T = 927.1764904675955 K, F = -4313.12342257869, relative_change = 0.02330834875568186 Iter 5: T = 888.9751582140823 K, F = -3081.970759190546, relative_change = 0.019977650256742006 Iter 10: T = 823.9638777487272 K, F = -1319.5504974946657, relative_change = 0.011972430469163176 Iter 15: T = 790.5264006196769 K, F = -559.2665544396264, relative_change = 0.006131556943849864 Iter 20: T = 774.9328960223937 K, F = -235.43973071310137, relative_change = 0.0028326424027300874 Iter 25: T = 768.067929396718 K, F = -98.75848965955502, relative_change = 0.001239126235493008 Iter 30: T = 765.130982128771 K, F = -41.35554079153108, relative_change = 0.0005284024113660749 Iter 35: T = 763.8907028044134 K, F = -17.3049040928985, relative_change = 0.00022281740097124714 Iter 40: T = 763.3698651022796 K, F = -7.23879477936197, relative_change = 9.350944574848097e-5 Iter 45: T = 763.151667836077 K, F = -3.027644633921607, relative_change = 3.9163821374521225e-5 Iter 50: T = 763.0603490406469 K, F = -1.2662486638619954, relative_change = 1.6388778084420993e-5 Iter 55: T = 763.0221468551026 K, F = -0.5295693289226616, relative_change = 6.855733344795964e-6 Iter 60: T = 763.0061682193488 K, F = -0.22147379487089003, relative_change = 2.8674558606028656e-6 Iter 65: T = 762.9994854087046 K, F = -0.0926232618205014, relative_change = 1.1992578661915636e-6 Iter 70: T = 762.9966905155025 K, F = -0.03873620249176679, relative_change = 5.015533336706554e-7 Iter 75: T = 762.9955216469464 K, F = -0.016199950923978634, relative_change = 2.097572330976342e-7 Iter 80: T = 762.995032810261 K, F = -0.006775014418988867, relative_change = 8.77232665930376e-8 Iter 85: T = 762.9948283725897 K, F = -0.0028333921978439536, relative_change = 3.6686967857091644e-8 Iter 90: T = 762.994742874256 K, F = -0.0011849584999534812, relative_change = 1.53429368607926e-8 Iter 95: T = 762.9947071178217 K, F = -0.0004955638033663501, relative_change = 6.416600954681723e-9 Iter 100: T = 762.994692164052 K, F = -0.00020725070244442811, relative_change = 2.683499420705833e-9 Iter 105: T = 762.9946859102067 K, F = -8.667471896151024e-5, relative_change = 1.1222715506226172e-9 Iter 110: T = 762.9946832947738 K, F = -3.624840241323035e-5, relative_change = 4.693473706662878e-10 Iter 115: T = 762.9946822009686 K, F = -1.5159514971663235e-5, relative_change = 1.962866793404808e-10 Iter 120: T = 762.9946817435263 K, F = -6.339892502427169e-6, relative_change = 8.208946345285113e-11 Iter 125: T = 762.9946815522183 K, F = -2.651417599142114e-6, relative_change = 3.433077899657277e-11 Iter 130: T = 762.9946814722109 K, F = -1.1088534129788385e-6, relative_change = 1.4357527645548835e-11 Iter 135: T = 762.9946814387511 K, F = -4.6373596485072e-7, relative_change = 6.004492441506078e-12 Iter 140: T = 762.9946814247578 K, F = -1.9394160821750717e-7, relative_change = 2.511172324346482e-12 Iter 145: T = 762.9946814189055 K, F = -8.110904903269045e-8, relative_change = 1.05020681773436e-12 Iter 150: T = 762.994681416458 K, F = -3.391975644806422e-8, relative_change = 4.3919587152146993e-13 Converged in 154 iterations to T = 762.9946814155745 K Iter 1: T = 970.0781688877439 K, F = -6817.717681936977, relative_change = 0.029921831112256086 Iter 2: T = 942.3152430249247 K, F = -5774.8665192573135, relative_change = 0.028619266728423725 Iter 3: T = 916.6680364041599 K, F = -4889.796375464733, relative_change = 0.02721722566901784 Iter 5: T = 871.5129081294021 K, F = -3501.6971055177696, relative_change = 0.024156363168216042 Iter 10: T = 791.0547393508983 K, F = -1507.9477119474877, relative_change = 0.015852755920294857 Iter 15: T = 746.9706089988862 K, F = -642.1743926276594, relative_change = 0.008739342793743774 Iter 20: T = 725.4819900396456 K, F = -271.1417570679587, relative_change = 0.0042229669287649554 Iter 25: T = 715.7868277846883 K, F = -113.9052538231618, relative_change = 0.001889722762775212 Iter 30: T = 711.5899954109818 K, F = -47.73112317187031, relative_change = 0.0008142174164380879 Iter 35: T = 709.8083653178103 K, F = -19.978691147816193, relative_change = 0.0003448860206508082 Iter 40: T = 709.0585115671112 K, F = -8.358326579885107, relative_change = 0.00014501435334740944 Iter 45: T = 708.7440726205043 K, F = -3.496078968271412, relative_change = 6.078404751749328e-5 Iter 50: T = 708.6124226714363 K, F = -1.4621943201129084, relative_change = 2.544471071323475e-5 Iter 55: T = 708.5573391834117 K, F = -0.611523290742934, relative_change = 1.0645502201303169e-5 Iter 60: T = 708.5342980758865 K, F = -0.2557491712833954, relative_change = 4.452814720641999e-6 Iter 65: T = 708.5246612160959 K, F = -0.10695785238531041, relative_change = 1.8623495012250457e-6 Iter 70: T = 708.5206308274471 K, F = -0.04473113773005555, relative_change = 7.788794032520648e-7 Iter 75: T = 708.5189452465044 K, F = -0.018707111130548792, relative_change = 3.2574062123102753e-7 Iter 80: T = 708.518240312178 K, F = -0.00782353992963103, relative_change = 1.3622930933698653e-7 Iter 85: T = 708.5179454994815 K, F = -0.00327189829382879, relative_change = 5.697284500729177e-8 Iter 90: T = 708.517822205161 K, F = -0.0013683470209444604, relative_change = 2.3826745311011245e-8 Iter 95: T = 708.5177706419811 K, F = -0.0005722590792512916, relative_change = 9.964633129632034e-9 Iter 100: T = 708.5177490776396 K, F = -0.0002393255840057451, relative_change = 4.167329231106122e-9 Iter 105: T = 708.5177400591737 K, F = -0.00010008881739476116, relative_change = 1.742826958707299e-9 Iter 110: T = 708.5177362875434 K, F = -4.185833989356347e-5, relative_change = 7.288710863117905e-10 Iter 115: T = 708.5177347102025 K, F = -1.750565697788975e-5, relative_change = 3.0482258459754926e-10 Iter 120: T = 708.5177340505397 K, F = -7.321074570354469e-6, relative_change = 1.2748044162397868e-10 Iter 125: T = 708.5177337746608 K, F = -3.0617591132431343e-6, relative_change = 5.3313813549527506e-11 Iter 130: T = 708.517733659285 K, F = -1.280464754227495e-6, relative_change = 2.2296482738069862e-11 Iter 135: T = 708.5177336110335 K, F = -5.355047538735391e-7, relative_change = 9.324639717998695e-12 Iter 140: T = 708.517733590854 K, F = -2.2395476595438168e-7, relative_change = 3.899680611294189e-12 Iter 145: T = 708.5177335824148 K, F = -9.366028930202219e-8, relative_change = 1.630888330076494e-12 Iter 150: T = 708.5177335788854 K, F = -3.916991919705737e-8, relative_change = 6.820581549138556e-13 Iter 155: T = 708.5177335774094 K, F = -1.638161062356147e-8, relative_change = 2.8524978722380816e-13 Converged in 157 iterations to T = 708.5177335770971 K Iter 1: T = 973.5355438919622 K, F = -6029.951498413158, relative_change = 0.026464456108037757 Iter 2: T = 949.2640945668577 K, F = -5102.781835106727, relative_change = 0.02493124105985191 Iter 3: T = 927.1180627222429 K, F = -4316.360663152387, relative_change = 0.023329684511789916 Iter 5: T = 888.8792823994482 K, F = -3084.3206342768976, relative_change = 0.0199997081633771 Iter 10: T = 823.7888110244077 K, F = -1320.5956411690963, relative_change = 0.011991189799547759 Iter 15: T = 790.3002751994179 K, F = -559.7221112604352, relative_change = 0.006143286838854443 Iter 20: T = 774.6798153238611 K, F = -235.63459166652535, relative_change = 0.0028386246631840343 Iter 25: T = 767.8022499961223 K, F = -98.8408608626412, relative_change = 0.0012418632901531352 Iter 30: T = 764.8597665293214 K, F = -41.390153387167786, relative_change = 0.0005295925293275553 Iter 35: T = 763.6171221238917 K, F = -17.31940899875177, relative_change = 0.00022332342093433607 Iter 40: T = 763.0952863730488 K, F = -7.244866127213041, relative_change = 9.372254744531645e-5 Iter 45: T = 762.8766701288165 K, F = -3.0301846622503463, relative_change = 3.925320356133327e-5 Iter 50: T = 762.7851758337267 K, F = -1.2673110949693538, relative_change = 1.6426204492974733e-5 Iter 55: T = 762.7469002034012 K, F = -0.5300136784713423, relative_change = 6.871393521422704e-6 Iter 60: T = 762.730890843633 K, F = -0.22165963208706985, relative_change = 2.8740065344576563e-6 Iter 65: T = 762.7241951823468 K, F = -0.09270098202652943, relative_change = 1.2019976813274405e-6 Iter 70: T = 762.7213949145915 K, F = -0.03876870616026018, relative_change = 5.026991999429407e-7 Iter 75: T = 762.7202237982876 K, F = -0.01621354437417144, relative_change = 2.1023645557472952e-7 