Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1475 (42ad41c179*) started at 2026-01-04T15:40:30.061 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 9.53s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.14.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.17.0+0 [e37daf67] + LibGit2_jll v1.9.2+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.12.2 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.02s ################################################################################ # Precompilation # ERROR: LoadError: MethodError: no method matching setindex!(::Base.ScopedValues.ScopedValue{IO}, ::Nothing) The function `setindex!` exists, but no method is defined for this combination of argument types. Stacktrace: [1] top-level scope @ /PkgEval.jl/scripts/precompile.jl:10 [2] include(mod::Module, _path::String) @ Base ./Base.jl:309 [3] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [4] _start() @ Base ./client.jl:585 in expression starting at /PkgEval.jl/scripts/precompile.jl:6 caused by: MethodError: no method matching setindex!(::Base.ScopedValues.ScopedValue{IO}, ::Base.DevNull) The function `setindex!` exists, but no method is defined for this combination of argument types. Stacktrace: [1] top-level scope @ /PkgEval.jl/scripts/precompile.jl:7 [2] include(mod::Module, _path::String) @ Base ./Base.jl:309 [3] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [4] _start() @ Base ./client.jl:585 Precompilation failed after 13.22s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_o9UZhs/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.16 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_o9UZhs/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.16 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.17.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443558531181326e-15 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.0569008315563939e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.691850745534255e-16 Converged after 6 iterations. d = 1.6184142622847344e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.485546236472086e-16 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2585248453105973e-15 Converged after 6 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 8.64442489944963e-16 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2785653431858247e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.741771048821297e-15 Converged after 5 iterations. d = 2.1647144989062977e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.6708853471768988e-15 Converged after 5 iterations. d = 1.8174569082716346e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5394136982922497e-15 Converged after 5 iterations. d = 1.6288904732141786e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:02:30 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:02 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010715371678427755 Iteration 10: d = 8.664088849179425e-6 Iteration 20: d = 1.2380192692618652e-7 Iteration 30: d = 2.066275942265491e-9 Iteration 40: d = 3.5794695580906186e-11 Iteration 50: d = 6.276343839242729e-13 Iteration 60: d = 1.1089956678906527e-14 Converged after 64 iterations. d = 2.195192810186122e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 45%|██████████████▊ | ETA: 0:00:02 Bin 1 progress: 92%|██████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012243103094228016 Iteration 10: d = 9.937778759663103e-6 Iteration 20: d = 1.0424362204403674e-7 Iteration 30: d = 1.393798348246499e-9 Iteration 40: d = 2.117144578658171e-11 Iteration 50: d = 3.452246559302108e-13 Iteration 60: d = 5.829864842533563e-15 Converged after 63 iterations. d = 1.739682864204604e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 85%|████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012787958190089246 Iteration 10: d = 1.2406509769271513e-5 Iteration 20: d = 1.609122085493108e-7 Iteration 30: d = 2.4449919770485116e-9 Iteration 40: d = 3.950267854302394e-11 Iteration 50: d = 6.597569253447763e-13 Iteration 60: d = 1.1211091570436437e-14 Converged after 64 iterations. d = 2.2198595589710286e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▋ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011902742302776499 Iteration 10: d = 1.0820417523374687e-5 Iteration 20: d = 1.363123366086039e-7 Iteration 30: d = 2.1894512318608466e-9 Iteration 40: d = 3.785927746913794e-11 Iteration 50: d = 6.709211241591899e-13 Iteration 60: d = 1.1987154460091927e-14 Converged after 65 iterations. d = 1.6482177143404776e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:01 Bin 1 progress: 92%|██████████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010186094283768405 Iteration 10: d = 8.595756831709589e-6 Iteration 20: d = 9.511279420827997e-8 Iteration 30: d = 1.3069670875960117e-9 Iteration 40: d = 1.9249513022710345e-11 Iteration 50: d = 2.9284607825861614e-13 Iteration 60: d = 4.55139851226442e-15 Converged after 62 iterations. d = 1.930462393232511e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 86%|████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012607482081974934 Iteration 10: d = 1.2662995598350888e-5 Iteration 20: d = 1.5646291833378364e-7 Iteration 30: d = 2.2258910449457056e-9 Iteration 40: d = 3.320265016454453e-11 Iteration 50: d = 5.060093615297871e-13 Iteration 60: d = 7.776839626836032e-15 Converged after 64 iterations. d = 1.4654640203204389e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 83%|███████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014522320801618662 Iteration 10: d = 1.5519715292201848e-5 Iteration 20: d = 1.8410668276019077e-7 Iteration 30: d = 2.611467247818196e-9 Iteration 40: d = 3.9521887314187605e-11 Iteration 50: d = 6.130741496205234e-13 Iteration 60: d = 9.575423960729454e-15 Converged after 64 iterations. d = 1.831847165414033e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 45%|███████████████ | ETA: 0:00:01 Bin 1 progress: 94%|██████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015585065772204419 Iteration 10: d = 1.985535747576454e-5 Iteration 20: d = 2.6425326789096086e-7 Iteration 30: d = 3.906703242482279e-9 Iteration 40: d = 5.966920898721812e-11 Iteration 50: d = 9.234870554420748e-13 Iteration 60: d = 1.4413645352655183e-14 Converged after 65 iterations. d = 1.8140919537632033e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 48%|███████████████▉ | ETA: 0:00:01 Bin 1 progress: 95%|███████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014706079900429923 Iteration 10: d = 1.8608144738442323e-5 Iteration 20: d = 2.690425420250556e-7 Iteration 30: d = 4.140804102236638e-9 Iteration 40: d = 6.434426020628964e-11 Iteration 50: d = 1.0020902119262934e-12 Iteration 60: d = 1.5628894506865443e-14 Converged after 65 iterations. d = 1.9830217899985226e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 86%|████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010755789254564823 Iteration 10: d = 1.1326914019394695e-5 Iteration 20: d = 1.4886013680465257e-7 Iteration 30: d = 2.2709246973387413e-9 Iteration 40: d = 3.559842609723551e-11 Iteration 50: d = 5.625280169671166e-13 Iteration 60: d = 8.934236015727159e-15 Converged after 64 iterations. d = 1.6999172085584063e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.004069642969610308 Iteration 10: d = 4.1430824680309516e-5 Iteration 20: d = 4.953395623454161e-7 Iteration 30: d = 6.842075956624626e-9 Iteration 40: d = 9.768164047720258e-11 Iteration 50: d = 1.4112323915503095e-12 Iteration 60: d = 2.052586536326859e-14 Converged after 66 iterations. d = 1.6205428690678719e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0033659804221025324 Iteration 10: d = 3.401909906765164e-5 Iteration 20: d = 3.6600242507492047e-7 Iteration 30: d = 4.833864664599337e-9 Iteration 40: d = 6.946858968004282e-11 Iteration 50: d = 1.0332476778938495e-12 Iteration 60: d = 1.5599609565145202e-14 Converged after 65 iterations. d = 1.889346137418563e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0023608875434250882 Iteration 10: d = 2.0746289727823704e-5 Iteration 20: d = 2.7625603743033777e-7 Iteration 30: d = 4.4551446984967e-9 Iteration 40: d = 7.446363082445205e-11 Iteration 50: d = 1.2525685237813418e-12 Iteration 60: d = 2.108569935170569e-14 Converged after 66 iterations. d = 1.8240801207454477e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002074981788296717 Iteration 10: d = 1.7115776285308795e-5 Iteration 20: d = 2.8075417325995443e-7 Iteration 30: d = 5.08114635116709e-9 Iteration 40: d = 9.077141854595693e-11 Iteration 50: d = 1.6019306872485329e-12 Iteration 60: d = 2.8057603886818145e-14 Converged after 67 iterations. d = 1.675902021535138e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 65%|█████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010186094283768405 Iteration 10: d = 8.595756831709589e-6 Iteration 20: d = 9.511279420827997e-8 Iteration 30: d = 1.3069670875960117e-9 Iteration 40: d = 1.9249513022710345e-11 Iteration 50: d = 2.9284607825861614e-13 Iteration 60: d = 4.55139851226442e-15 Converged after 62 iterations. d = 1.930462393232511e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 73%|████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014149540130273218 Iteration 10: d = 1.1980889895749773e-5 Iteration 20: d = 1.3205351830278095e-7 Iteration 30: d = 1.7907234238325552e-9 Iteration 40: d = 2.4978420647251642e-11 Iteration 50: d = 3.501172462282117e-13 Iteration 60: d = 4.922858144659746e-15 Converged after 62 iterations. d = 2.07243084547641e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 49%|████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010899079538289717 Iteration 10: d = 1.1639215872232668e-5 Iteration 20: d = 1.4754140282360996e-7 Iteration 30: d = 2.0216332446997525e-9 Iteration 40: d = 2.8112292434976152e-11 Iteration 50: d = 3.929489613947764e-13 Iteration 60: d = 5.5245684325095835e-15 Converged after 63 iterations. d = 1.507923629470458e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.61057353542 Iteration 2: convergence error = 4816.903268869932 Iteration 3: convergence error = 1094.4127966751248 Iteration 4: convergence error = 321.03839892628275 Iteration 5: convergence error = 95.13054913968017 Iteration 6: convergence error = 28.364431308187932 Iteration 7: convergence error = 8.46908780591616 Iteration 8: convergence error = 2.5399561349338455 Iteration 9: convergence error = 0.7600577220578089 Iteration 10: convergence error = 0.22713260924638234 Iteration 11: convergence error = 0.0678231960607718 Iteration 12: convergence error = 0.02024358604353438 Iteration 13: convergence error = 0.006040722526904574 Iteration 14: convergence error = 0.0018023072468622559 Iteration 15: convergence error = 0.000537691932549933 Iteration 16: convergence error = 0.0001604050005425961 Iteration 17: convergence error = 4.785095438819553e-5 Iteration 18: convergence error = 1.4274359045884921e-5 Iteration 19: convergence error = 4.2581159505061805e-6 Iteration 20: convergence error = 1.2702239473583177e-6 Iteration 21: convergence error = 3.789066340686986e-7 Iteration 22: convergence error = 1.12899897430907e-7 Iteration 23: convergence error = 3.2762727641966194e-8 Iteration 24: convergence error = 9.455334293306805e-9 Iteration 25: convergence error = 2.717797542572953e-9 Iteration 26: convergence error = 7.851213013054803e-10 Iteration 27: convergence error = 2.219167072325945e-10 Iteration 28: convergence error = 6.275513442233205e-11 Iteration 29: convergence error = 1.887201506178826e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 64%|█████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014149540130273218 Iteration 10: d = 1.1980889895749773e-5 Iteration 20: d = 1.3205351830278095e-7 Iteration 30: d = 1.7907234238325552e-9 Iteration 40: d = 2.4978420647251642e-11 Iteration 50: d = 3.501172462282117e-13 Iteration 60: d = 4.922858144659746e-15 Converged after 62 iterations. d = 2.07243084547641e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.80012172292 Iteration 2: convergence error = 4821.108051561281 Iteration 3: convergence error = 1102.4328204161325 Iteration 4: convergence error = 322.5459687356488 Iteration 5: convergence error = 95.78070968514953 Iteration 6: convergence error = 28.589509322179993 Iteration 7: convergence error = 8.564226519336898 Iteration 8: convergence error = 2.569964804266874 Iteration 9: convergence error = 0.7693473729368634 Iteration 10: convergence error = 0.2299946326229474 Iteration 11: convergence error = 0.06870236509894312 Iteration 12: convergence error = 0.020513131601092027 Iteration 13: convergence error = 0.006123250178688977 Iteration 14: convergence error = 0.0018275490301675745 Iteration 15: convergence error = 0.0005454059848943871 Iteration 16: convergence error = 0.00016276082715194207 Iteration 17: convergence error = 4.8569972705081454e-5 Iteration 18: convergence error = 1.4493685739580542e-5 Iteration 19: convergence error = 4.324989959059167e-6 Iteration 20: convergence error = 1.2906032225146191e-6 Iteration 21: convergence error = 3.851116616715444e-7 Iteration 22: convergence error = 1.1478232408990152e-7 Iteration 23: convergence error = 3.335321707709227e-8 Iteration 24: convergence error = 9.630639397073537e-9 Iteration 25: convergence error = 2.773958840407431e-9 Iteration 26: convergence error = 7.95580490375869e-10 Iteration 27: convergence error = 2.305569068994373e-10 Iteration 28: convergence error = 6.45741238258779e-11 Iteration 29: convergence error = 1.9326762412674725e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 6:55:01 Bin 1 ray tracing: 10%|███ | ETA: 0:00:32 Bin 1 ray tracing: 20%|█████▉ | ETA: 0:00:19 Bin 1 ray tracing: 29%|████████▋ | ETA: 0:00:14 Bin 1 ray tracing: 38%|███████████▍ | ETA: 0:00:11 Bin 1 ray tracing: 50%|███████████████ | ETA: 0:00:08 Bin 1 ray tracing: 63%|███████████████████ | ETA: 0:00:05 Bin 1 ray tracing: 77%|███████████████████████ | ETA: 0:00:03 Bin 1 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:01 Bin 1 ray tracing: 99%|██████████████████████████████| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 2 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 2 ray tracing: 27%|████████▏ | ETA: 0:00:08 Bin 2 ray tracing: 36%|██████████▋ | ETA: 0:00:07 Bin 2 ray tracing: 45%|█████████████▌ | ETA: 0:00:06 Bin 2 ray tracing: 54%|████████████████▎ | ETA: 0:00:05 Bin 2 ray tracing: 64%|███████████████████ | ETA: 0:00:04 Bin 2 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:03 Bin 2 ray tracing: 83%|████████████████████████▊ | ETA: 0:00:02 Bin 2 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 3 ray tracing: 18%|█████▎ | ETA: 0:00:09 Bin 3 ray tracing: 27%|████████ | ETA: 0:00:08 Bin 3 ray tracing: 37%|███████████ | ETA: 0:00:07 Bin 3 ray tracing: 47%|██████████████ | ETA: 0:00:06 Bin 3 ray tracing: 56%|█████████████████ | ETA: 0:00:05 Bin 3 ray tracing: 65%|███████████████████▋ | ETA: 0:00:04 Bin 3 ray tracing: 74%|██████████████████████▎ | ETA: 0:00:03 Bin 3 ray tracing: 83%|█████████████████████████ | ETA: 0:00:02 Bin 3 ray tracing: 92%|███████████████████████████▊ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 10%|███▏ | ETA: 0:00:09 Bin 4 ray tracing: 20%|██████▏ | ETA: 0:00:08 Bin 4 ray tracing: 30%|█████████ | ETA: 0:00:07 Bin 4 ray tracing: 39%|███████████▊ | ETA: 0:00:06 Bin 4 ray tracing: 49%|██████████████▋ | ETA: 0:00:05 Bin 4 ray tracing: 58%|█████████████████▌ | ETA: 0:00:04 Bin 4 ray tracing: 68%|████████████████████▎ | ETA: 0:00:03 Bin 4 ray tracing: 77%|███████████████████████ | ETA: 0:00:02 Bin 4 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:01 Bin 4 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 10%|██▉ | ETA: 0:00:10 Bin 5 ray tracing: 20%|█████▉ | ETA: 0:00:08 Bin 5 ray tracing: 30%|█████████ | ETA: 0:00:07 Bin 5 ray tracing: 40%|████████████▏ | ETA: 0:00:06 Bin 5 ray tracing: 50%|███████████████ | ETA: 0:00:05 Bin 5 ray tracing: 60%|█████████████████▉ | ETA: 0:00:04 Bin 5 ray tracing: 69%|████████████████████▊ | ETA: 0:00:03 Bin 5 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:02 Bin 5 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:01 Bin 5 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 9%|██▉ | ETA: 0:00:10 Bin 6 ray tracing: 20%|█████▉ | ETA: 0:00:08 Bin 6 ray tracing: 30%|█████████ | ETA: 0:00:07 Bin 6 ray tracing: 41%|████████████▎ | ETA: 0:00:06 Bin 6 ray tracing: 51%|███████████████▌ | ETA: 0:00:05 Bin 6 ray tracing: 61%|██████████████████▎ | ETA: 0:00:04 Bin 6 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:03 Bin 6 ray tracing: 80%|████████████████████████▏ | ETA: 0:00:02 Bin 6 ray tracing: 90%|███████████████████████████▏ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 10%|██▉ | ETA: 0:00:09 Bin 7 ray tracing: 20%|██████ | ETA: 0:00:08 Bin 7 ray tracing: 31%|█████████▏ | ETA: 0:00:07 Bin 7 ray tracing: 40%|████████████ | ETA: 0:00:06 Bin 7 ray tracing: 49%|██████████████▊ | ETA: 0:00:05 Bin 7 ray tracing: 58%|█████████████████▍ | ETA: 0:00:04 Bin 7 ray tracing: 67%|████████████████████▏ | ETA: 0:00:04 Bin 7 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:03 Bin 7 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:02 Bin 7 ray tracing: 94%|████████████████████████████▍ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 9%|██▉ | ETA: 0:00:10 Bin 8 ray tracing: 19%|█████▋ | ETA: 0:00:09 Bin 8 ray tracing: 28%|████████▍ | ETA: 0:00:08 Bin 8 ray tracing: 37%|███████████▏ | ETA: 0:00:07 Bin 8 ray tracing: 46%|█████████████▉ | ETA: 0:00:06 Bin 8 ray tracing: 55%|████████████████▋ | ETA: 0:00:05 Bin 8 ray tracing: 64%|███████████████████▍ | ETA: 0:00:04 Bin 8 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:03 Bin 8 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:02 Bin 8 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 9 ray tracing: 18%|█████▍ | ETA: 0:00:09 Bin 9 ray tracing: 27%|████████▏ | ETA: 0:00:08 Bin 9 ray tracing: 36%|██████████▉ | ETA: 0:00:07 Bin 9 ray tracing: 46%|█████████████▋ | ETA: 0:00:06 Bin 9 ray tracing: 55%|████████████████▌ | ETA: 0:00:05 Bin 9 ray tracing: 64%|███████████████████▎ | ETA: 0:00:04 Bin 9 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:03 Bin 9 ray tracing: 83%|█████████████████████████ | ETA: 0:00:02 Bin 9 ray tracing: 92%|███████████████████████████▊ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 10%|██▉ | ETA: 0:00:10 Bin 10 ray tracing: 19%|█████▌ | ETA: 0:00:09 Bin 10 ray tracing: 29%|████████▍ | ETA: 0:00:08 Bin 10 ray tracing: 38%|███████████▏ | ETA: 0:00:07 Bin 10 ray tracing: 48%|█████████████▉ | ETA: 0:00:06 Bin 10 ray tracing: 57%|████████████████▋ | ETA: 0:00:05 Bin 10 ray tracing: 66%|███████████████████▎ | ETA: 0:00:04 Bin 10 ray tracing: 76%|█████████████████████▉ | ETA: 0:00:03 Bin 10 ray tracing: 85%|████████████████████████▊ | ETA: 0:00:02 Bin 10 ray tracing: 96%|███████████████████████████▊ | ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 2 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 3 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 4 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 5 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 6 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 7 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 8 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 9 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 40%|████████████▊ | ETA: 0:00:02 Bin 10 progress: 78%|████████████████████████▉ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:02 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014149540130273218 Iteration 10: d = 1.1980889895749773e-5 Iteration 20: d = 1.3205351830278095e-7 Iteration 30: d = 1.7907234238325552e-9 Iteration 40: d = 2.4978420647251642e-11 Iteration 50: d = 3.501172462282117e-13 Iteration 60: d = 4.922858144659746e-15 Converged after 62 iterations. d = 2.07243084547641e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010893189282933187 Iteration 10: d = 1.1531307992613523e-5 Iteration 20: d = 1.4632967790986506e-7 Iteration 30: d = 2.003394802764023e-9 Iteration 40: d = 2.7814603525509136e-11 Iteration 50: d = 3.8810213164058425e-13 Iteration 60: d = 5.446074537323023e-15 Converged after 63 iterations. d = 1.478103920306033e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001633295484271367 Iteration 10: d = 1.9474823843068076e-5 Iteration 20: d = 2.3556504264475097e-7 Iteration 30: d = 3.141197107127149e-9 Iteration 40: d = 4.315080121966896e-11 Iteration 50: d = 5.999954969010646e-13 Iteration 60: d = 8.384525982083709e-15 Converged after 64 iterations. d = 1.4986467104018473e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017215067646153784 Iteration 10: d = 1.7042727976346244e-5 Iteration 20: d = 2.1640383896208478e-7 Iteration 30: d = 3.0797393138271976e-9 Iteration 40: d = 4.395428312184214e-11 Iteration 50: d = 6.248891918408327e-13 Iteration 60: d = 8.867459382004782e-15 Converged after 64 iterations. d = 1.6038236687823567e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016941720894232803 Iteration 10: d = 1.7985564626034273e-5 Iteration 20: d = 2.148438886713876e-7 Iteration 30: d = 2.8825959059558256e-9 Iteration 40: d = 3.944917282584449e-11 Iteration 50: d = 5.439757602273774e-13 Iteration 60: d = 7.505312954968412e-15 Converged after 63 iterations. d = 2.073963756785381e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001332050771124371 Iteration 10: d = 1.523320421933236e-5 Iteration 20: d = 1.6829130947114685e-7 Iteration 30: d = 2.0712047683604312e-9 Iteration 40: d = 2.6432471842027652e-11 Iteration 50: d = 3.424179109164492e-13 Iteration 60: d = 4.42940736307981e-15 Converged after 62 iterations. d = 1.8783590791365414e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012084035262061239 Iteration 10: d = 9.939143735982807e-6 Iteration 20: d = 1.031443361760522e-7 Iteration 30: d = 1.304839313437955e-9 Iteration 40: d = 1.7506286180949767e-11 Iteration 50: d = 2.400595235804656e-13 Iteration 60: d = 3.3522670876980677e-15 Converged after 61 iterations. d = 2.1786179421585324e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001542223101399998 Iteration 10: d = 1.6321619880886684e-5 Iteration 20: d = 1.9440410199924063e-7 Iteration 30: d = 2.660222270968186e-9 Iteration 40: d = 3.75276642146122e-11 Iteration 50: d = 5.347874681445168e-13 Iteration 60: d = 7.64135451422674e-15 Converged after 63 iterations. d = 2.1272976937840605e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014884367921511755 Iteration 10: d = 1.789619587897062e-5 Iteration 20: d = 2.0883909766005867e-7 Iteration 30: d = 2.768458019456095e-9 Iteration 40: d = 3.810632900154865e-11 Iteration 50: d = 5.304547609248753e-13 Iteration 60: d = 7.398515897560875e-15 Converged after 63 iterations. d = 2.074072798299281e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015816626212850275 Iteration 10: d = 1.696338154823816e-5 Iteration 20: d = 2.0762440960346977e-7 Iteration 30: d = 2.81785458611328e-9 Iteration 40: d = 3.910641162116259e-11 Iteration 50: d = 5.470448813107296e-13 Iteration 60: d = 7.675081155498511e-15 Converged after 63 iterations. d = 2.1035618526882316e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.270296448105 Iteration 2: convergence error = 4815.409130498856 Iteration 3: convergence error = 1100.9630972252485 Iteration 4: convergence error = 319.4946269052152 Iteration 5: convergence error = 95.30089776861837 Iteration 6: convergence error = 28.611798017883757 Iteration 7: convergence error = 8.664079887655134 Iteration 8: convergence error = 2.6135480303355507 Iteration 9: convergence error = 0.7865665998533586 Iteration 10: convergence error = 0.23640578882213958 Iteration 11: convergence error = 0.07099816413392546 Iteration 12: convergence error = 0.021313054467555048 Iteration 13: convergence error = 0.006396396885065769 Iteration 14: convergence error = 0.0019193875214114087 Iteration 15: convergence error = 0.0005759091473009903 Iteration 16: convergence error = 0.0001727923458929581 Iteration 17: convergence error = 5.184214660403086e-5 Iteration 18: convergence error = 1.5553725461359136e-5 Iteration 19: convergence error = 4.666401764552575e-6 Iteration 20: convergence error = 1.3999979273648933e-6 Iteration 21: convergence error = 4.200196599413175e-7 Iteration 22: convergence error = 1.2588725439854898e-7 Iteration 23: convergence error = 3.688273864099756e-8 Iteration 24: convergence error = 1.070156940841116e-8 Iteration 25: convergence error = 3.09819370158948e-9 Iteration 26: convergence error = 8.908500603865832e-10 Iteration 27: convergence error = 2.587512426543981e-10 Iteration 28: convergence error = 7.639755494892597e-11 Iteration 29: convergence error = 2.2282620193436742e-11 Iteration 30: convergence error = 6.59383658785373e-12 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.3670519916839 K, F = -7435.448245642202, relative_change = 0.03263294800831611 Iter 2: T = 936.8108855358522 K, F = -6302.7458226498, relative_change = 0.0315869414747179 Iter 3: T = 908.3000287523729 K, F = -5341.081934506956, relative_change = 0.030433951210089974 Iter 5: T = 857.2750110111018 K, F = -3831.838462389383, relative_change = 0.027813152665290653 Iter 10: T = 762.4650837553688 K, F = -1659.0186267099423, relative_change = 0.019878665193391185 Iter 15: T = 707.0373490437805 K, F = -710.2164906334607, relative_change = 0.011888303980430222 Iter 20: T = 678.5686724080473 K, F = -300.98130650033295, relative_change = 0.006079005870699295 Iter 25: T = 665.3043949537621 K, F = -126.69948803974195, relative_change = 0.0028058597649531863 Iter 30: T = 659.4676551585535 K, F = -53.14433961086458, relative_change = 0.0012268768455152364 Iter 35: T = 656.9711586592741 K, F = -22.254131546026848, relative_change = 0.0005230770563029969 Iter 40: T = 655.9169861578654 K, F = -9.312016046132188, relative_change = 0.00022055330604810866 Iter 45: T = 655.4743199331406 K, F = -3.8952896317080508, relative_change = 9.255599020618887e-5 Iter 50: T = 655.2888747335924 K, F = -1.6292133379420481, relative_change = 3.876391451533399e-5 Iter 55: T = 655.2112637405837 K, F = -0.6813839140646893, relative_change = 1.6221328661089144e-5 Iter 60: T = 655.1787961601673 K, F = -0.2849676918487566, relative_change = 6.78566833880127e-6 Iter 65: T = 655.1652161264944 K, F = -0.11917773191856074, relative_change = 2.8381475983357372e-6 Iter 70: T = 655.1595364961702 K, F = -0.04984169768455454, relative_change = 1.186999709252607e-6 Iter 75: T = 655.1571611548036 K, F = -0.020844418900483663, relative_change = 4.964266350907635e-7 Iter 80: T = 655.1561677495575 K, F = -0.008717389410214937, relative_change = 2.076131531118034e-7 Iter 85: T = 655.1557522940251 K, F = -0.003645717144684424, relative_change = 8.682658090857338e-8 Iter 90: T = 655.155578545281 K, F = -0.0015246825861778834, relative_change = 3.631196218101605e-8 Iter 95: T = 655.1555058814323 K, F = -0.0006376404892104448, relative_change = 1.518610481005836e-8 Iter 100: T = 655.1554754925345 K, F = -0.00026666887207610346, relative_change = 6.351011900542882e-9 Iter 105: T = 655.1554627835332 K, F = -0.00011152410801118506, relative_change = 2.6560692932686214e-9 Iter 110: T = 655.1554574684766 K, F = -4.664071326948571e-5, relative_change = 1.1107999277041331e-9 Iter 115: T = 655.1554552456565 K, F = -1.9505703381828e-5, relative_change = 4.645498050417021e-10 Iter 120: T = 655.1554543160465 K, F = -8.157517759288524e-6, relative_change = 1.94280269525305e-10 Iter 125: T = 655.1554539272726 K, F = -3.4115712483906435e-6, relative_change = 8.125032676269542e-11 Iter 130: T = 655.1554537646828 K, F = -1.4267603598572265e-6, relative_change = 3.3979869434682537e-11 Iter 135: T = 655.1554536966858 K, F = -5.966895357256696e-7, relative_change = 1.4210818507073851e-11 Iter 140: T = 655.1554536682485 K, F = -2.4954230742890715e-7, relative_change = 5.943124906872585e-12 Iter 145: T = 655.1554536563557 K, F = -1.0436143116354657e-7, relative_change = 2.4854824310512808e-12 Iter 150: T = 655.155453651382 K, F = -4.364522038224905e-8, relative_change = 1.0394589960477081e-12 Iter 155: T = 