Iter 80: T = 762.7197340215592 K, F = -0.0067806993679327965, relative_change = 8.792368448208255e-8 Iter 85: T = 762.7195291907492 K, F = -0.0028357697125861447, relative_change = 3.6770785246264274e-8 Iter 90: T = 762.719443528 K, F = -0.0011859528052540202, relative_change = 1.5377990335358053e-8 Iter 95: T = 762.7194077028051 K, F = -0.0004959796349542911, relative_change = 6.4312607590941546e-9 Iter 100: T = 762.7193927202791 K, F = -0.00020742460948663943, relative_change = 2.6896303440968144e-9 Iter 105: T = 762.7193864544074 K, F = -8.67474488985831e-5, relative_change = 1.1248355753645528e-9 Iter 110: T = 762.719383833945 K, F = -3.627881934342714e-5, relative_change = 4.704196816779186e-10 Iter 115: T = 762.7193827380363 K, F = -1.517223531588563e-5, relative_change = 1.9673512770369947e-10 Iter 120: T = 762.7193822797142 K, F = -6.345209943359187e-6, relative_change = 8.22769793702075e-11 Iter 125: T = 762.7193820880384 K, F = -2.653643547345652e-6, relative_change = 3.4409228002075513e-11 Iter 130: T = 762.7193820078774 K, F = -1.1097856938979689e-6, relative_change = 1.4390353607244064e-11 Iter 135: T = 762.7193819743529 K, F = -4.641253174009208e-7, relative_change = 6.018213672779062e-12 Iter 140: T = 762.7193819603326 K, F = -1.9410254281648776e-7, relative_change = 2.516886137009706e-12 Iter 145: T = 762.7193819544692 K, F = -8.117641492333405e-8, relative_change = 1.0525972015386215e-12 Iter 150: T = 762.7193819520171 K, F = -3.394878889118047e-8, relative_change = 4.402066809279256e-13 Converged in 154 iterations to T = 762.719381951132 K Iter 1: T = 964.3096467599497 K, F = -8132.080936036025, relative_change = 0.03569035324005026 Iter 2: T = 930.5439285437649 K, F = -6898.952837602518, relative_change = 0.035015431329175804 Iter 3: T = 898.6718450165255 K, F = -5851.747587287477, relative_change = 0.03425102517956026 Iter 5: T = 840.4955532833782 K, F = -4207.3630105176735, relative_change = 0.032428190590468586 Iter 10: T = 726.213839265485 K, F = -1834.9162953217483, relative_change = 0.02604906268555378 Iter 15: T = 652.4365168917977 K, F = -792.346398529968, relative_change = 0.017853355551403587 Iter 20: T = 610.6872053114764 K, F = -338.2940558696292, relative_change = 0.010241519833975017 Iter 25: T = 589.8199864932665 K, F = -143.08539394414498, relative_change = 0.0050825315342650544 Iter 30: T = 580.2631992023704 K, F = -60.16602888724034, relative_change = 0.0023069945956845626 Iter 35: T = 576.0951685352047 K, F = -25.22329845911891, relative_change = 0.0010006685976628707 Iter 40: T = 574.3197372681751 K, F = -10.559714762045227, relative_change = 0.00042511043523390553 Iter 45: T = 573.5713898713125 K, F = -4.418153708597804, relative_change = 0.0001789709708085242 Iter 50: T = 573.257386027308 K, F = -1.848068474290173, relative_change = 7.505703724938555e-5 Iter 55: T = 573.1258835914126 K, F = -0.7729445840757738, relative_change = 3.1426496018366666e-5 Iter 60: T = 573.0708557422456 K, F = -0.32326520891171506, relative_change = 1.314937403235819e-5 Iter 65: T = 573.0478368428929 K, F = -0.13519521742887508, relative_change = 5.500352095077705e-6 Iter 70: T = 573.0382090851676 K, F = -0.05654057749457517, relative_change = 2.3005100784852543e-6 Iter 75: T = 573.0341824706287 K, F = -0.02364600123694635, relative_change = 9.621352736414481e-7 Iter 80: T = 573.0324984623819 K, F = -0.009889049989311394, relative_change = 4.0238249346594184e-7 Iter 85: T = 573.0317941847819 K, F = -0.004135720532810583, relative_change = 1.6828221917251822e-7 Iter 90: T = 573.0314996465622 K, F = -0.0017296080191278596, relative_change = 7.03778182562408e-8 Iter 95: T = 573.0313764670011 K, F = -0.0007233427825171224, relative_change = 2.9432876363278918e-8 Iter 100: T = 573.0313249518094 K, F = -0.00030251059871927444, relative_change = 1.2309186013481194e-8 Iter 105: T = 573.0313034075361 K, F = -0.00012651354664633407, relative_change = 5.147849576953708e-9 Iter 110: T = 573.031294397463 K, F = -5.290947587416328e-5, relative_change = 2.152892323429712e-9 Iter 115: T = 573.0312906293425 K, F = -2.212737366691364e-5, relative_change = 9.003652674586181e-10 Iter 120: T = 573.0312890534695 K, F = -9.253931857022835e-6, relative_change = 3.765435096817927e-10 Iter 125: T = 573.0312883944206 K, F = -3.870103922776202e-6, relative_change = 1.5747495706798687e-10 Iter 130: T = 573.0312881187986 K, F = -1.6185230649057303e-6, relative_change = 6.585788284475706e-11 Iter 135: T = 573.0312880035301 K, F = -6.76885225592283e-7, relative_change = 2.754253485519014e-11 Iter 140: T = 573.0312879553235 K, F = -2.830815453158664e-7, relative_change = 1.1518619460224987e-11 Iter 145: T = 573.0312879351629 K, F = -1.1838833452459951e-7, relative_change = 4.8172344566845174e-12 Iter 150: T = 573.0312879267315 K, F = -4.951129811692212e-8, relative_change = 2.0146202094866484e-12 Iter 155: T = 573.0312879232052 K, F = -2.0705359871087126e-8, relative_change = 8.425033886952585e-13 Iter 160: T = 573.0312879217307 K, F = -8.659342964900674e-9, relative_change = 3.523496252813304e-13 Converged in 163 iterations to T = 573.0312879212989 K Iter 1: T = 963.5864037227933 K, F = -8296.872550033862, relative_change = 0.036413596277206715 Iter 2: T = 929.0520967348062 K, F = -7040.127552181301, relative_change = 0.03583934648160719 Iter 3: T = 896.3636389074552 K, F = -5972.820161744203, relative_change = 0.03518474146093206 Iter 5: T = 836.405681185681 K, F = -4296.717812726338, relative_change = 0.033605308855903314 Iter 10: T = 716.8745729306758 K, F = -1877.5529179129749, relative_change = 0.027862088316081734 Iter 15: T = 637.4105362690158 K, F = -812.9570283271537, relative_change = 0.019936685432380682 Iter 20: T = 590.9118245171306 K, F = -348.0488373835281, relative_change = 0.01193727297632025 Iter 25: T = 567.0102698942821 K, F = -147.50750219738265, relative_change = 0.006109492864281397 Iter 30: T = 555.8681623688348 K, F = -62.09605976493163, relative_change = 0.002821373915756182 Iter 35: T = 550.9639098401427 K, F = -26.04673876709396, relative_change = 0.0012339677623736977 Iter 40: T = 548.8659899746796 K, F = -10.907122849234668, relative_change = 0.0005261589260794828 Iter 45: T = 547.9800710823373 K, F = -4.56398970186006, relative_change = 0.00022186341918524333 Iter 50: T = 547.6080487048752 K, F = -1.9091554097433376, relative_change = 9.31076775034027e-5 Iter 55: T = 547.4521966044555 K, F = -0.7985088455344722, relative_change = 3.8995303312553894e-5 Iter 60: T = 547.3869703942636 K, F = -0.3339594635223303, relative_change = 1.6318215177211334e-5 Iter 65: T = 547.3596837831303 K, F = -0.13966820323329532, relative_change = 6.826207920294059e-6 Iter 70: T = 547.3482707560838 K, F = -0.058411324699606054, relative_change = 2.8551053200119485e-6 Iter 75: T = 547.3434974398889 K, F = -0.02442838600021585, relative_change = 1.1940922580876635e-6 Iter 80: T = 547.3415011379745 K, F = -0.010216255429019161, relative_change = 4.993929333961185e-7 Iter 85: T = 547.340666252964 K, F = -0.004272562242904704, relative_change = 2.0885371369307067e-7 Iter 90: T = 547.3403170927336 K, F = -0.0017868369421171204, relative_change = 8.734540149449157e-8 Iter 95: T = 547.3401710695196 K, F = -0.0007472766156264021, relative_change = 3.652893970572343e-8 Iter 100: T = 547.3401100008263 K, F = -0.0003125200161701869, relative_change = 1.527684749237949e-8 Iter 105: T = 547.3400844611624 K, F = -0.00013069960556127969, relative_change = 6.388961607967431e-9 Iter 110: T = 547.3400737801687 K, F = -5.46601366002708e-5, relative_change = 2.671940325834587e-9 Iter 115: T = 547.3400693132493 K, F = -2.285952192512819e-5, relative_change = 1.117437398316418e-9 Iter 120: T = 547.3400674451302 K, F = -9.560125094315586e-6, relative_change = 4.673256738066921e-10 Iter 125: T = 547.3400666638605 K, F = -3.998158753348857e-6, relative_change = 1.9544119220815107e-10 Iter 130: T = 547.3400663371242 K, F = -1.6720781258194872e-6, relative_change = 8.173585979555167e-11 Iter 135: T = 547.3400662004792 K, F = -6.992832458363463e-7, relative_change = 3.4182922750083527e-11 Iter 140: T = 547.3400661433325 K, F = -2.924479722832274e-7, relative_change = 1.4295675621384415e-11 Iter 145: T = 547.3400661194331 K, F = -1.2230527071666053e-7, relative_change = 5.9786240392227475e-12 Iter 150: T = 547.3400661094381 K, F = -5.1149546848039407e-8, relative_change = 2.5003330487372674e-12 Iter 155: T = 547.3400661052581 K, F = -2.139071628159961e-8, relative_change = 1.0456380975551216e-12 Iter 160: T = 547.34006610351 K, F = -8.946195034775783e-9, relative_change = 4.373150591833629e-13 Converged in 164 iterations to T = 547.340066102879 K Iter 1: T = 969.2421127930191 K, F = -7008.213858414665, relative_change = 0.03075788720698081 Iter 2: T = 940.6230432304708 K, F = -5937.573836644598, relative_change = 0.029527265875889497 Iter 3: T = 914.104109228454 K, F = -5028.810900437376, relative_change = 0.02819294529606697 Iter 5: T = 867.1830196435417 K, F = -3603.230704192444, relative_change = 0.025244055122358774 Iter 10: T = 782.5443530776342 K, F = -1554.1048288144766, relative_change = 0.01698212913929765 Iter 15: T = 735.3158320237196 K, F = -662.783256762497, relative_change = 0.009573045682217344 Iter 20: T = 711.9710258731893 K, F = -280.1133144897054, relative_change = 0.004694447732014878 Iter 25: T = 701.3513536688707 K, F = -117.73479579028682, relative_change = 0.002117141357725957 Iter 30: T = 696.7354898618621 K, F = -49.34778202159343, relative_change = 0.0009155283870389551 Iter 35: T = 694.7723457241817 K, F = -20.657566310250118, relative_change = 0.0003884188282942495 Iter 40: T = 693.9454344936308 K, F = -8.642734548980672, relative_change = 0.00016342994548692216 Iter 45: T = 693.5985649272475 K, F = -3.6151089712822984, relative_change = 6.85228026516111e-5 Iter 50: T = 693.4533160963247 K, F = -1.5119893942898588, relative_change = 2.8687679954189916e-5 Iter 55: T = 693.3925390744838 K, F = -0.6323508664192643, relative_change = 1.200289521139483e-5 Iter 60: T = 693.3671157563804 K, F = -0.2644599813685372, relative_change = 5.0206930565424105e-6 Iter 65: T = 693.3564824339935 K, F = -0.1106008992771117, relative_change = 2.0998780614644467e-6 Iter 70: T = 693.3520352789031 K, F = -0.04625471780630097, relative_change = 8.782228165660079e-7 Iter 75: T = 693.3501753953304 K, F = -0.019344293024303516, relative_change = 3.672882957610428e-7 Iter 80: T = 693.3493975645259 K, F = -0.008090017446222952, relative_change = 1.53605230623542e-7 Iter 85: T = 693.3490722654702 K, F = -0.003383342449309934, relative_change = 6.42396955936827e-8 Iter 90: T = 693.3489362213587 K, F = -0.0014149543116019903, relative_change = 2.686583475734433e-8 Iter 95: T = 693.3488793260584 K, F = -0.0005917508072051936, relative_change = 1.123561763421132e-8 Iter 100: T = 693.3488555317595 K, F = -0.00024747725771601115, relative_change = 4.698870303720587e-9 Iter 105: T = 693.3488455806986 K, F = -0.00010349794524688871, relative_change = 1.9651238224334057e-9 Iter 110: T = 693.3488414190459 K, F = -4.328407699150105e-5, relative_change = 8.218382795511889e-10 Iter 115: T = 693.348839678593 K, F = -1.810191752427137e-5, relative_change = 3.437025799451522e-10 Iter 120: T = 693.3488389507149 K, F = -7.570439710891108e-6, relative_change = 1.4374055508036432e-10 Iter 125: T = 693.3488386463075 K, F = -3.1660483712503407e-6, relative_change = 6.011401829029529e-11 Iter 130: T = 693.3488385190007 K, F = -1.3240781127077383e-6, relative_change = 2.5140378990242845e-11 Iter 135: T = 693.3488384657595 K, F = -5.537469258687366e-7, relative_change = 1.0514037995569843e-11 Iter 140: T = 693.3488384434933 K, F = -2.315823758314295e-7, relative_change = 4.397073437741209e-12 Iter 145: T = 693.3488384341814 K, F = -9.685063884212752e-8, relative_change = 1.8389109705749065e-12 Iter 150: T = 693.3488384302871 K, F = -4.0504164688925925e-8, relative_change = 7.690558750349931e-13 Iter 155: T = 693.3488384286584 K, F = -1.6940741809357007e-8, relative_change = 3.2165524498878687e-13 Converged in 158 iterations to T = 693.3488384281815 K Iter 1: T = 966.392947205349 K, F = -7657.3989478214835, relative_change = 0.03360705279465104 Iter 2: T = 934.8211038521601 K, F = -6492.596848962375, relative_change = 0.03266977831790831 Iter 3: T = 905.2548518935703 K, F = -5503.58142841297, relative_change = 0.03162771126663151 Iter 5: T = 852.0156435841263 K, F = -3951.1025806371163, relative_change = 0.02922329369782055 Iter 10: T = 751.430343367834 K, F = -1714.3592578194496, relative_change = 0.02162067390166446 Iter 15: T = 690.9587917020257 K, F = -735.6424732492936, relative_change = 0.01341716431015332 Iter 20: T = 659.1115889796365 K, F = -312.3337181083571, relative_change = 0.00705877713472064 Iter 25: T = 644.022584119316 K, F = -131.6227471573928, relative_change = 0.0033128795645237215 Iter 30: T = 637.3229202711588 K, F = -55.23950987797981, relative_change = 0.0014605361303619043 Iter 35: T = 634.4451649588468 K, F = -23.137180446046095, relative_change = 0.0006250084940168824 Iter 40: T = 633.227728900081 K, F = -9.682550439507285, relative_change = 0.00026395425482868116 Iter 45: T = 632.716096409083 K, F = -4.0504701485801835, relative_change = 0.00011084451577109787 Iter 50: T = 632.5016869400996 K, F = -1.6941501406092971, relative_change = 4.6436685543611727e-5 Iter 55: T = 632.411941336998 K, F = -0.7085480030470807, relative_change = 1.9434436604426594e-5 Iter 60: T = 632.3743951654305 K, F = -0.29632921875823975, relative_change = 8.130175232708184e-6 Iter 65: T = 632.3586905474032 K, F = -0.12392946471419503, relative_change = 3.4005671308635807e-6 Iter 70: T = 632.3521222755951 K, F = -0.05182896522039315, relative_change = 1.4222331385979617e-6 Iter 75: T = 632.349375273642 K, F = -0.02167552423679031, relative_change = 5.948080638970037e-7 Iter 80: T = 632.3482264319836 K, F = -0.009064968693921038, relative_change = 2.4875814111034424e-7 Iter 85: T = 632.347745970472 K, F = -0.0037910791453545367, relative_change = 1.0403402861159892e-7 Iter 90: T = 632.3475450353436 K, F = -0.0015854747449749462, relative_change = 4.3508343717810304e-8 Iter 95: T = 632.3474610018055 K, F = -0.0006630645031100446, relative_change = 1.8195721283081157e-8 Iter 100: T = 632.3474258579645 K, F = -0.0002773014987813016, relative_change = 7.609670091878424e-9 Iter 105: T = 632.3474111603884 K, F = -0.00011597079915059982, relative_change = 3.1824552819325022e-9 Iter 110: T = 632.3474050136863 K, F = -4.8500373179161116e-5, relative_change = 1.330940866782017e-9 Iter 115: T = 632.3474024430618 K, F = -2.0283435006374084e-5, relative_change = 5.566153685347987e-10 Iter 120: T = 632.3474013679961 K, F = -8.482774012608107e-6, relative_change = 2.3278317602317907e-10 Iter 125: T = 632.3474009183908 K, F = -3.5475987339439463e-6, relative_change = 9.735274122726228e-11 Iter 130: T = 632.3474007303605 K, F = -1.4836484960589758e-6, relative_change = 4.071408835828269e-11 Iter 135: T = 632.3474006517239 K, F = -6.20479296498111e-7, relative_change = 1.7027111869267046e-11 Iter 140: T = 632.3474006188371 K, F = -2.594914054188102e-7, relative_change = 7.120929280332379e-12 Iter 145: T = 632.3474006050835 K, F = -1.0852221576929111e-7, relative_change = 2.9780524818187237e-12 Iter 150: T = 632.3474005993316 K, F = -4.53855071302911e-8, relative_change = 1.2454631634241375e-12 Iter 155: T = 632.3474005969261 K, F = -1.898141577250101e-8, relative_change = 5.208855343810377e-13 Converged in 160 iterations to T = 632.3474005959201 K Iter 1: T = 966.4400276310372 K, F = -7646.671628043382, relative_change = 0.03355997236896285 Iter 2: T = 934.9174217619222 K, F = -6483.418740258947, relative_change = 0.03261723952637182 Iter 3: T = 905.4025083488712 K, F = -5495.72319264132, relative_change = 0.03156954050276232 Iter 5: T = 852.2716578373445 K, F = -3945.330266272442, relative_change = 0.02915389240135341 Iter 10: T = 751.9739958140067 K, F = -1711.670356255744, relative_change = 0.02153219911840147 Iter 15: T = 691.7609288526239 K, F = -734.3994748727705, relative_change = 0.013336827533862596 Iter 20: T = 660.0914295089866 K, F = -311.7753794317139, relative_change = 0.007005913323975199 Iter 25: T = 645.1001146435667 K, F = -131.37962835794886, relative_change = 0.0032850924658912616 Iter 30: T = 638.447096506796 K, F = -55.13582610634551, relative_change = 0.0014476310240443494 Iter 35: T = 635.5900449532437 K, F = -23.093437710428315, relative_change = 0.0006193590771919647 Iter 40: T = 634.3814927212105 K, F = -9.664187688702249, relative_change = 0.0002615451791612183 Iter 45: T = 633.8736162291107 K, F = -4.042778373626929, relative_change = 0.00010982871617757526 Iter 50: T = 633.6607847748116 K, F = -1.6909311917837357, relative_change = 4.6010401983770796e-5 Iter 55: T = 633.5717003847054 K, F = -0.7072014220002496, relative_change = 1.9255902694661663e-5 Iter 60: T = 633.5344309626839 K, F = -0.2957659962605427, relative_change = 8.055465192538265e-6 Iter 65: T = 633.518842123554 K, F = -0.1236939067506746, relative_change = 3.369314619316512e-6 Iter 70: T = 633.5123222786757 K, F = -0.05173045003925936, relative_change = 1.4091615863313656e-6 Iter 75: T = 633.5095955306348 K, F = -0.021634323656550436, relative_change = 5.893411434591793e-7 Iter 80: T = 633.5084551596127 K, F = -0.00904773805752157, relative_change = 2.464717675217212e-7 Iter 85: T = 633.5079782406589 K, F = -0.0037838730758958383, relative_change = 1.0307783247523168e-7 Iter 90: T = 633.5077787870767 K, F = -0.001582461078137254, relative_change = 4.3108449766509746e-8 Iter 95: T = 633.5076953731402 K, F = -0.0006618041512044259, relative_change = 1.802848062812881e-8 Iter 100: T = 633.5076604884242 K, F = -0.0002767744057339816, relative_change = 7.5397280467841e-9 Iter 105: T = 633.5076458992172 K, F = -0.00011575036171151964, relative_change = 3.153204654147993e-9 Iter 110: T = 633.5076397978363 K, F = -4.8408184128323484e-5, relative_change = 1.3187079179230197e-9 Iter 115: T = 633.5076372461659 K, F = -2.0244880917230645e-5, relative_change = 5.514994159695985e-10 Iter 120: T = 633.5076361790268 K, F = -8.46665027420812e-6, relative_change = 2.3064362482458886e-10 Iter 125: T = 633.5076357327366 K, F = -3.54085468895482e-6, relative_change = 9.645793043615457e-11 Iter 130: T = 633.5076355460926 K, F = -1.48082813283823e-6, relative_change = 4.033986982609819e-11 Iter 135: T = 633.5076354680359 K, F = -6.193001393928199e-7, relative_change = 1.687061885646604e-11 Iter 140: T = 633.5076354353916 K, F = -2.5899847183596947e-7, relative_change = 7.0554876801863996e-12 Iter 145: T = 633.5076354217396 K, F = -1.0831677987876986e-7, relative_change = 2.9507035337047798e-12 Iter 150: T = 633.50763541603 K, F = -4.529923242069245e-8, relative_change = 1.2340156837489687e-12 Iter 155: T = 633.5076354136421 K, F = -1.8944667001807858e-8, relative_change = 5.160797425206044e-13 Converged in 160 iterations to T = 633.5076354126435 K Iter 1: T = 976.4709298302067 K, F = -5361.121020111282, relative_change = 0.023529070169793324 Iter 2: T = 955.1028329733733 K, F = -4533.139536231864, relative_change = 0.02188298310175915 Iter 3: T = 935.8037865937251 K, F = -3831.2961342457484, relative_change = 0.020206249749639443 Iter 5: T = 902.9907837215743 K, F = -2732.9670178717333, relative_change = 0.016854114206925785 Iter 10: T = 848.9707045771758 K, F = -1165.345327089512, relative_change = 0.009476788419243333 Iter 15: T = 822.3115754156102 K, F = -492.4571771156648, relative_change = 0.004639331401670562 Iter 20: T = 810.1957964905693 K, F = -206.9728720873624, relative_change = 0.002090378733244735 Iter 25: T = 804.9321677125617 K, F = -86.7488868047621, relative_change = 0.0009035688811085709 Iter 30: T = 802.6940135740368 K, F = -36.313657781482895, relative_change = 0.00038327283705158 Iter 35: T = 801.7513521415631 K, F = -15.192865448780541, relative_change = 0.00016125177144920641 Iter 40: T = 801.3559439591007 K, F = -6.354903044748109, relative_change = 6.760724559471589e-5 Iter 45: T = 801.1903727658507 K, F = -2.6578830588010067, relative_change = 2.830397073379574e-5 Iter 50: T = 801.1210926702897 K, F = -1.1115911219453638, relative_change = 1.1842281024162313e-5 Iter 55: T = 801.0921125616766 K, F = -0.46488640107405776, relative_change = 4.953497353442528e-6 Iter 60: T = 801.0799916239303 K, F = -0.19442204517317407, relative_change = 2.071771653594955e-6 Iter 65: T = 801.0749223087987 K, F = -0.08130979613453282, relative_change = 8.664676179610484e-7 Iter 70: T = 801.0728022267006 K, F = -0.03400475838350803, relative_change = 3.623719978557091e-7 Iter 75: T = 801.0719155771066 K, F = -0.014221201406005468, relative_change = 1.5154915276882716e-7 Iter 80: T = 801.0715447686185 K, F = -0.005947477200585638, relative_change = 6.337981522223457e-8 Iter 85: T = 801.0713896918986 K, F = -0.0024873061555732434, relative_change = 2.650622180270497e-8 Iter 90: T = 801.0713248369306 K, F = -0.0010402211659511496, relative_change = 1.1085223069613639e-8 Iter 95: T = 801.0712977138029 K, F = -0.0004350329194516833, relative_change = 4.635973473736753e-9 Iter 100: T = 801.071286370586 K, F = -0.0001819359619740224, relative_change = 1.938819599120406e-9 Iter 105: T = 801.0712816267171 K, F = -7.608779126755394e-5, relative_change = 8.108375250398579e-10 Iter 110: T = 801.0712796427745 K, F = -3.182082421537835e-5, relative_change = 3.3910195349269166e-10 Iter 115: T = 801.071278813066 K, F = -1.3307849269672545e-5, relative_change = 1.4181649337057887e-10 Iter 120: T = 801.0712784660719 K, F = -5.565501031368214e-6, relative_change = 5.930934636789813e-11 Iter 125: T = 801.0712783209549 K, F = -2.3275584098980673e-6, relative_change = 2.480387071445552e-11 Iter 130: T = 801.0712782602652 K, F = -9.734137919048536e-7, relative_change = 1.0373286338211614e-11 Iter 135: T = 801.0712782348841 K, F = -4.0709261273086383e-7, relative_change = 4.33822519650282e-12 Iter 140: T = 801.0712782242693 K, F = -1.7025170773177223e-7, relative_change = 1.81430521011321e-12 Iter 145: T = 801.0712782198301 K, F = -7.120247180747441e-8, relative_change = 7.587766213785838e-13 Iter 150: T = 801.0712782179736 K, F = -2.9776621279786752e-8, relative_change = 3.173176930161543e-13 Converged in 153 iterations to T = 801.0712782174301 K Iter 1: T = 965.1586036513361 K, F = -7938.645300767174, relative_change = 0.034841396348663976 Iter 2: T = 932.290482681562 K, F = -6733.307051807364, relative_change = 0.034054631897212743 Iter 3: T = 901.3661560259721 K, F = -5709.763624016236, relative_change = 0.033170269599494075 Iter 5: T = 845.235941872868 K, F = -4102.736002978008, relative_change = 0.031089825966662793 Iter 10: T = 736.7754531863264 K, F = -1785.4030222426704, relative_change = 0.024114587415449168 Iter 15: T = 668.9045846694611 K, F = -768.8071299374376, relative_change = 0.01581013978048536 Iter 20: T = 631.743322357409 K, F = -327.38614217593823, relative_change = 0.008708481310175266 Iter 25: T = 613.6387483742988 K, F = -138.2254682512906, relative_change = 0.0042057494725784555 Iter 30: T = 605.4728808992929 K, F = -58.06670323445499, relative_change = 0.0018814791378128266 Iter 35: T = 601.9385789915124 K, F = -24.33219143128312, relative_change = 0.000810557833834081 Iter 40: T = 600.4383063564666 K, F = -10.184622094476186, relative_change = 0.00034331593769427234 Iter 45: T = 599.8068889792802 K, F = -4.260852525293744, relative_change = 0.00014435060212092553 Iter 50: T = 599.5421176744316 K, F = -1.782206803760246, relative_change = 6.050519801136116e-5 Iter 55: T = 599.4312632539301 K, F = -0.7453870251882762, relative_change = 2.5327870901262775e-5 Iter 60: T = 599.3848808979051 K, F = -0.3117379573264071, relative_change = 1.0596599554373604e-5 Iter 65: T = 599.3654794417943 K, F = -0.13037397161433364, relative_change = 4.4323562502314835e-6 Iter 70: T = 599.3573648561326 K, F = -0.05452420291895177, relative_change = 1.8537923349381748e-6 Iter 75: T = 599.353971123172 K, F = -0.022802716715252913, relative_change = 7.75300485993777e-7 Iter 80: T = 599.3525518031712 K, F = -0.009536376128514934, relative_change = 3.2424383887938897e-7 Iter 85: T = 599.3519582230377 K, F = -0.003988227726690996, relative_change = 1.3560333069574683e-7 Iter 90: T = 599.3517099801148 K, F = -0.0016679246991281316, relative_change = 5.671105213923879e-8 Iter 95: T = 599.3516061618509 K, F = -0.000697546068538557, relative_change = 2.371726020138485e-8 Iter 100: T = 599.3515627437941 K, F = -0.00029172210353939354, relative_change = 9.918845126433463e-9 Iter 105: T = 599.351544585841 K, F = -0.00012200166878495455, relative_change = 4.148180126587538e-9 Iter 110: T = 599.3515369919676 K, F = -5.102255547245749e-5, relative_change = 1.7348185930045414e-9 Iter 115: T = 599.351533816119 K, F = -2.1338242294000054e-5, relative_change = 7.255218807594628e-10 Iter 120: T = 599.3515324879411 K, F = -8.92390878381999e-6, relative_change = 