655.155453649302 K, F = -1.8253578204507903e-8, relative_change = 4.3472907019023254e-13 Converged in 159 iterations to T = 655.1554536485512 K Iter 1: T = 970.3229401735747 K, F = -6761.946311622826, relative_change = 0.02967705982642528 Iter 2: T = 942.8097881033794 K, F = -5727.244471619809, relative_change = 0.028354634247102984 Iter 3: T = 917.4159120100678 K, F = -4849.122969452294, relative_change = 0.026934251652600796 Iter 5: T = 872.7706282641454 K, F = -3472.0167615990504, relative_change = 0.023844334189822618 Iter 10: T = 793.4987806940081 K, F = -1494.5018159895121, relative_change = 0.015538574392548068 Iter 15: T = 750.2849925436586 K, F = -636.1963119690629, relative_change = 0.008513777534010322 Iter 20: T = 729.3002982384288 K, F = -268.54805200374636, relative_change = 0.004097737232862354 Iter 25: T = 719.8532364267038 K, F = -112.80026970004917, relative_change = 0.0018299073447673078 Iter 30: T = 715.7682043906823 K, F = -47.26508992552325, relative_change = 0.0007876924793042819 Iter 35: T = 714.0348758978474 K, F = -19.78307494950668, relative_change = 0.00033351129510305103 Iter 40: T = 713.305504005544 K, F = -8.276390036516887, relative_change = 0.00014020665899104712 Iter 45: T = 712.9996809225097 K, F = -3.461789648061541, relative_change = 5.87644498774185e-5 Iter 50: T = 712.871643058308 K, F = -1.4478501721803907, relative_change = 2.4598515620496214e-5 Iter 55: T = 712.8180717360475 K, F = -0.6055237058761296, relative_change = 1.0291337230437252e-5 Iter 60: T = 712.7956633055272 K, F = -0.25323995233417346, relative_change = 4.3046503724872324e-6 Iter 65: T = 712.7862910862785 K, F = -0.1059084459018177, relative_change = 1.8003769457570112e-6 Iter 70: T = 712.782371381768 K, F = -0.04429225970553985, relative_change = 7.529602613200963e-7 Iter 75: T = 712.7807320917061 K, F = -0.01852356645154718, relative_change = 3.149006678091843e-7 Iter 80: T = 712.780046517033 K, F = -0.0077467792396175295, relative_change = 1.3169586610818748e-7 Iter 85: T = 712.7797598008192 K, F = -0.003239796037309839, relative_change = 5.507689700341847e-8 Iter 90: T = 712.7796398925523 K, F = -0.0013549214712079705, relative_change = 2.3033835842958672e-8 Iter 95: T = 712.7795897454616 K, F = -0.0005666443536440635, relative_change = 9.633028682846772e-9 Iter 100: T = 712.7795687733458 K, F = -0.00023697743872119759, relative_change = 4.028648250882378e-9 Iter 105: T = 712.7795600025557 K, F = -9.910679454083748e-5, relative_change = 1.6848289019557514e-9 Iter 110: T = 712.7795563345065 K, F = -4.1447645609093975e-5, relative_change = 7.046155944679442e-10 Iter 115: T = 712.7795548004846 K, F = -1.733390017721881e-5, relative_change = 2.946786560125018e-10 Iter 120: T = 712.7795541589383 K, F = -7.249244505014296e-6, relative_change = 1.2323814116602703e-10 Iter 125: T = 712.7795538906358 K, F = -3.0317199384288784e-6, relative_change = 5.1539650809007644e-11 Iter 130: T = 712.7795537784285 K, F = -1.267900716639403e-6, relative_change = 2.155448444190009e-11 Iter 135: T = 712.7795537315021 K, F = -5.302504657578311e-7, relative_change = 9.014329961389663e-12 Iter 140: T = 712.779553711877 K, F = -2.217574942564582e-7, relative_change = 3.769907532365446e-12 Iter 145: T = 712.7795537036695 K, F = -9.274197421138552e-8, relative_change = 1.5766261624546195e-12 Iter 150: T = 712.7795537002371 K, F = -3.8785865075219306e-8, relative_change = 6.5936497613311e-13 Iter 155: T = 712.7795536988016 K, F = -1.6221425980234017e-8, relative_change = 2.7576644567967253e-13 Converged in 157 iterations to T = 712.7795536984978 K Iter 1: T = 974.5179144564693 K, F = -5806.11743081459, relative_change = 0.02548208554353077 Iter 2: T = 951.2242935338186 K, F = -4912.042876651717, relative_change = 0.023902711871276943 Iter 3: T = 930.043551174307 K, F = -4153.844417573729, relative_change = 0.022266822350409745 Iter 5: T = 893.6637428093946 K, F = -2966.4364786228975, relative_change = 0.01891055269786952 Iter 10: T = 832.4562268132604 K, F = -1268.2835497130407, relative_change = 0.011084651016844336 Iter 15: T = 801.4325023199345 K, F = -536.9693659044294, relative_change = 0.005585429307306102 Iter 20: T = 787.099973517284 K, F = -225.91596183699295, relative_change = 0.002556701994614512 Iter 25: T = 780.8210927886273 K, F = -94.73562067071536, relative_change = 0.0011134467214290512 Iter 30: T = 778.1410126780789 K, F = -39.66570074444971, relative_change = 0.00047386554894036735 Iter 35: T = 777.0103412531123 K, F = -16.59685829049606, relative_change = 0.00019964940205712944 Iter 40: T = 776.5357345586111 K, F = -6.942445490754462, relative_change = 8.375624414598719e-5 Iter 45: T = 776.3369408987867 K, F = -2.9036663338504995, relative_change = 3.507362872420276e-5 Iter 50: T = 776.2537490895876 K, F = -1.2143921872195083, relative_change = 1.467623049220906e-5 Iter 55: T = 776.2189478386846 K, F = -0.5078810583317581, relative_change = 6.139178712108436e-6 Iter 60: T = 776.2043918875887 K, F = -0.212403278414093, relative_change = 2.567723471634361e-6 Iter 65: T = 776.1983041259493 K, F = -0.08882982456070987, relative_change = 1.0738955854901741e-6 Iter 70: T = 776.1957581007682 K, F = -0.037149734912694576, relative_change = 4.4912347379996824e-7 Iter 75: T = 776.1946933137884 K, F = -0.015536470045908524, relative_change = 1.8783011478517379e-7 Iter 80: T = 776.1942480056106 K, F = -0.0064975385827635845, relative_change = 7.85530270319017e-8 Iter 85: T = 776.194061772142 K, F = -0.002717348453212476, relative_change = 3.285185422552022e-8 Iter 90: T = 776.1939838870342 K, F = -0.0011364276151670794, relative_change = 1.3739044819033008e-8 Iter 95: T = 776.1939513145435 K, F = -0.0004752676063899397, relative_change = 5.7458338417061816e-9 Iter 100: T = 776.1939376923375 K, F = -0.00019876258966367022, relative_change = 2.402976542540488e-9 Iter 105: T = 776.1939319953681 K, F = -8.312488921147221e-5, relative_change = 1.0049535287033763e-9 Iter 110: T = 776.1939296128273 K, F = -3.476382152312052e-5, relative_change = 4.202835751464798e-10 Iter 115: T = 776.1939286164203 K, F = -1.453864502343194e-5, relative_change = 1.757676077561369e-10 Iter 120: T = 776.193928199711 K, F = -6.080234778216287e-6, relative_change = 7.350811045816538e-11 Iter 125: T = 776.1939280254381 K, F = -2.5428252675707697e-6, relative_change = 3.0741951201275297e-11 Iter 130: T = 776.1939279525552 K, F = -1.063438667014971e-6, relative_change = 1.2856636292894355e-11 Iter 135: T = 776.1939279220747 K, F = -4.447436525722992e-7, relative_change = 5.376809742882888e-12 Iter 140: T = 776.1939279093274 K, F = -1.8599749418424238e-7, relative_change = 2.248650729865697e-12 Iter 145: T = 776.1939279039963 K, F = -7.778653099421717e-8, relative_change = 9.404144957260709e-13 Iter 150: T = 776.1939279017668 K, F = -3.252999647429533e-8, relative_change = 3.9327734300219596e-13 Converged in 154 iterations to T = 776.1939279009621 K Iter 1: T = 970.4322114516345 K, F = -6737.048746973081, relative_change = 0.029567788548365483 Iter 2: T = 943.0304357359157 K, F = -5705.986935001894, relative_change = 0.028236671652448014 Iter 3: T = 917.7493783940065 K, F = -4830.9692235412285, relative_change = 0.026808315388230818 Iter 5: T = 873.3306674522219 K, F = -3458.773408576523, relative_change = 0.023705956678293748 Iter 10: T = 794.583122896743 K, F = -1488.5088641086043, relative_change = 0.015400598570425287 Iter 15: T = 751.7509921200597 K, F = -633.5353087725324, relative_change = 0.008415569517527593 Iter 20: T = 730.9859656077476 K, F = -267.39468686567903, relative_change = 0.004043518768460119 Iter 25: T = 721.6466766102076 K, F = -112.3091895229489, relative_change = 0.001804086083373034 Iter 30: T = 717.6101255118344 K, F = -47.05803167325166, relative_change = 0.0007762577330987787 Iter 35: T = 715.8977260182799 K, F = -19.69617356941887, relative_change = 0.00032861064319954155 Iter 40: T = 715.177225864852 K, F = -8.239992131406913, relative_change = 0.00013813585390329096 Iter 45: T = 714.8751342143313 K, F = -3.446557966564875, relative_change = 5.789464746185515e-5 Iter 50: T = 714.7486606080995 K, F = -1.441478409053933, relative_change = 2.4234091853199958e-5 Iter 55: T = 714.695744131245 K, F = -0.6028586621037975, relative_change = 1.0138814840501488e-5 Iter 60: T = 714.67360967943 K, F = -0.25212534734298525, relative_change = 4.240843378784521e-6 Iter 65: T = 714.6643520613909 K, F = -0.10544229571322317, relative_change = 1.7736885457466194e-6 Iter 70: T = 714.660480287981 K, F = -0.04409730854256222, relative_change = 7.417982321456119e-7 Iter 75: T = 714.6588610438911 K, F = -0.018442035269954804, relative_change = 3.102324651969911e-7 Iter 80: T = 714.65818385279 K, F = -0.007712681875169047, relative_change = 1.297435489757068e-7 Iter 85: T = 714.6579006427048 K, F = -0.003225536102122728, relative_change = 5.426041130896181e-8 Iter 90: T = 714.6577822007462 K, F = -0.0013489577942046305, relative_change = 2.2692371187574776e-8 Iter 95: T = 714.6577326668838 K, F = -0.0005641502725750591, relative_change = 9.490223986607016e-9 Iter 100: T = 714.6577119512274 K, F = -0.00023593438251034993, relative_change = 3.96892557537787e-9 Iter 105: T = 714.6577032876919 K, F = -9.867057786028255e-5, relative_change = 1.659852194679267e-9 Iter 110: T = 714.6576996644977 K, F = -4.126521420155793e-5, relative_change = 6.941700301651851e-10 Iter 115: T = 714.6576981492346 K, F = -1.7257605674392273e-5, relative_change = 2.903102044737006e-10 Iter 120: T = 714.6576975155335 K, F = -7.217337290588155e-6, relative_change = 1.214112034406464e-10 Iter 125: T = 714.6576972505122 K, F = -3.0183763454205703e-6, relative_change = 5.077561023221343e-11 Iter 130: T = 714.6576971396771 K, F = -1.2623216962825978e-6, relative_change = 2.1234977733205267e-11 Iter 135: T = 714.6576970933245 K, F = -5.279175542272085e-7, relative_change = 8.880713644911567e-12 Iter 140: T = 714.6576970739393 K, F = -2.207803923015561e-7, relative_change = 3.714003118469367e-12 Iter 145: T = 714.6576970658322 K, F = -9.233319631096748e-8, relative_change = 1.5532438160872044e-12 Iter 150: T = 714.6576970624418 K, F = -3.861511566061182e-8, relative_change = 6.495896601119602e-13 Iter 155: T = 714.6576970610239 K, F = -1.6151318282808802e-8, relative_change = 2.717000628976681e-13 Converged in 157 iterations to T = 714.6576970607238 K Iter 1: T = 969.349717011212 K, F = -6983.696134941406, relative_change = 0.030650282988788035 Iter 2: T = 940.8410978522239 K, F = -5916.628636746487, relative_change = 0.0294100453723641 Iter 3: T = 914.4349206790112 K, F = -5010.911462693248, relative_change = 0.02806656430452858 Iter 5: T = 867.7432710146339 K, F = -3590.1492817110416, relative_change = 0.02510213232305231 Iter 10: T = 783.6541393477233 K, F = -1548.143734539932, relative_change = 0.0168316769452001 Iter 15: T = 736.8460173088002 K, F = -660.1136774262917, relative_change = 0.009459867620632993 Iter 20: T = 713.752683259936 K, F = -278.9483803881342, relative_change = 0.004629634071498982 Iter 25: T = 703.2592595640856 K, F = -117.2368381771022, relative_change = 0.0020856690607409453 Iter 30: T = 698.700846129734 K, F = -49.13742186445948, relative_change = 0.0009014641610792057 Iter 35: T = 696.7626332784108 K, F = -20.569203547729174, relative_change = 0.00038236719988978375 Iter 40: T = 695.9463143742548 K, F = -8.605710921722913, relative_change = 0.00016086843620605163 Iter 45: T = 695.6039042153341 K, F = -3.599613023591363, relative_change = 6.744611728031243e-5 Iter 50: T = 695.4605255768852 K, F = -1.505506657663096, relative_change = 2.8236441973478048e-5 Iter 55: T = 695.4005316071714 K, F = -0.6296393325637814, relative_change = 1.1814014625430618e-5 Iter 60: T = 695.3754359311401 K, F = -0.263325919724472, relative_change = 4.941671619839468e-6 Iter 65: T = 695.3649396606381 K, F = -0.1101266096419064, relative_change = 2.0668252227376933e-6 Iter 70: T = 695.3605498271913 K, F = -0.04605636220189813, relative_change = 8.643988272296316e-7 Iter 75: T = 695.3587139170733 K, F = -0.01926133799039509, relative_change = 3.6150678137337295e-7 Iter 80: T = 695.3579461124039 K, F = -0.008055324599397506, relative_change = 1.5118730481797853e-7 Iter 85: T = 695.357625006424 K, F = -0.003368833475906774, relative_change = 6.322848534836173e-8 Iter 90: T = 695.3574907159114 K, F = -0.0014088864832493275, relative_change = 2.6442933706915496e-8 Iter 95: T = 695.3574345539878 K, F = -0.0005892131687592617, relative_change = 1.1058755220751165e-8 Iter 100: T = 695.3574110663958 K, F = -0.0002464159858542869, relative_change = 4.624904283830259e-9 Iter 105: T = 695.3574012436036 K, F = -0.0001030541096663784, relative_change = 1.9341903637684135e-9 Iter 110: T = 695.3573971355944 K, F = -4.309845958738734e-5, relative_change = 8.089015357250634e-10 Iter 115: T = 695.3573954175758 K, F = -1.8024291198903697e-5, relative_change = 3.382922995912019e-10 Iter 120: T = 695.3573946990799 K, F = -7.537972829707584e-6, relative_change = 1.4147786158258924e-10 Iter 125: T = 695.3573943985964 K, F = -3.1524698729246126e-6, relative_change = 5.916772417708834e-11 Iter 130: T = 695.3573942729306 K, F = -1.3184011639078008e-6, relative_change = 2.4744660419419004e-11 Iter 135: T = 695.3573942203757 K, F = -5.513714612659371e-7, relative_change = 1.0348519064147378e-11 Iter 140: T = 695.3573941983965 K, F = -2.3058893294791716e-7, relative_change = 4.3278517960890555e-12 Iter 145: T = 695.3573941892046 K, F = -9.64356807742206e-8, relative_change = 1.8099712286118992e-12 Iter 150: T = 695.3573941853604 K, F = -4.032961853361883e-8, relative_change = 7.569340375121608e-13 Iter 155: T = 695.3573941837527 K, F = -1.6865857932479855e-8, relative_change = 3.1655002961252834e-13 Converged in 158 iterations to T = 695.357394183282 K Iter 1: T = 963.6353060255537 K, F = -8285.730113831802, relative_change = 0.0363646939744463 Iter 2: T = 929.15308110393 K, F = -7030.580304923753, relative_change = 0.03578348022951053 Iter 3: T = 896.5200850321504 K, F = -5964.630497745617, relative_change = 0.035121226776763444 Iter 5: T = 836.6837379882442 K, F = -4290.669576152597, relative_change = 0.033524616066682444 Iter 10: T = 717.5165122361233 K, F = -1874.6561852049433, relative_change = 0.027734274063890462 Iter 15: T = 638.4585243973619 K, F = -811.5455890293172, relative_change = 0.019784061886594873 Iter 20: T = 592.3106433131452 K, F = -347.3736425095605, relative_change = 0.01180815792834225 Iter 25: T = 568.6397554101475 K, F = -147.19858657720056, relative_change = 0.006029080551121515 Iter 30: T = 557.6204025038371 K, F = -61.96046713679552, relative_change = 0.0027804578182065052 Iter 35: T = 552.7737106954215 K, F = -25.988723540292355, relative_change = 0.001215268536291882 Iter 40: T = 550.7011179721236 K, F = -10.882614617135163, relative_change = 0.0005180322878953272 Iter 45: T = 549.8260248190737 K, F = -4.553695791636207, relative_change = 0.0002184088487377758 Iter 50: T = 549.4585718692658 K, F = -1.9048425294580298, relative_change = 9.16529780562805e-5 Iter 55: T = 549.3046381832219 K, F = -0.7967037680987, relative_change = 3.8385175943184005e-5 Iter 60: T = 549.2402155817101 K, F = -0.3332043167755888, relative_change = 1.6062744752932837e-5 Iter 65: T = 549.2132652780049 K, F = -0.1393523495119006, relative_change = 6.719313219131763e-6 Iter 70: T = 549.2019929387712 K, F = -0.05827922349429973, relative_change = 2.8103912437111493e-6 Iter 75: T = 549.1972784669035 K, F = -0.024373138402406958, relative_change = 1.1753906466654822e-6 Iter 80: T = 549.1953067756149 K, F = -0.010193149997900913, relative_change = 4.915714074542583e-7 Iter 85: T = 549.194482183276 K, F = -0.004262899236287254, relative_change = 2.055826076460478e-7 Iter 90: T = 549.1941373276014 K, F = -0.001782795749803917, relative_change = 8.597737701816414e-8 Iter 95: T = 549.1939931046107 K, F = -0.0007455865406668094, relative_change = 3.595681404258564e-8 Iter 100: T = 549.1939327887934 K, F = -0.00031181320701206827, relative_change = 1.5037577465938444e-8 Iter 105: T = 549.1939075639913 K, F = -0.0001304040089678271, relative_change = 6.288895952532176e-9 Iter 110: T = 549.1938970146766 K, F = -5.453651408202087e-5, relative_change = 2.6300916417784017e-9 Iter 115: T = 549.1938926028271 K, F = -2.280782178598617e-5, relative_change = 1.0999357907345677e-9 Iter 120: T = 549.1938907577388 K, F = -9.538503538325527e-6, relative_change = 4.60006295125982e-10 Iter 125: T = 549.1938899861009 K, F = -3.989116235031398e-6, relative_change = 1.923801343686056e-10 Iter 130: T = 549.1938896633926 K, F = -1.6682957479641214e-6, relative_change = 8.045565537531487e-11 Iter 135: T = 549.1938895284322 K, F = -6.977013858044945e-7, relative_change = 3.3647524658228094e-11 Iter 140: T = 549.1938894719901 K, F = -2.9178728200296433e-7, relative_change = 1.4071807754309064e-11 Iter 145: T = 549.1938894483854 K, F = -1.2202913471370813e-7, relative_change = 5.8850081219438285e-12 Iter 150: T = 549.1938894385137 K, F = -5.103400577133321e-8, relative_change = 2.461178956893708e-12 Iter 155: T = 549.1938894343853 K, F = -2.1343650513649948e-8, relative_change = 1.0293243243483788e-12 Iter 160: T = 549.1938894326586 K, F = -8.925865990772053e-9, relative_change = 4.304610860469894e-13 Converged in 164 iterations to T = 549.1938894320353 K Iter 1: T = 966.9125219851392 K, F = -7539.013340003064, relative_change = 0.033087478014860776 Iter 2: T = 935.8832263737892 K, F = -6391.320717541988, relative_change = 0.032091109491109555 Iter 3: T = 906.8816845583169 K, F = -5416.883008290451, relative_change = 0.03098841927944668 Iter 5: T = 854.8307093945131 K, F = -3887.4452927942702, relative_change = 0.028464455051940098 Iter 10: T = 757.3711572202327 K, F = -1684.765558939735, relative_change = 0.02066890935266686 Iter 15: T = 699.6669799154945 K, F = -722.0060838720549, relative_change = 0.012568264705372104 Iter 20: T = 669.6963094331159 K, F = -306.2280021314688, relative_change = 0.006508002799942885 Iter 25: T = 655.6291856857603 K, F = -128.96987789485408, relative_change = 0.0030257995488651183 Iter 30: T = 649.4149283543102 K, F = -54.10942974418251, relative_change = 0.0013277659444320313 Iter 35: T = 646.7520878164843 K, F = -22.66067023671752, relative_change = 0.0005669964202672246 Iter 40: T = 645.6267686519653 K, F = -9.48256319297042, relative_change = 0.00023923653049732623 Iter 45: T = 645.1540639398112 K, F = -3.966708011838989, relative_change = 0.00010042578779666247 Iter 50: T = 644.9560060055481 K, F = -1.6590978053600123, relative_change = 4.20650741422801e-5 Iter 55: T = 644.8731113783682 K, F = -0.6938848386233677, relative_change = 1.760365317092777e-5 Iter 60: T = 644.8384325700666 K, F = -0.2901962325862847, relative_change = 7.364077730660697e-6 Iter 65: T = 644.8239275033311 K, F = -0.12136445842237487, relative_change = 3.080098649865148e-6 Iter 70: T = 644.8178609656906 K, F = -0.05075622827387172, relative_change = 1.2881958593139387e-6 Iter 75: T = 644.8153238067646 K, F = -0.021226889217538403, relative_change = 5.387497057221074e-7 Iter 80: T = 644.8142627260312 K, F = -0.008877343537652294, relative_change = 2.2531345217624884e-7 Iter 85: T = 644.8138189675478 K, F = -0.00371261195301692, relative_change = 9.422910727617195e-8 Iter 90: T = 644.8136333821271 K, F = -0.0015526588078624837, relative_change = 3.940779583235662e-8 Iter 95: T = 644.8135557680314 K, F = -0.000649340482867522, relative_change = 1.6480820969319226e-8 Iter 100: T = 644.8135233088798 K, F = -0.00027156194976313275, relative_change = 6.892477932367871e-9 Iter 105: T = 644.813509734073 K, F = -0.00011357045117244002, relative_change = 2.882516890221258e-9 Iter 110: T = 644.8135040569265 K, F = -4.7496518683687317e-5, relative_change = 1.2055030305679913e-9 Iter 115: T = 644.8135016826759 K, F = -1.9863610606130067e-5, relative_change = 5.041557542977072e-10 Iter 120: T = 644.8135006897361 K, F = -8.307199612367366e-6, relative_change = 2.10843969931989e-10 Iter 125: T = 644.8135002744767 K, F = -3.4741707521379617e-6, relative_change = 8.81774833913688e-11 Iter 130: T = 644.8135001008103 K, F = -1.45293964504134e-6, relative_change = 3.687687529599217e-11 Iter 135: T = 644.8135000281809 K, F = -6.076358717854724e-7, relative_change = 1.5422328351831325e-11 Iter 140: T = 644.8134999978065 K, F = -2.5412046761319473e-7, relative_change = 6.449799090719607e-12 Iter 145: T = 644.8134999851036 K, F = -1.062769955373355e-7, relative_change = 2.697402832930323e-12 Iter 150: T = 644.8134999797911 K, F = -4.4446692604172e-8, relative_change = 1.1280958211456165e-12 Iter 155: T = 644.8134999775692 K, F = -1.858804088428201e-8, relative_change = 4.717806886539436e-13 Converged in 160 iterations to T = 644.8134999766401 K Iter 1: T = 965.2274453882538 K, F = -7922.959645525051, relative_change = 0.03477255461174615 Iter 2: T = 932.4318939762107 K, F = -6719.878086038749, relative_change = 0.03397701916655657 Iter 3: T = 901.5839277903302 K, F = -5698.25647211803, relative_change = 0.03308334515922035 Iter 5: T = 845.6175350460168 K, F = -4094.2639492291887, relative_change = 0.030983289992025927 Iter 10: T = 737.6139822196956 K, F = -1781.4120525919175, relative_change = 0.023966058671108695 Iter 15: T = 670.1902692834853 K, F = -766.9261918001217, relative_change = 0.01566033425760591 Iter 20: T = 633.3632347241997 K, F = -326.5234748523268, relative_change = 0.008600769946733035 Iter 25: T = 615.4539243224707 K, F = -137.8441758250302, relative_change = 0.004145892851154547 Iter 30: T = 607.3845895958758 K, F = -57.90275293434254, relative_change = 0.0018528745833659645 Iter 35: T = 603.8938668216383 K, F = -24.262753927559487, relative_change = 0.0007978703034386728 Iter 40: T = 602.4124365264146 K, F = -10.15542291697202, relative_change = 0.0003378745745149881 Iter 45: T = 601.7890117017852 K, F = -4.248612616684833, relative_change = 0.00014205063080532704 Iter 50: T = 601.5276029950693 K, F = -1.7770829080882427, relative_change = 5.953901734360607e-5 Iter 55: T = 601.4181583802186 K, F = -0.7432432698172098, relative_change = 2.4923045910482127e-5 Iter 60: T = 601.3723662405333 K, F = -0.31084125891412434, relative_change = 1.0427164288442822e-5 Iter 65: T = 601.35321172831 K, F = -0.12999893462361023, relative_change = 4.36147318312029e-6 Iter 70: T = 601.3452004364948 K, F = -0.05436735324573694, relative_change = 1.8241441278761856e-6 Iter 75: T = 601.3418499055718 K, F = -0.022737119482510726, relative_change = 7.62900541202055e-7 Iter 80: T = 601.3404486537594 K, F = -0.00950894243726591, relative_change = 3.1905790958196504e-7 Iter 85: T = 601.3398626300597 K, F = -0.003976754603790822, relative_change = 1.3343449138338057e-7 Iter 90: T = 601.3396175473453 K, F = -0.0016631264978236304, relative_change = 5.5804013840141926e-8 Iter 95: T = 601.3395150507215 K, F = -0.0006955394031182283, relative_change = 2.333792530263868e-8 Iter 100: T = 601.3394721853908 K, F = -0.00029088289204992623, relative_change = 9.760202628238251e-9 Iter 105: T = 601.3394542585944 K, F = -0.00012165070009578782, relative_change = 4.081833905575375e-9 Iter 110: T = 601.3394467613936 K, F = -5.087577600576543e-5, relative_change = 1.7070718017714004e-9 Iter 115: T = 601.3394436259745 K, F = -2.127685683728231e-5, relative_change = 7.139178227918435e-10 Iter 120: T = 601.3394423147047 K, F = -8.898235120069486e-6, relative_change = 2.9856894550462984e-10 Iter 125: T = 601.3394417663161 K, F = -3.721347885066173e-6, relative_change = 1.2486508883296512e-10 Iter 130: T = 601.3394415369734 K, F = -1.556311850392511e-6, relative_change = 5.222006214032216e-11 Iter 135: T = 601.3394414410596 K, F = -6.50868473173194e-7, relative_change = 2.1839062737663114e-11 Iter 140: T = 601.3394414009474 K, F = -2.722017770073748e-7, relative_change = 9.133383981979228e-12 Iter 145: T = 601.3394413841719 K, F = -1.1383831616251783e-7, relative_change = 3.819699727691894e-12 Iter 150: T = 601.3394413771562 K, F = -4.7608829600864766e-8, relative_change = 1.5974536483185433e-12 Iter 155: T = 601.339441374222 K, F = -1.9909944359852716e-8, relative_change = 6.680528280751321e-13 Iter 160: T = 601.3394413729951 K, F = -8.327425193854765e-9, relative_change = 2.794161475714929e-13 Converged in 162 iterations to T = 601.3394413727355 K Iter 1: T = 979.9481059301235 K, F = -4568.843138096863, relative_change = 0.020051894069876532 Iter 2: T = 961.9482324786832 K, F = -3859.520097591551, relative_change = 0.01836819046081594 Iter 3: T = 945.8808673984961 K, F = -3258.8012872120967, relative_change = 0.01670294152813797 Iter 5: T = 919.0248012988461 K, F = -2320.112541458105, relative_change = 0.013517412145701357 Iter 10: T = 876.3088842000396 K, F = -985.1784589510498, relative_change = 0.007125070001298169 Iter 15: T = 856.0473154244895 K, F = -415.2022822161219, relative_change = 0.003347821744518557 Iter 20: T = 847.0453794086748 K, F = -174.2589500871185, relative_change = 0.001476785947961925 Iter 25: T = 843.1775659998005 K, F = -72.98997549895984, relative_change = 0.0006321263636570741 Iter 30: T = 841.541070308975 K, F = -30.545399503198965, relative_change = 0.00026699030274725987 Iter 35: T = 840.853287547314 K, F = -12.777999333801084, relative_change = 0.0001121248210876315 Iter 40: T = 840.565052045237 K, F = -5.3445347354511785, relative_change = 4.697399439924463e-5 Iter 45: T = 840.4444037929723 K, F = -2.235257344272627, relative_change = 1.9659473885236684e-5 Iter 50: T = 840.3939289083416 K, F = -0.9348304076794594, relative_change = 8.224346023434596e-6 Iter 55: T = 840.3728164981972 K, F = -0.3909605806804596, relative_change = 3.43996054590833e-6 Iter 60: T = 840.3639864744508 K, F = -0.16350496809304804, relative_change = 1.4387096962285743e-6 Iter 65: T = 840.3602935548168 K, F = -0.06837983248855406, relative_change = 6.016990651043726e-7 Iter 70: T = 840.3587491145386 K, F = -0.02859728044120069, relative_change = 2.5164009400385915e-7 Iter 75: T = 840.3581032081639 K, F = -0.011959727326315228, relative_change = 1.0523930513303692e-7 Iter 80: T = 840.3578330818788 K, F = -0.005001701342451259, relative_change = 4.401240638762663e-8 Iter 85: T = 840.3577201117483 K, F = -0.002091771327882519, relative_change = 1.8406526574942928e-8 Iter 90: T = 840.3576728662746 K, F = -0.0008748037676897802, relative_change = 7.697831447191979e-9 Iter 95: T = 840.3576531076504 K, F = -0.0003658533852657353, relative_change = 3.2193254229751637e-9 Iter 100: T = 840.3576448443573 K, F = -0.00015300425392927863, relative_change = 1.346360392979158e-9 Iter 105: T = 840.3576413885494 K, F = -6.398820650543868e-5, relative_change = 5.630640085559211e-10 Iter 110: T = 840.3576399432892 K, F = -2.6760631435474025e-5, relative_change = 2.3548008850114716e-10 Iter 115: T = 840.3576393388643 K, F = -1.1191617508066187e-5, relative_change = 9.848060187406437e-11 Iter 120: T = 840.3576390860865 K, F = -4.680469001039356e-6, relative_change = 4.118577181566391e-11 Iter 125: T = 840.3576389803717 K, F = -1.957425798559953e-6, relative_change = 1.722436198508497e-11 Iter 130: T = 840.3576389361606 K, F = -8.186202822280109e-7, relative_change = 7.203446528258161e-12 Iter 135: T = 840.357638917671 K, F = -3.423563881277403e-7, relative_change = 3.012563931389654e-12 Iter 140: T = 840.3576389099383 K, F = -1.4317481822345712e-7, relative_change = 1.259866350503787e-12 Iter 145: T = 840.3576389067044 K, F = -5.987621820580102e-8, relative_change = 5.268805887118913e-13 Converged in 150 iterations to T = 840.357638905352 K Iter 1: T = 976.4912052765216 K, F = -5356.501240381512, relative_change = 0.023508794723478464 Iter 2: T = 955.1429704050154 K, F = -4529.20799216648, relative_change = 0.021862188574919953 Iter 3: T = 935.8632028329746 K, F = -3827.9513445948646, relative_change = 0.02018521642248533 Iter 5: T = 903.0863610061199 K, F = -2730.5493325196335, relative_change = 0.016833490002264234 Iter 10: T = 849.1374625228574 K, F = -1164.2836594284086, relative_change = 0.009461311482330932 Iter 15: T = 822.5203416114057 K, F = -491.9996896036717, relative_change = 0.004630482834634683 Iter 20: T = 810.4255190240749 K, F = -206.77859299626397, relative_change = 0.0020860858489705485 Iter 25: T = 805.171399625882 K, F = -86.6670627039761, relative_change = 0.0009016512944151863 Iter 30: T = 802.9373671584614 K, F = -36.27933268438636, relative_change = 0.0003824478798540365 Iter 35: T = 801.9964559551789 K, F = -15.178491493883607, relative_change = 0.0001609026143481266 Iter 40: T = 801.6017844648354 K, F = -6.348888370694816, relative_change = 6.746048843049191e-5 Iter 45: T = 801.4365221983002 K, F = -2.6553670684987916, relative_change = 2.8242465782318106e-5 Iter 50: T = 801.3673714458228 K, F = -1.1105388028453738, relative_change = 1.1816536242458729e-5 Iter 55: T = 801.3384454556469 K, F = -0.4644462908277267, relative_change = 4.94272660832451e-6 Iter 60: T = 801.3263471553599 K, F = -0.1942379826912094, relative_change = 2.067266504711161e-6 Iter 65: T = 801.3212873082687 K, F = -0.08123281846301744, relative_change = 8.645833894071094e-7 Iter 70: T = 801.319171185955 K, F = -0.033972565305024904, relative_change = 3.615839697019093e-7 Iter 75: T = 801.3182861924142 K, F = -0.014207737860892244, relative_change = 1.5121958628206804e-7 Iter 80: T = 801.3179160765116 K, F = -0.005941846579121002, relative_change = 6.324198589747125e-8 Iter 85: T = 801.3177612894401 K, F = -0.0024849513654296995, relative_change = 2.64485798566864e-8 Iter 90: T = 801.3176965556065 K, F = -0.0010392363658664472, relative_change = 1.1061116514056058e-8 Iter 95: T = 801.3176694831386 K, F = -0.00043462106439795534, relative_change = 4.6258918220902485e-9 Iter 100: T = 801.3176581611084 K, F = -0.00018176372059564017, relative_change = 1.9346033455264742e-9 Iter 105: T = 801.3176534260999 K, F = -7.601575936178051e-5, relative_change = 8.09074253264477e-10 Iter 110: T = 801.3176514458628 K, F = -3.1790697699207726e-5, relative_change = 3.383645117845484e-10 Iter 115: T = 801.3176506177039 K, F = -1.3295248781464153e-5, relative_change = 1.4150807345266252e-10 Iter 120: T = 801.3176502713579 K, F = -5.560231312706776e-6, relative_change = 5.918036101200791e-11 Iter 125: T = 801.317650126512 K, F = -2.3253555569979767e-6, relative_change = 2.474993821720418e-11 Iter 130: T = 801.3176500659357 K, F = -9.72492174788897e-7, relative_change = 1.0350727302312461e-11 Iter 135: T = 801.317650040602 K, F = -4.067069543367552e-7, relative_change = 4.328788329676071e-12 Iter 140: T = 801.317650030007 K, F = -1.7008819819253063e-7, relative_change = 1.8103349341505676e-12 Iter 145: T = 801.3176500255762 K, F = -7.113249722578985e-8, relative_change = 7.570992347090486e-13 Iter 150: T = 801.3176500237231 K, F = -2.9748980834298777e-8, relative_change = 3.1663348682638153e-13 Converged in 153 iterations to T = 801.3176500231805 K Iter 1: T = 980.7860605417278 K, F = -4377.914382742195, relative_change = 0.019213939458272176 Iter 2: T = 963.5865414649967 K, F = -3697.376012687316, relative_change = 0.017536463627175883 Iter 3: T = 948.2760900791536 K, F = -3121.1738776875427, relative_change = 0.015889025766762634 Iter 5: T = 922.7855884575492 K, F = -2221.1385018548717, relative_change = 0.012769756428161971 Iter 10: T = 882.5484076152773 K, F = -942.2931993697565, relative_change = 0.006637272109637599 Iter 15: T = 863.6206254942693 K, F = -396.91051103822394, relative_change = 0.003092720384455743 Iter 20: T = 855.2491680676642 K, F = -166.53619129977596, relative_change = 0.0013586099732545186 Iter 25: T = 851.6599421724009 K, F = -69.74652824803829, relative_change = 0.0005804523310979679 Iter 30: T = 850.1427560434199 K, F = -29.186479899452273, relative_change = 0.00024496594520477815 Iter 35: T = 849.5053750882402 K, F = -12.20924495753519, relative_change = 0.00010284009254328945 Iter 40: T = 849.2383077230102 K, F = -5.106597834108921, relative_change = 4.3077974177034276e-5 Iter 45: T = 849.1265279774823 K, F = -2.13573578665349, relative_change = 1.8027823275763763e-5 Iter 50: T = 849.0797647673646 K, F = -0.8932069395865692, relative_change = 7.541569384986657e-6 Iter 55: T = 849.0602051068568 K, F = -0.37355273557106783, relative_change = 3.1543450440493875e-6 Iter 60: T = 849.0520245460683 K, F = -0.1562247270139041, relative_change = 1.3192496084381813e-6 Iter 65: T = 849.0486032543838 K, F = -0.06533513606799635, relative_change = 5.517372827694844e-7 Iter 70: T = 849.0471724147438 K, F = -0.027323949819534565, relative_change = 2.307451044087133e-7 Iter 75: T = 849.0465740179653 K, F = -0.011427204869071339, relative_change = 9.650070528850214e-8 Iter 80: T = 849.0463237608395 K, F = -0.004778994022295757, relative_change = 4.035780807467479e-8 Iter 85: T = 849.0462191002429 K, F = -0.0019986324572123237, relative_change = 1.6878127925004224e-8 Iter 90: T = 849.0461753299178 K, F = -0.0008358519787681207, relative_change = 7.058636537156031e-9 Iter 95: T = 849.0461570246426 K, F = -0.0003495632818166783, relative_change = 2.9520064186554156e-9 Iter 100: T = 849.0461493691575 K, F = -0.00014619153946715535, relative_change = 1.2345643945910088e-9 Iter 105: T = 849.0461461675422 K, F = -6.113904839621931e-5, relative_change = 5.163095887726511e-10 Iter 110: T = 849.0461448285884 K, F = -2.556907791206875e-5, relative_change = 2.1592681841639642e-10 Iter 115: T = 849.046144268622 K, F = -1.0693295051655838e-5, relative_change = 9.03031855150558e-11 Iter 120: T = 849.0461440344372 K, F = -4.4720613041615564e-6, relative_change = 3.7765850485180595e-11 Iter 125: T = 849.0461439364984 K, F = -1.870269084491838e-6, relative_change = 1.5794126655875487e-11 Iter 130: T = 849.0461438955393 K, F = -7.821692082909948e-7, relative_change = 6.605295274004877e-12 Iter 135: T = 849.0461438784097 K, F = -3.2711392261575156e-7, relative_change = 2.7624253478906124e-12 Iter 140: T = 849.0461438712458 K, F = -1.3680174992813932e-7, relative_change = 1.155269144861122e-12 Iter 145: T = 849.0461438682498 K, F = -5.721053919494068e-8, relative_change = 4.831339564633612e-13 Converged in 150 iterations to T = 849.0461438669969 K Iter 1: T = 967.2890980622562 K, F = -7453.210122615626, relative_change = 0.03271090193774377 Iter 2: T = 936.6518869657361 K, F = -6317.9353118776735, relative_change = 0.0316732724041807 Iter 3: T = 908.0570950756995 K, F = -5354.079264395235, relative_change = 0.0305287292834789 Iter 5: T = 856.8570068056952 K, F = -3841.369927631964, relative_change = 0.027924035712363543 Iter 10: T = 761.5981045940773 K, F = -1663.4251550399904, relative_change = 0.020011512802298043 Iter 15: T = 705.7889711255565 K, F = -712.2296117029364, relative_change = 0.012001081407255454 Iter 20: T = 677.0711898516842 K, F = -301.87524719313785, relative_change = 0.006149427688205999 Iter 25: T = 663.6746650548813 K, F = -127.08576855689907, relative_change = 0.0028417467168318157 Iter 30: T = 657.7759675432808 K, F = -53.30841667496319, relative_change = 0.0012432898291047836 Iter 35: T = 655.2522182385792 K, F = -22.323224420511263, relative_change = 0.0005302124684319686 Iter 40: T = 654.1863984344651 K, F = -9.340996888547094, relative_change = 0.0002235869483082079 Iter 45: T = 653.7388162734337 K, F = -3.9074248876793907, relative_change = 9.383351672450198e-5 Iter 50: T = 653.5513072283139 K, F = -1.6342911057312337, relative_change = 3.929974600392777e-5 Iter 55: T = 653.4728317146505 K, F = -0.6835079632581682, relative_change = 1.6445692568955882e-5 Iter 60: T = 653.4400023367562 K, F = -0.2858560761795188, relative_change = 6.879547778086307e-6 Iter 65: T = 653.4262709522375 K, F = -0.11954927913053098, relative_change = 2.877417461315508e-6 Iter 70: T = 653.4205280176903 K, F = -0.04999708566381611, relative_change = 1.203424297521713e-6 Iter 75: T = 653.4181262004311 K, F = -0.02090940444529693, relative_change = 5.032958498703713e-7 Iter 80: T = 653.4171217224214 K, F = -0.008744567218067378, relative_change = 2.1048598552701593e-7 Iter 85: T = 653.4167016360868 K, F = -0.0036570832413041487, relative_change = 8.802804154637806e-8 Iter 90: T = 653.4165259506789 K, F = -0.0015294360255048156, relative_change = 3.681442872842883e-8 Iter 95: T = 653.4164524768933 K, F = -0.00063962843627835, relative_change = 1.5396242597743404e-8 Iter 100: T = 653.4164217492698 K, F = -0.0002675002549607508, relative_change = 6.438894065435461e-9 Iter 105: T = 653.4164088986092 K, F = -0.00011187180138177988, relative_change = 2.69282265005819e-9 Iter 110: T = 653.4164035243092 K, F = -4.678612374969804e-5, relative_change = 1.1261706446041355e-9 Iter 115: T = 653.4164012767127 K, F = -1.9566515616631364e-5, relative_change = 4.709780186833273e-10 Iter 120: T = 653.416400336741 K, F = -8.182949993940092e-6, relative_change = 1.9696862114022505e-10 Iter 125: T = 653.4163999436337 K, F = -3.4222078141854517e-6, relative_change = 8.237463956706857e-11 Iter 130: T = 653.4163997792315 K, F = -1.4312085151457765e-6, relative_change = 3.4450066192061516e-11 Iter 135: T = 653.4163997104764 K, F = -5.985478874204198e-7, relative_change = 1.4407414526164891e-11 Iter 140: T = 653.4163996817223 K, F = -2.5031986683465846e-7, relative_change = 6.025352627873772e-12 Iter 145: T = 653.416399669697 K, F = -1.0468621480796969e-7, relative_change = 2.519861357897194e-12 Iter 150: T = 653.4163996646678 K, F = -4.3780518987901473e-8, relative_change = 1.053823927369101e-12 Iter 155: T = 653.4163996625646 K, F = -1.8309353255752114e-8, relative_change = 4.407173556163792e-13 Converged in 159 iterations to T = 653.4163996618055 K Iter 1: T = 973.4824223014875 K, F = -6042.055303334496, relative_change = 0.026517577698512453 Iter 2: T = 949.1579187726716 K, F = -5113.098877641915, relative_change = 0.024987100918893328 Iter 3: T = 926.9593241355857 K, F = -4325.153961515424, relative_change = 0.023387672586444055 Iter 5: T = 888.6187369668671 K, F = -3090.703935430197, relative_change = 0.02005969949664544 Iter 10: T = 823.3127707915115 K, F = -1323.4352129262597, relative_change = 0.01204229534962249 Iter 15: T = 789.6851237422132 K, F = -560.9600332626278, relative_change = 0.006175282786145674 Iter 20: T = 773.9911630859739 K, F = -236.1641630398783, relative_change = 0.0028549546146156178 Iter 25: T = 767.079228892936 K, F = -99.06473332584368, relative_change = 0.0012493373948881485 Iter 30: T = 764.1216397121756 K, F = -41.484227746453975, relative_change = 0.0005328429219492554 Iter 35: T = 762.8725415082904 K, F = -17.35883268066228, relative_change = 0.00022470553439526964 Iter 40: T = 762.3479821900155 K, F = -7.2613678613185275, relative_change = 9.43046181782872e-5 Iter 45: T = 762.1282225809344 K, F = -3.037088394778163, relative_change = 3.949734709015605e-5 Iter 50: T = 762.0362493549152 K, F = -1.2701987583473129, relative_change = 1.652843362041321e-5 Iter 55: T = 761.9977732963956 K, F = -0.5312214108035196, relative_change = 6.914168923537069e-6 Iter 60: T = 761.9816800917837 K, F = -0.2221647336496766, relative_change = 2.891899561517224e-6 Iter 65: T = 761.9749493614917 K, F = -0.09291222388877685, relative_change = 1.2094814312296155e-6 Iter 70: T = 761.972134426744 K, F = -0.0388570504395499, relative_change = 5.058291110919497e-7 Iter 75: T = 761.9709571764034 K, F = -0.016250491077954843, relative_change = 2.1154544235232507e-7 Iter 80: T = 761.9704648343258 K, F = -0.006796150929225364, relative_change = 8.84711219295519e-8 Iter 85: T = 761.9702589306524 K, F = -0.002842231743506729, relative_change = 3.6999730770065426e-8 Iter 90: T = 761.9701728192182 K, F = -0.0011886553029948344, relative_change = 1.5473738182690944e-8 Iter 95: T = 761.9701368063779 K, F = -0.0004971098512990269, relative_change = 6.471303664405516e-9 Iter 100: T = 761.9701217453761 K, F = -0.0002078972790766631, relative_change = 2.7063767636160887e-9 Iter 105: T = 761.9701154466851 K, F = -8.694512613871552e-5, relative_change = 1.1318391438197929e-9 Iter 110: T = 761.9701128124971 K, F = -3.636148913610526e-5, relative_change = 4.733486422639967e-10 Iter 115: T = 761.9701117108483 K, F = -1.5206810284218442e-5, relative_change = 1.979600731919235e-10 Iter 120: T = 761.9701112501256 K, F = -6.359669222910647e-6, relative_change = 8.27892611887658e-11 Iter 125: T = 761.9701110574457 K, F = -2.659688818851258e-6, relative_change = 3.4623447360528995e-11 Iter 130: T = 761.9701109768648 K, F = -1.112313687046118e-6, relative_change = 1.4479939960744086e-11 Iter 135: T = 761.970110943165 K, F = -4.6518310747867275e-7, relative_change = 6.055686940569551e-12 Iter 140: T = 761.9701109290713 K, F = -1.9454672750551794e-7, relative_change = 2.532581381931354e-12 Iter 145: T = 761.9701109231771 K, F = -8.136270546188484e-8, relative_change = 1.0591680244946737e-12 Iter 150: T = 761.970110920712 K, F = -3.402710935240805e-8, relative_change = 4.4296002680850997e-13 Converged in 154 iterations to T = 761.9701109198222 K Iter 1: T = 969.9686333526863 K, F = -6842.675457795044, relative_change = 0.030031366647313686 Iter 2: T = 942.0938046435296 K, F = -5796.179457481284, relative_change = 0.028737866102749886 Iter 3: T = 916.3329570196959 K, F = -4908.001559174715, relative_change = 0.027344249051272685 Iter 5: T = 870.9486300209429 K, F = -3514.985752952975, relative_change = 0.024296925868515003 Iter 10: T = 789.9541902360077 K, F = -1513.9744988121065, relative_change = 0.015995689198699262 Iter 15: T = 745.4735021550696 K, F = -644.8575045433063, relative_change = 0.00884286186793189 Iter 20: T = 723.7538857649297 K, F = -272.3070876524636, relative_change = 0.004280767629079424 Iter 25: T = 713.9445884103994 K, F = -114.40201065385926, relative_change = 0.0019174138957372261 Iter 30: T = 709.6962324784374 K, F = -47.94069374134862, relative_change = 0.0008265140770265234 Iter 35: T = 707.8923245267254 K, F = -20.06666917630819, relative_change = 0.00035016243514629893 Iter 40: T = 707.13302076137 K, F = -8.395179434248249, relative_change = 0.00014724508814391936 Iter 45: T = 706.8146060002554 K, F = -3.5115017444607606, relative_change = 6.172122889317078e-5 Iter 50: T = 706.6812891407951 K, F = -1.4686461471850445, relative_change = 2.5837400239165398e-5 Iter 55: T = 706.6255077980272 K, F = -0.6142218437811306, relative_change = 1.0809860941880488e-5 Iter 60: T = 706.6021747109588 K, F = -0.25687779472715355, relative_change = 4.521574492000735e-6 Iter 65: T = 706.5924157193743 K, F = -0.10742986604536803, relative_change = 1.891109680065737e-6 Iter 70: T = 706.5883342498213 K, F = -0.04492854120166512, relative_change = 7.909079569082344e-7 Iter 75: T = 706.5866273055469 K, F = -0.01878966791932868, relative_change = 3.3077122902311717e-7 Iter 80: T = 706.5859134367001 K, F = -0.00785806621781171, relative_change = 1.3833319112134933e-7 Iter 85: T = 706.5856148874593 K, F = -0.0032863376085853213, relative_change = 5.785271724995837e-8 Iter 90: T = 706.5854900304678 K, F = -0.0013743857170510632, relative_change = 2.4194719059798487e-8 Iter 95: T = 706.5854378137595 K, F = -0.0005747845349790559, relative_change = 1.0118524271793631e-8 Iter 100: T = 706.5854159761044 K, F = -0.00024038175916640814, relative_change = 4.231688353648449e-9 Iter 105: T = 706.5854068433355 K, F = -0.00010053052172875887, relative_change = 1.769742702775707e-9 Iter 110: T = 706.5854030239024 K, F = -4.20430642075198e-5, relative_change = 7.401275425512128e-10 Iter 115: T = 706.5854014265699 K, F = -1.7582912085090108e-5, relative_change = 3.0953019000388825e-10 Iter 120: T = 706.5854007585463 K, F = -7.353383527974877e-6, relative_change = 1.2944921750254033e-10 Iter 125: T = 706.5854004791709 K, F = -3.075272205443902e-6, relative_change = 5.413719818053105e-11 Iter 130: T = 706.5854003623328 K, F = -1.2861170665123822e-6, relative_change = 2.2640849302609775e-11 Iter 135: T = 706.5854003134697 K, F = -5.378704636127551e-7, relative_change = 9.468690239850385e-12 Iter 140: T = 706.5854002930345 K, F = -2.24942991788879e-7, relative_change = 3.959904206044746e-12 Iter 145: T = 706.5854002844883 K, F = -9.407443146702832e-8, relative_change = 1.6560895447618174e-12 Iter 150: T = 706.5854002809141 K, F = -3.934275905059792e-8, relative_change = 6.925912908672069e-13 Iter 155: T = 706.5854002794194 K, F = -1.6453663764792736e-8, relative_change = 2.8965086591440717e-13 Converged in 157 iterations to T = 706.5854002791032 K Iter 1: T = 973.5659910523408 K, F = -6023.014083958185, relative_change = 0.026434008947659234 Iter 2: T = 949.3249420037229 K, F = -5096.868652884189, relative_change = 0.024899235667030045 Iter 3: T = 927.2090200663221 K, F = -4311.320941140176, relative_change = 0.023296472007489 Iter 5: T = 889.0285312826985 K, F = -3080.6623889036186, relative_change = 0.01996537499087952 Iter 10: T = 824.0613106444158 K, F = -1318.9686220939577, relative_change = 0.011961998168003678 Iter 15: T = 790.6522267762903 K, F = -559.0129448220143, relative_change = 0.006125037250701374 Iter 20: T = 775.0737066320312 K, F = -235.331256232101, relative_change = 0.0028293183694996305 Iter 25: T = 768.2157423447707 K, F = -98.71263668607227, relative_change = 0.0012376056235544454 Iter 30: T = 765.2818718208268 K, F = -41.336273470429575, relative_change = 0.0005277412679072274 Iter 35: T = 764.0429068407029 K, F = -17.29682988498273, relative_change = 0.00022253630103782535 Iter 40: T = 763.5226237741539 K, F = -7.235415148916674, relative_change = 9.339106675031552e-5 Iter 45: T = 763.3046593407959 K, F = -3.0262307222734504, relative_change = 3.91141694046606e-5 Iter 50: T = 763.2134380730731 K, F = -1.2656572597656837, relative_change = 1.636798769039533e-5 Iter 55: T = 763.1752767018098 K, F = -0.5293219810226057, relative_change = 6.847034114484605e-6 Iter 60: T = 763.1593151398071 K, F = -0.2213703482866689, relative_change = 2.863816961714889e-6 Iter 65: T = 763.1526394704373 K, F = -0.09257999874358125, relative_change = 1.1977358992974463e-6 Iter 70: T = 763.1498475639463 K, F = -0.03871810927218167, relative_change = 5.009168051618102e-7 Iter 75: T = 763.1486799444939 K, F = -0.016192384110182423, relative_change = 2.0949102513312792e-7 Iter 80: T = 763.1481916302031 K, F = -0.0067718498863007515, relative_change = 8.761193453875372e-8 Iter 85: T = 763.1479874110041 K, F = -0.0028320687532276123, relative_change = 3.664040735067057e-8 Iter 90: T = 763.1479020040383 K, F = -0.0011844050208742463, relative_change = 1.5323464696086895e-8 Iter 95: T = 763.1478662858151 K, F = -0.0004953323304475177, relative_change = 6.4084574415787244e-9 Iter 100: T = 763.1478513480258 K, F = -0.00020715389705650011, relative_change = 2.6800936972250236e-9 Iter 105: T = 763.1478451008637 K, F = -8.663423560850703e-5, relative_change = 1.1208472597769533e-9 Iter 110: T = 763.1478424882258 K, F = -3.623147283249306e-5, relative_change = 4.687517286750031e-10 Iter 115: T = 763.1478413955895 K, F = -1.5152435505316753e-5, relative_change = 1.9603758362266037e-10 Iter 120: T = 763.1478409386359 K, F = -6.336930832517851e-6, relative_change = 8.198527630072618e-11 Iter 125: T = 763.1478407475324 K, F = -2.650179413810072e-6, relative_change = 3.428721213616875e-11 Iter 130: T = 763.1478406676107 K, F = -1.1083378425036372e-6, relative_change = 1.4339336629583322e-11 Iter 135: T = 763.1478406341864 K, F = -4.635215232751122e-7, relative_change = 5.996899955767124e-12 Iter 140: T = 763.147840620208 K, F = -1.938484558428044e-7, relative_change = 2.507952140295009e-12 Iter 145: T = 763.1478406143619 K, F = -8.106950355468712e-8, relative_change = 1.0488524867328418e-12 Iter 150: T = 763.1478406119172 K, F = -3.390392844249135e-8, relative_change = 4.386386754357499e-13 Converged in 154 iterations to T = 763.1478406110348 K Iter 1: T = 964.3484418380912 K, F = -8123.241440577849, relative_change = 0.03565155816190881 Iter 2: T = 930.6238492876801 K, F = -6891.381665535492, relative_change = 0.03497137661790638 Iter 3: T = 898.795322279336 K, F = -5845.25615929561, relative_change = 0.034201280176417506 Iter 5: T = 840.7135856586073 K, F = -4202.575760371992, relative_change = 0.032366024098635066 Iter 10: T = 726.7056631618717 K, F = -1832.641382541526, relative_change = 0.025956302860953188 Iter 15: T = 653.2152116819503 K, F = -791.2560808892435, relative_change = 0.01775131471172686 Iter 20: T = 611.6965062306306 K, F = -337.78379152936793, relative_change = 0.010162023413030416 Iter 25: T = 590.9719412988682 K, F = -142.85626179799115, relative_change = 0.005035894895731764 Iter 30: T = 581.4881609232349 K, F = -60.066598601422854, relative_change = 0.00228404985529438 Iter 35: T = 577.3536699850285 K, F = -25.180998786016854, relative_change = 0.0009903513237695932 Iter 40: T = 575.5928565052261 K, F = -10.541891822349926, relative_change = 0.00042065888271411575 Iter 45: T = 574.8507312318895 K, F = -4.410676155774789, relative_change = 0.0001770845233925725 Iter 50: T = 574.5393490003875 K, F = -1.8449370687890565, relative_change = 7.426370923464965e-5 Iter 55: T = 574.4089463866578 K, F = -0.7716342544753825, relative_change = 3.109394368205986e-5 Iter 60: T = 574.3543790989215 K, F = -0.322717084036921, relative_change = 1.3010161113081861e-5 Iter 65: T = 574.331552917437 K, F = -0.1349659624139506, relative_change = 5.442107854546955e-6 Iter 70: T = 574.3220057751037 K, F = -0.05644469634756921, relative_change = 2.276147488357859e-6 Iter 75: T = 574.3180128781172 K, F = -0.02360590190340811, relative_change = 9.519458209822653e-7 Iter 80: T = 574.3163429715188 K, F = -0.009872279847861487, relative_change = 3.981210155939839e-7 Iter 85: T = 574.3156445914956 K, F = -0.004128707038311197, relative_change = 1.6649999601225358e-7 Iter 90: T = 574.3153525197303 K, F = -0.0017266748886125005, relative_change = 6.963246737324515e-8 Iter 95: T = 574.3152303716727 K, F = -0.0007221161114682739, relative_change = 2.9121161034972033e-8 Iter 100: T = 574.3151792878688 K, F = -0.0003019975905952377, relative_change = 1.2178822840866869e-8 Iter 105: T = 574.3151579240072 K, F = -0.00012629900062122168, relative_change = 5.093330125326878e-9 Iter 110: T = 574.3151489893842 K, F = -5.281975068877065e-5, relative_change = 2.130091655498412e-9 Iter 115: T = 574.3151452528181 K, F = -2.2089850865325555e-5, relative_change = 8.90829809746103e-10 Iter 120: T = 574.3151436901414 K, F = -9.238240074871396e-6, relative_change = 3.7255569560287e-10 Iter 125: T = 574.3151430366114 K, F = -3.863542118065499e-6, relative_change = 1.5580723356606203e-10 Iter 130: T = 574.3151427632973 K, F = -1.6157796384752565e-6, relative_change = 6.516045338717382e-11 Iter 135: T = 574.3151426489942 K, F = -6.757389282574522e-7, relative_change = 2.7250903483281088e-11 Iter 140: T = 574.3151426011912 K, F = -2.8260196888174605e-7, relative_change = 1.1396648408421028e-11 Iter 145: T = 574.3151425811993 K, F = -1.181874804134786e-7, relative_change = 4.7662129393599845e-12 Iter 150: T = 574.3151425728386 K, F = -4.942794018525376e-8, relative_change = 1.993308320551427e-12 Iter 155: T = 574.3151425693421 K, F = -2.0672070499827555e-8, relative_change = 8.336542040208177e-13 Iter 160: T = 574.3151425678797 K, F = -8.644552074166256e-9, relative_change = 3.486137094323988e-13 Converged in 163 iterations to T = 574.3151425674515 K Iter 1: T = 963.5589490322625 K, F = -8303.128127387468, relative_change = 0.03644105096773756 Iter 2: T = 928.9953949343696 K, F = -7045.487666300544, relative_change = 0.03587072086519069 Iter 3: T = 896.2757830582838 K, F = -5977.418206472304, relative_change = 0.03522042418563056 Iter 5: T = 836.2494773495002 K, F = -4300.1138232728235, relative_change = 0.0336506823383736 Iter 10: T = 716.5134922682385 K, F = -1879.1801005451273, relative_change = 0.027934193009581443 Iter 15: T = 636.8200311549871 K, F = -813.7506315643225, relative_change = 0.020023186610222128 Iter 20: T = 590.1222623409311 K, F = -348.42898158574684, relative_change = 0.012010807360341116 Iter 25: T = 566.0893485233767 K, F = -147.68163238905993, relative_change = 0.0061554580911723535 Iter 30: T = 554.8771651478108 K, F = -62.172547982491274, relative_change = 0.002844811963892824 Iter 35: T = 549.9400107369315 K, F = -26.079477781601298, relative_change = 0.0012446903842642432 Iter 40: T = 547.8276049553687 K, F = -10.920955678987973, relative_change = 0.0005308211189224536 Iter 45: T = 546.9354925901821 K, F = -4.569800184359527, relative_change = 0.00022384567829045345 Iter 50: T = 546.5608557137143 K, F = -1.911589928664043, relative_change = 9.394246612747976e-5 Iter 55: T = 546.4039058967564 K, F = -0.7995277828174279, relative_change = 3.9345441325796095e-5 Iter 60: T = 546.338219852362 K, F = -0.33438573417220857, relative_change = 1.6464825950791126e-5 Iter 65: T = 546.3107408005742 K, F = -0.13984649902799692, relative_change = 6.887553624191241e-6 Iter 70: T = 546.2992472693538 K, F = -0.05848589438531754, relative_change = 2.8807663083017968e-6 Iter 75: T = 546.2944402812939 K, F = -0.024459572677670238, relative_change = 1.2048249489320905e-6 Iter 80: T = 546.2924298966936 K, F = -0.010229298200352926, relative_change = 5.038816406524298e-7 Iter 85: T = 546.2915891220116 K, F = -0.004278016909017884, relative_change = 2.1073097404644678e-7 Iter 90: T = 546.2912374986286 K, F = -0.0017891181532958822, relative_change = 8.813049935921007e-8 Iter 95: T = 546.2910904452908 K, F = -0.0007482306466859434, relative_change = 3.685727793595151e-8 Iter 100: T = 546.2910289457869 K, F = -0.000312919004279294, relative_change = 1.541416265781433e-8 Iter 105: T = 546.2910032259525 K, F = -0.00013086646658455603, relative_change = 6.446388448597415e-9 Iter 110: T = 546.2909924696094 K, F = -5.47299190167827e-5, relative_change = 2.695956878968709e-9 Iter 115: T = 546.290987971178 K, F = -2.288870543240562e-5, relative_change = 1.127481392058603e-9 Iter 120: T = 546.2909860898802 K, F = -9.572329874169005e-6, relative_change = 4.715261865985719e-10 Iter 125: T = 546.2909853030991 K, F = -4.003262678353714e-6, relative_change = 1.9719788415496742e-10 Iter 130: T = 546.2909849740578 K, F = -1.6742120258761428e-6, relative_change = 8.247049884122842e-11 Iter 135: T = 546.2909848364488 K, F = -7.001760960467784e-7, relative_change = 3.449017871957547e-11 Iter 140: T = 546.2909847788991 K, F = -2.9282169847211215e-7, relative_change = 1.4424189536546714e-11 Iter 145: T = 546.2909847548311 K, F = -1.2246211716915312e-7, relative_change = 6.032397184641667e-12 Iter 150: T = 546.2909847447655 K, F = -5.121499030424914e-8, relative_change = 2.522814160751131e-12 Iter 155: T = 546.290984740556 K, F = -2.141890789730816e-8, relative_change = 1.0550802378781747e-12 Iter 160: T = 546.2909847387956 K, F = -8.957546648868941e-9, relative_change = 4.412424057543217e-13 Converged in 164 iterations to T = 546.2909847381601 K Iter 1: T = 969.3845100376441 K, F = -6975.7685107721445, relative_change = 0.030615489962355958 Iter 2: T = 940.9115876888114 K, F = -5909.856416126564, relative_change = 0.029372165589614124 Iter 3: T = 914.5418339575787 K, F = -5005.124295401241, relative_change = 0.028025750852963337 Iter 5: T = 867.9242346930301 K, F = -3585.9203637181754, relative_change = 0.025056366195478214 Iter 10: T = 784.0120490111522 K, F = -1546.2175741426538, relative_change = 0.016783361757558648 Iter 15: T = 737.3388286350126 K, F = -659.2516024694878, relative_change = 0.009423662550952953 Iter 20: T = 714.3259697080571 K, F = -278.57238002066515, relative_change = 0.004608954732842709 Iter 25: T = 703.872880651395 K, F = -117.07616181576071, relative_change = 0.0020756416928406464 Iter 30: T = 699.3328064113751 K, F = -49.06955457758413, relative_change = 0.0008969861358040341 Iter 35: T = 697.4025490240178 K, F = -20.540697424322435, relative_change = 0.0003804409343119215 Iter 40: T = 696.5896095210605 K, F = -8.59376730899422, relative_change = 0.00016005319593800232 Iter 45: T = 696.2486220012968 K, F = -3.594614177662003, relative_change = 6.710346343415172e-5 Iter 50: T = 696.1058399734084 K, F = -1.5034153986416015, relative_change = 2.809283919773915e-5 Iter 55: T = 696.0460958022168 K, F = -0.6287646236032857, relative_change = 1.1753905489809131e-5 Iter 60: T = 696.0211046455059 K, F = -0.2629600850816059, relative_change = 4.916524028264816e-6 Iter 65: T = 696.0106520950865 K, F = -0.10997360956843377, relative_change = 2.0563065840884826e-6 Iter 70: T = 696.0062805474494 K, F = -0.045992375103129035, relative_change = 8.599995243004862e-7 Iter 75: T = 696.0044522849462 K, F = -0.01923457770926007, relative_change = 3.596668909112715e-7 Iter 80: T = 696.0036876786481 K, F = -0.008044133109962326, relative_change = 1.504178319947322e-7 Iter 85: T = 696.0033679102736 K, F = -0.0033641530584070933, relative_change = 6.290668112072806e-8 Iter 90: T = 696.003234179165 K, F = -0.0014069290775574617, relative_change = 2.6308351097566293e-8 Iter 95: T = 696.0031782511911 K, F = -0.0005883945584105321, relative_change = 1.1002471123635369e-8 Iter 100: T = 696.0031548614397 K, F = -0.00024607363395767745, relative_change = 4.60136560815624e-9 Iter 105: T = 696.0031450795656 K, F = -0.00010291093306691312, relative_change = 1.9243461893392966e-9 Iter 110: T = 696.0031409886689 K, F = -4.303858100074276e-5, relative_change = 8.047845762626056e-10 Iter 115: T = 696.003139277807 K, F = -1.7999249331546174e-5, relative_change = 3.365705392474024e-10 Iter 120: T = 696.003138562304 K, F = -7.527500856530089e-6, relative_change = 1.4075781651780464e-10 Iter 125: T = 696.0031382630722 K, F = -3.1480905710035145e-6, relative_change = 5.886659654078614e-11 Iter 130: T = 696.0031381379299 K, F = -1.3165690057048707e-6, relative_change = 2.4618712452918138e-11 Iter 135: T = 696.003138085594 K, F = -5.506054261417148e-7, relative_change = 1.029584974833507e-11 Iter 140: T = 696.0031380637063 K, F = -2.3026947559845468e-7, relative_change = 4.305841915430684e-12 Iter 145: T = 696.0031380545528 K, F = -9.630217734368784e-8, relative_change = 1.8007682116875315e-12 Iter 150: T = 696.0031380507245 K, F = -4.027434041820044e-8, relative_change = 7.530956617403058e-13 Iter 155: T = 696.0031380491235 K, F = -1.684357364695188e-8, relative_change = 3.149603968716845e-13 Converged in 158 iterations to T = 696.0031380486547 K Iter 1: T = 966.4849364193666 K, F = -7636.439117903231, relative_change = 0.03351506358063339 Iter 2: T = 935.0092828852818 K, F = -6474.664193068804, relative_change = 0.032567143416322455 Iter 3: T = 905.5433086422674 K, F = -5488.227835471131, relative_change = 0.03151409807621083 Iter 5: T = 852.5156892973023 K, F = -3939.8249725051805, relative_change = 0.029087812142872916 Iter 10: T = 752.4915674489264 K, F = -1709.1068581913867, relative_change = 0.021448229123220305 Iter 15: T = 692.5235857227802 K, F = -733.2152086574541, relative_change = 0.013260855236986165 Iter 20: T = 661.0221090000069 K, F = -311.2437677860203, relative_change = 0.006956065560518211 Iter 25: T = 646.1229830371253 K, F = -131.14825018836424, relative_change = 0.003258936328214027 Iter 30: T = 639.5139365973079 K, F = -55.03717275907915, relative_change = 0.0014354939912898054 Iter 35: T = 636.676391877215 K, F = -23.051821838560635, relative_change = 0.0006140480047607466 Iter 40: T = 635.4762079609933 K, F = -9.646718619960696, relative_change = 0.00025928077288289286 Iter 45: T = 634.9718691661303 K, F = -4.03546109484835, relative_change = 0.00010887398693116492 Iter 50: T = 634.7605239491221 K, F = -1.687868993446608, relative_change = 4.560975910670582e-5 Iter 55: T = 634.6720623049368 K, F = -0.7059204189869436, relative_change = 1.908810964796328e-5 Iter 60: T = 634.6350535302223 K, F = -0.2952302033267503, relative_change = 7.985250197417543e-6 Iter 65: T = 634.6195737332413 K, F = -0.1234698208673915, relative_change = 3.3399425297828422e-6 Iter 70: T = 634.6130994974491 K, F = -0.051636732744338054, relative_change = 1.3968765436027013e-6 Iter 75: T = 634.6103918247846 K, F = -0.0215951296315266, relative_change = 5.842031672498766e-7 Iter 80: T = 634.6092594315073 K, F = -0.009031346589405742, relative_change = 2.4432296520754585e-7 Iter 85: T = 634.6087858489757 K, F = -0.003777017957473594, relative_change = 1.0217917079980841e-7 Iter 90: T = 634.6085877907311 K, F = -0.0015795941844256034, relative_change = 4.273261753226013e-8 Iter 95: T = 634.6085049603424 K, F = -0.000660605181398155, relative_change = 1.7871302880851524e-8 Iter 100: T = 634.6084703196733 K, F = -0.00027627298070226347, relative_change = 7.473994358648733e-9 Iter 105: T = 634.6084558325298 K, F = -0.00011554066134134011, relative_change = 3.1257140771451043e-9 Iter 110: T = 634.6084497738331 K, F = -4.832048561143054e-5, relative_change = 1.3072110476251949e-9 Iter 115: T = 634.6084472400136 K, F = -2.0208204206784153e-5, relative_change = 5.466912834105421e-10 Iter 120: T = 634.60844618034 K, F = -8.451311661772376e-6, relative_change = 2.286328071673279e-10 Iter 125: T = 634.6084457371719 K, F = -3.53443976652823e-6, relative_change = 9.561697883265862e-11 Iter 130: T = 634.6084455518337 K, F = -1.478145666755637e-6, relative_change = 3.998818270005796e-11 Iter 135: T = 634.608445474323 K, F = -6.18178298605887e-7, relative_change = 1.6723539036917222e-11 Iter 140: T = 634.6084454419072 K, F = -2.5853017343591134e-7, relative_change = 6.9940006928071095e-12 Iter 145: T = 634.6084454283505 K, F = -1.0812019113348725e-7, relative_change = 2.924968802368494e-12 Iter 150: T = 634.6084454226809 K, F = -4.521768393050962e-8, relative_change = 1.2232711895082976e-12 Iter 155: T = 634.6084454203097 K, F = -1.891047329838358e-8, relative_change = 5.115838573651899e-13 Converged in 160 iterations to T = 634.6084454193181 K Iter 1: T = 966.4926841842926 K, F = -7634.673782294824, relative_change = 0.033507315815707435 Iter 2: T = 935.0251295886305 K, F = -6473.153859780645, relative_change = 0.03255850262562539 Iter 3: T = 905.5675953491582 K, F = -5486.934759986921, relative_change = 0.031504537479578106 Iter 5: T = 852.5577730031762 K, F = -3938.87526247614, relative_change = 0.0290764236408333 Iter 10: T = 752.5807612095151 K, F = -1708.664733155219, relative_change = 0.021433784064994507 Iter 15: T = 692.6549173206432 K, F = -733.0110336718437, relative_change = 0.01324781280249179 Iter 20: T = 661.1822831417862 K, F = -311.15214833326235, relative_change = 0.006947522064977233 Iter 25: T = 646.2989647389729 K, F = -131.10838384861296, relative_change = 0.00325445781919207 Iter 30: T = 639.6974534886336 K, F = -55.02017711291732, relative_change = 0.0014334168937270018 Iter 35: T = 636.8632505699843 K, F = -23.044652852443324, relative_change = 0.000613139287479073 Iter 40: T = 635.6645000802431 K, F = -9.643709381483806, relative_change = 0.0002588933738547267 Iter 45: T = 635.1607672311516 K, F = -4.034200628136992, relative_change = 0.000108710656764016 Iter 50: T = 634.9496765746272 K, F = -1.6873415049952083, relative_change = 4.5541220380093274e-5 Iter 55: T = 634.861321592366 K, F = -0.7056997563046223, relative_change = 1.905940518743846e-5 Iter 60: T = 634.8243574603006 K, F = -0.29513790892807257, relative_change = 7.973238511466602e-6 Iter 65: T = 634.8088963395988 K, F = -0.12343122038802684, relative_change = 3.3349178500597563e-6 Iter 70: T = 634.8024299155328 K, F = -0.051620589236774095, relative_change = 1.3947749439659812e-6 Iter 75: T = 634.799725510015 K, F = -0.02158837816763265, relative_change = 5.833242149728724e-7 Iter 80: T = 634.7985944831306 K, F = -0.009028523036785141, relative_change = 2.4395537018629236e-7 Iter 85: T = 634.7981214720467 K, F = -0.0037758371128985835, relative_change = 1.0202543701844832e-7 Iter 90: T = 634.7979236527892 K, F = -0.0015791003402280679, relative_change = 4.266832400845027e-8 Iter 95: T = 634.797840922348 K, F = -0.0006603986485227975, relative_change = 1.784441449098493e-8 Iter 100: T = 634.7978063234781 K, F = -0.00027618660601202993, relative_change = 7.462749302169334e-9 Iter 105: T = 634.7977918538155 K, F = -0.00011550453777897651, relative_change = 3.121011241995654e-9 Iter 110: T = 634.7977858024295 K, F = -4.8305377471524746e-5, relative_change = 1.3052442430302182e-9 Iter 115: T = 634.7977832716675 K, F = -2.0201885204462755e-5, relative_change = 5.45868726054756e-10 Iter 120: T = 634.7977822132726 K, F = -8.448669168770184e-6, relative_change = 2.282888089872338e-10 Iter 125: T = 634.7977817706393 K, F = -3.533334638317065e-6, relative_change = 9.547311451064255e-11 Iter 130: T = 634.7977815855247 K, F = -1.4776822127027245e-6, relative_change = 3.992798241345522e-11 Iter 135: T = 634.7977815081076 K, F = -6.179845642995119e-7, relative_change = 1.6698364924034373e-11 Iter 140: T = 634.7977814757309 K, F = -2.584489079415775e-7, relative_change = 6.983465978582203e-12 Iter 145: T = 634.7977814621904 K, F = -1.0808636474735067e-7, relative_change = 2.920567384285606e-12 Iter 150: T = 634.7977814565277 K, F = -4.520236140947986e-8, relative_change = 1.221398672620822e-12 Iter 155: T = 634.7977814541596 K, F = -1.8904548648723818e-8, relative_change = 5.108138138467844e-13 Converged in 160 iterations to T = 634.797781453169 K Iter 1: T = 976.483535991289 K, F = -5358.248694317101, relative_change = 0.02351646400871092 Iter 2: T = 955.1277885363505 K, F = -4530.695112606424, relative_change = 0.02187005378770567 Iter 3: T = 935.8407292744934 K, F = -3829.2165182833437, relative_change = 0.02019317152463216 Iter 5: T = 903.0502114066084 K, F = -2731.463819088024, relative_change = 0.016841289508850166 Iter 10: T = 849.0743963887328 K, F = -1164.6852240439812, relative_change = 0.009467162975732921 Iter 15: T = 822.4413930207793 K, F = -492.17272589508485, relative_change = 0.004633827721337305 Iter 20: T = 810.3386480988972 K, F = -206.85207461205158, relative_change = 0.00208770847441665 Iter 25: T = 805.0809339647068 K, F = -86.69801060816619, relative_change = 0.0009023760733977141 Iter 30: T = 802.8453434607809 K, F = -36.292315251947365, relative_change = 0.00038275967822584445 Iter 35: T = 801.9037706587931 K, F = -15.18392805886084, relative_change = 0.00016103457966906357 Iter 40: T = 801.5088206949944 K, F = -6.351163259561349, relative_change = 6.751595569881934e-5 Iter 45: T = 801.3434416527733 K, F = -2.6563186740355493, relative_change = 2.8265711712495475e-5 Iter 50: T = 801.274242008068 K, F = -1.1109368141547113, relative_change = 1.182626653289631e-5 Iter 55: T = 801.2452955609026 K, F = -0.46461275064708907, relative_change = 4.946797431408315e-6 Iter 60: T = 801.2331887035651 K, F = -0.19430759935372732, relative_change = 2.0689692338925357e-6 Iter 65: T = 801.2281252775168 K, F = -0.08126193318775643, relative_change = 8.652955369683656e-7 Iter 70: T = 801.2260076583889 K, F = -0.03398474146764674, relative_change = 3.61881806354733e-7 Iter 75: T = 801.2251220388534 K, F = -0.014212830082505845, relative_change = 1.513441465172389e-7 Iter 80: T = 801.2247516611507 K, F = -0.005943976210126101, relative_change = 6.329407874233583e-8 Iter 85: T = 801.224596764591 K, F = -0.0024858420004229, relative_change = 2.6470365724795173e-8 Iter 90: T = 801.224531984968 K, F = -0.0010396088404067694, relative_change = 1.1070227635153092e-8 Iter 95: T = 801.2245048933506 K, F = -0.0004347768381488537, relative_change = 4.629702207784553e-9 Iter 100: T = 801.2244935633116 K, F = -0.00018182886605977444, relative_change = 1.9361968841259e-9 Iter 105: T = 801.2244888249538 K, F = -7.604300137331599e-5, relative_change = 8.097406624971901e-10 Iter 110: T = 801.2244868433161 K, F = -3.180209113784471e-5, relative_change = 3.386432174550583e-10 Iter 115: T = 801.2244860145715 K, F = -1.3300015527573095e-5, relative_change = 1.416246514456692e-10 Iter 120: T = 801.2244856679806 K, F = -5.562226532251913e-6, relative_change = 5.922913352103631e-11 Iter 125: T = 801.2244855230322 K, F = -2.326189125545497e-6, relative_change = 2.477032634897234e-11 Iter 130: T = 801.224485462413 K, F = -9.728406198394879e-7, relative_change = 1.0359252127442704e-11 Iter 135: T = 801.2244854370613 K, F = -4.068531571643774e-7, relative_change = 4.332358609000315e-12 Iter 140: T = 801.224485426459 K, F = -1.7015120556962415e-7, relative_change = 1.8118479046973713e-12 Iter 145: T = 801.2244854220249 K, F = -7.115910038990592e-8, relative_change = 7.577346661363585e-13 Iter 150: T = 801.2244854201706 K, F = -2.9760183872795665e-8, relative_change = 3.169000573039394e-13 Converged in 153 iterations to T = 801.2244854196276 K Iter 1: T = 965.3270584325044 K, F = -7900.262718636096, relative_change = 0.034672941567495605 Iter 2: T = 932.6364568150832 K, F = -6700.447412524902, relative_change = 0.033864793628082944 Iter 3: T = 901.898853079225 K, F = -5681.607451814133, relative_change = 0.0329577548799946 Iter 5: T = 846.168959191918 K, F = -4082.0082007742653, relative_change = 0.03082965315912141 Iter 10: T = 738.8227300705511 K, F = -1775.6433692267465, relative_change = 0.0237532298002197 Iter 15: T = 672.0382528186457 K, F = -764.2114498252989, relative_change = 0.015447353514925058 Iter 20: T = 635.6859653647734 K, F = -325.2804926612416, relative_change = 0.008448691454991133 Iter 25: T = 618.0526745826503 K, F = -137.29548015791295, relative_change = 0.004061760098012338 Iter 30: T = 610.1194092898191 K, F = -57.66698894723742, relative_change = 0.0018127634747784958 Iter 35: T = 606.6900278598647 K, F = -24.162935286312834, relative_change = 0.0007800985016905089 Iter 40: T = 605.2351028909223 K, F = -10.113454498976374, relative_change = 0.0003302563446731666 Iter 45: T = 604.622918012505 K, F = -4.23102115109094, relative_change = 0.00013883119277939175 Iter 50: T = 604.3662375832541 K, F = -1.7697189342981132, relative_change = 5.818670009587238e-5 Iter 55: T = 604.2587752524267 K, F = -0.7401623373074885, relative_change = 2.4356452055003943e-5 Iter 60: T = 604.2138129805328 K, F = -0.30955256058258596, relative_change = 1.0190025946090343e-5 Iter 65: T = 604.1950056783002 K, F = -0.1294599478667829, relative_change = 4.2622672329393015e-6 Iter 70: T = 604.1871396199883 K, F = -0.05414193594706829, relative_change = 1.7826494398169569e-6 Iter 75: T = 604.1838498320237 K, F = -0.022642846121148252, relative_change = 7.455459918842534e-7 Iter 80: T = 604.1824739844417 K, F = -0.009469515990284394, relative_change = 3.1179985924440743e-7 Iter 85: T = 604.1818985852345 K, F = -0.003960265958151077, relative_change = 1.303990582410976e-7 Iter 90: T = 604.1816579458342 K, F = -0.0016562307432723133, relative_change = 5.4534554236315577e-8 Iter 95: T = 604.1815573074617 K, F = -0.0006926555148965563, relative_change = 2.280702121567601e-8 Iter 100: T = 604.1815152192747 K, F = -0.00028967681539598944, relative_change = 9.538172040029532e-9 Iter 105: T = 604.1814976174893 K, F = -0.00012114630549397987, relative_change = 3.9889780702959324e-9 Iter 110: T = 604.1814902562118 K, F = -5.0664831704183566e-5, relative_change = 1.6682383627167597e-9 Iter 115: T = 604.1814871776375 K, F = -2.1188637288227508e-5, relative_change = 6.976772101366465e-10 Iter 120: T = 604.181485890141 K, F = -8.861341319221783e-6, relative_change = 2.917769495172348e-10 Iter 125: T = 604.1814853516945 K, F = -3.705918822705101e-6, relative_change = 1.2202460721039867e-10 Iter 130: T = 604.1814851265098 K, F = -1.5498591984242083e-6, relative_change = 5.1032137859047044e-11 Iter 135: T = 604.1814850323349 K, F = -6.481698571758621e-7, relative_change = 2.1342257132554444e-11 Iter 140: T = 604.1814849929498 K, F = -2.71071924407007e-7, relative_change = 8.925571977557305e-12 Iter 145: T = 604.1814849764784 K, F = -1.1336542188322696e-7, relative_change = 3.73277769407413e-12 Iter 150: T = 604.18148496959 K, F = -4.741069686842181e-8, relative_change = 1.5610896938473417e-12 Iter 155: T = 604.181484966709 K, F = -1.982747749318392e-8, relative_change = 6.528583803820502e-13 Iter 160: T = 604.1814849655043 K, F = -8.292095177164782e-9, relative_change = 2.730334118018805e-13 Converged in 162 iterations to T = 604.1814849652493 K Iter 1: T = 964.614111893311 K, F = -8062.708265778539, relative_change = 0.03538588810668895 Iter 2: T = 931.1708714670582 K, F = -6839.538127384443, relative_change = 0.03467007170422954 Iter 3: T = 899.6399844043582 K, F = -5800.810714476688, relative_change = 0.03386154789509594 Iter 5: T = 842.2030293053199 K, F = -4169.808198082231, relative_change = 0.03194292253584141 Iter 10: T = 730.0495972496639 K, F = -1817.0948491328104, relative_change = 0.025332649010312767 Iter 15: T = 658.4780794441608 K, F = -783.8285089102823, relative_change = 0.017076163299805606 Iter 20: T = 618.4810056842543 K, F = -334.32143889849186, relative_change = 0.009643987036783219 Iter 25: T = 598.6874255588862 K, F = -141.30646553310257, relative_change = 0.004735171882111427 Iter 30: T = 589.6768785373083 K, F = -59.395341097905984, relative_change = 0.002136943866877487 Iter 35: T = 585.7590403792433 K, F = -24.895696417126793, relative_change = 0.0009243836407412952 Iter 40: T = 584.0925014337852 K, F = -10.42172983444134, relative_change = 0.0003922302600294702 Iter 45: T = 583.3904766635053 K, F = -4.360271647490711, relative_change = 0.0001650434418388895 Iter 50: T = 583.0959852751035 K, F = -1.8238305693075407, relative_change = 6.920104456079997e-5 Iter 55: T = 582.9726678466545 K, F = -0.762802569275571, relative_change = 2.897193713114641e-5 Iter 60: T = 582.9210673954609 K, F = -0.3190227452058966, relative_change = 1.212188160346122e-5 Iter 65: T = 582.8994826333956 K, F = -0.13342080181407015, relative_change = 5.07047325762171e-6 Iter 70: T = 582.890454781764 K, F = -0.05579846654170997, relative_change = 2.1207000029972217e-6 Iter 75: T = 582.8866790783428 K, F = -0.023335636474382915, relative_change = 8.869313726116048e-7 Iter 80: T = 582.8851000081844 K, F = -0.00975925084662016, relative_change = 3.7093041784575613e-7 Iter 85: T = 582.8844396176568 K, F = -0.0040814368250766675, relative_change = 1.5512842705135002e-7 Iter 90: T = 582.8841634336593 K, F = -0.0017069058975683893, relative_change = 6.487671760799752e-8 Iter 95: T = 582.8840479300746 K, F = -0.0007138484783733023, relative_change = 2.7132245488145947e-8 Iter 100: T = 582.883999625072 K, F = -0.0002985399671136535, relative_change = 1.134703388326169e-8 Iter 105: T = 582.8839794233387 K, F = -0.00012485298131831302, relative_change = 4.745465931769421e-9 Iter 110: T = 582.8839709747318 K, F = -5.221500813445967e-5, relative_change = 1.9846106733830352e-9 Iter 115: T = 582.8839674414235 K, F = -2.1836939699371172e-5, relative_change = 8.299878981250865e-10 Iter 120: T = 582.8839659637516 K, F = -9.132469111494679e-6, relative_change = 3.4711086069648464e-10 Iter 125: T = 582.8839653457717 K, F = -3.819307396013549e-6, relative_change = 1.4516589851015886e-10 Iter 130: T = 582.883965087325 K, F = -1.5972797263730243e-6, relative_change = 6.07101034555341e-11 Iter 135: T = 582.8839649792395 K, F = -6.680014215110219e-7, relative_change = 2.538968896591977e-11 Iter 140: T = 582.8839649340368 K, F = -2.7936539781503456e-7, relative_change = 1.0618241717118769e-11 Iter 145: T = 582.8839649151327 K, F = -1.1683429174125237e-7, relative_change = 4.44068864809778e-12 Iter 150: T = 582.8839649072266 K, F = -4.8861230672603284e-8, relative_change = 1.8571389372091035e-12 Iter 155: T = 582.8839649039203 K, F = -2.0434191227991505e-8, relative_change = 7.766716404501626e-13 Iter 160: T = 582.8839649025375 K, F = -8.545654128777613e-9, relative_change = 3.2480694425040616e-13 Converged in 163 iterations to T = 582.8839649021327 K Iter 1: T = 964.4453928617347 K, F = -8101.1510576164355, relative_change = 0.03555460713826526 Iter 2: T = 930.8235303733584 K, F = -6872.461561370816, relative_change = 0.03486134387413311 Iter 3: T = 899.1037498004134 K, F = -5829.0350407348105, relative_change = 0.03407711508992687 Iter 5: T = 841.257865499809 K, F = -4190.614717074934, relative_change = 0.03221109370539975 Iter 10: T = 727.9308144641903 K, F = -1826.961509018401, relative_change = 0.025726391584828628 Iter 15: T = 655.1497524197272 K, F = -788.5377254350207, relative_change = 0.017500224659813803 Iter 20: T = 614.1977758724836 K, F = -336.5138985314163, relative_change = 0.0099677617380833 Iter 25: T = 593.8220323027117 K, F = -142.2868547491122, relative_change = 0.004922480924668704 Iter 30: T = 584.5162144476262 K, F = -59.81972225258243, relative_change = 0.002228398895389314 Iter 35: T = 580.4633496474031 K, F = -25.07601732871957, relative_change = 0.0009653589029763165 Iter 40: T = 578.7380855178433 K, F = -10.497666434293931, relative_change = 0.0004098815024347632 Iter 45: T = 578.0110871200462 K, F = -4.392123081557497, relative_change = 0.00017251845019474152 Iter 50: T = 577.7060775337015 K, F = -1.8371677940222149, relative_change = 7.234368279546543e-5 Iter 55: T = 577.5783482260621 K, F = -0.7683832668113556, relative_change = 3.0289128709678492e-5 Iter 60: T = 577.524900384688 K, F = -0.32135716955787325, relative_change = 1.2673255779575472e-5 Iter 65: T = 577.5025426209177 K, F = -0.13439717522088537, relative_change = 5.301153625457516e-6 Iter 70: T = 577.4931914205492 K, F = -0.0562068131775213, relative_change = 2.2171888784870683e-6 Iter 75: T = 577.4892804765449 K, F = -0.023506414646818186, relative_change = 9.272869000193427e-7 Iter 80: T = 577.4876448450112 K, F = -0.009830672796092066, relative_change = 3.878080584156135e-7 Iter 85: T = 577.4869607994654 K, F = -0.004111306420573224, relative_change = 1.621869413243481e-7 Iter 90: T = 577.4866747225909 K, F = -0.0017193977334281074, relative_change = 6.782868715440977e-8 Iter 95: T = 577.4865550816756 K, F = -0.0007190727167694644, relative_change = 2.836679699314349e-8 Iter 100: T = 577.4865050463898 K, F = -0.0003007248066311252, relative_change = 1.186333851978974e-8 Iter 105: T = 577.486484121031 K, F = -0.00012576670656067046, relative_change = 4.961390743096762e-9 Iter 110: T = 577.4864753697954 K, F = -5.259713916272446e-5, relative_change = 2.074913029995692e-9 Iter 115: T = 577.4864717099239 K, F = -2.199675122271927e-5, relative_change = 8.67753414601312e-10 Iter 120: T = 577.486470179322 K, F = -9.199304095319771e-6, relative_change = 3.629048472010359e-10 Iter 125: T = 577.486469539206 K, F = -3.847258843669987e-6, relative_change = 1.5177114221968494e-10 Iter 130: T = 577.4864692715018 K, F = -1.6089693687937334e-6, relative_change = 6.347249544673383e-11 Iter 135: T = 577.4864691595448 K, F = -6.728900389663117e-7, relative_change = 2.6544949084943226e-11 Iter 140: T = 577.4864691127231 K, F = -2.814113012061803e-7, relative_change = 1.1101440402958845e-11 Iter 145: T = 577.4864690931415 K, F = -1.1768915986198891e-7, relative_change = 4.642738898164722e-12 Iter 150: T = 577.4864690849523 K, F = -4.921913021593838e-8, relative_change = 1.9416535105762416e-12 Iter 155: T = 577.4864690815275 K, F = -2.0583902415882704e-8, relative_change = 8.120177299545949e-13 Iter 160: T = 577.4864690800952 K, F = -8.607955626072084e-9, relative_change = 3.3957664809575075e-13 Converged in 163 iterations to T = 577.4864690796759 K Iter 1: T = 979.9617310855792 K, F = -4565.73863346539, relative_change = 0.020038268914420735 Iter 2: T = 961.9749063933274 K, F = -3856.8830420945446, relative_change = 0.018354619493484187 Iter 3: T = 945.9199153338922 K, F = -3256.5624239798804, relative_change = 0.016689615241242777 Iter 5: T = 919.0862620052848 K, F = -2318.501646073299, relative_change = 0.013505089046893692 Iter 10: T = 876.4113507416715 K, F = -984.4795847743524, relative_change = 0.00711692039563622 Iter 15: T = 856.1720382351833 K, F = -414.90392822753074, relative_change = 0.0033435250262253973 Iter 20: T = 847.1806733766965 K, F = -174.13292489134292, relative_change = 0.0014747873932009804 Iter 25: T = 843.3175417946377 K, F = -72.93703475737416, relative_change = 0.0006312508590712564 Iter 30: T = 841.6830532294375 K, F = -30.523216507016848, relative_change = 0.0002666168501556887 Iter 35: T = 840.996118743072 K, F = -12.768714595182942, relative_change = 0.00011196733275735338 Iter 40: T = 840.7082395725763 K, F = -5.340650419608346, relative_change = 4.6907900373080505e-5 Iter 45: T = 840.5877406190723 K, F = -2.233632644287895, relative_change = 1.9631792099486112e-5 Iter 50: T = 840.5373282214662 K, F = -0.9341508979999692, relative_change = 8.212762079559636e-6 Iter 55: T = 840.5162419526326 K, F = -0.3906763944896948, relative_change = 3.4351147612793367e-6 Iter 60: T = 840.5074228629805 K, F = -0.16338611678532744, relative_change = 1.4366829141022316e-6 Iter 65: T = 840.5037345163753 K, F = -0.0683301272356176, relative_change = 6.008514026502738e-7 Iter 70: T = 840.5021919886375 K, F = -0.028576493071383213, relative_change = 2.512855847885542e-7 Iter 75: T = 840.5015468821182 K, F = -0.011951033791989474, relative_change = 1.050910439718759e-7 Iter 80: T = 840.5012770903435 K, F = -0.0049980656033246085, relative_change = 4.395040161308923e-8 Iter 85: T = 840.5011642601096 K, F = -0.002090250818391759, relative_change = 1.8380595404285253e-8 Iter 90: T = 840.5011170731423 K, F = -0.0008741678712815837, relative_change = 7.686986705653249e-9 Iter 95: T = 840.5010973389863 K, F = -0.00036558744647186003, relative_change = 3.21479002748592e-9 Iter 100: T = 840.501089085926 K, F = -0.00015289303605414695, relative_change = 1.3444636442032732e-9 Iter 105: T = 840.5010856343976 K, F = -6.394169312762266e-5, relative_change = 5.622707590770017e-10 Iter 110: T = 840.5010841909271 K, F = -2.674117934620135e-5, relative_change = 2.3514834526731337e-10 Iter 115: T = 840.5010835872506 K, F = -1.1183482956367286e-5, relative_change = 9.834186766641831e-11 Iter 120: T = 840.5010833347858 K, F = -4.677065956082416e-6, relative_change = 4.11277420256723e-11 Iter 125: T = 840.501083229202 K, F = -1.956004227476882e-6, relative_change = 1.7200107518751454e-11 Iter 130: T = 840.5010831850456 K, F = -8.180229513765624e-7, relative_change = 7.193278277395256e-12 Iter 135: T = 840.5010831665788 K, F = -3.4210674293433385e-7, relative_change = 3.0083129068888464e-12 Iter 140: T = 840.501083158856 K, F = -1.430743994390582e-7, relative_change = 1.2581235868225362e-12 Iter 145: T = 840.5010831556261 K, F = -5.983698003753091e-8, relative_change = 5.261760052530596e-13 Converged in 150 iterations to T = 840.5010831542752 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 10%|███ | ETA: 0:00:09 Bin 1 ray tracing: 20%|██████▏ | ETA: 0:00:08 Bin 1 ray tracing: 31%|█████████▎ | ETA: 0:00:07 Bin 1 ray tracing: 41%|████████████▍ | ETA: 0:00:06 Bin 1 ray tracing: 51%|███████████████▎ | ETA: 0:00:05 Bin 1 ray tracing: 58%|█████████████████▌ | ETA: 0:00:05 Bin 1 ray tracing: 66%|███████████████████▊ | ETA: 0:00:04 Bin 1 ray tracing: 73%|██████████████████████ | ETA: 0:00:03 Bin 1 ray tracing: 80%|████████████████████████ | ETA: 0:00:02 Bin 1 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 1 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 1 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 7%|██ | ETA: 0:00:14 Bin 2 ray tracing: 13%|████ | ETA: 0:00:13 Bin 2 ray tracing: 21%|██████▏ | ETA: 0:00:12 Bin 2 ray tracing: 28%|████████▍ | ETA: 0:00:11 Bin 2 ray tracing: 35%|██████████▌ | ETA: 0:00:10 Bin 2 ray tracing: 42%|████████████▋ | ETA: 0:00:09 Bin 2 ray tracing: 49%|██████████████▋ | ETA: 0:00:08 Bin 2 ray tracing: 55%|████████████████▌ | ETA: 0:00:07 Bin 2 ray tracing: 62%|██████████████████▌ | ETA: 0:00:06 Bin 2 ray tracing: 68%|████████████████████▌ | ETA: 0:00:05 Bin 2 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:04 Bin 2 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:03 Bin 2 ray tracing: 93%|███████████████████████████▊ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 10%|███ | ETA: 0:00:09 Bin 3 ray tracing: 20%|██████▏ | ETA: 0:00:08 Bin 3 ray tracing: 31%|█████████▎ | ETA: 0:00:07 Bin 3 ray tracing: 41%|████████████▎ | ETA: 0:00:06 Bin 3 ray tracing: 50%|███████████████ | ETA: 0:00:06 Bin 3 ray tracing: 56%|████████████████▉ | ETA: 0:00:05 Bin 3 ray tracing: 63%|██████████████████▉ | ETA: 0:00:04 Bin 3 ray tracing: 70%|████████████████████▉ | ETA: 0:00:04 Bin 3 ray tracing: 77%|███████████████████████ | ETA: 0:00:03 Bin 3 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:02 Bin 3 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 3 ray tracing: 97%|█████████████████████████████▎| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 7%|██▏ | ETA: 0:00:14 Bin 4 ray tracing: 14%|████▏ | ETA: 