3.0342195311427883e-10 Iter 125: T = 599.3515319324811 K, F = -3.732084412233494e-6, relative_change = 1.268946572601526e-10 Iter 130: T = 599.3515317001812 K, F = -1.5608020645929699e-6, relative_change = 5.3068854164636706e-11 Iter 135: T = 599.3515316030306 K, F = -6.52746429574691e-7, relative_change = 2.219404105757177e-11 Iter 140: T = 599.3515315624011 K, F = -2.7298621790849964e-7, relative_change = 9.281808457099471e-12 Iter 145: T = 599.3515315454093 K, F = -1.1416615625092774e-7, relative_change = 3.881765177986427e-12 Iter 150: T = 599.3515315383031 K, F = -4.7745874642846076e-8, relative_change = 1.6234081944933726e-12 Iter 155: T = 599.3515315353312 K, F = -1.9967477282722967e-8, relative_change = 6.789144923488146e-13 Iter 160: T = 599.3515315340884 K, F = -8.351234925818574e-9, relative_change = 2.8395046304169837e-13 Converged in 162 iterations to T = 599.3515315338254 K Iter 1: T = 964.5839863450627 K, F = -8069.57240060371, relative_change = 0.03541601365493725 Iter 2: T = 931.1088664718206 K, F = -6845.416543445759, relative_change = 0.03470420445199774 Iter 3: T = 899.5442844018839 K, F = -5805.84987902997, relative_change = 0.03389999086738579 Iter 5: T = 842.0344535918196 K, F = -4173.522488569474, relative_change = 0.0319906715591791 Iter 10: T = 729.6725063427002 K, F = -1818.8549454362812, relative_change = 0.025402369055584188 Iter 15: T = 657.8873005559838 K, F = -784.6673972030984, relative_change = 0.017150710579755042 Iter 20: T = 617.7225581729183 K, F = -334.7113220778307, relative_change = 0.009700516537512674 Iter 25: T = 597.8272589640598 K, F = -141.48056617288157, relative_change = 0.004767721611031824 Iter 30: T = 588.7652758954877 K, F = -59.47064302210096, relative_change = 0.002152795951361118 Iter 35: T = 584.8239522917534 K, F = -24.927679755843403, relative_change = 0.0009314773864036826 Iter 40: T = 583.1472063585779 K, F = -10.435196237488578, relative_change = 0.0003952844591711343 Iter 45: T = 582.440842269837 K, F = -4.365919666783553, relative_change = 0.00016633654902580033 Iter 50: T = 582.144523519773 K, F = -1.826195500745535, relative_change = 6.974463939804367e-5 Iter 55: T = 582.0204396429895 K, F = -0.7637921144960127, relative_change = 2.9199767849233513e-5 Iter 60: T = 581.9685182635965 K, F = -0.3194366728972264, relative_change = 1.2217249539163596e-5 Iter 65: T = 581.9467992171498 K, F = -0.13359392673068907, relative_change = 5.11037239529439e-6 Iter 70: T = 581.9377151942198 K, F = -0.055870872145399625, relative_change = 2.137388945862597e-6 Iter 75: T = 581.9339159971973 K, F = -0.023365917835003525, relative_change = 8.939113509010775e-7 Iter 80: T = 581.9323271013681 K, F = -0.009771914956233974, relative_change = 3.7384960913536183e-7 Iter 85: T = 581.9316626015635 K, F = -0.004086733121744179, relative_change = 1.5634928189070618e-7 Iter 90: T = 581.931384699006 K, F = -0.0017091208738611585, relative_change = 6.538729613091138e-8 Iter 95: T = 581.9312684766971 K, F = -0.0007147748084481709, relative_change = 2.7345775960822185e-8 Iter 100: T = 581.931219871115 K, F = -0.00029892736885644977, relative_change = 1.1436334928524099e-8 Iter 105: T = 581.9311995436758 K, F = -0.0001250149969092007, relative_change = 4.782812691182022e-9 Iter 110: T = 581.9311910424973 K, F = -5.2282765250488694e-5, relative_change = 2.000229546406745e-9 Iter 115: T = 581.9311874872028 K, F = -2.186527735814625e-5, relative_change = 8.365199291721923e-10 Iter 120: T = 581.9311860003362 K, F = -9.144320809117978e-6, relative_change = 3.4984265524405457e-10 Iter 125: T = 581.9311853785107 K, F = -3.8242636292706855e-6, relative_change = 1.4630835653639046e-10 Iter 130: T = 581.9311851184558 K, F = -1.5993521441659553e-6, relative_change = 6.118788005165491e-11 Iter 135: T = 581.9311850096979 K, F = -6.688684155431446e-7, relative_change = 2.5589511707162313e-11 Iter 140: T = 581.9311849642139 K, F = -2.797284483491147e-7, relative_change = 1.0701827504752212e-11 Iter 145: T = 581.9311849451921 K, F = -1.169862653971343e-7, relative_change = 4.4756507258697265e-12 Iter 150: T = 581.9311849372368 K, F = -4.8924650830617367e-8, relative_change = 1.871755186592962e-12 Iter 155: T = 581.9311849339099 K, F = -2.0461035088459312e-8, relative_change = 7.827965637101603e-13 Iter 160: T = 581.9311849325185 K, F = -8.556734820697187e-9, relative_change = 3.2736284285417577e-13 Converged in 163 iterations to T = 581.9311849321111 K Iter 1: T = 964.260532237871 K, F = -8143.271726611648, relative_change = 0.035739467762129044 Iter 2: T = 930.4427341349448 K, F = -6908.5381518205295, relative_change = 0.03507122501886638 Iter 3: T = 898.5154740511769 K, F = -5859.966158923124, relative_change = 0.034314051700829774 Iter 5: T = 840.2193289343418 K, F = -4213.4245034197, relative_change = 0.03250703387924966 Iter 10: T = 725.5898884953705 K, F = -1837.7980670686677, relative_change = 0.02616712676178343 Iter 15: T = 651.4468839823885 K, F = -793.7288670105365, relative_change = 0.01798385032243703 Iter 20: T = 609.4024101607195 K, F = -338.9418161826463, relative_change = 0.010343651077904576 Iter 25: T = 588.351993221188 K, F = -143.37655159707055, relative_change = 0.005142639857162617 Iter 30: T = 578.7012544542022 K, F = -60.29244792494759, relative_change = 0.002336619587936639 Iter 35: T = 574.4900158699519 K, F = -25.27709508396217, relative_change = 0.001014000912183459 Iter 40: T = 572.6957438037806 K, F = -10.582384853391082, relative_change = 0.00043086501994846703 Iter 45: T = 571.9393750160534 K, F = -4.42766539569222, relative_change = 0.0001814099976952748 Iter 50: T = 571.6219911516703 K, F = -1.852051816363371, relative_change = 7.608281671741496e-5 Iter 55: T = 571.4890706706591 K, F = -0.7746114211309008, relative_change = 3.185650104600821e-5 Iter 60: T = 571.4334489914314 K, F = -0.32396246755861124, relative_change = 1.332938469561755e-5 Iter 65: T = 571.4101816074434 K, F = -0.1354868486380715, relative_change = 5.5756657698570835e-6 Iter 70: T = 571.400449906356 K, F = -0.05666254627828751, relative_change = 2.3320125925989177e-6 Iter 75: T = 571.396379817242 K, F = -0.023697010936496787, relative_change = 9.753109521997074e-7 Iter 80: T = 571.3946776266703 K, F = -0.009910383010680451, relative_change = 4.078928858742862e-7 Iter 85: T = 571.3939657448758 K, F = -0.004144642284088729, relative_change = 1.7058676015790501e-7 Iter 90: T = 571.3936680264687 K, F = -0.0017333392073222154, relative_change = 7.13416099252738e-8 Iter 95: T = 571.3935435169112 K, F = -0.0007249032102353281, relative_change = 2.9835946415375024e-8 Iter 100: T = 571.3934914454986 K, F = -0.00030316318915257767, relative_change = 1.2477754910336038e-8 Iter 105: T = 571.3934696686069 K, F = -0.00012678646750907685, relative_change = 5.21834711858784e-9 Iter 110: T = 571.3934605612499 K, F = -5.302361494680108e-5, relative_change = 2.182375254295151e-9 Iter 115: T = 571.3934567524442 K, F = -2.2175108646382835e-5, relative_change = 9.126954085559116e-10 Iter 120: T = 571.3934551595562 K, F = -9.273894633121671e-6, relative_change = 3.817000988989573e-10 Iter 125: T = 571.3934544933915 K, F = -3.878453864958331e-6, relative_change = 1.5963155617052454e-10 Iter 130: T = 571.3934542147933 K, F = -1.6220154183121949e-6, relative_change = 6.675981073235854e-11 Iter 135: T = 571.3934540982804 K, F = -6.783457784376168e-7, relative_change = 2.791973202737891e-11 Iter 140: T = 571.3934540495533 K, F = -2.8369302035313737e-7, relative_change = 1.167639478461281e-11 Iter 145: T = 571.393454029175 K, F = -1.1864411364470584e-7, relative_change = 4.883220279077808e-12 Iter 150: T = 571.3934540206526 K, F = -4.9618645525661975e-8, relative_change = 2.042231751961033e-12 Iter 155: T = 571.3934540170883 K, F = -2.07509756044999e-8, relative_change = 8.540801711932991e-13 Iter 160: T = 571.3934540155977 K, F = -8.67827348871586e-9, relative_change = 3.5718519689211484e-13 Converged in 163 iterations to T = 571.3934540151613 K Iter 1: T = 980.1768428508872 K, F = -4516.725213115878, relative_change = 0.019823157149112865 Iter 2: T = 962.3958764200124 K, F = -3815.2522175143176, relative_change = 0.01814056979672978 Iter 3: T = 946.535951655784 K, F = -3221.2201685577256, relative_change = 0.016479626682551186 Iter 5: T = 920.0552270310494 K, F = -2293.0760182368417, relative_change = 0.01331126867443423 Iter 10: T = 878.0245935518094 K, F = -973.4527693361016, relative_change = 0.006989229177329325 Iter 15: T = 858.1341159588535 K, F = -410.19769146154863, relative_change = 0.003276357437649976 Iter 20: T = 849.3082125876538 K, F = -172.14527529283913, relative_change = 0.0014435815436097483 Iter 25: T = 845.5183135288806 K, F = -72.10211563167013, relative_change = 0.000617587740671704 Iter 30: T = 843.9152109564119 K, F = -30.17338233399211, relative_change = 0.00026079008132200957 Iter 35: T = 843.241539519685 K, F = -12.622292565839647, relative_change = 0.00010951036981622932 Iter 40: T = 842.959231407839 K, F = -5.279394361771422, relative_change = 4.587681477317552e-5 Iter 45: T = 842.8410666103712 K, F = -2.2080110148014778, relative_change = 1.9199955758033365e-5 Iter 50: T = 842.7916311337692 K, F = -0.9234349937360654, relative_change = 8.03205364685555e-6 Iter 55: T = 842.7709535561096 K, F = -0.38619476461941393, relative_change = 3.3595212040766675e-6 Iter 60: T = 842.7623054089339 K, F = -0.16151182628648209, relative_change = 1.4050654385169022e-6 Iter 65: T = 842.7586885565277 K, F = -0.0675462731762011, relative_change = 5.876280112581322e-7 Iter 70: T = 842.7571759292198 K, F = -0.028248675349498598, relative_change = 2.457553021743589e-7 Iter 75: T = 842.7565433275403 K, F = -0.01181393640255557, relative_change = 1.0277819582969491e-7 Iter 80: T = 842.7562787654603 K, F = -0.004940729816444334, relative_change = 4.2983137738024984e-8 Iter 85: T = 842.756168122351 K, F = -0.0020662723061910526, relative_change = 1.7976073567853983e-8 Iter 90: T = 842.7561218500659 K, F = -0.0008641397695900999, relative_change = 7.517810738415132e-9 Iter 95: T = 842.756102498441 K, F = -0.00036139357391640203, relative_change = 3.14403859587491e-9 Iter 100: T = 842.7560944053599 K, F = -0.00015113910917530227, relative_change = 1.3148745539962485e-9 Iter 105: T = 842.7560910207367 K, F = -6.320818118399352e-5, relative_change = 5.498962583937695e-10 Iter 110: T = 842.7560896052469 K, F = -2.6434416336096334e-5, relative_change = 2.2997318511627115e-10 Iter 115: T = 842.7560890132722 K, F = -1.1055191698972067e-5, relative_change = 9.617755971085608e-11 Iter 120: T = 842.7560887657011 K, F = -4.623412369619828e-6, relative_change = 4.022259694604161e-11 Iter 125: T = 842.756088662164 K, F = -1.9335650756069356e-6, relative_change = 1.6821560036828122e-11 Iter 130: T = 842.7560886188635 K, F = -8.086391960482331e-7, relative_change = 7.034970252302293e-12 Iter 135: T = 842.7560886007548 K, F = -3.3818299782772954e-7, relative_change = 2.9421123059857014e-12 Iter 140: T = 842.7560885931815 K, F = -1.4143234472463462e-7, relative_change = 1.230428036209348e-12 Iter 145: T = 842.7560885900142 K, F = -5.9148954845156254e-8, relative_change = 5.145819543398036e-13 Converged in 150 iterations to T = 842.7560885886896 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013512226154708672 Iteration 10: d = 1.220155986794301e-5 Iteration 20: d = 1.3991428626844308e-7 Iteration 30: d = 1.8256998276604845e-9 Iteration 40: d = 2.434691938162743e-11 Iteration 50: d = 3.2714772898925695e-13 Iteration 60: d = 4.4126536374104605e-15 Converged after 62 iterations. d = 1.8442384959772425e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8652.058267560362 Iteration 2: convergence error = 4821.984023868682 Iteration 3: convergence error = 1100.292977866776 Iteration 4: convergence error = 319.8991761388281 Iteration 5: convergence error = 94.9206397039477 Iteration 6: convergence error = 28.302346329676766 Iteration 7: convergence error = 8.503433815384824 Iteration 8: convergence error = 2.5480512532190005 Iteration 9: convergence error = 0.7617072102184466 Iteration 10: convergence error = 0.22739095216115857 Iteration 11: convergence error = 0.06782972005680676 Iteration 12: convergence error = 0.020224364190880806 Iteration 13: convergence error = 0.006028655926229476 Iteration 14: convergence error = 0.0017968164515878016 Iteration 15: convergence error = 0.0005354896927656227 Iteration 16: convergence error = 0.00015957977939251577 Iteration 17: convergence error = 4.755461873173772e-5 Iteration 18: convergence error = 1.4171004067975446e-5 Iteration 19: convergence error = 4.222833240419277e-6 Iteration 20: convergence error = 1.2583664101839531e-6 Iteration 21: convergence error = 3.749814823095221e-7 Iteration 22: convergence error = 1.1159454516018741e-7 Iteration 23: convergence error = 3.234322321077343e-8 Iteration 24: convergence error = 9.325958671979606e-9 Iteration 25: convergence error = 2.676870280993171e-9 Iteration 26: convergence error = 7.719336281297728e-10 Iteration 27: convergence error = 2.1668711269740015e-10 Iteration 28: convergence error = 6.45741238258779e-11 Iteration 29: convergence error = 2.0691004465334117e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 50%|████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001676957195868243 Iteration 10: d = 1.681300552961688e-5 Iteration 20: d = 1.4289204865486324e-7 Iteration 30: d = 1.369502385055885e-9 Iteration 40: d = 1.4447011948326673e-11 Iteration 50: d = 1.6603213359195758e-13 Converged after 60 iterations. d = 2.021099287115813e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12270.524856567012 Iteration 2: convergence error = 8338.563698424277 Iteration 3: convergence error = 1950.3049480664313 Iteration 4: convergence error = 478.90396478003777 Iteration 5: convergence error = 121.87811714877807 Iteration 6: convergence error = 32.495391887947335 Iteration 7: convergence error = 8.841192235137441 Iteration 8: convergence error = 2.419353345265563 Iteration 9: convergence error = 0.6628679028826809 Iteration 10: convergence error = 0.18164325012276095 Iteration 11: convergence error = 0.0497726312546547 Iteration 12: convergence error = 0.01363763338622448 Iteration 13: convergence error = 0.003736574491540523 Iteration 14: convergence error = 0.0010237674039217382 Iteration 15: convergence error = 0.0002804953730901616 Iteration 16: convergence error = 7.685085211051046e-5 Iteration 17: convergence error = 2.10557698210323e-5 Iteration 18: convergence error = 5.768901701230789e-6 Iteration 19: convergence error = 1.5805751445441274e-6 Iteration 20: convergence error = 4.3304953578626737e-7 Iteration 21: convergence error = 1.195098775497172e-7 Iteration 22: convergence error = 3.206787368981168e-8 Iteration 23: convergence error = 8.565166353946552e-9 Iteration 24: convergence error = 2.285105438204482e-9 Iteration 25: convergence error = 6.082245818106458e-10 Iteration 26: convergence error = 1.6120793588925153e-10 Iteration 27: convergence error = 4.4565240386873484e-11 Iteration 28: convergence error = 1.1368683772161603e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 53%|█████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001676957195868243 Iteration 10: d = 1.681300552961688e-5 Iteration 20: d = 1.4289204865486324e-7 Iteration 30: d = 1.369502385055885e-9 Iteration 40: d = 1.4447011948326673e-11 Iteration 50: d = 1.6603213359195758e-13 Converged after 60 iterations. d = 2.021099287115813e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10995.501531002123 Iteration 2: convergence error = 5729.693387050889 Iteration 3: convergence error = 2022.1269128895556 Iteration 4: convergence error = 898.2506879380371 Iteration 5: convergence error = 410.2218822772202 Iteration 6: convergence error = 193.41267308858232 Iteration 7: convergence error = 91.27079303731989 Iteration 8: convergence error = 43.09191629233828 Iteration 9: convergence error = 20.345691645022725 Iteration 10: convergence error = 9.604277604214985 Iteration 11: convergence error = 4.532640606741097 Iteration 12: convergence error = 2.1386722403626663 Iteration 13: convergence error = 1.0089386493577877 Iteration 14: convergence error = 0.4759190320974085 Iteration 15: convergence error = 0.2244735913718614 Iteration 16: convergence error = 0.10577817075909479 Iteration 17: convergence error = 0.04940354057771401 Iteration 18: convergence error = 0.022549100796368293 Iteration 19: convergence error = 0.01025305664188636 Iteration 20: convergence error = 0.004651926085443847 Iteration 21: convergence error = 0.0021079886601000908 Iteration 22: convergence error = 0.0009545270231683389 Iteration 