0:00:13 Bin 4 ray tracing: 20%|██████ | ETA: 0:00:12 Bin 4 ray tracing: 27%|████████ | ETA: 0:00:11 Bin 4 ray tracing: 34%|██████████▏ | ETA: 0:00:10 Bin 4 ray tracing: 40%|████████████▏ | ETA: 0:00:09 Bin 4 ray tracing: 47%|██████████████▎ | ETA: 0:00:08 Bin 4 ray tracing: 54%|████████████████▎ | ETA: 0:00:07 Bin 4 ray tracing: 61%|██████████████████▎ | ETA: 0:00:06 Bin 4 ray tracing: 68%|████████████████████▍ | ETA: 0:00:05 Bin 4 ray tracing: 75%|██████████████████████▋ | ETA: 0:00:04 Bin 4 ray tracing: 82%|████████████████████████▊ | ETA: 0:00:03 Bin 4 ray tracing: 90%|███████████████████████████ | ETA: 0:00:01 Bin 4 ray tracing: 97%|█████████████████████████████▎| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 5 ray tracing: 15%|████▋ | ETA: 0:00:12 Bin 5 ray tracing: 25%|███████▍ | ETA: 0:00:10 Bin 5 ray tracing: 34%|██████████▏ | ETA: 0:00:09 Bin 5 ray tracing: 41%|████████████▍ | ETA: 0:00:08 Bin 5 ray tracing: 48%|██████████████▌ | ETA: 0:00:07 Bin 5 ray tracing: 55%|████████████████▋ | ETA: 0:00:06 Bin 5 ray tracing: 62%|██████████████████▊ | ETA: 0:00:05 Bin 5 ray tracing: 69%|████████████████████▉ | ETA: 0:00:04 Bin 5 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:03 Bin 5 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:01 Bin 5 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 7%|██▎ | ETA: 0:00:13 Bin 6 ray tracing: 15%|████▍ | ETA: 0:00:12 Bin 6 ray tracing: 25%|███████▍ | ETA: 0:00:09 Bin 6 ray tracing: 34%|██████████▎ | ETA: 0:00:08 Bin 6 ray tracing: 43%|████████████▉ | ETA: 0:00:07 Bin 6 ray tracing: 51%|███████████████▍ | ETA: 0:00:06 Bin 6 ray tracing: 59%|█████████████████▊ | ETA: 0:00:05 Bin 6 ray tracing: 67%|████████████████████▏ | ETA: 0:00:04 Bin 6 ray tracing: 74%|██████████████████████▍ | ETA: 0:00:03 Bin 6 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:02 Bin 6 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:01 Bin 6 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 7 ray tracing: 16%|████▊ | ETA: 0:00:11 Bin 7 ray tracing: 24%|███████▏ | ETA: 0:00:10 Bin 7 ray tracing: 31%|█████████▎ | ETA: 0:00:09 Bin 7 ray tracing: 39%|███████████▉ | ETA: 0:00:08 Bin 7 ray tracing: 48%|██████████████▍ | ETA: 0:00:07 Bin 7 ray tracing: 56%|████████████████▉ | ETA: 0:00:06 Bin 7 ray tracing: 64%|███████████████████▏ | ETA: 0:00:05 Bin 7 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:04 Bin 7 ray tracing: 79%|███████████████████████▌ | ETA: 0:00:03 Bin 7 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 7 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 8 ray tracing: 14%|████▎ | ETA: 0:00:12 Bin 8 ray tracing: 21%|██████▍ | ETA: 0:00:11 Bin 8 ray tracing: 28%|████████▍ | ETA: 0:00:10 Bin 8 ray tracing: 35%|██████████▌ | ETA: 0:00:09 Bin 8 ray tracing: 42%|████████████▋ | ETA: 0:00:08 Bin 8 ray tracing: 49%|██████████████▋ | ETA: 0:00:07 Bin 8 ray tracing: 56%|████████████████▋ | ETA: 0:00:06 Bin 8 ray tracing: 62%|██████████████████▊ | ETA: 0:00:05 Bin 8 ray tracing: 70%|████████████████████▉ | ETA: 0:00:04 Bin 8 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:03 Bin 8 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:02 Bin 8 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 8 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 9 ray tracing: 14%|████▎ | ETA: 0:00:12 Bin 9 ray tracing: 21%|██████▍ | ETA: 0:00:11 Bin 9 ray tracing: 28%|████████▍ | ETA: 0:00:11 Bin 9 ray tracing: 35%|██████████▍ | ETA: 0:00:10 Bin 9 ray tracing: 41%|████████████▌ | ETA: 0:00:09 Bin 9 ray tracing: 48%|██████████████▌ | ETA: 0:00:08 Bin 9 ray tracing: 55%|████████████████▋ | ETA: 0:00:07 Bin 9 ray tracing: 62%|██████████████████▊ | ETA: 0:00:06 Bin 9 ray tracing: 70%|████████████████████▉ | ETA: 0:00:04 Bin 9 ray tracing: 77%|███████████████████████ | ETA: 0:00:03 Bin 9 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:02 Bin 9 ray tracing: 91%|███████████████████████████▌ | ETA: 0:00:01 Bin 9 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 10 ray tracing: 15%|████▎ | ETA: 0:00:12 Bin 10 ray tracing: 22%|██████▌ | ETA: 0:00:11 Bin 10 ray tracing: 30%|████████▋ | ETA: 0:00:10 Bin 10 ray tracing: 37%|██████████▊ | ETA: 0:00:09 Bin 10 ray tracing: 44%|████████████▉ | ETA: 0:00:08 Bin 10 ray tracing: 51%|██████████████▉ | ETA: 0:00:07 Bin 10 ray tracing: 58%|████████████████▉ | ETA: 0:00:06 Bin 10 ray tracing: 65%|███████████████████ | ETA: 0:00:05 Bin 10 ray tracing: 72%|█████████████████████ | ETA: 0:00:04 Bin 10 ray tracing: 79%|███████████████████████ | ETA: 0:00:03 Bin 10 ray tracing: 86%|█████████████████████████ | ETA: 0:00:02 Bin 10 ray tracing: 93%|███████████████████████████ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.3202792352272 K, F = -7446.105462693227, relative_change = 0.032679720764772754 Iter 2: T = 936.715490500937 K, F = -6311.859519276868, relative_change = 0.03163873371753006 Iter 3: T = 908.1542831056403 K, F = -5348.880255281826, relative_change = 0.030490802901127198 Iter 5: T = 857.0242659160117 K, F = -3837.557125047104, relative_change = 0.027879642701408126 Iter 10: T = 761.9452181949292 K, F = -1661.6621148817742, relative_change = 0.019958243880945303 Iter 15: T = 706.2890786284432 K, F = -711.4239428983017, relative_change = 0.011955786882961951 Iter 20: T = 677.6713441804616 K, F = -301.5173908694352, relative_change = 0.006121109766369936 Iter 25: T = 664.3279760483538 K, F = -126.9311091642848, relative_change = 0.0028273057131621682 Iter 30: T = 658.4541930909935 K, F = -53.24271758210949, relative_change = 0.0012366829197275027 Iter 35: T = 655.9414049561508 K, F = -22.295557409998302, relative_change = 0.00052733972271029 Iter 40: T = 654.8802701546077 K, F = -9.329391823079966, relative_change = 0.0002223655100806294 Iter 45: T = 654.4346654517542 K, F = -3.9025654191765766, relative_change = 9.331913046461957e-5 Iter 50: T = 654.247986611477 K, F = -1.632257746875343, relative_change = 3.908399499451084e-5 Iter 55: T = 654.1698588632203 K, F = -0.6826574005471369, relative_change = 1.6355352635342397e-5 Iter 60: T = 654.1371750237852 K, F = -0.2855003278261826, relative_change = 6.841747224032218e-6 Iter 65: T = 654.1235045224854 K, F = -0.11940049517016937, relative_change = 2.8616054380892674e-6 Iter 70: T = 654.1177870530538 K, F = -0.04993486142857595, relative_change = 1.1968109292477403e-6 Iter 75: T = 654.1153958861394 K, F = -0.02088338135141371, relative_change = 5.005299568541581e-7 Iter 80: T = 654.1143958623238 K, F = -0.008733684020063193, relative_change = 2.09329237978815e-7 Iter 85: T = 654.1139776388026 K, F = -0.0036525317532023482, relative_change = 8.754427275888926e-8 Iter 90: T = 654.1138027324482 K, F = -0.0015275325375231907, relative_change = 3.661211028209004e-8 Iter 95: T = 654.1137295844725 K, F = -0.0006388323740750268, relative_change = 1.5311630495275606e-8 Iter 100: T = 654.1136989931068 K, F = -0.00026716733205633947, relative_change = 6.403508253066863e-9 Iter 105: T = 654.1136861994308 K, F = -0.00011173256929680742, relative_change = 2.678023883935099e-9 Iter 110: T = 654.1136808489625 K, F = -4.672789461057647e-5, relative_change = 1.1199816085325245e-9 Iter 115: T = 654.1136786113327 K, F = -1.9542164136743256e-5, relative_change = 4.683897051845759e-10 Iter 120: T = 654.1136776755292 K, F = -8.172767224368105e-6, relative_change = 1.9588618896310185e-10 Iter 125: T = 654.1136772841649 K, F = -3.4179471960493757e-6, relative_change = 8.192190403051746e-11 Iter 130: T = 654.1136771204917 K, F = -1.429426114529786e-6, relative_change = 3.426071334515643e-11 Iter 135: T = 654.1136770520417 K, F = -5.978034349207739e-7, relative_change = 1.432824818477029e-11 Iter 140: T = 654.1136770234152 K, F = -2.500098326141398e-7, relative_change = 5.992275590636927e-12 Iter 145: T = 654.1136770114432 K, F = -1.0455794435815235e-7, relative_change = 2.5060615068132783e-12 Iter 150: T = 654.1136770064363 K, F = -4.372732098634202e-8, relative_change = 1.0480634120786404e-12 Iter 155: T = 654.1136770043424 K, F = -1.8288355940754286e-8, relative_change = 4.383382356045671e-13 Converged in 159 iterations to T = 654.1136770035865 K Iter 1: T = 970.3000568833828 K, F = -6767.160291060677, relative_change = 0.029699943116617174 Iter 2: T = 942.763570670628 K, F = -5731.6963221005635, relative_change = 0.028379351333032307 Iter 3: T = 917.346047029454 K, F = -4852.924970427486, relative_change = 0.026960655281889543 Iter 5: T = 872.65323451344 K, F = -3474.7906635870286, relative_change = 0.02387338440231015 Iter 10: T = 793.2711776309342 K, F = -1495.7575893305932, relative_change = 0.015567645519961143 Iter 15: T = 749.9769322097724 K, F = -636.7541719525115, relative_change = 0.008534535614567108 Iter 20: T = 728.9458282450277 K, F = -268.7899360945389, relative_change = 0.004109220905114387 Iter 25: T = 719.4759678307527 K, F = -112.90328089501604, relative_change = 0.0018353822637915311 Iter 30: T = 715.3806734678249 K, F = -47.308527816395994, relative_change = 0.0007901182128805666 Iter 35: T = 713.6429135037567 K, F = -19.80130645461522, relative_change = 0.000334551131626489 Iter 40: T = 712.9116628911206 K, F = -8.284026296128399, relative_change = 0.00014064609008628928 Iter 45: T = 712.6050495811121 K, F = -3.464985272387942, relative_change = 5.89490318079421e-5 Iter 50: T = 712.4766804376413 K, F = -1.4491869800467052, relative_change = 2.4675851745409232e-5 Iter 55: T = 712.4229704306324 K, F = -0.6060828378727424, relative_change = 1.0323704965105222e-5 Iter 60: T = 712.4005039760118 K, F = -0.25347379903534245, relative_change = 4.318191294548e-6 Iter 65: T = 712.3911074861071 K, F = -0.10600624531397662, relative_change = 1.8060406819778631e-6 Iter 70: T = 712.3871776305689 K, F = -0.044333160925324244, relative_change = 7.55329036552997e-7 Iter 75: T = 712.3855340950948 K, F = -0.018540671888828242, relative_change = 3.1589134117642293e-7 Iter 80: T = 712.3848467449167 K, F = -0.007753932947280329, relative_change = 1.321101815995963e-7 Iter 85: T = 712.3845592861613 K, F = -0.0032427878043334024, relative_change = 5.525016938916477e-8 Iter 90: T = 712.3844390673542 K, F = -0.0013561726646389438, relative_change = 2.310630055563708e-8 Iter 95: T = 712.3843887903918 K, F = -0.0005671676184755281, relative_change = 9.663334325499018e-9 Iter 100: T = 712.3843677639618 K, F = -0.00023719627207652305, relative_change = 4.041322397957868e-9 Iter 105: T = 712.3843589704572 K, F = -9.919831550653235e-5, relative_change = 1.6901294204466603e-9 Iter 110: T = 712.3843552929084 K, F = -4.1485920190043046e-5, relative_change = 7.06832324851651e-10 Iter 115: T = 712.3843537549135 K, F = -1.734990687973781e-5, relative_change = 2.9560571600299906e-10 Iter 120: T = 712.3843531117058 K, F = -7.255939275196965e-6, relative_change = 1.2362585855975358e-10 Iter 125: T = 712.3843528427085 K, F = -3.0345207649995487e-6, relative_change = 5.170181575902529e-11 Iter 130: T = 712.3843527302106 K, F = -1.2690716092444987e-6, relative_change = 2.1622296124083686e-11 Iter 135: T = 712.3843526831628 K, F = -5.307413933897109e-7, relative_change = 9.042710823561294e-12 Iter 140: T = 712.3843526634868 K, F = -2.219628967292664e-7, relative_change = 3.781778308504567e-12 Iter 145: T = 712.3843526552579 K, F = -9.282732615911726e-8, relative_change = 1.5815813079450029e-12 Iter 150: T = 712.3843526518165 K, F = -3.8820662018324015e-8, relative_change = 6.61421975102464e-13 Iter 155: T = 712.3843526503774 K, F = -1.6235839450651213e-8, relative_change = 2.7662436544566527e-13 Converged in 157 iterations to T = 712.3843526500729 K Iter 1: T = 974.4105740645947 K, F = -5830.5750412102725, relative_change = 0.025589425935405294 Iter 2: T = 951.0104128082371 K, F = -4932.879420053304, relative_change = 0.02401468321381985 Iter 3: T = 929.7248160382834 K, F = -4171.593083095963, relative_change = 0.02238208591964781 Iter 5: T = 893.1440499781363 K, F = -2979.3024816856046, relative_change = 0.01902771850680482 Iter 10: T = 831.52145447971 K, F = -1273.9814195600563, relative_change = 0.011180271290704952 Iter 15: T = 800.2379598791027 K, F = -539.4429259548067, relative_change = 0.005643416758206845 Iter 20: T = 785.7709580887541 K, F = -226.9712270615784, relative_change = 0.0025857627863285467 Iter 25: T = 779.4298789824373 K, F = -95.18109276942249, relative_change = 0.0011266302449531877 Iter 30: T = 776.7226008659178 K, F = -39.852771971924035, relative_change = 0.00047957619567437374 Iter 35: T = 775.5803353928866 K, F = -16.67523176175128, relative_change = 0.00020207350654355755 Iter 40: T = 775.1008405928808 K, F = -6.97524661923992, relative_change = 8.477640651845082e-5 Iter 45: T = 774.8999957182247 K, F = -2.917388445697396, relative_change = 3.5501395165181005e-5 Iter 50: T = 774.8159448455577 K, F = -1.2201316897049892, relative_change = 1.4855324396154584e-5 Iter 55: T = 774.7807841101261 K, F = -0.5102815183465526, relative_change = 6.214112396041401e-6 Iter 60: T = 774.766077780863 K, F = -0.21340720247044676, relative_change = 2.599067665807584e-6 Iter 65: T = 774.7599271227272 K, F = -0.08924968161541069, relative_change = 1.087005157160839e-6 Iter 70: T = 774.7573547923342 K, F = -0.037325324851048114, relative_change = 4.546062378288468e-7 Iter 75: T = 774.7562790040001 K, F = -0.0156099039771036, relative_change = 1.9012310445316233e-7 Iter 80: T = 774.7558290948895 K, F = -0.00652824955103859, relative_change = 7.951198833874585e-8 Iter 85: T = 774.7556409372498 K, F = -0.00273019215142023, relative_change = 3.325290429312949e-8 Iter 90: T = 774.7555622474295 K, F = -0.0011417990023784297, relative_change = 1.3906768902376592e-8 Iter 95: T = 774.7555293383983 K, F = -0.0004775139846960874, relative_change = 5.815978085464196e-9 Iter 100: T = 774.755515575447 K, F = -0.00019970205088326587, relative_change = 2.4323116956135915e-9 Iter 105: T = 774.7555098196162 K, F = -8.351778272119859e-5, relative_change = 1.0172218361882596e-9 Iter 110: T = 774.755507412459 K, F = -3.492813470040712e-5, relative_change = 4.2541433312205946e-10 Iter 115: T = 774.755506405757 K, F = -1.4607362815555192e-5, relative_change = 1.7791335273405965e-10 Iter 120: T = 774.7555059847423 K, F = -6.108973121476957e-6, relative_change = 7.440548347706608e-11 Iter 125: T = 774.7555058086688 K, F = -2.5548448933099266e-6, relative_change = 3.11172542293608e-11 Iter 130: T = 774.7555057350329 K, F = -1.0684663418469853e-6, relative_change = 1.3013603642583242e-11 Iter 135: T = 774.7555057042375 K, F = -4.468466645590752e-7, relative_change = 5.442460052256323e-12 Iter 140: T = 774.7555056913585 K, F = -1.8687797276317752e-7, relative_change = 2.2761183693612993e-12 Iter 145: T = 774.7555056859723 K, F = -7.815345082207159e-8, relative_change = 9.518858879981977e-13 Iter 150: T = 774.7555056837197 K, F = -3.268401016498501e-8, relative_change = 3.980815653361176e-13 Converged in 154 iterations to T = 774.7555056829066 K Iter 1: T = 970.2399252041184 K, F = -6780.8613513810715, relative_change = 0.029760074795881605 Iter 2: T = 942.6421060477662 K, F = -5743.394951235132, relative_change = 0.028444324377340173 Iter 3: T = 917.1624071536996 K, F = -4862.916181946344, relative_change = 0.027030087803838768 Iter 5: T = 872.3445674388695 K, F = -3482.0806502908067, relative_change = 0.023949839772611444 Iter 10: T = 792.6722246729922 K, F = -1499.0586906692645, relative_change = 0.01564433133062651 Iter 15: T = 749.1656706785366 K, F = -638.2210892083024, relative_change = 0.008589403262019893 Iter 20: T = 728.0119317827265 K, F = -269.42613074856666, relative_change = 0.004139614244908679 Iter 25: T = 718.4817781128776 K, F = -113.17425360171734, relative_change = 0.0018498824289168061 Iter 30: T = 714.3593329724396 K, F = -47.42279935366988, relative_change = 0.0007965447416152302 Iter 35: T = 712.6098466297449 K, F = -19.8492692440432, relative_change = 0.0003373063680673067 Iter 40: T = 711.8736242298436 K, F = -8.304115743706875, relative_change = 0.00014181051200093183 Iter 45: T = 711.5649196173234 K, F = -3.4733923549584986, relative_change = 5.943815655773168e-5 Iter 50: T = 711.4356737447671 K, F = -1.452703876214598, relative_change = 2.4880787352878075e-5 Iter 55: T = 711.3815967070213 K, F = -0.6075538129058871, relative_change = 1.0409477694888869e-5 Iter 60: T = 711.3589766905889 K, F = -0.25408900759601594, relative_change = 4.354074064763569e-6 Iter 65: T = 711.3495159678954 K, F = -0.10626353799535992, relative_change = 1.821049312881667e-6 Iter 70: T = 711.3455592474427 K, F = -0.04444076469158653, relative_change = 7.616061799602046e-7 Iter 75: T = 711.3439044763916 K, F = -0.018585673227264676, relative_change = 3.1851657959207545e-7 Iter 80: T = 711.3432124272998 K, F = -0.007772753072299188, relative_change = 1.332080985173524e-7 Iter 85: T = 711.342923003392 K, F = -0.0032506586101515023, relative_change = 5.570933325390912e-8 Iter 90: T = 711.3428019627326 K, F = -0.0013594643285116392, relative_change = 2.3298328665924783e-8 Iter 95: T = 711.3427513420615 K, F = -0.0005685442302297838, relative_change = 9.743642806326376e-9 Iter 100: T = 711.3427301718887 K, F = -0.00023777199065055932, relative_change = 4.074908426362445e-9 Iter 105: T = 711.3427213182688 K, F = -9.943908709042493e-5, relative_change = 1.7041754867670599e-9 Iter 110: T = 711.3427176155792 K, F = -4.158661415931686e-5, relative_change = 7.127065649735171e-10 Iter 115: T = 711.3427160670701 K, F = -1.7392018679895926e-5, relative_change = 2.9806239989359763e-10 Iter 120: T = 711.3427154194651 K, F = -7.273549650799183e-6, relative_change = 1.2465325123906435e-10 Iter 125: T = 711.3427151486289 K, F = -3.0418855746505713e-6, relative_change = 5.213148265552853e-11 Iter 130: T = 711.3427150353621 K, F = -1.2721531821302534e-6, relative_change = 2.180201390622476e-11 Iter 135: T = 711.3427149879924 K, F = -5.320285934029556e-7, relative_change = 9.11784442195452e-12 Iter 140: T = 711.3427149681819 K, F = -2.2249994624523595e-7, relative_change = 3.813178312560659e-12 Iter 145: T = 711.342714959897 K, F = -9.305248305224723e-8, relative_change = 1.5947226788690553e-12 Iter 150: T = 711.342714956432 K, F = -3.891468769445794e-8, relative_change = 6.669154113174319e-13 Iter 155: T = 711.342714954983 K, F = -1.6274131597882047e-8, relative_change = 2.789041827537649e-13 Converged in 157 iterations to T = 711.3427149546764 K Iter 1: T = 969.2334987401986 K, F = -7010.176578543927, relative_change = 0.030766501259801446 Iter 2: T = 940.6055839418701 K, F = -5939.25061656016, relative_change = 0.0295366543103791 Iter 3: T = 914.0776161957895 K, F = -5030.243903849111, relative_change = 0.028203072785202756 Iter 5: T = 867.1381314327812 K, F = -3604.2780873771612, relative_change = 0.025255441515594734 Iter 10: T = 782.4553222178522 K, F = -1554.5822997268597, relative_change = 0.01699424094371378 Iter 15: T = 735.1929367460912 K, F = -662.9971913851033, relative_change = 0.009582185663642155 Iter 20: T = 711.8278284773419 K, F = -280.2067080972719, relative_change = 0.0046996931584878865 Iter 25: T = 701.1979499792155 K, F = -117.77472708066963, relative_change = 0.002119691379665802 Iter 30: T = 696.5774385187899 K, F = -49.36465284317037, relative_change = 0.0009166685508924198 Iter 35: T = 694.6122768404782 K, F = -20.664653357040752, relative_change = 0.000388909541399885 Iter 40: T = 693.7845083186361 K, F = -8.645704060510457, relative_change = 0.0001636376738522261 Iter 45: T = 693.4372778085274 K, F = -3.616351849122213, relative_change = 6.861012139049441e-5 Iter 50: T = 693.291877600814 K, F = -1.5125093549304685, relative_change = 2.8724275832246402e-5 Iter 55: T = 693.2310371966536 K, F = -0.6325683507007808, relative_change = 1.2018213743399745e-5 Iter 60: T = 693.2055873582161 K, F = -0.26455094123457185, relative_change = 5.027101847830231e-6 Iter 65: T = 693.1949429424178 K, F = -0.11063894071531694, relative_change = 2.1025587141746484e-6 Iter 70: T = 693.1904911475294 K, F = -0.046270627350531446, relative_change = 8.793439708923176e-7 Iter 75: T = 693.1886293234678 K, F = -0.019350946615455444, relative_change = 3.6775718875151084e-7 Iter 80: T = 693.1878506811154 K, F = -0.008092800062226901, relative_change = 1.5380132951237184e-7 Iter 85: T = 693.1875250426586 K, F = -0.0033845061746929916, relative_change = 6.432170690769201e-8 Iter 90: T = 693.1873888566051 K, F = -0.0014154409961049108, relative_change = 2.6900132946415834e-8 Iter 95: T = 693.1873319019428 K, F = -0.0005919543451468057, relative_change = 1.1249961570723533e-8 Iter 100: T = 693.1873080828179 K, F = -0.0002475623803480653, relative_change = 4.704869123341201e-9 Iter 105: T = 693.1872981213745 K, F = -0.00010353354406600346, relative_change = 1.9676325916289977e-9 Iter 110: T = 693.1872939553797 K, F = -4.329896386268128e-5, relative_change = 8.228874582276319e-10 Iter 115: T = 693.1872922131109 K, F = -1.8108143405970445e-5, relative_change = 3.4414135927436726e-10 Iter 120: T = 693.1872914844732 K, F = -7.57304041976159e-6, relative_change = 1.4392400029702276e-10 Iter 125: T = 693.1872911797484 K, F = -3.167135607107241e-6, relative_change = 6.019072944897867e-11 Iter 130: T = 693.1872910523089 K, F = -1.3245344016032945e-6, relative_change = 2.5172490784305374e-11 Iter 135: T = 693.1872909990121 K, F = -5.539367192719524e-7, relative_change = 1.0527447946378262e-11 Iter 140: T = 693.1872909767228 K, F = -2.3166380669348285e-7, relative_change = 4.402720710777637e-12 Iter 145: T = 693.187290967401 K, F = -9.688450741673904e-8, relative_change = 1.8412691799926156e-12 Iter 150: T = 693.1872909635026 K, F = -4.051759583401093e-8, relative_change = 7.700281752753138e-13 Iter 155: T = 693.1872909618722 K, F = -1.6944429193088695e-8, relative_change = 3.220252244539539e-13 Converged in 158 iterations to T = 693.1872909613949 K Iter 1: T = 963.5878570196803 K, F = -8296.541414955722, relative_change = 0.03641214298031974 Iter 2: T = 929.0550980640907 K, F = -7039.843820022711, relative_change = 0.03583768589861378 Iter 3: T = 896.3682890209533 K, F = -5972.576771334894, relative_change = 0.03518285310661147 Iter 5: T = 836.4139477847955 K, F = -4296.5380553410205, relative_change = 0.03360290846314812 Iter 10: T = 716.8936727855142 K, F = -1877.4668021080774, relative_change = 0.02785827847959831 Iter 15: T = 637.441751163984 K, F = -812.9150434470137, relative_change = 0.01993212298074135 Iter 20: T = 590.9535341197931 K, F = -348.0287363841977, relative_change = 0.011933401639384925 Iter 25: T = 567.0588953255005 K, F = -147.49829883118122, relative_change = 0.006107076342199779 Iter 30: T = 555.9204737426436 K, F = -62.09201825974683, relative_change = 0.0028201427110860493 Iter 35: T = 551.0179509701884 K, F = -26.045009145985816, relative_change = 0.0012334047250177956 Iter 40: T = 548.9207924969745 K, F = -10.906392101442453, relative_change = 0.0005259141612699691 Iter 45: T = 548.0351991053122 K, F = -4.563682759998599, relative_change = 0.00022175935872055302 Iter 50: T = 547.6633141279244 K, F = -1.909026806554035, relative_change = 9.306385595606151e-5 Iter 55: T = 547.5075197148557 K, F = -0.7984550205651457, relative_change = 3.897692335524936e-5 Iter 60: T = 547.4423176697451 K, F = -0.33393694598819945, relative_change = 1.6310519113996738e-5 Iter 65: T = 547.4150411716673 K, F = -0.13965878485611855, relative_change = 6.822987698038441e-6 Iter 70: T = 547.4036323752345 K, F = -0.05840738559857342, relative_change = 2.8537582981824312e-6 Iter 75: T = 547.3988608285449 K, F = -0.02442673858229155, relative_change = 1.1935288673746949e-6 Iter 80: T = 547.396865266696 K, F = -0.010215566452505515, relative_change = 4.99157307915071e-7 Iter 85: T = 547.3960306911961 K, F = -0.00427227410370673, relative_change = 2.0875517077983658e-7 Iter 90: T = 547.395681660408 K, F = -0.0017867164392019463, relative_change = 8.730418942995547e-8 Iter 95: T = 547.3955356913284 K, F = -0.0007472262204692992, relative_change = 3.65117043124337e-8 Iter 100: T = 547.3954746452749 K, F = -0.0003124989410263068, relative_change = 1.526963947201857e-8 Iter 105: T = 547.395449115079 K, F = -0.00013069079100236358, relative_change = 6.385947093054448e-9 Iter 110: T = 547.3954384380451 K, F = -5.465644992289076e-5, relative_change = 2.6706796036388287e-9 Iter 115: T = 547.3954339727817 K, F = -2.285798055026711e-5, relative_change = 1.1169101705813927e-9 Iter 120: T = 547.3954321053551 K, F = -9.559479903248347e-6, relative_change = 4.671051530269219e-10 Iter 125: T = 547.3954313243751 K, F = -3.997888717827136e-6, relative_change = 1.9534895756986454e-10 Iter 130: T = 547.3954309977598 K, F = -1.6719641820206466e-6, relative_change = 8.169723672479081e-11 Iter 135: T = 547.3954308611656 K, F = -6.992357735324806e-7, relative_change = 3.416677892917033e-11 Iter 140: T = 547.3954308040402 K, F = -2.9242947546803677e-7, relative_change = 1.4288990386144206e-11 Iter 145: T = 547.3954307801497 K, F = -1.222977818460258e-7, relative_change = 5.975840248698647e-12 Iter 150: T = 547.3954307701584 K, F = -5.114683621076921e-8, relative_change = 2.4991894197499227e-12 Iter 155: T = 547.3954307659799 K, F = -2.1390692384049004e-8, relative_change = 1.0452140552542558e-12 Iter 160: T = 547.3954307642323 K, F = -8.945643864555208e-9, relative_change = 4.371112693690353e-13 Converged in 164 iterations to T = 547.3954307636016 K Iter 1: T = 966.9131431445558 K, F = -7538.871808239122, relative_change = 0.03308685685544421 Iter 2: T = 935.884495062978 K, F = -6391.1996569246585, relative_change = 0.03209041918767142 Iter 3: T = 906.8836259300276 K, F = -5416.779390951477, relative_change = 0.030987658504801733 Iter 5: T = 854.8340613873667 K, F = -3887.369249084024, relative_change = 0.02846355707290894 Iter 10: T = 757.3781831995216 K, F = -1684.7302841283315, relative_change = 0.020667803143765644 Iter 15: T = 699.6772056912288 K, F = -721.9898856600299, relative_change = 0.012567297385845323 Iter 20: T = 669.708672329875 K, F = -306.2207739465052, relative_change = 0.006507384926059613 Iter 25: T = 655.6427002972248 K, F = -128.96674448588587, relative_change = 0.0030254804859111573 Iter 30: T = 649.4289869238045 K, F = -54.10809656812415, relative_change = 0.00132761906713395 Iter 35: T = 646.7663865682082 K, F = -22.66010840328328, relative_change = 0.0005669323792371363 Iter 40: T = 645.6411702261687 K, F = -9.482327454005654, relative_change = 0.00023920926881165953 Iter 45: T = 645.1685089433145 K, F = -3.9666092858492297, relative_change = 0.00010041430120979554 Iter 50: T = 644.9704692474355 K, F = -1.6590564928486105, relative_change = 4.206025525027862e-5 Iter 55: T = 644.88758226108 K, F = -0.6938675570093966, relative_change = 1.7601635208922814e-5 Iter 60: T = 644.852906650596 K, F = -0.290189004467791, relative_change = 7.363233331753517e-6 Iter 65: T = 644.8384029216346 K, F = -0.12136143540724365, relative_change = 3.079745431113431e-6 Iter 70: T = 644.8323369435386 K, F = -0.0507549639918457, relative_change = 1.2880481248780706e-6 Iter 75: T = 644.8298000186333 K, F = -0.02122636047412202, relative_change = 5.386879188958543e-7 Iter 80: T = 644.8287390357724 K, F = -0.008877122410698601, relative_change = 2.2528761176783385e-7 Iter 85: T = 644.8282953182207 K, F = -0.0037125194743641843, relative_change = 9.42183004177147e-8 Iter 90: T = 644.8281097499184 K, F = -0.0015526201324417288, relative_change = 3.940327626886225e-8 Iter 95: T = 644.8280321429817 K, F = -0.0006493243079962463, relative_change = 1.6478930822820983e-8 Iter 100: T = 644.827999686824 K, F = -0.0002715551841323549, relative_change = 6.891687422058858e-9 Iter 105: T = 644.8279861132695 K, F = -0.00011356762228209583, relative_change = 2.8821863039512834e-9 Iter 110: T = 644.8279804366466 K, F = -4.749533512260484e-5, relative_change = 1.2053647631133173e-9 Iter 115: T = 644.8279780626151 K, F = -1.9863116490159705e-5, relative_change = 5.04097951108656e-10 Iter 120: T = 644.8279770697668 K, F = -8.306992733575491e-6, relative_change = 2.1081979001842718e-10 Iter 125: T = 644.8279766545459 K, F = -3.4740838694702347e-6, relative_change = 8.816736183639875e-11 Iter 130: T = 644.8279764808955 K, F = -1.4529038749877543e-6, relative_change = 3.687265668785486e-11 Iter 135: T = 644.8279764082728 K, F = -6.076224255413543e-7, relative_change = 1.542060248482044e-11 Iter 140: T = 644.8279763779011 K, F = -2.541157917979042e-7, relative_change = 6.4491013606325715e-12 Iter 145: T = 644.8279763651992 K, F = -1.0627403096430399e-7, relative_change = 2.697085422779024e-12 Iter 150: T = 644.8279763598872 K, F = -4.44454120729354e-8, relative_change = 1.1279620423571417e-12 Iter 155: T = 644.8279763576656 K, F = -1.8588136141417522e-8, relative_change = 4.717407495654041e-13 Converged in 160 iterations to T = 644.8279763567365 K Iter 1: T = 965.1918360208568 K, F = -7931.07327375971, relative_change = 0.03480816397914315 Iter 2: T = 932.3587510190232 K, F = -6726.824349273522, relative_change = 0.03401715988107899 Iter 3: T = 901.4712954766483 K, F = -5704.208592289046, relative_change = 0.03312829477775211 Iter 5: T = 845.4202025302695 K, F = -4098.6460138547, relative_change = 0.031038360531296803 Iter 10: T = 737.1805664862848 K, F = -1783.4759997815688, relative_change = 0.02404273876476817 Iter 15: T = 669.5261111852993 K, F = -767.8986397529679, relative_change = 0.01573755262812667 Iter 20: T = 632.5268283125902 K, F = -326.9693246243907, relative_change = 0.00865621354820782 Iter 25: T = 614.5169842107639 K, F = -138.04118804190264, relative_change = 0.004176675679080817 Iter 30: T = 606.3979769204924 K, F = -57.98745326138024, relative_change = 0.0018675782177358347 Iter 35: T = 602.8848361377076 K, F = -24.29862440504115, relative_change = 0.0008043906466224264 Iter 40: T = 601.3937141999788 K, F = -10.17050635808218, relative_change = 0.00034067071475718215 Iter 45: T = 600.7661785988855 K, F = -4.254935312745581, relative_change = 0.00014323246264766497 Iter 50: T = 600.5030404618842 K, F = -1.7797297134502705, relative_change = 6.003547708056498e-5 Iter 55: T = 600.3928707718878 K, F = -0.744350647950577, relative_change = 2.5131058597321965e-5 Iter 60: T = 600.3467750801398 K, F = -0.3113044569355913, relative_change = 1.0514225555933883e-5 Iter 65: T = 600.3274935633074 K, F = -0.13019266343909355, relative_change = 4.397895126992217e-6 Iter 70: T = 600.3194291469335 K, F = -0.054448375375818425, relative_change = 1.8393782986785267e-6 Iter 75: T = 600.3160563969865 K, F = -0.022771004329362743, relative_change = 7.692720170268166e-7 Iter 80: T = 600.3146458526155 K, F = -0.009523113559774699, relative_change = 3.2172260049336186e-7 Iter 85: T = 600.314055942605 K, F = -0.003982681150717593, relative_change = 1.345489081136671e-7 Iter 90: T = 600.3138092345797 K, F = -0.0016656050523025656, relative_change = 5.627007815477271e-8 Iter 95: T = 600.31370605823 K, F = -0.0006965759645505276, relative_change = 2.353283930359696e-8 Iter 100: T = 600.3136629086296 K, F = -0.0002913163941745678, relative_change = 9.841718040116676e-9 Iter 105: T = 600.3136448629481 K, F = -0.00012183199626591978, relative_change = 4.115924647881074e-9 Iter 110: T = 600.313637316028 K, F = -5.0951595601755884e-5, relative_change = 1.7213289379278364e-9 Iter 115: T = 600.3136341598157 K, F = -2.1308565210598207e-5, relative_change = 7.198803179302241e-10 Iter 120: T = 600.31363283985 K, F = -8.911495568364458e-6, relative_change = 3.0106251954278967e-10 Iter 125: T = 600.3136322878247 K, F = -3.7268938909984506e-6, relative_change = 1.2590794229736328e-10 Iter 130: T = 600.3136320569611 K, F = -1.558631791243048e-6, relative_change = 5.265621392333204e-11 Iter 135: T = 600.3136319604113 K, F = -6.518385887721578e-7, relative_change = 2.202146292215542e-11 Iter 140: T = 600.3136319200329 K, F = -2.726071744452163e-7, relative_change = 9.209655411149098e-12 Iter 145: T = 600.3136319031461 K, F = -1.1400671307004728e-7, relative_change = 3.851558728086604e-12 Iter 150: T = 600.3136318960838 K, F = -4.767905714686549e-8, relative_change = 1.6107708376646642e-12 Iter 155: T = 600.3136318931304 K, F = -1.993939496847119e-8, relative_change = 6.736248126239371e-13 Iter 160: T = 600.3136318918952 K, F = -8.338646884098466e-9, relative_change = 2.81709623274678e-13 Converged in 162 iterations to T = 600.3136318916338 K Iter 1: T = 980.2135472743911 K, F = -4508.36207530557, relative_change = 0.01978645272560886 Iter 2: T = 962.467677536164 K, F = -3808.1492541598636, relative_change = 0.018104085367491276 Iter 3: T = 946.6409819371836 K, F = -3215.1905912178245, relative_change = 0.016443872317349343 Iter 5: T = 920.2203049861042 K, F = -2288.738954412272, relative_change = 0.013278334662301581 Iter 10: T = 878.299022570082 K, F = -971.572558937008, relative_change = 0.006967622607286144 Iter 15: T = 858.4675930215651 K, F = -409.3954391802577, relative_change = 0.0032650208118199203 Iter 20: T = 849.6696557237101 K, F = -171.80649961083805, relative_change = 0.0014383212787129813 Iter 25: T = 845.8921253963144 K, F = -71.95982173144716, relative_change = 0.0006152859255732375 Iter 30: T = 844.2943221102736 K, F = -30.113762514479053, relative_change = 0.0002598086959639783 Iter 35: T = 843.6228897292739 K, F = -12.597339202016245, relative_change = 0.00010909659487887667 Iter 40: T = 843.341522063389 K, F = -5.268955111862295, relative_change = 4.570317834366495e-5 Iter 45: T = 843.2237512832559 K, F = -2.20364459007352, relative_change = 1.9127235207733527e-5 Iter 50: T = 843.1744807141581 K, F = -0.9216087967158555, relative_change = 8.001622874632162e-6 Iter 55: T = 843.1538721246263 K, F = -0.38543100866184576, relative_change = 3.3467915117531322e-6 Iter 60: T = 843.1452528329309 K, F = -0.16119241117707062, relative_change = 1.3997411728220357e-6 Iter 65: T = 843.1416480488995 K, F = -0.0674126893935636, relative_change = 5.854012424319772e-7 Iter 70: T = 843.1401404688472 K, F = -0.02819280891801479, relative_change = 2.4482402384597667e-7 Iter 75: T = 843.1395099780106 K, F = -0.011790572376289221, relative_change = 1.0238872113336377e-7 Iter 80: T = 843.1392462987139 K, F = -0.004930958698894594, relative_change = 4.2820254250638244e-8 Iter 85: T = 843.1391360247958 K, F = -0.002062185906562375, relative_change = 1.7907953648032703e-8 Iter 90: T = 843.1390899069111 K, F = -0.0008624307906284212, relative_change = 7.489322178124623e-9 Iter 95: T = 843.1390706198581 K, F = -0.0003606788582317666, relative_change = 3.13212433472646e-9 Iter 100: T = 843.1390625537817 K, F = -0.00015084020292976952, relative_change = 1.3098918358778803e-9 Iter 105: T = 843.1390591804524 K, F = -6.308317380021577e-5, relative_change = 5.478124154655807e-10 Iter 110: T = 843.1390577696856 K, F = -2.638213631889208e-5, relative_change = 2.291016933121456e-10 Iter 115: T = 843.1390571796861 K, F = -1.1033322829812064e-5, relative_change = 9.581305020326745e-11 Iter 120: T = 843.1390569329413 K, F = -4.6142698788553815e-6, relative_change = 4.007018365996243e-11 Iter 125: T = 843.1390568297496 K, F = -1.929741608286406e-6, relative_change = 1.6757819272709935e-11 Iter 130: T = 843.1390567865938 K, F = -8.070413612948357e-7, relative_change = 7.00832340630621e-12 Iter 135: T = 843.1390567685454 K, F = -3.3751408667903604e-7, relative_change = 2.930962385963368e-12 Iter 140: T = 843.1390567609973 K, F = -1.411519743310663e-7, relative_change = 1.2257595869765318e-12 Iter 145: T = 843.1390567578406 K, F = -5.9031890042859914e-8, relative_change = 5.126311941549962e-13 Converged in 150 iterations to T = 843.1390567565205 K Iter 1: T = 976.423475813347 K, F = -5371.933462993181, relative_change = 0.023576524186652997 Iter 2: T = 955.0088823848035 K, F = -4542.341353680368, relative_change = 0.021931665879607588 Iter 3: T = 935.6646942351991 K, F = -3839.124807506708, relative_change = 0.02025550600251907 Iter 5: T = 902.766989472624 K, F = -2738.626015389602, relative_change = 0.016902440988115594 Iter 10: T = 848.5800515243658 K, F = -1167.830667597968, relative_change = 0.009513102716211844 Iter 15: T = 821.8223579641383 K, F = -493.52826337728686, relative_change = 0.0046601120808131 Iter 20: T = 809.6573813504199 K, F = -207.427755329811, relative_change = 0.002100465405743923 Iter 25: T = 804.3714217216367 K, F = -86.9404752459195, relative_change = 0.0009080755273666984 Iter 30: T = 802.1235874122624 K, F = -36.394030050258074, relative_change = 0.00038521181919584115 Iter 35: T = 801.1768151524406 K, F = -15.22652230059008, relative_change = 0.0001620724669618037 Iter 40: T = 800.7796766325151 K, F = -6.368986540902946, relative_change = 6.795220534267829e-5 Iter 45: T = 800.6133798269182 K, F = -2.6637743140206354, relative_change = 2.844854217843468e-5 Iter 50: T = 800.5437959268172 K, F = -1.1140551550209588, relative_change = 1.1902796025715412e-5 Iter 55: T = 800.5146887031259 K, F = -0.46591693109898513, relative_change = 4.978814815579052e-6 Iter 60: T = 800.5025145937668 K, F = -0.19485303247579322, relative_change = 2.0823613573390923e-6 Iter 65: T = 800.4974230397829 K, F = -0.08149004145722571, relative_change = 8.70896645218242e-7 Iter 70: T = 800.4952936568077 K, F = -0.03408013935337528, relative_change = 3.6422432007671113e-7 Iter 75: T = 800.4944031174193 K, F = -0.014252726668798288, relative_change = 1.5232382483092493e-7 Iter 80: T = 800.4940306821628 K, F = -0.005960661447402482, relative_change = 6.370379384861186e-8 Iter 85: T = 800.4938749251073 K, F = -0.0024928199672100693, relative_change = 2.664171381191847e-8 Iter 90: T = 800.4938097856144 K, F = -0.0010425271083717158, relative_change = 1.114188749643682e-8 Iter 95: T = 800.4937825434951 K, F = -0.00043599729265264564, relative_change = 4.659671227355521e-9 Iter 100: T = 800.4937711505144 K, F = -0.00018233927538358063, relative_change = 1.9487302949239994e-9 Iter 105: T = 800.4937663858336 K, F = -7.625646313547119e-5, relative_change = 8.149823113787714e-10 Iter 110: T = 800.4937643931871 K, F = -3.189136302017559e-5, relative_change = 3.4083533364345087e-10 Iter 115: T = 800.4937635598387 K, F = -1.3337350330600017e-5, relative_change = 1.4254142319053685e-10 Iter 120: T = 800.4937632113224 K, F = -5.577840034520776e-6, relative_change = 5.961253463319015e-11 Iter 125: T = 800.4937630655687 K, F = -2.3327188107824526e-6, relative_change = 2.4930668530684197e-11 Iter 130: T = 800.4937630046127 K, F = -9.755698824331915e-7, relative_change = 1.0426292815000882e-11 Iter 135: T = 800.4937629791202 K, F = -4.079936286593977e-7, relative_change = 4.360385776868145e-12 Iter 140: T = 800.4937629684589 K, F = -1.706267908074821e-7, relative_change = 1.823554535107427e-12 Iter 145: T = 800.4937629640002 K, F = -7.135694690685312e-8, relative_change = 7.626193022271664e-13 Iter 150: T = 800.4937629621355 K, F = -2.984160663022095e-8, relative_change = 3.18928796878548e-13 Converged in 153 iterations to T = 800.4937629615896 K Iter 1: T = 980.9370441945335 K, F = -4343.512613827875, relative_change = 0.019062955805466433 Iter 2: T = 963.8812697653169 K, F = -3668.168549344946, relative_change = 0.01738722635683666 Iter 3: T = 948.7063196796054 K, F = -3096.3898039991145, relative_change = 0.01574358851210615 Iter 5: T = 923.4591236840997 K, F = -2203.3260676261316, relative_change = 0.012637220681720232 Iter 10: T = 883.6594404695497 K, F = -934.5864881818595, relative_change = 0.00655219091147711 Iter 15: T = 864.964661891098 K, F = -393.6267680341217, relative_change = 0.003048655483670202 Iter 20: T = 856.7027180139345 K, F = -165.15056916910368, relative_change = 0.0013382954615196712 Iter 25: T = 853.1617503404269 K, F = -69.16473842898426, relative_change = 0.0005715890034558283 Iter 30: T = 851.6652064530176 K, F = -28.942753066411953, relative_change = 0.0002411918298646941 Iter 35: T = 851.0365411716114 K, F = -12.107241919888228, relative_change = 0.00010124969373496569 Iter 40: T = 850.773133473688 K, F = -5.0639260109739785, relative_change = 4.241073067566763e-5 Iter 45: T = 850.6628868235581 K, F = -2.1178876533270663, relative_change = 1.774840203078618e-5 Iter 50: T = 850.6167652242626 K, F = -0.885742240163501, relative_change = 7.424646916866983e-6 Iter 55: T = 850.597473972193 K, F = -0.3704308396816809, relative_change = 3.1054352668778113e-6 Iter 60: T = 850.5894056768641 K, F = -0.15491910072068737, relative_change = 1.2987929603094892e-6 Iter 65: T = 850.5860313383573 K, F = -0.06478910543269611, relative_change = 5.431817191999876e-7 Iter 70: T = 850.5846201355207 K, F = -0.027095592915647337, relative_change = 2.2716700450966086e-7 Iter 75: T = 850.5840299511618 K, F = -0.011331703215981648, relative_change = 9.500429047125536e-8 Iter 80: T = 850.5837831285811 K, F = -0.004739054080751259, relative_change = 3.973198767396165e-8 Iter 85: T = 850.5836799043544 K, F = -0.001981929092023327, relative_change = 1.6616402010610948e-8 Iter 90: T = 850.5836367347368 K, F = -0.0008288664322184669, relative_change = 6.9491795818895655e-9 Iter 95: T = 850.5836186806849 K, F = -0.0003466418443951458, relative_change = 2.9062302164845754e-9 Iter 100: T = 850.5836111302643 K, F = -0.00014496976137290396, relative_change = 1.2154202546450604e-9 Iter 105: T = 850.5836079725883 K, F = -6.062808769535799e-5, relative_change = 5.083032929762899e-10 Iter 110: T = 850.5836066520103 K, F = -2.535539073589277e-5, relative_change = 2.1257851254995015e-10 Iter 115: T = 850.5836060997289 K, F = -1.0603927572683247e-5, relative_change = 8.890287596184454e-11 Iter 120: T = 850.5836058687581 K, F = -4.434689423904459e-6, relative_change = 3.718024680855626e-11 Iter 125: T = 850.5836057721634 K, F = -1.8546371236549675e-6, relative_change = 1.5549198476761963e-11 Iter 130: T = 850.5836057317664 K, F = -7.756316937612695e-7, relative_change = 6.502863012965315e-12 Iter 135: T = 850.5836057148719 K, F = -3.2437781705141333e-7, relative_change = 2.719569772478632e-12 Iter 140: T = 850.5836057078063 K, F = -1.3565906376022951e-7, relative_change = 1.1373598001653347e-12 Iter 145: T = 850.5836057048514 K, F = -5.673227265745595e-8, relative_change = 4.756409524373642e-13 Converged in 150 iterations to T = 850.5836057036157 K Iter 1: T = 967.3175094984816 K, F = -7446.736549845423, relative_change = 0.032682490501518405 Iter 2: T = 936.7098410415864 K, F = -6312.399210984665, relative_change = 0.031641801328256954 Iter 3: T = 908.1456510164745 K, F = -5349.342061028955, relative_change = 0.03049417095196686 Iter 5: T = 857.009411970913 K, F = -3837.895791363689, relative_change = 0.02788358382936226 Iter 10: T = 761.9144026971261 K, F = -1661.81869644166, relative_change = 0.01996296854886676 Iter 15: T = 706.244696728079 K, F = -711.4954849196223, relative_change = 0.011959800292553717 Iter 20: T = 677.6180974182563 K, F = -301.54916284160913, relative_change = 0.0061236170545377 Iter 25: T = 664.2700215459737 K, F = -126.94483904795979, relative_change = 0.002828583775861294 Iter 30: T = 658.3940326508379 K, F = -53.248549705366386, relative_change = 0.0012372675227219634 Iter 35: T = 655.8802741332389 K, F = -22.298013356290582, relative_change = 0.0005275938893396824 Iter 40: T = 654.8187245952538 K, F = -9.33042197094323, relative_change = 0.00022247357258400443 Iter 45: T = 654.3729448434586 K, F = -3.90299677807333, relative_change = 9.336463821032343e-5 Iter 50: T = 654.1861925123528 K, F = -1.6324382410476068, relative_change = 3.910308234391279e-5 Iter 55: T = 654.1080339795711 K, F = -0.6827329019716409, relative_change = 1.6363344925161464e-5 Iter 60: T = 654.0753372569554 K, F = -0.28553190633088, relative_change = 6.845091399570935e-6 Iter 65: T = 654.0616613662286 K, F = -0.1194137021866365, relative_change = 2.8630043105214798e-6 Iter 70: T = 654.055941642607 K, F = -0.0499403848502224, relative_change = 1.197396006603018e-6 Iter 75: T = 654.0535495329166 K, F = -0.020885691328291767, relative_change = 5.00774652329085e-7 Iter 80: T = 654.0525491148126 K, F = -0.008734650082147966, relative_change = 2.0943157413189995e-7 Iter 85: T = 654.0521307263938 K, F = -0.003652935771687904, relative_change = 8.758707122291059e-8 Iter 90: T = 654.0519557510771 K, F = -0.0015277015038141495, relative_change = 3.6630009180124465e-8 Iter 95: T = 654.0518825742605 K, F = -0.0006389030379093663, relative_change = 1.531911603910765e-8 Iter 100: T = 654.0518519708331 K, F = -0.000267196884251808, relative_change = 6.406638791994961e-9 Iter 105: T = 654.0518391721129 K, F = -0.00011174492779109091, relative_change = 2.679333098879107e-9 Iter 110: T = 654.051833819535 K, F = -4.6733064133441804e-5, relative_change = 1.1205291631450977e-9 Iter 115: T = 654.0518315810228 K, F = -1.9544325676523755e-5, relative_change = 4.686186890907196e-10 Iter 120: T = 654.0518306448504 K, F = -8.173670577593661e-6, relative_change = 1.9598193770556796e-10 Iter 125: T = 654.0518302533318 K, F = -3.4183262592191177e-6, relative_change = 8.196197773584649e-11 Iter 130: T = 654.0518300895941 K, F = -1.4295844366629673e-6, relative_change = 3.4277467691368233e-11 Iter 135: T = 654.0518300211171 K, F = -5.978696677733097e-7, relative_change = 1.4335255550767722e-11 Iter 140: T = 654.0518299924792 K, F = -2.500364517654674e-7, relative_change = 5.995180265896071e-12 Iter 145: T = 654.0518299805025 K, F = -1.0456799753866264e-7, relative_change = 2.507250406555705e-12 Iter 150: T = 654.0518299754937 K, F = -4.373158363213392e-8, relative_change = 1.0485620211331882e-12 Iter 155: T = 654.0518299733989 K, F = -1.8289152192707547e-8, relative_change = 4.385231175163494e-13 Converged in 159 iterations to T = 654.0518299726428 K Iter 1: T = 973.5174895935318 K, F = -6034.065187484607, relative_change = 0.026482510406468204 Iter 2: T = 949.2280109281805 K, F = -5106.288229030792, relative_change = 0.02495022321118511 Iter 3: T = 927.0641189267855 K, F = -4319.349158360939, relative_change = 0.02334938681352505 Iter 5: T = 888.7907527244392 K, F = -3086.490009313485, relative_change = 0.020020084452013146 Iter 10: T = 823.627107019401 K, F = -1321.560592268041, relative_change = 0.012008533977981148 Iter 15: T = 790.0913618931404 K, F = -560.1427507416822, relative_change = 0.0061541389624117804 Iter 20: T = 774.4459683942193 K, F = -235.81452746766013, relative_change = 0.0028441613569524455 Iter 25: T = 767.556746621027 K, F = -98.91692525150948, relative_change = 0.0012443969555292712 Iter 30: T = 764.6091404583907 K, F = -41.42211629244868, relative_change = 0.0005306943019609429 Iter 35: T = 763.3643075181382 K, F = -17.332803596031745, relative_change = 0.00022379189464589864 Iter 40: T = 762.8415482012539 K, F = -7.250472745620837, relative_change = 9.391984018043432e-5 Iter 45: T = 762.6225442432919 K, F = -3.0325302674856673, relative_change = 3.9335955455175246e-5 Iter 50: T = 762.530887543811 K, F = -1.2682922041574578, relative_change = 1.646085473608118e-5 Iter 55: T = 762.4925439488354 K, F = -0.5304240161449794, relative_change = 6.885892094955767e-6 Iter 60: T = 762.4765061575278 K, F = -0.22183124476971738, relative_change = 2.880071310985945e-6 Iter 65: T = 762.469798604448 K, F = -0.09277275329814083, relative_change = 1.2045342707038768e-6 Iter 70: T = 762.4669933631607 K, F = -0.03879872190314526, relative_change = 5.037600716949073e-7 Iter 75: T = 762.4658201668238 K, F = -0.01622609734103797, relative_change = 2.1068013177217014e-7 Iter 80: T = 762.4653295201934 K, F = -0.006785949171440153, relative_change = 8.810923636486766e-8 Iter 85: T = 762.4651243255787 K, F = -0.0028379652444541215, relative_change = 3.68483854801918e-8 Iter 90: T = 762.4650385106819 K, F = -0.0011868710028281049, relative_change = 1.541044371450443e-8 Iter 95: T = 762.465002621857 K, F = -0.000496363637074615, relative_change = 6.444833168118301e-9 Iter 100: T = 762.4649876127199 K, F = -0.0002075852016971691, relative_change = 2.6953064619775058e-9 Iter 105: T = 762.4649813357194 K, F = -8.681461220805264e-5, relative_change = 1.1272094182874288e-9 Iter 110: T = 762.4649787106026 K, F = -3.6306907369776376e-5, relative_change = 4.714124450489335e-10 Iter 115: T = 762.4649776127475 K, F = -1.5183983014699365e-5, relative_change = 1.9715032554854706e-10 Iter 120: T = 762.4649771536112 K, F = -6.350121730003266e-6, relative_change = 8.245060395025766e-11 Iter 125: T = 762.4649769615951 K, F = -2.655697472153662e-6, relative_change = 3.448183673648673e-11 Iter 130: T = 762.4649768812916 K, F = -1.1106444254282977e-6, relative_change = 1.4420716279122913e-11 Iter 135: T = 762.4649768477077 K, F = -4.644840060352706e-7, relative_change = 6.030905945480018e-12 Iter 140: T = 762.4649768336625 K, F = -1.9425220332269788e-7, relative_change = 2.522189683222895e-12 Iter 145: T = 762.4649768277886 K, F = -8.12364119306963e-8, relative_change = 1.054781549843155e-12 Iter 150: T = 762.4649768253321 K, F = -3.3974311253182066e-8, relative_change = 4.4112579356171544e-13 Converged in 154 iterations to T = 762.4649768244456 K Iter 1: T = 969.9798670701624 K, F = -6840.115844582099, relative_change = 0.03002013292983762 Iter 2: T = 942.1165185287551 K, F = -5793.993593784918, relative_change = 0.028725697808109102 Iter 3: T = 916.3673335166409 K, F = -4906.134369235198, relative_change = 0.027331210636583586 Iter 5: T = 871.0065424178982 K, F = -3513.622709647473, relative_change = 0.0242824834799788 Iter 10: T = 790.0672564004133 K, F = -1513.3561261056582, relative_change = 0.015980962776160065 Iter 15: T = 745.6274435480482 K, F = -644.5821024310846, relative_change = 0.008832170060537534 Iter 20: T = 723.9316778397781 K, F = -272.18743952346597, relative_change = 0.004274788145030797 Iter 25: T = 714.1341769389078 K, F = -114.35099839404366, relative_change = 0.0019145468132603812 Iter 30: T = 709.8911489154607 K, F = -47.9191710339211, relative_change = 0.0008252404026814101 Iter 35: T = 708.0895451813884 K, F = -20.05763357916528, relative_change = 0.0003496158152702814 Iter 40: T = 707.3312189356687 K, F = -8.391394479806323, relative_change = 0.00014701397396603433 Iter 45: T = 707.0132154543334 K, F = -3.5099177451140178, relative_change = 6.16241296490916e-5 Iter 50: T = 706.8800710321566 K, F = -1.467983509110916, relative_change = 2.5796714032064925e-5 Iter 55: T = 706.8243618810725 K, F = -0.6139446872347646, relative_change = 1.0792831787785528e-5 Iter 60: T = 706.8010589988003 K, F = -0.25676187870661976, relative_change = 4.5144502987601355e-6 Iter 65: T = 706.7913126415624 K, F = -0.1073813875587194, relative_change = 1.8881298378626047e-6 Iter 70: T = 706.7872364562533 K, F = -0.044908266741117475, relative_change = 7.896616779349707e-7 Iter 75: T = 706.7855317219846 K, F = -0.01878118886918012, relative_change = 3.3025000748397886e-7 Iter 80: T = 706.7848187774008 K, F = -0.007854520171412305, relative_change = 1.3811520778823451e-7 Iter 85: T = 706.7845206147001 K, F = -0.0032848546089363495, relative_change = 5.77615536287211e-8 Iter 90: T = 706.7843959193648 K, F = -0.0013737655096177637, relative_change = 2.4156593291798425e-8 Iter 95: T = 706.7843437702631 K, F = -0.0005745251575018928, relative_change = 1.010257962072747e-8 Iter 100: T = 706.7843219608818 K, F = -0.00024027328358189326, relative_change = 4.225020093624032e-9 Iter 105: T = 706.7843128399375 K, F = -0.00010048515796934332, relative_change = 1.7669539920858062e-9 Iter 110: T = 706.7843090254495 K, F = -4.2024093011239216e-5, relative_change = 7.389612786464046e-10 Iter 115: T = 706.784307430185 K, F = -1.757497740406677e-5, relative_change = 3.090424321776771e-10 Iter 120: T = 706.7843067630263 K, F = -7.350065060474087e-6, relative_change = 1.2924522979107456e-10 Iter 125: T = 706.7843064840126 K, F = -3.0738849593481277e-6, relative_change = 5.4051898234946843e-11 Iter 130: T = 706.7843063673258 K, F = -1.2855367476083401e-6, relative_change = 2.2605173073349076e-11 Iter 135: T = 706.784306318526 K, F = -5.376273322088565e-7, relative_change = 9.453762344911145e-12 Iter 140: T = 706.7843062981171 K, F = -2.2484100192787793e-7, relative_change = 3.953655758491731e-12 Iter 145: T = 706.784306289582 K, F = -9.403125689200209e-8, relative_change = 1.6534671929184244e-12 Iter 150: T = 706.7843062860125 K, F = -3.932379322169055e-8, relative_change = 6.914786013061054e-13 Iter 155: T = 706.7843062845197 K, F = -1.6446240591605488e-8, relative_change = 2.8919446750799776e-13 Converged in 157 iterations to T = 706.7843062842038 K Iter 1: T = 973.3618057918823 K, F = -6069.5378897839755, relative_change = 0.026638194208117714 Iter 2: T = 948.9167706986995 K, F = -5136.525573404541, relative_change = 0.02511402743329897 Iter 3: T = 926.5986883898211 K, F = -4345.121800627993, relative_change = 0.02351953616800898 Iter 5: T = 888.026445387328 K, F = -3105.2010444990533, relative_change = 0.020196339393681668 Iter 10: T = 822.2290104662956 K, F = -1329.8868834721827, relative_change = 0.012159164634838278 Iter 15: T = 788.2831653762643 K, F = -563.7738170634507, relative_change = 0.006248675202601473 Iter 20: T = 772.4207496188075 K, F = -237.3682012217603, relative_change = 0.0028924786668432473 Iter 25: T = 765.4299623021886 K, F = -99.57380435415624, relative_change = 0.0012665268049052868 Iter 30: T = 762.4376984169569 K, F = -41.69816067355933, relative_change = 0.0005403212922057755 Iter 35: T = 761.173782436403 K, F = -17.448488001111468, relative_change = 0.00022788597936264533 Iter 40: T = 760.6429692758103 K, F = -7.29889572171066, relative_change = 9.564414342913887e-5 Iter 45: T = 760.4205841728533 K, F = -3.0527887842120647, relative_change = 4.005921389644316e-5 Iter 50: T = 760.3275111654699 K, F = -1.2767658635817691, relative_change = 1.6763704549971623e-5 Iter 55: T = 760.2885748553127 K, F = -0.5339680303032907, relative_change = 7.012613093047786e-6 Iter 60: T = 760.272289113715 K, F = -0.22331343381038715, relative_change = 2.9330790239039114e-6 Iter 65: T = 760.2654778526638 K, F = -0.09339262945191096, relative_change = 1.2267047373048598e-6 Iter 70: T = 760.2626292373304 K, F = -0.039057962735773, relative_change = 5.130323768179967e-7 Iter 75: T = 760.2614379010762 K, F = -0.016334515165824848, relative_change = 2.1455798192472929e-7 Iter 80: T = 760.2609396680505 K, F = -0.006831290836464721, relative_change = 8.97310103349367e-8 Iter 85: T = 760.2607313007032 K, F = -0.0028569276770419316, relative_change = 3.7526632604958274e-8 Iter 90: T = 760.2606441589298 K, F = -0.001194801318932237, relative_change = 1.5694095080103177e-8 Iter 95: T = 760.2606077151888 K, F = -0.0004996801880661206, relative_change = 6.563459586708833e-9 Iter 100: T = 760.2605924739794 K, F = -0.00020897222386884184, relative_change = 2.744917468777104e-9 Iter 105: T = 760.2605860999232 K, F = -8.739467969376413e-5, relative_change = 1.1479573127200065e-9 Iter 110: T = 760.2605834342168 K, F = -3.654949866405133e-5, relative_change = 4.800894644286468e-10 Iter 115: T = 760.2605823193865 K, F = -1.5285437451550976e-5, relative_change = 2.0077915701002491e-10 Iter 120: T = 760.2605818531512 K, F = -6.392554266709816e-6, relative_change = 8.396826486821905e-11 Iter 125: T = 760.260581658166 K, F = -2.673441261702436e-6, relative_change = 3.5116514444845934e-11 Iter 130: T = 760.2605815766208 K, F = -1.118065451555239e-6, relative_change = 1.4686150828266656e-11 Iter 135: T = 760.2605815425176 K, F = -4.6758728833307117e-7, relative_change = 6.141910058802178e-12 Iter 140: T = 760.2605815282553 K, F = -1.955511814699662e-7, relative_change = 2.5686279301347824e-12 Iter 145: T = 760.2605815222906 K, F = -8.178314370166362e-8, relative_change = 1.074248007887544e-12 Iter 150: T = 760.2605815197961 K, F = -3.420219851779649e-8, relative_change = 4.4925692460197985e-13 Converged in 155 iterations to T = 760.2605815187528 K Iter 1: T = 964.2957063738147 K, F = -8135.257266277635, relative_change = 0.03570429362618534 Iter 2: T = 930.5152077852028 K, F = -6901.67345365163, relative_change = 0.03503126516620275 Iter 3: T = 898.6274671274263 K, F = -5854.08025081434, relative_change = 0.03426890865510437 Iter 5: T = 840.417173568177 K, F = -4209.083374695603, relative_change = 0.032450553039095505 Iter 10: T = 726.0368888120615 K, F = -1835.7340436447014, relative_change = 0.026082501525164843 Iter 15: T = 652.1560589129205 K, F = -792.7385480432274, relative_change = 0.01789024465973707 Iter 20: T = 610.3233378124116 K, F = -338.477710813091, relative_change = 0.010270337638686998 Iter 25: T = 589.4044188221412 K, F = -143.16791138941574, relative_change = 0.00509946995077553 Iter 30: T = 579.8211398209138 K, F = -60.201849117421084, relative_change = 0.0023153368960297143 Iter 35: T = 575.6409309864734 K, F = -25.23853971257942, relative_change = 0.0010044216543743168 Iter 40: T = 573.8601904919125 K, F = -10.566137146609574, relative_change = 0.0004267301106204069 Iter 45: T = 573.1095829105474 K, F = -4.420848287021044, relative_change = 0.00017965741062356784 Iter 50: T = 572.7946267146968 K, F = -1.8491969097840604, relative_change = 7.534572476084864e-5 Iter 55: T = 572.6627247377851 K, F = -0.773416778158031, relative_change = 3.154751194666064e-5 Iter 60: T = 572.607529575246 K, F = -0.32346273322991953, relative_change = 1.3200034027482208e-5 Iter 65: T = 572.5844406648064 K, F = -0.13527783270453936, relative_change = 5.52154741005953e-6 Iter 70: T = 572.5747836208462 K, F = -0.05657512963232697, relative_change = 2.3093757346651993e-6 Iter 75: T = 572.5707447572712 K, F = -0.023660451606938943, relative_change = 9.6584326328026e-7 Iter 80: T = 572.569055626124 K, F = -0.009895093350416717, relative_change = 4.039332655824523e-7 Iter 85: T = 572.5683492060299 K, F = -0.004138247947014451, relative_change = 1.6893077876737676e-7 Iter 90: T = 572.5680537717872 K, F = -0.001730665015623023, relative_change = 7.064905506305147e-8 Iter 95: T = 572.5679302174973 K, F = -0.0007237848311873463, relative_change = 2.9546311079357605e-8 Iter 100: T = 572.5678785455895 K, F = -0.00030269546886846355, relative_change = 1.2356625812993756e-8 Iter 105: T = 572.5678569357757 K, F = -0.00012659086146998844, relative_change = 5.1676894716892255e-9 Iter 110: T = 572.5678478982925 K, F = -5.294180987008845e-5, relative_change = 2.161189606106055e-9 Iter 115: T = 572.5678441187091 K, F = -2.214089760699256e-5, relative_change = 9.038353505352872e-10 Iter 120: T = 572.5678425380421 K, F = -9.259588154120202e-6, relative_change = 3.779947571974715e-10 Iter 125: T = 572.5678418769883 K, F = -3.872470847987586e-6, relative_change = 1.5808194291383107e-10 Iter 130: T = 572.5678416005277 K, F = -1.619512878414664e-6, relative_change = 6.611172892762418e-11 Iter 135: T = 572.5678414849085 K, F = -6.772997027670868e-7, relative_change = 2.76487177051524e-11 Iter 140: T = 572.5678414365552 K, F = -2.8325511897131506e-7, relative_change = 1.1563035970826637e-11 Iter 145: T = 572.5678414163333 K, F = -1.184607110182867e-7, relative_change = 4.8358012657952464e-12 Iter 150: T = 572.5678414078762 K, F = -4.9541871272040794e-8, relative_change = 2.022397483221791e-12 Iter 155: T = 572.5678414043393 K, F = -2.071861726626878e-8, relative_change = 8.457750654246485e-13 Iter 160: T = 572.5678414028602 K, F = -8.663776696060665e-9, relative_change = 3.536725548743637e-13 Converged in 163 iterations to T = 572.5678414024271 K Iter 1: T = 963.5584550042958 K, F = -8303.240692129608, relative_change = 0.0364415449957042 Iter 2: T = 928.9943745774152 K, F = -7045.584118508607, relative_change = 0.035871285491160435 Iter 3: T = 896.2742019955858 K, F = -5977.500946458756, relative_change = 0.035221066431875114 Iter 5: T = 836.2466659284447 K, F = -4300.174934840974, relative_change = 0.03365149927079885 Iter 10: T = 716.5069903585448 K, F = -1879.209386510604, relative_change = 0.027935492781374933 Iter 15: T = 636.8093912248466 K, F = -813.7649198077413, relative_change = 0.02002474855882082 Iter 20: T = 590.1080265717208 K, F = -348.4358291694678, relative_change = 0.012012137552247434 Iter 25: T = 566.0727366125816 K, F = -147.68477039653843, relative_change = 0.006156290702596067 Iter 30: T = 554.8592845026493 K, F = -62.17392676233378, relative_change = 0.0028452368527980077 Iter 35: T = 549.9215341111342 K, F = -26.080068019963516, relative_change = 0.00124488484050702 Iter 40: T = 547.8088658740054 K, F = -10.921205081570983, relative_change = 0.0005309056830307697 Iter 45: T = 546.9166412843787 K, F = -4.569904948900932, relative_change = 0.00022388163571488435 Iter 50: T = 546.5419570317076 K, F = -1.9116338242102042, relative_change = 9.395760935220649e-5 Iter 55: T = 546.3849873231452 K, F = -0.7995461548396448, relative_change = 3.9351792980322245e-5 Iter 60: T = 546.3192929460811 K, F = -0.33439342009271894, relative_change = 1.6467485548243095e-5 Iter 65: T = 546.2918104070592 K, F = -0.13984971381372535, relative_change = 6.888666470526671e-6 Iter 70: T = 546.2803154170134 K, F = -0.05848723892401167, relative_change = 2.8812318138193004e-6 Iter 75: T = 546.2755078187814 K, F = -0.02446013499277888, relative_change = 1.2050196463499186e-6 Iter 80: T = 546.2734971789871 K, F = -0.010229533369311566, relative_change = 5.03963068480212e-7 Iter 85: T = 546.2726562975774 K, F = -0.004278115259507803, relative_change = 2.1076502865196662e-7 Iter 90: T = 546.2723046295592 K, F = -0.0017891592841596249, relative_change = 8.814474146797318e-8 Iter 95: T = 546.2721575575546 K, F = -0.0007482478480886345, relative_change = 3.686323417088223e-8 Iter 100: T = 546.2720960502439 K, F = -0.0003129261975516884, relative_change = 1.5416653601576332e-8 Iter 105: T = 546.2720703271447 K, F = -0.00013086947479157285, relative_change = 6.447430186314337e-9 Iter 110: T = 546.2720595694361 K, F = -5.473117754489776e-5, relative_change = 2.6963925688664798e-9 Iter 115: T = 546.2720550704338 K, F = -2.2889232442507845e-5, relative_change = 1.127663636221935e-9 Iter 120: T = 546.2720531888972 K, F = -9.572550534686641e-6, relative_change = 4.716024160262123e-10 Iter 125: T = 546.2720524020161 K, F = -4.003355182774504e-6, relative_change = 1.9722977512772191e-10 Iter 130: T = 546.272052072933 K, F = -1.6742505793698736e-6, relative_change = 8.248382947495071e-11 Iter 135: T = 546.2720519353066 K, F = -7.001921770721786e-7, relative_change = 3.449575166002077e-11 Iter 140: T = 546.2720518777496 K, F = -2.9282959693177624e-7, relative_change = 1.442657800286776e-11 Iter 145: T = 546.2720518536785 K, F = -1.224646695996423e-7, relative_change = 6.033359084795386e-12 Iter 150: T = 546.2720518436116 K, F = -5.1215421209560574e-8, relative_change = 2.523185077570627e-12 Iter 155: T = 546.2720518394017 K, F = -2.141902893937342e-8, relative_change = 1.0552324460386302e-12 Iter 160: T = 546.2720518376409 K, F = -8.95760901564735e-9, relative_change = 4.413066390236082e-13 Converged in 164 iterations to T = 546.2720518370054 K Iter 1: T = 969.2638206095024 K, F = -7003.267711779502, relative_change = 0.030736179390497602 Iter 2: T = 940.6670392609105 K, F = -5933.348306547899, relative_change = 0.029503609585478312 Iter 3: T = 914.1708659748315 K, F = -5025.19972896128, relative_change = 0.028167430323589607 Iter 5: T = 867.2961148027257 K, F = -3600.591364369173, relative_change = 0.02521537736014896 Iter 10: T = 782.7685904430045 K, F = -1552.9017555106088, relative_change = 0.016951651472489775 Iter 15: T = 735.6252704502668 K, F = -662.2442809457905, relative_change = 0.009550065250166138 Iter 20: T = 712.3315134205722 K, F = -279.87804872981275, relative_change = 0.004681266712908659 Iter 25: T = 701.7374954961665 K, F = -117.63421216996889, relative_change = 0.002110735456644192 Iter 30: T = 697.133311795955 K, F = -49.3052871493841, relative_change = 0.0009126645951366886 Iter 35: T = 695.1752375581539 K, F = -20.63971543680406, relative_change = 0.00038718636366770015 Iter 40: T = 694.3504805466066 K, F = -8.635254980455699, relative_change = 0.00016290823340084148 Iter 45: T = 694.0045179530599 K, F = -3.611978434183706, relative_change = 6.830350317051784e-5 Iter 50: T = 693.8596494965311 K, F = -1.5106797287273603, relative_change = 2.859577048785321e-5 Iter 55: T = 693.7990317391719 K, F = -0.6318030719880455, relative_change = 1.1964423248014838e-5 Iter 60: T = 693.7736750601957 K, F = -0.2642308737791269, relative_change = 5.004597612268653e-6 Iter 65: T = 693.7630696128314 K, F = -0.11050508140166176, relative_change = 2.09314570294027e-6 Iter 70: T = 693.7586341164131 K, F = -0.04621464521383689, relative_change = 8.754070798433211e-7 Iter 75: T = 693.7567791088121 K, F = -0.019327534116715728, relative_change = 3.66110688880084e-7 Iter 80: T = 693.756003317228 K, F = -0.008083008659269475, relative_change = 1.531127357519409e-7 Iter 85: T = 693.755678871004 K, F = -0.003380411288656404, relative_change = 6.403372737158482e-8 Iter 90: T = 693.7555431835577 K, F = -0.0014137284643949144, relative_change = 2.677969620677725e-8 Iter 95: T = 693.7554864374192 K, F = -0.0005912381436600223, relative_change = 1.119959344235108e-8 Iter 100: T = 693.7554627055015 K, F = -0.0002472628556039469, relative_change = 4.6838045496106995e-9 Iter 105: T = 693.7554527805293 K, F = -0.00010340828000310331, relative_change = 1.9588231485602262e-9 Iter 110: T = 693.7554486297871 K, F = -4.32465777451263e-5, relative_change = 8.192032590979397e-10 Iter 115: T = 693.7554468938972 K, F = -1.8086234546910163e-5, relative_change = 3.4260057638470046e-10 Iter 120: T = 693.7554461679273 K, F = -7.563879328986722e-6, relative_change = 1.4327965414827933e-10 Iter 125: T = 693.7554458643181 K, F = -3.1633051760238118e-6, relative_change = 5.992127224896373e-11 Iter 130: T = 693.755445737345 K, F = -1.3229314526075342e-6, relative_change = 2.5059781271920196e-11 Iter 135: T = 693.7554456842433 K, F = -5.532650710904363e-7, relative_change = 1.0480287277654982e-11 Iter 140: T = 693.7554456620356 K, F = -2.3138191374005856e-7, relative_change = 4.382978528609475e-12 Iter 145: T = 693.7554456527481 K, F = -9.676727730223433e-8, relative_change = 1.8330252864586665e-12 Iter 150: T = 693.7554456488639 K, F = -4.0468437600971185e-8, relative_change = 7.665780364610865e-13 Iter 155: T = 693.7554456472395 K, F = -1.6924155854525225e-8, relative_change = 3.20587769950294e-13 Converged in 158 iterations to T = 693.755445646764 K Iter 1: T = 966.4788962767173 K, F = -7637.815370151545, relative_change = 0.03352110372328275 Iter 2: T = 934.9969285433481 K, F = -6475.841650251684, relative_change = 0.03257388014849671 Iter 3: T = 905.52437385878 K, F = -5489.2359228708365, relative_change = 0.03152155240818173 Iter 5: T = 852.4828774218721 K, F = -3940.5653800479954, relative_change = 0.029096693006837555 Iter 10: T = 752.422012008895 K, F = -1709.4515656303038, relative_change = 0.02145949894450152 Iter 15: T = 692.4211502227546 K, F = -733.3744110496847, relative_change = 0.01327103620928137 Iter 20: T = 660.8971584039654 K, F = -311.3152135497885, relative_change = 0.006962737502150649 Iter 25: T = 645.9856891745475 K, F = -131.17934039579794, relative_change = 0.003262434669131838 Iter 30: T = 639.3707579777025 K, F = -55.0504274644272, relative_change = 0.0014371167041144885 Iter 35: T = 636.530603212032 K, F = -23.05741293775285, relative_change = 0.0006147579731569589 Iter 40: T = 635.329299709494 K, F = -9.649065544683413, relative_change = 0.0002595834501381421 Iter 45: T = 634.8244876301832 K, F = -4.03644414405077, relative_change = 0.00010900159917640678 Iter 50: T = 634.6129435830734 K, F = -1.6882803869110588, relative_change = 4.566330965795435e-5 Iter 55: T = 634.5243986280158 K, F = -0.7060925160892977, relative_change = 1.911053700669799e-5 Iter 60: T = 634.487354984044 K, F = -0.29530218469787783, relative_change = 7.994635171059648e-6 Iter 65: T = 634.4718605994816 K, F = -0.12349992579145486, relative_change = 3.3438684152310674e-6 Iter 70: T = 634.4653802621414 K, F = -0.051649323236954314, relative_change = 1.3985185667569794e-6 Iter 75: T = 634.4626700375885 K, F = -0.021600395170541964, relative_change = 5.848899108564246e-7 Iter 80: T = 634.461536577055 K, F = -0.009033548708622552, relative_change = 2.4461017482032104e-7 Iter 85: T = 634.4610625481797 K, F = -0.0037779389126177954, relative_change = 1.0229928623809199e-7 Iter 90: T = 634.460864303268 K, F = -0.0015799793389746353, relative_change = 4.2782851399576684e-8 Iter 95: T = 634.4607813948127 K, F = -0.0006607662569442785, relative_change = 1.7892311292365633e-8 Iter 100: T = 634.4607467214952 K, F = -0.00027634034547230346, relative_change = 7.482780360434586e-9 Iter 105: T = 634.4607322206978 K, F = -0.00011556883460261957, relative_change = 3.1293885026621208e-9 Iter 110: T = 634.4607261562907 K, F = -4.833226701189686e-5, relative_change = 1.308747709516232e-9 Iter 115: T = 634.4607236200831 K, F = -2.0213131276924923e-5, relative_change = 5.473339323764448e-10 Iter 120: T = 634.4607225594108 K, F = -8.45337217397768e-6, relative_change = 2.289015693443284e-10 Iter 125: T = 634.4607221158249 K, F = -3.535300153845178e-6, relative_change = 9.572934201373374e-11 Iter 130: T = 634.460721930312 K, F = -1.4785044308851525e-6, relative_change = 4.0035145637100873e-11 Iter 135: T = 634.4607218527284 K, F = -6.18328344470509e-7, relative_change = 1.674317967516407e-11 Iter 140: T = 634.460721820282 K, F = -2.585925724662985e-7, relative_change = 7.0022051281312445e-12 Iter 145: T = 634.4607218067124 K, F = -1.0814580680973407e-7, relative_change = 2.928386982981927e-12 Iter 150: T = 634.4607218010375 K, F = -4.522759089464756e-8, relative_change = 1.2246789067482995e-12 Iter 155: T = 634.4607217986643 K, F = -1.8914907751188537e-8, relative_change = 5.121804652461486e-13 Converged in 160 iterations to T = 634.4607217976718 K Iter 1: T = 966.3988773355765 K, F = -7656.047762008139, relative_change = 0.03360112266442354 Iter 2: T = 934.8332366381973 K, F = -6491.4407853596185, relative_change = 0.03266315952726232 Iter 3: T = 905.2734530032453 K, F = -5502.5916009525345, relative_change = 0.03162038155730685 Iter 5: T = 852.0479007652144 K, F = -3950.3754693715214, relative_change = 0.02921454499872235 Iter 10: T = 751.4988799251418 K, F = -1714.0204892317226, relative_change = 0.02160950469754693 Iter 15: T = 691.0599740749959 K, F = -735.4858254199881, relative_change = 0.013407006069618876 Iter 20: T = 659.235242835143 K, F = -312.2633333465976, relative_change = 0.007052084060653042 Iter 25: T = 644.1586021545714 K, F = -131.59209319695336, relative_change = 0.0033093586892464274 Iter 30: T = 637.464844899923 K, F = -55.22643537156297, relative_change = 0.0014589002944035256 Iter 35: T = 634.5897118452785 K, F = -23.131664218744906, relative_change = 0.0006242922527524724 Iter 40: T = 633.3734010936918 K, F = -9.6802347332267, relative_change = 0.00026364880507389894 Iter 45: T = 632.8622443931529 K, F = -4.0495001382385665, relative_change = 0.00011071571702024136 Iter 50: T = 632.6480348226352 K, F = -1.6937441971192428, relative_change = 4.638263398652371e-5 Iter 55: T = 632.558372980798 K, F = -0.7083781846547375, relative_change = 1.941179887518823e-5 Iter 60: T = 632.5208618674775 K, F = -0.2962581902773337, relative_change = 8.120702131635654e-6 Iter 65: T = 632.5051719161798 K, F = -0.12389975828478689, relative_change = 3.3966043635884944e-6 Iter 70: T = 632.4986097790398 K, F = -0.05181654138034686, relative_change = 1.4205756864956497e-6 Iter 75: T = 632.4958653428297 K, F = -0.021670328393493254, relative_change = 5.941148669304024e-7 Iter 80: T = 632.4947175742221 K, F = -0.009062795721587968, relative_change = 2.4846823246982085e-7 Iter 85: T = 632.4942375614779 K, F = -0.003790170380409852, relative_change = 1.039127844005148e-7 Iter 90: T = 632.4940368140301 K, F = -0.0015850946877869476, relative_change = 4.345763776019328e-8 Iter 95: T = 632.4939528589824 K, F = -0.0006629055573633136, relative_change = 1.8174515383045583e-8 Iter 100: T = 632.4939177479672 K, F = -0.00027723502549120704, relative_change = 7.600801518723214e-9 Iter 105: T = 632.4939030641192 K, F = -0.00011594299963968435, relative_change = 3.1787463492073774e-9 Iter 110: T = 632.4938969231583 K, F = -4.8488747400710075e-5, relative_change = 1.3293897551510793e-9 Iter 115: T = 632.4938943549349 K, F = -2.0278572074650114e-5, relative_change = 5.559666506437652e-10 Iter 120: T = 632.4938932808733 K, F = -8.480740357141858e-6, relative_change = 2.3251187667960917e-10 Iter 125: T = 632.493892831688 K, F = -3.5467467838223854e-6, relative_change = 9.723924078252929e-11 Iter 130: T = 632.4938926438332 K, F = -1.4832916324092338e-6, relative_change = 4.066660553733211e-11 Iter 135: T = 632.4938925652702 K, F = -6.203300579876725e-7, relative_change = 1.7007254160180846e-11 Iter 140: T = 632.4938925324143 K, F = -2.5943088582947027e-7, relative_change = 7.112676480173977e-12 Iter 145: T = 632.4938925186735 K, F = -1.0849781878485842e-7, relative_change = 2.9746260991003288e-12 Iter 150: T = 632.493892512927 K, F = -4.537568387696922e-8, relative_change = 1.2440406179818418e-12 Iter 155: T = 632.4938925105237 K, F = -1.897648443938138e-8, relative_change = 5.202680249079417e-13 Converged in 160 iterations to T = 632.4938925095184 K Iter 1: T = 976.4104572290785 K, F = -5374.899759802639, relative_change = 0.02358954277092154 Iter 2: T = 954.9831053724428 K, F = -4544.865830876254, relative_change = 0.021945024961575695 Iter 3: T = 935.6265279949491 K, F = -3841.2726080454554, relative_change = 0.020269025984438267 Iter 5: T = 902.705569318453 K, F = -2740.1786293295286, relative_change = 0.016915712866077702 Iter 10: T = 848.4727906493843 K, F = -1168.5126314973147, relative_change = 0.009523087580546562 Iter 15: T = 821.6879965124308 K, F = -493.82219264369405, relative_change = 0.004665830509071135 Iter 20: T = 809.5094860521633 K, F = -207.55259252913172, relative_change = 0.0021032422685942085 Iter 25: T = 804.2173818383945 K, F = -86.9930559145293, relative_change = 0.0009093164628229107 Iter 30: T = 801.966883610288 K, F = -36.41608818372363, relative_change = 0.00038574577933488 Iter 35: T = 801.0189800206698 K, F = -15.235759461252512, relative_change = 0.00016229848020882394 Iter 40: T = 800.6213652889227 K, F = -6.372851781524671, relative_change = 6.804720616258366e-5 Iter 45: T = 800.4548687833679 K, F = -2.665391181159849, relative_change = 2.848835696866055e-5 Iter 50: T = 800.385201271149 K, F = -1.114731414266248, relative_change = 1.1919461827340436e-5 Iter 55: T = 800.3560590631948 K, F = -0.46619976236126226, relative_change = 4.985787240585608e-6 Iter 60: T = 800.3438703200807 K, F = -0.19497131791278433, relative_change = 2.0852777615419387e-6 Iter 65: T = 800.338772645575 K, F = -0.08153951019354533, relative_change = 8.721163994895989e-7 Iter 70: T = 800.3366407028351 K, F = -0.03410082783221846, relative_change = 3.647344497405229e-7 Iter 75: T = 800.335749092907 K, F = -0.014261378847111539, relative_change = 1.5253716955628896e-7 Iter 80: T = 800.3353762099352 K, F = -0.005964279893850399, relative_change = 6.379301758715665e-8 Iter 85: T = 800.3352202656395 K, F = -0.0024943332455165113, relative_change = 2.6679028323949116e-8 Iter 90: T = 800.3351550478404 K, F = -0.001043159981109043, relative_change = 1.1157492901270657e-8 Iter 95: T = 800.3351277729723 K, F = -0.0004362619676244739, relative_change = 4.6661975965623684e-9 Iter 100: T = 800.3351163662958 K, F = -0.00018244996507210676, relative_change = 1.951459695008177e-9 Iter 105: T = 800.3351115958872 K, F = -7.630275268821762e-5, relative_change = 8.161237556617085e-10 Iter 110: T = 800.3351096008454 K, F = -3.191072385000382e-5, relative_change = 3.413127205234747e-10 Iter 115: T = 800.335108766495 K, F = -1.3345444221046776e-5, relative_change = 1.4274103958592377e-10 Iter 120: T = 800.3351084175598 K, F = -5.58122405780459e-6, relative_change = 5.969600656457339e-11 Iter 125: T = 800.3351082716309 K, F = -2.334134807324695e-6, relative_change = 2.4965585588124468e-11 Iter 130: T = 800.3351082106017 K, F = -9.761619146342326e-7, relative_change = 1.0440893884980486e-11 Iter 135: T = 800.3351081850785 K, F = -4.0824197578004373e-7, relative_change = 4.366500152547476e-12 Iter 140: T = 800.3351081744045 K, F = -1.7073352631680194e-7, relative_change = 1.826142368947125e-12 Iter 145: T = 800.3351081699404 K, F = -7.140193847288145e-8, relative_change = 7.637053359502699e-13 Iter 150: T = 800.3351081680735 K, F = -2.985987535009116e-8, relative_change = 3.193771293000521e-13 Converged in 153 iterations to T = 800.3351081675269 K Iter 1: T = 965.1761358860767 K, F = -7934.650564404054, relative_change = 0.03482386411392331 Iter 2: T = 932.3264996076242 K, F = -6729.886990880456, relative_change = 0.034034861676615125 Iter 3: T = 901.4216269970788 K, F = -5706.832956350719, relative_change = 0.033148122061908585 Iter 5: T = 845.3331634427889 K, F = -4100.578215393246, relative_change = 0.031062666058227117 Iter 10: T = 736.9892525866046 K, F = -1784.3862904755836, relative_change = 0.024076647939888597 Iter 15: T = 669.2326857596177 K, F = -768.3277270523346, relative_change = 0.015771782052121666 Iter 20: T = 632.1570268855567 K, F = -327.16615570120234, relative_change = 0.008680843019685604 Iter 25: T = 614.1025390189394 K, F = -138.1281977787582, relative_change = 0.0041903691877877925 Iter 30: T = 605.9614544106267 K, F = -58.02486908287253, relative_change = 0.0018741237833179477 Iter 35: T = 602.4383454514092 K, F = -24.314471628586574, relative_change = 0.0008072942673522384 Iter 40: T = 600.9429132725518 K, F = -10.177170386110076, relative_change = 0.00034191606854330883 Iter 45: T = 600.3135492974126 K, F = -4.257728804690787, relative_change = 0.00014375886392648896 Iter 50: T = 600.0496419237908 K, F = -1.7808991342570588, relative_change = 6.0256611761231036e-5 Iter 55: T = 599.9391497213192 K, F = -0.744839915379457, relative_change = 2.522371330877905e-5 Iter 60: T = 599.8929190091499 K, F = -0.31150910974388696, relative_change = 1.0553005279140642e-5 Iter 65: T = 599.8735810003224 K, F = -0.13027825786898886, relative_change = 4.4141185947824095e-6 Iter 70: T = 599.8654929539742 K, F = -0.054484173070973585, relative_change = 1.8461640782724443e-6 Iter 75: T = 599.8621103209292 K, F = -0.02278597554218681, relative_change = 7.721100740527425e-7 Iter 80: T = 599.8606956431956 K, F = -0.009529374733431961, relative_change = 3.2290953835802144e-7 Iter 85: T = 599.8601040045402 K, F = -0.003985299654467589, relative_change = 1.350453047014648e-7 Iter 90: T = 599.8598565735709 K, F = -0.0016667001436987405, relative_change = 5.647767803650125e-8 Iter 95: T = 599.8597530948767 K, F = -0.0006970339459137498, relative_change = 2.361966023588327e-8 Iter 100: T = 599.859709818832 K, F = -0.0002915079278578703, relative_change = 9.878027630281866e-9 Iter 105: T = 599.85969172027 K, F = -0.00012191209807876913, relative_change = 4.1311097613037855e-9 Iter 110: T = 599.8596841512347 K, F = -5.098509615208968e-5, relative_change = 1.7276795688630439e-9 Iter 115: T = 599.8596809857736 K, F = -2.132257637188495e-5, relative_change = 7.225362558668409e-10 Iter 120: T = 599.8596796619398 K, F = -8.917355627413581e-6, relative_change = 3.0217327880966573e-10 Iter 125: T = 599.8596791082969 K, F = -3.729344146830016e-6, relative_change = 1.2637245846119704e-10 Iter 130: T = 599.8596788767568 K, F = -1.5596563603392788e-6, relative_change = 5.285047483227163e-11 Iter 135: T = 599.8596787799239 K, F = -6.522670380482154e-7, relative_change = 2.2102703891312403e-11 Iter 140: T = 599.8596787394274 K, F = -2.7278690983845166e-7, relative_change = 9.243650136859498e-12 Iter 145: T = 599.859678722491 K, F = -1.1408254801947848e-7, relative_change = 3.8657982576209246e-12 Iter 150: T = 599.8596787154081 K, F = -4.771093348177047e-8, relative_change = 1.6167314522303014e-12 Iter 155: T = 599.8596787124459 K, F = -1.9953078855827755e-8, relative_change = 6.761295116586235e-13 Iter 160: T = 599.8596787112072 K, F = -8.3445703125129e-9, relative_change = 2.8276389279181287e-13 Converged in 162 iterations to T = 599.859678710945 K Iter 1: T = 964.5637217542965 K, F = -8074.189706886419, relative_change = 0.03543627824570358 Iter 2: T = 931.0671539885936 K, F = -6849.370836985218, relative_change = 0.03472716940336616 Iter 3: T = 899.4798982428019 K, F = -5809.239682186343, relative_change = 0.03392586196438704 Iter 5: T = 841.9210117418897 K, F = -4176.021182461994, relative_change = 0.03202282369486167 Iter 10: T = 729.4185491961292 K, F = -1820.0393114297015, relative_change = 0.02544940970309152 Iter 15: T = 657.4890489725932 K, F = -785.2321699033981, relative_change = 0.017201139060202396 Iter 20: T = 617.2108380186254 K, F = -334.97396982433224, relative_change = 0.009738850007771003 Iter 25: T = 597.2465806251934 K, F = -141.59790826867373, relative_change = 0.004789830870250793 Iter 30: T = 588.149690359236 K, F = -59.521410384570416, relative_change = 0.0021635731208625017 Iter 35: T = 584.1924196468842 K, F = -24.949245450516216, relative_change = 0.00093630217994927 Iter 40: T = 582.5087412329663 K, F = -10.444276923277284, relative_change = 0.0003973621551175124 Iter 45: T = 581.7994296051295 K, F = -4.369728351353293, relative_change = 0.00016721628843933782 Iter 50: T = 581.5018695385319 K, F = -1.8277902866353337, relative_change = 7.011447573360026e-5 Iter 55: T = 581.3772650076014 K, F = -0.764459415186765, relative_change = 2.9354775351451473e-5 Iter 60: T = 581.3251256174848 K, F = -0.3197158059667148, relative_change = 1.2282134704059197e-5 Iter 65: T = 581.3033153495908 K, F = -0.13371067400732395, relative_change = 5.137518506565436e-6 Iter 70: T = 581.2941931685788 K, F = -0.0559196990868637, relative_change = 2.1487435866092375e-6 Iter 75: T = 581.2903780119591 K, F = -0.02338633816647495, relative_change = 8.986603143937346e-7 Iter 80: T = 581.2887824413851 K, F = -0.009780455038765679, relative_change = 3.7583573784568283e-7 Iter 85: T = 581.2881151500789 K, F = -0.004090304695564706, relative_change = 1.5717991431883436e-7 Iter 90: T = 581.2878360800744 K, F = -0.001710614551017231, relative_change = 6.573467825243109e-8 Iter 95: T = 581.287719369524 K, F = -0.0007153994829947607, relative_change = 2.749105563318822e-8 Iter 100: T = 581.2876705597531 K, F = -0.0002991886155338519, relative_change = 1.1497092684643572e-8 Iter 105: T = 581.2876501469196 K, F = -0.0001251242535066921, relative_change = 4.808222323585667e-9 Iter 110: T = 581.2876416100282 K, F = -5.232845682329179e-5, relative_change = 2.0108561273880264e-9 Iter 115: T = 581.2876380397983 K, F = -2.188438659733727e-5, relative_change = 8.409641109575979e-10 Iter 120: T = 581.2876365466852 K, F = -9.152311443438865e-6, relative_change = 3.51701223889867e-10 Iter 125: T = 581.2876359222475 K, F = -3.827605414730151e-6, relative_change = 1.4708563231618288e-10 Iter 130: T = 581.2876356611004 K, F = -1.6007501359993626e-6, relative_change = 6.151296200260825e-11 Iter 135: T = 581.2876355518855 K, F = -6.694536074380864e-7, relative_change = 2.5725485463085426e-11 Iter 140: T = 581.2876355062104 K, F = -2.7997327461948274e-7, relative_change = 1.0758696837161211e-11 Iter 145: T = 581.2876354871086 K, F = -1.1708780478514313e-7, relative_change = 4.499401583673479e-12 Iter 150: T = 581.28763547912 K, F = -4.89670840542189e-8, relative_change = 1.8816867901839454e-12 Iter 155: T = 581.287635475779 K, F = -2.0478061635298417e-8, relative_change = 7.869224564424133e-13 Iter 160: T = 581.2876354743818 K, F = -8.563899478453152e-9, relative_change = 3.290899761123397e-13 Converged in 163 iterations to T = 581.2876354739728 K Iter 1: T = 964.3419631147009 K, F = -8124.71762386518, relative_change = 0.03565803688529908 Iter 2: T = 930.610503355712 K, F = -6892.64602995783, relative_change = 0.034978732699799314 Iter 3: T = 898.774704120686 K, F = -5846.340197696404, relative_change = 0.034209585127428194 Iter 5: T = 840.6771840362223 K, F = -4203.375183693828, relative_change = 0.03237639900817369 Iter 10: T = 726.6235922315939 K, F = -1833.021205854607, relative_change = 0.025971763203564913 Iter 15: T = 653.0853543182201 K, F = -791.438059771995, relative_change = 0.017768292381233012 Iter 20: T = 611.5282922296027 K, F = -337.8689200031204, relative_change = 0.01017522796065587 Iter 25: T = 590.7800285779414 K, F = -142.8944748693545, relative_change = 0.005043632273957917 Iter 30: T = 581.2841289319509 K, F = -60.083177411823534, relative_change = 0.00228785411405127 Iter 35: T = 577.1440725084719 K, F = -25.18805101947523, relative_change = 0.0009920614131279178 Iter 