23: convergence error = 0.0004320396551520389 Iteration 24: convergence error = 0.00019550144907043432 Iteration 25: convergence error = 8.845276624924736e-5 Iteration 26: convergence error = 4.0016009279497666e-5 Iteration 27: convergence error = 1.8102251033269567e-5 Iteration 28: convergence error = 8.188736046577105e-6 Iteration 29: convergence error = 3.7041813811811153e-6 Iteration 30: convergence error = 1.6755666365497746e-6 Iteration 31: convergence error = 7.579219527542591e-7 Iteration 32: convergence error = 3.4284312278032303e-7 Iteration 33: convergence error = 1.5508612705161795e-7 Iteration 34: convergence error = 7.014659786364064e-8 Iteration 35: convergence error = 3.1733634386910126e-8 Iteration 36: convergence error = 1.4349552657222375e-8 Iteration 37: convergence error = 6.491063686553389e-9 Iteration 38: convergence error = 2.9381226340774447e-9 Iteration 39: convergence error = 1.3301360013429075e-9 Iteration 40: convergence error = 6.048139766789973e-10 Iteration 41: convergence error = 2.737579052336514e-10 Iteration 42: convergence error = 1.2232703738845885e-10 Iteration 43: convergence error = 5.4569682106375694e-11 Iteration 44: convergence error = 2.637534635141492e-11 Iteration 45: convergence error = 1.318767317570746e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 50%|████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001676957195868243 Iteration 10: d = 1.681300552961688e-5 Iteration 20: d = 1.4289204865486324e-7 Iteration 30: d = 1.369502385055885e-9 Iteration 40: d = 1.4447011948326673e-11 Iteration 50: d = 1.6603213359195758e-13 Converged after 60 iterations. d = 2.021099287115813e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.94684155363 Iteration 2: convergence error = 7349.027371229815 Iteration 3: convergence error = 1737.9417394844913 Iteration 4: convergence error = 505.1122997865982 Iteration 5: convergence error = 156.8511615618554 Iteration 6: convergence error = 48.69652326160849 Iteration 7: convergence error = 15.092593258107627 Iteration 8: convergence error = 4.6699246997595765 Iteration 9: convergence error = 1.4433001455863632 Iteration 10: convergence error = 0.4457557522600837 Iteration 11: convergence error = 0.13761269573478785 Iteration 12: convergence error = 0.042473495884223667 Iteration 13: convergence error = 0.01310749562435376 Iteration 14: convergence error = 0.0040447226901960676 Iteration 15: convergence error = 0.00124807095653523 Iteration 16: convergence error = 0.00038510510694322875 Iteration 17: convergence error = 0.00011882650778716197 Iteration 18: convergence error = 3.666434031401877e-5 Iteration 19: convergence error = 1.1312867627566447e-5 Iteration 20: convergence error = 3.490598828648217e-6 Iteration 21: convergence error = 1.0770290828077123e-6 Iteration 22: convergence error = 3.3216156225535087e-7 Iteration 23: convergence error = 1.0124631444341503e-7 Iteration 24: convergence error = 3.0105638870736584e-8 Iteration 25: convergence error = 8.925326255848631e-9 Iteration 26: convergence error = 2.6352608983870596e-9 Iteration 27: convergence error = 7.817106961738318e-10 Iteration 28: convergence error = 2.2919266484677792e-10 Iteration 29: convergence error = 6.866684998385608e-11 Iteration 30: convergence error = 2.0463630789890885e-11 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▌ | ETA: 0:00:01 Bin 1 progress: 94%|███████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001676957195868243 Iteration 10: d = 1.681300552961688e-5 Iteration 20: d = 1.4289204865486324e-7 Iteration 30: d = 1.369502385055885e-9 Iteration 40: d = 1.4447011948326673e-11 Iteration 50: d = 1.6603213359195758e-13 Converged after 60 iterations. d = 2.021099287115813e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.787387655611 Iteration 2: convergence error = 5519.987292586153 Iteration 3: convergence error = 940.2783161992638 Iteration 4: convergence error = 171.08371916963392 Iteration 5: convergence error = 31.02010109523485 Iteration 6: convergence error = 5.639302943814982 Iteration 7: convergence error = 1.0265361703379767 Iteration 8: convergence error = 0.18718733254809194 Iteration 9: convergence error = 0.03418662645981385 Iteration 10: convergence error = 0.006239998444470984 Iteration 11: convergence error = 0.001138639252530993 Iteration 12: convergence error = 0.00020774147469637683 Iteration 13: convergence error = 3.7898934351687785e-5 Iteration 14: convergence error = 6.913729521329515e-6 Iteration 15: convergence error = 1.2612140380952042e-6 Iteration 16: convergence error = 2.3008215066511184e-7 Iteration 17: convergence error = 4.196363079245202e-8 Iteration 18: convergence error = 7.647940947208554e-9 Iteration 19: convergence error = 1.4042598195374012e-9 Iteration 20: convergence error = 2.532942744437605e-10 Iteration 21: convergence error = 4.547473508864641e-11 Iteration 22: convergence error = 1.000444171950221e-11 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▌ | ETA: 0:00:01 Bin 1 progress: 97%|████████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001676957195868243 Iteration 10: d = 1.681300552961688e-5 Iteration 20: d = 1.4289204865486324e-7 Iteration 30: d = 1.369502385055885e-9 Iteration 40: d = 1.4447011948326673e-11 Iteration 50: d = 1.6603213359195758e-13 Converged after 60 iterations. d = 2.021099287115813e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.496803549311 Iteration 2: convergence error = 2714.975071457677 Iteration 3: convergence error = 205.32395050219003 Iteration 4: convergence error = 19.23528664574142 Iteration 5: convergence error = 1.5905060525065677 Iteration 6: convergence error = 0.12999167198854972 Iteration 7: convergence error = 0.010619644530548158 Iteration 8: convergence error = 0.0008685776784136941 Iteration 9: convergence error = 7.109949380932918e-5 Iteration 10: convergence error = 5.8226944438962e-6 Iteration 11: convergence error = 4.769633995553088e-7 Iteration 12: convergence error = 3.907528348667691e-8 Iteration 13: convergence error = 3.2025359425879935e-9 Iteration 14: convergence error = 2.613170261492933e-10 Iteration 15: convergence error = 2.2964741219766438e-11 Iteration 16: convergence error = 4.320099833421409e-12 Converged after 16 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346345 Iteration 2: convergence error = 858.4060420534043 Iteration 3: convergence error = 199.12106737711986 Iteration 4: convergence error = 59.265629268140856 Iteration 5: convergence error = 17.98548291103714 Iteration 6: convergence error = 5.463033078096942 Iteration 7: convergence error = 1.660989611064906 Iteration 8: convergence error = 0.5052487627306164 Iteration 9: convergence error = 0.15371874094194027 Iteration 10: convergence error = 0.046771316975991795 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.00433023651169151 Iteration 13: convergence error = 0.0013175920927324114 Iteration 14: convergence error = 0.0004009136252989265 Iteration 15: convergence error = 0.00012198904050819692 Iteration 16: convergence error = 3.711853867116588e-5 Iteration 17: convergence error = 1.1294342129986035e-5 Iteration 18: convergence error = 3.4366162253718358e-6 Iteration 19: convergence error = 1.0456861900820513e-6 Iteration 20: convergence error = 3.181812644470483e-7 Iteration 21: convergence error = 9.681605206424138e-8 Iteration 22: convergence error = 2.9460807127179578e-8 Iteration 23: convergence error = 8.963411346485373e-9 Iteration 24: convergence error = 2.730530468397774e-9 Iteration 25: convergence error = 8.295728548546322e-10 Iteration 26: convergence error = 2.538627086323686e-10 Iteration 27: convergence error = 7.707967597525567e-11 Iteration 28: convergence error = 2.4556356947869062e-11 Iteration 29: convergence error = 8.640199666842818e-12 Converged after 29 iterations Energy conservation errors by band: [4.6852026882886333e-26, 1.7771458472818954e-26, 2.50416005753358e-26, 4.13994203059987e-26, 6.522933053091502e-26, 4.828087799349512e-20, -1.176836406102666e-14, 1.1084466677857563e-12, -1.4779288903810084e-12, -7.389644451905042e-13, -1.1368683772161603e-13, 7.993605777301127e-15, 2.220446049250313e-16, 1.5612511283791264e-16, 6.451002926288751e-18, 2.0328790734103208e-20, 1.3923104070492562e-20, 4.793511649744795e-22, 1.0481929324695398e-23, 