40: T = 575.3808338301376 K, F = -10.544863137782007, relative_change = 0.00042139662797502077 Iter 45: T = 574.6376763414195 K, F = -4.4119227358261295, relative_change = 0.00017739714167949692 Iter 50: T = 574.3258592135976 K, F = -1.8454590997854003, relative_change = 7.439517473394661e-5 Iter 55: T = 574.1952741541792 K, F = -0.7718526963902885, relative_change = 3.114905166630594e-5 Iter 60: T = 574.1406304659528 K, F = -0.3228084604870147, relative_change = 1.3033230294539203e-5 Iter 65: T = 574.1177723154358 K, F = -0.13500418088726043, relative_change = 5.451759577428729e-6 Iter 70: T = 574.1082118002199 K, F = -0.056460680425650084, relative_change = 2.2801846392946066e-6 Iter 75: T = 574.1042133100004 K, F = -0.023612586751196374, relative_change = 9.536343256027399e-7 Iter 80: T = 574.1025410641519 K, F = -0.009875075551306012, relative_change = 3.988271893637812e-7 Iter 85: T = 574.1018417058099 K, F = -0.004129876238387453, relative_change = 1.6679532998300075e-7 Iter 90: T = 574.1015492248972 K, F = -0.001727163862784542, relative_change = 6.975598021312831e-8 Iter 95: T = 574.1014269057288 K, F = -0.0007223206066362398, relative_change = 2.9172815700814358e-8 Iter 100: T = 574.1013757503641 K, F = -0.0003020831123449752, relative_change = 1.2200425434766027e-8 Iter 105: T = 574.1013543565749 K, F = -0.0001263347663709169, relative_change = 5.102364572508382e-9 Iter 110: T = 574.1013454094359 K, F = -5.283470846145777e-5, relative_change = 2.133869974185541e-9 Iter 115: T = 574.1013416676353 K, F = -2.20961053481461e-5, relative_change = 8.924099060055185e-10 Iter 120: T = 574.1013401027698 K, F = -9.240855619485622e-6, relative_change = 3.7321650453232286e-10 Iter 125: T = 574.1013394483242 K, F = -3.864635584160947e-6, relative_change = 1.5608357615698065e-10 Iter 130: T = 574.1013391746274 K, F = -1.6162371631045502e-6, relative_change = 6.527603221935265e-11 Iter 135: T = 574.101339060164 K, F = -6.759301951486663e-7, relative_change = 2.7299236922437366e-11 Iter 140: T = 574.1013390122941 K, F = -2.826823086166108e-7, relative_change = 1.1416876143656483e-11 Iter 145: T = 574.1013389922743 K, F = -1.1822138840100749e-7, relative_change = 4.774684895332633e-12 Iter 150: T = 574.1013389839018 K, F = -4.944198905842967e-8, relative_change = 1.9968461000316276e-12 Iter 155: T = 574.1013389804003 K, F = -2.067735244137836e-8, relative_change = 8.35109819994288e-13 Iter 160: T = 574.1013389789358 K, F = -8.647149662976972e-9, relative_change = 3.492381154247371e-13 Converged in 163 iterations to T = 574.1013389785072 K Iter 1: T = 980.1540366569869 K, F = -4521.921626090329, relative_change = 0.01984596334301306 Iter 2: T = 962.3512587626687 K, F = -3819.6656958074495, relative_change = 0.018163244988551087 Iter 3: T = 946.470679092972 K, F = -3224.9667556913114, relative_change = 0.016501853689176928 Iter 5: T = 919.9526187508443 K, F = -2295.7710316758985, relative_change = 0.013331752261805897 Iter 10: T = 877.8539552311713 K, F = -974.6212218182691, relative_change = 0.007002680824737702 Iter 15: T = 857.9267192197757 K, F = -410.6962814260903, relative_change = 0.0032834195029048615 Iter 20: T = 849.0834003680867 K, F = -172.35582758950034, relative_change = 0.0014468593624844643 Iter 25: T = 845.2857975528374 K, F = -72.19055409488165, relative_change = 0.0006190222604131443 Iter 30: T = 843.6793941175482 K, F = -30.210437495354224, relative_change = 0.00026140172872182634 Iter 35: T = 843.0043279543821 K, F = -12.6378017336929, relative_change = 0.00010976826103438032 Iter 40: T = 842.7214340229059 K, F = -5.285882636932179, relative_change = 4.5985037324797856e-5 Iter 45: T = 842.6030237839924 K, F = -2.2107248669413924, relative_change = 1.9245280567568818e-5 Iter 50: T = 842.5534855828902 K, F = -0.9245700252863256, relative_change = 8.051020383029994e-6 Iter 55: T = 842.5327650309697 K, F = -0.38666945995027635, relative_change = 3.3674553077837127e-6 Iter 60: T = 842.5240989090568 K, F = -0.16171035156809643, relative_change = 1.4083839232554973e-6 Iter 65: T = 842.520474538983 K, F = -0.06762929917294835, relative_change = 5.89015902037072e-7 Iter 70: T = 842.5189587676239 K, F = -0.028283397873847482, relative_change = 2.463357453059086e-7 Iter 75: T = 842.5183248510517 K, F = -0.011828457790360902, relative_change = 1.0302094596322282e-7 Iter 80: T = 842.5180597390656 K, F = -0.004946802836265807, relative_change = 4.30846590695071e-8 Iter 85: T = 842.5179488659787 K, F = -0.0020688121153518146, relative_change = 1.8018531052922553e-8 Iter 90: T = 842.5179024975142 K, F = -0.000865201949125094, relative_change = 7.535566983975182e-9 Iter 95: T = 842.517883105666 K, F = -0.00036183779253096127, relative_change = 3.151464492790858e-9 Iter 100: T = 842.5178749957628 K, F = -0.00015132488418001522, relative_change = 1.3179801310691599e-9 Iter 105: T = 842.5178716041045 K, F = -6.328587292081522e-5, relative_change = 5.511950340335702e-10 Iter 110: T = 842.5178701856725 K, F = -2.6466909531785987e-5, relative_change = 2.305163624009698e-10 Iter 115: T = 842.5178695924673 K, F = -1.1068777759026815e-5, relative_change = 9.640469699437264e-11 Iter 120: T = 842.5178693443818 K, F = -4.629095074148992e-6, relative_change = 4.0317595882996444e-11 Iter 125: T = 842.5178692406295 K, F = -1.935945728170907e-6, relative_change = 1.6861325229947214e-11 Iter 130: T = 842.517869197239 K, F = -8.096363828258291e-7, relative_change = 7.051614192237673e-12 Iter 135: T = 842.5178691790925 K, F = -3.385978128989109e-7, relative_change = 2.949053666301326e-12 Iter 140: T = 842.5178691715034 K, F = -1.4160477390667836e-7, relative_change = 1.2333218401438563e-12 Iter 145: T = 842.5178691683296 K, F = -5.921970647193575e-8, relative_change = 5.157803324356162e-13 Converged in 150 iterations to T = 842.5178691670022 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014149540130273218 Iteration 10: d = 1.1980889895749773e-5 Iteration 20: d = 1.3205351830278095e-7 Iteration 30: d = 1.7907234238325552e-9 Iteration 40: d = 2.4978420647251642e-11 Iteration 50: d = 3.501172462282117e-13 Iteration 60: d = 4.922858144659746e-15 Converged after 62 iterations. d = 2.07243084547641e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.80012172292 Iteration 2: convergence error = 4821.108051561281 Iteration 3: convergence error = 1102.4328204161325 Iteration 4: convergence error = 322.5459687356488 Iteration 5: convergence error = 95.78070968514953 Iteration 6: convergence error = 28.589509322179993 Iteration 7: convergence error = 8.564226519336898 Iteration 8: convergence error = 2.569964804266874 Iteration 9: convergence error = 0.7693473729368634 Iteration 10: convergence error = 0.2299946326229474 Iteration 11: convergence error = 0.06870236509894312 Iteration 12: convergence error = 0.020513131601092027 Iteration 13: convergence error = 0.006123250178688977 Iteration 14: convergence error = 0.0018275490301675745 Iteration 15: convergence error = 0.0005454059848943871 Iteration 16: convergence error = 0.00016276082715194207 Iteration 17: convergence error = 4.8569972705081454e-5 Iteration 18: convergence error = 1.4493685739580542e-5 Iteration 19: convergence error = 4.324989959059167e-6 Iteration 20: convergence error = 1.2906032225146191e-6 Iteration 21: convergence error = 3.851116616715444e-7 Iteration 22: convergence error = 1.1478232408990152e-7 Iteration 23: convergence error = 3.335321707709227e-8 Iteration 24: convergence error = 9.630639397073537e-9 Iteration 25: convergence error = 2.773958840407431e-9 Iteration 26: convergence error = 7.95580490375869e-10 Iteration 27: convergence error = 2.305569068994373e-10 Iteration 28: convergence error = 6.45741238258779e-11 Iteration 29: convergence error = 1.9326762412674725e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▌ | ETA: 0:00:01 Bin 1 progress: 94%|███████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001769732365610745 Iteration 10: d = 1.566776989482763e-5 Iteration 20: d = 1.563716350681654e-7 Iteration 30: d = 1.8439351238410625e-9 Iteration 40: d = 2.2857557201125425e-11 Iteration 50: d = 2.891752534653464e-13 Iteration 60: d = 3.724321106119825e-15 Converged after 62 iterations. d = 1.5772179335908686e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12291.455476147174 Iteration 2: convergence error = 8311.058669129925 Iteration 3: convergence error = 1962.418306277997 Iteration 4: convergence error = 484.4959554946952 Iteration 5: convergence error = 123.6801522630135 Iteration 6: convergence error = 33.050748772237284 Iteration 7: convergence error = 9.010969097358384 Iteration 8: convergence error = 2.470777016627153 Iteration 9: convergence error = 0.6782994402435634 Iteration 10: convergence error = 0.18623741340297784 Iteration 11: convergence error = 0.051131423318565794 Iteration 12: convergence error = 0.014037318097052776 Iteration 13: convergence error = 0.003853592422501606 Iteration 14: convergence error = 0.0010578888570762501 Iteration 15: convergence error = 0.0002904095442772814 Iteration 16: convergence error = 7.97223722202034e-5 Iteration 17: convergence error = 2.1885120986553375e-5 Iteration 18: convergence error = 6.0078252772655105e-6 Iteration 19: convergence error = 1.649247906243545e-6 Iteration 20: convergence error = 4.527439614321338e-7 Iteration 21: convergence error = 1.2513305591710377e-7 Iteration 22: convergence error = 3.369086698512547e-8 Iteration 23: convergence error = 9.01673047337681e-9 Iteration 24: convergence error = 2.4119799491018057e-9 Iteration 25: convergence error = 6.432401278289035e-10 Iteration 26: convergence error = 1.723492459859699e-10 Iteration 27: convergence error = 4.6838977141305804e-11 Iteration 28: convergence error = 1.2505552149377763e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▌ | ETA: 0:00:01 Bin 1 progress: 97%|████████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001769732365610745 Iteration 10: d = 1.566776989482763e-5 Iteration 20: d = 1.563716350681654e-7 Iteration 30: d = 1.8439351238410625e-9 Iteration 40: d = 2.2857557201125425e-11 Iteration 50: d = 2.891752534653464e-13 Iteration 60: d = 3.724321106119825e-15 Converged after 62 iterations. d = 1.5772179335908686e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10994.938443584268 Iteration 2: convergence error = 5723.850705890294 Iteration 3: convergence error = 2019.7733726784481 Iteration 4: convergence error = 897.0349901238665 Iteration 5: convergence error = 413.3876413928574 Iteration 6: convergence error = 195.14335654671913 Iteration 7: convergence error = 92.1932366319902 Iteration 8: convergence error = 43.576109097332846 Iteration 9: convergence error = 20.596870705640413 Iteration 10: convergence error = 9.733332865983357 Iteration 11: convergence error = 4.598428749115101 Iteration 12: convergence error = 2.1719926773789666 Iteration 13: convergence error = 1.0257246853375364 Iteration 14: convergence error = 0.4843375376012773 Iteration 15: convergence error = 0.22867951287389587 Iteration 16: convergence error = 0.10787809690282302 Iteration 17: convergence error = 0.05045949761642987 Iteration 18: convergence error = 0.023063854422161967 Iteration 19: convergence error = 0.010501096597636206 Iteration 20: convergence error = 0.004770625447690691 Iteration 21: convergence error = 0.0021645247438755177 Iteration 22: convergence error = 0.0009813599640438042 Iteration 23: convergence error = 0.0004447392761903757 Iteration 24: convergence error = 0.0002014980341300543 Iteration 25: convergence error = 9.127865087066311e-5 Iteration 26: convergence error = 4.134539540245896e-5 Iteration 27: convergence error = 1.872667371571879e-5 Iteration 28: convergence error = 8.481616532662883e-6 Iteration 29: convergence error = 3.841381385427667e-6 Iteration 30: convergence error = 1.7397655938111711e-6 Iteration 31: convergence error = 7.879316399339586e-7 Iteration 32: convergence error = 3.5685570765053853e-7 Iteration 33: convergence error = 1.6161493476829492e-7 Iteration 34: convergence error = 7.319249561987817e-8 Iteration 35: convergence error = 3.3153355616377667e-8 Iteration 36: convergence error = 1.501121005276218e-8 Iteration 37: convergence error = 6.803020369261503e-9 Iteration 38: convergence error = 3.0772753234487027e-9 Iteration 39: convergence error = 1.3915268937125802e-9 Iteration 40: convergence error = 6.325535650830716e-10 Iteration 41: convergence error = 2.8967406251467764e-10 Iteration 42: convergence error = 1.2641976354643703e-10 Iteration 43: convergence error = 6.048139766789973e-11 Iteration 44: convergence error = 2.8194335754960775e-11 Iteration 45: convergence error = 1.2278178473934531e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 50%|████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001769732365610745 Iteration 10: d = 1.566776989482763e-5 Iteration 20: d = 1.563716350681654e-7 Iteration 30: d = 1.8439351238410625e-9 Iteration 40: d = 2.2857557201125425e-11 Iteration 50: d = 2.891752534653464e-13 Iteration 60: d = 3.724321106119825e-15 Converged after 62 iterations. d = 1.5772179335908686e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.77659420203 Iteration 2: convergence error = 7341.466011110559 Iteration 3: convergence error = 1735.984521356765 Iteration 4: convergence error = 508.7993597971422 Iteration 5: convergence error = 158.26260627664624 Iteration 6: convergence error = 49.2110661524639 Iteration 7: convergence error = 15.274769813535386 Iteration 8: convergence error = 4.733093476964768 Iteration 9: convergence error = 1.4648743172074319 Iteration 10: convergence error = 0.4530418532890508 Iteration 11: convergence error = 0.14005237715764451 Iteration 12: convergence error = 0.043284874062010203 Iteration 13: convergence error = 0.013375846740927955 Iteration 14: convergence error = 0.004133063117023994 Iteration 15: convergence error = 0.0012770363318850286 Iteration 16: convergence error = 0.0003945693488276447 Iteration 17: convergence error = 0.00012190937059131102 Iteration 18: convergence error = 3.766579447983531e-5 Iteration 19: convergence error = 1.1637388979579555e-5 Iteration 20: convergence error = 3.5955222301709e-6 Iteration 21: convergence error = 1.1108813851024024e-6 Iteration 22: convergence error = 3.4306003726669587e-7 Iteration 23: convergence error = 1.0478561307536438e-7 Iteration 24: convergence error = 3.122886482742615e-8 Iteration 25: convergence error = 9.266841516364366e-9 Iteration 26: convergence error = 2.7471287467051297e-9 Iteration 27: convergence error = 8.080860425252467e-10 Iteration 28: convergence error = 2.3646862246096134e-10 Iteration 29: convergence error = 7.048583938740194e-11 Iteration 30: convergence error = 2.4101609596982598e-11 Iteration 31: convergence error = 9.094947017729282e-12 Converged after 31 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 50%|████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001769732365610745 Iteration 10: d = 1.566776989482763e-5 Iteration 20: d = 1.563716350681654e-7 Iteration 30: d = 1.8439351238410625e-9 Iteration 40: d = 2.2857557201125425e-11 Iteration 50: d = 2.891752534653464e-13 Iteration 60: d = 3.724321106119825e-15 Converged after 62 iterations. d = 1.5772179335908686e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.741858097699 Iteration 2: convergence error = 5513.04895383408 Iteration 3: convergence error = 939.6164560241909 Iteration 4: convergence error = 171.07164379540222 Iteration 5: convergence error = 31.057240566974997 Iteration 6: convergence error = 5.656037341407227 Iteration 7: convergence error = 1.038502848437929 Iteration 8: convergence error = 0.19020353402720502 Iteration 9: convergence error = 0.03479400059859472 Iteration 10: convergence error = 0.006361060517519945 Iteration 11: convergence error = 0.0011625801121226687 Iteration 12: convergence error = 0.00021244604749881546 Iteration 13: convergence error = 3.8818582197563956e-5 Iteration 14: convergence error = 7.092706255207304e-6 Iteration 15: convergence error = 1.2959012565261219e-6 Iteration 16: convergence error = 2.3677057470194995e-7 Iteration 17: convergence error = 4.3256932258373126e-8 Iteration 18: convergence error = 7.89668774814345e-9 Iteration 19: convergence error = 1.450189301976934e-9 Iteration 20: convergence error = 2.660272002685815e-10 Iteration 21: convergence error = 4.6838977141305804e-11 Iteration 22: convergence error = 1.0913936421275139e-11 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 50%|████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001769732365610745 Iteration 10: d = 1.566776989482763e-5 Iteration 20: d = 1.563716350681654e-7 Iteration 30: d = 1.8439351238410625e-9 Iteration 40: d = 2.2857557201125425e-11 Iteration 50: d = 2.891752534653464e-13 Iteration 60: d = 3.724321106119825e-15 Converged after 62 iterations. d = 1.5772179335908686e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.4894242405717 Iteration 2: convergence error = 2711.897341582696 Iteration 3: convergence error = 205.17781778791556 Iteration 4: convergence error = 19.36234217860711 Iteration 5: convergence error = 1.6020669181927656 Iteration 6: convergence error = 0.13060147764238642 Iteration 7: convergence error = 0.010659761482419181 Iteration 8: convergence error = 0.0008720564616780071 Iteration 9: convergence error = 7.144981727899165e-5 Iteration 10: convergence error = 5.859066951817997e-6 Iteration 11: convergence error = 4.806774098582163e-7 Iteration 12: convergence error = 3.944435606595396e-8 Iteration 13: convergence error = 3.2385927443766923e-9 Iteration 14: convergence error = 2.6491127748987637e-10 Iteration 15: convergence error = 2.2964741219766438e-11 Iteration 16: convergence error = 3.524291969370097e-12 Converged after 16 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346345 Iteration 2: convergence error = 858.4060420534043 Iteration 3: convergence error = 199.12106737711986 Iteration 4: convergence error = 59.265629268140856 Iteration 5: convergence error = 17.98548291103714 Iteration 6: convergence error = 5.463033078096942 Iteration 7: convergence error = 1.660989611064906 Iteration 8: convergence error = 0.5052487627306164 Iteration 9: convergence error = 0.15371874094194027 Iteration 10: convergence error = 0.046771316975991795 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.00433023651169151 Iteration 13: convergence error = 0.0013175920927324114 Iteration 14: convergence error = 0.0004009136252989265 Iteration 15: convergence error = 0.00012198904050819692 Iteration 16: convergence error = 3.711853867116588e-5 Iteration 17: convergence error = 1.1294342129986035e-5 Iteration 18: convergence error = 3.4366162253718358e-6 Iteration 19: convergence error = 1.0456861900820513e-6 Iteration 20: convergence error = 3.181812644470483e-7 Iteration 21: convergence error = 9.681605206424138e-8 Iteration 22: convergence error = 2.9460807127179578e-8 Iteration 23: convergence error = 8.963411346485373e-9 Iteration 24: convergence error = 2.730530468397774e-9 Iteration 25: convergence error = 8.295728548546322e-10 Iteration 26: convergence error = 2.538627086323686e-10 Iteration 27: convergence error = 7.707967597525567e-11 Iteration 28: convergence error = 2.4556356947869062e-11 Iteration 29: convergence error = 8.640199666842818e-12 Converged after 29 iterations Energy conservation errors by band: [4.6852026882886333e-26, 1.7771458472818954e-26, 2.50416005753358e-26, 4.13994203059987e-26, 6.522933053091502e-26, 4.828087799349512e-20, -1.176836406102666e-14, 1.1084466677857563e-12, -1.4779288903810084e-12, -7.389644451905042e-13, -1.1368683772161603e-13, 7.993605777301127e-15, 2.220446049250313e-16, 1.5612511283791264e-16, 6.451002926288751e-18, 2.0328790734103208e-20, 1.3923104070492562e-20, 4.793511649744795e-22, 1.0481929324695398e-23, 1.318298825299594e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:01 Bin 1 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014149540130273218 Iteration 10: d = 1.1980889895749773e-5 Iteration 20: d = 1.3205351830278095e-7 Iteration 30: d = 1.7907234238325552e-9 Iteration 40: d = 2.4978420647251642e-11 Iteration 50: d = 3.501172462282117e-13 Iteration 60: d = 4.922858144659746e-15 Converged after 62 iterations. d = 2.07243084547641e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.374855489963 Iteration 2: convergence error = 3609.6423007788644 Iteration 3: convergence error = 597.1002115816019 Iteration 4: convergence error = 105.65270932003227 Iteration 5: convergence error = 18.82240710291353 Iteration 6: convergence error = 3.3221962414284008 Iteration 7: convergence error = 0.5841469303941267 Iteration 8: convergence error = 0.1025496722081698 Iteration 9: convergence error = 0.017991469358094037 Iteration 10: convergence error = 0.0031556278840980667 Iteration 11: convergence error = 0.0005534259337309777 Iteration 12: convergence error = 9.705437878437806e-5 Iteration 13: convergence error = 1.7020159248204436e-5 Iteration 14: convergence error = 2.9847558380424744e-6 Iteration 15: convergence error = 5.234257969277678e-7 Iteration 16: convergence error = 9.179325388686266e-8 Iteration 17: convergence error = 1.610851541045122e-8 Iteration 18: convergence error = 2.8064732759958133e-9 Iteration 19: convergence error = 4.984030965715647e-10 Iteration 20: convergence error = 8.481038094032556e-11 Iteration 21: convergence error = 1.4097167877480388e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.4924275130247 Iteration 2: convergence error = 871.3046026617826 Iteration 3: convergence error = 207.75299581225215 Iteration 4: convergence error = 62.495505504907555 Iteration 5: convergence error = 18.979315309184585 Iteration 6: convergence error = 5.766215594047026 Iteration 7: convergence error = 1.7533061530645 Iteration 8: convergence error = 0.5333443699004192 Iteration 9: convergence error = 0.16226812526360845 Iteration 10: convergence error = 0.04937275062957269 Iteration 11: convergence error = 0.015022831427586425 Iteration 12: convergence error = 0.004571091655407145 Iteration 13: convergence error = 0.0013908789693459767 Iteration 14: convergence error = 0.00042321318755966786 Iteration 15: convergence error = 0.00012877429912805383 Iteration 16: convergence error = 3.918314223483321e-5 Iteration 17: convergence error = 1.192255740534165e-5 Iteration 18: convergence error = 3.6277690469432855e-6 Iteration 19: convergence error = 1.1038503089366714e-6 Iteration 20: convergence error = 3.358788944751723e-7 Iteration 21: convergence error = 1.0220196600130294e-7 Iteration 22: convergence error = 3.1098920771910343e-8 Iteration 23: convergence error = 9.464429240324534e-9 Iteration 24: convergence error = 2.8813929020543583e-9 Iteration 25: convergence error = 8.774350135354325e-10 Iteration 26: convergence error = 2.6773250283440575e-10 Iteration 27: convergence error = 8.174083632184193e-11 Iteration 28: convergence error = 2.546585164964199e-11 Iteration 29: convergence error = 8.526512829121202e-12 Converged after 29 iterations Energy conservation errors by band: [3.473512337869159e-26, 2.928251680180396e-26, 6.54312789226516e-26, 3.0090310368750274e-26, 3.4028304007613565e-26, 3.3881317890172014e-20, -1.4654943925052066e-14, 3.552713678800501e-13, -3.268496584496461e-13, 2.0463630789890885e-12, 7.815970093361102e-14, 2.220446049250313e-14, 1.6653345369377348e-15, 1.8735013540549517e-16, 3.7947076036992655e-18, -1.3976043629695956e-19, 2.2658131339052534e-20, 1.5923226791645783e-22, -7.302453845194697e-25, 1.6176561218948528e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729989 Iteration 2: convergence error = 2115.1156110176375 Iteration 3: convergence error = 714.8959934551624 Iteration 4: convergence error = 296.0190747132401 Iteration 5: convergence error = 115.88799395378715 Iteration 6: convergence error = 44.115249236190266 Iteration 7: convergence error = 16.5995810251261 Iteration 8: convergence error = 6.21598340493324 Iteration 9: convergence error = 2.323124567003333 Iteration 10: convergence error = 0.8675636398231745 Iteration 11: convergence error = 0.32389343048794217 Iteration 12: convergence error = 0.12090784413680922 Iteration 13: convergence error = 0.04513241840777482 Iteration 14: convergence error = 0.016846741615609062 Iteration 15: convergence error = 0.0062884074734483875 Iteration 16: convergence error = 0.002347277756598487 Iteration 17: convergence error = 0.0008761691049130604 Iteration 18: convergence error = 0.0003270478227932472 Iteration 19: convergence error = 0.00012207719078105583 Iteration 20: convergence error = 4.556777048492222e-5 Iteration 21: convergence error = 1.7009089560815482e-5 Iteration 22: convergence error = 6.3489862895949045e-6 Iteration 23: convergence error = 2.369887170061702e-6 Iteration 24: convergence error = 8.846072887536138e-7 Iteration 25: convergence error = 3.3019910006260034e-7 Iteration 26: convergence error = 1.2325517673161812e-7 Iteration 27: convergence error = 4.600769898388535e-8 Iteration 28: convergence error = 1.7175352695630863e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.956249075708911e-10 Iteration 32: convergence error = 3.3514879760332406e-10 Iteration 33: convergence error = 1.2505552149377763e-10 Iteration 34: convergence error = 4.8203219193965197e-11 Iteration 35: convergence error = 1.887201506178826e-11 Converged after 35 iterations Energy conservation errors by band: [-2.3022116657970009e-26, -1.308625578453032e-25, -1.0743654440386004e-25, -8.320273739547056e-26, -1.0057029908481635e-25, -6.945670167485263e-20, -9.769962616701378e-15, -1.4068746168049984e-12, -7.837286375433905e-12, -1.0373923942097463e-12, -8.881784197001252e-15, -1.5543122344752192e-15, 9.71445146547012e-16, 2.927345865710862e-18, 1.4365678785432934e-18, 4.1504614415460717e-20, 5.717472393966527e-21, 1.2904017555827232e-22, -3.9291079096268815e-24, 5.551115123125783e-17] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.362166223825 Iteration 2: convergence error = 864.8522700482426 Iteration 3: convergence error = 203.43244494690714 Iteration 4: convergence error = 60.87736397590493 Iteration 5: convergence error = 18.481426659698172 Iteration 6: convergence error = 5.614330618626127 Iteration 7: convergence error = 1.7070587705939033 Iteration 8: convergence error = 0.5192694771479864 Iteration 9: convergence error = 0.15798519284180657 Iteration 10: convergence error = 0.04806952669321163 Iteration 11: convergence error = 0.01462628739034244 Iteration 12: convergence error = 0.00445043197044015 Iteration 13: convergence error = 0.0013541649042281279 Iteration 14: convergence error = 0.00041204191563792847 Iteration 15: convergence error = 0.00012537513089228014 Iteration 16: convergence error = 3.814885076280916e-5 Iteration 17: convergence error = 1.1607843816818786e-5 Iteration 18: convergence error = 3.5320085771672893e-6 Iteration 19: convergence error = 1.074713281923323e-6 Iteration 20: convergence error = 3.270117758802371e-7 Iteration 21: convergence error = 9.950326784746721e-8 Iteration 22: convergence error = 3.0277988116722554e-8 Iteration 23: convergence error = 9.213749763148371e-9 Iteration 24: convergence error = 2.8026079235132784e-9 Iteration 25: convergence error = 8.545839591533877e-10 Iteration 26: convergence error = 2.629576556500979e-10 Iteration 27: convergence error = 8.01492205937393e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.86757334228605e-12 Converged after 29 iterations Energy conservation errors by band: [4.281305904815475e-26, 4.52364397489937e-26, 4.119747191426212e-26, 5.634360129450555e-26, 9.895471195092372e-26, -6.606856988583543e-20, 2.4424906541753444e-15, -8.526512829121202e-14, 3.126388037344441e-12, 5.684341886080801e-13, 2.984279490192421e-13, 3.552713678800501e-14, 8.326672684688674e-16, 1.3010426069826053e-16, 2.0599841277224584e-18, 3.9810548520952116e-19, 2.3002238473874594e-20, 5.438712527536157e-22, -1.2782525403358506e-23, 3.1963148993622903e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 7m58.7s Testing RayTraceHeatTransfer tests passed Testing completed after 500.8s PkgEval succeeded after 547.89s