1.318298825299594e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:01 Bin 1 progress: 89%|█████████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013512226154708672 Iteration 10: d = 1.220155986794301e-5 Iteration 20: d = 1.3991428626844308e-7 Iteration 30: d = 1.8256998276604845e-9 Iteration 40: d = 2.434691938162743e-11 Iteration 50: d = 3.2714772898925695e-13 Iteration 60: d = 4.4126536374104605e-15 Converged after 62 iterations. d = 1.8442384959772425e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.446571395321 Iteration 2: convergence error = 3607.799858364642 Iteration 3: convergence error = 595.3208455754036 Iteration 4: convergence error = 104.47274410014643 Iteration 5: convergence error = 18.583771363865026 Iteration 6: convergence error = 3.274970042531095 Iteration 7: convergence error = 0.5749350597618559 Iteration 8: convergence error = 0.1007716624897057 Iteration 9: convergence error = 0.01765113094370463 Iteration 10: convergence error = 0.003090931927317797 Iteration 11: convergence error = 0.0005412006837559602 Iteration 12: convergence error = 9.475617412135762e-5 Iteration 13: convergence error = 1.659009103605058e-5 Iteration 14: convergence error = 2.9046011604805244e-6 Iteration 15: convergence error = 5.085455541120609e-7 Iteration 16: convergence error = 8.903566595108714e-8 Iteration 17: convergence error = 1.5592831914545968e-8 Iteration 18: convergence error = 2.7116584533359855e-9 Iteration 19: convergence error = 4.831690603168681e-10 Iteration 20: convergence error = 8.253664418589324e-11 Iteration 21: convergence error = 1.3642420526593924e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.4924275130247 Iteration 2: convergence error = 871.3046026617826 Iteration 3: convergence error = 207.75299581225215 Iteration 4: convergence error = 62.495505504907555 Iteration 5: convergence error = 18.979315309184585 Iteration 6: convergence error = 5.766215594047026 Iteration 7: convergence error = 1.7533061530645 Iteration 8: convergence error = 0.5333443699004192 Iteration 9: convergence error = 0.16226812526360845 Iteration 10: convergence error = 0.04937275062957269 Iteration 11: convergence error = 0.015022831427586425 Iteration 12: convergence error = 0.004571091655407145 Iteration 13: convergence error = 0.0013908789693459767 Iteration 14: convergence error = 0.00042321318755966786 Iteration 15: convergence error = 0.00012877429912805383 Iteration 16: convergence error = 3.918314223483321e-5 Iteration 17: convergence error = 1.192255740534165e-5 Iteration 18: convergence error = 3.6277690469432855e-6 Iteration 19: convergence error = 1.1038503089366714e-6 Iteration 20: convergence error = 3.358788944751723e-7 Iteration 21: convergence error = 1.0220196600130294e-7 Iteration 22: convergence error = 3.1098920771910343e-8 Iteration 23: convergence error = 9.464429240324534e-9 Iteration 24: convergence error = 2.8813929020543583e-9 Iteration 25: convergence error = 8.774350135354325e-10 Iteration 26: convergence error = 2.6773250283440575e-10 Iteration 27: convergence error = 8.174083632184193e-11 Iteration 28: convergence error = 2.546585164964199e-11 Iteration 29: convergence error = 8.526512829121202e-12 Converged after 29 iterations Energy conservation errors by band: [3.473512337869159e-26, 2.928251680180396e-26, 6.54312789226516e-26, 3.0090310368750274e-26, 3.4028304007613565e-26, 3.3881317890172014e-20, -1.4654943925052066e-14, 3.552713678800501e-13, -3.268496584496461e-13, 2.0463630789890885e-12, 7.815970093361102e-14, 2.220446049250313e-14, 1.6653345369377348e-15, 1.8735013540549517e-16, 3.7947076036992655e-18, -1.3976043629695956e-19, 2.2658131339052534e-20, 1.5923226791645783e-22, -7.302453845194697e-25, 1.6176561218948528e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729989 Iteration 2: convergence error = 2115.1156110176375 Iteration 3: convergence error = 714.8959934551624 Iteration 4: convergence error = 296.0190747132401 Iteration 5: convergence error = 115.88799395378715 Iteration 6: convergence error = 44.115249236190266 Iteration 7: convergence error = 16.5995810251261 Iteration 8: convergence error = 6.21598340493324 Iteration 9: convergence error = 2.323124567003333 Iteration 10: convergence error = 0.8675636398231745 Iteration 11: convergence error = 0.32389343048794217 Iteration 12: convergence error = 0.12090784413680922 Iteration 13: convergence error = 0.04513241840777482 Iteration 14: convergence error = 0.016846741615609062 Iteration 15: convergence error = 0.0062884074734483875 Iteration 16: convergence error = 0.002347277756598487 Iteration 17: convergence error = 0.0008761691049130604 Iteration 18: convergence error = 0.0003270478227932472 Iteration 19: convergence error = 0.00012207719078105583 Iteration 20: convergence error = 4.556777048492222e-5 Iteration 21: convergence error = 1.7009089560815482e-5 Iteration 22: convergence error = 6.3489862895949045e-6 Iteration 23: convergence error = 2.369887170061702e-6 Iteration 24: convergence error = 8.846072887536138e-7 Iteration 25: convergence error = 3.3019910006260034e-7 Iteration 26: convergence error = 1.2325517673161812e-7 Iteration 27: convergence error = 4.600769898388535e-8 Iteration 28: convergence error = 1.7175352695630863e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.956249075708911e-10 Iteration 32: convergence error = 3.3514879760332406e-10 Iteration 33: convergence error = 1.2505552149377763e-10 Iteration 34: convergence error = 4.8203219193965197e-11 Iteration 35: convergence error = 1.887201506178826e-11 Converged after 35 iterations Energy conservation errors by band: [-2.3022116657970009e-26, -1.308625578453032e-25, -1.0743654440386004e-25, -8.320273739547056e-26, -1.0057029908481635e-25, -6.945670167485263e-20, -9.769962616701378e-15, -1.4068746168049984e-12, -7.837286375433905e-12, -1.0373923942097463e-12, -8.881784197001252e-15, -1.5543122344752192e-15, 9.71445146547012e-16, 2.927345865710862e-18, 1.4365678785432934e-18, 4.1504614415460717e-20, 5.717472393966527e-21, 1.2904017555827232e-22, -3.9291079096268815e-24, 5.551115123125783e-17] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.362166223825 Iteration 2: convergence error = 864.8522700482426 Iteration 3: convergence error = 203.43244494690714 Iteration 4: convergence error = 60.87736397590493 Iteration 5: convergence error = 18.481426659698172 Iteration 6: convergence error = 5.614330618626127 Iteration 7: convergence error = 1.7070587705939033 Iteration 8: convergence error = 0.5192694771479864 Iteration 9: convergence error = 0.15798519284180657 Iteration 10: convergence error = 0.04806952669321163 Iteration 11: convergence error = 0.01462628739034244 Iteration 12: convergence error = 0.00445043197044015 Iteration 13: convergence error = 0.0013541649042281279 Iteration 14: convergence error = 0.00041204191563792847 Iteration 15: convergence error = 0.00012537513089228014 Iteration 16: convergence error = 3.814885076280916e-5 Iteration 17: convergence error = 1.1607843816818786e-5 Iteration 18: convergence error = 3.5320085771672893e-6 Iteration 19: convergence error = 1.074713281923323e-6 Iteration 20: convergence error = 3.270117758802371e-7 Iteration 21: convergence error = 9.950326784746721e-8 Iteration 22: convergence error = 3.0277988116722554e-8 Iteration 23: convergence error = 9.213749763148371e-9 Iteration 24: convergence error = 2.8026079235132784e-9 Iteration 25: convergence error = 8.545839591533877e-10 Iteration 26: convergence error = 2.629576556500979e-10 Iteration 27: convergence error = 8.01492205937393e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.86757334228605e-12 Converged after 29 iterations Energy conservation errors by band: [4.281305904815475e-26, 4.52364397489937e-26, 4.119747191426212e-26, 5.634360129450555e-26, 9.895471195092372e-26, -6.606856988583543e-20, 2.4424906541753444e-15, -8.526512829121202e-14, 3.126388037344441e-12, 5.684341886080801e-13, 2.984279490192421e-13, 3.552713678800501e-14, 8.326672684688674e-16, 1.3010426069826053e-16, 2.0599841277224584e-18, 3.9810548520952116e-19, 2.3002238473874594e-20, 5.438712527536157e-22, -1.2782525403358506e-23, 3.1963148993622903e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 8m55.7s Testing RayTraceHeatTransfer tests passed Testing completed after 557.91s PkgEval succeeded after 611.87s